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ABSTRACT OF THE DISSERTATION

Information Theoretic and Statistical Models for Spatial Transportation Networks: Total

Mixing Entropy on Optimal Fluid Flow Networks and Time Dependent Stochastic Block

Models

by

Cassidy Mentus

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019

Professor Marcus Roper, Chair

This thesis contains two studies about models on organized spatial transport networks. The

�rst introduces a new objective function aimed at understanding the ability that networked

organisms such as fungi and slime molds to mix and e�ciently disperse nuclei and molecular

cues via advective currents. The second develops a novel type of stochastic block model to

multilayer networks expressing model human transportation. It is a statistically based model

that aims to classify parts of the network based on the function they serve for commuters.

Our speci�c application is to bicycle share networks in di�erent urban communities. Although

these models are applied to disparate subjects they are connected from a mathematical point

of view and illuminate a central theme in general tranpsport networks in two contrasting

lights.

The �rst part of the thesis is inspired by the work of Murray [Mur26], who hypothesized

that the geometries of blood �ow networks are optimized to minimize the friction of �ows

through the network for a given total investment in the material that makes up the network.

In the spirit of Murray, we hypothesize that biological networks, maximize their performance

of objectives that are bene�cial to the organism's existence while respecting constraints. We
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are inspired by experimental observations that show that the �lamentous fungus Neurospora

crassa mixes nuclei and the slime mold Physarum polycephalum mixes signals it receives

from its environment on the distribution of food sources [AAP17]. We use the concept of

information entropy to describe how advection currents within the network carry information.

We construct a probability space for the signals passing through the network and write down

a novel objective function, called the total negative mixing entropy, representing each node

receiving the most mixed collection of signals. Put another way, to maximize its ability to

adapt to stimuli, each node receives the most even distribution of signals from the other

nodes within the network.

We then de�ne optimal networks to be ones minimizing a cost function that is the sum

of the total negative mixing entropy and of �uid dissipation. A constraint assuming a

�xed amount of energy used for network upkeep is assumed. Using original optimization

techniques, that we describe in this paper, we numerically calculate optimal networks under

di�erent assumptions on the driving force of the �ow, the underlying topology and the total

material cost function. From our numerical results we identify highlight results about the

structure of optimal networks, which we are then able to prove rigorously. The proofs involve

constructions and computations that illluminate how energy e�cient �uid transport �ows are

connected to mix signals and the e�ects that Murray's law has on features such as whether

the networks posess loops.

In the second part of the thesis, we de�ne two new types of time-dependent stochastic

block models for Bicycle-Sharing Networks. The model assumes that network can be modeled

by a random process based on partitioning the possible origins and destinations into blocks.

The blocks in our model express the roles that the stations play in relation to the entire

network and trips are assumed to be generated by a mixture of time dependent commute

patterns occuring between the blocks. The only parameter of our model that is chosen by

the practitioner is the number of di�erent blocks K. The block to block commute patterns

are represented in a K × K × 24 array, and the commute patterns are not assumed to be
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equal if the order of the pair of blocks is changed to take into account direction of �ows. It

can be viewed as a degree corrected model in that there are multiplicative terms for each

station representing their importance within each block. The commute patterns and degree-

correction terms are inferred parameters, optimized using gradient descent. We derive both

a continuous and discrete version of this model.

We apply our models to Los Angeles, Manhattan, New York and San Francisco bike-share

communities. The results reveal crisp divisions of home and work communities as de�ned

by the preference of commuters to use bikes if we use two blocks. The models also reveal

other relevant functional regions, such as parks, leisure commutes, and broad communities

representing micro-cosms where riders mostly do not exit. With increasing blocks reveals

more roles detecting new functional roles as well as re�ning roles with less blocks, such as

breaking a geographical community into its home-work commute roles. How to choose the

number of blocks is touched on, although we do not reach a de�nitive result with regards to

that.
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CHAPTER 1

Introduction

1.1 Evolutionary and Mathematical Biological Background

The evolutionary forces that the adaptation of organisms to their niches have been likened to

the action of an optimization algorithm, searching over a landscape of possible phenotypes

in search of optimal traits. The analogy is made explicit by optimization methods such

as the genetic algorithm [Hol92], which has been successfully applied to a wide variety of

optimization algorithms. The genetic algorithm �nds optima by repeatedly adding (mutations)

to the proposed optima of an objective function and subjecting them to recombination and

arti�cially selection. Yet does evolution really locate optimal traits? In a widely cited

perspective piece [Jac77], Francois Jacob argued that evolution is a tinkerer rather than an

engineer -- that without a blueprint of the landscape, evolution could produce only literative

changes in the traits of an organism, and that most of these changes will be neutral or even

deleterious to its �tness.

How much of an organism's traits can be attributed to the optimization of its �tness?

Charles Murray was the �rst scientist to apply ideas of optimization to the stsudy of

the dissipation and geometry of naturally occuring biological vascular networks and most

speci�cally of blood �ow networks [Mur26]. He posited that a �uid transport network must

perform its role of delivering nutrients or oxygen while taking the least amount of energy

to maintain the network. Murray assumed that the energy required to maintain a network

was proportional to the volume of the network. The radii of vessels within the network

are therefore controlled by tradeo�s between minimizing dissipation costs (which favor large

1



vessels) and maintenance costs (which favor small vessels). This optimization principle has

been applied to estimate how the cost of blood �ow scale with organism size [WBE97] and

to model the geometry of vessels [She81].

Although there is some data to support the idea that among blood vessel networks,

some of the larger vessels specifcically, obey Murray's law, or that they are geometrically

organized to minimize dissipation [Zam77, ZWL83, Luz73]. In [Dur07] it was proven that

networks with constant boundary �ows must be trees. This has brought up whether certain

vascular biological structures such as plant leaves are truly minimally dissipative [KSM10]

or whether constant �ow boundary conditions truly valid [BM07, Bar14, CR18, Cor10,

KSM10] since many plant leaves are formed of dense hierarchical loops [KM12]. Both testing

other boundary conditions such as �uctuating �ow [KSM10, Cor10] and other functions

than dissipation such as including the possibility of damage occuring in the network, and

maximizing the network's robustness to that damage [KSM10] yield networks with loops.

Still, in all of these studies, minimizing dissipation was one of many objectives of the

optimized networks.

In our paper we study �uid transport networks optimized for multiple objectives which

stem from the assumption that they are bene�cial for the organisms survival and reproduction.

Our inspiration is drawn from network forming organisms with indetermine sizes and geometries,

including fungi and slime molds. Based on the observation of mixing of nuclei within mycelial

�uid transport networks of the species Neurospora crassa [RSH13] and the transference of

information in the form of molecules and particles in Plasmodium polycephalum, we construct

a new type of entropy on �ows.

As a simpli�ed assumption, there is only one �ow, which we may compute given boundary

conditions on the �ow and the radii and lengths of conduits in the network. The �uid

networks are represented as graphs we address the movement of signals between nodes (also

re�ered to as spatial locations). We also assume that new signals may potentially occur

at any node in the �ow network and that networks are organized to ensure every location

2



receives a diverse distribution of all upstream signals. For example, in a fungal mycelium

network, nuclei �ow freely by advection caused by osmotically maintained pressure gradients

that drive the nuclei from the interior of the network (where nuclei are produced by division)

to the growing periphery of the network, where new network edges (hyphae) are continually

created by a combination of hyphal tip extension and branching [RS19, Lew11]. Two types

of signals may need to be dispersed within the network: genetically diverse nucleotypes

introduced within the network by mutations, fusions with other networks, or translocating

from other parts of the same organism, and cues from the environment. To disperse the

e�ects (both deleterioius and advantageous) of new nucleotypes, it may be useful for every

position in the network to sample a mixed distribution of nucleotypes arriving from di�erent

positions up-stream to it.

Fungi also have distinctive life histories, in that any nuclei within the network can be

packaged into spores, called conidia, that can then be dispersed o� to make progeny networks.

The spores can be made anywhere within the network, and it is theorized [RD19] that

they should represent as much of the diversity of the parent fungus as possible. It is also

theorized that fungi and slime mold react to nearby stimuli such as a nearby food source by

secreting signalling molecules into their �uid networks. The information from the stimuli is

transferred by �ows and there is evidence [Puk11] that the signals need to be dispersed as

widely as possible throughout the network. In other words, the �ow should transfer the most

mixed bundle of signals to every down-stream portion of the network. We discuss in further

depth the work on Neurospora crassa and Physarum polycephalum that have inspired these

concepts.

1.2 Mixing �ows in Neurospora crassa and Physarum polycephalum

Networked fungi and slime mold share structural and functional similarities in that the entire

organism comprises a �uid-�lled vascular network. The organism forages for food continuous
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growth at the periphery of the network, which is fed by �uid �ows from the interior of the

network. The �tness of the network is likely to depend upon the e�ciency with which it

uses its energy resources. It is assumed a-priori that network organisms are moulded through

evolutionary pressures, and energy e�ciency leads to a higher rate of survival of an individual

to pass on genes (i.e. higher �tness), and there is experimental evidence that P. polycephalum

networks organize to keep energy loss as low as possible[NKN04, THA00a]. Although, in the

case of slime-moldes, there is evidence that this is the case due to certain su�ciently pruned

experimental examples demonstrating Murrays law on parent and daughter vessel radii.

In [RSH13] Roper et al argue using experimental evidence and mathematical models that

N. crassa mycelium are in part optimized so that nuclei generated within the network and

that are �owing to the growing periphery of the network have the maximum probability of

being delivered to di�erent hyphal tips. This is conceptually equivalent to the contents of

the cytoplasm at di�erent up stream locations being mixed by advection caused by the �ow.

The experiment is done keeping track of only two variants of nuclei, which are originally

not well mixed, but as the fungus grow, and the di�erent nucleotypes travel up stream, they

become mixed. Fungi with variants of nuclei with green �ourescent and red �uourescent tags

are bred. Red �uorescent labeled nuclei are introduced into wild type and a mutant, referred

to as soft, that does not posess the capability for hyphal fusion. In both type of organisms,

the conidia are observed to have poportions of red and green nuclei whcih a more uniform

over the set of conidia than would be predicted by models which do not include mixing.

Mixing is quanti�ed via heterozygosity� the probability that two randomly chosen nuclei

have di�erent nucleotypes (i.e. one is red �uorescent and the other is green �uorescent).

The mixing is roughly expressed as the extent to which conidia posess sample distributions

of nuclei which are similar to the total population distribution of types. It is found that the

wild type exceeds the mixing which would be the product of random �ows, and in the tree-

like case, mixing is greater than predictions using a biologically-feasible random branching

model ). In fact, the mixing observed in the tree-like mutant nearly matches the branching
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pattern which optimizes heterozygosity in hyphal tips.

In [RSH13] optimization of mixing is accompanied by a strict hierarchy of branch orders

as one passes from the largest hyphae feeding the tips to the tips themselves. This pattern

of branching is not consistent with the network minimizing dissipation. Therefore, it can be

concluded that dissipation is not the only evolutionary pressure that shapes the Neurospora

mycelial network. Indeed, as noted in [RET11], previous studies suggest the ability of fungi

to marshal internal genetic diversity from the multiple nucleotypes that may be present

within the organisms is part of their extraordinary ecological success [Jin52, Cat96, RSH13].

[RSH13] supports this story by relating these data to direct measurements of the �ow

networks that provide this diversity.

The second network organism which calls us to this research topic is P. polycephalum

slime mold. Slime molds are single celled amoeboid network organism. Like fungi, this cell

can contain many nuclei in a single connected cytoplasm. It is able to move and change

its morphology to react to stimuli to grow toward nutrrient sources and away from light.

Remarkably, despite having no central system of organization, slime mold growth is able to

solve complex network-making problems: Slime molds have been shown to be able to �nd the

shortest path in a maze [THA00b, NYT01], �nd e�cient networks connecting food sources

[NKN04, TTS10], and anticipate time-periodic temperature changes[NYU00]. These abilities

have been applied in surprising ways such as placing food sources in the formation of a map

of train stations in a region in Japan containing Tokyo to design an e�cient transportation

network [TTS10].

A slime mold is able to store information about stimuli and transfer it to di�erent parts of

its network. It has been suggested that information is held and transfered through the �uid

in the network [AAP17]. A possible mechanism for the transfer of information is advection

or morphogens via the �ows in the cytoplasm . Cytoplasmic �ows are caused by waves of

contraction that occur on the order of 100s and can have a wave front that cuts across the

entire network [AAP13]. Advection of information caused by the contraction waves has been
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modeled in a similar way to peristalsis in a tube: the contraction moves as a front pushing

the the �uid in one direction and then, since the network is closed, it �ows backwards

towards the original position. Alim et al use physical models for dispersion of molecules and

experimental measurements of the contraction pattern to describe the passage of information

and the feedback of this information upon the �ows within the network. For such a network

to adapt to signals initiated and propagated away from many di�erent locations we again

expect the mixing entropy of the �ow to be an important network constraint.

1.3 Numerical Optimization of Biological Fluid Transport Networks

A growing body of research tackles the question of how biological transportation networks

should be organized to optimize one or more target functions, that are thought to represent

quantities important to real organisms. Biological networks are believed have evolved to

minimize. As mentioned above the networks connecting mixed sources and sinks while

optimizing dissipation are trees [Dur07]. As pointed out in [KSM10, Cor10, KM12] biological

�uid transport networks are rarely perfectly tree-like, instead they have loops. The main

example used in these sources is dicotyledon leaf venation, but other two dimensional

biological networks contain characteristic loops such as retinal tissue and, the source of

inspiration for our model, Neurospora crassa mycelium. In [KSM10] two new models are

introduced: They allow the computation of dissipation of networks with changing sinks

and broken bonds in the transport network, to take into account controlled changes in sink

pressure by the plant (referred to as stomatic patchiness) and breaking of the network,

due to loss of individual conduits due to herbivory or embolism. In [Cor10] uncorrelated

changing �uctuating source magnitudes are considered and Cai and Hu consider networks

with adaptive vessel diameter in response to �uctuating sinks [HC13]. All of these modi�cations

of the network target function cause optimal networks to form loops [KSM10, Cor10, HC13].

Another line of study emphasizing the divergence of experimentally mapped transportation
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networks from minimal dissipation models is that of S.S. Chang and M. Roper on blood �ow

in animals, in particular the zebra �sh. Not only does the embryonic zebra�sh contain many

loops, but a tapering of vessel conductances from the tail of the �sh to its head visibly leads

to an eleven fold increase in dissipation compared to a �sh in which conductances do not

taper. In other words, even if loops are assumed, the vessels show no evidence of minimizing

dissipation. In [CR18] they consider general networks where not only are boundary �ows

speci�ed (they refer to as Neumann conditions), but also some nodes have �xed pressure,

to more realistically model zebra�sh blood �ows and animal blood �ows, noting that extra

constraints on pressures lead to minimally dissipative networks containing loops. They

present results about the structure of minimal dissipation networks under this general set

of boundary conditions. In [CTB17] they directly analyze the structure of the zebra�sh

trunk network, and show that the occlusion of small blood vessels causes feed-back e�ects

which prevent short circuiting of the vascular network, but also contribute to the uniformity

of transport �ows. Uniform �ows are likely necessary to ensure uniform oxygen perfusion

throughout the neighboring tissue. Similarly to our work, they consider optimal networks

obeying a building cost constraint inspired by Murray's law because it describes the power

for upkeep of the network as they optimize for uniformity of �ow in [CR17, CR19].

We cite the paper [CR17] that introduces the e�cient Lagrange multiplier based method

for computing the gradient of our objective function, but they also consider constraints

combining dissipation and upkeep of the network , as this is inline with Murray's formulation

for power consumption [Mur26] of biological �uid transport networks. On the other hand,

we build a minimization procedure that searches through many possible local optima by

applying a gradient based method in tandem with a topology changing step. We draw

inspiration for this method from the convolution and simulated annealing method described

in the supplementary information of [KSM10], but we �nd that directly entering domains

of conductance networks with known �ow topologies is more e�cient than a random search

over perturbations of the conductances.
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1.4 Contributions of this thesis

We develope a new function on �uid �ows using the concept of information entropy to

describe how advective currents within biological transportation networks carry information.

This is the total negative mixing entropy NME, and it measures the extent to which each

node receives the most mixed collection of signals. Put another way, to maximize its ability

to adapt to stimuli, each node must receive signals stemming from responses from a collection

of spatial regions assuming the least amount of prior information. We also de�ne the negative

total sending entropy, the entropy of the distribution of receivers that a signal from each

node can reach. We prove that these quantities are related by reversing the signs of the

boundary �ows.

We then de�ne optimal networks to be ones minimizing a cost function that is the sum

of the total negative mixing entropy and dissipation terms, NME+c×dissipaion for positive

constants c. Using original optimization techniques, that we describe in this paper, we

simulate optimal networks under di�erent assumptions on the driving force of the �ow, the

underlying topology and the total material cost function. We analyize the results from the

di�erent perspectives such as their overall size as well as the presence and number of loops.

The results produce smany interesting trends that we record. Out of these we select

several to expand upon with in-depth mathematically rigorous analysis. We develop precise

statements that capture observations on the numerical results and rigorously prove them.

The theorems can be divided into two categories: statesments about the mixing-dissipation

cost function and its graph and the structure of networks optimizing mixing. The theorems

we prove about the mixing dissipation cost function are a basic approximation for the graphs

and the nature of the optima as we modify our material cost constraint. In second category

of theorems we prove that on a network with N nodes, the optimum of the NME is a path

graph. An observation from our numerical results is that often the optima are path networks

with a loopy subnetwork occuring near to the source. We state this theorem precisely and
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prove it as well.
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CHAPTER 2

De�nitions and Mathematical Background

2.1 Mixing entropy on �ow networks

Consider a �ow on network with N nodes enumerated 1, 2, . . . , N . The �ow on the edge (i, j)

that joins two of these nodes is denoted by qij. We de�ne two types of information entropy

on these �ows. The �rst is a measure of the accumulation of signals at every node in the

network and the second represents the dispersal of signals throughout the network. The �rst

type of entropy, we identify as the total mixing entropy and the second type as the total

sender entropy. The terminology is chosen to represent the entropy of the mixing of signals

arriving at any node and the entropy of the possible destinations that a signal starting at a

node can be sent to. As we will see in this section, these entropies are adjoint functions: the

total mixing entropy of a network is the total sender entropy of the same network except with

the sources and sinks of the network swapped, so that the �ows on each edge are perfectly

reversed. We now describe the intuitive framework from which these entropies are derived.

We model particles being pushed by the �uid �ow network by a Markov chain model

where as the particle reaches a node it the probability it will �ow down a given outgoing

edge is proportional to the strength of the �ow along that edge. That is, if the t-th node

visited by the particle is xt, then the particle performs a random walk on the network, in

which the the conditional probabilities or Markov kernel are given by

Tij = P (xt+1 = j|xt = i) =
qij∑

k∈n(i): qik>0 qik + |Qi|1Qi<0

.
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Hence the �ow of random walkers from i to j is simply proportional to the total �ow along

the edge (i, j). If Qi < 0 then
∑

j Tij < 1 but
∑

j Tij + |Qi|∑
k∈n(i): qik>0 qik+|Qi|1Qi<0

= 1. This

is because the out�ow at node i models �ow of random walkers exiting the network at that

node, and we de�ne a state in the Markov chain representing a particle leaving the network.

We call this state the �exit� and we say P (xt+1 = exit|xt = i) =
|Qi|1Qi<0∑

k∈n(i): qik>0 qik+|Qi|1Qi<0
.

Our concept of mixing is inspired by previous studies of mixing in �uid-carrying biological

networks, such as the �lamentous fungus Neurospora crassa. In [RSH13] experimental results

were compared against mathematical models to show that �ows guided through the network

by a gentle pressure gradient are capable of mixing di�erent nucleotypes present within the

organism. Entropy is a commonly applied measure of how uniformly mixed a distribution

is, which is why we immediately chose it to describe the mixing hyphal �ows. We assume

that an event that introduces a new important nucleotype can happen at any place in the

network. A new nucleotype can be formed by mutation or hyphae fusing with another

network which posesses a di�erent genotype. Alternatively we may consider the network

that we are modeling as representing some fraction of the total network, which may consist

of many sources and sinks -- too many to be modeled computationally. Diverse nuclei can be

introduced into the modeled fraction of the network by �owing into from the larger fungal

network. Our model considers only localized �ow patterns within one part of the network,

and we consider nuclei �owing in to this part of the network from its other parts. In�ows of

new nuclei are allowed at any node within the network. For simplicity, we do not associate

nuclei introduced in this way with physical in�ows. Although substantial �ows of nuclei

would carry cytoplasm as well as nuclei and would have to be identi�ed as in�ows, nuclei

can also be moved around within the network by molecular motors. Nuclei entering the

network this way are not carried with cytoplasm and do not need to be modeled by adding

in�ows.

Let us represent a location in an N. crassa mycelium by x. Assume that a nucleus with a

new nucleotype or a cytoplasmic cue is introduced at this point. By our model, the nucleus
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or cue takes a uni-directional random walk through the network, down the pressure gradient,

visiting a random path of locations. In this paper we refer to the nucleus and its in�uence on

a location in the network as a signal. Since the nucleus or cytoplasmic cue was introduced

at point x we say that it is the signal from x. If it arrives at another point y we refer to it

as the signal from x arriving at y.

By this measure, each site in the network can send signals to other sites in the network,

while any point in the network will be receiving signals from other sites within the network.

Since we cannot tell ahead of time which nodes will provide the useful signals, we assume

that it is best if every node has the most uniform sample of signals possible within biological

and physical constraints. Similarly, although in [RSH13] genetic diversity was considered

only at growing hyphal tips, we can not tell ahead of time which sites need to have the

largest diversity. We therefore calculate the diversity and every node within the network.

Networks also operate under additional constraints: �uid transported within the network

dissipates energy due to friction, while the number and sizes of edges within the network

re�ect the amount of energy that must be expended to build, and then to maintain the

network. Metabolic investment in transport or in network building creates tradeo�s with

growth or reproduction, and network building organisms have been posited to build networks

that optimize dissipation for a given material cost [TTS10, BHD07]. In our investigation,

we therefore consider the cost of dissipation and the amount of material in the network in

addition to the total mixing within the network.

Since we express the probability distribution of paths of signals as a Markov chain, we

are able to compute the probability

Pij = P (xt = j for some t ≥ 0|x0 = i).

For node i let fi be the total �ow through node i, i.e. fi =
∑

j∈n(i):qij>0 qij + |Qi|1Qi>0. We

use this to de�ne a measure on the �ows by de�ning the amount of �uid �owing from i to j
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to be q̃ij = Pijfi. We refer to this as the �ow from i to j. Now consider, for node i, the �ows

entering node i originating from upstream nodes j, q̃ij. We now make the assumption that

new signals arise at a node j in proportion to the amount of �ow through j . An physical

assumption that would imply this is that the comonents of the signal are concentrated

uniformly throughout the cytoplasm. A node will also originate its own signal in proportion

to the amount of �uid �owing through it. It then follows that the relative proportions of

signals from the various upstream nodes j are the same as the relative proportions of q̃ji.

Now we are able to de�ne the mixing entropy at node i. In matrix form the total set of �ows

within the network is written as:

q̃ =


q̃11 q̃12 · · · q̃1N

q̃11 q̃22 · · · q̃2N
...

...
. . .

...

q̃1N q̃2N · · · q̃NN

 (2.1.1)

We model the diversity of signals that are received at each node via the entropy of the

distribution of signals arriving at i. To write the entropy we must we must normalize the

quantities q̃ji via division by
∑

j:q̃ji>0 q̃ji. We de�ne the probability distribution on up-stream

nodes of i

Pi(j) =
q̃ji∑

j:q̃ji>0 q̃ji
.

In matrix form this is written
P1(1) P2(1) · · · PN(1)

P1(2) P2(2) · · · PN(2)
...

...
. . .

...

P1(N) P2(N) · · · P1(N)


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and is obtained by taking the matrix in equation 2.1.1, dividing every entry by the sum of

the entries in the same row. Then we may de�ne the local mixing entropy at node

i as H(Pi) = −
∑

j Pi(j) log (Pi(j)) = −
∑

j:q̃ji>0
q̃ji∑

j:q̃ki>0 q̃ki
log
(

q̃ji∑
j:q̃ki>0 q̃ki

)
where H is

the Shannon information entropy applied to �nite probability distributions. Since we are

interested in the tradeo�s between mixing and dissipation due to friction within the network

(a quantity that networks may minimize), we cast both optimization of mixing of dissipation

as minimization problems, namely we consider the negative of the local mixing entropy, the

negative local mixing entropy at node i

NMEi =
∑
j:q̃ji>0

q̃ji∑
j:q̃ki>0 q̃ki

log

(
q̃ji∑

j:q̃ki>0 q̃ki

)
.

We consider the total �ow through i as a measure of the �importance� of the node. In our

model, the diversity of signals is more important at high tra�c nodes than at low tra�c

nodes. This principle is useful mathematically, since it ensures that rearrangements of very

low conductance edges don't greatly a�ect the overall mixing associated with a network. At

the same time, this weighting re�ects the relative biological importance of nodes within the

network -- a node with high �ow supplies a greater volume of cytoplasm to the rest of the

network, so it is more important that all of the signals (whether cues or nucleotypes) are

present at the node. We weight the negative local mixing entropies by the importance of the

nodes and sum them. We get

NME =
∑
i

fiNMEi.

In a similar vein as [TT93] we can think of this as a conditional entropy. Consider the

distribution of choosing a node at random with probability in proportion to its total �ow

and then conditioned on our choice of node i we chose a signal at random via the distribution

Pi.
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2.1.1 Sending entropy on �ows

It may also be important for a �uid network organisms to spread out signals as much as

possible with their �ows. We can think of this as a type of dispersion: i.e. it represents

the diversity of places that a new signal originating at a node within the network will

eventually reach. We can use the formalism developed above to now consider the entropy of

the distribution of nodes that a signal originating at a node i will reach before exiting the

network. Now, instead of taking the mass distribution of incoming �ows and normalizing

them to a probability distribution, we use the out-going �ows. That is we de�ne

P ′i(j) =
q̃ij∑

j:q̃ij>0 q̃ij
.

This is equivalent to diving the entries in 2.1.1 by the sum over their rows.

We now de�ne the local sending entropy at node i to be the shannon information

entropy

H(P ′i) = −
∑
j

P ′i(j) log(P ′i(j)) = −
∑
j

q̃ij∑
j:q̃ij>0 q̃ij

log

(
q̃ij∑

j:q̃ij>0 q̃ij

)
.

Now in a similar fashion to the negative local mixing entropy we de�ne the negative local

sending entropy at node i to be

NSEi =
∑
j

q̃ij∑
j:q̃ij>0 q̃ij

log

(
q̃ij∑

j:q̃ij>0 q̃ij

)
.

We also de�ne the negative total sending entropy of the entire �ow network qij to be

NSE =
∑
i

fiNSEi.

The sending entropy can be considered being adjoint to the mixing entropy. Notice the
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similarities in their calculation: we use the adjoint of the matrix of q̃ij, q̃ji to calculate P ′i(j).

We will show that the NSE is equal to the NME on a �ow network obtained by reversing

the direction of all of the �ows.

Theorem 2.1. Let qij be a �ow network compatible with boundary �ows Qi. Let q
′
ij and Q

′
i

be the �ow network and boundary �ows obtained from qij and Qi by reversing the �ows, i.e.

q′ij = −qij and Q′i = −Qi. Then NSE(qij) = NME(q′ij) .

Proof. First, to prove this theorem we note that the node strengths for the �ow network

fi =
∑

j:qij>0 qij + |Qi|1Qi<0 are the same as for the network with the reversed �ows because

the total �ow at i is
∑

j:q′ij>0 q
′
ij + |Q′i|1Q′i<0. By the way we de�ned reversed �ows and by

Kirckho�'s 1st law

∑
j:qij>0

qij + |Qi|1Qi<0 −
∑
j:q′ij>0

q′ij − |Q′i|1Q′i<0 =
∑
j:qij>0

qij −Qi1Qi<0 +
∑
j:qij<0

qij −Qi1Qi>0

=
∑
j∈n(i)

qij −Qi = 0.

Thus
∑

j:q′ij>0 q
′
ij + |Q′i|1Q′i<0 =

∑
j:qij>0 qij + |Qi|1Qi<0 and we refer to the total �ow of node

i for both �ow networks as fi.

In order to prove this theorem it su�ces to show that q̃ij = q̃′ji where q̃
′
ij is de�ned the

same way as q̃ij for the �ow network q′ij. Furthermore, this can be reduced to showing that

for all signal paths xt t = 0, 1, . . . , T that follow positive �ows the probability given by the

Markov chain Tij the probability of the path multiplied by fx0 is equal to the probability

of the reversed path x′t = xT−t with the Markov chain T ′ij =
q′ij
fi

multiplied by fxT . If this

statement holds true then q̃x0xT = fx0Px0xT will be equal to q̃′xT x0
= fxTP

′
xT x0

where, again

P ′ij is calculated in the same way that Pij is on qij except it is for the �ows q′ij.

Since |qij| = |q′ij| it follows that Tijfi = T ′jifj and so T ′ji = fi
fj
Tij. We multiply the

probability of the path xt given by the Markov chain with kernel Tij by the node strength

fx0to obtain fx0

∏T−1
t=0 Txtxt+1 . We use the telescoping product form of fx0 = fxT

∏T
t=0

fxt
fxt+1
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to obtain

fx0

T−1∏
t=0

Txtxt+1 = fxT

T∏
t=0

fxt
fxt+1

Txtxt+1

= fxT

T∏
t=0

T ′xt+1xt

= fxT

T∏
t=0

T ′x′tx′t+1
.

For any nodes i and j, using this formula, if we sum over the probability of all possible paths

we obtain q̃ij = fiPij = fjP
′
ji = q̃′ji. Therefore the matrix with i, j entry q̃′ij the transpose of

the matrix with i, j entry q̃ij. Therefore the distributions P ′i(j) for the �ow network qij is

equal to the distributions Pi(j) for the network q′ij. Therefore H(P ′i(j) (for network qij)) =

H(Pi(j) (for network q′ij)) and so the sending entropy of the original network is the same as

the mixing entropy of the reversed network.

The �ow network we focus on in this thesis is the physical �ow network (see De�nition

2.7): the physical �ow network, or �ow network is the unique assignment of �ows to each edge

of the network that is compatible with a given set of boundary �ows Qi and that minimizes

a function of �ow networks called the dissipation (denoted D). The dissipation is symmetric

with regards to reversing �ow; That is, D(−qij) = D(qij) for all �ow networks qij. Notice

that because of this symmetry and the linearity of the compatibility conditions, the adjoint

of the physical �ow can be achieved by reversing the sources and sinks in the network; that

is, replacing a source with in�ow Qi by a sink with out�ow Qi, and conversely. In most of

the networks we will be considering, there is a single source and a single sink, with matching

in�ow and out�ow. Thus the adjoint �ow network is simply the same conductance network

with source and sink exchanged.
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Figure 2.1.1: Two �ow networks compatible with a single source (labeled +) and sink (labled
−) of magnitude 1. The �ows, source and sink of the network on the right are the reverse of
those on the left. Depicted with a bar graph at each node i are the unnormalized distributions
q̃ji for computing NME in blue and q̃ij for computing NSE in orange.

2.2 Fluid Transport Networks

2.2.1 Biophysical background

Our research stems from the general question based on prior work: what are the geometrical

or topological features that give rise to the ability found in some network organisms to mix

the consituents of their cytoplasm or transfer information. In some biological networks,

advection currents in the form of �ows driven by in�ow and out�ows at approximately

�xed locations span spatially connected regions containing many vessels. Transportation

of of nuclei in Neurospora Crassa mycelial networks have been observed to be driven by

pressure gradient with �uid �owing towards growing tips [RSH13, HOG12]. Leaves are

venous organs that receive �uid from the stem to be released through evaporation on the

surface via connections between the venous network and stomatal pores that are distributed

throughout the entire network [KSM10, HC13]. Physarum polycephalum �ows are caused

by waves of contractions that span the entire network [NYU00, AAP13, AKF17]. In blood

vessels, pressures created by the pumping heat push oxygen carrying blood and glucose

carrying plasma through a closed loop formed of arteries and veins[CR18, CR19, CTB17].

We make the simplifying assumption that �uid transport currents are driven by constant

boundary �ows. We also assume that the total volume contained by the network is constant
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so we take the total volume input to be equal to the total output. Another assumption we

make is based on the fact that network morphology for these examples is approximately �xed

over short time scales. Thus we investigate the e�ect of �xed network geometries, in which all

vessel lengths and radii, and topological features of the �uid transport networks can be fully

speci�ed. In this section we describe our mathematical construction using a network with

single edge weights representing their conductance. In Section 2.4, we describe how single

conductances capture both length and radius parameters. Given a set of boundary �ows

and a network of pipes with �xed conductance, we can derive an explicit formula (Theorem

2.3) for the �ows within the network. This allows us to express functions of the �ow on

the network in terms of the network's geometry and topology. Functions de�ned in terms

of �ows qij, such as NME(qij) and NSE(qij), or that depend both upon conductances and

�ows such as dissipation, can be all written as functions of conductances alone. For example

NME(κij) = NME(qij) where qij is the physical �ow of κij. We now mathematically describe

our model for �uid transport on networks of vessels.

2.2.2 Mathematical description

We model the �uid transport network in the form of a conductance network. A conductance

network is a weighted graph with on a set of nodes N and edges E .

De�nition 2.1. For all i, j ∈ N such that (i, j) ∈ E the weight on the edge (i, j) is κij,

referred to as the conductance on (i, j).

We represent the rate of volume of �uid entering the network and leaving the network at

each node by real numbers called boundary �ows.

De�nition 2.2. The rate of �uid entering or exiting the network at node i is the boundary

�ow at node i denoted Qi for all i ∈ N .

Positive Qi corresponds to �uid entering the network node i with rate Qi, and negative

Qi correspondes to �uid exiting the network at node i with rate |Qi|.
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De�nition 2.3. If i ∈ N and Qi > 0 then we call node i a source. If i ∈ N and Qi < 0 we

call node i a sink.

In this paper we assume the total volume of �uid is �xed and impose this by assuming∑
iQi = 0. We assume �uid is transported through the network at a constant rate of volume

per time along each edge. The rate of volume transported along each edge is represented by

real numbers called �ows and they can be positive or negative depending on the direction of

transportation.

De�nition 2.4. A �ow network is a weighted directed network on the set of nodes N and

directed edges [i, j] and [j, i] for all (i, j) ∈ E with weights qij such that qij = −qji. The

weight of the directed edge from i to j is the �ow from i to j.

We also require that the total �ow entering a node is balanced with the �ow exiting every

node. For a node i, this assumption considers �ows from within the network �owing along

edges adjacent to i as well as the �ow entering or leaving the network at i.

De�nition 2.5. A �ow is called compatible with regards to the boundary �ows Qi if∑
j∈n(i) qij = Qi for all i ∈ N where n(i) is the undirected neighbor set of node i. A �ow

network being compatible with the set of boundary �ows is known as Kircho�'s second circuit

law.

Because the edge and boundary �ows are so balanced and do not vary with an extra

time parameter we say that the �uid network is in a steady state. Since we are are working

in a physical setting, we assume that the �ows along edges will be those that minimize the

power used to pump �uid into the sources and out of the sinks at their respective rates. The

speci�c �ow we are interested in is what is referred to as the physical �ow. We will give an

explicit expression for the physical �ow in terms of the conductances and the boundary �ows.

First we de�ne the dissipation and present an equation for power used by a �ow through a

conductance network.
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De�nition 2.6. For a conductance network κij, the dissipation D by �ow qij is the power

used when �uid is transported along the edges with �ows qij. It is de�ned as a function

D(qij) =
∑

ij

q2
ij

κij
.

Let N and E be the set of nodes and edges of a conductance network with conductances

κij for each (i, j) ∈ E . Let Qi be a set of boundary �ows on N such that
∑

iQi = 0. A

physical �ow is then the �ow that minimizes the dissipation D over the set of all compatible

�ows.

De�nition 2.7. For a conductance network κij on a set of nodes N and edges E and a set

of boundary �ow Qi such that
∑

iQi = 0. A physical �ow qij is a �ow on edges E which

is compatible with Qi (i.e.
∑

j∈n(i) qij +Qi = 0 for all i ∈ N ) and minimizes D over the set

of all compatble �ows. That is, qij is a �ow network such that
∑

j∈n(i) qij + Qi = 0 for all

i ∈ N and

∑
(i,j)

q2ij
κij

= min

∑
(i,j)

f 2
ij

κij
: fij ∈ R, fij = −fji ∀(i, j) ∈ E ,

∑
j∈n(i)

fij = Qi ∀i ∈ N

 .

Although we have de�ned the �ows that would arise in a physical situation when boundary

�ows are applied to a conductance network, we have yet to rigorously prove their existence.

It turns out that not only do they exist, but they are unique according to what is known in

physics as Thomson's principle. We now prove this.

Theorem 2.2. (Thomson's principle) Let κij be a set of conductances on a network with

nodes N and edges E and let Qi be a set of boundary �ows on the nodes N . If the network

is in a steady state (i.e.
∑

iQi = 0) then there exists a unique set of �ows qij on the edges

E with qij = −qji for all (i, j) ∈ E obeying compatible with the boundary �ows Qi (i.e.∑
j qij +Qi = 0) for all i ∈ N

Proof. Thomson's principle is equivalent to showing that there is a unique set of �ows in

the a�ne sub-space S =
{
qij :

∑
j qij = Qi for all i ∈ N

}
that minimizes D over S. We
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�rst establish that S is non-empty. The collection of sets of boundary �ows that sum to

zero is linearly spanned by the collection of boundary �ows which are 1 at node u, −1 at

node v and zero for all other nodes in the network, for all pairs of nodes u, v. Since the

conductance network is connected let x0 = u, x1, . . . , xt = v for some positive integer t be a

simple (non-self intersecting) directed path connected u to v and de�ne the �ow τuv to be

the �ows qxixi+1
= 1, qxi+1xi = −1 for all 1 ≤ i < t and qab = 0 on all other pairs. Then τuv

is compatible with a set of boundary �ows which are 1 at u , −1 at v and 0 elsewhere. For

an arbitrary set of boundary �ows Q = {Qi}i∈N such that
∑

iQi = 0 let auv u, v ∈ N the

linear combination of the �ows δu − δv (where δi is the boundary �ow de�ned to be 1 on i

and 0 elsewhere)
∑

u,v∈N auv(δu − δv) = Q. Then
∑

u,v∈N auvτuv is a �ow compatible with

boundary �ows Qi.

We show D attains a minimum over the domain of �ows compatible with Qi and that

the minimizer is unique. First note that
∑

(i,j)

q2
ij

κij
is a quadratic form in the �ows qij with

postive coe�cients, so it is positive de�nite. If S has dimension n and we parametrize S

with coordinates (x1, x2, . . . , xn) 7→
∑n

i=1 xivi+p where {vi}ni=1 is a basis for S and p is some

point p ∈ S we have that the restriction of
∑

(i,j)

q2
ij

κij
to S in terms of coordinates {xi}ni=1

is a positive de�nite quadratric function. Therefore D attains a minimum over S , and by

positive de�niteness of the D restricted to S the minimizer is unique.

Thomson's principle enables us to consider a mapping from the conductances to the set

of physical �ows. We make extensive use of this to express functions de�ned on the �ows or

on both the �ows and the conductances completely in terms of κij in a physics setting. As

a �rst example and of central importance to this research, given a set of boundary �ows, we

de�ne the dissipation of a conductance network with boundary �ows to be
∑

(i,j)

q2
ij

κij
where

qij are the physical �ows of the network.

De�nition 2.8. Let κij be a conductance network and Qi be boundary �ows on the nodes

such that
∑

iQi = 0 . We de�ne the dissipation of κij , written as D(κij) to be the

dissipation of the network with conductances κij and the corresponding physical �ows for
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κij with boundary conditions Qi. This can be written

D(κij) = min
�ows qij compatible with Qi

∑
(i,j)

q2ij
κij
.

We also de�ne the NME and the NSE to have alternate de�nitions when applied to

conductance rather than �ow networks.

De�nition 2.9. Given a set boundary �ows Qi we de�ne the negative mixing entropy

as a function of network conductances κij to be NME(κij) = NME(qij) where qij are

the physical �ows for the conductance network κij with boundary �ows Qi. Similarly, we

de�ne the negative sending entropy as a function of network conductances κij to

be NSE(κij) = NSE(qi).

Thomson's principle allows us to pull-back functions on �ows representing how well

a transport network achieves an objective, to functions on conductance networks, which

represent vessel radii, length and network topology� the degrees of freedom that the organism

building the network has direct control over. We will derive an explicit formula for physical

�ows given a conductance network κij and boundary �ows. First we have the de�nition which

will be helpful in making the formula more compact and is used Chapter 5 for designing

numerical optimization algorithms.

De�nition 2.10. For a conductance network κij on nodesN = {1, 2, . . . N} for some N ∈ N,

we de�ne the Laplacian of κij ∆κij , to be the N × N symmetric matrix with real entries

assigned as follows. Let aij be the i, j-th entry of ∆κij . For all i ∈ N

aii =
∑
j∈n(i)

κij
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and for all (i, j) ∈ E let

aij = −κij

aji = −κji.

Again, for simplicity, we assume that κij is connected. Otherwise, we can solve for the

physical �ows on each connected component. The theorem stating the equation for the

boundary �ows has two parts. First we prove the existence of real quantities called the

pressures at node i such that the physical �ow qij is in terms of κij, pi and pj. Then we

describe a linear system for which the pi are a solution.

Theorem 2.3. Let κij be a connected conductance network with nodes N = {1, 2, . . . , N}

for some N ∈ N and edges E. Let Qi be boundary �ows for all i ∈ N such that
∑

iQi = 0.

Let qij be the physical �ows of this network and boundary �ows.

(a.) Then there exists pi ∈ R,called the pressure at node i, such that qij = κij(pj − pj).

(b.) And v = {vi}Ni=1 ∈ RN is such that qij = κij(vj − vi) for all (i, j) ∈ E if and only if

it is a non-trivial solution of the system of linear equations∑
j∈n(i)

κij

 vi −
∑
j∈n(i)

κijvj =
∑
j∈n(i)

κij(vi − vj) = Qi. (2.2.1)

Remark 2.1. We can express equation 2.2.1 in matrix form as

∆κijp = Q

where p is a column vector and Q is the column vector with Qi as its i-th entry.

Proof. Let κij, N , E and Qi be as de�ned in the hypothesis. We �rst prove part (a),

that for a set of �ows compatible with Qi, obeying Thomson's principle is equivalent the

existence pi ∈ R for each node i such that qij = κij(pi − pj) for all (i, j) ∈ E . Recall,
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the dissipation of a any �ow given the conductances κij is de�ned D(fij) =
∑

(i,j)

f2
ij

κij
. Let

S =
{
fij :

∑
j fij = Qi for all i ∈ N

}
, the a�ne sub-space of compatible �ows. We can

view D as a smooth function on the set of �ow networks viewed as the real space R|E| where

we consider one direction for each edge in the network. Then we can also view S as the

intersection of N non-trivial constraint a�ne hyperplanes Hi =
∑

j fij = Qi in R|E| where if

the summand fik for directed edge [i, k] is the opposite order than that of the identi�cation

of edge (i, k) we replace it −fki.

Since D is smooth, if {qij}(i,j)∈E ∈ S is a minimizer of D over the domain given as the

intersection of the constraint hyperplanes
⋂N
i=1Hi by the method of Lagrange multipliers

there exists λ ∈ R such that qij is a critical point of fij 7→
(
D(fij)−

∑
l λk

∑
l∈n(l) flk

)
. Let

u, v ∈ N such that (u, v) ∈ E . Taking the derivative of this function with respect to fuv

gives us

∂

∂fij

D(fij)−
∑
l

λk
∑
l∈n(l)

flk

 =
2fuv
κuv
− λu + λv = 0.

By Thomson's principle (Theorem 2.2) the physical �ow network qij for κij with boundary

�ows Qi exists and is the unique minimizer of D over S. Therefore there exists λi ∈ R for

all i = 1, 2, . . . , N such that 2qij
κij
− (λi − λj) = 0 for all i, j ∈ N and (i, j) ∈ E . Thus

κij

(
λi
2
− λj

2

)
= qij. Allowing pi = λi

2
for all i = 1, 2, . . . , N we have proven the �rst part of

the theorem. That is, there exists real numbers pi for all i ∈ N such that κij (pi − pj) = qij

for all i, j ∈ N with (i, j) ∈ E .

We now prove part (b) of the theorem. First we show that ker ∆κij has dimension 1 and

is spanned by c ∈ RN the vector whose entries are all 1. Plugging c into the left side of

2.2.1 we immediately have c ∈ ker ∆κij . Suppose that d ∈ ker ∆κij d 6= αc for all α 6= 0

with the i-th entry of d being di. We can assume all of the entries of d are non-negative

and at least one of them is 0. We can make this assumption by re-assigning the value of d

to be d − (mini∈N di) c ∈ ker∆κij . We can �nd an k, l ∈ N such that l ∈ n(k), and dk = 0
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and dl 6= 0. Otherwise the set {u : du = 0} would be disconnected from {u : du 6= 0} in

the sense that there would be no paths in the conductance network from nodes in the �rst

set to nodes in the second, contradicting the assumption that the conductance network is

connected. Applying the Laplacian to d gives and focusing on the kth entry, we obtain:

∆κijd =

 ∑
j∈n(k)

κkj

 dk −
∑
j∈n(k)

κkjdj = −
∑
j∈n(k)

κkjdj < −κkldl < 0

contradicting that d ∈ ker∆κij . We have ker ∆κij has dimension 1 and is spanned by c.

Now let p = {pi}Ni=1 ∈ RN be as in the proof of part (a): κij (pi − pj) = qij. Then p

is a solution to 2.2.1. Let v = {vi}Ni=1 ∈ RN be another solution to ∆κijv = Q. Then

since the kernel of ∆κij is spanned by c we have v = p + tc for some t ∈ RN . Therefore

vi = pi + t for all i = 1, 2, . . . , N . Therefore, for all i, j ∈ N with (i, j) ∈ E we have

κij(vj − vi) = κij(pj + t− pi − t) = κij(pj − pi) = qij.

Theorem 2.3 opens up the possibility of �nding qij by using linear solvers or other methods

to solve matrix equation in terms of κij. Therefore we use this relation to �nd qij in our

numerical experiments.

