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RESEARCH ARTICLE Open Access

Finished sequence and assembly of the
DUF1220-rich 1q21 region using a haploid
human genome
Majesta O’Bleness1†, Veronica B Searles1†, C Michael Dickens1, David Astling1, Derek Albracht2, Angel C Y Mak3,
Yvonne Y Y Lai3, Chin Lin3, Catherine Chu3, Tina Graves2, Pui-Yan Kwok3, Richard K Wilson2 and James M Sikela1*

Abstract

Background: Although the reference human genome sequence was declared finished in 2003, some regions of
the genome remain incomplete due to their complex architecture. One such region, 1q21.1-q21.2, is of increasing
interest due to its relevance to human disease and evolution. Elucidation of the exact variants behind these
associations has been hampered by the repetitive nature of the region and its incomplete assembly. This region
also contains 238 of the 270 human DUF1220 protein domains, which are implicated in human brain evolution and
neurodevelopment. Additionally, examinations of this protein domain have been challenging due to the
incomplete 1q21 build. To address these problems, a single-haplotype hydatidiform mole BAC library (CHORI-17)
was used to produce the first complete sequence of the 1q21.1-q21.2 region.

Results: We found and addressed several inaccuracies in the GRCh37sequence of the 1q21 region on large and
small scales, including genomic rearrangements and inversions, and incorrect gene copy number estimates and
assemblies. The DUF1220-encoding NBPF genes required the most corrections, with 3 genes removed, 2 genes
reassigned to the 1p11.2 region, 8 genes requiring assembly corrections for DUF1220 domains (~91 DUF1220
domains were misassigned), and multiple instances of nucleotide changes that reassigned the domain to a different
DUF1220 subtype. These corrections resulted in an overall increase in DUF1220 copy number, yielding a haploid
total of 289 copies. Approximately 20 of these new DUF1220 copies were the result of a segmental duplication
from 1q21.2 to 1p11.2 that included two NBPF genes. Interestingly, this duplication may have been the catalyst for
the evolutionarily important human lineage-specific chromosome 1 pericentric inversion.

Conclusions: Through the hydatidiform mole genome sequencing effort, the 1q21.1-q21.2 region is complete and
misassemblies involving inter- and intra-region duplications have been resolved. The availability of this single
haploid sequence path will aid in the investigation of many genetic diseases linked to 1q21, including several
associated with DUF1220 copy number variations. Finally, the corrected sequence identified a recent segmental
duplication that added 20 additional DUF1220 copies to the human genome, and may have facilitated the
chromosome 1 pericentric inversion that is among the most notable human-specific genomic landmarks.
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Figure 1 Comparison of GRCh37/hg19 assembly (left) with the WUSTL CHM1 assembly (right). NBPF genes are indicated in red, all other
genes are in blue. Black boxes on the GRCh37 map denote gaps. The vertical bar to the right of the CHM1 map denotes the novel inversion
spanning multiple genes discussed in the text.
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Background
A major landmark in the modern era of medical genomics
research is the sequence and assembly of the human gen-
ome. The current genome build, however, contains numer-
ous gaps and areas of potential misassembly. Completion
of an accurate assembly is a continuing challenge given
the presence of multiple highly duplicated and complex
regions that remain largely intractable to analysis with
commonly used assembly techniques [1]. Nonetheless,
finishing these regions has significant implications for
identifying causative disease loci and in turn efficacious
treatments for patients with genetic and genomic disorders
[2]. The 1q21 region of chromosome 1 is a classic example,
given its association with multiple clinical disorders and its
complex architecture, with multiple regions of duplication
that make complete assembly extremely difficult. The 2009
human genome assembly reflects this challenge, containing
14 gaps in the 7.7 Mb 1q21.1-2 region.
Closing these gaps in the current 1q21 build is a particu-