2.3 Murray's law

We now re-cast the results of Charles Murray's study of �uid transport networks optimized to

minimize a biologically relevant expression for power usage [Mur26]. We model the conduits

along edge (i, j) in the network as a cylinder with length lij and cross-sectional radius rij and

we assume that the �ow is laminar and the �uid itself is Newtonian. The Hagen-Poiseuille

equation (also derived as an application to biological networks), states that we can model the

conductance κij of the vessel connecting i to j by κij = k
r4
ij

lij
, where k > 0 is a constant that

depends only on the viscosity of the �uid [Dur07, CR17, Ach90]. Murray also posited that

in addition to the cost of pushing �uid through the network (i.e. the dissipation, de�ned
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above), maintaining the network would incur a cost based on the the fact that the �uid

may either contain organelles (if it is protoplasm), or living cells (e.g. blood cells, for a

cardiovascular network), the conduit walls may also need to be maintained. The �rst type of

maintenance would lead to energy is used at a rate that we would expect to be proportional

to volume of the network and the second that it is a constant times the surface area of the

conduits in the network. According to the �rst of these assumptions, the power use of a �uid

transport network is then

∑
(i,j)

q2ij
κij

+ α3vol(κij) =
∑
(i,j)

lij
kr4ij

q2ij +
∑
(i,j)

α3r
2
ijlij (2.3.1)

where α3 > 0 is a constant. The sub-script of 3 signi�es that it applies to the volume of the

network.

For the networks studied in this paper, in both the setting for numerical experiments

as well mathematical analysis as well as, we make the assumption that lij = 1. Note: this

assumption di�erent vessel lengths can occur by concatenating several edges in a row. This

results in the dissipation being equal to
∑

(i,j)
1
kr4
ij
q2ij. Therefore the conductances along each

edge are κij = kr4ij and power used by the volume of �uid is
∑

(i,j) α3r
2
ij = α3√

k

∑
ij κ

1
2
ij. Taking

β3 = α3√
k
we can write equation 2.3.1 as

∑
(i,j)

q2ij
κij

+ α3vol(κij) =
∑
(i,j)

q2ij
κij

+ β3
∑
(i,j)

κ
1
2
ij.

In the case where power for up-keep of the network is proportional to total surface area (with

constant of proportionality α2 > 0) , by a similar computation we �nd

∑
(i,j)

q2ij
κij

+ α2area(κij) =
∑
(i,j)

q2ij
κij

+ β2
∑
(i,j)

κ
1
4
ij
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for some constant β2 > 0. We both of these laws follow the general form

∑
(i,j)

q2ij
κij

+ β
∑
(i,j)

κγij

for γ > 0. Prior theoretical and computational work has illuminated commonalities between

optimal networks for that may be more apparent if γ is allowed to take any value 0 < γ < 1

[Dur07, AKF17] and not just 1
4
or 1

2
. Also there are interesting transitions if γ is allowed to

continuously vary [BM07, KSM10].

In this paper we assume that the rate of energy expended for network upkeep can be a

multiple of
∑

(i,j) κ
γ
ij for any γ ∈ (0, 1). The rate of energy lost through friction is taken be

dissipation of the physical �ow through the conductance network (De�nition 2.8). Next we

make use of this generalized Murray's law, together with the NME to describe the problem

that is the central theme of our paper.

2.4 Main Optimization Problem

In this paper we are interested in conductances and their physical �ows which simultaneously

optimize the NME, a function solely depending on �ows, and the power expended by the

network. In section 2.3 we express the power used by the network to be
∑

(i,j)

q2
ij

κij
+β

∑
(i,j) κ

γ
ij

for some 0 ≤ γ ≤ 1 and β > 0 (Murray's Law) where the second term β
∑

(i,j) κ
γ
ij is the

power needed for the upkeep of the material in the network. We choose to express the upkeep

term as a constsraint
∑

(i,j) κ
γ
ij = C where C > 0 is referred to as the material cost of the

network. The constant β is dropped because it can be lumped into C. This frames the

energy allotted to network upkeep as a constraint on the total amount of conductance and

together with the inequality constraints κij ≥ 0 for all nodes i, j makes the domain compact.

On the other hand, we take dissipation into account by de�ning the cost of mixing and

dissipation for weight c > 0 (often shortened to mixing-dissipation cost) denoted CMD
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(or frequently through this thesis as θ) to be

CMD = NME(κij) + cD(κij).

To formalize our optimization problem we need to restrict the space of possible networks

so that their connectivity, such as the maximum number of vessels at a junction, is physically

and biologically relevant. Let G be an unweighted undirected network with nodes N and

edges E with the connectivity properties we require optimal conductance networks to posess.

We then restrict consideration to conductance networks whose nodes and unweighted edges

are subnetworks of G. We refer to G as the ambient network. We say that κij is a

conductance network on a network G if the nodes and edges of κij form a sub-network of

G. We refer to a conductance network κij on G that lacks an edge (u, v) ∈ E interchangeably

with the network that has this edge, but with κuv = 0.

We are now ready to summarize the main theme of this part of the thesis: to explore

and characterize �uid transport networks (and their mixing-dissipation costs) that solve the

following optimization problem for di�erent weights on dissipation.

Let G be a undirected network with nodes N and edges E and Qi for all i ∈ N be a

boundary �ow on G. For a material cost C > 0, material cost exponent γ and weight c > 0,

we are intererested in conductance networks and their physical �ows thar are solutions to

minimize : NME(κij) + cD(κij)

subject to constraints : κij ≥ 0∑
(i,j)

κγij = C. (2.4.1)

Since we are interested in the minima for di�erent c, we de�ne the function we refer to as
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the minimal mixing-dissipation denoted θ as

θ(c) = min∑
(i,j) κ

γ
ij=C

NME(κij) + cD(κij).

Fact 2.1. The minimal mixing-dissipation cost is a concave function of c. That is, for

c1, c2 ≥ 0 θ(tc1 + (1− t)c2) ≥ tθ(c1) + (1− t)θ(c2) for all 0 ≤ t ≤ 1.

Proof. Let κ1 be a minimizer of NME+c1D and κ2 a minimizer of NME+c1D. Let 0 ≤ t ≤ 1

and κ3 be a minimizer of NME + (tc1 + (1− t)c2)D. Then

tNME(κ1) + tc1D(κ1) + (1− t)NME(κ2) + (1− t)c2D(κ2) ≥ tNME(κ3) + tc1D(κ3) + (1− t)NME(κ3) + (1− t)c2D(κ3)

= NME(κ3) + (tc1 + (1− t)c2)D(κ3).

We now discuss the classes of ambient networks we consider in more depth.

We consider classes of networks that represent equally spaced points in a 2-dimensional

plane to model the morphology of biological �uid transport networks that live on �at surfaces,

as fungal mycelia and slime mold often do. As was shown in Section 2.3, every edge is

assumed to have equal length so the cost of maintaining the network may be expressed by a

sum of the conductances raised to a power γ. Due to the simplicity of their parametrization

and generation by size the planar ambient networks we consider are square and triangular

grids.

De�nition 2.11. A square grid of side length N is an undirected network with topology

equivalent to a N × N square grid graph. It is isomorphic to a graph whose nodes are the

set N = {1, 2, . . . , N} × {1, 2, . . . , N} of ordered pairs 〈i, j〉 i, j ∈ {1, 2, . . . , N} and edges

(〈i, j〉 , 〈i+ 1, j〉) ,(〈j, i〉 , 〈j, i+ 1〉) for all i = 1, 2, . . . , N − 1 and j = 1, 2, . . . , N .

De�nition 2.12. A triangular grid of side length N is an undirected network with

the same nodes as the square grid of side length N whose edges contain the edges of the
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square grid of side length N . Included in the set of edges are edges that connect the top left

corner to the bottom left corner of each square. It is isomorphic to a graph with the set of

nodes N = {1, 2, . . . , N} × {1, 2, . . . , N} of ordered pairs 〈i, j〉 and edges (〈i, j〉 , 〈i+ 1, j〉)

,(〈j, i〉 , 〈j, i+ 1〉) for all i = 1, 2, . . . , N − 1 and j = 1, 2, . . . , N (from the square grid) and

(〈i+ 1, j〉 , 〈i, j + 1〉) for all 1 ≤ i, j ≤ N − 1 (diagonal edges).

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

κ1,2 κ2,3 κ3,4 κ4,5

κ1,6 κ2,7 κ3,8 κ4,9 κ5,10

κ6,7 κ7,8 κ8,9 κ9,10

κ11,12 κ12,13 κ13,14 κ14,15

κ16,17 κ17,18 κ18,19 κ19,20

κ21,22 κ22,23 κ23,24 κ24,25

κ6,11 κ7,12 κ8,13 κ9,14 κ10,15

κ11,16 κ12,17 κ13,18 κ14,19 κ15,20

κ16,21 κ17,22 κ18,23 κ19,24 κ20,25

source

sink

Figure 2.4.1: Example of the square grid with side length 5, showing labeling of vertices.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

κ1,2 κ2,3 κ3,4 κ4,5

κ1,6 κ2,7 κ3,8 κ4,9 κ5,10

κ6,7 κ7,8 κ8,9 κ9,10

κ11,12 κ12,13
κ13,14 κ14,15

κ16,17 κ17,18 κ18,19 κ19,20

κ21,22 κ22,23 κ23,24 κ24,25

κ6,11 κ7,12 κ8,13 κ9,14 κ10,15

κ11,16 κ12,17 κ13,18 κ14,19 κ15,20

κ16,21 κ17,22 κ18,23 κ19,24 κ20,25

source

sink

κ21,17 κ22,18 κ23,19 κ24,20

κ16,12 κ17,13 κ18,14 κ19,15

κ11,7 κ12,8 κ13,9 κ14,10

κ6,2 κ7,3 κ8,4 κ9,5

Figure 2.4.2: Example of the triangular grid with side length 5, showing labeling of vertices.

2.5 Basic Network Concepts

Given either a conductance or a �ow network, we use the term loop to mean a graph cycle in

the unweighted undirected graph on the same nodes where there is an edge between two nodes

if they are connected in the network. For �uid �ow networks, one quantity we are interested

in is the number of independent loops. For a network embeddable in 2 dimensions,

we de�ne the number of independent loops to be the number of cycles whose 2 dimensional

interior does not contain any edges. It is more common to de�ne the independent loops

using group theory [Hat02], but we choose our de�nition because it is clear and does not

require introducing mathematical concepts that are otherwise isolated from the rest of the

paper. We compute this number of independent loops via the formula

# of independent loops = |E| − |N |+ # connected components. (2.5.1)
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A type of network that will be immediately relevant in our numerical results is the

path of length n. For now, we de�ne a path of length n to be any conductance or �ow

network that contains n nodes, which we can re-label 1, 2, . . . , n with {(i, i+ 1) : i ∈ Z, 1 ≤

i < n} as its edge set. Many of the approximate mixing-dissipation cost minimizers we

will encounter are not paths, but a more general notion of �ow network path length will

illuminate interesting patterns. Assume that the initial state of a random walker x0 is a

random variable that chooses one of the source nodes with probability in proportion to its

stength relative to the other source nodes. Then the average path length is then calculated

as
∑

i∈sources
Qi∑

j∈sourcesQj

∑
k Pik.
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CHAPTER 3

Highlights of Numerical Results

3.1 Preliminary result: optimal mixing networks on the 3×3 square

grid

In our numerical results section, we computationally search for conductance networks κij

which approximately minimize NME + cD for all c in a dense �nite mesh of an interval

(0, cmax] with constraints
∑

(i,j) κ
γ
ij = C and for di�erent values of γ on both square and

triangular grids.

We begin our investigation by taking the ambient network to be a 3× 3 square grid with

one source at the bottom left corner and one sink placed at the top right corner, both of

strength one. Consider the biologically relevant Murray exponent γ = .5 and total building

cost C = 8. We choose this example because it is tractable to plain reasoning while it

contains a su�cient multitude of sub-networks to provide us with a detailed enough idea of

the structure of optimal mixing-dissipation networks at di�erent costs of dissipation. From

our results we will conjecture the properties of such networks on grids of arbitrary size.

Recall the de�nition θ(c) = min∑
(i,j) κ

γ
ij=8NME(κij) + cD(κij) for all c > 0. We approximate

the graph of θ for c on the interval [0, 2.5] by sampling networks minimizing the mixing

dissipation cost on 50 evenly spaced points c, .01 ≤ c ≤ 2.5.
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Figure 3.1.1: Numerical optima of NME + cD for networks minimizing the cost of mixing
and dissipation (blue points) over the interval .01 < c < 2.5. The vertical red lines represent
the end points of subintervals in which θ(c) is a�ne in c and the mid-points of the �rst and
third intervals. Magenta points represent the c and NME + cD globally optimal networks �
i.e. networks with minimum distance from the minimal cost curve. (See Chapter 6 Section
6.8.1).
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Figure 3.1.2: Optimal mixing-dissipation conductance networks κij on the square grid with
side length 3 for .01 ≤ c ≤ 2.5 selected according to �gure 3.1.1appearing in order of
increasing c and appearing left to right .

The graph of approximated minima of NME + cD in �gure 3.1.1 leads us to conjecture

that the graph of θ is piecewise linear for the ambient network 3×3 grids, maybe even so for

larger grids and di�erent values of γ. The optimal networks at the extremes are especially

meaningful. Since the left end point is c = .01 the mixing-dissipation cost is approximately

the total-negative-mixing entropy. We see that the path is the longest possible path that

can be embedded in the network in �gure 3.1.2. The unweighted graph of the network at

the right endpoint c = 2.5 is the shortest path by number of nodes between the source and

sink in the network and as we show in Chapter 2., this is the dissipation minimizer. In

�gure 3.1.2 we also choose sample optima on the interior of the three a�ne segments. Note

that with increasing c the length of the path decreases by 2 which is the minimal di�erence

between lengths of paths on a square grid ambient network. Visual inspection of the networks

sampled show that they are all paths of lengths 9, 7 and 5. Each of the three piecewise a�ne

parts has an expression as a line θ(c) = ac+ b and it appears that each piece is of the form

c 7→ NME (τn) + cD (τn).

As we will see in the next section, our numerical results with the same parameters except

considering di�erent ambient grids of dimensions 5 × 5 reveal a similar trend, except there

are loops in the conductance networks located at the source, corresponding to bifurcations

in the �ow networks. We state the non-rigorous conjecture based on these observations:

On grid ambient networks with 1 source and 1 sink, the graphs of optimal costs of mixing
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and dissipation are based o� of piecewise a�ne functions where each line is generated by

path networks and the lengths of the generating paths decrease by the minimal path length

di�erence of the ambient grid for increasing c. Here by based o� of we convey that the

graphs are generated piecewise by the functions c 7→ NME (τn) + cD (τn) except that in

open intervals around the transition points cn,m, at which the network transitions from

the path τn to the path τm where n and m are two subsequent path lengths for the given

grid, there are optimal conductance networks which contain loops (see Fig. 4.2.5 for an

example). Also we conjecture that these transitional networks represent intermediate states

between two adjacent paths. These did not appear in our simulations on 3× 3 square grids,

but transitions between longer networks may have loops. We expand on our conjecture in

Section 4.2.2 where we perform the same experiments except with γ = .8.

3.2 Numerical results for 1 source and 1 sink on ambient grid

networks of side-length 5 and biologically relevant γ = .5

The �rst in depth numerical study is to optimize the cost of mixing and dissipation on square

and triangular grids of side-length 5 with γ = .5 and C = 24.
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(a) (b)

Figure 3.2.1: The plot of sample local optima from optimizing the cost of mixing and
dissipation on the (a) square grid and (b) triangular grid. The blue points are the sample
local optima, putative global optima are shown as magenta points, the red vertical lines
represent the points cnm and the corresponding costs of mixing and dissipation. The grey
line is the minimal cost curve of the cost function on the optimal networks (See Chapter 6
Section 6.8 De�nition 6.1).

Figures 3.2.1 (a) and (b) both seem to corroborate the conjecture at the end of the

previous section, that the cost function is approximately piecewise a�ne. The piecewise

a�ne structure is more evident in the graph for the square grid because there approximately

half as many possible path lengths connecting source in the bottom left corner to the sink in

the top right corner for optimal networks on the square grid (9) as there are on the triangular

grid (17) and more linear sub-divisions cause the graph to visually appear smooth. In the next

chapter we will see that the sample optimal networks provide even more evidence backing

up this claim. As in the 3 × 3 case, for both ambient grids small values of c produce the

longest possible path network, the path connecting all of the 25 points, and large c produce

the shortest path connecting the source to the sink with 10 points (�gure 3.2.2). With a

small number of exceptions the optimal networks for both square and triangular ambient

grids have the following patterns. For the square grid, as we increase c the optima are paths

of lengths decreasing by 2 at a time�i.e. 25,23,. . . ,11, and lastly 9. For the triangular grid,
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path lengths decrease by 1 so the sequential transitions are 25, 24, . . ., 10, and 9 occuring

at every corner.

(a)

(b)

Figure 3.2.2: Optimal conductance networks chosen from the �rst interval [0, c25,23] and the
last interval [c11,9, c11,9 + 1] for the square grid (a) and from the �rst interval [0, c25,24] and
the last interval [c10,9, c10,9 + 1] for the triangular grid (b). The longest path is the optimally
mixing network. Both ambient networks contain a path connecting the source to the sink
and containing all of the points. The shortest path is the optimally dissipative network.

We �nd that some of the transitions do not abruptly occur at a point and instead there

is an interval where intermediate paths with loops at the source occur. The �ow graphs have

a bifurcation at the source.
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(a)

(b)

Figure 3.2.3: Flow networks for putatively globally optimal networks on the 5 × 5 grid for
transitions between path graphs of decrementing lengths for the square ambient grid (a) and
the triangular ambient grid (b). For the square grid, the depicted transition is between the
paths of length 21 and 19. For the triangular grid the depicted transition is between paths
of lengths 19 and 18.

Examples of transitional networks depicted in �gure 3.2.3 have the same loop part at the

source: an even 1
2
split of the �ow with two nodes on either side, followed by recombination

of the �ows to feed into a single path that leads to the sink. The geometric arrangement

of loop and path parts di�er, however. Therefore the changes in optimal mixing-dissipation

networks has a more complicated explanation than transitions between paths of gradually

decreasing lengths. Still, as we will see in Chapter 4 whose results are highlighted in the

next section, path networks of gradually decreasing length form a skeleton of the optimal

networks in the sense that even when the optimal networks contain loops, the mean path

length from source to sink following �ows is decreasing as c increases.
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3.3 Numerical results for 1 source and 1 sink on ambient grid

networks of side-length 5 and γ = .8: networks with many loops

We optimize networks obeying the building cost constraint
∑

(i,j) κ
.8
ij = 24 for the cost of

mixing and dissipation for many closely spaced values of c greater than or equal to 0.1 so

that the longest path is obtained as an optima, with the upper bound on c. We start with c

small enough that we obtain the tour as an optimum and end with c large enough that we

obtain the geodesic as an optimum.

(a) (b)

Figure 3.3.1: The plot of sample local optima from optimizing the cost of mixing and
dissipation on the (a) square grid and (b) triangular grid. The blue points are the sample
local optima, putative global optima are circled in magenta, the red lines represent the points
cnm and the corresponding costs of mixing and dissipation. The grey line is the minimal cost
function

Note, these graphs do not reveal a piece-wise a�ne function with many pieces for networks

of di�erent lengths and transitions with loops. Instead, our algorithm locates only two path

networks, the tour on 25 nodes and the geodesic between the source and sink (Fig. 3.2.2).

As c increases, the optimal networks transition through many interesting geometries with

loops. All of these globally optimal networks share the structural commonality of being

formed from a subnetwork containing loops, connected to a path, with the subnetwork with
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loops being located directly at the source and connected through one vertex to the path that

travels to the source. In other words, the �ow fans out in a bifurcation at the source and is

collected at a node and sent through a bottleneck to the sink.

(a)

(b)

Figure 3.3.2: Three optimal networks with γ = .8 on the ambient square grid (a) and for
triangular grid (b) for c increasing from left to right.

The three networks for both square and triangular ambient grids in �gure 3.3.2 outline

two general trends in the geometry of the globally optimal path for increasing c; a general

decrease in the lengths of paths from source to sink, and an approximately uni-modal rise

and then fall in the number of independent loops (Fig. 3.3.3).
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Figure 3.3.3: Plot of the average path length and the number of independent loops for
optimal networks on the triangular grid with γ = .8.
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CHAPTER 4

Numerical Results

4.1 Visualization of networks

We use three methods to visualize �uid �ow networksgraphs with the weight (thickness) of

an edge being proportional to its conductance (κij). We visualize the conductance networks

as magenta. We visualize the �ow networks green graphs with edge thicknesses proportional

to by qij. We also visualize the distribution of signals at each node i by plotting a bar graph

of the un-normalized q̃ji at each node i where the bars are sorted in order of decreasing

magnitude. We make a bar graph of the �ows q̃ji, j = 1, 2, ..., N , rather than of the

probabilities that make up Pi. Our bar graphs must therefore be normalized in order to

calculate the probabilities within the mixing entropy. But presenting the unnormalized �ows

has the advantage of also communicating the total �ow passing through i because q̃ii = fi .

In each depiction the sources are labled with �+� and the sinks are labeled with �−�.
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Figure 4.1.1: Example of a conductance network (left), its physical �ow network (center)
and �ows with distribution of q̃ij on the right.
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4.2 One source and one sink at the bottom left and top right corner

of square and triangular ambient grids side length 5 with γ = .5

and C = 24.

4.2.1 Square ambient grid

Figure 4.2.1: Numerical optima of NME+cD for networks minimizing the cost of mixing and
dissipation (blue points). In grey is the minimal cost curve. The vertical red lines represent
the end points of subintervals in which θ(c) is a�ne in c. We refer to these intervals as
search intervals. Magenta points give the c and NME + cD globally optimal networks �
i.e. networks with minimum distance from the minimal cost curve. Two globally optimal
networks are chosen for each search interva.. The samples are for a densely spaced set of
c between .01 and 6.5481. See Chapter 6 Section ? for technical details. The minimal
cost curve is piecewise linear. Transition points where mixing-dissipation cost minimizers
transition from the tour and transition to the geodesic are indicated with arrows. These
were computed using the optimal networks in Fig. 4.2.6 by taking the �rst transition point
to be the maximum c where the average path length is 25 and the minimum c where the
average path length is 9.
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We plot the results of repeating our numerical experiment for thousands of times in �gure

4.2.1. We observe that the minimal cost curves contains sharp non-di�erentiable transitions.

The numerical optimization method's rendition of these optimal networks is interesting: As

a transition is approached from the left with smaller values of c, the numerical optimization

irregularly converges in some places to the true optimal network, and in others to the

networks that will appear after the transition. We divide the interval of sampled c into

9 search intervals. For each of the 9 search intervals we divided it in half by length to create

2 subintervals. In both of these subintervals, we choose the numerically obtained optimal

network whose value of NME(κij)+cD(κij) is closest to the minimal cost curve. This is what

we mean by choosing 2 globally optimal networks in each search interval. We repeated this

for each search interval, obtaining 18 globally optimal networks. These sampled networks

are shown as the magenta points in Figure 0.2.1, and their conductances and �ows are shown

in �gures 4.2.2 and 4.2.3.
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Figure 4.2.2: Selected optimal conductance networks by increasing c from right to left and
top to bottom Networks correspond to the magenta points in Figure 4.2.1.
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Figure 4.2.3: Selected optimal �ow networks by increasing c from right to left and top to
bottom.
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The network chosen within the �rst interval is the path network τ25 that visits every node

in the ambient network. In this �rst interval θ(c) is a linear function of c, re�ecting the fact

that although a single network is selected over the entire interval, the cost of this network is

linear in c: i.e. it is equal to c 7→ NME(κij) + cD(κij). In Chapter 5 we will give a rigorous

proof that in the limit as c→ 0, the optimal network is any path that visits all nodes. Our

numerical results suggest that this is also true at small but non-zero values of c. To test this

conjecture we look at 5 numerically generated optima for c = .01 in �gure 4.2.4.

Figure 4.2.4: Results of the optimization for c = .01 repeated 5 independent times from
random initial conditions. The �ow network pictured �rst on the left has a NME of -51.9897.
The four remaining networks each have an NME of -58.0036. The cost function NME + cD
on each network gives us -51.7772 for the �rst network and -57.7636 for the other 4.

The largest value of c that we assay numerically is 6.48, at this value (in fact over the

entire subinterval [.01, 6.5481]) the numerically computed optimal network is also path: τ9,

which is the shortest path (geodesic) linking source and sink nodes. This is τ9. In the limit

as c → ∞, optimizing theta is equivalent to minimizing dissipation, and it is known that

the unique optimizer here is the geodesic (see [CR17] and our proof in Chapter 5). Our

numerical results show that the geodesic is in fact the optimizer even at �nite values of c, in

fact for c ≥ 3.9955.

The transition to the geodesic (shown by the black arrow in Fig. 4.2.1 [e.g.]) is

representative of a set of transitions that are seen as c is varied, so we will describe in

in some detail. The network switches sharply to the geodesic topology at c = 3.9955 . We

infer that thereis not a continuously varying collection of networks with di�erent topologies

approaching the geodesic. In the graph of the minimal value of theta (Fig. 4.2.1) this sharp
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transition is signalled by a non-di�erentiable �nal corner.

We now turn our attention to intermediate values of c, here the optimal θ(c) curve appears

to be piecewise a�ne, that is over �nite subintervals of c values, the optimization algorithm

consistently �nds the same network (as c varies θ(c) then varies linearly). What are these

optimal networks? From Fig. 4.2.3 we see that the optimal networks are, for the most part,

path networks. As we go from one c subinterval to the next one, starting with the smallest

value of c, the length of the path in the optimal network decreases by 2. Every possible path

length shows up as the optimal network for some range of c values. However, not all optimal

networks are paths: The only non-path graphs identi�ed by the numerical optimization are

networks 3, 4 and 5, which, respectively, are located as optimal networks when c is in the

subintervals [1.1601, 1.3544] and [1.3544, 1.6047]. These non-path �ows are located between

the path τ25 and the path τ21. In both of these networks there is a single loop: �ows bifurcate

symmetrically at the source, the divided �ows then each pass along a path of 3 edges, until

they meet and form a single bottleneck path heading towards the sink. Intriguingly, the

average path length of these networks, as de�ned in Chapter 2 section ??, are 23 and 21

respectively. Once the critical value c = 1.655 is exceeded, the optimal network reverts again

to a path (τ21). We therefore have a sequence of networks with arithmetically decreasing

average path-lengths, with the path length decreasing stepwise by 2 as c is increased, starting

with a path of length 25 and ending at 9. We investigate how well this trend holds by plotting

average path-length as it changes with c .
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Figure 4.2.5: Networks 4 and 5 from �gure 4.2.3

4.2.1.1 Average path length and loops

In �gure 4.2.6a. we see a decreasing trend in the average path length for every sample

plotted with blue points. Upon re�ning the sample by only choosing networks which are

close to the minimal cost curve, plotted as red circles, a step function with decrements of 2

between each step is revealed. Interestingly, average path lengths of 23 are present in this

graph, while our sample of 20 networks did not reveal a path of this length, although there

is a network with a loop of average path length 23 (�gure 4.2.5). It is remarkable that the

experiments suggest that networks optimizing the cost of mixing and dissipation follow a

pattern of arithmetically decreasing average path length as the weight is increased. It also

seems that path networks are the main networks generating θ.
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Figure 4.2.6: The average path length for networks optimized at every c plotted as blue
points in (a). Each blue point represents a local optimum identi�ed by our algorithm.The red
points represent the average path length for 100 globally chosen optimal networks. Globally
optimal networkschosen by splitting the entire domain of c into 100 sub-intervals of equal size
and choosing the network in each sub-interval for which the di�erence between NME(κij) +
cD(κij) and the minimal cost curve is at a minimum.

The exceptions from this rule at path lengths 23 and 21 lead us to wonder about the

role loops play. The network of average path length 21 is followed by a path network with

21 nodes, but we have not observed a path of length 23. To investigate the role of loops,

we compute the number of independent loops in each conductance network using equation

2.5.1.
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Figure 4.2.7: The number of independent loops for every value of c we sampled is plotted as
the blue points. We compute the Betti-number for the same 100 networks as in �gure 4.2.6
and connect them with a red line.

Plotting the number of independent loops for each sample shows that there is a maximum

of 3 independent loops in any locally optimal network identi�ed by our algorithm. Among

networks in our collection of 100 globally optimal networks no more than 1 independent loop

is seen. For the most part, it indicates that networks that minimize mixing-dissipation cost

are paths. The networks with one loop appear to occur in 4 intervals of decreasing width

and are separated by intervals where networks are paths. Figure 4.2.7 shows the complete

sequence of globally optimal networks that we see as c is swept the entire interval of values

that produce loops. In the �gure, we remove topologically equivalent networks (e.g. we show

only one representative path of each length produced by our algorithm). At the point where
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the paths �rst join, the probabilities Pi(j) are equal to 1
2
from each node on the two sides of

the loop and equal to 1 from the source node and from the node itself. The mixing entropy

for this node is not far from that for a path containing the same number of nodes.

Figure 4.2.8: Networks chosen from the set of100 networks (see �gure 4.2.7) representing each
connected interval where the Betti-number is constant (either 0 or 1) ordered by increasing
c. The third and fourth networks are the two di�erent topologies from the �rst interval
where there is 1 loop. The average path lengths of the networks in the order they appear
are are 25,23,21,21,19,19,17,17,15 and 15. The networks for c ≥ 1.168 in this selection are
path graphs of arithmetically decreasing length and have already been discussed.

From the 100 networks sampled in �gure 4.2.7, we did not �nd a path of length 23. For

each of the average path lengths 21, 19, 17 and 15, there are two globally optimal networks,

one with a loop and one which is a path (c = 1.3995, 1.6545, 1.9722, 2.3947 for loopy networks

and c = 1.4896, 1.7505, 2.049, 2.4783 for path networks). We can express this observation

as the optimal networks are for the most part paths, with networks with one loop occuring

occasionally between the transition of two consecutive path lengths. The exception for paths

of length 23 could be hinting at a di�erent pattern of behavior if we increased the size of the

grid. Perhaps paths no-longer are the main optimal networks as there is more room to add

loops. A path of length 23 has only 2 nodes to add to a loop. So far there is strong evidence

that τ25 is the NME optimum on the 5×5 grid, but if we were to consider a 6×6 grid, there
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would be 36− 25 = 11 nodes that could be appended to the path of length 25 to form loops

and 13 that could be appended to a path of length 23. As the path length is much smaller

than the number of available points, networks with loops might be preferred as optima.

(a) c = 1.3995,NME =?,D =? (b) c = 1.5172,NME =?,D =?

Figure 4.2.9: Flow networks 5 and 6 from Fig 4.2.3 with a bar plot of q̃ji for each node
i. The bars are sorted in decreasing order to aid visual comparison of distributions. The
distributions plotted are not the normalized Pi(j) in order to convey both node strength fi
and distribution shape. The maximum bar height is equal to fi. Both networks have an
average path length of 21.

Notice that the only non-path networks identi�ed by our algorithm have a very stereotyped

morphology, consisting of a loop formed by a bifurcation at the source that runs through two

paths covering three edges on both sides before they converge into a single path (Fig. 4.2.9).

The two sides of each loop therefore each have a uniform distribution of species within the

nodes of the loop. The four nodes along the split �ows have comined local mixing entropies

equal to the 2-nd and 3-rd nodes from the source in the path network because they have

the same distributions and are multiplied by total �ows fi = 1
2
that sum to 1 across the

split. For the �ow network with the loop, every node downstream from the loop has the
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same distribution as in the path, except two signals are divided uniformly into 4 signals.

The extra signals contribute a gain to the total mixing entropy.

Why are networks with the loop at the source favored? We will explain this feature of the

optimal network rigorously in Chapter 5 Section ??, but discuss the tradeo�s brie�y here:

The networks have the same average path length as if one side of the bifurcation was removed

and the �ow was re-directed down the other side. Anywhere the loop is, the combined local

negative mixing entropy NMEi of nodes at the same distance from the bifurcation is the

same as one node of the same distance from the source. Therefore, it does not seem that the

bifurucation helps to mix the signals from up-stream nodes. On the other hand, it does not

increase the path length while introducing a new set of signals, which is good from the point

of view of reducing dissipation, and down-stream from the loop will receive more signals than

in a path network with the same path length and so the mixing entropies of these nodes will

be increased.
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4.2.2 Triangular ambient grid

Figure 4.2.10: Numerical optima of NME+cD for networks minimizing the cost of mixing and
dissipation (blue points). In grey is the minimal cost curve. The vertical red lines represent
the end points of subintervals in which θ(c) is a�ne in c. We refer to these intervals as
search intervals Magenta points give the c and NME+ cD globally optimal networks � i.e.
networks with minimum distance from the minimal cost curve
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Figure 4.2.11: Selected optimal conductance networks by increasing c from right to left and
top to bottom Networks correspond to the magenta points in Figure 4.2.10.
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Figure 4.2.12: Selected optimal conductance networks by increasing c from right to left and
top to bottom Networks correspond to the magenta points in Figure 4.2.10.
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Figure 4.2.13: Number of independent loops for every network sampled. Each search interval
is divided into 4 equal parts and the optimal networks are chosen within each search interval
and the red line connects corresponding points.

The pattern of independent loops is similar to the square case. Speci�cally, for c ≥ 1.886

all of the optimal networks are paths from source to sink, whose length decreases stepwise

in increments of 1. Similarly, for c ≤ .8972, the optimal network is the path τ25, which

visits every node in the ambient network. Each globally optimal network remains globally

optimal over a �nite range of values of c. Over this range the function θ(c) is linear in c.

The argmin network transitions sharply from one network geometry to another at transition

values of m (i.e. the minimum curve of θ(c) is piecewise linear). Networks with loops show
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up much more extensively in the square network case. We visualize the Betti number in Fig.

4.2.13. All of the local optimal networks have one or few loops, so the Betti number serves

primarily as an indicator variable for the number of loops in the network. We see that loopy

networks are selected for a wider range of values of c, and in fact the �rst morphology that

the network adopts after τ25, when c is increased contains a loop.

We visualize representative networks from each of the subintervals in which loops were

seen in Fig. 4.2.14. Similarly to networks de�ned on a square ambient grid, the mean path

length from source to sink decreases as c is increased.

Figure 4.2.14: Networks representing disticinct topologies in the plot of independent loops
in �gure 4.2.13.

The loopy networks have similar morphologies to the square ambient grid. The loop

occurs at the source, and symmetrically divides �ow along two equal length paths, before

recombining into a single path. However, unlike the square ambient grid, the number of edges

on the two sides of the loop is not �xed at 3 - we see loops with sides that are anywhere from

two to four edges long. In four cases (e.g. c = 1.1439, 1.1991, 1.2886, 1.4132) the number of
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edges is not matched on either side of the loop.

Figure 4.2.15: The average path lengths of networks in �gure 4.2.14 as a function of
dissipation cost c. Average path lengths trend downwards as c is increased. But unlike
the square ambient grid, the path length does not decrease as an arithmetic sequence. There
are also multiple networks that have close to identical average path lengths, that appear
successively as optima as c is increased. Flow networks are shown for the �lled square
optima in Fig. 4.2.16. .

The geometric complexity of looping for networks on a triangular ambient grid is also

associated with a more complex dependence of mean path length on c among the globally

optimal networks. In particular, as c is increased, although mean path length has a decreasing

trend, it does not decrease in �xed increments (see Fig. 4.2.15), but rather decreases in steps

of 2, 1 and 0.5 in step transitions. Additionally, geometric changes in the network can occur
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without any meaningful change in mean path length. For example, FIg. 4.2.16 shows the

sequence of globally optimal networks obtained when c is increased from 1.1439 to 1.2381.

All three networks (shown as the [e.g.] �lled squares in Fig.4.2.15 have mean path lengths

close to 22.5, but the loop and path portions of each network have di�erent lengths.

Figure 4.2.16: The middle network is highlighted in orange in �gure 4.2.15. The average path
lengths of the �rst two networks are not integer valued. They are 22.5427 and 22.5528 in
the order they appear. They have very similar path lengths for how di�erent their topology
is. The last network has an average path length of 22. In a triangular grid, the choices of
topology can have �ner details, and that may lead to some uneven split bifurvations being
favorable.

4.3 One source one sink boundary �ows with γ = .8 and C = 24

The parameter γ controls the degree of convexity of the cost function; more speci�cally the

material penalty associated with dividing a single conduit into two smaller conduits with

the same total conductance. If γ = 1 then there is no material penalty associated with

dividing a conduit. If γ > 1 then two conduits have lower material cost than a single

conduit of the same conductance. Accordingly, networks that minimize dissipation undergo

a phase transition from simply connected to loopy geometries if gamma is increased through

1 [BM07]. Under conditions that favor loops (such as when networks must supply sinks

with �uctuating strengths, [Cor10]), the number of loops in minimial dissipation networks

increases as gamma increased. We wondered whether increasing gamma would have the

same e�ect on networks optimizing mixing, and accordingly we repeated our analysis with

γ = 0.8.
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4.3.1 Square ambient grid

Figure 4.3.1: Scatter plot of NME + cD for numerically obtained networks that are local
optima of the cost of mixing and dissipation (blue points). Grey curve is the minimal
cost curve. The vertical red lines represent the end points of subintervals over which we
choose globally optimal networks with which have the smallest di�erence between the mixing-
dissipation cost and the minimal cost curve (globally optimal networks; see Chapter 6). We
refer to these intervals as search intervals c and NME + cD values for globally optimal
networks are given by magenta points.

We plot the mixing-dissipation costs for a collection of networks de�ned on an ambient grid,

for c values that densely cover the interval c ≥ .01 and c ≤ 10.557 in Figure 4.3.1. Just as

in our γ = 0.5 simulations, at large and small values of c, the minimal cost curve becomes a

66



straight line, minimal cost curve appears to be a transition between two a�ne functions, the

�rst corresponding to a path that visits all nodes the for c small and the geodesic for large

c. The interval of transition between these two optimal networks does not have an obvious

piecewise linear form as it did in the case where γ = .5. Visually, the curve seems to almost

be smooth. This may be the e�ect of many di�erent possible transitional networks between

the tour and the geodesic.
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Figure 4.3.2: Selected optimal conductance networks by increasing c from right to left and
top to bottom.
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Figure 4.3.3: Selected optimal �ow networks by increasing c from right to left and top to
bottom.
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In �gure 4.3.3 the �ow networks of the globally optimal selected networks follow patterns

that are reminiscent of the case for γ = .5 but characterizing them completely is beyond the

scope of this work. We note, however that each network that has loops, locates them at the

source in the following sense. The network bifurcates at the source, and then �ows follow

reticulated paths through a loop portion. The loops then recombine at a single point (which

the call the bottleneck), whereupon all �ows pass along a single path to the sink. We call

the sub-network consisting of the �rst bifurcation of the �ow of size 1 and ending with a

�nal meet to a �ow of size 1 as the loopy sub-network. Even though the connectivity is more

complicated than in the γ = 0.5 case, the loopy sub-network starts at the source, just as the

loops with 2 points on either side of the bifurcation started at the source (�gure 4.2.5).

The �rst network at c = .01 is the tour. It then appears that for the 2-nd through

the 5-th network, the number of points in the network does not change, but the size of

the loopy sub-network grows. For networks 6 and 7, the bottleneck decreases by length 2

and for networks 7, 8 and 9 both the bottleneck decreases by 1 and the loopy-subnetwork

shrinks in size as well. Between network 9 and 10 we see a loss of the horizontal �owing

edges connecting nodes labeled 7, 8 and 9 in the loopy sub-network. From the 10th network

onwards we see a decrease in the loopy sub-network to have only 1 independent loop. The

last network is the geodesic.

As the loopy sub-network grows and the number of nodes is �xed at 25, we see a decrease

in the average path length. This is because every path in the loopy sub-network is a geodesic

between the source and the sink of the loopy sub-network (the bifurcation at the source and

the point where all of the �ows �rst recombine). The decrease in the length of the bottleneck,

with the decrease of the path length of the loopy subnetwork also brings about a decrease

in the length of every path from source to sink. From this we hypothesize that a trend of

decreasing average path length for increasing c occurs.
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Figure 4.3.4: We plot the average path length of every numerically obtained locally optimal
mixing-dissipation network. On the left, globally optimal networks (i.e. the magenta data
points from Fig. 4.3.1) are plotted as a red circle. On the right, we increased out sample
of optimal networks by creating 5 equal length sub-divisions of each search interval and
choosing the network with mixing-dissipation cost closest to the minimum cost curve.

In Fig. 4.3.4, we plot the mean path length from source to sink for all of our locally

optimal (blue points) and globally optimal (red points) networks. Locally optimal networks

typically have non-integer path lengths, and the mean path length behaves much more like

a continuous variable. However, 4.3.4 it appears that the average path length of globally

optimal networks is a decreasing step function of c where the steps are spaced by 2. This

is reminiscent of the experiment for γ = .5. To a�rm that the step discontinuities in path

length are not artifacts of under sampling we re-divided the range of c-values into �ve times

�ner subintervals, and plot the globally optimal network in each of these subintervals. The

new, more complete set of globally optimal networks still shows a stair-step dependence of

path length upon c, again suggesting that the minimal cost curve contains corners at which

the optimal network changes discontinuously. Similarly, to the previous case, the numerical

optimization continues to �nd local optima that lie on straight line paths -- i.e. as c increases,

it continues to �nd a now suboptimal network, past the c value at which a shorter network

should be selected for.
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Figure 4.3.5: Plot of the number of independent loops for optimal networks at every c (blue)
and the Betti numbers of 100 global optima from equally spaced intervals over the entire
domain of c (red). The minimum Betti number is 0, corresponding to path networks, and
the maximum globally optimal Betti number is 8. The maximum possible Betti number is
16, the number of independent loops in the ambient grid.

The increased complexity of the loopy subnetwork can be quanti�ed by examining how

the Betti number of the optimal networks depends upon c. As c is increased, the Betti-

number of networks steeply increases and then slowly tapers o�. Our Figure shows that the

Betti number stays at 0 (meaning that the optimal network is simply a path), until c = .8141.

There is a sharp change from the tour to the �rst network with loops. This is because the

10 �rst networks that are represented by the horizontal line at 0 with a spike to 1 and return

to 0, with exception of the �rst Betti-number 1, are all tours. At intermediate values of c,

the Betti number reaches a much higher value than in the γ = 0.5 case, and also irregularly
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increases and then decreases, re�ecting a set of transitions within the loopy subnetwork that

involve both gaining and losing loops. The slow decrease shows that eventually there is a

trend in simultaneous decreasing average path length and Betti-number.

4.3.2 Signal distributions

(a) (b)

Figure 4.3.6: Visualization of �ow networks from the globally optimal networks in Fig. 4.3.3.
The bar graphs at each node i depict the distribution of arriving signal strengths q̃ji with
the signals sorted by decreasing magnitude.

In Fig. 4.3.6 we present visualizations of two networks with bar graphs of the arriving signal

strengths at each node. Both �ow networks have more than one loop. In both networks, the

�ow from the source has bifurcations at 2 nodes (nodes 1 and 2 in (a) and nodes 1 and 6

in (b)) splitting the total �ow into 3 smaller �ows. In �ow network (a), there are two paths

starting at 2 and 3 crossing the split �ows. We can see that these paths increase the number

of signals arriving at downstream nodes in a way that positively e�ects mixing. Such cross

�ows are not present in (b) and so nodes along separate sub-�ows only mix signals from their
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�ow.

4.3.3 Triangular grid

Figure 4.3.7: Scatter plot of the cost function NME + cD for locally optimal networks
computed by numerical optimization (blue points). The grey is the minimal cost curve. The
vertical red lines represent the end points of intervals over which we choose globally optimal
networks, as networks that minimize the distance from the minimal cost curve (See Chapter
6). We refer to these intervals as search intervals The c and NME+ cD values for globally
optimal networks are shown as magenta points.

The ambient triangular grid contains a larger number of edges, and we �nd a larger number

of local and global optima. Indeed, our method for identifying search intervals immediately

produces a much larger number of search intervals (17, as compared to 9 for the square grid

with the same number of nodes). Except for the �rst and last subintervals of c, in which
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the optimal network is respectively a tour and a geodesic, the minimal cost function curve

no longer has a clear piecewise linear structure. We hypothesize that there is continuous

interpolation between global optima, rather than, as we previously encountered, a discrete

set of global optima between which the optimal network moves by step-wise transitions. To

study these transitions we subdivide the total c range more �nely � see Chapter 6 for more

details as how we pick this exact subdivision.
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Figure 4.3.8: Globally optimal conductance networks computed when by c is increased.
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Figure 4.3.9: Globally optimal �ow networks computed when by c is increased.
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The globally optimal networks on the triangular ambient grid share a similar pattern

to those on the square ambient grid (Fig. 4.3.9). Both begin with the tour through all

25 nodes. At a �nite value of c loops appear and the number of independent loops grows

with increasing c. The structure of the networks is to have the bifurcation at the source

and ending with one �nal recombination that bottlenecks all of the �ows into a path to the

sink of �ow 1. The size of the loopy sub-network increases to maximum and the number of

independent loops reaches a maximum as well as c increases. Then both the number of loops

and the average path length begin to fall, until the average path length is at the minimal

value, 9 whereupon the network starts to transition toward the geodesic by losing loops one

at a time.

Figure 4.3.10: The average path lengths of minimal networks for every sampled network in
blue and each of the globally optimal networks from �gure 4.3.7 (red circles). In the right
panel, we add globally optimal networks by subdividing each subinterval of c values into 10
equal subintervals.

Plotting the average path lengths of every network reveals the trend of decreasing path

length with increasing c (Fig. 4.3.4). There do appear to be terraces in the scatter plot

at every possible integer path length. However, the decreases in path length do not occur

stepwise except at small values of c (close to the tour) and large values of c (close to the

geodesic). To elaborate, the average path lengths appear decrease by 1 or 2 at a time for

c ≤ 4.119, and this structure survives even the addition of more global optima when we
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subdivide each of our search intervals into 10 subintervals, increasing the number of global

optima by 10. In particular, for c in the interval [.01, 1.4250] including the end-points, the

average path length is a non-decreasing step function taking on values 25, 24 and 22. Re�ning

the selection did not result in a network length 23, though we can not rule out that such

a network would be discovered if we further subdivided the interval. We interrogate the

emergence of non-quantized path lengths by plotting the global optima with 10 subdivisions

from Fig. 4.3.10 over the intervals c = [0.46, 2.20] and c = [1.49, 4.87](respectively the left

and right panels of Fig. 4.3.11).

Our analysis of networks using loop counting produces very similar results to the square

ambient network (Fig. 4.3.12), except the maximum globally optimal Betti number is 9.