larly pressing problem given that recurrent genetic and
genomic variations in this region have been implicated in
a multitude of disease phenotypes: neuropsychiatric dis-
eases such as autism [3,4] and schizophrenia [5,6], micro-
cephaly and macrocephaly [7,8], cardiac conduction and
structural defects [9,10], multiple congenital anomalies
[11-13], and ocular deficits [8]. Additionally, this region
contains multiple Neuroblastoma Breakpoint Family
(NBPF) genes encoding 238 of the known 270 copies of
DUF1220, a protein domain that has undergone a striking
copy number increase specifically in the human lineage
[14,15]. While this extreme DUF1220 copy number in-
crease has been linked to the evolutionary expansion of
the human brain [16,17], the many interspersed and tan-
dem DUF1220 paralogs in the 1q21 region are thought to
be major contributors to 1q21 genomic instability leading
to numerous disorders [16]. Ascertaining the exact in-
volvement of DUF1220 and other 1q21 sequences in these
diseases has been hindered by the incomplete nature of
the 1q21 assembly and of the DUF1220-encoding gene
family (NBPF) in particular. Without a complete, accurate
assembly, genotype-phenotype associations are difficult to
identify, and those that are found may not provide a
complete picture of disease etiology and in some cases
may even be incorrect and misleading.
To pursue the completion of the 1q21 genomic region, a

haploid hydatidiform mole (CHM1) genome was utilized
which reduces the challenges introduced by using a diploid,
polymorphic genome [18]. Using bacterial artificial chro-
mosomes (BACs) produced from the CHM1 genome the
14 gaps that remained in this region were closed and a sin-
gle haploid genomic path generated that spans the 1q21.1-
2 region. This new, completed assembly was used to more
precisely analyze genomic structural variation in individ-
uals with 1q21 CNVs and microcephaly or macrocephaly.

Results and discussion
Sequence finishing and assembly
A total of 48 BACs were sequenced generating a contig of
7,283,150 bp, covering the 1q21.1-q21.2 region of interest.
This successfully closed all 14 gaps in the GRCh37/hg19
assembly, added 616,581 bp of sequence, and resulted in
the addition of 12 new genes. In addition to these se-
quence additions, numerous differences between the pre-
vious 1q21 assembly and the CHM1 assembly were
discovered, including changes in gene order, 2 inverted
loci spanning multiple genes, and gene loss associated
with multicopy genes (Figure 1, Table 1). While confirm-
ation testing conducted on the assembly (see Confirm-
ation of DUF1220 Copy Estimates section) indicates that
the CHM1 library is representative of the general popula-
tion, it cannot be ruled out that some of the changes may
be true variants within the human population.

Table 1 Copy number differences in 1q21 between the
GRCh37 build and the CHM1 assembly

Gene name GRCh37/hg19 CHM1 assembly

FAM72D 1 2

FCGR1A 1 2

HYDIN 0 1

NBPF16 1 0

NBPF24 1 0

NBPF25 1 0

NBPF26 0 1

NOTCH2NL 1 3

PDE4DIP 1 3

PDZK1 3 2

SEC22B 1 3

SRGAP2 1 2

Total 1q21 DUF1220 242 238

DUF1220 CON1 22 17

DUF1220 CON2 13 11

DUF1220 CON3 12 11

DUF1220 HLS1 60 62

DUF1220 HLS2 68 69

DUF1220 HLS3 64 66

DUF1220 Triplets 51 59

Table 1 describes changes in copy number between the GRCh37 and new
CHM1 assemblies. The majority of non-DUF1220 changes were gain in copy,
with 8 genes previously under represented in GRCh37. Three NBPF genes are
no longer present, although DUF1220 numbers remained close to the same
with DUF1220 copies being mostly redistributed among the remaining NBPF
genes. This may indicate that the gene loss is an artifact of misassembly rather
than true gene copy number differences. Numbers do not include the
additional DUF1220 domains and NBPF genes added to the 1p11.2 region
as a result of the human-specific 1q21.2 segmental duplication described in
the text.
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The DUF1220-containing NBPF family of genes expe-
rienced by far the largest number of changes resulting
from the CHM1 assembly (Figure 2, Table 2). While
there was no significant change in DUF1220 number
within the 1q21 region, the domains were redistributed
among 11 predicted NBPF genes, rather than 13, result-
ing in sequence changes to 8 NBPF genes and the rede-
signation of many DUF1220 domains to different domain
subtypes (hereafter referred to as clades). Finally, two
NBPF genes were assigned to 1p11.2, resulting in the
addition of 21 DUF1220 domains to the haploid gen-
ome. This gives a total haploid DUF1220 copy number
of 289 domains in the GRCh38 genome build. It is im-
portant to note that this is likely the minimum number
of copies in the human genome due to the tandemly du-
plicated nature of these domains and the resulting chal-
lenges to sequencing. Current sequencing technology