Figure 4.3.11: The average path lengths for small c (left) and large c (right), with 10 global
optima per search interval Fig. 4.3.10. Note that globally optimal networks �nd many
di�erent average path lengths, and that the average path length shows high variability among
similar values of c. For c > 2.4, the globally optimal networks may cluster around average
path lengths 14, 13, 12, 11, ..., 9, but in the range 1.5 < c < 2.4, we see no evidence of
clustering in the mean path lengths.
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Figure 4.3.12: Number of independent loops in the conductance networks as a function of c
for local (blue) and global (red) optima chosen from dividing the entire range equally into
100 intervals. Among the global optima, the minimum possible Betti number is 0 and the
maximum is 9. The maximum possible Betti-number for a sama

In Fig. 4.3.13 we plot the average path length and the number of independent loops for

globally optimal networks chosen one for each search interval. As the average path length

of optimal networks decreases, less space is needed in the ambient grid for long tortuous

paths. The space is �lled by loopy subnetworks containing more direct paths to the bottle-

neck. This suggests that a low Betti number for small c followed by a steep increase is

due to removing the spatial constraint on the size of loopy subnetwork as optimal networks

transition from the conjectured NME optimizer at c = 0, the tour.
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Figure 4.3.13: The average path length and the number of independent loops for the globally
optimal networks (one network for each search interval) in �gures 4.3.7 and 4.3.9.
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4.3.4 Signal distributions

(a) Globally optimal network 9, c = 2.0531,CMD = −16.785,NME = −38.904, D = 10.774

(b) Globally optimal network 10, c = 2.1762,CMD = −15.442,NME = −34.8, D =
8.895

(c) Globally optimal network 10, c = 2.8029,CMD = −10.6,NME = −27.548, D =
6.0468

Figure 4.3.14: Visualization of �ow networks from the globally optimal networks in Fig.
4.3.9 The bar graphs at each node i depict the distribution of arriving signal strengths q̃ji.
The bar graphs at each node i depict the distribution of arriving signal strengths q̃ji with
the signals sorted by decreasing magnitude.
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The �ow networks in Fig. 4.3.14 contain many di�erent loops with di�erent path-lengths.

In �gure (a) note that the distribution of nodes at the most down stream node of the loopy

subnetwork has a hierarchical appearance, with several signals having strength 1, with a

sharp drop to a strength of about 1
2
followed by another drop to 1

4
. This characteristic shape

appears to smooth out to a continuous decline to 0. For these networks, it appears that

there is a higher density of loops closer to the source. This leads to more mixed distributions

of signals being transferred down stream. Unlike the case of the ambient square grid, there

is a variety of path lengths from the source to the �nal re-combination of �ows in the loopy

subnetwork. This may be due to the connectivity of the triangular grid allowing for every

path length.

4.4 Two sources and two sinks on the square ambient grid with side

length of 5 nodes for γ = .5

So far we have restricted our numerical experiments to networks with a single source and

single sink. Our analytical results will be largely con�ned to such networks (see Chapter

5). However, the �exibility of our numerical algorithm allows us to explore other source and

sink geometries. In this section we use numerical experiments to analyze optimal networks

between a pair of sinks and pair of sources, that are distributed on opposite sides of a square

ambient grid. The major change that we expect from such a network is that the optima for

c → 0 and for c → ∞ are topologically di�erent. For c → 0 the global optimum network

remains the tour (although the order in which the nodes are visited is important), why for

c → ∞ the optimal network now consists of two straight line paths, directly linking each

source to its counterpart sink. Our numerical investigations probe the set of morphological

transitions that occur between these two limits.

For two sources and two sinks it is outside of the scope of this study to state an all

encompassing proposition about the structure of the mixing-dissipation cost function minima
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curve. Instead, through a high number of samples we �nd several interesting features about

how optimal networks di�er as c is increased and about the associated jumps in the cost

curves.

Figure 4.4.1: Scatter plot of the cost function NME + cD for locally optimal networks
computed by numerical optimization (blue points). The grey is the minimal cost curve. The
vertical red lines represent the end points of intervals over which we choose globally optimal
networks, as networks that minimize the distance from the minimal cost curve (See Chapter
6 Section 8). We refer to these intervals as search intervals The c and NME + cD values
for globally optimal networks are shown as magenta points.

The optimal mixing-dissipation cost curve ( Fig. 4.4.1) seems to be comprised of 2 main

curves made up of local optima. The locally optimal networks contain either one connected

component or two connected components. The optimization algorithm is initialized with

random conductances. As c is increased and more emphasis is placed on keeping dissipation
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low, the probability that our optimization procedure can �nd a favorable sequence of steps

towards the one-connected component optimum from it's initial condition, rather than

immediately jump to any of increasingly favorable 2 connected component networks, decreases.

We found that this caused a sudden discontinuous jump in the set of globally optimal

networks. The sampling was repeated, converging to the set of mixing-dissipation minimizers

pictured in Fig. ??.
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Figure 4.4.2: Selected optimal conductance networks by increasing c from right to left and
top to bottom.
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Figure 4.4.3: Selected optimal �ow networks by increasing c from right to left and top to
bottom.
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A sequence of globally optimal �ow networks are shown in Fig. 4.4.3. Similarly to the

single source, single sink case, the majority of our networks are trees with loops being seen

only for a very narrow range of c.

Figure 4.4.4: Average path lengths of every sampled network. Globally optimal networks
in �gures 4.4.1 and 4.4.3 are circled in red. On the right we divide up the entire domain
of c into 100 equal parts, increasing the number of global optima that are assayed. The
transitions between path lengths is stepwise in c. Over a large range of c values (5 < c < 10)
the globally optimal network is the minimally dissipative tree, there is an abrupt transition
at c = 4.5, in which this tree is replaced by the pair of geodesics as the global optimum.
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CHAPTER 5

Theorems

5.1 Introduction

In this section, we take a mathematically rigorous approach to precisely stating and proving

discoveries about conductance and �ow networks which optimize the NME, NSE, dissipation

and the cost of mixing and dissipation. To start, we compute and prove formulas for the

NME in isolated scenarios to gain intuition for the process that the NME describes and the

techniques we use. We fully describe the properties and values of functions on path graphs

as well the next incrementally more complex type of network, paths with a single loop in

the front, similar to those we generated in the numerical results (see Figure 4.2.2).

After warming up we state and prove general theorems characterizing the structure of the

graph of the minimal mixing-dissipation cost θ, which get to the heart of why the numerical

approximations often appear piecewise linear for single-source single-sink networks. We also

break ground on how decreasing the material cost exponent γ a�ects the set of optimal

networks. Speci�cally, for small material cost exponents, only networks whose mixing falls

within a vanishingly small radius of one of a �nite set of NME curves remain, these NME

curves are generated by path networks of consecutive length. More so, for small γ the

remaining set of minimizers cannot di�er by more than a hair-thin vessel from a single path.

The proof involves a few key insights. Among them is that we can only safely erase nodes

that not only have small fi in an absolute sense, but by a relative sense, even when compared

to small junctions so that their signal is small compared to rest and is barely detectable at
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most nodes. Another insight is the re-discovery of a version of Murray's law that can be

used to predict a sharp blow up of dissipation on networks with more �ows above a very

small threshold, and this helps to prove the removal of loops, as they have more edges than

a path network on the same number of nodes.

We also prove two theorems about the structure �ow networks optimizing the NME. On

the path to the proof of the above collection of theorems, we show that the �ow optimizing

NME on a set of n of points is in fact the path visiting all n points. This is the reason

that for small c, we obtain the tour as the result for our numerical examples (see Figure

4.2.4.) Finally, returning, in a sense, to the example of a path with a loop attached at the

source, we prove that, if a network consists of two path parts, and one loopy subnetwork

such that one path connects the source to the loopy sub-network, and one path connects the

loopy sub-network to the sink, then the optimal path lengths with the same total amount

of nodes are for all the nodes in paths to be placed from the loopy subnetwork to the

sink. In this proof we construct a new probability distribution on the network and use tools

from information theory to understand exactly how nodes gain or lose information based on

shifting the network. For an example of such networks are the numerical results for γ = .8

on either the square or triangular grid (Figures 4.3.3 and 4.3.3).

5.2 Example Computations for NME

In this section we carry out two computations of the negative mixing entropy for the �rst

for a path with unit total �ow and �ow network with a loop at the source representing a

bifurcation that splits the �ow into two symmetric parts, with one node on each side of the

loop, and that then combines into a path that leads to the sink.
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5.2.1 The NME and the minimal dissipation for a path �ow of strength 1

through 9 points.

1

2

3 4

5

6 7

8

9

Q1 = +1

Q9 = −1

q12 = 1

q23 = 1

q34 = 1

q45 = 1

q56 = 1

q67 = 1

q78 = 1

q89 = 1

Figure 5.2.1: The path �ow �ow of strength 1. The bar charts are the strengths of the signals
from each node represented by their corresponding colors.

We start our exposition by computing the NME and the minimal possible dissipation for the

tour on the 3 × 3 grid with a single source at the bottom left corner, and a single sink at

the top right corner, both of strength 1 given the material cost constraint
∑

(i,j) κ
γ
ij = C for

some C > 0. This is illustrated in �gure 5.2.1.

For each node i ∈ 1, 2, . . . , 8 there is only one non-zero out �ow, qi,i+1 = 1. Therefore,

the probability that a random walker transitions to i+ 1 given that it is on som 1 ≤ i ≤ 8 is

1. Recall the de�nition of q̃mn (see Chapter 2. Section 2.1) as being the strength of node m,

fm multiplied by the probability of eventually visiting node n. That is, q̃mn = fmPmn. Then
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for any two nodes 1 ≤ m < n ≤ 9, since the total out-�ow of m is fm =
∑

v:qmv>0 qmv =

qm,m+1 = 1 and Pmn = 1, q̃mn = 1. Therefore, we calculate the probability distribution of

signals arriving at node 1 ≤ n ≤ 9 to be

Pn(i) =
q̃in∑
j≤n q̃jn

=


1
n

i ≤ n

0 i > n

.

This is the uniform distribution on n signals. The local negative mixing entropy at node n

is

NMEn =
∑
i≤n

1

n
log

(
1

n

)
= − log(n).

The NME of the �ow is the sum of the NMEn weighted by the fn,

9∑
n=1

fnNMEn =
∑
n

− log(n) = − log(9!).
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5.2.2 Example 2: Computing the NME of a path with a loop at the source

q1,2 =
1

2

q1,2′ =
1

2

1 2
′

2 3 4 5

6

7 8

q2′,3 =
1

2

q2,3 =
1

2
q3,4 = 1 q4,5 = 1

q5,6 = 1

q6,7 = 1

q7,8 = 1

Figure 5.2.2: Diagram of the �ows and bar graphs representing the un-normalized
distributions of q̃ij at each node. The bars are ordered in order of their magnitude to be the
clearest visual expression of how close to uniform signal distributions are at each node.

We now repeat the last exercise on a modi�ed version of a path �ow of strength 1. The �ow

network we consider is depicted in 5.2.2. For 3 ≤ i ≤ 7 the �ows qi,i+1 form a path �owing

from 3 to the sink at 8. At the source node 1 there is a bifurcation of the �ow into two �ows

both of strength 1
2
. The separate 1

2
�ows pass through one node after the source until they

meet at 3 closing a loop. That is, at the source, we have two outgoing �ows q1,2 = 1
2
and

q1,2′ = 1
2
that gather at 3 via the �ows q2,3 = 1

2
and q2′,3 = 1

2
.

We �rst compute the distributions of signals arriving at each node. Node 1, the source,

receives only the signal it generates, q̃11 = 1. Recall the convenient fact, in general networks

for which 1 is assumed to be the only source, at node i q̃1i = q̃ii = fi. Applying this on nodes
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2 we have q̃22 = q̃2′2′ = q̃12 = q̃12′ = f2′ = q12′ = 1
2
.

Therefore P2(1) = 1
2
, P2(2) = 1

2
, P2′(1) = 1

2
and P2′(2

′) = 1
2
. We represent the

distribution of strengths of signals up to re-ordering arriving at either 2 or 2′ as the sequence

ordered by decreasing strength:
(
1
2
, 1
2

)
. The negative entropies of these distributions is the

then equal to − log(2).

Now, at the meet of the �ows from the bifurcation, node 3 we have nodes 2 and 2′ feed

into 3 equally q̃23 = q̃2′3 = 1
2
while q̃13 = q̃33 = f3 = 1. The sequence of q̃i3 > 0 ordered

by decreasing strength is
(
1, 1, 1

2
, 1
2

)
. Normalizing this to a probability distribution gives us

the probabilties of choosing signals at node 3 P3 ordered in decreasing strength
(
1
3
, 1
3
, 1
6
, 1
6

)
.

Note that this is equal to
(
1
3
, 1
3
, 1
2
· 1
3
, 1
2
· 1
3

)
, and so the negative local mixing entropy at 3 is

NME3 = −
(

2 · 1

3
log(3) + 2 · 1

2
· 1

3
log(2 · 3)

)
= − log(3)− 1

3
log(2)

For 4, q̃14 = q̃34 = q̃44 = 1 while q̃24 = q̃2′4 = 1
2
. Then q̃i4 > 0 up to re-ordered is

represented by the decreasing sequence:
(
1, 1, 1, 1

2
, 1
2

)
. Then the distribution P4 up to re-

ordering can be represented by
(
1
4
, 1
4
, 1
4
, 1
8
, 1
8

)
. Computing NME4 we get NME4 = − log(4)−

1
4

log(2). We can repeat this calculation to get the negative local mixing entropies at nodes

nodes 5, 6, . . . 8.

Alternatively we generalize the collection of signals for this sequence. Since 3, 4, . . . , 8

form a path �ow with Ti,i+1 = 1 for all 3 ≤ i ≤ 7, if 4 ≤ n ≤ 8 then q̃mn = fmPmn =

fmPm,n−1Tn−1,n = fmPm,n−1 = q̃m,n−1. Therefore, to compute the strengths of signals

arriving at n ≥ 4 we take a copy of the sequence of q̃m,n−1 > 0 and append 1 = q̃nn.

Starting with the sequence represent signal strengths q̃i3
(
2 copies of 1, 1

2
, 1
2

)
if 3 ≤ n ≤ 8

then by repeating the last step n− 3 times we have that the strengths of signals arriving at
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n q̃inare (up to re-ordering) (
n− 1 copies of 1,

1

2
,
1

2

)
.

The probability distribution obtained from normalizing this sequence is then

(
n− 1 copies of

1

n
,
1

2
· 1

n
,
1

2
· 1

n

)
.

Computing the negative local mixing entropy at node n by taking the negative entropy of

these probabilities we get

NMEn = −H
((

n− 1 copies of
1

n
,
1

2
· 1

n
,
1

2
· 1

n

))
= −

(
(n− 1)

1

n
log(n) + 2 · 1

2
· 1

n
log(2 · n)

)
= −

(
log(n) +

1

n
log(2)

)
.

We summarize these results in the following table:

q̃ji at i in decreasing order by strength Pi(j) NMEi

i = 1 (1) (1) − log(1) = 0

2
(
1
2 ,

1
2

) (
1
2 ,

1
2

)
1
2 log

(
1
2

)
+ 1

2 log
(
1
2

)
= − log(2)

2′
(
1
2 ,

1
2

) (
1
2 ,

1
2

)
− log(2)

3
(
1, 1, 12 ,

1
2

) (
1
3 ,

1
3 ,

1
3 ·

1
2 ,

1
3 ·

1
2

)
− log (3) +−1

3 log(2)

4
(
1, 1, 1, 12 ,

1
2

) (
1
4 ,

1
4 ,

1
4 ,

1
4 ·

1
2 ,

1
4 ·

1
2

)
− log (4) +−1

4 log(2)

5
(
1, 1, 1, 1, 12 ,

1
2

) (
4 copies of 1

5 ,
1
5 ·

1
2 ,

1
5 ·

1
2

)
− log (5) +−1

5 log(2)

6
(
5 copies of 1, 12 ,

1
2

) (
5 copies of 1

6 ,
1
6 ·

1
2 ,

1
6 ·

1
2

)
− log (6) +−1

6 log(2)

7
(
6 copies of 1, 12 ,

1
2

) (
6 copies of 1

7 ,
1
7 ·

1
2 ,

1
7 ·

1
2

)
− log (7) +−1

7 log(2)

8
(
5 copies of 1, 12 ,

1
2

) (
7 copies of 1

8 ,
1
8 ·

1
2 ,

1
8 ·

1
2

)
− log (8) +−1

8 log(2)

Table 5.2.1: Distributions of signals arriving at nodes in the path with a loop at the source,
normalized probability distributions and the local negative mixing entropies computed at
each node i.
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The NME of the path with a loop at the source then comes out to be

NME = NME1 +
1

2
NME2 +

1

2
NME2′ +

8∑
n=3

NMEn

= 0− log(2) +
8∑

n=3

(
− log(n)− 1

n
log(2)

)

= − log(8!)− log(2)

(
8∑

n=3

1

n

)
.

From this computation we see that the path of length 8 with a loop at the source has lower

NME than a path network of length 8, which, if we compute the NME via the method in

Example 5.2.1, we get − log(8!).

5.3 Overview of section

5.3.1 Introduction and reason for one source one sink

In this part of the article we develop a mathematically rigorous story about the structure

of networks with optimal NME, optimal combined mixing-dissipation cost, and the trends

in optimal mixing-dissipation costs and optimal networks as γ → 0+. We do all of this

for networks on ambient networks fed by exactly one source and feeding exactly one sink.

The theorems we formulate and objects we choose to study are mostly inspired by the

numerical results. This is a restricted case, but it provides us with a many di�erent avenues

for mathematical investigation. The results in chapter four inspire many questions that

we will try to answer now: Why are minimal mixing dissipation costs piecewise linear on

5 × 5 ambient grids with γ = .5? Why are the optimal networks mostly paths of lengths

changing by the minimal possible increments? What is the e�ect of increasing or decreasing

the material cost exponent? What is being gained by having the most reticulated regions of

the network located near the source?
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5.3.2 Description of parts

5.3.2.1 Structure of the �rst order approximation to the minimal mixing-dissipation

cost curve (Section 5.5):

In Section 5.5 we investigate a �rst order approximation to the minimal mixing-dissipation

cost curve by minimizing over the set of paths connecting source and sink. We prove, with

two steps, that when consideration is restricted to this set, the path length decreases at

sharp non-di�erentiable transitions between paths with consecutive lengths. By consecutive

lengths we mean for the square grid, since all paths connecting the same source and sink

must have the same parity, the lengths decrease by two at the sharp transitions. On the

triangular grid, which includes paths of lengths di�ering by 1 the sharp transitions switch

between path lengths di�ering by 1.

5.3.2.2 Connection between dissipation and �ow (Section 5.7)

In Section 5.7 we state and prove a lower bound on the dissipation given knowledge of the

physical �ows of a conductance network and that the conductances obey
∑

(i,j) κ
γ
ij = C.

We do not assume knowledge of the exact conductances that give rise to the physical �ows.

Roughly we show that the dissipation is >
(
# non-zero �ows

C

)1+ 1
γ as γ → 0+. This will be used

to compare the preference of �ows of loopy networks with number of edges lying between the

number of edges of two optimally mixing networks and show that loopy networks become

in�nitely more dissipative for low γ.

5.3.2.3 Total negative mixing entropy can be reduced to the subnetwork of the

strongest nodes (Section 5.9.2)

Inspired by the structure of the NME function itself, we de�ne a set of nodes in the �ow

network the e�ect of whose removal would be miniscule on the NME. These can be thought

of as the weakest signals in the network. If we turn them o� there is a very small change
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to the entropy. Since NME =
∑

i fiNMEi and NMEi are bounded on �nite networks, one

might think to eliminate all networks with small fi. This would be the same as drawing an

absolute cut-o� for total �ow and everything above the absolute cut-o� stays (strong nodes)

and every node below the cuto� is removed with their �ows (weak nodes). But then if a

node barely makes the cut-o�, it is possible that for the weak node that was retained, most

of the �ow into that node was supplied by a weak node that was eliminated, preventing us

from accurately computing the local negative mixing entropy of that node. Therefore more

than the absolute contribution needs to be taken into consideration, but the proportion of

contribution as well. Therefore, the cut-o� has a multiplicative gap. That is for a small

mutliplicative constant δ we say for all i below the cut-o� and j above the cut-o� fi
fj
< δ

. This guarentees that weak-nodes not only contribute small summands fiNMEi but their

e�ect on the local negative mixing entropies of the strong nodes is very small. So they can

be removed leaving the total negative mixing entropy unchanged. This is the content of

de�nition 5.6 and theorem 5.8.

5.3.2.4 Removal of loops from optimal networks as γ → 0+

We investigate the shape of the cost curve and the structure of the exact nature as we vary

γ, speci�cally for γ small. This gives us insight into why loops are penalized more heavily as

γ is lowered. As we see from our second order approximations, larger loops being preferred

might lead us to conjecture that more loops are preferred for high γ as well as large ambient

networks.

In section 5.9 we prove a theorem (theorem 5.6) giving the description of the networks

that are removed as γ → 0+. Note, this theorem applies to ambient networks where every

path between the minimum and maximum are accessible. This means that consecutive path

lengths di�er by 1. This theorem applies to the triangular grid. It does not apply to the

square grid.

We show that for all m between the minimal path and maximal path, networks with
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NME outside of small neighborhoods outside of the best NME on m and m+ 1 nodes for all

m are not optimal for any weight on dissipation. In mathematical terms −log((m+1)!)+ε <

NME < − log(m!)− εThat is, transitional networks with loops (at the source node) between

the best networks on m and m+ 1 nodes are removed from consideration as γ → 0+. In this

way, the transitions along the cost curves are sharpened, becoming closer to sharp jumps

between optima from path networks.

5.3.2.5 Choosing building cost C so that the constraint satis�es
∑

(i,j) κ
γ
ij = C

In the next section we will describe in general terms how we prove the theorem about

removing loopy networks between two consecutive paths. Before that we discuss the signi�cance

of the building constant C. In section 5.6 we show that if every other parameter is unchanged,

then changing the building constant acts on the set of optimal costs by re-scaling the weight

of dissipation c by (C ′/C)
1
γ . That means, minimal mixing dissipation cost curves with

di�erent building materials carry the same information about the types of transitions and

the speci�c networks from which optima arise. This invariance does not render C useless.

Instead we use it as a way to focus on networks with between m and m+1 points as γ → 0+.

As we have mentioned, the lower bound on dissipation yields >
(
# non-zero �ows

C

)1+ 1
γ . To focus

on networks with m �ows, such as the path on m + 1points we take C = m . Then, from

computations in the next section, the dissipation for the path with m nodes goes to 0, the

path with m + 1 nodes goes to m + 1 and a network with m + 1 �ows may be somewhere

between. Networks with more �ows have dissipation of ∞.

Therefore, the graphs of lines from τm, a network with m �ows and τm+1 is a �at line, a

line with slope ∈ (0,m+1) and a line with slope m+1 . Now we are freed from the di�culty

of computing ratios between slopes at every γ and we can instead look at the limiting value

and the behavior as γ → 0+ can be derived from the intersections of several lines with known

values at c = 0 and slopes.
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5.3.2.6 Idea for proof of removal of loops from optimal networks as γ → 0+.

A combination of mathematical connection of NME to the �ows and

dissipations to �ows.

The idea for the proof of theorem 5.6 is to combine the connections we discovered between

the optimal mixing networks and the �ow network and the dissipation and the �ow network.

We use the fact that optimal NMEnetworks onm nodes are paths with NME = − log(m!)

as a sca�old to attach the loopy networks. The �rst thread connecting networks with

−log((m + 1)!) + ε < NME < − log(m!) − ε to the sca�old is theorem 5.8. We can

take the dominance factor in de�nition 5.6 to partially transform the assumption of being

transitioning between m+ 1 node and m node paths and the distance ε to be bounded away

from the consecutive optimal situations into a statement about �ows. We use this idea to

discard the weak nodes while not changing the NME of the loopy network by more than

(for example) ε/2. Now the network has less nodes and none of the nodes are much less

in�uential than the other nodes. That is, fi > δfj for all i and j.

We know that to beat the entropy of − log(m!) the remaining strong nodes must have

size n at least m+ 1. Otherwise it would be sub-optimal to the path on m nodes. Ordering

the remaining nodes in order of fi we see that f1 = 1 because it is the source, f2 > δf1 and

in general, fi > δfi+1. Then we can bound the decreasingly ordered total �ows f1, f2, . . . , fn

by a geometric sequence similar to 1, δ, . . . , δn−1. Since the network is connected and we

assume a maximal degree of k we can �nd a sub-tree with at least n−1 �ows bounded below

by dividing the total �ows into k equivalents: ql ≥ δl−1

k
. In the cases where n > m + 1 or

n = m + 1 and there is a loop in the network of these �ows, there are at least m + 1 �ows

bounded below by the geometric sequence δl−1

k
l = 1, 2, . . . ,m+ 1.

Now we bring in the connection to dissipation to show how the network becomes progressively

more unfavorable as γ → 0+.The network is such that NME > − log((m+ 1)!). We use the

skill of taking C = m to pin the dissipation of the path of m+ 1 nodes at m. By assumption
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the lower bound theorem 5.7, the dissipation of our loopy network can be thought of as being

>
(
# non-zero �ows

m

)1+ 1
γ =

(
m+1
m

)1+ 1
γ →∞. This divergence is uniform because δ was speci�ed

by m and ε. Therefore the cost of the loopy network eventually exceeds that of the path on

m+ 1 nodes so it is removed from our consideration on its transitional domain of c.

The one last case is if there are m + 1 nodes left after eliminating the weak nodes, and

there are at most m �ows in the set bounded. This case is patched up by bringing in the

assumption that NME > − log((m + 1)!) + ε to show that cannot only have m �ows, but

there must be some strong enough �ows diverting enough �ow away from the path. And

these strong �ows again feed into our lower bound on dissipation to eliminate this loopy

network.

5.3.2.7 Loopy sub-networks occur at the source

In the last section of this chapter, we prove that for a single source and single sink network,

that the observation we made in Chapter 4 about the placement of loops within the network

has a rigorous proof. To do this we appeal to the NSE instead of the NME because recall in

Chapter 2 we showed that NSE is equal to the NME with the signs on the boundary �ows

reversed. We need the concept of conditional entropy to describe how nodes lose and gain

entropy depending on their position in the network and their distributions of down-stream

nodes. This theorem is proven by �rst proving that if it is possible to move any node from

the path that links the loopy subnetwork to the sink to the path that links it with the source,

then we will obtain a lower NME. This step is shifting the loopy subnetwork towards the

sink. Repeating this until the loopy subnetwork is at the sink then proves the theorem.

5.4 De�nitions and Basic Facts

We introduce some helpful facts and de�nitions for thinking about optimally mixing, dissipative

and combined mixing-dissipation networks which we will use through out the paper. We �nd
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Figure 5.3.1: Figure 5.3.1a. is an example of P1 = {1, 2} L the networks with loops and
P2 = {7, 8}. Figure 5.3.1b. is an example of a network with same number of nodes as
that depicted in �gure 5.3.1a except with the loopy network at the source P1 = ∅ and
P2 = {5, 6, 7, 8}.

it simplifying to consider for every �ow, the set of conductances which would result in that

physical �ow that have the lowest dissipation. We �rst explicitly note the simple fact, which

is necessary to allow thinking of minimal mixing-dissipation networks in terms of the directed

�ow network qij.

This is true because NME is a function on the �ows and does not need the conductances

besides to �nd the physical �ows.As an abuse of this notation, we also refer to a network of

�ows qij which are physical �ows of some conductances and compatible with the boundary

�ows. Since we are concerned about minimizing our cost function, we also abuse the notation

of D, in Chapter 2 was previously argued to be a function of κij to write D (recall D(κij) =∑
(i,j)

q2
ij

κij
), as a function of qij to mean the minimal possible dissipation of a network of

103



conductances obeying the building cost conrtraint with its physical �ows being qij. Therefore

we introduce the de�nition:

De�nition 5.1. For a �xed building cost
∑

(i,j) κ
γ
ij = C , we de�ne the dissipation of a �ow

D(qij) to be minimum of the dissipation over the conductances obeying the building cost

and giving qij as a physical �ow. That is

D(qij) = min∑
(i,j) κ

γ
ij=C:qij physical �ows of κij

D(κij).

Then we de�ne the mixing-dissipation cost on �ow networks using this de�nition to be

NME(qij) + cD(qij).

Written mathematically, the dissipation of a network of �ows is

D(qij) = min

∑
(i,j)

q2ij
κij

: κij s.t.
∑
(i,j)

κγij = C and qij are physical �ows of κij

 .

This allows us to use speci�c �ow-networks to build approximations for the minimal

mixing-dissipation cost curves without going through the trouble of repeatedly choosing the

best conductances. As we have observed, the curve θ(c) in many cases with one source and

one sink appears to be approximated well by minimizing over a smaller set of networks, just

trees connecting sources and sinks. In the single source and sink case these are path graphs.

We have the following de�nition.

De�nition 5.2. The path of length m is any �ow network and its minimally dissipative

conductance network onm nodes which is isomorphic to labeling the nodes 1, 2, . . . ,m setting

1 to be the source, m to be the sink and taking the edge set to be the directed edges

(1, 2), (2, 3), . . . , (i, i+ 1), . . . , (m− 1,m). We denote this τm.

In the next fact we deduce that for minimal dissipation the conductances must be uniform.
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We also note that if a network has a path sub-network, that is a sub-graph including all edges

connecting it to ambient graph isomorphic to τm for some m, then it must also have uniform

conductances.

Theorem 5.1. Let τm be a path �ow that is the physical �ow of conductances with total

material cost
∑

(i,j) κ
γ
ij = C. The dissipation of the path graph is

D(τm) =
∑

(i,j)∈τm

q2ij
κij

=
(m− 1)1+

1
γ

C
1
γ

and the total negative mixing entropy is

NME(τm) = − log(m!).

Proof. Since the �ow along each edge has magnitude 1 the dissipation is

∑
(i,j)

q2ij
κij

=
m∑
i=1

q2i,i+1

κi,i+1

=
8∑
i=1

1

κi,i+1

We use now use Lagrange multipliers to solve for the minimizing κij on the constraint

maniforld. We do this by adding the dissipation to a real number λ times the material cost

and �nd the critical points. For 1 ≤ n < m we get

∂

∂κn,n+1

m−1∑
i=1

1

κi,i+1

+ λ

m−1∑
i=1

κγi,i+1 = − 1

κ2n,n+1

+ γλκγ−1n,n+1.

Thus 1
γλ

= κγ+1
n,n+1 for all 1 ≤ n < m. This implies that the conductances along the edges are

all equal. Therefore κi,i+1 = κ > 0 for all 1 ≤ i < m. And we get
∑m−1

i=1 κγi,i+1 = (m−1)κγ =

C. Therefore κi,i+1 ≡
(

C
m−1

) 1
γ and the dissipation is equal to (m−1)1+ 1

γ

C
1
γ

.

We now compute the NME of the path graph. Let i ∈ τm be a node. Then for every

up-stream node of i, that is all j such that q̃ji > 0 , q̃ji = 1. Note, this includes q̃ii which we
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de�ne to be fi. Therefore, if the nodes are named 1, 2 . . .m as they are in the last argument

then if 1 ≤ l ≤ m, the distribution of signals at node l is q̃jl = 1 for l distinct nodes.

Therefore, the normalized distribution of the species is q̃jl∑
j:q̃jl>0 q̃jl

= 1
l
for l di�erent nodes.

Thus the local negative mixing entropy at i is

NMEl =
∑
j:q̃jl>0

1

l
log

(
1

l

)
= − log(l).

Repeating this for every node 1, 2, . . . ,m and summing the NMEl we get

NME(τm) =
m∑
l=1

− log(l) = − log(m!).

To discuss the graph of θ in detail, for a network of conductances κij or of �ows qij we

introduce the concept of the line from the network. That is, the line of mixing dissipation cost

applied to the network for all c. This is important for discussing the graph of the minimal

mixing-dissipation cost and the optimal networks because the order of the intersection,

whether one line is �rst below another and then above another (and visa versa) fully describe

the relative preferences for di�erent networks. We have the de�nition:

De�nition 5.3. De�ne the line from conductance network κij as the map c 7→ NME(κij) +

cD(κij) and de�ne the line from the network of �ows qij as the map c 7→ NME(qij)+cD(qij).

Because θ(c) be written as the image of c on the line from the network κijwhich is the

minimum out of all possible conductances networks obeying
∑

(i,j) κ
γ
ij = C this de�nition

comes in handy. Especially when we are studying the results of our simulations. We take the

envelope of our results. This is de�ned as computing the line from each sampled optimum

and minimizing over all of them. It gives the tightest upperbound on the graph of θ(c) due

to the concavity of θ.

In [Dur07] the minimal dissipation network on an ambient network with �xed boundary

106



�ows with a �xed material cost was proven to always be a tree.

Theorem 5.2. The conductance network κij
∑

(i,j) κ
γ
ij = C 0 < γ < 1 connecting the sources

and sinks which sum to 0 which minimizes D(κij) is a tree.

This theorem states that minimally dissipative networks which obey the building cost

constraint are trees. Therefore it allows us to frame optimally mixing networks that contain

loops as departing in character from minimally dissipative networks obeying Murray's law.

This has been a starting point for many studies of biological networks (such as leaf venation)

because organisms improve their survival through being as conservative with energy as

possible while real networks have loops. Our networks also have loops, so we are interested

in characterizing them.

We have next a corollary of this describes why the networks minimizing the mixing-

dissipation cost with high weights c are all geodesics.

Theorem 5.3. On an ambient network with boundary �ows being a single source u and

single sink v of magnitude 1 (i.e. Qu = 1, Qv = −1) the minimally dissipative network

compatible with the �ows is the path with the least amount of vertices connecting u to v.

Now that we have layed down many facts which we repeatedly make use of, we start with

new mathematical results about minimal mixing-dissipation cost networks. The �rst object

we look at is what we reference as a back-bone to the curve of mixing-dissipation optima.

5.5 Structure of mixing-dissipation cost minima over set of paths

5.5.1 De�nitions needed for studying minimization over tree networks

De�nition 5.4. Recall that the minimal dissipation cost is de�ned

θ(c) = min∑
(i,j) κ

γ
ij=C

NME(κij) + cD(κij)
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As a �rst order approximation, we restict the set of all possible conductance networks to

trees:

θtree(c) = min
κij path :

∑
(i,j) κ

γ
ij=C

NME(τm) + cD(τm).

In the case of one source and one sink, the set of trees is reduced to the set of paths connecting

the source to the sink:

θpath(c) = min
all possible τm:

∑
(i,j) κ

γ
ij=C

NME(τm) + cD(τm).

• Borrowing common graph theoretic terms for the important networks in the paper,

we refer to the shortest path connecting the source to the sink for the single-source,

single-sink boundary �ow assumption as the geodesic or the minimal path.

• If N side length of a square gird is odd or the grid is triangular, then there is a path

connecting the source to the sink that contains each of the N2 nodes. We call this

path, if it exists, the tour.

• If N is even on square grids, there is no such tour, but there is a path connecting the

source to the sink containing N2 − 1 nodes (i.e., all but 1 node). To capture both

settings, we call the path with the most nodes connecting the source to the sink the

maximal path.

De�nition 5.5. Let 0 < m < n odd integers such that 2N − 1 ≤ m < n ≤ N2. Then the

c where the lines from τm and τn intersect is denoted by cnm or, equivalently, cmn. That is

cmn is the positive real such that

NME(τm) + cmnD(τm) = NME(τn) + cmnD(τn).
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Fact 5.1. The intersection point cmn = NME(τm)−NME(τn)
D(τn)−D(τm)

= C
1
γ

(
− log(m!)+log(n!)

(n−1)1+ 1
γ −(m−1)1+ 1

γ

)
. The

simplest form of this expression is if we take C = 1 to obtain − log(m!)+log(n!)

(n−1)1+ 1
γ −(m−1)1+ 1

γ
.

The preliminary numerical result leads us to formulate the �rst mathematically rigorous

claim of this chapterthat the graph of the minimal mixing-dissipation costs at weights c

where the networks being minimized over are path graphs is piece-wise a�ne, and that as

c is increased, from one interval in the domain where the graph is a�ne to the subsequent

interval, the graph switches from the a line segment corresponding to line from a path graph

with a �xed number of nodes, to a line with a path graph with fewer nodes. In fact, the

minimizer changes from a path graph to the next smallest path graph. The consecutive sizes

of path graphs between the same two points on a triangular grid di�er by 1. The consecutive

sizes of path graphs between the same two points on a square grid di�er by 2 nodes because

path graphs connecting the same two nodes all have the same parity of number of nodes

(and edges).

Fact 5.2. If c = 0 then the mixing-dissipation minimizer over paths is the longest possible

path connecting source and sink. At the other extreme, the graph of of minimizers over paths

is the line from the geodesic connecting source and sink as c→∞.

Let M be the maximum number of nodes in a path connecting the source to sink (N2

if N is odd and N2 − 1 if N is even) and µ = 2N − 1 be the minimal number of nodes in a

path connected the source to the sink. Since changing C has the same e�ect as uniformly

scaling the weight for the mixing-dissipation cost, c and the next lemma and proposition

only depend on the order of the intersection points cmn, we can simplify the proofs of the

following statements taking e�ect for all C by taking the building cost to be C = 1 (discussed

in the immediately following section). Then we have the proposition describing the graph of

θtree :

Theorem 5.4. Consider networks of conductances on an ambient network G on N nodes

and boundary �ows of one source Q1 = 1 and one sink QN = −1. Suppose that the maximal

109



path length between source and sink is M . Then the minimizer of the mixing-dissipation

cost over paths is the maximal path τM for c ≤ cM,M−ι, the path of length m for all odd

m > 2N − 1 on cm+ι,m ≤ c ≤ cm,m−ι and the path of shortest length µ ≥ 2 on cµ+2,µ ≤ c <

∞. Correspondingly, the graph of minima for the mixing-dissipation costs varying c can be

written

θpath(c) =


NME(τM) + cD(τM) 0 ≤ c ≤ cM,M−ι

NME(τm) + cD(τm) cm+ι,m ≤ c ≤ cm,m−ι for all µ+ ι ≤ m ≤M − ι

NME(τµ) + cD(τµ) cµ+ι,µ ≤ c

.

Proof. Let m ∈ N such that µ+ ι ≤ m ≤M − ι. Let us restrict the cases to when M 6= µ+ ι

because in that case there are only two lines, NME(τM) + cD(τM) and NME(τµ) + cD(τµ)

and since µ < M , NME(τM) < NME(τµ) while D(τM) > D(τµ). Thus the line from τM

starts below the line from τµ and is the mixing-dissipation cost minimizer from c = 0 up to

c = cµM , intersects τµat a positive cµM > 0 and for c > cµM , τµ is the minimizer.

By lemma 5.1 cm+ι,m < cm,m−ι. Assume there exists l ∈ N such that µ ≤ l < m −

ι < m. Then showing the inequality NME(τm) + cD(τm) < NME(τl) + cD(τl) for all c ∈

[cm+ι,m, cm,m−ι] is equivalent to showing that c < NME(τl)−NME(τm)
D(τm)−D(τl)

= clm because D(τm) −

D(τl) > 0. This is the same as cm,m−ι < clm = cml. On the other hand, assume that there

exists k ∈ Nsuch that m < m+ ι < k ≤M . Then proving NME(τm)+ cD(τm) < NME(τk)+

cD(τk) for all c ∈ [cm+ι,m, cm,m−ι] is equivalent to showing c >
NME(τm)−NME(τk)

D(τk)−D(τm)
= ckm, which

is the same as showing cm,m+ι > cmk. Therefore it su�ces to show that the following two

statements hold: if there exists l ∈ N such that µ ≤ l < m− ι < m then cm,m−ι < cml, and

if there exists k ∈ Nsuch that m < m+ ι < k ≤M then cm+ι,m > ckm.

This is equivalent to showing for all m > 2 + ι and 2 ≤ λ ≤ m−2
ι

that cm,m−ι < cm,m−λι <

cm−(λ−1)ι,m−λι. To see why this is true, let 2 < l < m and λ = m−l
ι

then by the left inequality

cm,m−ι < cm,m−λι = cml. On the other hand we can re-assign k = m and λ = k−m
ι

and
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the right inequality will imply ckm = ck,k− k−m
ι
ι < cm+ι,m. We pick the upper bound on

λ m−2
ι

because this is the value where cm−(λ−1)ι,m−λι = c2+ι,2 and we utilize that lemma

5.1cm−ι,m > cm+ι,m for all m ≥ 2 + ι.

We will now prove this. For all i let ai = NME(τi−ι)−NME(τi) when i is a possible path

length and 0 otherwise. Similarly, let bi = D(τi)−D(τi−ι) when i is a possible path-length

and 0 otherwise. Then cm,m−ι = ai
bi
. We also have NME(τm−λ) − NME(τm) =

∑λ−1
i=0 am−tι,

D(τm)−D(τl) =
∑λ−1

i=0 bm−tι and cm,m−λι =
∑λ−1
i=0 am−tι∑λ−1
i=0 bm−tι

.

Let m > 2 + ι. We prove that cm,m−ι < cm,m−λι < cm−(λ−1)ι,m−λι on the di�erences

λ = 2, 3, . . . , m−2
ι

by induction. For base case let λ = 2. Then

cm,m−2ι =
am + am−ι
bm + bm−ι

.

We know that am
bm

= cm,m−ι < cm−ι,m−2ι = am−ι
bm−ι

. Thus, by ambm−ι < am−ιbm and so

am(bm + bm−ι) = ambm +ambm−ι < ambm +am−ιbm = bm(am +am−ι), and bm−ι(am +am−ι) <

am−ι(bm + bm−ι). Therefore cm,m−ι < cm,m−2ι < cm−ι,m−2ι. Therefore we have the base case.

For the inductive step assume that for some λ 2 ≤ λ ≤ m−2
ι
− 1, we have cm,m−ι <

cm,m−λι < cm−(λ−1)ι,m−λι. We wish to show that cm,m−ι < cm,m−(λ+1)ι < cm−λι,m−(λ+1)ι. By

the �rst inequality

am
bm

<

∑λ−1
t=0 am−tι∑λ−1
t=0 bm−tι

and by lemma 5.1, since m − (λ + 1)ι ≥ 2 and m − λι ≥ 2 + ι, cm,m−ι < cm−λι,m−(λ+1)ι.

Therefore

am

(
λ−1∑
t=0

bm−tι

)
= am

(
λ−1∑
t=0

bm−tι

)
+ am(bm−λι) < bm

(
λ−1∑
t=0

am−tι

)
+ bm(am−λι) = bm

(
λ∑
t=0

am−tι

)

and so cm,m−ι = am
bm

<
∑λ
t=0 am−tι∑λ
t=0 bm−tι

= cm,m−(λ+1)ι.
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On the other hand since, cm−λι,m−(λ+1)ι > cm−(λ−1)ι,m−λιthe second inequality, cm,m−λι <

cm−(λ−1)ι,m−λι < cm−λt,m−(λ+1)t

(
λ∑
t=0

am−tι

)
bm−λι =

(
λ−1∑
t=0

am−tι

)
bm−λι + am−λιbm−λι

<

(
λ−1∑
t=0

bm−tι

)
am−λi + bm−λιam−λι = a,m−λ

(
λ∑
t=0

bm−tι

)
.

Which imples that cm,m−(λ+1)ι < cm−λι,m−(λ+1)ι. This completes the proof.

Lemma 5.1. Let ι = 1 or 2. For all 2 + ι ≤ m cm,m+ι < cm,m−ι.

Proof. We �rst prove the lemma for ι = 1 and then we use the solution to prove the theorem

for ι = 2.

We show that cm+1,m < cm,m−1. We have that cm+1,n = log(m+1)

m
1+ 1

γ −(m−1)1+ 1
γ
and cm,m−1 =

log(m)

(m−1)1+ 1
γ −(m−2)1+ 1

γ
. To show that

cm,m−1 =
log(m)

(m− 1)1+
1
γ − (m− 2)1+

1
γ

> cm+1,m =
log(m+ 1)

m1+ 1
γ − (m− 1)1+

1
γ

= cm+1,m.

We introduce some new functions to simplify the argument. Since γ ≤ 1 we de�ne t =

1 + 1
γ
≥ 2. Now we de�ne the function

At(m) = (m− 1)t − (m− 2)t.

We now aim to show that log(m)
At(m)

> log(m+1)
At(m+1)

for all m ≥ 3 and all t ≥ 2. First we show this to

be true for all m ≥ 3 for t = 2. This is equivalent to showing

A2(m+ 1) log(m)− A2(m) log(m+ 1) > 0
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for all m ≥ 3. It su�ces to show that this inequality holds at m = 3 and that

d

dm
A2(m+ 1) log(m)− A2(m) log(m+ 1) > 0

for all m ≥ 3. At t = 2, A2(m) = 2m− 3, and so

A2(m+ 1) log(m)− A2(m) log(m+ 1) = (2m− 1) log(m)− (2m− 3) log(m+ 1).

At m = 3this expression is equal to 5 log(3)− 3 log(4) = log
(
243
64

)
> 0.

The derivative of this expression is then

d

dm
A2(m+ 1) log(m)− A2(m) log(m+ 1) =

2m− 1

m
− 2m− 3

m+ 1
+ 2 log

(
m

m+ 1

)

and this has as a horizontal asymptote 2m−1
m
− 2m−3

m+1
+ 2 log

(
m
m+1

)
→ 0 as m → ∞.

To show that this quantity is positive for m ≥ 3 it su�ces to show that it is positive at

m = 3 and that it only has one critical point on the positive real line (i.e. where the second

derivative of A2(m+ 1) log(m)−A2(m) log(m+ 1) is 0) and that it less than 3. This would

forbid it from dipping below the x axis after 3 because then it would need to have a critical

point to achieve the horizontal asymptote. Evaluating the �rst derivative at m = 3 gives us

2 log(m) +
2m− 1

m
− 2 log(m+ 1)− 2m− 3

m+ 1
= 2 (log (3)− log(4)) +

5

3
− 3

4
= 0.3413 > 0.

Taking the second derivative

d2

dm2
A2(m+ 1) log(m)− A2(m) log(m+ 1) =

−2m2 + 4m+ 1

m2(m+ 1)2
.

The zeros of the numerator are then 1±
√

3
2
. The positive root is 1+

√
3
2
< 3.This shows
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that d
dm
A2(m+ 1) log(m)− A2(m) log(m+ 1) > 0 for all m ≥ 3. Therefore

cn,n−1 − cn+1,n = A2(m+ 1) log(m)− A2(m) log(m+ 1) > 0

for all m ≥ 3 when t = 2.

It is now left to show that this is true for t > 2. We �rst show that for all n ≥ 3

At(m+ 1)

At(m)
=

mt − (m− 1)t

(m− 1)t − (m− 2)t
>

m2 − (m− 1)2

(m− 1)2 − (m− 2)2
=
A2(m+ 1)

A2(m)
.

This is equivalent to showing

mt − (m− 1)t

m2 − (m− 1)2
>

(m− 1)t − (m− 2)t

(m− 1)2 − (m− 2)2
.

Note that mt − (m − 1)t =
∫ m
m−1 tx

t−1dx and m2 − (m − 1)2 =
∫ m+1

m
2xdx. We have

that minm−1≤x≤m
txt−1

2x
= t

2
(m− 1)t−2 and txt−1 > 2x · t

2
(m− 1)t−2 for every x ∈ [m− 1,m]

except for at the left end-point x = m − 1. Therefore mt − (m − 1)t =
∫ m
m−1 tx

t−1dx >

t
2
(m− 1)t−2

∫ m
m−1 2xdx = t

2
(m− 1)t−2 (m2 − (m− 1)2). On the interval m− 2 ≤ x ≤ m− 1,

maxn−1≤x≤n
txt−1

2x
= t

2
(m− 1)t−2 and txt−1 < 2x · t

2
(m− 1)t−2 on for ever x in [m− 2,m− 1]

except for the right end-point. We then have (m− 1)t − (m− 2)t =
∫ m−1
m−2 tx

t−1dx < t
2
(m−

1)t−2
∫ m−1
m−2 2xdx = t

2
(m−1)t−2 ((m− 1)2 − (m− 2)2) . These two strict inequalities combine

to give us

mt − (m− 1)t

m2 − (m− 1)2
> t

2
(m− 1)t−2 >

(m− 1)t − (m− 2)t

(m− 1)2 − (m− 2)2
.
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Now we can �nish the proof of the theorem. We have for all m ≥ 3 and t > 2,

At(m) log(m+ 1) =
At(m)

A2(m)
A2(m) log(m+ 1)

<
At(m)

A2(m)
A2(m+ 1) log(m)

= At(m)
A2(m+ 1)

A2(m)
log(m)

< At(m)
At(m+ 1)

At(m)
log(m) = At(m+ 1) log(m).

This proves the case when ι = 1. This completes the proof for when path lengths are allowed

to di�er by 1 as in the triangular grid. We now address cases where path lengths are only

allowed to di�er by 2 as in the square grid. That is, assume ι = 2 and m ≥ 2 + ι. First

we prove a rudimentary statement about fractions. Assume that a, b, c, d are positive real

numbers such that a
b
< c

d
. Then since ad > bc, d(a + c) = da + dc < dc + bc = c(b + d).

Likewise a(b+ d) = ab+ ad < ab+ bc = b(a+ c). Therefore a
b
< a+c

b+d
< c

d
.

Now we apply this to prove the bounds cm−1,m−2 < cm−2,m < cm,m−1. For the intersection

of lines from paths with lengths di�ering by 2 we have

cm−2,m =
log(m) + log(m− 1)

(m− 1)1+
1
γ − (m− 3)1+

1
γ

=
NME(τm−2)− NME(τm−1) + NME(τm−1)− NME(τm)

D(τm−1)−D(τm−2) +D(τm)−D(τm−1)
.

By de�nition cm−2,m−1 = NME(τm−2)−NME(τm−1)
D(τm−1)−D(τm−2)

and cm−1,m = NME(τm−1)−NME(τm)
D(τm)−D(τm−1)

and the claim

follows from the cm−1,m < cm−2,m−1. Now using this ordering twice, we �nd

cm+2,m+1 < cm,m+2 = cm,m+ι < cm+1,m < cm,m−1 < cm−2,m = cm−ι,m < cm−2,m−1,

so cm,m+2 = cm,m+ι < cm−2,m = cm−ι,m for all m > 2 + ι = 4. We have shown that

cm,m+ι < cm−ι,m for all m > 2 + ι and ι ∈ {1, 2}.
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We make use of the following property in the next few theorems. We have found it useful

especially when studying networks as the exponent goes to 0. It also shows that changing

the amount of material will not change our results in a fundamental way.

5.6 Invariance mixing-dissipation cost curves on choice of C for∑
(i,j) κ

γ
ij = C

Let C,C ′ > 0. Suppose κijobeys the building cost with exponent γ with total material

C,
∑

(i,j) κ
γ
ij = C. Then a new network of conductances can be obtained by scaling every

conductance by the same constant across the whole network so that it obeys the building

cost constraint with the same exponent γ but with a new total material C ′. We have the

following fact.

Fact 5.3. Altering the building cost amount of a network is equivalent to rescaling the

argument by the ratio of the building costs raised to the 1
γ
power.

θ(c)with total materialC ′ = min
κij
∑

(i,j) κ
γ
ij=C

′
NME(κij) + cD(κij)

is the same as

θ

((
C

C ′

) 1
γ

c

)
with total materialC = min

κij
∑

(i,j) κ
γ
ij=C

NME(κij) +

(
C

C ′

) 1
γ

cD(κij).

Essentially, the weight c is multiplied by the ratio of the second building cost to the �rst

building cost.

We get this via κ̃ij =
(
C′

C

) 1
γ κij for all edges (i, j). Then

∑
(i,j) κ̃

γ
ij =

∑
(i,j)

C′

C
κ̃γij = C ′.

Now we turn to study the e�ect this has on the dissipation of κij and κ̃ij . Note that κij

and κ̃ij have the same physical �ows since by Thomson's principle if qij is the physical �ow

of κij then it is compatible with the boundary �ows and it minimizes
∑

(i,j)

q2
ij

κij
. Considering

q̂ij a set of �ows compatible with the boundary �ows, the dissipation by the network of

conductances κij is
∑

(i,j)

q̂2
ij

κij
and the dissipation on the network of conductances κ̃ij is
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∑
(i,j)

q̂2
ij

κ̃ij
=
(
C
C′

) 1
γ
∑

(i,j)

q̂2
ij

κij
. That is the dissipation by κ̃ij as a function on the set of

compatible �ows is a positive scalar multiple of the dissipation by κij as a function on

the set of compatible �ows. Therefore, the network of compatible �ows minimizing both

functions is the same� i.e., the physical �ows over both networks is the same. Further more

D(κ̃ij) =
(
C
C′

) 1
γ D(κij).

We now understand the e�ect this has on the mixing-dissipation cost. We have that the

mixing-dissipation cost for weight c at κij is NME(κij) + cD(κij) and for the same c at κ̃ij

we have that

NME(κ̃ij) + cD(κ̃ij) = NME(κ̃ij) + c

(
C

C ′

) 1
γ

D(κij)

= NME(κij) + c

(
C

C ′

) 1
γ

D(κij).

The second equality is due to the fact that NME is a function on the physical �ows for the

network of conductances in the argument. This shows us that the mapping c 7→ NME(κ̃ij)+

cD(κ̃ij) is the same as the mapping c 7→ NME(κij) + cD(κij) except the argument is scaled

by a constant factor
(
C
C′

) 1
γ .

Fact 5.4. A simple important consequence is that that for an increasing sequence real

numbers a0 = 0 < a1 < a2 < · · · < an if there is any mathematical characterization of

the minimizers or statements about the continuity, the monotonicity, the existence or sign of

the derivative of θ at aior on each interval endpoints ai, ai+1 (closed, left/right half-closed or

open interval included) then the same statements hold for
(
C
C′

)
a0 = 0 <

(
C
C′

)
a1 <

(
C
C′

)
a2 <

· · · <
(
C
C′

)
anand the intervals with endpoints of the same indices in this sequence.

The work in this paper is about qualities of the mixing-dissipation cost at di�erent

building cost exponents γ which are unchanged by altering the building cost. The set

minimizers of the mixing-dissipation cost depending on the relative magnitudes of c, and

the shape of the curve in terms of whether it is piece-wise linear/ whether there are corners/
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or rounded corners are all unchanged with switching the building cost. A speci�c example

interection c of lines from τm and τn cmn 5.5, are also scaled by
(
C′

C

) 1
γwhen changing building

cost from C to C ′. Therefore the study of the mixing-dissipation cost and optimal networks

at di�erent building cost exponents γ can be carried out by �rst choosing a �xed material

cost. The advantage is that the material cost can be chosen to be the one which facilitates

logic, computation and intuition. Perhaps the most important way we use it is studying the

dissipations of networks in which the number of positive �ows di�ers by at most 1.

This is important in proving that networks with loops are removed as γ → 0+. To

understand why consider three �ow networks G1, G2, G3 with NME(G1) < NME(G2) <

NME(G3) and the number of edges of G1, G2 and G3 are 10, 12, 11 respectively with G1 = τ11

and G3 = τ12. That is, we are studying an intermediate loopy network between two path

networks di�ering by one node. We need to pick the same C for each network. Picking

an arbitrary C, say 1 gives us that D(G1) = (10)1+
1
γ ,D(G2) ≥

(∑
(i,j)

(
q2ij
) γ
γ+1

)1+ 1
γ
and

D(G3) = (11)1+
1
γ each of these approaches ∞ as γ → 0, so we cannot draw any conclusions.

If we set C = 11 , the number of edges in the larger of the paths, then we �nd D(G1) =

10(10
11

)
1
γ ,D(G2) ≥

(∑
(i,j)

(
q2ij
) γ
γ+1

)(∑
(i,j)(q2

ij)
γ
γ+1

11

) 1
γ

and D(G3) = (11)1 using the lower

bound we are about to prove in theorem 5.5. It is not di�cult to see that D(G1)→ 0, a �at

line, D(G2) → ∞ and D(G3) = 11 . Therefore we expect the line from G2 to intersect the

line from G1 before that of G3 does for all γ small enough. We repeatedly use this idea in

analyzing the behavior of optimal networks as γ → 0+.

5.7 Lower bound on dissipation D in terms of �ows qij

Theorem 5.5. Let qijbe a network of �ows compatible with the the boundary �ows Qi then

we have the following lower bound on the dissipation for conductances κij with qij for physical

118



�ows that obey the building cost constraint
∑

ij κ
γ
ij = C

min

∑
(i,j)

q2ij
κij

: κij ≥ 0 with physical �ow qij with
∑
(i,j)

κγij = C

 ≥

(∑
(i,j)

(
q2ij
) γ
γ+1

)1+ 1
γ

C
1
γ

.

NB: This is a di�erent way of writing Murray's law.

Proof. Fixing the �ows qij we minimize the dissipation
∑

(i,j)

q2
ij

κij
over conductances κij which

obey the building constraint
∑

(i,j) κ
γ
ij = C. Note: we are not assuming that qij is the physical

�ow associated to κij. For a set of conductances κ̃ij to minimize the dissipation while holding

the building constraint constant, it must be a critical point of the function over the level

surface given by the building constraint. This is due to two facts. The �rst is at the boundary

of the constraint manifold at least one of the conductances is 0, so the dissipation → ∞ as

the conductances approach a point in the boundary of the region of non-negativity, and the

approach is uniform in the sense that , we can �nd a distance such that points within that

distance of the boundary are at least as large as a given large number. The second follows

from this in that there is a compact neighborhood in the feasible region for which outside

of which (and on the boundary), the dissipation is much larger than some chosen attainable

dissipation, which is greater than or equal to the minimal dissipation. And on the interior

of this compact region, the function attains a minimum. We use the method of Lagrange

multipliers to �nd a critical point via �nding κ̃ij such that for some Lagrange multiplier

λ 6= 0

∂

∂κab

∑
(i,j)

q2ij
κij

+ λ
∑
(i,j)

κγij

 = 0

for all edges (a, b). From this we get that
q2
ij

κ̃2
ij

= λ(γ−1)κ̃γ−1ij .This implies the equations q2ij =

T κ̃γ+1
ij and

q2
ij

κ̃ij
= T κ̃γij where we take T = λ(γ−1). We get that

∑
(i,j)

q2
ij

κ̃ij
= T

∑
ij κ̃

γ
ij = TC so

T =

∑
(i,j)

q2ij
κ̃ij

C
, the ratio of the minimal dissipation and the building cost. From q2ij = T κ̃γ+1

ij we
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get κ̃ij =
(
q2
ij

T

) 1
γ+1

. Thus
∑

(i,j)

q2
ij

κ̃ij
=
∑

(i,j)

q2
ij(

q2
ij
T

) 1
γ+1

=

(∑
(i,j)

q2ij
κ̃ij

) 1
γ+1

C
1

γ+1

∑
(i,j)

(
q2ij
) γ
γ+1and so

(∑
(i,j)

q2
ij

κ̃ij

) γ
γ+1

=
∑

(i,j)(q2
ij)

γ
γ+1

C
1

γ+1
. From this we get the only possible critical value

∑
(i,j)

q2
ij

κ̃ij
=(∑

(i,j)(q2
ij)

γ
γ+1

)1+ 1
γ

C
1
γ

.

Since

(∑
(i,j)(q2

ij)
γ
γ+1

)1+ 1
γ

C
1
γ

is the minimum of the dissipation for a given set of �ows over

all positive κij obeying the building cost constraint it must hold that

(∑
(i,j)(q2

ij)
γ
γ+1

)1+ 1
γ

C
1
γ

≤∑
(i,j)

q2
ij

κij
for κijobeying the building cost constraint with qij as its physical �ows.

5.8 Networks with optimal NME are paths

Proposition 5.1. Consider networks of �ows which are physical �ows corresponding to a

network of conductances and compatible with boundary �ows Qi such that Q1 = +1 and

QN2 = −1 and all other boundary �ows are zero. Suppose that there are m nodes in a

network. Then the lowest possible attainable total negative mixing entropy is − log(m!). And

the unique network on m nodes that attains this minimum is the path through the n nodes

starting at the source and ending at the sink

Proof. Consider a network of �ows compatible with the boundary conditions qij. For a node

i we say that j is upstream from i if q̃ji > 0 . Consider Vk ⊂ N a subset of nodes

in the network such that there are k upstream nodes in N of i for all i ∈ Vk. That is

Vk = {i ∈ N : |{j ∈ N : q̃ji > 0}| = k}. Let u 6∈ Vk v ∈ N . Assume that P̃uv > 0. Then

P̃vu = 0 because there are no loops in a �ow physical �ow. Therefore {w ∈ N : q̃wu > 0} (

{w ∈ N : q̃wv > 0} because v ∈ {w ∈ N : q̃wv > 0} while v 6∈ {w ∈ N : q̃wu > 0} contradicting

the assumption that {w ∈ N : q̃wu > 0} and {w ∈ N : q̃wv > 0} contain the same number of
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elements. Consider the �ow through Vk de�ned as

P (hit Vk|start at node 1) = P

(∨
i∈Vk

hit i|start at node 1

)

which by principle of inclusion and exclusion is equal to

P (hit Vk|start at node 1) =
∑
i∈Vk

P (hit i|start at node 1)

+ (−1)2
∑

i1i2∈Vk

P (hit i1, i2|start at node 1) + · · ·

+ (−1)|Vk|P (hit i∀i ∈ Vk|start at node 1).

Note thatP (hit i1, i2, . . . , in|start at node 1) <
∑

s

∑
t6=s P (hit it after hitting is|start at node 1) =∑n

s=1 P (hit is|start at node 1)
∑

1≤t≤n,t 6=s Pisit = 0 since we have shown that no node in Vk

is an up-stream node of another node in Vk. Thus

P (hit Vk|start at node 1) =
∑
i∈Vk

P (hit i|start at node 1) =
∑
i∈Vk

fi < 1.

This fact can be understood as saying the �ow through Vk is partitioned over the nodes in

Vk. Let i ∈ Vk. Then the largest negative value that the local NME at i can take on is at

the distribution of up-stream nodes contributing to node i is uniform. That is

NMEi =
∑
j,q̃ji>0

fjqji∑
l,q̃li > 0 flqli

log

(
fjqji∑

l,q̃li > 0 flqli

)
>
∑
j,q̃ji>0

1

k
log

(
1

k

)
= − log(k).

Also, since the nodes in Vk are such that
∑

i∈Vk fi < 1, we can bound the NME below by the

case that a �ow of 1 passes through each non-emptyVk and the maximum number of k with

|Vk| > 0 which is m. Precisely, combining the lower bound on NMEi for each i and picking

the arrangement of up-stream nodes for each node to give the best possible mixing entropy
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we have

NME =
∑
i

fiNMEi =
∑
k,Vk 6=∅

∑
i∈Vk

fiNMEi

≥
∑
k,Vk 6=∅

− log(k)

≥
m∑
k=1

− log(k) = − log(m!).

Having proven Theorem 5.1 we know that the path onm nodes attains this value of NME.

We now prove uniqueness of the solution. Suppose that qij is a network which minimizes the

NME as a single source and sink both of magnitude 1.

We �rst show that containing a path of length m is equivalent to every predecessor set

being non-empy. Suppose that for qij and some 1 ≤ k ≤ m, Vk = ∅ and qij contains a path

of length m . Let xk be the k-th node in the path. Then it has at least k predecessors.

The other m− k vertices have yet to be visited along the path of length m so none of them

are predecessors to xk. Therefore, xk has precisely k predecessors. This proves one half

of the claim. Now suppose that each Vk has at least one element. Let x1, x2, . . . , xn be a

selection of nodes such that xi ∈ Vi for each 1 ≤ i ≤ n. Suppose there is a Vk such that

there exists y ∈ Vk y 6= xk. Then we know that neither elements in Vkare predecessors of

each other and this contradicts that there are only n nodes in the network. Let j be the

smallest j ∈ 1, 2, . . . , n − 1 such that there is no edge �owing from xj to xj+1. In order of

xj+1to have j predecessors, not including itself, it must have one of xk for k > j + 1 as a

predecessor because there only j− 1 xi i < j. But then xj+1 would have at least as many as

k + 1 predecessors.

If some predecessor set Vk in qij is empty then the NME is bounded below − log(m!) +

log(k) by the above equation and is therefore not a minimizer. Therefore we conclude that

qijis a path and each Vk contains a single node xk. Since we know that the unique minimum

of the negative entropy on probability spaces with k atoms is − log(k!), and 0 ≤ fxk ≤ 1 we
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know that fxkNMExk ≥ NMEx−k ≥ − log(k) for all 1 ≤ k ≤ n. For the the �rst non-strict

inequality to be an equality, it is necessary that fi = 1 for all k. That implies that there are

no �ow bifurcations, and so qij is necessarily a path.

5.9 Optimal mixing-dissipation cost and networks as γ → 0+

We aim to describe the set of �ow topologies that will be minimizers of the mixing-dissipation

cost at various weights c as γ decreases to 0. It is important to note that we prove

this speci�cally for ambient networks where every length of path between source and sink

between the minimum and maximum lengths are possible. The example that we study in

our experiments for which this is true is the triangular grid. An example where this is not

the case, as we know, is the square grid. All paths between two points must have lengths of

the same parity for the square grid. In the last section we partially address this case, but

cannot conclude that we have the same theorem for square grids.

The �rst theorem we prove, theorem 5.6 shows that networks which di�er by more

than pre-determined amount from an optimal level of mixing are uniformly removed from

consideration of being optimal as γ → 0+ . If we study path lengths m − 1, m and m + 1

then the optimal NME of the networks are − log((m − 1)!),− log(m!) and − log((m + 1)!)

respectively. We show that for every positive �error� ε there exists a γε such that the following

is true. If the �ow network qij is such that NME(qij) is bounded ε away from these three

optimal values, then that network is suboptimal on the interval (cm+1,m, cm,m−1) for all

γ < γε.

By Proposition 5.5. For a �ow network qij we can bound the dissipation below by

D(qij) >

(∑
(i,j)(q2

ij)
γ
γ+1

)1+ 1
γ

C
1
γ

. The sum converges to the number of non-zero �ows on the

network. Therefore we know that if the network has more non-zero �ows than the optimally

mixing network on m + 1 nodes, which we know to be the path with m �ows then its

dissipation and therefore cost grows to be in�nitely larger than the network on m+ 1 �ows.
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We use this to show networks with a lower magnitude of NME and more edges are eliminated.

Along with proving that, for γ small, networks with NME bounded away from optimal

NME on a given number of nodes are eliminated, we show that the remaining networks are

very close to path networks. By this we mean, since we do not show that on the interval

[cm+1,m, cm,m−1] that networks with NME(qij) ∈ [− log(m!)− ε,− log(m!)+ ε] are eliminated,

we cannot precisely conclude that we what are left with are paths, but if ε is very small then

the remaining �ow networks di�er from path networks by a very small amount. When we say

a path network is preferred at a c in the interior of [cm+1,m, cm,m−1], we are actually referring

to the preference to an approximate path, as we cannot know for sure if it is preferred.

Theorem 5.6. Let G be an ambient network with N nodes, which we refer to as 1, 2, . . . , N .

Let Qi be boundary �ows with Q1 = 1 and QN = −1 and Qi = 0 for all i 6= 1, N . Let

1 < m < N be such that there exists undirected paths of lengths m, m− 1 and m + 1 using

distinct nodes and edges in G. Let log(m)
2

> ε > 0. Let C > 0. Consider conductance

networks on G κij such that
∑

(i,j) κ
γ
ij = C. Then there exists γε such that if γ < γε then if

qij is a �ow network on G such that NME(qij) 6∈

(− log((m+1)!)−ε,− log((m+1)!)+ε)∪(− log(m!)−ε,− log(m!)+ε)∪(− log((m+1)!)−ε,− log((m+1)!)+ε)

then

NME(qij) + cD(qij) > NME(τm) + cD(τm)

for all c > cm+1,m (in particular cm+1,m < c < cm,m−1).

Proof. We split the proof into 4 cases in Section 5.9.1 after which the rest of this section is

dedicated to describing concepts needed for this proof until �nally, in Section 5.9.6 we �nish

o� the proof for all 4 cases.

This last theorem does not dictate whether networks with NME ∈ (− log(m!)−ε,− log(m!)+
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ε) remain or are removed. We do not prove a theorem about which networks in this range

become sub-optimal, with the exception of applying theorem 5.6 to ε
2
(or any positive number

smaller than ε) as the new distance from the path optima. These networks can potentially

persist through out the interval [cm+1,m, cm,m−1]. We can state rigorously that �ow networks

which di�er very little from the paths remain. This is the content of theorem 5.7.

Theorem 5.7. Let G be an ambient network with N nodes and assume that the boundary

�ows Qi are such that Q1 = 1 and QN = −1 and Qi = 0 for all i 6= 1, N . Let 1 ≤ m ≤ N

be such that there exists an undirected path of length m in G . Let ε1 > 0. Then there exists

ε > 0 such that if qij is a �ow on G with − log(m!) − ε < NME(qij) < − log(m!) + ε then

there exists a path of length m with �ows 1 such, τm = σij such that min(i,j)∈G |qij − σij| < ε1

where the minimum is over all of the edges in the ambient network G.

Proof. We prove this in Section 5.9.3.

5.9.1 Proof of the removal of paths bounded away from NME optima on m− 1,

m and m+ 1 nodes. (Theorem 5.6)

5.9.1.1 Cases and proof strategy

We break this theorem into four parts corresponding to the four connected components in

the complement of (− log((m + 1)!) − ε,− log((m + 1)!) + ε) ∪ (− log(m!) − ε,− log(m!) +

ε) ∪ (− log((m+ 1)!)− ε,− log((m+ 1)!) + ε). Speci�cally these are:

Case Connected interval

A (− log(m!) + ε,− log((m− 1)!)− ε)

B (− log((m+ 1)!) + ε,− log(m!)− ε)

C (−∞,− log((m+ 1)!)− ε)

D (− log((m− 1)!) + ε,+∞)

Case A:
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Assume − log(m!) + ε < NME(qij) < − log((m − 1)!) − ε. The proofs for cases A and

B are similar. We will use the fact that the optimal NMEon m nodes is − log(m!). Since

we are exceeding that by an amount atleas as large as ε, we can conclude that there are at

least m+ 1 nodes with �ows above a level that guarentees leaving the remaining nodes out

of the calculation of the NME will barely a�ect it. If there are more than m+ 1 nodes with

large enough fi, then there must be at least m+ 1 edges with large �ows. We can show that

for having larger magnitude NME than the path τm while being sub-optimal to τm+1 that if

there are m+ 1 nodes with large enough fi then there must be a cycle.

Case B:

Assume − log((m + 1)!) + ε < NME(qij) < − log(m!) − ε we use the same argument as

for case A except we shift by adding one extra node to the paths on the boundary.

We prove both cases A and B by proving B �rst in Section

Case C:

Assume that NME(qij) < − log((m + 1)!) − ε. We use a similar technique to A and B

to show that since the NME is a larger negative number than NME(τm+1) by ε then there

must be at least m+ 1 �ows, which causes the dissipation to grow at a rate in�nitely faster

than networks which are optimal on [cm+1,m, cm,m−1].

Case D:

Assume that NME(qij) > − log((m− 1)!) + ε. For this case we recognize that the mixing

dissipation cost of cm,m−1 on lines from τm and τm−1 drops below any number with �xed

negative value above − log((m− 1)!).
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− log((m+ 1)!)

− log(m!)

− log((m− 1)!)

cD(τm−1)

m+1) + ( m+1)

(a)

− log((m+ 1)!)

− log(m!)

− log((m− 1)!)

L

NME(τm−1) + cD(τm−1)

) + cD(τm+1)

(b)

Figure 5.9.1: Figure 5.9.1a is a diagram illustrating cases A and B of our proof. The black
lines are lines from path networks with m− 1, m and m+ 1 nodes. Finding �ows uniformly
bounded below allows us to apply the lower bound on the dissipation. The lower bound on
the dissipation geometrically transforms the plot of θ as γ → 0+ by magnifying the relative
magnitude of slopes in the regions labeled A (resp. B) to the slope of the line from τm
(resp. τm+1). This is represented by the arsc with arrows showing a steepening of these
regions. Also labeled are points illustrating the concept of cL and cR the left and right
transition points. They appear as the supremum of the triangular region representing B
and its intersection with the line from τm and in�mum of the triangular region representing
case A and its intersection with τm. There are still cases C and D, so these are not exact
representations of the transition points. In �gure 5.9.1b we have a similar legend. Now the
boundary cases C and D are labeled. Case D is proven by showing that as γ → 0+ the
mixing dissipation costs on τm and τm−1 shift so that cm,m−1 falls below NME(τm−1) for all
small γ. Region C follows a similar proof as the removal of networks in cases B and D by
showing that the dissipation grows in�nitely faster than that of paths.

Before we dig into the proof of this theorem we discuss the fall back of the triangular

regions B and D past cm+1,m to the left and the removal of the regions A and C upwards

past cm,m−1 in �gure 5.9.1. Visual inspection can be helpful to understand when each case

A, B, C or D are eliminated from the set of optimal networks. Their shrinking overlap

with the frontier of minima shows how cut corners are gradually made to sharp transitions.

Note how the intersections of the right sides of the regions B and D with the line from τm
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indicate whether the networks in those components are optimal. The graphic indicates that

the intersections of B and D with τm recede to the left, and once they fall behind cm+1,m

networks from B and D are no longer optimal. On the other hand, note that the intersections

of the bottom and right sides of A and C with the line from τmindicate their optimality. As

γ → 0 the intersections move upwards and to the right until they are tucked behind cm,m−1.

We prove the following lemma that we invoke in section 5.9.6 to show that the cut corners

are removed at a rate uniform over all networks dependent only on the values m and ε.

Lemma 5.2. Let qij and νij be �ow networks on the ambient network G such that NME(qij) <

NME(τm) and NME(νij) > NME(τm). Let cL be the intersection of the lines from qij and

τm and assume cL > 0. Let cR be the intersection of the lines from νij and τm and assume

cR > 0. If cL < cm+1,m then qij is not a mixing-dissipation cost minimizer in [cm+1,m, cm,m−1]

and if cR > cm,m−1then νij is not an mixing-dissipation cost minimizer on [cm+1,m, cm,m−1].

Proof. Note that the assumption cL > 0 is equivalent to D(qij) > D(τm). This, we will see in

our applications is satis�ed for small γ. For νij we do not have to worry aboutD(νij) ≥ D(τm)

because then the line from νij will always lie above the line from τm therefore we assume

D(νij) < D(τm). Since the line from qij starts below the line from τm and has a steeper slope,

for all c > cL , NME(qij) + cD(qij) > NME(τm) + cD(τm). In particular if cL < cm+1,m then

this inequality holds on all of c > cm+1,m . On the other hand, since NME(νij) > NME(τm)

we know that the line from νij lies above the line from τmup until they intersect. Therefore,

if their intersection is greater than cm,m−1, the line from νij will be above the line from τm

on the interval [cm+1,m, cm,m−1].

5.9.2 The main in�uences on NME: Strong Nodes

As we have stated in the synopsis of this section, a core ingredient in this proof is to �nd

more �ows which are uniformly bounded below than the number of �ows in the next largest

path. The summands contributing to the NME, the local negative mixing entropies, are
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dependent on the relative contributions of �ows from up-stream nodes. There is less emphasis

on the absolute size of the total �ows because the entropy of the distribution of �ows after

normalized to sum to one are computed. Therefore, instead of bounding absolute size, we

bound the maximum e�ect that a set of nodes can have on a summand fiNMEi. Therefore

we de�ne the concept of a dominance factor, a multiplicative constant for which a set of

nodes with low �ow fall below the set of nodes with greater �ow.

De�nition 5.6. Let qij be a network of �ows with with N nodes. Order the nodes non-zero

fi in decreasing order of of total �ow. That is nodes 1, 2, . . . , n such f1 ≥ f2 ≥ · · · ≥ fn. Let

0 ≤ δ ≤ 1. For our de�nition we call this number the dominance factor. Then the set of

strong nodes above the dominance factor δ is the set of nodes 1, 2, . . . , i where i is the

�rst index such that fi+1

fi
< δ. When the choice of δ is clear of context we simply refer to Fδ

as the set of strong nodes.

Fact 5.5. Alternatively, the set of strong nodes above dominance factor δ can be taken to be

the intersection of all sets of nodes F such that for all i ∈ Fand j 6∈ F , fi > δfj.

Fact 5.6. The set of strong nodes is not barred from being every node i with non-zero fi.

On the other hand the set of strong nodes always contains the nodes with the largest total

�ow. Therefore it is never empty.
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q1,2 = .99 q2,3 = .98 q3,4 = .97 q4,5 = .99q = .01
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Figure 5.9.2: A �ow network on 10 nodes. Node 1 is the source and node 5 is the sink.
This is an illustration of the strong-node and dominance factor concept. The blue nodes
represent the strong nodes in the network. The grey nodes represent the weak nodes below
a dominance factor of .02. Their total �ows fi range from .003 to .01. The total �ows of the
strong nodes, numbered 1, 2, 3, 4, 5 are approximately 1. The grey bars in the histograms
represent the contribution of weak nodes to these distributions.

To make use of the notion of the set of strong nodes to form a lower bound on the

magnitudes of �ows, we introduce a generalizations of the total negative mixing entropy and

the local negative mixing entropy. We re-iterate that for a �ow network qijNMEi and NME

can be taken as functions of q̃ij for all i, j such that j ∈ n(i) and q̃ij > 0 as free variables

(where fi appearing in the sum NME =
∑

i fiNMEi is included as fi = q̃ii). We can do this

instead of as functions of qij, which would then put constraints on q̃ij.

De�nition 5.7. Consider a �ow network qij and a sub-set of the nodes F . Let q̃ij be the

�ows between nodes which are not necessarily adjacent computed from qij as have de�ned

previously in the paper. We de�ne the local negative mixing entropy restricted to F

at node i , denotedNMEFi, to be

NMEFi =
∑

j:q̃ji>0,j∈F

q̃ji∑
l:q̃li>0,l∈F q̃jl

log

(
q̃ji∑

l:q̃li>0,l∈F q̃jl

)
.
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Also de�ne the total negative mixing entropy restricted to F , denoted NMEF , to be

NMEF =
∑
i∈F

fiNMEFi.

This de�nition can be described as a total negative mixing entropy applied to the �ow

network qij while ignoring species coming from nodes i 6∈ F as well as the summands coming

from nodes not in F , fiNMEi. It is not the NME of the �ow obtained after equilibrium is

again reached after deleting nodes and their adjacent conductances. Still, it does have some

physical meaning in that if the nodes outside of Fwere rendered non-conducive or inoperable

at a point in time then the NME for an in�nitesimal division of time would be the NME

restricted to the remaining set.

In the next theorem, we show how a small enough dominance factor can be chosen so

that the resulting set of strong nodes has an NME that is close to the NME of the entire

network.

Theorem 5.8. Let G be an ambient network with N nodes and maximum total degree of a

node D. Let Qi be boundary �ows on G such that
∑

i∈GQi = 0 and
∑

i∈sourcesQi = 1 (the

total �ow is 1). Consider a �ow network qij on G compatible with Qi. Let ε > 0. Then there

exists 1 > δ > 0 such that if F = Fδ is the set of strong nodes above dominance factor δ

then |NMEFδ(qij)− NME(qij)| < ε.

Proof. We show this in three parts. First we show that there exists a a > 0 such that if

α ≤ a and F = Fα then for all i ∈ F , |fiNMEi − fiNMEFi| < ε
2N
. Since the total �ow of

the network is 1, fi ≤ 1 so it su�ces to show |NMEi − NMEFi| < ε
2N
.

To start this part of the proof, �rst take 1
e
> a > 0 to be arbitrary (e is Euler's constant),

Let α ≤ a and de�ne F = Fα. Then

NMEi =
∑
j∈F

q̃ji∑
l q̃li

log

(
q̃ji∑
l q̃li

)
+
∑
j 6∈F

q̃ji∑
l q̃li

log

(
q̃ji∑
l q̃li

)
.
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Let j 6∈ F such that q̃ji > 0. We have q̃ji∑
l q̃li

=
fjPji∑
l q̃li
≤ fjPji

q̃ii
=

fjPji
fi
≤ fj

fi
< α < a.

Because x log(x) is decreasing on [0, 1
e
], we know that

∣∣∣∣∣∑
j 6∈F

q̃ji∑
l q̃li

log

(
q̃ji∑
l q̃li

)∣∣∣∣∣ < |FC | |α log(α)| ≤ N |a log(a)|

Let j ∈ F . We write q̃ji∑
l q̃li

=
q̃ji∑

l∈F q̃li+
∑
l6∈F q̃li

. Then

q̃ji∑
l∈F q̃li

− q̃ji∑
l q̃li

=
q̃ji
∑

l∈F q̃li + q̃ji
∑

l 6∈F q̃li − q̃ji
∑

l∈F q̃li(∑
l∈F q̃li

)
(
∑

l q̃li)

=
q̃ji
∑

l 6∈F q̃li(∑
l∈F q̃li

)
(
∑

l q̃li)

≤
q̃ji
∑

l 6∈F q̃li

f 2
i

< α2|FC | ≤ a2N.

Since x log(x) is continuous on [0, 1], a compact set, it is uniformly continuous. Therefore we

can �nd a1 > 0 such that for all x, y ∈ [0, 1] if |x− y| < 2a1 then |x log(x)− y log(y)| < ε
4N2 .

As a speci�c case, taking y = 0 implies for all 0<x < 2a1 so x log x < ε
4N2 . Since a was

arbitrary, we may choose a = min
(
a1,
√

a1

N

)
and have the above inequalities hold. Then for

all i ∈ F and j 6∈ F such that q̃ji > 0, q̃ji∑
l∈F q̃li

− q̃ji∑
l q̃li

< a2N < a1 < 2a1. We have

|NMEFi − NMEi| =

∣∣∣∣∣∑
,j∈F

q̃ji∑
l∈F q̃li

log

(
q̃ji∑
l∈F q̃li

)
−
∑
j

q̃ji∑
l q̃li

log

(
q̃ji∑
l q̃li

)∣∣∣∣∣
≤

∣∣∣∣∣∑
,j∈F

q̃ji∑
l∈F q̃li

log

(
q̃ji∑
l∈F q̃li

)
−
∑
j∈F

q̃ji∑
l q̃li

log

(
q̃ji∑
l q̃li

)∣∣∣∣∣
+

∣∣∣∣∣∑
j∈F

q̃ji∑
l q̃li

log

(
q̃ji∑
l q̃li

)∣∣∣∣∣
<

∑
,j∈F

∣∣∣∣ q̃ji∑
l∈F q̃li

log

(
q̃ji∑
l∈F q̃li

)
− q̃ji∑

l q̃li
log

(
q̃ji∑
l q̃li

)∣∣∣∣+Na log a

< |F| ε

4N2
+N

ε

4N2
<

ε

2N
.
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for all 0 < α < a and F = Fα.

For the second part we show that there exists a 0 < b < 1 such that for all β ≤ b if we

take F = Fβ then

∣∣∣∣∣∑
i 6∈F

fiNMEi

∣∣∣∣∣ <
ε

2
.

Note that since there are N nodes in the network, for a node i, the absolute value |NMEi| =∣∣∣∑j
q̃ji∑
l q̃li

log
(

q̃ji∑
l q̃li

)∣∣∣ attains its maximum magnitude of log(N) when the �ow from all of the

nodes in the network to i are positive and have the same magnitude resulting in q̃ji∑
l q̃li
≡ 1

N
.

Therefore ∣∣∣∣∣∑
i 6∈F

fiNMEi

∣∣∣∣∣ <
∑
i 6∈F

|fiNMEi| <
∑
i 6∈F

fi logN < βN logN < bN logN.

The third inequality in the relationship above is due to fi < βfj for all i 6∈ F , j ∈ F and

that fj <
∑

i sourceQi = 1. Take b = ε
2N logN

.

Now de�ne δ = min(a, b). Then δ ≤ a and δ ≤ b. Therefore, the inequality from part a

and part b hold. Let F = Fδ. Then

|NME(qij)− NMEF(qij)| =

∣∣∣∣∣∑
i

fiNMEi −
∑
i∈F

fiNMEFi

∣∣∣∣∣
≤

∣∣∣∣∣∑
i∈F

fiNMEi −
∑
i∈F

fiNMEFi

∣∣∣∣∣+

∣∣∣∣∣∑
i 6∈F

fiNMEi

∣∣∣∣∣
<

∑
i∈F

∣∣∣∣∣fiNMEi −
∑
i∈F

fiNMEFi

∣∣∣∣∣+ bN logN

≤
∑
i∈F

|NMEi − NMEFi|+ bN logN

< |F| ε
2N

+
ε

2
≤ ε,

which is what we wanted.
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5.9.3 Counting the number of strong nodes and high magnitude �ows

Lemma 5.3. Let F = Fδ be a subset of nodes of a physical �ow network for some conductance

network (to be certain we can de�ne q̃ij). Suppose that F contains n nodes. Then the largest

possible value NME can take on is − log(n!).

Proof. Let n = |F|. Recall NMEF(qij) =
∑

i∈F fiNMEFi. We customize the de�nition of Vk

from the proof of theorem 5.1 to assist study the optimal values of NMEF(qij). Let 1 ≤ k ≤ n.

De�ne Vk to be the set of i ∈ F such that #{j ∈ F : q̃ji > 0} = k. Suppose there are u, v ∈ Vk

such that q̃uv > 0. Then Puv > 0. Let i ∈ F such that q̃iu > 0. Then Piv ≥ PiuPuv > 0.

Therefore q̃iv = fiPiv > 0 and so {j ∈ F : q̃ju > 0} ⊂ {j ∈ F : q̃jv > 0}. By de�nition

q̃uv > 0 ⇒ q̃vu = 0 v 6∈ {j ∈ F : q̃ju > 0}. at the same time v ∈ {j ∈ F : q̃jv > 0}, so this

containership is strict. Therefore |{j ∈ F : q̃jv > 0}| > |{j ∈ F : q̃ju > 0}|, which contadicts

the assumption that they both have equal number of elements k. Therefore q̃uv = 0 and

Puv = 0 for all u, v ∈ Vk. The event of a random walker starting at the source and passing

(taking on a value) in Vk before it reaches the sink is the union of the events that is passes

any u ∈ Vk. These are disjoint events because the probability of a walker reaching u ∈ Vk at

time t1 and then some v ∈ Vk at a later time t2 is zero because the conditional probability

the walker will arrive at v at some time s > t2 given that it was at u at time t1is 0.

Therefore the probability of a random walker starting at the source and passing through Vk

is
∑

i∈Vk P1i =
∑

i∈Vk fi. From this we get

NMEF(qij) =
n∑
k=1

∑
i∈Vk

fiNMEFi.

Since for i ∈ Vk, NMEFi is the negative entropy of a probability distribution on a set with
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k elements, its smallest possible value is − log(k). Since
∑

i∈Vk fk = 1 we have that

NMEF(qij) =
n∑
k=1

∑
i∈Vk

fiNMEFi

≥
n∑
k=1

∑
i∈Vk

−fi log(k)

≥
n∑
k=1

1Vk 6=∅ log(k) ≥ − log(n!).

Lemma 5.4. Let qij be a �ow network with the hypotheses of the theorem such that NME(qij) <

− log(m!)−ε. Let δ > 0 be a dominance factor such that for F = Fδ, |NMEF(qij)− NME(qij)| <
ε
2
. Then there are at least m+ 1 strong nodes. That is, |F| ≥ m+ 1.

Proof. The hypothesis|NMEF(qij)− NME(qij)| < ε
2
is equivalent to − ε

2
< NMEF(qij) −

NME(qij) <
ε
2
and NME(qij) < − log(m!)− ε is equivalent to ε < − log(m!)−NME(qij). We

therefore have the lower bound

− log(m!)− NMEF(qij) = − log(m!)− NME(qij)− (NMEF(qij)− NME(qij))

> ε− ε

2
=
ε

2
.

Thus NMEF(qij) < − log(m!)− ε
2
.

Then by using Lemma 5.3

− log(m!)− ε

2
> NMEF(qij) ≥ − log(n!).

Thus log(n!) > log(m!) + ε
2
and since log(n!) is strictly increasing in n for n ≥ 1 , n > m .

That is |Fδ| = |F| = n ≥ m+ 1, which is what we wanted.
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5.9.4 Proof that path networks persist as optimal for small material cost exponents

γ (Theorem 5.7)

Proof. Assume that that qij is such that − log(m!) − ε < NME(qij) < − log(m!) + ε. By

Theoem 5.8 there is a δ such that for F = Fδ, the strong nodes above the dominance factor

δ, |NMEF(qij)−NME(qij)| < ε . Then NMEF(qij) ∈ (− log(m!)− 2ε,− log(m!) + 2ε). From

this we know that |F| ≥ m. If it is greater than or equal to m+ 1 then we can �nd m �ows

uniformly bounded below depending only on m and ε and this will cause the dissiaption

of this network to grow in�nitely quickly comparted to D(τm) as γ → ∞. Therefore we

conclude that F has m nodes. Let Vk bet the set of nodes in Fwith k predecessors in F . As

in the proof of uniqueness of the NME minimizer over networks with n vertices, if there is a

Vk = ∅ then

NMEF(qij) =
∑
k

1Vk 6=∅
∑
i∈Vk

fiNMEFi ≥ − log(m!) + log(k) > − log(m!) + ε.

(See proof of 5.1 for properties of Vk). Therefore F contains a path of length m. A network

connecting source to sink on m nodes with a path of length m as a subnetwork has it so hat,

each Vkcontains only one node 5.1. For simplicity, denote by i be the single node in Vi for

each 1 ≤ i ≤ m. Then

NMEF(qij) =
m∑
i=1

f
i
NMEF i
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and

2ε > NMEF(qij)−

(
−

m∑
i=1

log(i)

)
=

m∑
i=1

(log(i)− fiNMEF i)

≥
m∑
i=1

(log(i)− filog(i))

=
m∑
i=1

(1− fi) log(i),

which implies, that 2ε
log(2)

> (1− fi) for each i. We can see by induction, that only at very

small portion of the �ow, 2ε
log(2)

can be diverted from an edge �ow along the longest path.

5.9.5 Lower Bound on Flows

In order to prove cases A and B, we develop a lower bound on the �ows, showing that for a

number of �ows larger than the number in the next smallest path, there is a lower boun.

We carry though the de�nition of δ and Fδ from the conclusion of lemma 5.4 with a small

adjustment. We also assume that δ < 1
D
by perhaps rede�ning δ := min(δ, 1

100D
). Indeed,

any number 0 < δ̂ < δ is also dominance factor such that

∣∣NMEFδ′ (qij)− NME(qij)
∣∣ ≤ |NMEFδ(qij)− NME(qij)| <

ε

2
.

Note that the de�nition of δ only depends on the ambient grid, m and ε (actually ε
2
). We

now demonstrate a uniform lower bound on at least m+ 1 �ows from qij dependent only on

m and ε. Let i be a numbering of the nodes of Fδ such that fi > fi+1for all 1 ≤ i < |Fδ|.

Since we are studying the 1 source 1 sink case with both having magnitude 1 the source node

has a total �ow of 1 . Therefore f1 = 1. By the de�nition of the set of strong nodes above

the dominance factor (see de�nition 5.6 in section 5.9.2), ordering the strong nodes in order

of decreasing total �ow it must be true that fi+1 ≥ δfi for all 1 ≤ i < |Fδ|. Since f1 = 1, an

application of induction implies fi ≥ δi−1 for all 1 ≤ i ≤ |Fδ|. In our proof of the theorem, it
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will be more wieldy to use the weaker lower bound of fi ≥ δ|Fδ|−1. We summarize the result

of the deduction in this paragraph in the following lemma.

Lemma 5.5. If i is numbering of the set of strong nodes above the dominance factor δ, Fδ,

in decreasing order of fi, and there is one source and one sink each with a �ow of 1 then

f1 = 1, f2 ≥ δ, . . . , fi ≥ δi−1, . . . , f|Fδ| ≥ δ|Fδ|−1. The weaker lower bound fi ≥ δ|Fδ|−1 is then

guarenteed

Since we are addressing case B of theorem 5.6 (see section 5.9.1), we have the assumption

on qij: − log((m+ 1)!) + ε < NME(qij) < − log(m!)− ε.

We now look at 3 cases to �nd a set of m+ 1 �ows bounded below.

Lemma 5.6. If |Fδ| > m+ 1 then there exists m+ 1 �ows in the �ow network qij such that

qij ≥ δm+1

D
where D is the max total degree of the undirected ambient network G.

Proof. First number the nodes in |Fδ| in decreasing order of fi. Then by lemma 5.5 fi ≥ δi−1.