often collapses tandemly duplicated reads into single
copies or, less frequently, overestimates the number of
copies within these regions. Therefore, the true number
of copies in these duplications may be slightly different
than that determined by sequencing.
The two NBPF genes newly placed at 1p11.2 are the

result of a human lineage specific (HLS) segmental du-
plication (SD) from the 1q21.2 region to the 1p11.2 re-
gion, discovered through sequencing efforts for the
CHM1 1q21 region (Figure 3). This SD is not present in
other primates and is particularly interesting as both it
and its paralog in the 1q21.2 region were identified in
Szamalek et al. [19] as the breakpoint regions for a HLS
pericentric inversion event. This event is hypothesized
to be the catalyst for the expansion of the 1q12 C-band
and the hyper-amplification of the HLS DUF1220 triplet
in the 1q21 region [20]. The discovery of this SD is an
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Figure 2 Organization of the DUF1220 domain and NBPF gene families in the 1q21.1-21.2 region in the GRCh37/hg19 assembly (black)
and new CHM1 assembly (red). Three NBPF genes have been lost in the CHM1 assembly, and were likely artifacts of misassembly rather than
true differences between the two. Six NBPF genes show different DUF1220 copy numbers between builds. The 6 different DUF1220 clades are
denoted by colored boxes and DUF1220 triplets are underlined.
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important finding as it helps narrow the time frame in
human evolution when the HLS chromosome 1 pericen-
tric inversion took place.

Confirmation of DUF1220 Copy Number Estimates
Digital droplet PCR
DUF1220 clade (subtype) copy number estimates were
compared within each NBPF gene between the new and
old assemblies (Figure 2). DUF1220 domains are subdi-
vided into six clades based on sequence similarity, re-
ferred to as conserved (CON) clades 1 through 3 and
human lineage specific (HLS) clades 1 through 3. CON1
and HLS1 were analyzed for DUF1220 copy number val-
idation. The CON1 copy number determined by ddPCR
of CHM1 DNA was comparable to that seen across mul-
tiple control samples, suggesting that the assembly of
this clade within NBPF genes accurately reflects the gen-
eral population. The HLS1 copy number, meanwhile,
was slightly lower than that seen in the majority of con-
trol samples, suggesting that the CHM1 genome may
have fewer HLS copies than would be found in healthy

individuals. It should be noted that HLS1 DUF1220 do-
mains are highly polymorphic within the population and
as such these results do not necessarily suggest that ei-
ther version of the 1q21 assembly will be more useful
for future analysis of copy number-phenotype correla-
tions for this locus. Copy number measurements of
PDE4DIP as measured by ddPCR reflected those pre-
dicted by the molar assembly and mirrored those seen in
healthy controls. In addition, a primer set mapping
uniquely to NBPF11 and NBPF24 (NBPF genes differing
by only 3 nucleotides) from the GRCh37 assembly was
used to determine if the loss of one of these regions was
unique to the CHM1 cell line or representative of
healthy individuals as well. ddPCR results demonstrate a
single copy, confirming loss of NBPF24 and retention of
the one copy of NBPF11. Overall, results indicate that
the CHM1 assembly generally is representative of
healthy individuals and can be used in place of the
current human genome build.