Since |Fδ| > m + 1 there are at least m + 2 nodes. They obey the sequential lower bound

f1 ≥ 1, f2 ≥ δ, . . . , fi ≥ δi−1, . . . , fm+2 ≥ δm+1 and as in the proof for lemma 5.5, since

0 < δ < 1 we have that fi ≥ δm+1 for all 1 ≤ i ≤ m + 2. This puts a lower bound on

the total-�ows of m + 2 nodes. Now de�ne qi to be the largest outgoing �ow of node i for

1 ≤ i ≤ m+2 i not the sink. Then since the total out-degree is < D, an upper bound on the

total degree, and qi ≥ fi
out-degree of i

, being the largest outgoing �ow, we get qi ≥ fi
D
≥ δm+1

D
.

Since the sink has strength 1 it could very well be one of the �rst m + 2 nodes in this

sequence. But it is the only (strong node�for some weak nodes might have fi = 0) node

with no out-�owing edges in the one source one sink set up therefore there are at least m+ 1

�ows qi in the list of the �rst m+ 2 �ows bounded below by δm+1

D
.

Now that we have established the lower bound for m+2 strong nodes, the remaining case

is to show there is a uniform lower bound on m+ 1 �ows when there are m+ 1 strong �ows.

This case then can be divided into two other cases. First we use lemma 5.5 to obtain the
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lower bound fact that fi ≥ δm. For each of the nodes other than the sink, take the largest

out-going �ow and call this set S. We know if i is not the sink and i ∈ Fδ then, if qij is

the strongest out going �ow of i, qij ≥ fi
D
≥ δm

D
. By the way we chose δ we have δ < 1

D
.

Therefore, if qij is the strongest outgoing �ow of i then fj ≥ qij ≥ fi
D
> δfi, implying that j

is also a strong node. There are two possible scenarios. Either the destination nodes of all

of the m �ows in S are distinct, or equivalently, every node except for the source is pointed

to by an edge is S. In this case, since there are m + 1 nodes we can follow from each node

down its strongest �ow to the next node to get a path of length m + 1. The other case is

that the nodes together with the �ows in S do not form a path. Then there must be one

node which is the endpoint of two strong �ows and one node which is not being pointed to

by any �ows in S. We establish this second case in the next lemma. The �rst case, although

initially less complex, actually has a more complicated proof.
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1

2

3

4

5

f1 = 1

f2 = 1

f3 = .11

f4 = .05

f5 = .01

q1 = 1

5

q3 = .03

q4 = .01

q5 = .002

q6 = .02

max degree = 5

dominance factor = δ = .1

m+ 1 = 5

#strong nodes = 5

(a)

max degree = 5

dominance factor = δ = .1

m+ 1 = 5

#strong nodes = 5

1

2

3

4

5

f1 = 1

f2 = 1

f3 = .99

f5 = .96

f4 = .99

q1 = .99

q2 = .96

q5 = .03

q3 = .96

q4 = .98

(b)

Figure 5.9.3: Figure 5.9.3a: As in the previous example, m + 1 = 5. This illustrates the
second case in our proof. There are 5 strong nodes, the same number as there are in the
next largest neighboring path (in terms of NME). The green edges represent the qi strong
�ows which are chosen as outgoing �ows. Note that there are 4 of these. Since the path with
5 nodes also have 4 �ows, this is not su�cient to show that the dissipation grows in�nitely
large compared to this next largest path. Figure 5.9.3b: Continuing with the samem+1 = 5,
the third case in our proof occurs if the the set of chosen strong �ows (green edges) contains
a path connecting every node. In this case, it seems we are cornered becuase the lower bound
on the magnitude of the NME, NME < − log(m!) − ε cannot be used to �nd more than m
chosen �ows. Indeed, the path τm+1 �ts the lower bound. To scale this obstacle, we use the
upper bound (on |NME| < log((m + 1)!) − ε) from the tansition to the next larger set of
nodes as a belay. To be bounded away from the NME of the path on m+1 nodes there must
be a �ow (represented by the dashed blue arrow) diverting �ow away from the path with a
strength above some amount depending on ε and m+ 1.

Lemma 5.7. Assume that |Fδ| = m+ 1. Let S = {maxj∈n(i) qij : i ∈ Fδ}. Suppose that the

collection of endpoints of the �ows in S does not contain every i ∈ Fδ excluding the source

node. Then there are m+ 1 �ows with magnitudes greater than or equal to δm

D
.

Proof. We know that Shas a �ow for every node other than the sink. Therefore, by lemma

5.5 and since each qij ∈ S is such that qij ≥ fi
D
, we have qij ≥ δm

D
. This results in m �ows

with the uniform lower bound. To get the m + 1 �ow, let u ∈ Fδ, u not the source, be
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such that there does not exist a �ow in S with u as its end point. We can then choose the

maximal in-�ow to u, say qvu for node v assured that it was not already counted in S. Then

following the same reasoning that qvu is larger than the average of the in-�ows, or fi divided

by the number of in-�ows, we get qvu ≥ fi
D
≥ δm

D
. This gives us m+ 1 �ows with magnitudes

greater than or equal to δm

D
.

Now we tackle the case where S together with all m + 1 nodes in Fδ forms a path with

m+ 1 points. Up until now, we have relied on NME(qij) < − log(m!)− ε . For this proof we

need the other boundary, − log((m+ 1)!) + ε < NME(qij).

Lemma 5.8. Assume that |Fδ| = m+ 1. Let S = {maxj∈n(i) qij : i ∈ Fδ}. Assume that the

nodes in Fδ and the �ows in S form a path of length m+ 1, including all of the nodes in Fδ.

Then there exists a small postive number 0 < η < 1 depending only on m and ε such that

there are m+ 1 �ows qij ≥ ηδm

D
.

Proof. As we have pointed out in �gure 5.9.3. If the set of strong nodes has m+1 nodes and

the set of chosen strong �ows S forms a path, then we cannot use the assumption NME(qij) <

− log(m!) − ε to �nd another �ow with magnitude ≥ fi
D
for some i. Indeed, the path with

�ows of magnitude 1 τm+1 is such that NME(τm+1) = − log((m + 1)!) < − log(m!) − ε and

it only has m non-zero �ows. Therefore, for the �rst time in the proof we use the other

assumption on qij: the lower bound on NME, NME(qij) > − log((m+ 1)!) + ε.

Let 1 ≤ i ≤ m+1 be an enumeration of the set S. Then qi,i+1 >
fi
D
for all 1 ≤ i ≤ m. Let

0 < s ≤ 1 such that min1≤i≤m
qi,i+1

fi
= 1− s. Recall q̃uv = Puvfu where Puv is the probability

of hitting v given the �rst state of a random walk is u on the Markov chain as computed

in Chapter 2. on the network with all of the nodes, for all u, v ∈ G . Therefore for strong

nodes i, j 1 ≤ i < j ≤ m+ 1

q̃ij = fiPij ≥ fiP (xl = i+ l for 1 ≤ l ≤ j − i|x0 = i) = fi

j−1∏
l=i

ql,l+1

fl
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where ul, l ≥ 0 represents random sequences distributed according to the Markov chain

given by the �ows. Basically, we are calling on the fact that the probability of taking every

possible path from i to j given we start at i is bounded below by the probability of a single

path, the one de�ned by following the �ows in set S and hitting the nodes in Fδ along the

path of length m+ 1. Therefore

fi ≥ q̃ij ≥ fi

j−1∏
l=i

ql,l+1

fl
≥ fi(1− s)j−i.

We also have by the facts stated in the model section, q̃ii = fi = q̃1i because 1 is the only

source and the �ow Q1 = 1. Therefore, applying this and the last inequality, 1 ≥ fi ≥

f1(1− s)i−1 = (1− s)i−1.

Since δ is de�ned so that |NMEFδ(qij) − NME(qij)| < ε
2
, and by the assumption that

NME(qij) > − log((m+ 1)!) + ε we have

NMEFδ(qij)− (− log((m+ 1)!)) = NMEFδ(qij)− NME(qij) + NME(qij)− (− log((m+ 1)!))

> − ε
2

+ ε =
ε

2
.

We now place a lower bound on s. Recall, that by the de�nition of NMEFδi, for all i ∈ Fδ

NMEFδi =
∑
j≤i

q̃ji∑
k≤i q̃ki

log

(
q̃ji∑
k≤i q̃ki

)

and
∑

1≤i≤m+1 fiNMEFδi is a continuous function of q̃ij as positive free variables. Therefore

there exists t depending only on ε
2
and m + 1 such that if each (1 − t) < fi ≤ 1 and each

(1− t) < q̃ij ≤ 1 for all 1 ≤ i ≤ j ≤ m+ 1 (i, j ∈ Fδ such that q̃ij ≥ 0) then

− log((m+ 1)!) +
ε

2
≥ NMEFδ ≥ − log((m+ 1)!).

Therefore since (1−s)i−1 ≤ fi ≤ 1, and (1−s)j−1 ≤ fi(1−s)j−i ≤ q̃ij ≤ 1 for all 1 ≤ i ≤ j ≤
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m+ 1, in order for NMEFδ > − log((m+ 1)!) + ε
2
it must hold that min1≤i≤m+1(1− s)i−1 =

(1 − s)m < (1 − t). Note s 7→ (1 − s)m is strictly decreasing on [0, 1]. Therefore there

exists 0 < η < 1 which depends on t and m such that in order for (1 − s)m < (1 − t) it is

necessary for s > η. Since η depended only on m and t, and choice of t depends only on

m and ε, choice of η depends only on m and ε. Since 1 − s = min1≤i≤m
qi,i+1

fi
there exists a

node i such that 1− qi,i+1

fi
= s. Furthermore, assuming that s > η, at this node it holds that

1− qi,i+1

fi
> η and so fi− qi,i+1 > ηfi. Therefore there are other out-going �ows from i. Since

the total remaining out-going nodes of i is less than D we can lower bound the strongest

remaining outgoing �ow by ηfi
D
. And so by lemma 5.5 we that this greater than or equal to

ηδm

D
. For convenience and since 0 < η < 1 we take ηδm

D
as the lower bound on m + 1 �ows

qij ≥ ηδm

D
.

For 3 di�erent situations, depending on the �ow network topology, we have demonstrated

the existence of three lower bounds on the �ows alongm+1 edges. They are: qij > δm+1

D
, qij >

δm

D
and qij >

ηδm

D
. All three of these choices only depend on m and ε. We unify these lower

bounds into one lower bound. To conveniently mark our progress for further use , we state

this lower bound on the �ows in the following theorem and assign it to formal terminology.

Theorem 5.9. If qij is such that − log((m+ 1)) + ε < NME(qij) ≤ − log(m!)− ε then there

exists a positive number ξ > 0 depending only on m and ε such that there exist m+ 1 �ows

in the network qij with qij > ξ. We refer to ξ as the uniform �ow lower-bound.

Proof. Let qij satisfy the hypothesis of the theorem that − log((m + 1)) + ε < NME(qij) ≤

− log(m!) − ε. Then there exists δ > 0 and η > 0 depending only on ε and m such that,

by the exhaustive trichotomy of the set of strong nodes proven in this section and lemmas

5.65.7 and 5.8 for each case, one of the three following statements must hold:

There exists a cardinality m+ 1 set of �ows S such that

qij ≥
δm+1

D
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for all qij ∈ S.

There exists a cardinality m+ 1 set of �ows S such that

qij ≥
δm

D

for all qij ∈ S.

There exists a cardinality m+ 1 set of �ows S such that

qij ≥
ηδm

D

for all qij ∈ S.

That one of these three statements holds, implies that there exists a cardinality m + 1

set of �ows S such that

qij ≥ min

(
δm+1

D
,
δm

D
,
ηδm

D

)
.

Which is what we wanted because now we can take ξ = min
(
δm+1

D
, δ

m

D
, ηδ

m

D

)
to be our

uniform lower bound on �ows.

5.9.6 Finishing the proof.

In this section we will complete the proofs of case A and case B. First we prove case B and

then apply the same concept to the proof of case A.

Before we begin we decide on parameters that will shift our focus on paths of length

m+1 to be held at constant dissipation of D(τm+1) = m+1 and paths of length m will have

dissipation that shrinks to zero. As we will see networks with a uniform �ow lower-bound

on a set of m+ 1 �ows will have come to have arbitrarily large dissipation for small γ.

For the rest of the proof of case B assume that all conductance networks obey the building
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cost constraint with varying γ and �xed total material C = m. That is
∑

(i,j) κ
γ
ij = C = m.

This is to be assumed even when the conductance network is not explicitly mentioned, such

as in talking about the dissipation of a set of �ows. As a reminder, if we are talking about

the dissipation of a �ow network we mean

D(qij) = min
κij :

∑
(i,j) κ

γ
ij ,qij physical �ows of κij

∑
(i,j)

q2ij
κij

or equivalently = min
κij :

∑
(i,j) κ

γ
ij ,qij physical �ows of κij

D(κij)

Lemma 5.9. (Case B) Consider �ow networks on the ambient network G compatible with

with one source, one sink and a total �ow of 1. There exists 0 < γε < 1 such that if γ < γε

then for all qij if − log((m+ 1)!) + ε < NME(qi) < − log(m!)− ε then

NME(qij) + cD(qij) > NME(τm) + cD(τm)

for all cm+1,m ≤ c ≤ cm,m−1.

Proof. First, recall that D(τm) = (m − 1)
(
m−1
m

) 1
γ and D(τm+1) = m. We now establish a

lower bound on the dissipation of qij.

By theorem 5.9 there exists uniform �ow lower bound ξ depending only on m and ε such

that there is a set of m+ 1 �ows S with qij > ξ for all qij ∈ S. By theorem 5.5 we have

D(qij) ≥

∑
(i,j)

(
q2ij
) γ
γ+1


(∑

(i,j)

(
q2ij
) γ
γ+1

) 1
γ

m
1
γ

≥ (m+ 1)ξ
γ
γ+1

(m+ 1)
1
γ ξ

1
γ

m
1
γ

= (m+ 1)ξ

(
m+ 1

m

) 1
γ

.

It follows that D(qij) → ∞ as γ → 0+. Recall that the intersection of lines from τm+1 and
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τm

cm+1,m =
NME(τm)− NME(τm+1)

D(τm+!)−D(τm)

=
log(m+ 1)

m− (m− 1)
(
m−1
m

) 1
γ

γ→0+

−→ log(m+ 1)

m

Therefore cm+1,m → log(m+1)
m

as γ → 0+. Let cL be the intersection of c 7→ NME(qij)+cD(qij)

and c 7→ NME(τm) + cD(τm). Then

cL =
NME(τm)− NME(qij)

D(qij)−D(τm)

The intersection of NME(qij) + cD(qij) and NME(τm) + cD(τm) is bounded above by

NME(τm)− NME(qij)

D(qij)−D(τm)
≤ − log(m!) + log((m+ 1)!)

(m+ 1)ξ
(
m+1
m

) 1
γ − (m− 1)

(
m−1
m

) 1
γ

γ→0+

−→ 0.

Therefore cL → 0 and the limit from before, cm+1,m → log(m+1)
m

> 0. Therefore there exists

a γε such that for γ < γε cL < cm+1,m. By lemma 5.2 qij is not an optimum of the mixing-

dissipation cost for all cm+1,m < c < cm,m−1 when γ < γε.

To prove case A, we focus on the path of length m . It su�ces to prove case A for

conductance networks maintaining a building cost of C = m− 1.

Lemma 5.10. (Case A) Consider �ow networks on the ambient network G compatible

with with one source, one sink and a total �ow of 1. There exists 0 < γε < 1 such that if

γ < γε then for all qij if − log(m!) + ε < NME(qi) < − log((m− 1)!)− ε then

NME(qij) + cD(qij) > NME(τm) + cD(τm)
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for all cm+1,m ≤ c ≤ cm,m−1.

Proof. In theorem 5.9, the assumption − log((m+ 1)!) + ε < NME(qi) < − log(m!)− ε is for

arbitrary m so long as there are paths of length m and m + 1 in the ambient network. It

can therefore be applied to m− 1 . Assume that qij is a �ow network with − log(m!) + ε <

NME(qi) < − log((m− 1)!)− ε. By theorem 5.9 there exists a uniform lower bound for the

�ows ξ > 0 and a set of m− 1 + 1 = m �ows S such that for all qij ∈ S qij ≥ ξ. Then

D(qij) ≥

∑
(i,j)

(
q2ij
) γ
γ+1


(∑

(i,j)

(
q2ij
) γ
γ+1

) 1
γ

(m− 1)
1
γ

≥ m
(
ξ2
)( m

m− 1

) 1
γ

.

γ→0+

−→ ∞.

As before, we also have D(τm) = m− 1 and D(τm−1) = (m− 2)
(
m−2
m−1

) 1
γ . Then de�ne cR to

be such that

NME(qij) + cRD(qij) = NME(τm) + cRD(τm).

Then

cR =
NME(qij)− NME(τm)

D(τm)−D(qij)

≤ log(m)

D(τm)−D(qij)
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and

cm,m−1 =
NME(τm−1)− NME(τm)

D(τm)−D(τm−1)

=
log(m)

(m− 1)− (m− 2)
(
m−2
m−1

) 1
γ

γ→0+

−→ log(m)

m− 1
.

Since NME(qij) > NME(τm) we know that if D(qij) ≥ D(τm) then NME(qij) + cD(qij) >

NME(τm) + cD(τm) for all c. Then since D(qij) > m (ξ2)
(

m
m−1

) 1
γ and the lower bound is

increasing to ∞ asγ → 0, we take γε such that m (ξ2)
(

m
m−1

) 1
γ > D(τm) = m − 1 . This

completes the proof.

Case C. Now we consider case C. Let qij be such that NME(qij) < − log(m + 1) − ε,

by lemma 5.4 there exists a δ that depends only on m+ 1 and ε such that there are at least

m+ 2 with fi ≥ δm+1. Then there are at least m+ 1 �ows bounded below by δm+1

D
. Taking

the building cost to be C = m, the line from τm+1 has constant slope, while as we found

in lemma 5.9 cm+1,m ≥ log(m+1)
m

for all γ while the intersection of the line from qij and the

line from τm approaches 0 because the line from τm has slope approaching 0 while the line

from qij gets in�nitely steep at a rate depending only on m and ε. Therefore we can �nd a

γε such that if γ < γεthen the intersection of the line from qij with the line from τm is less

than cm,m−1.

Case D. Now consider qij with NME(qij) > − log(m!) + ε. Set C = m − 1. We have

that NME(qij) + cD(qij) > NME(qij) for all c ≥ 0. Since the building cost is m − 1, the

dissipation of τm is m−1 so the line from τmis c 7→ − log(m!) + c(m−1). This intersects the

horizontal line c 7→ NME(qij) at a postitive c, denote it cR. Since D(τm−1) → 0 as γ → 0+

there is a γεsuch that NME(τm−1) + cRD(τm−1) < NME(qij) .
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5.9.6.1 Concluding proof of theorem 5.6

In the last section, we have de�ned a potentially di�erent γεfor each of case A, B, C, D. To

conclude the proof, simply re-de�ne γε to be the minimum of all of the γεde�ned in each case

above.

5.9.7 Background

In this section, we consider �ows on conductance networks with boundary �ows consisting

of one source with boundary �ow 1 and one sink with boundary �ow -1.

From our experimental results on square and triangular grids with one source and one

sink we notice that networks optimizing NME + cD are either path networks or they have

a morphology that consists of a loopy part at the source node, that then connects via a

path to the sink node. In Chapter 2 we proved (Theorem 2.1) an equivalence principle for

the negative mixing entropy and the negative sending entropy; namely the negative mixing

entropy for a given network is identical to the negative sending entropy on the same network

if its source and sink were exchanged with each other. Hence, we are able to prove results

about the negative sending entropy, and directly translate them to the negative mixing

entropy.

We have two equivalent statements about the optimal location of the loops in networks

that minimize either NME or the NSE. Consider a �ow network formed by concatenating a

loop section with two paths. Speci�cally, we consider a network that can be partitioned into

three subgraphs: a path that links directly to the source, a path that links directly to the

sink, and a middle section that bridges the two paths, and that may contain loops (we call

this third subnetwork, the loopy subnetwork). We will then theoretically compare between

versions of this network in which the total length of the two paths is kept �xed, but the

partitioning of nodes between them is varied. Among this class of networks, we minimize

NME(qij) + cD(qij), if the path connecting to the source has zero nodes. On the other hand,
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for the network to be an optimum of NME(qij)+cD(qij) the path connecting the sub-network

with loops to the sink must have zero nodes. Note that changing the partitioning of nodes

between the two path sub-networks doesn't change the set of �ows in the network, so doesn't

a�ect the dissipation, hence, we only need to show that NME attains its minimum out of

these possible �ow networks if the subnetwork with loops appears at the source and the

NSE attains its minimum out of these possible values on �ow networks if it is at the sink.

Formally we express these statements in the two following equivalent theorems, Theorem

5.10 and Theorem 5.11.

5.9.8 Theorem statement

To state the theorem we need the following de�nition.

De�nition 5.8. Suppose we have T networks, J1, J2, . . . , JT , on disjoint sets of nodes, where

each network consists of either a singleton node, or some set of nodes and edges with only a

single sink and a single source with out�ow/in�ow f . Then we de�ne the connected union

of J1, J2, . . . , JT in that order, denoted J1 → J2 → · · · → JT , to be the network on nodes

equal to the union of the sets of nodes of Ji 1 ≤ i ≤ T with edges containing the union of the

sets of edges of Ji 1 ≤ i ≤ T and extra edges that carry a �ow of size f connecting the sink

of Ji (or the only node in Ji, if Ji is a single node) to the source of Ji+1 or to the only node

in Ji+1, if Ji+1 is a single node network for each 1 ≤ i ≤ T − 1 . If Ji = ∅ for some 1 < i < T

then we connect the sink of the last Jj 6= ∅ with j < i to the source of the next k with

Jk 6= ∅, by an edge carrying a �ow f . If there is no such Jj then the source of J1 → · · · → JT

is the source of Jk. Likewise if there is no such k then the sink of J1 → · · · → JT is the sink

of Jj. The connected union is compatible with boundary �ows containing a single source

at the source of J1 and a single sink at the sink of JT and zero boundary �ow at all other

nodes.

Theorem 5.10. Let R be a �ow network with single source and single sink of total �ow

1 and let n > 0 and let t ≥ 0 such that 0 ≤ t ≤ n. De�ne Gt to be the connected union
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τt → R → τn−t. Then NME(G0) ≤ NME(Gt) for all 1 ≤ t ≤ n with equality if and

only if R is a path. That is, if R contains loops then the unique network minimizer is

G0 = τ0 → R→ τn = R → τn.

Theorem 5.11. Let R be a �ow network with single source and single sink of total �ow

1 and let n > 0 and let t ≥ 0 such that 0 ≤ t ≤ n. De�ne Gt to be the connected union

τt → R → τn−t. Then NSE(Gn) ≤ NSE(Gt) for all 0 ≤ t ≤ n − 1 with equality if and

only if R is a path. That is, if R contains loops then the unique network minimizer is

Gn = τn → R→ τ0 = τn → R.

Since these theorems are equivalent, we only need to prove one to have the other. We

will prove 5.11, that loops must occur near to and at the sink to minimize NSE. For this

proof we construct a probability distribution on ordered pairs of nodes in a �ow network.

The �rst node, referred to as the chosen node and denoted by X is chosen with probability

proportional to its �ow�i.e. P(X = i) = fi∑
i fj

. The second node is a random variable called

the receiver and denoted Y is then chosen with a probability distribution conditional on X

that is equivalent to the probability distribution of receivers used in the de�nition of NSE.

That is, P(Y = j|X = i) = Pi(j) =
q̃ij∑
k q̃ik

.

De�ning this probability distribution enables us to use the information theoretic concept

of conditional entropy. In Section 5.9.9 we will de�ne the entropy of the receiver Y conditioned

on the chosen node X, denoted H(Y |X), and its relation to the NME and NSE. We state

and prove a theorem in terms of H(Y |X) that is equivalent to Theorem 5.11.

Consider a �ow network qij. We refer to the entropy of Y conditioned on X where Y and

X are constructed for qij using the de�nition above as H(Y |X) on qij. In Section we derive

the equation

H(Y |X) on qij = −NSE(qij)∑
i fi

.

In order to state the next theorem in terms of H(Y |X) we take this as its de�nition.
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Instead of attacking theorem 5.11 head on, requiring us to consider di�erent combinations

of path lengths, we can prove this theorem by showing a less complicated statement. We

will prove the theorem:

Theorem 5.12. Let L be a �ow network with a single source and a single sink. Let U = {u}

be a network consisting of a single node. Then

NSE(L → U) ≥ NSE(U → L)

with equality if and only if Lis a path. The equivalent statement about conditional entropy is

H(Y |X) on L → U ≤ H(Y |X) on U → L

with equality if and only if Lis a path.

The intuition as to why theorem 5.12 implies theorem 5.11 is that it essentially shows that

moving the subnetwork with loops to towards the sink by one is always favorable. Therefore

if we shift it once towards the sink for every node in the path subnetwork containing the sink,

the NSE will eventually be minimized once the path the containing the sink is completely

eliminated. in section ??. The structure of our proof conveys where most of the entropy is

gained and shows why the only time equality holds is when L is a path.

5.9.9 NME and NSE as negative scalar multiples of conditional entropies

We are able to consider the total mixing entropy and the total sending entropies as negative

constants times types of conditional entropy. For two random variables X and Y with joint
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distribution P(X = x, Y = y) the conditional entropy is de�ned:

H(Y |X) =
∑
x,y

−P(X = x, Y = y) logP(Y = y|X = x)

=
∑
x

P(X = x)
∑
y

−P(Y = y|X = x) logP(Y = y|X = x).

We show how the NSE is a negative constant times a conditional entropy. Consider a

�ow network qij. Recall NSE =
∑

i fiNSEi = −
∑
fiH(Pi)where H denotes the entropy of

a discrete random variable and for this discussion we take Pi(j) =
q̃ij∑
j q̃ij

. Then we can

normalize fi to a probability of picking a node which we denote φi := P(X = i) = fi∑
j fj

where we represent the random variable of choosing a node by X. Then the distributions at

each node can be considered as a conditional distribution P(Y = j|X = i) = Pi(j) where we

represent drawing a receiver by Y . We construct the joint distribution P(X = i, Y = j) =

P(X = i)P(Y = j|X = i). Then NSE = − (
∑

l fl)H(Y |X). To see the calculation for this:

NSE =
∑
i

fi

 ∑
j:q̃ij>0

q̃ij∑
j q̃ij

log

(
q̃ij∑
j q̃ij

)
=

(∑
l

fl

)∑
i

fi∑
l fl

− ∑
j:q̃ij>0

−Pi(j) log (Pi(j))


= −

(∑
l

fl

)∑
i

P(X = i)

 ∑
j:q̃ij>0

−P(Y = j|X = i) log (P(Y = j|X = i))


= −

(∑
l

fl

)
H(Y |X).

We can also express the NME as a negative constant times a conditional entropy. Let Z

represent the distribution of drawing a signal so that P(Z = j|X = i) =
q̃ji∑
j q̃ji

. By a similar

computation, NME = − (
∑

l fl)H(Z|X).

In the next section we use H(Y |X) rather than NSE when we prove theorem 5.12
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because interpretation as a conditional entropy allows us to use basic information theoretic

manipulations to put H(Y |X) into a form which sheds light on the proof. We are aided in

this by the fact that
∑

l fl is the same for both U → L and L → U .

5.9.10 Proof of theorem 5.12

Before we continue with the proof we introduce de�nitions and notation for added clarity.

Let L be a �ow network with a single source and a single sink with total �ow 1. Suppose

that L has M nodes and the nodes are labeled 1, 2, . . . ,M where 1 is the source and M is

the sink. Let U = {u} be a �ow network on one node.

• Let LL =
∑

l∈L fl denote the average path length from source to sink, i.e. the average

number of nodes a path following the markov chain Tij =
qij∑
k qik

starting at the source

and ending at the sink of network L. To see why this is the average path-length recall

that (cross-ref) fi = Psourcei for a network. And so
∑

l∈L fl =
∑

l∈L Psource of L,l, which

is equal to the average number of nodes a random walk takes from source to sink.

• Let φi be the probability of choosing a node in either U → L or L → U based on the

�ows fi. That is φi = fi∑
l∈U∪L fl

.

• Let ψi be the probability of choosing node i in the network L based on the �ows fi.

That is, ψi = fi∑
l∈L fl

.

• De�ne PLi(j) to be the conditional probability of choosing a receiver j ∈ L after

choosing a node i ∈ L for the �ow network L. That is PLi(j) =
q̃ij∑

k∈L:q̃ik>0 q̃ik
=

Pij∑
k∈L:Pik>0 Pik

.

• For i ∈ L let `i =
∑

j∈L,Pij>0 Pij. This is the average number of nodes a random walk

that starts at i sees, including i, until it reaches the sink of L.

• Choosing nodes in L is a random variable with probability of node i being ψi and we

denote the entropy of this distribution as H(nodesL) =
∑

i∈L−ψi logψi.
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We now come up with a general equation for the conditional entropy which is valid for both

L → U and U → L. As in secttion 5.9.9 let the random variable X be the choosen node and

the variable Y be the receiver both chosen from the either of the connected unions L → U

or U → L. Let A,B ∈ {U,L} be set-valued random variables where A represents choosing

the chosen node X to be in set A and B represents choosing the receiver to be in set B. The

chain rule for entropy states H(X, Y ) = H(Y |X) + H(X). This rule can be generalized to

an arbitrary set of variables X1, X2, . . . , Xn to be

H(X1,X2, . . . , Xn) = H(X1|X2, X3, . . . , Xn)+H(X2|X3, X4, . . . , Xn)+· · ·+H(Xn−1|Xn)+H(Xn).

Then applying this to X, Y and B we get H(X, Y ) = H(Y |B,X) + H(B|X) + H(X) and

H(Y |X) = H(X, Y ) −H(X). Combining these two equations we get a specialized form of

the usual chain rule:

H(Y |X) = H(Y |B,X) +H(B|X).

Written using the de�nitions of conditional entropies and also conditioning on the set X

lies in, this is

H(Y |X) =
∑

x∈U∪L

∑
B∈{U,L}

P(X = x)P(Y ∈ B|X = x)
∑
y∈U∪L

−P(Y = y|Y ∈ B,X = x) log (P(Y = y|Y ∈ B,X = x))

+
∑

x∈U∪L

P(X = x)
∑

B∈{U,L}

−P(Y ∈ B|X = x) log (P(Y ∈ B|X = x)) . (5.9.1)

Since there are only 4 pairs of sets from the partition of the network U,L we write down the
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8 summands:

P(X = u)P(Y ∈ U |X = u) [−P(Y = u|Y ∈ U,X = u) log (P(Y = u|Y ∈ U,X = u))] +

P(X = u)P(Y ∈ L|X = u)
∑
i∈L

−P(Y = i|Y ∈ L, X = u) log (P(Y = i|Y ∈ L, X = u)) +

∑
i∈L

P(X = i)P(Y ∈ U |X = i) [−P(Y = u|Y ∈ U,X = i) log (P(Y = u|Y ∈ U,X = i))] +

∑
i∈L

P(X = i)P(Y ∈ L|X = i)
∑
j∈L

−P(Y = j|Y ∈ L, X = i) log (P(Y = j|Y ∈ L, X = i)) +

P(X = u) [−P(Y ∈ U |X = u) log (P(Y ∈ U |X = u))] +

P(X = u) [−P(Y ∈ L|X = u) log (P(Y ∈ L|X = u))] +∑
i∈L

P(X = i) [−P(Y ∈ U |X = i) log (P(Y ∈ U |X = i))] +

∑
i∈L

P(X = i) [−P(Y ∈ L|X = i) log (P(Y ∈ L|X = i))]

We now derive expressions for the conditional entropy on L → U and U → L.

We de�ne

F0 = H(Y |X) on L → U

F1 = H(Y |X) on U → L.

We compute exact equations in terms of the marginal and conditional probabilities of

choosing a node and choosing a receiver for the sending entropy. See section 5.9.11 for the

direct calculations. Plugging the computations of the conditional probabilities for U → L
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into the expression for H(Y |X) we get

F0 = 0 + 0 + 0 +
∑
i∈L

(
LL

LL + 1

)
ψi

(
`i

`i + 1

)∑
j∈L

−PLi(j) log (PLi(j)) + 0 + 0+

−
∑
i∈L

(
LL

LL + 1

)
ψi

[
− 1

`i + 1
log

(
1

`i + 1

)]
+
∑
i∈L

(
LL

LL + 1

)
ψi

[
− `i
`i + 1

log

(
`i

`i + 1

)]
,

so

F0 =

(
LL

LL + 1

)∑
i∈L

(
`i

`i + 1

)
ψi

[∑
j∈L

−PLi(j) log (PLi(j))

]
+(

LL
LL + 1

)∑
i∈L

ψi

[
− 1

`i + 1
log

(
1

`i + 1

)
− `i
`i + 1

log

(
`i

`i + 1

)]
.

Plugging the computions of the conditional probabilities for U → L into the expression

for H(Y |X) we get

F1 = 0+

(
1

1 + LL

)(
LL

LL + 1

)[∑
i∈L

−ψi log (ψi)

]
+0+

∑
i∈L

(
LL

1 + LL

)
ψi

[∑
j∈L

−PLi(j) log (PLi(j))

]
+

1

LL + 1

[
−
(

1

LL + 1

)
log

(
1

LL + 1

)]
+

1

LL + 1

[
−
(

LL
LL + 1

)
log

(
LL

LL + 1

)]
+ 0 + 0,

so

F1 =

(
1

1 + LL

)(
LL

LL + 1

)
H(nodes L) +

(
LL

1 + LL

)∑
i∈L

ψiH(PLi)+(
1

LL + 1

)[
−
(

1

LL + 1

)
log

(
1

LL + 1

)
−
(

LL
LL + 1

)
log

(
LL

LL + 1

)]
.
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To prove theorem 5.12 we need to show that F0 ≤ F1 with equality if and only if L is a

path. This is the contents of the next lemma, lemma 5.12. Now we prove some facts that

we use in the proof.

Fact 5.7. For the source of L, PL1(j) = ψi because PL1(j) =
P1j∑

k∈L:P1k>0 P1k
=

fj∑
l∈L fl

. Thus

H(PL1) = H(nodesL).

Fact 5.8. For node i ∈ L,

max
j
PLi(j) = PLi(i) =

1∑
k∈L:Pik>0 Pik

=
1

`i
.

We also have the basic lemma giving a lower bound for the entropy of �nite probability

distributions

Lemma 5.11. Let n ≥ 1 be a positive integer. If P (j) = pj j = 1, 2, . . . n is a discrete

probability distribution n distinct atoms having non-zero probability then H(P ) ≥ log((maxj pj)
−1)

with equality if and only if pi = maxj pj = 1
n
for all i.

Proof. For element i we have pi log(p−1i ) ≥ pi log(minj(p
−1
j )) = pi log((maxj pj)

−1) with

equality if and only if pi = maxj pj for all i. Therefore

H(P ) =
∑
i

pi log(p−1i ) ≥
∑
i

pi log((max
j
pj)
−1) = log((max

j
pj)
−1)

with equality if and only if pi is uniform. Since there are n di�erent atoms with non-zero

probability, pi ≡ 1
n
.

Lemma 5.12. Let U be a �ow network consisting of a single node and let L be an arbitrary

network with total �ow 1 and boundary �ows consisting of a single source and a single sink.

Then the conditional entropy H(Y |X) for the network U → L, F1, is greater than or equal

to the conditional entropy H(Y |X) for the network L → U with equality if and only if L is

a path.
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Proof. The �rst part we show is the easiest, that there is equality if L is a path. Since L is

a path �ow network, so are both L → U and U → L and they are paths of the same length,

so H(Y |X) is the same for both networks.

To prove the lemma it su�ces to show that F1 ≥ F0 with equality only if L is a path.

We re-state the equations

F0 =

(
LL

LL + 1

)∑
i∈L

(
`i

`i + 1

)
ψi

[∑
j∈L

−PLi(j) log (PLi(j))

]
(5.9.2)

+

(
LL

LL + 1

)∑
i∈L

ψi

[
− 1

`i + 1
log

(
1

`i + 1

)
− `i
`i + 1

log

(
`i

`i + 1

)]

and

F1 =

(
1

1 + LL

)(
LL

LL + 1

)
H(nodes L) +

(
LL

1 + LL

)∑
i∈L

ψiH(PLi) (5.9.3)

+

(
1

LL + 1

)[
−
(

1

LL + 1

)
log

(
1

LL + 1

)
−
(

LL
LL + 1

)
log

(
LL

LL + 1

)]
.

To begin the proof, we �rst break up F0 into 3 parts. The �rst part is the �rst term of

the sum in the �rst line of equation 5.9.2:

(
LL

LL + 1

)(
`1

`1 + 1

)
ψ1

[∑
j∈L

−PL1(j) log (PL1(j))

]
=

(
LL

LL + 1

)(
LL

LL + 1

)(
1

LL

)
H(PL1)

=

(
1

LL + 1

)(
LL

LL + 1

)
H(nodes L)

by fact 5.7. The second part is the �rst term of the sum in the second line of equation
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5.9.2:

(
LL

LL + 1

)
ψ1

[
− 1

`1 + 1
log

(
1

`1 + 1

)
− `1
`1 + 1

log

(
`1

`1 + 1

)]
=

(
LL

LL + 1

)
ψ1

[
− 1

LL + 1
log

(
1

LL + 1

)
− LL
LL + 1

log

(
LL

LL + 1

)]
=

(
LL

LL + 1

)
1

LL

[
− 1

LL + 1
log

(
1

LL + 1

)
− LL
LL + 1

log

(
LL

LL + 1

)]
=

(
1

LL + 1

)[
− 1

LL + 1
log

(
1

LL + 1

)
− LL
LL + 1

log

(
LL

LL + 1

)]
.

The third part is the remaining sums over the nodes in L from node 2 to the sink:

(
LL

LL + 1

) ∑
i 6=1∈L

(
`i

`i + 1

)
ψi

[∑
j∈L

−PLi(j) log (PLi(j))

]
+(

LL
LL + 1

) ∑
i 6=1∈L

ψi

[
− 1

`i + 1
log

(
1

`i + 1

)
− `i
`i + 1

log

(
`i

`i + 1

)]
.

Note that the �rst and second parts of the expression for F0 are the �rst and third sums in
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the equation 5.9.3 for F1. Therefore it su�ces to show that

(
LL

LL + 1

) ∑
i 6=1∈L

(
`i

`i + 1

)
ψi

[∑
j∈L

−PLi(j) log (PLi(j))

]
+(

LL
LL + 1

) ∑
i 6=1∈L

ψi

[
− 1

`i + 1
log

(
1

`i + 1

)
− `i
`i + 1

log

(
`i

`i + 1

)]
≤(

LL
1 + LL

)∑
i∈L

ψi

[∑
j∈L

−PLi(j) log (PLi(j))

]

with equality only if L is a path. First we rearrange the left side of the inequality by adding

zero in the form of
∑

i 6=1∈L
1

`i+1
ψi log (`i)−

∑
i 6=1∈L

1
`i+1

ψi log (`i) and distributing the terms

over the �rst and second sums. That is

(
LL

LL + 1

) ∑
i 6=1∈L

(
`i

`i + 1

)
ψi

[∑
j∈L

−PLi(j) log (PLi(j))

]
+(

LL
LL + 1

) ∑
i 6=1∈L

ψi

[
− 1

`i + 1
log

(
1

`i + 1

)
− `i
`i + 1

log

(
`i

`i + 1

)]
=(

LL
LL + 1

) ∑
i 6=1∈L

ψi

[(
`i

`i + 1

)
H(PLi) +

(
1

`i + 1

)
log (`i)

]
+(

LL
LL + 1

) ∑
i 6=1∈L

ψi

[
− 1

`i + 1
log

(
1

`i + 1

)
− `i
`i + 1

log

(
`i

`i + 1

)
−
(

1

`i + 1

)
log (`i)

]
.

By fact 5.8, maxj PLi(j) = 1
`i
, and by lemma 5.11, we have that H(PLi) ≥ log(`i). Applying
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this inequality to the �rst summand above, we obtain the inequality

(
LL

LL + 1

) ∑
i 6=1∈L

(
`i

`i + 1

)
ψiH(PLi)+

(
LL

LL + 1

) ∑
i 6=1∈L

ψi

[
− 1

`i + 1
log

(
1

`i + 1

)
− `i
`i + 1

log

(
`i

`i + 1

)]
≤(

LL
LL + 1

) ∑
i 6=1∈L

ψiH(PLi)+
(

LL
LL + 1

) ∑
i 6=1∈L

ψi

[
− 1

`i + 1
log

(
1

`i + 1

)
− `i
`i + 1

log

(
`i

`i + 1

)
−
(

1

`i + 1

)
log (`i)

]
.

Now we upper bound the sum:

(
LL

LL + 1

) ∑
i 6=1∈L

ψi

[
− 1

`i + 1
log

(
1

`i + 1

)
− `i
`i + 1

log

(
`i

`i + 1

)
−
(

1

`i + 1

)
log (`i)

]
=(

LL
LL + 1

) ∑
i 6=1∈L

ψi

[
− 1

`i + 1
log

(
`i

`i + 1

)
− `i
`i + 1

log

(
`i

`i + 1

)]
=(

LL
LL + 1

) ∑
i 6=1∈L

ψi [log (`i + 1)− log (`i)]

by the �rst term,
(

LL
1+LL

)
ψ1H(PL1) of the sum

(
LL

1+LL

)∑
i∈L ψiH(PLi) in the equation for

F1.

Recall that Tij =
qij1qij>0∑

k∈n(i):qik>0 qik
for all j ∈ n(i). Let node i be a node in L\sink. Then

we have the expression

`i =

 ∑
j∈n(i):qij>0

Tij`j

+ 1 =
∑

j∈n(i):qij>0

(Tij`j + Tij)
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By concavity of the logarithm, log(`i) ≥
∑

j Tij log(`j + 1). Thus

ψi log(`i) =
fi∑
k∈L fk

log(`i) ≥
1∑
k∈L fk

∑
j

fiTij log(`j + 1) =
1∑
k∈L fk

∑
j

qij log(`j + 1)

Summing ψi log(`i) over the nodes in L and using the last inequality, we get

∑
i∈L

ψi log(`i) =
∑

i 6=sink∈L

ψi log(`i) ≥
∑

i 6=sink∈L

(
1∑
k∈L fk

) ∑
j:qij>0

qij log(`j + 1)

By swapping the order of the sums we have

∑
i 6=sink∈L

(
1∑
k∈L fk

) ∑
j:qij>0

qij log(`j + 1) =
∑

i 6=sink∈L

(
1∑
k∈L fk

) ∑
j 6=1∈L

1{qij>0}qij log(`j + 1)

=
∑
i∈L

(
1∑
k∈L fk

)∑
j∈L

1{qij>0}1{i 6=sinkj 6=1}qij log(`j + 1)

=
∑
j 6=1∈L

(
1∑
k∈L fk

)
log(`j + 1)

( ∑
i 6=sink∈L

1qij>0qij

)
=
∑
j 6=1∈L

(
fj∑
k∈L fk

)
log(`j + 1)

=
∑
j 6=1∈L

ψj log(`j + 1)

where the condition of not being the sink is removed from domain of the second sum

because it is enough that the indicator function 1qij>0 is zero for all j when i is the sink.

Therefore combining
∑

i∈L ψi log(`i) = ψ1 log(`1) +
∑

i 6=1∈L ψi log(`i) and
∑

i∈L ψi log(`i) ≥∑
i 6=1∈L ψi log(`i + 1) we have by lemma 5.11

ψ1H(PL1) ≥ ψ1 log(`1) ≥
∑
i 6=1∈L

ψi log(`i + 1)−
∑
i 6=1∈L

ψi log(`i)

=
∑
i 6=1∈L

ψi(log(`i + 1)− log(`i)).

This proves the inequality on the remaining terms in the equation for F0. Note equality only

can occur if H(PL1) = log(`1), which happens only when ψi are all equal by lemma 5.11.
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This is equivalent to the subnetwork L being a path. That is ψ1H(PL1) =
∑

i 6=1∈L ψi(log(`i+

1)− log(`i)) only if L is a path. Therefore, we derive

(
LL

LL + 1

) ∑
i 6=1∈L

(
`i

`i + 1

)
ψiH(PLi)+

(
LL

LL + 1

) ∑
i 6=1∈L

ψi

[
− 1

`i + 1
log

(
1

`i + 1

)
− `i
`i + 1

log

(
`i

`i + 1

)]
≤
(

LL
LL + 1

)∑
i∈L

ψiH(PLi).

with equality only if L is a path. This completes the proof that F1 ≥ F0 with equality only

if L is a path.

In proving the lemma we have also proven the equivalent statement Theorem 5.12.

Theorem 0.2 then follows by an iterative application of the argument above. Suppose that

we have a combination of subnetworks: τn−t → R → τt Then assuming t 6= 0, we may

rewrite this network as a combination: L → u, where L = τn−t → R → τt−1 and u is the

sink vertex. Theorem 5.12 then tells us that the NSE for this network is larger than for the

network: u → L; a network in which a node has been removed from τt and appended to

τn−t. By iteratively applying this argument, we eliminate all nodes from the sink path, and

create a network with lower NSE.

5.9.11 Computation of marginal and conditional probabilities needed for H(Y |X)

for networks L → U and U → L

We compute the probabilities of choosing a node for either network :

P(X = u) =
1∑

l∈U∪L fl
=

1

1 + LL

P(X = i) =

(
LL

1 + LL

)
ψi.
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And the probabilities of the chosen node being in either L or U :

P(X ∈ U) =
1

LL + 1

P(X ∈ L) =
LL

LL + 1
.

Consider the �ow L → U . We compute the conditional probabilities to compute equation

5.9.1. The probabilities of the receiver lying in a subnetwork given a chosen node are

P(Y ∈ U |X = u) = 1

P(Y ∈ U |X = i) =
1∑

k∈U∪L Pik
=

1

`i + 1
for i ∈ L

P(Y ∈ L|X = u) = 0

P(Y ∈ L|X = i) =
`i

`i + 1
.

The conditional probabilities of a receiver given that the receiver lies in a subnetwork for

speci�c chosen nodes are

P(Y = u|Y ∈ U,X = u) = 1

P(Y = i|Y ∈ L, X = u) = 0 for i ∈ L

P(Y = u|Y ∈ U,X = i) = 1 for i ∈ L

P(Y = j|Y ∈ L, X = i) =
P(Y = j|X = i)

P(Y ∈ L|X = i)
=

(
Pij∑

k∈U∪L Pik

)(
`i + 1

`i

)
=

(
Pij
`i + 1

)(
`i + 1

`i

)
=

Pij∑
k∈L Pik

= PLi(j) for i, j ∈ L.

Consider the �ow U → L. We compute the conditional probabilities to compute equation
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5.9.1. The probabilities of the receiver lying in a subnetwork given a chosen node are

P(Y ∈ U |X = u) =
Puu∑

i∈U∪L Pui
=

1

LL + 1

P(Y ∈ U |X = i) = 0

P(Y ∈ L|X = u) =
LL

LL + 1

P(Y ∈ L|X = i) = 1

The conditional probabilities of a receiver given that the receiver lies in a subnetwork for

speci�c chosen nodes are

P(Y = u|Y ∈ U,X = u) = 1

P(Y = i|Y ∈ L, X = u) =
P(Y = i|X = u)

P(Y ∈ L|X = u)
=

(
Pui∑

j∈U∪L Puj

)(∑
k∈L

Puk∑
j∈U∪L Puj

)−1
=

(
fi

LL + 1

)(
LL + 1

LL

)
=

fi
LL

= ψi for i ∈ L

P(Y = u|Y ∈ U,X = i) = 1 for i ∈ L

P(Y = j|Y ∈ L, X = i) =
P(Y = j|X = i)

P(Y ∈ L|X = i)
=

Pij∑
k∈U∪L Pik

(∑
l∈L

Pil∑
k∈U∪L Pik

)−1

=
Pij∑
k∈L Pik

(∑
l∈L

Pil∑
k∈L Pik

)−1
= PLi(j) for i, j ∈ L.
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CHAPTER 6

Optimization Algorithm

6.1 Optimization description

Our optimization algorithm is comprised of two main parts. One step of the algorithm

consists of performing the two parts, one after the other. The number of steps of the

algorithm are speci�ed and the algorithm progresses by taking the result of the previous

step (which we call the recent network) as the initialization of the current step, performing

the two main parts to create what we call the current network. Both a total number of steps

and a stopping criterion are speci�ed so that the number of steps used is both thorough and

e�cient.

The �rst main part is a discontinuous jump from the last network of conductances to a

new network of conductances. This is because the local optimacan each only be accessed

from a �nite region of conductance values and we need to jump from region of conductance

values to another.

The second main part is to initialize a continuous optimization algorithm (e.g. gradient

descent) to approximate the optimum when restricted to the current region of conductances.

In our case we use an interior point algorithm because it allows staying in the current region

by enforcing a set of linear and non-linear constraints.

We describe quite generally how these two parts work, how we choose an optimum, how

we initialize and terminate the algorithm, before addressing the speci�c details of the two

parts of the algorithm.
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6.1.1 Part 1 of algorithm: The growth step: Adding materal and changing

topology

Based on observed behavior of the continuous optimization described in sections 6.3.1 and

6.3.3 and the landscape of �ow directions, described in section 6.3.2 we construct a new intial

point for continuous optimization based on a current local optima.

Section 6.3.1 describes how continuous optimization �nds sparse conductance networks

that are local optima, or that approach local optima, of the mixing dissipation function but

does not �nd the global optimum. Therefore, more points need to be tested as initial points

before we can conclude that what we have is a good approximation of the globally optimal

network. Since the recent network is expected to be sparse, we devise a way to add more

conductance to reintroduce vanished edges we call this the network growth step. Another

important issue is that short circuits between nodes that in the global network are well

separated steer the optimization o� course because the continuous optimization, especially

when taken together with the �ow direction change step, leads to a much shorter network

with a worse cost (see section 6.3.3). Therefore the way we add conductance must avoid

high conductance pathways between distant nodes.

After we add material, we explore the local landscape of conductances by changing �ows.

To probe networks that are similar to the recent network, we swap the directions of �ow on

a few edges within the network (see section 6.3.2). We refer to the directed graph of the

�ow network disregarding the strength of the �ows as the �ow topology. We are exploring

�ow topologies that are close to the initial topology -- that agree except for a small number

of �ow directions. We do this by solving for how to perturb the conductances to change the

topology.

We randomize the growth step by making the degree to which we grow the network, the

number of �ow reversals and by randomly choosing which �ows to swap and which edges to

perturb to engender these swaps.
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6.1.2 Part 2 of algorithm: Continuous optimization

After adding material and changing topology, we input the result into a continuous optimization

method to �nd the local optima that comes from the previous local optimum and the

current jump. To make sure that we su�ciently search di�erent �ow topologies, we use

an interior point method where we maintain the sign of the physical �ows stemming from

the conductances qij as non-linear constraints, to ensure that we do not change the topology

of the network. We use the Matlab implementation of interior point method using fmincon.

To boost the e�ciency of interior point, we compute the gradient of the objective function

using lagrange-multipliers as detailed in the Section 6.7.

All of the conductances in the network have to be non-negative. We hardwire non-

negativity into the conductances, by writing our function as a precomposition of the exponential

function on the set of conductances at each edge via de�ning the pre-exponential of each

conductance κ̃ij so that κij = exp(κ̃ij). To maintain the building cost of the function

it is convenient to formulate the optimization as choosing the best perturbation of the

conductances after the steps in part 1 of the algorithm. That is we write δij 7→ κij + δij and

�nd the optimal δij. We combine this with the exponential precomposition to be de�ne δ̃ij

to be such that δij = exp(κ̃ij + δ̃ij) − exp(κ̃ij). So the variable we are optimizing over is

actually δ̃ij the pre-exponential perturbation for each edge.

The last step before plugging the conductances into the mixing-dissipation cost is to

normalize the building material κij 7→
(

C∑
(i,j) κ

γ
ij

) 1
γ
κij.

Now we describe the way both parts are applied, how the optimization routine is initialized

how how we choose its termination. Also we talk about how the optimum is updated after

each iteration.
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6.1.3 Initialization, algorithm iterations and termination criterion

6.1.3.1 Initialization

In most of our numerical experiments we �rst initialize the κij to be chosen independently

and uniformly at random from [0, 1] then we apply the rescaling κij 7→
(

C∑
(i,j) κ

γ
ij

) 1
γ
κij so

that the building cost constraint is maintained from the outset. In cases where the algorithm

is unable to �nd good networks starting from random initial conditions we hand-pick the

initialization. In our numerical experiments this happens in the 2-source 2-sink case because

optimal networks may have one connected component, butthe optimization algorithm only

�nds a demonstrably higher cost function network with two connected components. For this

we need to choose a network which is connected and we suspect is close to the local optimum

and initialize the procedure with that.

6.1.3.2 Choosing the optimum at each step

At each step of the algorithm we perform the randomized growth step followed by random

topology change. Then we perform the continuous optimization method. Iteratively, we

replace the recent network by the new network if and only if it beats the prior optimum.

This makes our algorithm a greedy algorithm with random steps.

It is worthwhile to note a previously used method of that in designing our optimization

method we also experimented with using simulated annealing. We used simulated annealing

with a di�erent step scheme and the current one. Simulated annealing would guarantee that

we leave local optima and eventually choose better local optima [KGV83], but proved to be

highly ine�cient, in that it spent a lot of time exploring, or testing topologies that o�er no

advantage in terms of the cost function.

We choose a greedy algorithm because,based on it being successfully able to locate the

optimal network when c = .001 (at which value dissipation contributes negligibly to the cost

function, and for which we are able to show rigorously that the optimal network is a path
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that visits every node in the ambient network. This path is sometimes not reached because

growing the network can sometimes introduce geometric frustrations, especially in the square

grid case. In more than half of our trials, the algorithm converged to this path. Therefore it

is reasonable to generate many candidate optima using the greedy algorithm and choose the

best ones (see Section 6.8.1). Simulated annealing might be a better choice if in a further

study we choose to focus on very large grids and speci�c levels of c and do in-depth studies

of single samples.

6.1.3.3 Number of iterations and stopping criterion

Our growth step requires �rst picking a single direction in which to grow the network: up,

right, down or left. To ensure that every direction is sampled, every 4 iterations we choose

a new permutation of (1, 2, 3, 4) representing up, right, down, and left growth directions. To

be sure that we are not futily repeating the same step and to draw a clear line on when

to terminate the algorithm, we believe it is best to change the direction almost every time.

(We say almost because a two di�erent permutation might have the last direction of the �rst

permutation and the �rst direction of the second permutation line up).

We then count the number of times the di�erence between the mixing-dissipation cost

of the current and previous iteration di�ers by less than 10−2 . When this reaches 4 we

terminate the algorithm. Otherwise we allow the algorithm to run for 50 iterations, noting

that it rarely if ever reaches this. Usually the algorithm terminates in less than 15 iterations.

It is interesting to note that for the same building cost C and weight on dissipation c

besides the intial optimization on the dense network, the run time on the sparse network will

be the same or decrease because the network is less tortuously packed into the grid, allowing

there to be a larger available surface to add growths to.
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6.2 Summary of design of the optimization algorithm

Observations:

We observe the following through attempts of optimization

1. The continuous optimization eleminates many edges. So much so that it �nds local

optima that are much shorter than the expected local optima.

2. Di�erent topologies have di�erent local maxima. An honest algorithm would hop

between these segments of the domain.

3. Short circuits are very unproductive because the algorithm likes to delete the lengthy

graph in favor of putting all the material in the short circuit. This is because of the

dissipation term.

Therefore we want an algorithm that

1. Because of 1: Adds building material to the network, but without deleting or short

circuiting the recent optimal network. That is, the recent optimal network should

occur as a subset of the edges in the grown network.

2. Because of 1: Is capable of increasing the length of paths. (But also, must be capable

of shortening the path)

3. Because of 2: Deliberately changes �ows along edges. Purposefully swaps �ows.

4. Because of 3: Avoids adding material where it would short circuit the recent optimal

network.

Our algorithm answeres these needs by including the following features:

1. Need 1: The growth algorithm adds material that preserves characteristics of the �ow

of the network
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2. Need 2: The growth algorithm can add extra length by itself in the case of single

triangle growth and squares added to sharp turns. Path elongation a lso occurs during

the �ow swapping step.

3. Need 3: Our �ow swapping algorithm is speci�cally added to meet this need.

4. Need 4: The growth algorithm reduces by one edge either a path with 2 edges to one

edge in the case of triangles. Or a path with 3 edges to one edge. It does not bridge

say, vertices on longer paths.

6.3 Observations: Cost Function land-scape and basic optimization

behavior

In this section we present our method of estimating the minima and the minimizers of

NME(κij) + cD(κij) under the constraint
∑

(i,j) κ
γ
ij = C and κij > 0. To understand the

way our method is designed it is �rst necessary to have a detailed description of the land-

scape of the cost function we wish to optimize. By land-scape we mean the geometry and

smoothness of the graph of the function in relation to regions in its domain. We start

by investigating the results of �nding local optima using continuous search methods such

the interior point method via matlab's fmincon method. We discuss the pitfalls of simply

applying this technique. Notably, it is guaranteed to �nd local optima at best, and it does

not include a rigorous search through regions of the domain which might contain alternate

local optima. Notably, it is blind to what we refer to as di�erent �ow topologies. By �ow

topology we refer to the unweighted directed network given by the directions of the edges in

the �ow network. We will see that, in the domain of conductances, there are discontinuities

in the NME along values of κij along which �ows of the network switch direction. Even if

fmincon produced perfect results, we would not be con�dent that it is adequately checking

the partition of the space of positive conductancs with �xed building costs for every resulting

topology of �ows. We develop a way to explore this space locally using the Sherman-Morrison
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formula to explore the boundaries between regions. Also, to change the number of edges

with positive conductances, either increasing or decreasing the number of edges with building

material, we provide a method that keeps intact much of the recent �ow network while

o�ering neighboring possibilities to add new positive conductances and �ows.

The strategy we devise is not only directed to productively navigate the landscape of

conductances and �ows, it also does not a-priori restrict the space of searchable networks.

That is, even though it is tailored to the structure of the problem, it does not assume that

the optima are in a restricted set of networks. It could potentially �nd an optima even if it

contradicts our conceptualizations of what an optima would look like.

6.3.1 Results of continuous optimization

The cost function is a function on a smoothly parametrizable domain, the constraint surface∑
(i,j) κ

γ
ij = C , and this might seem to call for a continuous procedure such as gradient

descent or an interior point method. We investigate the results on a 5× 5 rectangular grid

with total �ow 1 and a single source and sink at the bottom left and top right corners.

We initialize the optimization with uniform conductances (see Fig. 6.3.1) building cost 24

and perform fmincon using the interior-point method with 100000 max iterations where we

provide an analytically computed derivative (see Section 6.7).
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Figure 6.3.1: Left: Uniform conductances, single source single sink boundary �ows of
magnitude 1. Right: Corresponding physical �ow on the square grid of side length 5.

We perform this optimization for mixing dissipation cost with c = .001, NME + .001D:

with such a small penalty on dissipation we are e�ectively only optimizing the NME. We

include some weight on the dissipation because it is a very small contribution to the value

of the function, but it is regularizes the conductances within the path so that they do not

become vanishingly small, causing possible errors in the calculation of the cost function and

its derivatives or causing the process to be numerically unstable.

Figure 6.3.2: Conductances and resulting physical �ow after fmincon with c = .001 and
CMD = −29.5252.
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The result is interesting in that it is not too far o� from the actual NME minimizer, which

we know is the maximum path going through all of the nodes. Recall that the actual NME

minimizer over �ows containing 25 nodes is − log(25!) = −58.0036 (see Theorem 5.1. The

estimate that our full �edged optimization obtains has a NME + .001D = −57.9711, with

NME = −57.9953 and is the maximal length path τ25 . The error in the NME is small, but is

caused by edges which should have very small conductance and �ow. Interestingly, there is a

path with a loop in the �ows on vertices {12, 11, 17, 16, 21, 22, 23, 24, 19}. A feature like this,

loops in the middle of the network, is important for our algorithm to take into consideration,

as it transitions to more optimal networks.

On the other hand, a continuous gradient based optimization techniques that accurately

cfonverge to dissipation minimizers for 1 source and 1 sink is presented in [CR18]. For

multiple sources and sinks, the optimum is a tree [BM07, Dur07] and the optimal tree is

found in repeated applications of a continuous relaxation technique. In those cases search

over trees needs to be paired with the relaxation technique [BM07]. We re-do this result by

optimizing NME + 100D, putting a high cost on dissipation so that e�ects from the mixing

are practically ignored (shown in Fig 6.3.3). The interior point method �nds the global

optimum which is the shortest path or geodesic connecting nodes 1 and 25 with uniform

conductances as proven in Chapter 5 Section and shown in [CR18]. The mixing dissipation

cost of this network is 77.5714 while the dissipation of this network is 0.8985. The theoretical

minimal dissipation of the geodesic is 8
1+ 1

γ

(24)
1
γ

= 83

242 = 0.8889. The slight inaccuracy is due

to the non-zero edges not included in the geodesic which are not fully eliminated by the

continuous optimization. These inaccuracies are tolerable for our purposes because they are

much smaller than the changes in the cost function caused by topology changes.
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Figure 6.3.3: Conductances and resulting physical �ow after fmincon with c = 100

Since fmincon alone gives inaccurate, although revealing results, it cannot alone be

relied on to accurately estimate minima. We are interested in accurate results produced

by as exhaustive of a search as possible. Di�erent initializations of the continuous search

algorithm will produce di�erent results, so points in neighborhoods of an extensive collection

of local optima need to be sampled. As we will see in Section 6.3.3, to e�ciently traverse

neighborhoods of di�erent attractor networks we need to deliberately modify the network

topologies, without altering the original �ow network so much that our algorithm is unable

to �nd local optima. For this reason, we rejected the algorithm of [KSM10] which we found

would only �nd the globally optimal network if initialized in the same region of conductance

space as it contains. Next we paint a picture of the geometric structure of the domain which

we will use to search over �ow topologies.

6.3.2 Flow network topology changes

Through it's de�nition of our objective function as a function of �ows has non-di�erentiable

points built into it. The �ow from node i to j q̃ij is de�ned using the markov chain, where

probability of transitioning frome one node to the toher is the ratio between the positive

�ow in that direction to the total �ow at that node. The total �ow of i can be written
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∑
j∈n(i),qij≥0 qij. The non-di�erentiable points of this term are when some qij switches signs

because the summand representing the directed edge i to j is constantly zero to the left of

0 and the identity to the right. Seeing that the NME is entirely in terms of total �ows and

q̃ij, and q̃ij is the i, j entry in the sum of powers of the markov chain, represented as a �nite

truncation of the geometric series of matrices 1
1−P .

Since we are optimizing the mixing-dissipation cost as a function of the conductances,

we phrase this as a perturbation of the conductance along an edge causing the direction of

�ow to swap along an a�ected edge. To optimize the mixing-dissipation cost the optimum

must be searched for in the region of each distinct topology. The reason for this is that along

changes in topology there may be hills separating di�erent local optima. This is depicted in

the following example.
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Figure 6.3.4: The contour plot of the mixing-dissipation cost (CMD), the total negative
mixing entropy (NME) and the dissipation (D). Points in the regions representing four
di�erent �ow topologies are shown.
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Figure 6.3.5: The conductances (top) and �ows (bottom) corresponding to the top-right,
left, bottom and bottom left points highlighted in the contour plots.

6.3.3 Short circuits

Due to dissipation preferring trees under the building constraint trees and path-networks are

strong attractors for the continuous optimization methods. This is even true at relatively

low values of c as in the next �gure. Here c = .2 < c25,23, which we know implies that if we

minimize over only path graphs, then the result should have 25 nodes.

Since the continuous optimization results in sparse conductance networks we are inspired

to add material in a fashion which maintains aspects of the �ow topology while o�ering a

collection of sub-networks to choose from. One way to do this would be to borrow the idea

from [KSM10] to apply a spatial convolution to the conductance edges with a smoothing

kernel, such a gaussian. That is, use the spatial coordinates of the grid, which we consider

to be i 7→
(⌊

i
N

⌋
+ 1, i mod N

)
where the residues of the modulo are taken to be 1, 2, . . . , N

and assign the edge a coordinate based on one of its vertices. For the demonstration in

�gure we use a convolution gaussian K(a, b) exp(((a− y)2 + (b− y)2) /r) where K(a, b) =

1∑
(x,y)∈N exp(((a−y)2+(b−y)2)/r) normalizes the sum over the edges to be 1. Then we rescale

the network to obey the building cost constraint. We call this process molli�cation. In
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Figure 6.3.6 we have applied molli�cation to the recent network and then applied continuous

optimization method. Note how the convolution short-circuits the network producting aa

much shorter network.

Figure 6.3.6: Recent network, followed by mollifying, followed by continuous optimization.
Notice the preference for a short circuit.

Although this approach works for the moving sink and dissipation under removing edges,

it is not an e�cient method for minimizing the mixing-dissipation cost. After applying

molli�cation, we have noticed that many steps were spent trying networks with a much

shorter length due to short-circuiting. At the same time, the solution is not to just make

the gaussian more tightly concentrated by making r very small. In that case too little

extra building material is added and the network is too similar to the original network the

continuous optimization deletes the newly added edges and reverts to the topology of the

recent network.

Even worse is if we combine a �ow swap to the molli�cation. We need �ow swaps because

it is a necessary part of thoroughly traversing the land-scape, as well as breaking out of local

optima. But if we use molli�cation or a method of adding building material which does

introduces short circuits then a �ow swap might drastically change the topology because it

might stop and reverse �ows present in the recent network in favor of the short circuit.

Our method of optimization needs to add material in a way that o�ers new �ow topologies

while avoiding cutting the shortest low resistance path from the source to the sink down by

too large of an amount. Also, it is important that the newly added edges are strong enough
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so that the initial input into the continuous optimization does not immediately delete then,

We aim to both add new material to expand the possible low resistance sub networks and

preserve the progress of the routine by approximately keeping the network of �ows from

the recent network intact. We keep the idea of convoluting by a smoothing kernel as an

inspiration while minding that nodes cannot be connected to downstream nodes.

6.4 How to deal with zero conductance edges

Edges in the ambient conductance network (square or triangular grid) with that are assigned

vanishingly small conductances need special treatment. As it has been discussed in section

6.3.1 minimally dissipative networks with the building constraint with exponent 0 < γ < 1

favor loop-less networks and the continuous part of our optimization often removes edges

to minimize the number of loops (measured through Betti-number) in the network, making

it very sparse. These observations can be useful to make our optimization as e�cient as

possible, but we proceed with care not to design an algorithm which samples only from a

class of sparse networks. Although we want our algorithm to search the collection of paths

and trees, which we know contains we know to be good candidates for optima, it must also

be capable of �nding an optimal network if it lies outside of this class.

The growth step also does not force the network to be treelike even though it does prevent

large short circuits. For a path network, the growth step acts like a dilation of the set of

edges present in the recent network. It adds material in a way that adds more non-zero �ow

paths between sources while preserving the topological qualities of the network. The extra

attention to make sure that the material added is similar to the nearby material cost is to

prevent added paths from being overwhelmingly strong while being good enough avenues of

�ow to be considered by the continuous optimization.

181



6.4.1 Considering edge conductances below a tolerance to be 0 (deleting edges)

All of the optima produced by our optimization algorithm assign non-trivial conductances

only to a small subset of the edges present in the ambient grid. We therefore consider it

a safe choice to disregard edges with very small conductances from computations in order

to e�ectively reduce the dimension of the space that the continuous optimization is working

on. We discuss this in detail with regards to the continuous subsection in Section 6.4.2, the

network growing method Section 6.5 and we discuss method for �nding roots which bring

about �ow direction switches in Section 6.6

6.4.2 Disregarding low-conductance edges in continuous optimization to reduce

dimension of search

As we have discussed in Section 6.3.1 we pre-compose our function by an exponential to

enforce positivity o� the bat and we also put a lower bound on the logarithm of the positive

conductances to be −11 which corresponds to the cutting o� all conductances below e−11 =

1.6702× 10−5 because in practice, if we do not then the conductances along connected sub-

networks where every node has a degree of 2 (paths) take a long time to converge to a uniform

set of conductances. In practice, without a lower bound, the path parts of the network are

notably thinner towards the middle.

In our numerical experiments, we have noticed that the continuous optimization has a

tendency to eliminate edges, not create edges. This is one of the inspirations for the growth

step. Material needs to be added for the continuous optimization to sculpt an optimal

network from. We are lead to write the mixing-dissipation cost as a function of edges with a

conductance above a certain level because the interior point method has not been observed

to revive vanished edges. Noting that for large enough c the optimal network is always the

geodesic, and for small c the optimal network is the network going through as many points as

possible. Then the size of the search space for an optimization can be reduced by a constant
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factor in the case of the maximal path and by O(N) in the case of a geodesic. Even if the

�nal local optima obtained from continuous optimization is a dense graph, for non-zero c it

has been seen that intermediate steps usually involve sparse networks (O(N) edges).

Therefore, restricting the function to the high conductance edges reduces the dimension

of the optimization for many of the iterations of the algorithm. This reduces the run-time

of the interior point method because the size of the search space is reduced in dimension as

well as the out-put dimension of the barrier function corresponding to preserving the �ow

dimensions.

We �nd the edges with conductance < 10−4 deleting them and leaving all other edges.

We apply this �lter after the growth step and subsequent building cost rescaling but do not

apply it again when we are performing �ow swaps, because �ows after �ow swap may be very

small and �ltering out small conductances may swap the �ows back to the recent topology.

This way we can �nd a local optima in the section of space corresponding to a desired �ow

topology (as in Fig 6.3.4).

The inclusion of the dimension reduction has sped up the algorithm contributing to the

feasibility of performing thousands of samples as well as considering very large ambient

networks. For example using the intersection c's cm+1,m (or cm+2,m for square grids) we can

pick the c which has a path of much shorter length than the ambient grid. For instance we

can sample a path of length 25 that has 24 edges (but may be slightly more because of a

not previously considered loopy part) in a 9× 9 square grid with 144 edges. This e�ectively

reduces the work on a 9× 9 grid at this level of c to the amount of work on a 5× 5 grid. We

do not have a proof, but experimental results suggest that optimizing NME + cD for �xed

value of c is O(1) with respect to N the side length of the ambient grid.
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6.5 The growth step

6.5.1 Square grid

Before we describe the algorithm we de�ne what we mean by saying a node is in of the

support of the network. A node is in the network if the sum of the weights of neighboring

edges is above a certain threshold. In our implementation of the following algorithms, a node

i is considered to be in the support if at least one of the conductances of edges adjacent to i

is greater than or equal to 2×10−2. An edge is in the support if it's conductance is 2×10−2.

We add new conductance material to an existing network using what we call the network

growth step. It is written Growup(κij) for a conductance network κij, where �up� in the

subscript can be replaced with the �right�, �down� and �left� to denote the direction of the

growth. Here we describe in detail every step of the algorithm. Intuitively speaking, the

network growth step can add material in four directions. That is, it can add conductances

to edges with vertices above, to the right, below and to the left of nodes in the support. We

choose to do this in a single direction at a time because doing so enables us to be sure that

we are not inadvertently adding a short circuits to the network. For approximate optimal

networks in the collection of results in this paper, we use two steps per iteration of our

optimization routine. For both the square and the triangular grid.

We only describe how to perform the growth step in the upwards direction. Then

network growth to the right, bottom, and left are all de�ned through this using di-hedral

transformations of the spatial network. That is, for two involution dihedral symmetries

termed R and L, we de�ne

GrowRight(κij) = L(Growup(L(κij)))

GrowDown(κij) = R(Growup(R(κij)))

and

GrowLeft(κij) = LR(Growup(RL(κij)))

184



where R is a rotation by π radians, and L is the re�ection over the axis going through the

bottom left and top right corners. These transformations are speci�cally chosen, as we will

see, so that the diagonals in the triangular grid and to ensure that triangular and square

grids are similarly handled in our algorithm.

Growth in the upwards direction for square grids

We start with a network of conductances and we consider the support and it's complement.

This is depicted in �gure 6.5.1a by nodes in the support having their edges drawn in black

and nodes outside of the support having none of their adjacent edges drawn.

1. First we locate edges in the square grid for which their top nodes are outside of the

support of the network and their bottom nodes are inside the support of the network.

2. We add positive conductance to these edges as is depicted in �gure 6.5.1b. Suppose

that i is in the support and i + N is outside of the support. Speci�cally, the amount

we add is the average conductance of edges adjacent to i above a positive threshold.

In our numerical experiments we use 2× 10−2.That is we add∑
j∈n(i):κij>.02 κij

# {j ∈ n(i) : κij > .02}
(6.5.1)

to each new upwards edge. This is so the conductance of the new material has a similar

magnitude to the neighboring material in order for the �ow down new edges to be a

similar size to the �ow down old edges. Call the new network κupij

3. In the support of κupij we locate the vertical edges and de�ne the set of top nodes to

be the nodes which are the tops of any of the vertical edges. The top nodes are circled

in �gure 6.5.1c.

4. If two top nodes are horizontally adjacent we add positive material if the horizontal

edge directly shifted below is in the support of the network. The amount conductance
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we add to an edge is the same as a the conductance of the horizontal edge directly

below. Note: We do not consider if the edge between two top nodes is in the support

and the edge below is in the support. Extra material will be added to this edge. This

might be slightly less elegant (although slightly easier to code) and the authors do not

believe this alters the optimization quality. The only case when this will occur is if a

square with side length 1 is in the support.

5. Note the �nal network has a di�erent total building cost than the original, but networks

are always re-scaled to have the chosen building cost before reaching the continuous

optimization routine. Note: As in �gure 6.5.1d there may be edges which connect to

the support at only one node. These are not eliminated because in our experience, the

continuous optimization routine will send their conductance to below the threshold at

which it will be �ltered out, e�ectively reconsolidating the material into the rest of the

network.

(a) (b) (c) (d)

Figure 6.5.1: 6.5.1a. The initial network before growth. 6.5.1b. The network including
added conductance along vertical edges from a node in the support of the network to a
node outside of the support of the network directly above it. 6.5.1c. The network from step
2. with all vertical edges in the new support highlighed in blue. Nodes at the top node
of vertical edges circled. The dotted lines with arrows stem from horizontal edges in the
support of the network upwards to newly added edges connected top nodes of two vertical
edges. 6.5.1d. The new network with growth in the vertical direction.
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6.5.2 Triangular grid

Growth in the upwards direction

We take the de�nition of the support network as above. The triangular grid is more complex,

but an analagous growth step is outlined for networks on the triangular grid. First we draw

the triangular network so that its vertices are arranged the same way as the square ambient

grid. (To do this we have to alter the lengths of edges within the network). We recycle the

notation Growup(κij) where �up� can be replaced by �right�, �down� and �left�. We use these

four orthogonal directions for the triangular grid because they are enough to add material to

any edge with vertically, horizontally and diagonally adjacent nodes which lie outside of the

support. As in the square case we generate the other growth directions from the de�nition of

the upwards growth by conjugating the results by L,R and LR . It is easy to see that these

preserve the adjacency of the nodes by keeping the diagonals between the bottom right and

top left nodes of each square. In our experiments we perform the triangle growth step twice,

one growth coming directly after the �rst, in each iteration of the optimization routine.

1. First we locate vertical edges in the triangle grid for which the top node is outside of

the support of the network and the bottom node is in the support of the network.

2. Add positive conductance to each of these edges depicted in blue in �gure 6.5.2b we

call this new network κijup. The amount of conductance we add is again equal to the

average conductance of the edges adjacent to the bottom which are in the support as

in equation 6.5.1.

3. In κupij locate the nodes which are top nodes of edges in the support. Call this set the

top nodes. These are circled in �gure 6.5.2c.

4. For every top node i, add conductance to an edge between a horizontal node directly

to the left if there is a diagonal edge in the support network such that that diagonal

edge, the vertical edge down adjacent to i and the considered new horizontal edge form
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a triangle. Let the added horizontal conductance be equal to the arithmetic mean of

the vertical and diagonal nodes in this triangle. These are depicted in orange in �gure

6.5.2c

5. Not considering the horizontal nodes added in step 4 and only the edges in the support

of κupij we now add conductance to diagonal edges. For every top node i, if the node

directly below it has an adjacent horizontal edge pointing right in the support add a

diagonal edge from the top node to the node to the right of the node directly below i.

The new diagonal edges are colored dark green in �gure 6.5.2c. Add conductance to

this edge with an amount equal to arithmetic mean of the conductances of the vertical

and horizontal edges in the support directly down and left of this edge.

(a) (b) (c) (d)

Figure 6.5.2: In �gure 6.5.2a a recent triangular network input into the growth algorithm.
Note that we have distorted edge lengths so that the vertices are the sasme as the ambient
square grid. In �gure 6.5.2b conductances are added to the vertical edges connected a node
in the support to a node outside of the support of the network in blue. In �gure 6.5.2c
horizontal and down-right diagonal edges are added stemming from the top nodes such that
edges in the support complete triangles with these added edges. The new horizontal edges
are in orange and the new diagonal edges are in dark-green. Figure 6.5.2d is the new network
obtained from one upwards growth step.
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(a) (b)

Figure 6.5.3: Figure 6.5.3a is the network obtained from performing two upwards growth
steps on the network in �gure 6.5.2a in a row with new horizontal edges in orange and new
diagonal edges in dark green. Figure 6.5.3b is the same network with all edges in the new
support shown colored black.

6.5.3 Desirable properties of growing the network for optimization

6.5.3.1 Avoiding short-circuits

We only need to consider the upwards growth steps because the same properties hold for

the other directions by swapping each mention of a direction with its rotated or re�ected

counterpart.

In the upwards growth step step 2, adding upwards edges does not connect any two nodes

in the support by a new low resistance edge. The only step that does is step 4 when horizontal

conductances are added. Still, if two nodes in the support are connected by a new horizontal

edge, by the way we have chosen the nodes, they are already connected by a path with

exactly 3 edges in the support. The new shorter path is not a very big change to the path

length from source to sink. It is true that more distant nodes are connected with paths, as is

the case in �gure 6.5.1c with the nodes in the bottom right corner. Still, in the cases we have

explored and encountered in running our optimization, the far away nodes are connected by

edges with very similar conductances to the already existing path through a path nearly as

long. Therefore, the new paths are not greatly preferred as lowering the dissipation of the
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network, and they do not attract the continuous optimization to sub-optimal local optima.

The upwards growth step for triangle grids is similar in this regard. It only connects

nodes in the support which already have a path with two support edges connecting them.

The newly shortened paths are not short low resistance avenues for conductance connecting

distant nodes in the network. Any new path connecting nodes is of a similar length and

conductance as an existing path since we add new paths to adjacent support nodes and the

conductances of new edges are similar to the conductances of neighboring support edges.

Running the growth direction twice, in our experience only shortens paths between nodes

by very small amounts.

6.5.3.2 Incremental growth, decrease in network length and addition of bubbles.

Incremental growth is achieved by using the growth step in tandem with the �ow swapping

step. The growth step, as we can see o�ers new longer paths which are adjacent to the

existing paths.
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Figure 6.5.4: From left to right top to bottom. The initial netowk. A grow network step to
the right the corresponding �ows note the direction of (25,26) a conductance network
with a perturbed edge to swap the �ow (18,25). The corresponding �ow network. Lastly,
the �ow network of the continuously optimized network. Note the new turn at 25,26 ,
adding length to the network. Also the grow network step added more loops to the network.
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Figure 6.5.5: Two downwards triangular growth steps. The top two images are the
conductances ad �ows of the original networks. The bottom two images are the conductances
and �ows of two new networks. Note how the topologolical properties are preserved and
there are no high conductance paths connecting nodes which are very far apart in the
original network. Note how the conductances added are very similar to their neighboring
conductances, a feature built into the algorithm.
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Figure 6.5.6: A path network on the triangular lattice. It undergoes a growth step in the
upwards direction, followed by continuous optimization. There is no topology swapping this
time. Often times a growth step alone is very productive in increasing the length of networks.

6.5.4 Overview

As we have seen in Section 6.3.1 the di�erent possible �ow topologies on the network carve

the space of all possible conductances into distinct regions. Between these regions are hells

on which the mixing-dissipation cost becomes high. At the boundary between the regions the

cost is not di�erentiable. Continuous optimization algorithms that incrementally decrease

the function value from traversing. Therefore, continuous optimization alone cannot be

expected to explore conductances and physical �ows corresponding to a variety of di�erent
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�ow-direction graphs.

For reference it is good to look at the landscape of the cost function corresponding to

four di�erent �ow directions given by perturbing two edges in Fig 6.3.4. Theses contour

plots are a depiction of the cost function restricted a two dimensional subspace of the

set of conductances. This suggests that di�erent �ow direction networks are separated by

intersecting manifolds, most likely of co-dimension one (if the gradient of the �ow along each

edge as a funcction of conductances is non-zero). To be fully certain that every �ow direction

network was considered, we would have to de�ne these boundary sub-manifolds and curves

crossing through them. This is a di�cult, possibly intractable, problem, but the graph also

suggests that changing one �ow direction at a time is an e�ective way to locally explore the

topologies similar to one under consideration.

6.5.4.1 Choosing the �ow direction network to test for minimum

For this reason we �nd a closed formula for the perturbations which will arise in exactly one

�ow change. In our �ow direction changing routine (fully described in section 6.6) we �rst

randomly chose, up to a prede�ned limit a number (2 in the applications presented in this

paper) of �ow reversals. Then we de�ne a new network by randomly choosing one of the

possible perturbations of conductance along a single edge which swaps the �ow in exactly

one other edge and adding it to the network. We keep track of both the edges whose �ows

we reversed and the edges we perturbed. We repeat the process by randomly choosing a pair

of possible edge to swap �ows (a�ected edge) and conductance (causal edge) perturbation

giving rise to the �ow change, excluding all other previously �ow direction changed edges and

perturbed edges from consideration. We stop once the set limit of �ow-reversals is met or the

network runs out of �ows reversible by single edge perturbation. We then take this network

as the starting point of the continuous optimization routine, applying the added non-linear

constraints that the direction of the �ows must be the same as that of the starting point.

We do this by computing the pressure di�erences between all pairs of adjacent nodes in the
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original network and recording this list of signs, and enforcing that the pressure di�erences

between adjacent nodes is > 0 if the pair has a positive value in the list and < 0 if the pair

has a negative value in the list.

We compare this to the recent local optimum, and choose the new local optimum if it

has a lower mixing-dissipation cost. At the beginning of the next step we initialize the set

of perturbed conductances and �ow change pairs to be empty, randomly pick a new number

of �ows to reverse and repeat the process.

Note that we remove both the causal edge and its a�ected edge from consideration even

though perturbations in a single edge may lead to �ow reversals in multiple edges. Our goal

is only to �nd topologies close to the current one, so we search for the smallest positive and

negative perturbations at which a �ow reversal occurs. We don't want to recover our starting

topology by reversing �ow in the same edge twice. In practice, sincewe consider only a small

set of �ow reversals, and we want to spread the reversals out over the network as much as

possible. Also, it is desirable to have direct control how much the network is altered in each

step. The opportunity to perturb one edge twice to swap a �ow is not completely missed

because it might be an available �ow reversal in the next round of the optimization routine.

6.6 Formula for �nding perturbations swapping �ows.

As in the ambient networks we study in our computational experiments, the square and

triangular grids with side length N , let the nodes be referred to by an indexing 1, 2, . . . N2.

(This section is applicable to any type of network, it is for convenience that we use the same

de�nitions throughout the computational part of the paper.) Throughout this section, we

assume that the network of conductances has one connected component in the sense that

removal of the edges with zero conductance do not produce a disconnected graph. Our

method can be modi�ed for situations (such as the two source-two sink con�gurations shown

in Fig. 4.4.2) where the graph has more than one connected component. Then we know
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that the Laplacian of the conductance matrix de�ned in Chapter 2 Section 3 ∆κij has rank

N2− 1. We form a new matrix which is a version of ∆κijthat is invertible on the space of all

sets of pressures whose restriction to the sub-space {0} × RN2−1 (that is p1 = 0 and pi are

free i 6= 1) is equivalent to ∆κij which we refer to as the invertible Laplacian and denote it

by ∆̃κij . If dij is the i, j entry of ∆κij then de�ne ∆̃κij to be the N2 ×N2 real matrix with

entries d̃ij such that

d̃ij =


d11 + 1 i = 1, j = 1

dij otherwise
.

To see that ∆̃κij is invertible let p be an N
2 dimensional vector (list of pressures) such that

∆̃κijp = 0. Then applying the original Laplacian to p we �nd that ∆κijp is the vector with

−p1 in the �rst entry, and all other entries zero. For all columns of ∆κij , summing the entires

is zero, implying that the sum of the entries in ∆κijp must be 0 therefore −p1 = 0 and along

with all of the other entries, showing that the kernel is 0. To see that its restriction to the

subspace {p1 = 0} is equivalent to the Laplacian restricted to the same subspace let p be

such that p1 = 0. Then ∆̃κijp is the sum of columns 2 through N2 of the ∆̃κij multiplied by

p2 through pN2 respectively. Since these columns agree with columns 2 through N2 of ∆κij ,

we have equality ∆̃κijp = ∆κijp.

The initialization of the optimization routine is that each edge is a random variable

distributed uniformly i.i.d and then subsequently re-scaled to obey the building cost, and the

network is connected with probability very close to 1. However, as the network evolves under

the optimization algorithm, the algorithm will cause κij to be approximately disconnected

at some step. That is, removal of edges with very low conductance, for example κij < 10−4

, disconnects the graph. In our numerical experiments, even though many conductances are

brought to be close to 0, they never become exactly 0, and the Laplacian ∆̃κij is invertible

and the way we compute the inverse is numerically stable enough for our purposes. That
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is max
∣∣∣inv(∆̃κij)∆̃κij − IN2

∣∣∣ is often less than 10−6 and has not been observed to be bigger

than 10−5. Therefore, since we only use the inverse of the Laplacian to compute the �ow

changes (we use the Matlab linear solver in the computation of the objective function and

gradients for the interior point method, and this computes the Morse Penrose inverse when

the Laplacian becomes over-determined, e�ectively assigning pressure p=0 to any nodes that

are disconnected from the source, which is an unproblematic way to handle disconnection of

the graph) it is suitable for our optimization even when many edges are deleted. There are

several ways to �x this in a mathematically rigorous sense, such as writing the code to be

more modular to exclude nodes and edges from the node and edge list, e�ectively deleting

rows and columns from the adjacency matrix and Laplacian at each step if the total weight

is small. Our algorithm accurately �nds �ow reversal with a small number of missteps such

as when a �ow is weak, it sends it closer to zero, instead of changing its sign, so we have

elected not to make these extra improvements.

6.6.1 Closed formula for �ow reversals

We use the following formula for the inverse of the sum of a matrix and the outer product of

two vectors introduced by Jack Sherman and Winifred J. Morrison [SM50] in our calculation.

Theorem 6.1. (Sherman-Morrison) Suppose that A is an invertible n × n matrix and u

and v are two n dimensional vectors which are presented as single column matrices. Then

1 + vTA−1u is non-zero if and only if A+ uvT is invertible and when this holds,

(
A+ uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u
. (6.6.1)

For 1 ≤ i ≤ N2 let ei represent the ith standard basis vector, that is ei has 1 for its ith

entry and 0 for all other entries. Let κij be a network of conductances. Let t represent a

perturbation to the network of conductances along the edge connecting nodes a, b. Then

if we also refer to the adjacency matrix for the conductance network as κij, then this is
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equivalent to changing entry κab to κab + t. We refer to the conductance network and

adjacency matrix obtained from κij from adding t to the conductance on edge (a, b) as the

perturbed conductances and denote it

κ̃ij =


κab + t i = a, j = b

κij otherwise
.

The Laplacian for the perturbed conductance network is the same as the Laplacian for the

original network except that we add −t to entries a, b and b, a and we add +t to the diagonal

entries a, a and b, b. The Laplacian for κ̃ij is equal to

∆̃κ̃ij = ∆̃κij + t(ea − eb)(ea − eb)T .

Then by equation 6.6.1 we have

∆̃−1κ̃ij =
(

∆̃κij + t(ea − eb)(ea − eb)T
)−1

= ∆̃−1κij −
∆̃−1κij t(ea − eb)(ea − eb)

T ∆̃−1κij

1 + (ea − eb)T ∆̃−1κij t(ea − eb)
.

Let u, v be another edge in the network. We wish to �nd a perturbation of a, b such that

the �ow along u, v is reversed. This can only happen when pu − pv = 0. We solve for the

root and see that the pressure drop from u to v is of the form r+ q(t−s)−1 so the sign of the

pressure drop swaps from one side of the root to the other. Let Q be the vector of boundary

�ows with Qi the boundary �ow at i. We have the pressures of the perturbed conductance

network with boudnary �ow Q

p̃ =

(
∆̃−1κij −

∆̃−1κij t(ea − eb)(ea − eb)
T ∆̃−1κij

1 + (ea − eb)T ∆̃−1κij t(ea − eb)

)
Q.

Let Ri be the ith row of ∆̃−1κij , which, since ∆̃−1κij is symmetric, is the transpose of the i
th
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column of ∆̃−1κij and dij be the i, j entry of ∆̃κij . Then the pressure at node u in the perturbed

conductance from with the boundar �ows Q is

p̃u = RuQ−
t (dau − dbu) (Ra −Rb)Q

1 + t (daa − dab − dba + dbb)
,

and so

p̃u − p̃v = (Ru −Rv)Q−
t (dau − dav − dbu + dbv) (Ra −Rb)Q

1 + t (daa − dab − dba + dbb)
.

Therefore the pressure drop is a monotonic function of t, so the the zero of this equation is

where the pressure reverses. Setting the left side to 0 we get the perurbation of a, b tabuv

tabuv =
(Ru −Rv)Q

((dau − dav − dbu + dbv) (Ra −Rb)Q− (daa − dab − dba + dbb) (Ru −Rv)Q)

=
pu − pv

(dau − dav − dbu + dbv) (pa − pb)− (daa − dab − dba + dbb) (pu − pv)
.

Using this formula we store the list of pairs of causal edges (a, b) and a�ected edges (u, v)

and their roots tabuv. This can be done using for-loops but we take advantage of singleton

expansion in Matlab to store these roots as a N2 ×N2 ×N2 ×N2 array where the �rst two

dimensions correspond to nodes on a causal edge and the last two dimensions are the nodes

on the a�ected edges. After that we �lter out perturbations which violate the positivity

constraint on κij that is, we only keep tabuv such that tabuv + κij > 0. For our application we

add some slack to avoid making the conductance along a cut set too small by removing roots

from consideration with 5× 10−3 − κij > tabuv: the main function of this �lter is to prevent

the algorithm from getting stuck engineering and then re-engineering �ow reversals on edges

that already have very low conductances. We also disregard roots that change �ows along

edges which have too low conductance because we do not want to change the �ow along

edges which are considered deleted.
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6.7 Continuous Optimization Step

6.7.1 Enforcing positivity and the building cost constraint

For each �xed set of �ow directions, we wish to �nd the conductances and corresponding

magnitudes of �ows which are optimal in terms of cost of mixing and dissipation. We

do not have su�cient hypotheses to guarentee a unique minimum for a given direction of

�ows. Therefore the continuous optimization routine is at best able to ensure a local a local

optimum.

Let κ0 be our initial set of conductances represented as an adjacency matrix. Let κ̃0 be

the adjacency matrix of the logarithm applied to each conductance�the log conductances.

Let δ̃ be a perturbation to the log-conductances. Then the resulting additive perturbation

on the conductances is δ = exp(κ̃0 + δ̃)− exp(κ0).

Given a set of conductances, optimizing the mixing-dissipation cost under the constraints

is equivalent to optimizing the log-perturbation. The log-perturbation is chosen because

e : δ̃ 7→ exp(κ̃0 + δ̃)

maps the set of all real adjacency matrices on the underyling grid to the set of all positive

adjacency matrices. We choose this -recomposition because even the interior point algorithm

may go outside of the feasible region, and negative conductances are absolutely prohibited

and may even lead to some of our coded functions not being able to be evaluated.

To enforce the building constraint, after a perturbation of the log-conductance we re-scale

the perturbed conductance (written as an additive perturbation of conductance) via

r : κ0 + δ 7→

(
C∑

(i,j) (κ0ij + δij)
γ

) 1
γ

(κ0 + δ).

If κ0 is the network after the growth process and �ow swaps then to perform the
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continuous optimization we �rst take the adjacency matrix formed by log(κ0ij) for all κ0ij > 0

then we run the interior point method on

NME ◦ r ◦ e(δ̃) + cD ◦ r ◦ e(δ̃).

We maintain the directions of �ows by �rst computing the signs of qij at the initial point

(perturbation of 0, δ = δ̃ = 0 at conductances κ0) for each ordered pair i, j of neighboring

nodes. We write this qij(κ0). Recall pi(e(δ̃)) denotes the pressure at each node i computed

for the conductance matrix e(δ̃). Then we maintain the non-linear constraints using barrier

functions in the interior point method maintaining for all neighbors i and j

sgn(qij(κ0))(pi(e(δ̃))− pj(e(δ̃))) ≥ 0.