Irys
Single DNA molecules (>150 kb) fluorescently labeled at
BspQI sites were used to examine genome segment length
within NBPF genes in BACs used to produce the new as-
sembly. Segment lengths between BspQI labels observed
in consensus maps de novo assembled from BAC mole-
cules harboring NBPF10, NBPF12 and NBPF15 (NBPF12
shown in Figure 4) were consistent to those observed in in
silico maps of the CHM1 assembly.

Evolutionary Analysis
All complete HLS DUF1220 triplet sequences were used
to create a phylogenetic tree (Figure 5). The phylogeny re-
veals first and foremost a confirmation that only NBPF
genes within the 1q21 region have undergone triplet
hyper-amplification. While two new NBPFs found to res-
ide in 1p11.2 each contain a HLS DUF1220 triplet, they
remain in the unexpanded form and cluster with the first
triplets of other NBPF genes within the phylogeny. Sec-
ond, as the 1p11.2 NBPF genes are unexpanded when
compared to their 1q21.2 counterparts, the most parsimo-
nious conclusion is that the SD from 1q21.2 to 1p11.2 oc-
curred prior to the genomic changes that led to the HLS
DUF1220 triplet hyper-amplification. This, combined with
the previous discussion of the SD being found to be the
breakpoints for the HLS pericentric inversion event, lends
more support for the hypothesis put forth recently [20]
that the 1q21.1-q21.2 region within the pericentric inver-
sion is a unique genomic environment that allowed the
HLS DUF1220 triplet to hyper-amplify.

Mapping disease samples
ArrayCGH results of patient samples from the Baylor
College of Medicine with known 1q21 CNVs [17] were

Table 2 Description of NBPF genes in GRCh38 assembly

Name Location No. of DUF1220 No. of DUF1220 triplets

NBPF1 1p36.13 7 0

NBPF2P 1p36.12 3 0

NBPF3 1p36.12 5 0

NBPF4 1p13.3 4 0

NBPF5P 1p13.3 2 0

NBPF6 1p13.3 4 0

NBPF7 1p12 2 0

NBPF8 1p11.2 8 1

NBPF26 1p11.2 13 1

NBPF23P 1q21.1 0 0

NBPF17P 1q21.1 6 0

NBPF15 1q21.1 6 1

NBPF20 1q21.1 67 20

NBPF25P 1q21.1 6 1

NBPF10 1q21.1 42 12

NBPF12 1q21.1 11 2

NBPF13P 1q21.1 5 0

NBPF11 1q21.2 7 0

NBPF14 1q21.2 32 7

NBPF9 1q21.2 9 1

NBPF19 1q21.2 45 14

NBPF18P 1q21.3 0 0

NBPF21P 3p22.2 1 0

NBPF22P 5q14.3 2 0

Table 2 displays a summary of all annotated NBPF regions in the GRCh38
build. There are 23 NBPF-like regions, with 14 NBPF genes and 9 pseudogenes.
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mapped to the 2009 assembly and the new WUSTL
CHM1 assembly. Figure 6 shows a comparison of these
data plotted on the 2009 assembly (upper image) and the
CHM1 assembly (lower image). Regions affected by these
copy changes overlapped, but were not identical, between
assemblies. In addition, there are genes that do not appear
to be affected by deletion/duplication in the 2009 assem-
bly (or are not present in that assembly) that fall in af-
fected regions in the CHM1 1q21 assembly (not shown).
Of note, one segment of the 2009 assembly that con-

tains multiple genes is inverted in the new assembly
(Figure 1). By mapping patient data to this new assem-
bly, it was discovered that this inversion, while represen-
tative of the CHM1 genome, may be polymorphic in the
human population (or may be inverted uniquely in the
CHM1 genome). This conclusion is based on the fact
that in the new CHM1 assembly, samples with Type I
deletions (a class of deletions found in the distal 1q21

region) have a contiguous gene deletion region, and an
additional region deleted proximally that is not contiguous,
suggesting two deletion events (Figure 6). In the 2009 as-
sembly, these two deleted regions are contiguous, suggest-
ing one deletion event rather than two. As a single-deletion
event is more likely than multiple deletions events, it is
likely that this inversion occurred in the CHM1 genome
but may not be the more common allelic form in the hu-
man population.
By remapping array results for 40 patients with 1q21

CNVs to the new assembly, regions affected by deletions
and duplications were identified with better certainty
and precision. In the future, the more accurate and
complete 1q21 assembly will also allow for better map-
ping of breakpoints of these copy number changes,
which will in turn aid in localizing disease-causing genes
and regulatory loci, and in the development of a morbid-
ity map of the region.