In the language of optimization we write this

minimize : NME ◦ r ◦ e(δ̃) + cD ◦ r ◦ e(δ̃)

subject to : sgn(qij(κ0))(pi(e(δ̃))− pj(e(δ̃))) ≥ 0 for all (i, j) ∈ E

κ̃+ δ̃ > −11

the second constraint is so that too much e�ort is not expended in shrinking edges. We note

that applying this constraint leads to close to uniform conductances on path parts of the

network.

We are able to speed up the run-time of this algorithm via including a closed form

computation of the derivatives of the objective function NME ◦ r ◦ e(δ̃) + cD ◦ r ◦ e(δ̃).
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6.7.2 Computing the derivatives

In this section we give the details of how we compute ∂
∂κij

NME(κij), ∂
∂κij

D(κij), ∂
∂δij

r, ∂
∂δ̃ij

s

and via the chain rule, the derivatives of the composition ∂
∂δ̃
NME ◦ r ◦ e + cD ◦ r ◦ e. The

total derivative is then the matrix product of the derivatives of ∂r
∂κij

and ∂s
∂δ̃ij

. Taking on the

most di�cult and interesting derivative �rst we compute the derivative of the NME with

respect to the conductances κij.

6.7.3 Computing the derivative of NME with respect to κij

Before we compute the derivative of the NME we note that we write κij as |E| dimensional

vector, instead of as a matrix for our contributions. Thus κij ∈ R|E|≥0. Recall the de�nition

of the negative mixing entropy, NME is

NME(κij) =
∑
i

fi
∑
j

q̃ji
Ni

log

(
q̃ji
Ni

)
.

Even though κij does not explicitly appear anywhere in this expression, the negative mixing

entropy for a set of boundary �ows can be seen as a function of κij because together with

boundary �ows, the κij conductance network results in a unique set of physical �ows. In

total, we can write the composition of function that yields the negative mixing entropy

graphically as

κij 7−→ pi 7−→ fi Z=⇒ Tij 7−→ Pij Z=⇒ q̃ij 7−→ Nj Z=⇒ NME.

Where a single arrow 7−→ represents a function of the immediately preceding variable

and Z=⇒ represents a function of more than one of the variables to the left. We recapitulate

each of these de�nitions and mappings in 7 function compositions listed here.

1. pi are the pressures at each node i and can be found by solving Qi−
∑

j∈n(i) κij(pi−pj)
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for all nodes i simultaneously. This is the same as �nding a solution to matrix vector

product ∆κp = Q.

2. Then qij = κij(pi − pj) is a function of κij and pij and so is fi =
∑

j∈n(i) qij1qij>0 +

|Qi|1Qi<0.

3. Then the Markov chain is formed via Tij =
1qij>0qij∑
j 1qij>0qij

is a function of the �ows.

4. The hitting probabaility matrix is a function of Tij via P = 1
1−T .

5. The �ow from i to j q̃ij can be viewed as a function only of Pij via considering fi =∑
a source Pai but we consider fi as its own variable, so q̃ij is a function of Tij and fi

computed q̃ij = fiTij.

6. Recall Ni is the normalizing constant of the distribution of species arriving at node i

which is the sum Ni =
∑

j:q̃ji>0 q̃ji, so it is a function just of the �ows from one node

to another.

7. Lastly the NME, as written immediately above is a function of fi, q̃ij and Ni.

This list of compositions makes it tempting to compute the derivative using the chain rule.

Without any cleverness applied besides the concept of products of multi-dimensional arrays,

this is computationally ine�cient theoretically in terms of space and in practice in terms of

time. This is mostly we have matrix valued functions of matrices, and the most natural way

to store their total derivatives is as a 4 dimensional array. We actually have successfully

carried this out using the tensor package from Sandia National labs for Matlab, but the

computation was too slow for our application due to the spatial complexity of the process�

even with using their sparse arrays. Therefore we borrow methods of back-propagation, as

applied to similar biologically inspired �uid �ow problems in [CR18] and tailor the algorithm

to the complicated function we wish to optimize.

The basic idea is to consider the intermediate variables as free variables and apply their

de�nitions as the images of functions via Lagrange multipliers. Then we compute the values
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of the intermediate variables, take the derivatives with respect to the free variables, �nally

we set the constraint functions equal to zero and solve for the Lagrange multipliers. Then

the derivative with respect to κij is the derivative of the cost function extended to include

the solved multipliers. Solving the Lagrange multipliers ends up being a sequential process

where we �rst solve for the one �closest� to the objective function and then proceed backwards

based on their dependencies.

We have the lagrangian (where N is the set of all nodes)

Θ =
∑
i∈N

fi
∑
j:q̃ji>0

q̃ji
Ni

log

(
q̃ji
Ni

)
−
∑
i∈N

αi

Ni −
∑
j:q̃ji>0

q̃ji

− ∑
i,j∈N

γij (q̃ij − fiPij)

−
∑
ij∈N

µij

(
δij −

(
Pij −

∑
l∈N

TilPlj

))
−
∑
i

∑
j∈n(i)

λij

(
Tij −

qij1qij>0

fi

)

−
∑
i∈N

βi

fi − ∑
j∈n(i)

qij1qij>0 + |Qi|1Qi<0

−∑
i

νi

Qi −
∑
j∈n(i)

κij(pi − pj)

 .

After formulating this function, �rst compute the values of the intermediate variables,

pi, qij, fi, Tij, Pij, q̃ij and Ni. Then take the derivative of Θ with respect to Ni to obtain an

expression for αi in terms of Ni, fi, q̃ji. Then working through the following sequence in order

top to bottom, observe that we can solve for the Lagrange multipliers on the right using the

Lagrange multipliers on the left and the equation setting a derivative of Θ equal to 0

α
∂Θ
∂q̃ab

=0

−→ γ

γ
∂Θ
∂Pab

=0

−→ µ

µ
∂Θ
∂Tab

=0

−→ λ

(λ, γ)
∂Θ
∂fa

=0

−→ β

(λ, γ, β)
∂Θ
∂pa

=0

−→ ν.
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We proceed to do this. For variables with one index let the bold version represent the

column vector for the variable, (e.g. p for pi) and for variables with two indices let the bold

version represent the matrix indexed by those variables, (e.g. µ for µij).

First lets solve for α by isolating ther terms dependent on Na they are.

fa
∑

j:q̃ja>0

q̃ja
Na

log
q̃ja
Na

− αaNa.

The derivative with respect to Na is

∂Θ

∂Na

=
∑
i

(
− q̃ia
N2
a

log

(
q̃ia
Na

)
− q̃ia
N2
a

)
− αa = 0.

Therefore solving for α we only need to multiply the �ow matrix q̃ by the diagonal matrices

diag(N−2) or diag(N−1), take the logarithm applied to positive entries and sum down the

columns.

We then solve for γ. First we extract all of the terms being summed that depend on q̃ab.

We get

fb
q̃ab
Nb

log

(
q̃ab
Nb

)
− αb (Nb − q̃ab)− γabq̃ab.

Then the derivative of Θ with respect to q̃ab is

∂Θ

∂q̃ab
=

fb
Nb

log

(
q̃ab
Nb

)
+
fb
Nb

+ αb − γab = 0

Thus

γab =
fb
Nb

log

(
q̃ab
Nb

)
+
fb
Nb

+ αb.
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Now we solve for Lagrange multiplier µab. The terms which depend on Pab are

−
∑
ij∈N

µij

(
δij −

(
Pij −

∑
l∈N

TilPlj

))
−
∑
i,j∈N

γij (q̃ij − fiPij)

µabPab −
∑
i

µibTiaPab + γabfaPab

Then the derivative with respect to Pab is

∂Θ

∂Pab
= µab −

∑
i

µibTia + γabfa = 0

and solving for γab we get

γab =

(∑
i

µibTia − µab

)
/fa

Then in terms of matrix multiplication, γ can be expressed as where diag(f−1) is the diagonal

matrix with 1
fa

on the diagonal for a ∈ N

γ = diag(f−1)× (µ− T ′µ).

Now we solve for λab. For this we need the terms depending on Tab where (a, b) ∈ E .

These are

−
∑
j∈N

µajTabPbj − λabTab.

Then the derivative with respect to Tab is

∂Θ

∂Tab
= −

∑
j∈N

µajPbj − λab = 0

therefore, in matrix form this is λ = −µP ′.
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Next up is to �nd β in terms of λ and γ. For this we �nd only the terms depending on

fa. These are

fa
∑

j:q̃ja>0

q̃ja
Na

log

(
q̃ja
Na

)
+
∑
j∈N

γajfaPaj +
∑
j∈n(i)

λaj
qaj1qaj>0

fa
− βafa.

Taking the derivative of Θ with respect to fa we get

∂Θ

∂fa
=

∑
j:q̃ja>0

q̃ja
Na

log

(
q̃ja
Na

)
+
∑
j∈N

γajPaj −
∑
j∈n(i)

λaj
qaj1qaj>0

f 2
a

− βa = 0.

Solving for βa we get

βa =
∑

j:q̃ja>0

q̃ja
Na

log

(
q̃ja
Na

)
+
∑
j∈N

γajPaj −
∑
j∈n(i)

λaj
qaj1qaj>0

f 2
a

.

This can be simpli�ed by viewing some of these terms as matrix multiplications. The �rst

term is the matrix
∑

down columns q̃ × diag(N−1) · log(q̃ × diag(N−1)) where diag(N−1) is

the diagonal matrix formed by N−1a on the diagonal. The second term is the diagonal of the

matrix γP ′. The third term is the diagonal of the matrix λ(q>0)
′diag(f−2) where q>0is

the matrix for qij except negative terms are made to be zero. This summarizes how we can

compute βa using matrix operations.

Lastly, we solve for νa. We write down the terms which depend on pa. They are

∑
j

κajpa(νa − νj) +
∑
i∈n(a)

(βaqai1qai>0 + βiqia1qia>0) +
∑
i∈n(a)

(
λai

qai1qai>0

fa
+ λia

qia1qia>0

fi

)
.

We know that ∂
∂pa
qai = κai and ∂

∂pa
qia = −κia. Thus the derivative with respect to pa of Θ is

∂Θ

∂pa
=

∑
j

κaj(νa − νj) +
∑
i∈n(a)

(βaκai1qai>0 − βiκai1qia>0) +
∑
i∈n(a)

(
λai

κai1qai>0

fa
− λia

κai1qia>0

fi

)
.

Note that
∑

j κaj(νa−νj) = ∆κν. The �rst term of the second sum amounts to masking the
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adjacency matrix for positive �ows, multiplying across rows by βa and summing across the

rows. The second term is the mask of the adjacency matrix of the conductances for negative

�ows with the matrix product by the column vector β. The third sum can be expressed in

a similar fashion. Therefore, solving for νinvolves solving for the laplacian of κij on terms

which are summing across the rows of a matrix or matrix-vector multiplication. This is the

format we use for coding the derivative in Matlab.

Finally, we solve for the derivative of the NME with respect to κab. The terms depending

on κab are

λab

(
qab1qab>0

fa

)
+ λba

(
qba1qba>0

fb

)
+ (βaqab1qab>0 + βbqba1qba>0) + (νa − νb)κab(pa − pb)

and taking the derivative with respect to κab we get

∂Θ

∂κab
= λab

1qab>0 (pa − pb)
fa

+ λba
1qba>0(pb − pa)

fb
(βa(pa − pb)1qab>0 + βb(pb − pa)1qba>0)

+ (νa − νb)(pa − pb).

Since we have solved for νi,βi and λij we have an expression for the derivative with respect

to κab.

6.7.4 Derivative of the dissipation

To get the derivative with respect to κij of the dissipation we can solve it in a similar

method to the above to essentially prove what we cite as Cohn's theorem. The derivative is

∂D
∂κij

= − q2
ij

κ2
ij
also written ∂D

∂κij
= − (pi − pj)2.

6.7.5 Derivative of the pre-exponential and the re-scaling.

For the derivative of the re-scaling we need to consider derivatives with respect to the

conductance we are currently re-scaling and derivatives with respect to conductances that
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are not the ones being multiplied. We get

∂

∂κkl

Cκkl∑
κγij

=
C
∑
κγij − Cγκ

γ
ij(∑

κγij
)2 .

∂

∂κxy

Cκkl∑
κγij

=
C2 − Cκklγκγ−1xy(∑

κγij
)2 for x, y 6= k, l.

The derivative with respect to the pre-exponential is just to multiply by exp(−δ̃) elementwise.

6.8 Method of sampling and curation of global optima

We use Theorems 5.4, 5.6 in Chapter 5 as a guideline for our sampling procedure. Our

mathematical result from that section guarantees the existence of a γε such that for γ < γε

loopy networks with − log((m + 2)!) + ε < NME < − log(m!) − ε do not contribute to the

graph of θ restricted to cm+d,m ≤ c ≤ cm,m−d, where d is the permissible increment between

path lengths between two points (recall it is 1 for a triangular grid and 2 for a square grid).

It does not directly give insight into the graphs at di�erent values of γ nor does it tell us what

the collection of optimal networks will be for cm+d,m ≤ c ≤ cm,m−d. Still, we use the idea that

the graph of θ and the optima of the mixing-dissipation cost have a di�erent characteristic

on each interval cm+d,m ≤ c ≤ cm,m−d as a heuristic.

By Theorem 5.4 minimizing over tree graphs always leads to shortening by the minimal

permissible path size di�erence as we pass from [cm+d,m, cm,m−d] to [cm,m−d, cm−d,m−2d] where

the optima over the �rst of these intervals is a path of length m, i.e. τm and the optima

over the second of these intervals is a path of length m − d, i.e. τm−d. In practice running

the optimization algorithm of the paper and by the investigations in [BM07, Dur07, Cor10,

KSM10] optimization of minimal dissipation networks with a given set of sources and sinks

while maintaining a �xed material cost with exponent 0 < γ < 1 gives a tree structure,

and combining other types of functions produces loopy but with betti number decreasing for
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decreasing γ. Our algorithm has yielded networks which are similar to paths with a loopy

�head� sub-network at the source set, so the discontinuous changes in the path length over

trees as the weight is taken to be in di�erent intervals in the partitions over intersection

points does appear to a�ect the minima at di�erent levels of γ. By this observation it seems

important to sample each interval [cm+d,m, cm,m−d] with equal thoroughness.

Our strategy is as follows: �rst compute the values of c for the intersections between lines

from paths of neighboring lengths τm and τm−d, cm,m−d for 2N −1 < m < N2 where N is the

side length of the grid. We also take a left end point book end of .01 to be close to 0. This

is preferable to choosing c = 0 because the NME only depends on �ows, and an arbitrarily

irregular set (in that some may be very large and very small) of conductances which may

lead to numerical instability can produce the same set of �ows. For the right-most end point

book-end we use c2N−1+d,2N−1 +x where x = 1 or 3 depending on the setting. In our cases for

both triangular and square grids it is x = 1 for γ = .5, .2 and the latter x = 3 for γ = .8. We

include the intervals [0.01, cN2 ] and [c2N−1+d,2N−1, c2N−1+d,2N−1 + x] in our sampling. Then

between consecutive points, cm+d,m, cm,m−d or the lower and upper book-end intervals pick

T equally spaced points,

cm+d,m, cm+d,m +

(
cm,m−d − cm+d,m

T

)
, cm+d,m + 2

(
cm,m−d − cm+d,m

T

)
,

. . . , cm+d,m + (T − 1)

(
cm,m−d − cm+d,m

T

)
.

And run the optimization algorithm on each of these weights for each pair of consecutive

intersection points out of the possible intersection points on the grid once. The optimization

algorithm is greedy in nature, and therefore produces only approximates the optimal values of

the mixing-dissipation cost. The quality of the approximations are indeed random variables

given by the initialization of the optimization routine and the randomly chosen growth

directions and topology changes. This may make it seem to be a good idea to sample each

of these points many times to get better approximations of the optima. It is actually both
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more accurate and simpler to instead increase T the number of sub-divisions.

To see this intuitively, assume for argument that the probability of the optimization

routine terminating at the optimal network is non-zero, p. Let T be the total number

of subdivisions of an interval and say we are trying to approximate the function on that

interval. If we �x T and sample each point enough, then the best approximation we can be

guaranteed to obtain of θ at any c in the interval is a piecewise linear function with T disjoint

pieces. If instead of repeatedly sampling each subdivision we increase T then for large T

the number of perfectly approximated optima is roughly pT uniformly sampled points in

the interval. Although each local optimum corresponds to a speci�c value of c, the same

network can be used for di�erent values of c, producing an a�ne cost function (since both

dissipation and NME are �xed). Thus our numerical minima give us pT a�ne functions to

minimize over and this quantity can be increased to our desire. It is also clearer and quicker

to implement and adjust because it requires only one for-loop and one value controlling

simultaneously the number of subdivisions and sample size. Our computed local optima

enable us to approximate θ as the envelope of the a�ne cost functions of our computed

locally optimal networks, θ̂. This envelope is de�ned as follows:

De�nition 6.1. For T > 0 samples of positive real numbers ci and the corresponding

networks κi, total negative mixing entropies NMEi and dissipations Di for 1 ≤ i ≤ T de�ne

the envelope of κi , θ̂ : R+ → Rto be the pointwise minima of the collection of mappings

{c 7→ NMEi + cDi : 0 ≤ i ≤ T} .

That is for all c > 0

θ̂(c) = min
0≤i≤T

NMEi + cDi.

The envelope thus de�ned gives the best mixing-dissipation cost at each value of c, searching

over all of the computed local optima.
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6.8.1 Global optima

In the spirit of sampling at one point many times, we can subdivide the space again after

we perform many samples. Then in each sub-division we �nd the distance between the

cost functions of all of the local optima generated in that interval and the envlope of cost

functions de�ned above. We then identify the network that has the minimum distance from

the envelope.

We apply this notion of an optimal network after we compute the mixing-dissipation

minima for the sampled c. We take a sequence of points, starting with the minimal c (usually

c = .01) and ending with the maximal c. After the minimal c, the sequence is cn,n−d where

d is taken to be 1 or 2 based on the ambient grid. From the last intersection point, (c11,9 or

c10,9) to the maximal c, we include a sequence subdividing the last interval. The intervals

formed by subsequent elements in this sequence are referred to as search-intervals.

We then choose a number of sub-divisions for each search-interval [a, b]. If the number

of sub-divisions is 1 we take c and its corresponding optimal network κij minimizing

NME(κij) + cD(κij)− θ̂(c). (6.8.1)

If the number of sub-divisions is n > 1 then for each m = 0, 1 . . . , n − 1 we take the c and

κij minimizing the expression 6.8.1 over the interval
[
a+m

(
b−a
n

)
, a+ (m+ 1)

(
b−a
n

)]
.

6.9 Global optima for each numerical experiment

Every numerical experiment minimized the mixing dissipation cost on ambient grids of side

length 5. We also hold the total material cost constant at 24. That is, for all material

cost exponents γ used in the numerical experiments, the conductance networks obey the

constraints.
∑

(i,j) κ
γ
ij = 24. We do this to �x the slope line generated by the tour τ25 as a

reference point for the plots of each curve to be compared against. Here we list the search
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intervals and the number of sub-divisions for each experiment.

• Square grid with boundary �ows of one source and one sink with exponent γ = .5

� Search interval end-points: .01, cn,n−2 for 25 ≥ n ≥ 11, c11,9 + 1. Number of

sub-divisions: 2.

• Triangular grid with boundary �ows of one source and one sink with exponent γ = .5

� Search interval end-points: .01,cn,n−1 for 25 ≥ n ≥ 10, c10,9+1. Number of sub-

divisions: 1.

• Square grid with boundary �ows of one source and one sink with exponent γ = .8

� Search interval end-points: .01,cn,n−2for 25 ≥ n ≥ 11,c11,9 + {1, 2, 3, 4, 5, 6.5, 7}.

Number of sub-divisions:1.

• Triangular grid with boundary �ows of one source and one sink with exponent γ = .8

� Search interval end-points: .01,cn,n−1 for 25 ≥ n ≥ 10, c10,9 + {2, 4, 6, 7}. Number

of sub-divisions:1.

• Square grid with boundary �ows of two sources and two sinks with exponent γ = .5

� Search interval end-points: .01,cn,n−2for 25 ≥ n ≥ 11, c11,9,
c11,9+13.01

2
, 13.01.

Number of subdivisions: 2.

6.9.1 Sampling details

For one source and one sink, we have found that, in practice, 50 evenly space points between

intersection points is enough to get a good approximation of the graph of θ but that if

γ ≤ .5, near the intersection points between paths are strongly attractive and twice as many

samples are needed to accurately resolve the optima near these points. Therefore, we choose

100 sub-division of each interval and apply this uniformly. Similarly, even at smaller values
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of γ, if there are multiple sources and sinks in the network, a more in depth investigation of

the nature of the networks than is possible for this thesis would be necessary to be sure that

we are �nding the true global optima.

We note that, some of our numerical experiments use even �ner sampling of c values.

For the 2 source 2 sink square grid at γ = .5 with one half of the evenly spaced points are

sampled twice and the interval has between 4 and 6 times as many sampled c values than our

experiments with single source, single sink networks. This is because we consolidated data

from multiple trials, where we attempted to partition the sampling over several machines

because running many experiments simultaneously resulted in running out of memory. We

do not eliminate these data points because they only increase the robustness of the results.

Summarizing, the majority of intervals in the experimental results have 100 evenly spaced

samples and some have close to 200.

6.9.2 Optimization tuning parameters

For the 5 × 5 triangular grid with source in�ow of 1 at 1 and sink out�ow of −1 at 25 for

each step of the optimization routine we choose the number of iterations of the growth step

bernoulli-1
2
from {1, 2} and after choosing the number of growths, we choose the number

of topology changes greater than or equal to 0 and less than or equal to the number of

growths. Two is chosen as the max possible number of growths because one growth step is

only guaranteed to add at least a cycle with 3 sides to it, while 2 growth steps may add

several conjoined squares with their diagonals, thus allowing for larger loops. For 5× 5 grids

it seems like more growth steps is not necessary. From the initial conditions alone, loops

may be included in the network, and their size can be elongated or shrunk by the growth

step, so it is believed that large enough loops are taken into consideration. Since our optimal

networks contain loops with no more than two extra nodes on each side of the loop, and

our growth algorithm allows larger loops to be made, we believe that two steps of growth

are su�cient to fully explore the space of allowed networks. Growth steps add material
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uniformly, and perturb the network away from any optima that is has found, so there are

tradeo�s between having enough growth steps to move the optimization method away from

a poor local optimum, while still allowing it to reconsolidate material back to a strong global

optimum if it is perturbed away from one.

6.9.3 Post-processing the results

We sample points according to the method described in Section 6.9.1 after �rst weakening

the already weak edges of the network. Speci�cally any edge with conductance κij < 1 ×

10−3 is assigned the much smaller conductance κij = 1 × 10−9. Running the interior point

network on the new support, and allowing it 5000 iterations gives a very small but noticeable

improvement on the approximation of θ using the envelope θ̂. We check the validity of this

�ltering by comparing our putative global optima from Section 6.9.1 with the results of

Section ??. Without this pos-processing our approximation of the optimal networks is only

mildly worsened. In particular, the algorithm does not allocate material so uniformly along

the edges of any paths within the network, as we would expect it to for minimization of

dissipation.
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CHAPTER 7

Discussion

7.1 Changes to the model

We have de�ned two notions of mixing entropy both of which are tied to the assumptions

that networked organisms' responses to stimuli emerge from responses occuring at every node

in the network, and that each such node receives signals from other nodes through advective

currents. The negative mixing entropy models the uniformity signals that each node receives

from other nodes in the network. We can think of it as representing the diversity of signals

arriving at each location in the network. On the other hand the negative sending entropy

models the diversity of locations within a network that signals originating from each node

may reach. Both measures of mixing carry biological importance: A �ow network that did

not evenly disperse information (i.e. with low sending entropy) may be de�cient in terms of

its ability to marshal an organism-wide response to new information, such as the presence

of new food sources, or localized fungivory. A �ow network in which individual nodes do

not receive a diversity of signals, may hinder the ability of those nodes to make decisions

about the cues that the entire network is subject to, as well as being vulnerable to resource

plundering, if the signals in consideration are nucleotypes, and too many mutant nucleotypes

congregate at a single point within the network.

Our model makes the most basic assumptions about node importance, that every nodes

signal or response is proportional to the amount of �ow it controls. To model biological

networks, the weighted importance of nodes or strengths of signals should be informed by

data. For instance, the signals from the spatial periphery of a foraging network might take
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higher importance than interior regions which are less likely to discover new food sources. On

the other hand interior regions are important for collecting information about risk such as

toxins or light sources, and as the primary sites for nuclear division, may generate new

nucleotypes also.. Another consideration is modelling the generation of molecular cues

or nuclear divisions as a random variable. In our model signals occur at each node and

are transerred downstream with a rate proportional to the �ow. Since nodes occur every

one unit of length, this is akin to assuming external stimuli are generated at a constant

nonrandom rate per unit length or area. An example further direction is to formulate a

model where information is instead generated by a poisson point process on a planar region

with parameters informed by experiments.

Figure 7.1.1: Image of multi-nucleate mycelium from [RSH13] with two �uourescent tagged
nucleotypes. Note how, together, the di�erent nucleotypes form the entire population of
nuclei being transported by the �ow.

Our mixing entropy is de�ned with the assumption that advected signals do not interact.

That is their concentration is much smaller than the total volume that is transported. This

assumption may be appropriate for molecular cues, but is not a good model for experiments

involving of red and green �uorescent tagged nuclei in N. crassa [RSH13] in which all �owing
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nuclei must be assigned to one or another population (Fig. 7.1.1). The consequence of non-

interacting signals is that the ratios of the signals in the normalized probability distribution

are proportional to the �ow originating at the signalling node and arriving at the destination.

If, on the other hand, signals consume a signi�cant portion of the volume along each conduit,

their summed strength is equal to the �ow along one conduit and they divide this �ow up,

that is, rather than normalizing probabilities of nuclei arriving at a particular point in the

network by the total transmission probability of getting from each node to the point, we

must normalize by the �ows arriving via the conduits that the node is connected to.

flow = 2

3

flow = 1

3

Pi(j)

flow = 2

3

flow = 1

3

Pi(j)

Figure 7.1.2: Left: Diagram of signal strengths and distribution for computation of the
NME presented in this paper. Right: A diagram of signal strengths and distribution for
computation of a mixing entropy model whose development is for further research.

The left panel of Fig. 7.1.2 represents the model that is the subject of this paper and

does not assume interaction between signals. Since the along the tubule with the �rst four

signals has twice the intensity of the second in�owing tubule, each signal probability from

the �rst tubule is twice as large as the probability from the second tubule. Therefore the

probability of each signal from the stronger �ow is 2
9
and the probability of the signal from

the weaker �ow is 1
9
.

The right panel of Fig. 7.1.2 represents a di�erent model from the one studied with the
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assumption that signals take up the total volume of �ow. The total volume of signals per

tubule is represented by a collection of disks. Note that the incoming �ow of magnitude 2
3

is transferring twice as many disks as the �ow of magnitude 1
3
. Since there are 4 di�erent

types of disks, the occurence of each type of disk from the larger �ow is 1
4
× 2

3
= 1

6
whereas

the occurence of the orange disk from the weaker �ow is 1
3
.

7.2 Further directions for improving numerical simulation

Our ambient grids have realistically bounded degree and the nodes are a dense approximations

of points in space if we increase the grid length and re-scale conductances to produce a

mesh with bounded total material. This does not imply that the sets of paths will become

closer approximations to all paths in eulidean space. For square grids the graph distance

between points whose vector di�erence makes an angle ±π
4
from the horizontal line is always

a factor of
√

2 larger than the euclidean distance, because of the city block paths that

�ows must take between the two vertices. Similarly, for triangular grids the graph distance

between points whose vector di�erences make an angle π
6

+ nπ
3
, n = 0, 1, . . . , 5 is always

factor of 3
2
larger than the euclidean distance. With our ambient grids, we are bounded

away in accuracy from approximating arbitrary continuous paths of any arc-length. Since

real biological transportation networks are not bound to any particular ambient grid, to

realistically model how organisms construct optimal 2-dimensional conductance networks

for any function [KSM10, TTS10, Cor10, BM07] we must consider how well the ambient

graph approximates the euclidean distance [Che89, KG92]. Another approach to choosing

an ambient grid is to mimic the properties of biological networks. Mycelia such as those of

N. crassa tend to branch from a food source with bounded degree and each branch has its

own hyphal branching and some cross-linking, thus allowing networks to be approximated

by lattices that are less robust than geometric spanners [KG92]. Slime mold networks have

a phase that can be approximated by a random lattice from which pruning may occur to

leave a mature presumably optimal network [TTS10, Ali18, NYU00].
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We know single source single sink networks with a material cost exponent γ = .5

will contain more loops if simulated on larger grids. But direct numerical optimization

of networks on large ambient networks carries high computational costs. Changes to our

model such as those suggested in Section 7.1 may a�ect the topology such as altering the

assumption that the signal receivers and senders occur once per unit of length. Research

into improving the e�ciency of our algorithm would provide further insight into how such

networks would look in a continuous setting by successively subdividing them into regions

of �xed length. Since our research shows that optimal networks naturally subdivide into

subnetworks (such as the loop-path structure identi�ed in Section ??) this suggest that the

complexity of the optimization can be reduced by dividing the ambient grid and optimizing

each portion separately.

Although real biological transportation networks have features that resemble our mathematically

calculated optimal networks, it is not clear how real biological transportation networks �nd

optimal structures. Structural adaptation is a mechanism by which networks adjust the

radii of the �ow conduits in response to the �ows in the network. For example increasing

conduit size in conduits with high �ow and otherwise decreasing tubule leads to shortest

paths becoming high volume cords, and to the reliable construction of minimally dissipative

networks [Ali18, AKF17, TTS10]. Is there an algorithm for structural adaptation that

enables networks to optimize their mixing?

Our analysis of optimal mixing networks has highlighted the balance between loop formation

and paths created by tradeo�s between minimizing dissipation and maximizing mixing. Our

analysis shows that gamma plays a role in controlling this balance. But for real systems,

gamma is likely �xed, since it re�ects the cost of building network conduits. To explore loop

formation independently of gamma, we propose to consider a new cost function that adds a

penalty term for average path length L(qij) multiplied by a scalar d, may lead to networks

with loops at γ = .5, especially if ĉ is a weight on dissipation known to produce paths

of intermediate length (e.g. 19 on ambient grids of side length 5). For example it would
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be interesting to numerically minimize NME + dL + ĉD under the material cost constraint∑
(i,j) κ

.5
ij = 24 and d ≥ 0. Increasing d will decrease the average path length, and the fact

that shorter paths than 19 are not favored by the mixing-dissipation cost may result in a

loopy subnetwork appearing near the origin. As we discuss in the next paragraph, we expect

our optimization algorithm to be appropriate for this new cost function.

7.3 Other uses of our optimization algorithm

Our optimization algorithm iteratively improves the conductance network, and is considerably

more robust than gradient descent when the function of interest is not di�erentiable, or

when it becomes non-di�erentiable when any of the conductances in the network approach

0. Although it was designed with our function in mind, it is well suited for other functions,

especially those optimizing a cost function on conductance networks of the form F (qij) +

D(κij) where F is a function de�ned in terms of a �ow network and D is the dissipation of the

physical �ow given a conductance network. Our algorithm iteratively adjusts the topology

of the �ow network and �nds local optima of F within the region of the set of conductances

giving rise to this topology. The second uses a continuous optimization algorithm such as

gradient descent or, in our application, the interior point method

The function F may depend on the topology of the �ow network in terms of its directions.

At the same time continuously optimizing dissipation promotes sparse, tree-like networks.

Therefore to search for a new local optimum, extra conductance material needs to be added

to the network.

We then solve for a new conductance along a randomly chosen edge that swaps the �ow

along one edge. Special consideration needs to made to preserve the progress in �nding

the optimal topology of the �ows. If too many new edges are included in the conductance

network, the random choice of a conductance swap may close o� a large swath of paths in the

�ow network from the previous step. We preserve the topology of the network by avoiding
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the introduction of short-cuts when adding material. The design of this algorithm is not

speci�cally geared to optimize the NME and could be used for any function on the �ows.

One example is
∑

i fi
∑

j∈n(i)
qij∑

k∈n(i) qik
log
(

qij∑
k∈n(i) qik

)
, which is equivalent to the entropy of

the distributions of paths from the sources to a node i [TT93]. This has a similar form to the

NME in that it is a continuous function of �ows at each node weighed by the �ow through

the node, guarenteeing it is continuous on the hyperplanes where both nodes and edges are

erased from the network. Including a penalty term for average path length might also lead

to loops in the γ = .5 setting.

7.4 Further directions for theoretical results: 1. Network size scalings

A subtlety in our mathematical analysis and the proof of Chapter 5 Theorem 5.6 and

Theorem 5.7 is that it relies on the size of the ambient grid. We do not have any statement

about �xed c and larger ambient grids with the same connectivity. A real biological transportation

network can expand the size of its ambient grid by generating features on smaller and smaller

length scales. By contrast, the numerical results in 4.3 have bounded Betti number. This

along with the visualization of the conductance networks in Fig. 4.3.2 Fig. 4.3.8 reveal that

the parameters lead to optima with a bounded set of edges with medium conductance and

�ow.

It is not known whether optima for similar values of c on larger networks will have the

same number of edges. Is there a network size after which a phase transition occurs, that a

small number of medium strength edges becomes sub-optimal to many very low conductance

edges? The connection between ambient grid connectivity, size and optimal networks should

be investigated to see if optimal networks do not depend on their ambient grid. Nonetheless,

even if there is a dependence on the size of the ambient grid, real biological networks can

not generate features down to arbitrarily small length scales, since the physical diameter of

conduits is constrained by the granularity of protoplasm: a N. crassa hypha must be large
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enough for a nucleus or vacuole to easily pass through it.

There are other functions that are dependent on the ratios of total �ows at nodes for which

Theorem 5.8 holds. One example is �ow entropy as de�ned by Tanyimboh and Templeman

[TT93]. This is de�ned for a �ow network qij as
∑

i fi
∑

j∈n(i)
qij∑

k∈n(i) qik
log
(

qij∑
k∈n(i) qik

)
.

Can a similar theory be built about the cost function penalizing dissipation with the �ow

entropy? As we have explained above, our numerical methods seem to be suited to optimize

such a function, and the optimal networks on a �xed number of nodes might be able to be

ascertained this way. Also, the asymptotics of functions on �ow such that the intersection

points cm,m−1 are decreasing with increasing m de�ned for any function can be discussed.

Would it hold for �ow entropy? The fact that the theorems hold allow a convenient way to

select for networks by their size using the importance placed on dissipation.

7.5 Further directions for theoretical results: 2. Understanding

loop placement and complexity

As we have noted in Chapter 4 Section 4.3, the globally optimal networks in Fig. 4.3.2

and Fig. 4.3.8 indicate that if there are loops in an optimal network, they tend to occur

with smaller loops closer to the source and larger loops further from the source. A further

direction would be to run numerical simulations on larger grids or to attempt to state and

prove theorems in the style of loop placement theorem (Chapter 6 Section ?? Theorem 5.10)

that compare loops of di�erent sizes and interconnectedness perhaps characterized by average

path length of the loops, occuring closer to the source when optimizing the NME. We see

in our experiments optimizing mixing-dissipation cost for networks with many sources that

contribution to average path length shifts from paths with a �ow of 1 to paths with less �ow

occuring towards the sources of the network. Is there a single trend that contains the trends

of combining of �ows from many sources and placement of loops?

Hierarchical, self similar loops has been studied from the point of view of resilience [KM12,
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Cor10] and also as promoting dispersal of signals [MAA16]. The results from optimizing the

mixing dissipation cost with many sources and one sink ?? indicate that �ows originating

from multiple sources combine hierarchically, with separate �ows originating from a partition

of the sources combining into separate paths, a partition of those paths combining into a set

of paths with larger �ows and so on. Both of these observations could result in the large

network limit in self-similarity. Analysis of the structure of loops using an approach such as

that described in [KM12] or persistent homology [KM12, EH08] could shed light on whether

the �ows obey either a hierarchical or self-similar nature.

7.6 Connection to biological �uid �ow networks

The �rst organism that led us to study mixing, N. Crassa is tree-like, extending its mycelia in

many directions. It is not highly reticulated in comparison to some of the optimal networks

we have obtained, yet experimental evidence demonstrates that it mixes di�erent nucleotypes

throughout its network using advective currents. What are then the morphological features

that lead to the capacity to uniformly integrate nuclei across its network? One observation

that may shed light on this question is that N. crassa is known to posess hyphal links between

up-stream locations along its conduits [RET11]. There is evidence that fungal mycelia follow

Murray's law [HOG12], yet this would imply that any edges besides those needed for �ows

in the direction of the growing tips is energy ine�cient.

A �rst attempt to model N. crassa mycelial networks would be to optimize the mixing

dissipation cost on a grid with one source at a corner and 3 sinks drawing 1
3
of the demand of

the �ow each. This would match an assumption of three main conduits. From our numerical

studies and experience simulating mixing-dissipation cost minimizers we expect the optima

to essentially follow a transition from a path that goes through evey node with the sinks

placed at the most downstream positions possible. This, or any other negative result, should

not necessarily dissuade us from consider NME when studying mycelial �ows. The presence
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of up-stream hyphal linking is a feature that is actually posessed by the optimal networks

γ = .8.

Figure 7.6.1: Left: Pictures of N. crassa mycelia from [RET11]. Right: Loopy subnetwork
from an optimal �ow network on the sqaure ambient grid.

In the left panel of Fig. 7.6.1 we have a loopy subnetwork extracted from an optimal

network. Note that there are links running horizontally along the three vertically running

vessels. Although this network has only one sink, the small loops near to the source mix the

�ows as the space between further linking becomes longer. We can conclude that linking

postively e�ects the mixing in this scenario. Perhaps it increases the mixing in more tree-

like networks. An added penalty related to average path-length lead to mixing-dissipation

optimizers with the 1-source many-sink boundary �ow being mostly comprised of the shortest

path from the source to the three sinks, but including cross-links to mix the signals. As we

have mentioned in Section 7.1 and depicted in Fig 7.1.2, the assumptions of whether signals

combine to make up the total volume of the �ow should be taken into account when modelling

nucleus mixing �ows. Perhaps optima under this assumption will resemble mycelial �ow

network topology more closely.

An average path length penalty makes sense because it has been observed that morphology

of mycelia of some fungal species change as the organism is starved, leaving the shortest
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cords to connect di�erent regions in the network. Dissipation does promote shorter paths,

but average path length is important for constructing a network backbone which serves as

high volume transport tubules even after the morphology has gone through a lot of changes.

That is, we want to optimize mixing and dissipation for the �ows at the current time, but

at later times and di�erent scheme �ow schemes, a shorter transport path will prove to be

of continuous use.

It has been observed experimentally that slime mold in its dendritic form [NYU00]

exhibits the highest rate of mixing. This form occurs after pruning network tubes, usually

in the order that tubules towards the center are pruned �rst. The ones that are pruned are

thought to be those that are along paths with sub-optimal lengths, and the ones that remain

provide low dissipation pathways for �ow [NYT01, THA00b]. The characterstic of being

�fanned� towards the exterior, with connections to central veins has been noted to promote

the mixing and as well as disperal collection of food or molecular cues [AKF17, MAA16].

As evidence that energy considerations for dissipation from friction and network upkeep

hold, slime mold exiting food-deprived environment has been shown to obey tubule radii

measurements suggesting the network obeys Murray's law [AKF17].

There is semblance between networks built by our numerical experiments and these real

life networks. For NME optimal networks, if there are loops, they occur towards the source.

For evidence see the results of the mixing-dissipation cost optimized for γ = .8 in Chapter 4

Section 4.3 and Chapter 6 Section ?? Theorem 5.10 for evidence. Although we are not aware

of a physical scenario corresponding to material cost exponent γ = .8 it still represents a

penalty applied to conductances to a higher number of distinct vessels, a realistic constraint

to consider when slime mold is in a starved state.

An interesting model inspired by slime mold would be 1
2
(NME + NSE). This is can be

understood as the ability for the �ow to collect and mix signals as well as the �ow to disperse

signals to a variety of nodes. As proven in Chapter 2 Theorem 2.1, this is the average of the

NME of equal strength �ows in opposite directions. Since NME optima are reticulated near
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to the source, we predict that optimal networks with this function appear to be reticulated

towards both the source and sink. If we orient the sources and sink along the boundary, we

might expect that conductance networks optimizing this bi-direction NME and dissipation

are reticulated around the spatial periphery.

Figure 7.6.2: Image of the dendritic morphology as referred to by Nakagaki et al. in [NYU00]
(left). Pruned slime mold network colored by the e�ective dispersion (Marbach et al) in
[MAA16] (right).

Although our model is simple, this has a connection to �ows in P. polycephalum as

they are believed to �ow in two opposite directions when caused by a contraction wave

spanning the entire network [AAP13]. Since the NSE is a measure of dispersal, it would be

an interesting to investigate quantitatively the degree of reticulation towards the periphery

in starved slime mold networks [Ali18]. As we have mentioned, we conjecture that optimal

networks are more hierarchically reticulated towards the source of the �ow (alternating source

and sink for both �ow directions). Since path length plays a central role in the loop placement

proof it seems as though that concept can bridge a connection between the placement not

only of a loopy subnetwork, but of loops in general by size. This idea could be especially

applied under a material cost constraint. In slime mold foraging, material is continually sent

to the expanding fans shown in Fig. 7.6.2. Our modeling and analysis suggest that the fans

may ensure that material is maximally dispersed among the possible destinations within a

fan.
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Another comparison that would be interesting to pursue is how the NME changes as

fungi or slime mold inspired adaptive growth models are evolved in time. For instance, the

model of �ow strengthening tubules which are otherwise decreasing in strength at a constant

rate results in formations that contain central cords or bottle necks, similar to our optimal

networks [AKF17].

Some mathematical models based on the assumption that networks optimize a function,

such as Murray's law, have had success in explaining experimental measurements. This

assumption in other cases is too simplistic. We do not purport that networked organisms

optimize the mixing-dissipation cost alone because there are many other factors relevant

to their survival. Still, the NME would be elevated for networks that appear to have

mixing �ows. This corresponds less to �nding optimal networks and more to computing

the dependence of network functions on existing networks.

Another approach would be to compute the correlations of various functions on numerically

generated networks. For example: what are the correlations of dissipation with broken links

[KSM10], �ow entropy and NME? Such a study can illuminate structural features that

positively in�uence various functions of �ow networks. Such a study has been done before

comparing resilience to network entropy on city water distribution networks [GDS12].
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CHAPTER 8

Role Detection in Bicycle-Sharing Networks Using

Multilayer StochasticBlock Models

(Joint work with Jane Carlen, Jaume de Dios, Shyr Shea Chang, Stephanie Wang and Mason

Porter)

8.1 Introduction

It is useful to view cities as large spatial networks under constant evolution, with intermittent

large-scale changes [Bar18, Bar19]. Transportation systems and commuting patterns shape

and reveal the functional regions in a city [BBG18], and an increasing amount of evidence

suggests that polycentric urban structures tend to emerge from classic monocentric structures

[DBC07, ZAH14, RKB11, GBD19]. The combination of a burst in the development of

network-analysis methods and the increasing availability of transportation data gives exciting

opportunities to improve understanding of urban dynamics. In the present paper, we

construct a novel statistical model of networks and aim to uncover the roles of regions

in a city through the lens of travel patterns between them.

There is now a deluge of data about transportation and other urban systems, and they

o�er the potential for numerous fascinating and important insights about cities and human

dynamics in urban environments. Local governments release data on many transportation

modes, including tra�c from buses, trains, and automobiles. Additionally, online databases

such as OpenStreetMap [Boe18] and Global Road Network [SGS17] include large-scale road
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networks with tens of thousands of streets, covering a total length of tens of millions of

kilometers. Subway data in many cities are available from electronic ticketing systems

[ZAH14, ZKK18]. However, the infrastructure � such as train lines, bus routes, and highway

systems � that underlies these systems adapt very slowly to changing commuting patterns.

Pedestrian tra�c adapts faster, but it captures only short-distance transportation and is

di�cult to measure.

Bicycle-sharing systems are an emerging mode of urban transportation that can adapt

quickly to the needs of travelers. The number of bicycle-sharing programs worldwide has

grown rapidly, from 5 in 2005 to 1571 in 2018 [Sch18]. Over 50 systems were launched in

the United States alone from 2010 to 2016, and over 20 bicycle-sharing systems have been

launched in France since 2005 [nac18, EL14]. Many existing bicycle-sharing systems are also

growing. For example, the number of stations in New York City's �Citi Bike� system has

more than doubled since it began in 2013. Docked bicycle-sharing systems follow a general

structure: Groups of bikes are parked at �stations� (also called �docks� or �hubs�) throughout

a coverage area, and users withdraw and return bikes to these stations on demand, with a

cost that depends on usage time. A growing portion of bicycle-share systems are dockless

(as are the increasingly prominent e-scooters), so users can park bicycles at any location in

a coverage area. In the present paper, we analyze docked systems (but we consider how to

adapt our models to dockless systems in Section 8.6).

Data from bicycle-sharing systems captures commuting behavior [FWH13], including

detailed temporal records and GPS-tracked routes in some cases; and they are widely

available from many cities throughout the world [AOS13, MHK18, RZ16, RMZ18, WB18].

These properties make it extremely valuable to analyze bicycle-sharing data increase understanding

of urban �ows and the properties of human commuting. Bicycle-sharing is used often for �last-

mile� transportation, bridging the gap between public transportation and a �nal destination

[GS16]; and insights into the dynamics and function of bicycle-sharing systems can help

transit systems evolve to meet the needs of changing cities [NBI19].
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In the present paper, we propose two models of temporal network connectivity to capture

the functional roles of bicycle-sharing stations. We do this using the lens of mesoscale-

structure detection in time-dependent networks [HS12, Hol15, FH16]. We examine trip

histories from bicycle-sharing systems in the form of multilayer networks [KAB14, AM19,

Por18] in which each layer is a network of trips in a given hour. Edges in each layer represent

the total number of trips from one station to another that begin during that hour, and we

do not include any interlayer edges.