Figure 3 Comparison of 1q21 to 1p11.2 showing two separate duplication events between the two regions: 1) a segmental
duplication between 1q21.2 and 1p11.2 containing 11 genes, including 2 NBPF genes and 2) a smaller duplication from 1q21.1 to
1p11.2 [21].
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Conclusions
This investigation demonstrated that resources devel-
oped from a haploid hydatidiform mole genome could
effectively be used to complete assembly of chromosome
1q21, one of the most complex and evolutionarily dy-
namic regions of the human genome. Completing this
region also has significant implications for studying hu-
man disease given the numerous disorders associated
with CNVs, mutations and chromosomal aberrations in
the 1q21 region. Additionally, the complete 1q21 assem-
bly will play an integral role in studies of human evolu-
tion, as 1q21 contains the majority of the 289 DUF1220
protein domain copies, 160 of which were added specif-
ically to the human genome since the Homo/Pan diver-
gence [15] [20]. The new 1q21 assembly has already led
to the discovery of a novel copy of SRGAP2, a gene in
the 1q21 region that may be important for the elabor-
ation of neuronal processes in the human brain [21]. Ef-
forts to localize disease-causing genes and regulatory
regions that have previously been hindered by the incom-
plete nature of the 1q21 assembly and inaccuracies in the
region may now move forward with a complete and reli-
able map to identify causative sequence variations.

Methods
Hydatidiform mole
Hydatidiform moles are human conception abnormal-
ities that most often arise from the fertilization of an
anucleate ovum by a single X-bearing sperm. Subsequent

diploidization results in a 46 XX karyotype in which all
allelic variation has been eliminated allowing the unam-
biguous delineation of duplicated DNA as well as haplo-
type characterization. The hydatidiform mole (CHM1)
BAC library (CHORI-17) was previously created by the
Children’s Hospital Oakland Research Institute BACPAC
Resource by Mikhail Nefedov in Pieter de Jong’s labora-
tory. The library was prepared from a well-characterized
haploid cell line (CHM1htert) from Dr. Urvashi Surti,
Director of the Pittsburgh Cytogenetics, laboratory,
using the cloning approach described in Osoegawa et al.
[22]. This library was used for subsequent analysis.

Sequence finishing and assembly
A minimum tiling path of single haplotype clones was
selected based off of a fingerprint map and alignment of
existing BAC end sequences (BES) to span the 1q21.1-
q21.2 region of interest. Sequences were generated to
cover each BAC insert as described below. The clones
were pooled prior to sequencing in groups of 25, in
equal molar ratio, and a single 454 fragment library and
a single 3730 plasmid library were produced. This ap-
proach leveraged the high throughput, unbiased 454
data with the 3730 data, which provides long-range link-
age, long reads for assembly, and template availability.
The 454 pools were sequenced to greater than 25×
coverage, and 3730 libraries to a coverage of 4×. In
addition, BACs difficult to resolve due to multiple

NBPF12 NBPF13 

HM 1q21 in silico map 

BAC de novo assembly 

Labeled BAC molecules 

+ orientation 

Aligned label 

- orientation 

Unaligned label 

Figure 4 Single-molecule genome maps (orange) from three hydatidiform mole BACs were assembled de novo into consensus genome
maps (blue). One of the assembled consensus genome maps is shown here (BAC CH17-112A12, blue) and is aligned to an in silico map based
on the 1q21 sequence assembly described in this paper (green). Locations of the NBPF12 and NBPF13 genes on the 1q21 sequence assembly are
marked in red. Segment lengths between labels in the NBPF12 gene are consistent across in silico and de novo maps.
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paralog content had individual 3730 libraries created
and sequenced.
The data was assembled using a de novo assembly ap-

proach using both pcap [23] and newbler (Roche 454
software package) assembly algorithms to assemble the
data. These assemblies were then compared to one an-
other as well as to the human reference sequence, to fur-
ther guide the assembly and resolve any sequencing
ambiguities. This approach has been applied extensively
to whole genome bacterial projects in the size range of
5 Mb, with great success, as well as clone pools in hu-
man structural variation fosmid projects [21]. An auto-
mated improvement process called prefinishing was
performed to choose directed work for low quality re-
gions and gaps, and then a manual process of finishing
the regions to a level of less than 1 error per 10,000 bp
was employed. At the end of this process, a high quality
product suitable for identification of sequence differ-
ences between the reference sequence and the single
haplotype was achieved. The new assembly can be found
at accession number JH636052.4.

NBPF gene annotation
All DUF1220/NBPF homologous regions were evaluated
using the criteria published in O’Bleness et al. [20].
Through a collaboration between the Sikela laboratory,
RefSeq at NCBI, and the HUGO Gene Nomenclature
Committee, a consensus gene nomenclature was decided
upon. This nomenclature is used in the GRCh38 release
of the human genome.

Analyses of segmental duplications and DUF1220 HLS
triplet expansion events
Evaluation of the 1q21 to 1p11 duplication events was
generated by aligning the CHM1 1q21 region to the
CHM1 1p11 region using the Exonerate alignment tool
with the genome to genome option [24] and visualized
in GBrowse for manual annotation and confirmation.
The largest and highest scoring alignments were plotted
using the Circos visualization tool (Figure 3) [25]. Evalu-
ation of the relationship between the DUF1220 HLS
triplet (hls1-hls2-hls3) sequences in each NBPF gene
was performed by aligning each DUF1220 HLS triplet
using the PRANK multiple sequence aligner [26] and
generating a phylogenetic tree using the APE package in
R (Figure 5) [27].

Mapping of disease samples to the new 1q21 assembly
40 patient samples from the Baylor College of Medicine
with 1q21 microduplications or microdeletions were
identified by array comparative genomic hybridization
(arrayCGH) using probes specific to the 2009 1q21 as-
sembly. Arrays were previously constructed using Agi-
lent custom array capabilities, designed and processed as
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Figure 5 Phylogeny of DUF1220 triplets in the CHM1 assembly.
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described in Dumas et al. [17]. Probes from the initial
run based on the old assembly were re-mapped to the
new assembly in order to identify loci affected by dele-
tion/duplication status that vary by assembly map.

Droplet digital PCR confirmation of copy number
estimates in the new 1q21 assembly
Droplet digital PCR (ddPCR), a third-generation PCR
technique [28], was used to check the copy number esti-
mates of multiple loci in the new assembly. DNA was ex-
tracted from CHM1htert cell pellets, provided by Dr.
Urvashi Surti, using a Qiagen DNA extraction kit follow-
ing manufacturer’s protocols. Extracted DNA was digested
with the restriction enzyme DDE1. Digested DNA was
then added to a PCR mix according to the manufacturer’s

protocol including fluorescently tagged probes specific to
the region of interest (separate reactions for conserved
clade 1 (CON1) (Left ‘AATGTGCCATCACTTGTTCAA
ATAG’, Right – ‘GACTTTGTCTTCCTCAAATGTGATT
TT’, Hyb – ‘CATGGCCCTTATGACTCCAACCAGCC’),
human lineage specific clade 1 (HLS1) (Left – ‘GCTGTT
CAAGACAACTGGAAGGA’, Right - ‘GGGAGCTGCTG-
GAGGTAGT’, Hyb – ‘AGAGCCTGAAGTCTTGCAGG
ACTCAC’), PDE4DIP (Left – ‘GCCTTATTAGCATCCC
AAGACAA’, Right – ‘CCCTGAACAGCCTTTCCTTCT’,
Hyb – ‘CATGCTGTGAAGAAGTCGGTCTACCCCAC’),
and a unique region mapping to NBPF11 (Left - ‘GGAA
AGTCGGGTTTGTGAGA’, Right – ‘TGGCACAACATC
CTGGAATA’, Hyb – ‘ACAACAGAGGAGAGCGGAGA’)
and to a reference sequence of known copy number,

Figure 6 Comparison of arrayCGH profiles of patients with 1q21 deletions and duplications between the GRCh37/hg19 assembly and
the CHM1 assembly. Samples with known duplications are represented in pink, Type I deletions in blue, and Type II deletions, which are larger
than Type I deletions and include the thrombocytopenia-absent radius (TAR) region, in black. Gray vertical regions in the GRCh37/hg19 assembly
represent gaps that were eliminated in the CHM1 assembly. Green bars above the GRCh37map and below the CHM1 map indicate the approximate
location of the Type I deletion in each assembly. Note that the inverted gene segment in the CHM1 assembly requires a two-deletion event rather
than single-deletion event to explain the Type I deletion mapping pattern. Tick marks at the bottom of the figure are separated by 2 Mb; the GRCh37
assembly starts at 142,000,000 and the CHM1 assembly starts at 0.
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RPP30 (Left – ‘GATTTGGACCTGCGAGCG’, Right –
‘GCGGCTGTCTCCACAAGT’, Hyb – ‘TTCTGACCT-
GAAGGCTCTGCGC’). Oil droplets containing this mix-
ture were produced using a BioRad droplet generator,
resulting in over 14,000 droplets per well. Droplets were
then subject to a thermocycling protocol with an anneal-
ing temperature of 56°C and read single-file on a droplet
reader to compare fluorescence of the target and reference
in each droplet. Results were merged to produce a final
copy number estimate and this estimate was compared to
that provided by the new assembly and to ddPCR results
examining the same loci in healthy controls from the
Coriell dataset.

Confirmation of NBPF data using Irys technology
The Irys platform automates high-resolution genome
mapping by imaging labeled single DNA molecules in
nanochannels. Three hydatidiform mole BACs (CH17-
112A12, CH17-353B19 and CH17-382H24) containing
NBPF12, NBPF10 and NBPF15, respectively, were selected
for genome mapping to validate the sequence assembly of
the chr1q21 region. BAC DNA was extracted with Large
Construct kit (Qiagen, Valencia, CA) and 300 ng of puri-
fied BAC DNA were used for nicking and labeling accord-
ing to the irysPrep protocol (BioNano Genomics, San
Diego, CA). In brief, 300 ng of purified BAC DNA were
incubated in a 10 μL nicking reaction at 37°C with 7 U Nt.
BspQI (NEB, Ipswich, MA) for two hours followed by heat
inactivation of the nicking enzyme at 80°C for 20 minutes.
Five microliters of labeling master mix, consisting of 1.5×
labeling buffer, 1.5× labeling mix (BioNano Genomics)
and 1 U Taq polymerase (NEB), was added to the heat-
inactivated nicking reaction mixture and this labeling re-
action mixture was incubated at 72°C for an hour. The
nicked and labeled DNA was repaired by PreCR® repair
mix that contained 10 mM dNTP mix (NEB). One micro-
liter of stop solution (BioNano Genomics) was added to
stop the repair reaction. Lastly, the nicked, labeled and
repaired DNA was stained overnight with DNA stain
(BioNano Genomics). The nicked, labeled, repaired and
stained BAC DNA samples (20 μL each) were combined
before they were loaded on the IrysChip for genome map-
ping on the Irys system (BioNano Genomics).
Image detection, genome map alignment, and

assembly were performed using software tools devel-
oped in-house and packaged into IrysView at Bio-
Nano Genomics. Briefly, the DNA backbone and
fluorescent labels were detected, integrated, and con-
verted into single-molecule genome maps. De novo
assembly of genome maps was performed using a
graph-based assembler. Consensus genome maps were
then aligned to an in silico map based on the 1q21
sequence assembly.
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