We aim to partition a network based on a relational equivalence of nodes (a perspective

with a rich history in the social-networks literature [LW71, RA15]), rather than on high

internal tra�c within sets of nodes [MHK18]. Data that has been aggregated over long

periods of time can shed light on �community" structure in the latter sense [AOS13] through

a partition of the network into contiguous spatial clusters [MHK18]. However, it ignores how

bicycle-sharing usage cycles with travel patterns throughout a day [FWH13]. By contrast,

our models are designed to detect functional roles of bicycle-sharing systems based on

time-dependent behavior. The models that we introduce in this paper are time-dependent

extensions of the stochastic block model (SBM) [SN97, NS01, KN11, Pei18]. We include

parameters to describe intra-block and inter-block tra�c for each hour, but we �x the

block assignment of each station over time. That is, we treat a bicycle-sharing network

as a temporal multilayer network with �xed node identities across layers [KAB14, AM19].

Although our models are inspired by the analysis of bicycle-sharing systems, they are applicable

more generally to multilayer networks where nodes belong to �xed classes.

We introduce mixed-membership and discrete-membership versions of our model, where

nodes can be members of multiple blocks or exactly one block, respectively. Both versions

are degree-corrected, as we parametrize the time-aggregated degree of each node to avoid

con�ating block divisions with node activity levels [KN11]. This is especially important for

bicycle-sharing networks in which stations have heterogeneous numbers of parking spaces

for bicycles and di�erent neighborhoods have di�erent baseline levels of bicycle usage. Our
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models are applicable to both directed or undirected networks, although we consider only

directed examples in the present paper.

Increasing our understanding of the functional roles of docking stations can aid in the

design and maintenance of bicycle-sharing networks, and understanding the usage patterns of

stations can help inform the forecasting of their usage in unobserved and partially observed.

This is valuable for tasks such as the dynamic restocking of stations with bicycles, which is

both challenging and expensive, yet vital to the success of bicycle-sharing systems [SCL13a,

CFS18].

A wide variety of community-detection and other clustering methods exist for networks.

Such methods include spectral methods, inference using SBMs, optimization of objective

functions (such as modularity [NG04]), local methods based on dynamical processes, and

others [FH16]. They have di�erent strengths and drawbacks, and some of them are more

appropriate for some applications than for others [FH16, POM09, CPS19]. Community

detection in multilayer networks is a developing �eld, with methods applied to diverse

applications, such as biology, sociology, and materials science [BJA16, VFP15, CMM15,

BDL17, KTB19, PPD18]. Several algorithms for community detection have been generalized

to multilayer networks; see [MRM10, PC16, VMG16, SST16, BDL17, YCZ11, ZMN17,

JMM17] for examples.

In early work on community detection in multilayer networks, Mucha et al. derived

a generalization of modularity optimization for a type of multilayer network known as a

�multislice" network [MRM10]. They used it to detect communities that change over time,

encompass multiple types of social relationships, or include multiple values of a resolution

parameter. Yang et al. introduced a discrete-membership SBMwith time-evolving communities

and parameters for block-to-block activity that are �xed over time [YCZ11]. Both [XH14]

and [MM17] proposed related models (for unweighted (i.e., binary) and weighted networks,

respectively), but they relaxed the assumption of �xed block-to-block activity parameters.

Similar in spirit, Zhang et al. developed a time-dependent model with degree correction in
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which nodes are allowed to switch between blocks which are described by a continuous-time

Markov chain [ZMN17]. Mixed-membership SBMs with time-evolving communities have also

been developed [XFS10, HSX11]. See [RC18] for a survey of community-detection methods

for time-dependent networks. Based on the classi�cation scheme in that paper, our methods

belong to the class with ��xed memberships, evolving properties�.

Community detection has been applied previously to urban bicycle sharing using various

approaches [BAF11, AOS13, RAB09, MHK18, XW18, AMY18, KTB19, HGB19]. Zhu

et al. applied k-means clustering to undirected, time-dependent usage data from bicycle-

sharing systems and other urban systems in New York City [ZKK18]. Austwick et al.

examined modularity optimization with a directed and spatially-corrected null model to

identify communities of stations in several cities [AOS13]. However, they detected communities

in time-aggregated data, and their discussion pointed out that there are signi�cant limitations

to examining community structure while ignoring time-dependent behavior for bicycle-sharing

applications. Munoz-Mendez et al. [MHK18] identi�ed communities by hour for bicycle-

sharing data from London using an InfoMap algorithm [RAB09] that respects the directed

nature of edges in the underlying trip networks. The changes that they discovered in

communities over time highlight the importance of time of day in the usage of bicycle-sharing

systems.

Closely related to our work, Matias et al. constructed a time-dependent, discrete-membership

SBM with �xed blocks over time and applied it to bicycle-sharing networks in London

[MRV18]. They detected some functional blocks, but their approach does not incorporate

degree correction. Xie and Wang [XW18] employed an approach that does not use an SBM

directly, yet they were able to successfully partition a bicycle-sharing network to �nd home

and work roles of bicycle-sharing stations. They used the ratio of in-degree to out-degree

at di�erent times to discover home�work splits during peak commute times, similar to the

results of our paper. A similarity of their approach to ours is that it corrects for degree; a

key di�erence is that they relied on human supervision to determine peak hours, whereas
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our models implicitly increase the weights of more-active time periods in the likelihood

function. Etienne and Latifa clustered bicycle-sharing stations in Paris based on their time-

dependent usage pro�les using a Poisson mixture model [EL14]. They were able to capture

time-dependent activity for each group, distinguish between incoming and outgoing activity,

control for the overall activity level of a given station (via degree correction), and associate

identi�ed groups with their role in the city. A key di�erence between their approach and

ours is that we distinguish activity between blocks, which allows us to detect behavior like

last-mile commuting that occurs within blocks.

Our paper proceeds as follows. In Section 8.2, we list our data sources and present basic

statistical analysis of the data. In Section 8.3, we introduce the two versions of our time-

dependent SBM � discrete and mixed-membership � and we show that they are equivalent

up to a constraint. In Section 8.4, we describe the estimation algorithms for our discrete

and mixed-membership models. In Section 8.5, we present the results of our models for Los

Angeles, San Francisco, and New York City. We discuss the implications of our work for

bicycle-sharing systems and suggest areas of further study in Section 8.6. We show some

additional details of our work in an appendix. We include code and data to implement

our models and replicate the results in our paper as supplementary material (and also at

https://github.com/jcarlen/tdsbm_supplementary_material).

8.2 Data

We examine United States bicycle-sharing systems in Los Angeles, the Bay Area, and New

York City. For Los Angeles, we study only the system's downtown part, which is self-

contained; similarly, in the Bay Area, we consider only the San Francisco network. Our

three focal systems vary in size and daily usage. Because of this variation and how the data

were reported, we study di�erent time periods for each system. We also selected our time

periods to exclude days that are likely to be extremely hot or cold. All of the bicycle-sharing
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systems that we study have open-data portals, from which we downloaded the following data

sets. In summary, after cleaning (see our discussion in the next paragraph), our data consist

of the following:

• Downtown Los Angeles: October�December 2016; there are 61 stations and 40,130

trips, of which 73.4% are during weekdays [NYC17].

• San Francisco: September 2015�August 2016; there are 35 stations and 267,412 trips,

of which 92.1% are during weekdays [Bay17].

• New York City: October 2016; there are 601 stations and 1,551,692 trips, of which

75.6% are during weekdays [LA 17].

A trip consists of a user checking out a bicycle from a �xed location (a station that

includes multiple parking spaces) and returning it to a station. The data for each trip

include the starting time; ending time; and starting and ending locations by station ID,

latitude, and longitude. Each data set also has a few additional �elds about the users; these

details include whether they have memberships in the bicycle-sharing system, but we do

not use this information in our investigation. We cleaned the data by removing anomalous

trips, including extremely short and extremely long trips,1 and trips to or from a station

used for testing or maintenance (as indicated in the data). We also excluded a very small

number of stations (two in Los Angeles and six in New York City) that did not have at least

one departure and at least one arrival during the given time period. Finally, we excluded

one station in New York City that was accessible to other stations only by ferry; it was

involved in only nine trips during the given time period. In total, cleaning removed 7.1 %

of the trips in Los Angeles, 4.5 % of the trips in San Francisco, and 1.4 % of the trips in

New York City. We retain self-edges, which represent trips that start and end at the same

1We take extremely short trips to be those that last two minutes or less; we take extremely long trips to
be those that last 90 minutes or more in Los Angeles and San Francisco and 120 minutes or more in New
York City, given that city's larger coverage area of stations.
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station. Although it is common to remove self-edges when analyzing networks [New18], self-

edges in the present application represent real trips that we expect to have a very similar

data-generating mechanism as trips from stations to geographically nearby stations. As in

[KN11], including self-edges also simpli�es some elements of parameter estimation.

When �tting our models, we include only weekday trips, as we observe that weekday and

weekend activity follow distinct patterns; and weekend activity does not re�ect commuting

behavior. From the data sets, we construct multilayer networks that are both weighted

and directed. In our networks, nodes represent stations, edge values encode the number of

directed trips from one station to another that begins in a speci�ed time period, and each

of the 24 layers consists of the trips that start in a certain hour.

8.2.1 Preliminary Data Analysis

Our data show clear patterns of bicycle-sharing usage by time of day and day of the week,

including heavier use during commuting hours. In Figure 8.2.1, we illustrate usage patterns

by plotting the number of trips by starting hour for each city. In New York City and San

Francisco, activity spikes during weekday morning and evening commuting hours, whereas

weekend trips peak in early afternoon. Similar patterns were observed previously for bicycle-

sharing systems in New York and many other cities [AOS13, EL14, ZKK18, XW18, Tai14].

By contrast, in Los Angeles, the number of trips by hour has a mid-day peak on weekdays

that is nearly as strong as the morning peak. In New York City and Los Angeles, about

one quarter of the trips occur on weekends, but only about eight percent of the trips in San

Francisco occur then. This suggests that the San Francisco network covers more commercial

areas and fewer residential areas.

For individual stations, the morning and evening peaks for in-degree and out-degree are

often unbalanced: one direction has a stronger morning peak, and the opposite direction has

a stronger evening peak. This is a key motivation for our time-dependent identi�cation of

stations into �home" and �work" types.
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Figure 8.2.1: Total trips by hour for weekdays, weekends, and overall. Hour 0 designates
midnight.

To further explore the imbalance between morning and evening activity in each network,

we calculate the singular-value decomposition (SVD) of the matrices of in-degree and out-

degree for each station by hour. To be explicit, entry i, j of the matrix of in-degrees is equal

to the total number of trips that arrive at station i in hour j, and the we constructed the

matrix of out-degrees analogously for departing trips. We show results for New York City

in Figure 8.2.2 and for Los Angeles (see Figure 8.7.1) and San Francisco (see Figure 8.7.2)

in the appendix. The �rst two principle components either strengthen both observed peaks

or weaken one peak while strengthening the other. The �rst two singular vectors explain

at least 88% and as much as 97% percent of the variation in the corresponding matrix,

supporting the importance of peak morning and evening commutes for classifying stations.

Another characteristic of our data that we incorporated into the design of our models

is the strong positive Pearson correlation coe�cient between the total (summed over all

time periods) in-degree and out-degree of each station: 0.99 in New York, 0.98 in San

Francisco, and 0.91 in Los Angeles. This is an intrinsic feature of docked bicycle-sharing

systems, because a bicycle must be returned to a station before a new trip with it can begin.

However, the use of trucks to redistribute bicycles in a system can loosen this requirement.
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Figure 8.2.2: The �rst two singular vectors from the New York City bicycle-sharing network.

8.3 Our Stochastic Block Models

In this section, we introduce our time-dependent mixed-membership stochastic block model

(TDMM-SBM) and time-dependent discrete stochastic block model (TDD-SBM).

Stochastic block models are a popular class of statistical network model [Pei18]. The

motivating principle of SBMs is a type of stochastic equivalence in which edges whose

endpoints have the same block membership are identically distributed. It is a standard

assumption of SBMs that edge values are independent, given the block membership of nodes.

More formally, a binary (Bernoulli) random graph Y , with adjacency matrix A, from an SBM

with K blocks is de�ned by

P (Aij = 1|G) = ηgigj , (8.3.1)

where G (with components gi ∈ {1, 2, . . . , K}) is a vector of block assignments for the nodes

of Y and η is a K ×K matrix of block-to-block edge probabilities. Note that this de�nition

allows directed graphs, in which η can be asymmetric. For early presentations of SBMs,

238



see [HLL83, FW92, SN97, NS01]. More recent advances have added �exibility to SBMs.

Examples include the mixed-membership SBMs of [ABF08], models with covariates in [IL15],

the degree-corrected SBM of [KN11], and the Bayesian implementations reviewed by [Pei18].

Applications of SBM to longitudinal networks include discrete-membership [YCZ11, ZMN17]

and mixed-membership [XFS10, HSX11] versions where nodes can switch blocks over time, as

well discrete-membership versions with �xed blocks over time but without degree-correction

[MRV18, XH14].

8.3.1 Time-Dependent Mixed-Membership Stochastic Block Model (TDMM-

SBM)

We now describe the framework for our mixed-membership SBM. Let i, j ∈ N (with |N | =

N) be nodes, which represent bicycle stations; let g, h ∈ K (with |K| = K) be blocks. Our

data is a three-dimensional array of size (N,N, T ), where T is the number of time slices (i.e.,

time layers). We consider hourly groupings of the trips based on their starting times. The

quantity Aijt is the observed number of trips from station i to station j with starting time

greater than or equal to t and less than t + 1. Let Ãij =
∑23

t=0Aijt denote the weights of

the associated time-aggregated matrix. Our network is a directed multilayer network, so we

count each trip that both starts and ends at a node i during hour t (i.e., self-edges) exactly

once in Aiit.

For each node i, there is a length-K vector of real numbers Cig ∈ [0, 1]. These numbers

represent the mixed-membership block assignment of each node. The block-assignment

parameter Cig indicates the �strength� of node i in block g. For each ordered pair g, h

of blocks and each time t ∈ {0, 1, . . . , 23} (where t = 0 represents the hour that starts at

midnight), there is a parameter ωght, which we call the �inter-block connectivity� parameter

or �block-to-block� parameter, that represents the directed activity from block g to block h

during hour t. Note that ωght need not be equal to ωhgt if the network is directed; this captures

any asymmetries in the number of trips with respect to reversing origins and destinations.
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We also de�ne the notation ω̃gh =
∑23

t=0 ωght for the time-aggregated matrix.

For each pair of nodes, i and j, we assume that the number of trips that depart from i

and arrive at j at time t is Poisson-distributed with mean µijt =
∑

g,hCigωghtCjh. Our use of

the Poisson distribution follows [KN11] and [Pei18], facilitates computation, and is standard

for modeling count data (although overdispersion is a concern).

For identi�ability, we apply the constraint
∑

iCig = 1 for all g. This does not constrain

the set of possible models in terms of realizable mean edge activities µijt. Consider a

model with unconstrained parameters ωght and Cig. The model with parameters ω′ght and

C ′ig such that C ′ig =
Cig∑
j Cjg

and ω′ght = ωght

(∑
j Cjg

)(∑
j Cjh

)
is an equivalent model,

because the means of the distributions of edge weights are equal to the those of the model

with unconstrained parameters. That is, µ′ijt =
∑

g,hC
′
igω
′
ghtC

′
jh =

∑
g,hCigωghtCjh = µijt.

Because
∑

iCig = 1, we can think of Cig as the proportion of the total activity of block g from

the activity of node i; the expected total number of trips at node i is
∑

g Cig
∑

h,t(ωght+ωhgt).

In this light,
∑

g Cig is a measure of the activity of node i in which we do not weight each Cig

term by the total activity of the corresponding block. We can interpret Cig relative to Cih as

how strongly block g is associated with node i relative to how strongly block h is associated

with node i. We use these quantities when visualizing the TDMM-SBM of our data, because

they help ensure that we do not overlook blocks with important usage patterns but relatively

lower activity. The parameter Cig is analogous to the degree-correction parameter for SBMs

that was introduced in [KN11], but we apply it to mixed block membership. We elaborate

on this connection in Subsection 8.3.2, where we introduce a model that speci�es that nodes

have only one block.

We now compute the likelihood function that we will optimize to obtain the maximum-

likelihood estimate (MLE). We assume conditional independence between hourly numbers
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of trips along each edge, given model parameters, so the likelihood of the data is

L(G;ω,C) =
23∏
t=0

∏
i,j∈N

(µijt)
Aijt

Aijt!
exp (−µijt) , (8.3.2)

where ω and C give the model parameters (i.e., ω = {ωght} and C = {Cig}). Note that

µijt =
∑

g,hCigωghtCjh is a function of these parameters, the set N of nodes in the network

is �xed and pre-determined, and the number K of blocks is also �xed and pre-determined.

The unnormalized log-likelihood is

`(G;ω,C) =
23∑
t=0

∑
i,j∈N

[Aijt log (µijt)− µijt] , (8.3.3)

although note that we omit the addition of the constant −
∑

i,j,t log (Aijt!), because it does

not a�ect maximum of the function.

8.3.2 Time-Dependent Discrete Stochastic Block Model (TDD-SBM)

We derive a single-membership SBM from our mixed-membership SBM by making the extra

assumption that, for each node i ∈ N , we have that Cig > 0 for only one block g ∈ K.

(We also call this the �discrete version� of our model.) For our single-membership SBM,

we introduce some new notation to aid our description and be consistent with notation in

[KN11, ZYM13]. For a given node i, the block g for which Cig > 0 is the block gi that

includes node i. Therefore, we use a single parameter θi = Cigi for each node i to indicate

both the strength of i in block g and the membership of node i in block g. We will show

that this term is a multilayer extension of the degree-correction term of [KN11]. The mean

of the Poisson distribution of the value of an edge from node i to node j at time t is

θiθjωgigjt = Cigiωgi,gjtCjgj . We retain the sum constraints of our mixed-membership model,

such that
∑

i∈g θi = 1 for all g.

We compute optimal values for the parameters ω and θ = {θi}i∈N . As in the TDMM-
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SBM, take N and K to be �xed and pre-determined. Again dropping the constant term

−
∑

i,j,t log (Aijt!), the log-likelihood of our single-membership SBM is

`(G;ω, θ) =
∑
t

∑
g,h

∑
i∈g,j∈h

[Aijt log θi + Ajit log θj + Aijt logωght − θiθjωght] .

We �nd explicit formulas for the MLEs of θi and ωght. In the following calculations,

removal of t from the subscript of a parameter and addition of a tilde designates a sum over

all t. Speci�cally, we de�ne Ãij =
∑23

t=0Aijt and ω̃gh =
∑23

t=0 ωght. We di�erentiate ` with

respect to ωght to yield

∂

∂ωght
` =

∑
i∈g,j∈hAijt

ωght
− 1 ,

where we have used the block-wise sum constraints on θi. Therefore, the MLE for wght is

ω̂ght = mght ,

where mght is the sum of weights of edges from nodes in block g to nodes in block h during

hour t. That is, mght =
∑

i∈g,j∈hAijt.

We then di�erentiate ` with respect to θi to obtain

∂

∂θi
` =

∑
j Ãij +

∑
j Ãji

θi
−
∑
h

ω̃gih −
∑
h

ω̃hgi .

At ω̂ght, the MLE for θi is

θ̂i =

∑
j Ãij + Ãji∑
g m̃gh + m̃hg

=
ki
κgi

,

where ki =
∑

j

(
Ãij + Ãji

)
is the sum of the in-degree and out-degree of i over all time

periods, m̃gh =
∑23

t=0mght, and κg =
∑

h (m̃gh + m̃hg) is the sum of the in-degrees and out-
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degrees of all nodes in block g over all time periods. The term 2m̃gg in the equation for κg

implies that we count each intra-block edge twice: once for emanating from g and once for

arriving at g. Similarly, ki includes the term 2Ãii, so we count self-edges twice in this term.

Our computation demonstrates that the MLE of the strength of i in block g is the

relative proportion of the strength of node i to the total activity of block g. The parameter

Ĉigi = θ̂i in the TDD-SBM for modeling directed, multilayer networks is analogous to the

degree-correction parameter in the degree-corrected SBM [KN11] for undirected networks

with one layer. Indeed, the MLE for the degree correction parameter in the latter model is

the proportion of number of edges connected to a node to the number of edges connected to

its assigned block. Another similarity between a degree-corrected SBM and our TDD-SBM

is that in the MLE of the TDD-SBM, the sum over time of the expectation of the degree of a

node i is equal to the degree of node i from the observed data. That is,
∑

t

∑
j (µijt + µjit),

the sum of the mean weights of edges connected to i, is equal to ki, the degree of node i in the

observed data. (See Section 8.7.2 of the appendix for the proof.) For our mixed-membership

SBM, we are not aware of such a precise relationship between the data and the expected

value of model statistics, although there does appear to be a positive correlation between the

time-aggregated node degrees and the sum of the mixed-membership parameters (
∑

g Cig for

all i).

We now calculate the MLE of the unnormalized log-likelihood of the TDD-SBM. We

obtain

∑
t

[∑
i,j

(
Aijt log

(
ki
κgi

)
+ Ajit log

(
kj
κgj

))
+
∑
g,h

mght logmght −
∑
g,h

mght

]

=
∑
i

ki log ki −
∑
i

ki log κgi +
∑
t

∑
g,h

mght logmght − m̃ ,

where m̃ is the total number of edges in the network. By a similar calculation as one in
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[KN11], we obtain

∑
i

ki log κgi =
∑
t

∑
g

∑
i∈g

kit log κg

=
∑
t

∑
g

∑
i∈g

(kin,it log κg + kout,it log κg)

=
∑
t

∑
g

κout,gt log κg +
∑
t

∑
h

κin,ht log κh

=
∑
t

∑
g

∑
h

mght log κg +
∑
t

∑
g

∑
h

mght log κh

=
∑
t

∑
g,h

mght log κgκh ,

where kin,it and kout,it are the respective in-degrees and out-degrees of node i during hour

t, the quantity κin,gt =
∑

i∈g kin,it is the number of edges going into g during hour t, and

κout,gt =
∑

i∈g kout,it is the number of edges that emanate from g during hour t. Including

only the terms that depend on block assignments yields the following objective function:

∑
t

∑
g,h

mght log

(
mght

κgκh

)
. (8.3.4)

Unlike the directed SBM in [ZYM13], we do not have two strength parameters (representing

an in-degree strength θini and an out-degree strength θouti ) for each station. Nevertheless, our

model still captures the directed nature of the data. We can see this by conceptualizing the

estimated means as an approximation to the number of trips by hour in both directions at

the same time. By representing the 48-dimensional vectors as 2× 24 matrices, we see that

θiθj

ωgigj0 ωgigj1 . . . ωgigj23

ωgjgi0 ωgjgi1 . . . ωgjgi23

 approximates

Aij0 Aij1 . . . Aij23

Aji0 Aji1 . . . Aji23

 .
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This perspective also holds for our mixed-membership SBM, for which

∑
g,h

CigCjh

ωgh0 ωgh1 . . . ωgh23

ωhg0 ωhg1 . . . ωhg23

 approximates

Aij0 Aij1 . . . Aij23

Aji0 Aji1 . . . Aji23

 .

The validity of this matrix representation depends on there being a large correlation

between the time-aggregated in-degrees and out-degrees of nodes. This is related to the fact

that in a given 24-hour period, the number of trips from one station to another is predictive

of the number of trips in the opposite direction. This matrix representation is related to

the fact that the 24-hour time activities for trips between two stations in one direction are

predictive of the activities in the opposite direction. The latter observation, in turn, is related

to the axiom of human mobility that for each current of travel, there is a counter current

[BBG18]. We observe (as did [ZGW18]), from the above matrix expressions, that maximizing

the log-likelihood of both SBMs is equivalent to a form of nonnegative matrix factorization

with K2 48-dimensional basis columns. In a sense, our model is neither an extension of the

usual undirected degree-corrected SBM nor one of the usual directed degree-corrected SBMs.

Instead, our model's single-layer network analog is a degree-corrected SBM with parameters

θi and ω̃gh, except that the ω̃gh are not constrained to be symmetric.

8.4 Computations

In this section, we describe the algorithms that we use for both the TDMM-SBM and the

TDD-SBM.

8.4.1 Inference using the TDMM-SBM

Let ω = {ωght} be the K × K × T array that represents the inter-block connectivity

parameters, and let C = {Cig} be the matrix that represents the collection of node-strength
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parameters. We estimate the model parameters using a two-step gradient descent.2 First,

we move in the direction of the gradient with respect to ω and update the inter-block

connectivity parameters. Second, we move along the direction of the gradient with respect

to C and update the node-strength parameters.

In the description of our algorithm, we let ω(n) and C(n), respectively, denote the nth

update of the inter-block connectivity and node-strength parameters. We initialize the

algorithm with random values ω(0) and C(0) with components distributed according to

exp(X), where X is a Gaussian random variable with mean 0 and variance 1. (That is,

we draw random values from a log-normal distribution.) We denote the mean activity

along edge (i, j) with initial parameters ω(0) and C(0) by µ
(0)
ijt . We scale the parameters

so that the TDMM-SBM at the starting point of the optimization has the same mean

number of trips as the data. Speci�cally, we multiply the inter-block connectivities ω(0)
ght

by
(∑

t ω
(0)
ght

)−1 (∑
i,j,tAijt

)
/K2 and normalize C0 to satisfy the constraint

∑
iC

(0)
ig =

1 for each block g. This results in
∑

ijt µ
(0)
ijt =

∑
i,j,t

∑
g,hC

(0)
ig ω

(0)
ghtC

(0)
jh =

∑
g,h,t ω

(0)
ght =∑

g,h

(∑
i,j,tAijt

)
/K2 =

∑
i,j,tAijt, the total number of edges in the network. Without this

scaling, the initial parameters would have very small magnitudes, such that the mean total

number of trips from the TDMM-SBM with these initial parameters is much smaller than the

total number of trips in the data. Therefore, it is very likely that the randomly chosen initial

parameters will have very small log-likelihoods relative to the MLE log likelihood. Early

gradient-descent steps might then dramatically increase the magnitude of the parameters

while a�ecting the relative sizes of individual parameters in unpredictable ways.

To ensure that our estimated parameters are nonnegative, we use the following change of

variables: exp(ω̃(n)) = ω(n) and exp(C̃(n)) = C(n). We can then write the gradient descent

2Although we are maximizing a function and thus technically performing gradient ascent, we refer to this
class of method by its more common monicker of �gradient descent�.
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as

ω̃(n+1) = ω̃(n) + η(n)∇ω`(C
(n), ω(n)) exp(ω̃(n)) ,

C̃(n+1) = C̃(n) + h(n)∇C`(C
(n), ω(n+1)) exp(C̃(n)) ,

where h(n) and η(n) are small positive numbers. From the de�nitions of C̃(n) and ω̃(n), we

write

ω(n+1) = ω(n) exp(η(n)∇ω`(C
(n), ω(n))ω(n))

C(n+1) = C(n) exp(h(n)∇C`(C
(n), ω(n+1))C(n)) .

We take the exponential of a vector to be the result of applying the exponential to each

component of the vector. Let h(0) = η(0) = ∆ > 0 be the �xed initial step size. For our

application, we choose ∆ = 10−4. We generate two candidate updates for ω(n+1) for the �rst

step in our algorithm using h(n+1) = 1.2h(n) and h(n+1) = .8h(n), and we choose the one that

gives a ω(n+1) that yields the larger value of `(C(n), ω(n+1)). Similarly, we choose the one of

η(n+1) = 1.2 η(n) or η(n+1) = .8 η(n) that gives the C(n+1) with the larger `(C(n+1), ω(n+1)).

We compute the gradient of the log-likelihood function ` using the chain rule. Recall

that we compute the log-likelihood in two parts. One part is the computation of the mean

µijt =
∑K

g,hCigω
t
ghCjh of the number of trips from node i to node j at time t. We then insert

the expression for the mean into the function ` =
∑

t

∑
i,j (Aijt log(µijt)− µijt). We compute

the derivative of ` with respect to µijt to obtain

∂`

∂µijt
=
Aijt
µijt
− 1 .

The derivative of µijt with respect to Ckg is

∂µijt
∂Ckg

=δki
∑
h

ωghtCjh + δkj
∑
h

Cihωhgt ,
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and the derivative of µijt with respect to ωght is

∂µijt
∂ωght

= CigCjh .

Here δab is the kronecker delta (i.e. δab = 1 if a = b and δab = 0 if a 6= b). Using the above

calculations, we see that the derivatives of ` with respect to Ckg and ωght are

∂`

∂Ckg
=

23∑
t=0

∑
i,j∈N

∂`

∂µijt

∂µijt
∂Ckg

=
23∑
t=0

(∑
j∈N

(
Akjt
µkjt
− 1

)∑
h

ωghtCjh +
∑
i∈N

(
Aikt
µikt
− 1

)∑
h

Cihωhgt

)
,

∂`

∂ωght
=
∑
i,j∈N

∂`

∂µijt

∂µijt
∂ωght

=
∑
i,j∈N

(
Aijt
µijt
− 1

)
CigCjh .

We run the gradient descent until four signi�cant digits of the base-10 �oating-point

representation of the log-likelihood (8.3.3) does not change for 600 steps in a row. For

the networks that we examine, this usually takes between 600 and 5000 iterations, with

models with more blocks generally needing more iterations to reach this stopping criterion.

Because of the non-convexity of the log-likelihood function (8.3.3), we are not guaranteed

to reach a global optimum. Most of the time, our method converges to an interesting

local optimum (which may also be a global optimum), revealing the existence of functional

roles (see Section 8.5). Our results produce recognizable inter-block connectivity parameters

ωght (e.g., home�work commute patterns and leisure-usage patterns) and the parameters Cig

indicate known spatial divisions of the stations (e.g., residential versus commercial districts).

In some cases, however, our algorithm converges to an uninteresting local optimum; one

example is when the block-assignment parameters Cig for each station appear as if they are

assigned independently at random. To improve our results, we run our algorithm repeatedly
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(speci�cally, 10 times for each network) and store the estimate with the largest likelihood.

We compare the parameters that we obtain from gradient descent versus those that we obtain

by running a Hamiltonian Monte Carlo (HMC) sampling method in a Bayesian framework

with weak priors (implemented in Stan [CGH17, Sta18]). The log-likelihoods that result

from our gradient-descent method are as good or better than those that we obtain with

an HMC method. The HMC method is more computationally and memory intensive than

our gradient-descent method, although it may be preferable in applications in which one

has meaningful prior information about parameters. Improving our optimization method

and investigating trade-o�s between accuracy and e�ciency are worthwhile topics for future

work. For instance, it will likely be bene�cial to adapt optimization methods for related

time-dependent SBMs [XFS10, YCZ11, HSX11, XH14, MRV18] to the optimization of our

model.

The supplementary material has our Python implementation of our gradient-descent

method, as well as code for our inference in R using Stan.

8.4.2 Inference using the TDD-SBM

To �t our TDD-SBM, we use a Kernighan�Lin-type (KL-type) algorithm [KL70] that we

base on the one in [KN11]. Given a number K of blocks, we initialize the algorithm by

assigning each node to a block uniformly at random, so each node has a probability of 1
K

of being assigned to a given block. The algorithm then calculates the best possible block

reassignment for any single node with respect to the associated change in log-likelihood

(either the largest increase or the smallest decrease). Subsequently, we make the best

reassignment for a di�erent node, again chosen uniformly at random, with respect to change

in log-likelihood. The algorithm cycles through all nodes; a key feature of the algorithm is

that a node that has been reassigned cannot move again until all other nodes have moved.

One set of sequential reassignment of all nodes constitutes one step of the algorithm. The

algorithm then searches all of the states (with respect to block membership of nodes) that
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have occurred during the step, and it selects the state with the maximum log-likelihood of any

during the step. This state is the starting point for the next step of the algorithm. A single

run of the algorithm is completed when a step does not increase the log-likelihood beyond

a preset tolerance value near 0. (In practice, we use 1 × 10−4.) To �nd block assignments

that are as good as possible, we do many runs of the algorithm for each network. In our

examples, we use 50 runs per network. We initialize each run randomly, as described above.

Another key feature of the algorithm is that changes in the block membership of nodes

a�ect only the terms of the objective function that involve the origin and destination blocks

of the change. (We see in (8.3.4) that the objective is a sum over block-pair terms over T

time slices.) Consequently, we do not need to recalculate the full objective function at each

step.

We implement our KL-type algorithm for TDD-SBM in R using Rcpp [R C18, EF11].

The back-end calculations are in c++ for speed, and we return results in R to enable

visualization and other analyses. Our implementation can also estimate time-independent

SBMs, including directed and/or degree-corrected ones. This facilitates comparison of

the results of inference from time-dependent and time-independent SBMs. See https:

//github.com/jcarlen/sbm for our R package sbmt for parameter estimation for the TDD-

SBM. We include code (which uses the sbmt package) in supplementary material to replicate

our examples in Section 8.5.

8.5 Results

We apply our models to bicycle-sharing networks in Los Angeles, San Francisco, and New

York City. (See Section 8.2 for descriptions of these data sets.) The networks that we

examine in downtown Los Angeles and San Francisco are relatively small, with 61 stations

and 35 stations, respectively, at the time that we collected our data. The stations in these

networks are concentrated in downtown areas, where high-rise o�ce and residential buildings
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are interspersed. The New York City network is much larger than the other two. It includes

about 600 stations at the time of data collection. The stations span most of the lower half

of Manhattan and northwestern Brooklyn. They encompass a range of commercial areas,

residential neighborhoods, parks, and manufacturing areas.

8.5.1 Downtown Los Angeles

In Figure 8.5.1, we show the mixed-membership (TDMM-SBM) and discrete (TDD-SBM)

block assignments of two-block models of the downtown Los Angeles system. For the TDMM-

SBM, the we scale the size of a given node i in our plots based on
∑

g Cig. We refer to these

sums as �C total� values. These values correlate strongly with node degree (speci�cally, the

sum of in-degree and out-degree), which is evident in the similarity of node sizes in the left

and right panels of Figure 8.5.1. For both models, we observe that home and work blocks are

interspersed geographically. (We will soon describe our method for determining the block

labels in Figure 8.5.1.) The TDMM-SBM result reveals a group of stations (which we color

in gray) in the left panel of Figure 8.5.1 are neither strongly home-identi�ed nor strongly

work-identi�ed; instead, they possess a roughly even mixture of the two types. For this

network, the TDD-SBM output is very similar to what we obtain from a discretization of

the TDMM-SBM output (which we discretize by assigning each node i to the block with

the maximum value of its Cig parameter), but this is not true for all of our bicycle-sharing

networks.
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Figure 8.5.1: Downtown Los Angeles bicycle stations classi�ed using (left) a two-block
TDMM-SBM and (right) a two-block TDD-SBM. The sizes of the nodes take continuous
values. In the left panel, we scale their area based on the value of

∑
g Cig; in the right panel,

we scale them based on the sum of the in-degree and out-degree (divided by the maximum
value of that sum).

Our model does not yield �home" and �work� labels for each block on its own, so we

use the time-dependent block-to-block parameter estimates ω̂ght to assign these labels. We

assign the labels heuristically under the assumption that the �home" block is the origin of

many trips to the work block in the morning and the �work" block is the origin of many trips

to the home block in the evening. Figure 8.5.2, which shows ω̂ght for each possible value of g

and h, with the hour t on the horizontal axis, supports our labeling. Based on our labeling,

we observe a clear peak in home-to-work tra�c in the mornings and work-to-home tra�c in

the evenings. We make similar �home" and �work" assignments for San Francisco and New

York City. In Los Angeles, the tra�c in the work block peaks in the middle of the day. This

perhaps represents lunchtime errands, leisure activity, or tourist activity, as there are many

tourist attractions in the downtown area. The tra�c in the home block has a mild evening

peak and has by far the least activity overall.
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Figure 8.5.2: Estimated time-dependent block-to-block parameters ω̂ght for the two-block
TDMM-SBM and two-block TDD-SBM for downtown Los Angeles.

To further validate our block labels, we use the zoning map for downtown Los Angeles

from the Los Angeles Department of City Planning [Dep15].3 Zoning ordinances determine

the allowable uses of city land. They distinguish land that is available for commercial uses,

industrial uses, residential uses, park districts, and others. In the background of Figure

8.5.3, we show a simpli�ed version of the underlying zoning map (with a grouping of similar

designations). The industrial areas house a mixture of manufacturing and commercial uses.

Public facilities include government buildings, public schools, parking under freeways, and

police and �re stations [Dep06]. In downtown Los Angeles, manufacturing and industrial

areas are split cleanly from residential areas, whereas commercial and residential areas are

intermixed across the bicycle-sharing system's coverage area.

3Permission for use of these proprietary data is granted by the City of Los Angeles Department of City
Planning. Copyright c© 2015 City of Los Angeles. All Rights Reserved.
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Figure 8.5.3: Mixed-membership (TDMM-SBM) assignments of Los Angeles bicycle-share
stations overlaid on a simpli�ed LA zoning map. Industrial blocks include manufacturing
and commercial areas. As in Figure 8.5.1, we scale the area of nodes to the value of

∑
g Cig.

Figure 8.5.3 illustrates that most stations that are strongly home-identi�ed are in or near

zones for pure residential use or mixed residential and commercial use. We �nd that many

stations that are not predominantly home-identi�ed or work-identi�ed align with mixed-use

commercial/residential zones. The discrete-role plot (see the right panel of Figure 8.5.1)

has a stripe of �home" stations that cut diagonally through the �work" stations. In Figure

8.5.3, we see that this aligns roughly with areas that are zoned for purely residential use.

By contrast, industrial and public facility zones tend to host stations that are mostly work-

identi�ed (although some of the most strongly work-identi�ed stations are in mixed-used

areas).

One station that seems to deviate from the overall pattern is the heavily-tra�cked station

at Union Station. Although it is adjacent to a public facility zone with many government

buildings, it is also strongly home-identi�ed. Although this may seem surprising on its

254



surface, this is consistent with other home-identi�ed stations, because Union Station is

a major transit hub for the Los Angeles metropolitan area. Accordingly, many morning

trips originate there, as commuters transition from other forms of transportation, and many

evening trips conclude there � an activity pattern that is sensibly associated with home-

identi�ed stations. Such idiosyncrasies of transit hubs also arise in our results for San

Francisco and New York City.

8.5.2 San Francisco

In Figure 8.5.4, we compare the two-block TDMM-SBM and two-block TDD-SBM for

San Francisco. As we saw for Los Angeles, the San Francisco blocks are interspersed

geographically, and stations vary from strongly home-identi�ed ones to strongly work-identi�ed

ones. The most strongly home-identi�ed station is a major transit hub, the San Francisco

Caltrain Station on 4th Street.

Figure 8.5.4: San Francisco bicycle stations classi�ed using (left) a two-block TDMM-SBM
and (right) a two-block TDD-SBM. The sizes of the nodes take continuous values. In the
left panel, we scale their area based on the value of

∑
g Cig; in the right panel, we scale them

based on the sum of the in-degree and out-degree (divided by the maximum value of that
sum).

In Figure 8.5.5, we show the estimated tra�c between the �home" and �work" blocks
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for the TDMM-SBM and TDD-SBM. As in downtown Los Angeles, we observe inter-block

commuting. However, unlike in downtown LA, using the discrete model (i.e., TDD-SBM),

we observe intra-block morning and evening peaks in both the home and work blocks. This

may be due to last-mile commuting, such as using bicycle-sharing facilities to get to or from

a train station. Recognizing last-mile usage is important for integrating bicycle sharing

with nearby public transportation. One possible reason that we do not observe a similar

phenomenon in downtown LA is that San Franciscans are more likely than Angelenos (i.e.,

inhabitants of Los Angeles) to use public transportation [WK15]. The intra-block morning

and evening peaks may also arise from the intermixing of commercial and residential uses of

land, such that some travel within blocks may also constitute commuting.

Figure 8.5.5: Estimated time-dependent block-to-block parameters ω̂ght for the two-block
TDMM-SBM and two-block TDD-SBM for San Francisco.

Before presenting our results for New York City, we brie�y compare our results from Los

Angeles and San Francisco to results for a time-independent SBM �t to these networks, where

we have aggregated the data over all time periods. To do this, we calculate the adjacency

matrix Ãij =
∑23

t=0Aijt a time-aggregated network. (The time-independent SBM also has
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two blocks and is both directed and degree-corrected.) For downtown Los Angeles, we observe

a clear geographically-based division in the results of the time-independent SBM. For San

Francisco, however, the di�erences between the blocks of the time-dependent SBM and time-

independent SBM are less noticeable, although they are still present. This con�rms that our

time-dependent SBMs are detecting behavior that is not evident in the time-aggregated data.

Figure 8.5.6: Estimated blocks of discrete, directed, degree-corrected, time-independent SBM
for time-aggregated bicycle-sharing data from Los Angeles and San Francisco.

8.5.3 New York City

In Figure 8.5.7, we compare our results from a three-block TDMM-SBM and a three-block

TDD-SBM for New York City. In initial calculations, we found that a two-block TDD-

SBM divides the network along the East River into a Manhattan block and Brooklyn block

and that the two-block TDMM-SBM divides the network slightly farther north in Lower

Manhattan. This suggests a possible limitation to the size of networks for which our time-

dependent SBMs can recover functional blocks, as opposed to geographically-based blocks.

We will explore this hypothesis further by examining the output of our time-dependent SBMs

for the entire New York City bicycle-sharing network and subsequently modeling a subset of

the New York City network.
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Figure 8.5.7: New York City bicycle stations classi�ed using (left) a three-block TDMM-
SBM and (right) a three-block TDD-SBM. The sizes of the nodes take continuous values. In
the left panel, we scale their area based on the value of

∑
g Cig; in the right panel, we scale

them based on the sum of the in-degree and out-degree (divided by the maximum value of
that sum).

In Figure 8.5.8, we compare estimated inter-block tra�c, as captured by the values of

ω̂ght, for the three-block TDMM-SBM and three-block TDD-SBM. We observe prominently

that all intra-block tra�c has two peaks and much higher hourly trip counts than inter-block

tra�c. The double peaks are reminiscent of the overall system activity in Figure 8.2.1. This

may be due in part to last-mile commuting, as we also suspected in San Francisco. However,

for a system that is this large, the double peaks and minimal inter-block tra�c suggests

that it is useful (and important) to consider each block as its own ecosystem. We also �nd

strong similarity between results from our TDD-SBM and a three-block time-independent

SBM for time-aggregated data for New York City (not shown), providing further evidence
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that our time-dependent SBMs are not capturing time-dependent roles for New York City.

Consequently, we choose the labels of these blocks based on the primary borough and zone

type of each block's stations, as indicated in the underlying zoning map for this part of New

York City [Dep18] in Figure 8.5.9.

Figure 8.5.8: Estimated time-dependent block-to-block parameters ω̂ght for the three-block
TDMM-SBM and three-block TDD-SBM for New York City. We use �M" to signify
Manhattan and �BK" to signify Brooklyn.
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Figure 8.5.9: TDD-SBM station roles versus the coverage-area zoning map of New York City.

In Figure 8.5.9, we illustrate that there is general overlap, although it is far from perfect,

between (1) the Upper Manhattan (�home") block and residential areas or parks and between

(2) the Lower Manhattan (�work�) block and commercial or manufacturing areas. All

stations in Brooklyn are in the third block, which contains mostly residential areas. These

observations motivate our block labels in this �gure, Figure 8.5.7, and Figure 8.5.8. (Although

Figure 8.5.9 shows only TDD-SBM-estimated blocks, the same reasoning motivates our labels

for the three-block TDMM-SBM.) No block has exclusively commercial or residential areas,

reinforcing our conclusion that these blocks represent primarily geographic divisions (with

most of the tra�c occurring within blocks), as opposed to functionally similar groups of

stations.
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We examined several time-dependent SBMs for New York City with more than three

blocks to try to discover functional blocks, but we found that the blocks were still geographically

based. In some cases, TDMM-SBM with larger numbers of blocks were able to �nd functional

divisions within smaller geographic areas (subdividing the blocks in Figure 8.5.7), but neither

our discrete model nor our mixed model detected system-wide �home� or �work� blocks. See

our supplementary material for our code to �t and visualize time-dependent SBMs of the

New York City network with a number of blocks other than three.

8.5.3.1 Manhattan

Figure 8.5.10: Comparison of estimated blocks from (left) a �ve-block TDMM-SBM
and (right) a �ve-block TDD-SBM of the Manhattan (home) block (i.e., the Manhattan
subnetwork) of the New York City network (see Figure 8.5.9). In the role labels of the
TDD-SBM, we use �W� to represent west and �E� to represent east.

To examine the New York City bicycle-sharing network on a smaller scale, we �t models

to the subset of stations and trips within the Manhattan (home) block of the three-block

TDD-SBM that we identi�ed above (see Figure 8.5.9); we refer to this subnetwork as the
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�Manhattan subnetwork�. This subnetwork includes 256,840 trips and 166 stations. In

Figure 8.5.10, we present our results for a �ve-block TDD-SBM and TDD-SBM applied to

the Manhattan subnetwork. The area without stations in the middle of each panel of Figure

8.5.10 is Central Park, which has stations on its perimeter but not in its interior.

The estimated blocks of the �ve-block TDMM-SBM and TDD-SBM (see Figure 8.5.10)

of the Manhattan subnetwork outline similar subregions. The mixed-membership block

assignments also illustrate how the subregions transition into each other. The models return

block-membership parameters that capture the residential and commercial sections of the

area much better than the three-block TDD-SBM and TDMM-SBM of the full New York City

network; one can see this by comparing the �ve-block subnetwork results with the underlying

zoning map for the area in Figure 8.5.9. The stations in residential zones generally have larger

block-membership parameters for �home" blocks than for �work" blocks, and the opposite is

true for stations in commercial zones. We label the �ve detected blocks as (clockwise from

top left) �home (west)�, �park�, �home (east)�, �work�, and �mixed�. We base these labels

on the land usage of the underlying areas and the time-dependent block-to-block activity

parameters (ω̂ght) that we show in Figure 8.5.11.

We highlight the appearance of the �park� block, which we have not observed in previous

models and has distinctive behavior. The park block is similar to a residential block in terms

of its spike in morning tra�c to the work block and its spike in evening tra�c from the work

block, but it has distinct intra-block activity that peaks in the afternoon. The intra-block

activity resembles weekend activity in the New York City bicycle-sharing system as a whole

(see Figure 8.2.1); this re�ects leisure use of the bikes. Bicycles near Central Park (which

also places them near several major museums) are likely to be used by tourists and other

non-commuters during the day for leisure or travel to nearby attractions.

In Figure 8.5.11, we show the values of the block-to-block parameters ω̂ght for the

�ve-block TDD-SBM and TDMM-SBM. Our estimates of ω̂ght for these models illustrate

important di�erences in the behavior of di�erent blocks that we can observe only with
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a time-dependent model.4 We see some overlap in the time-dependent behavior of blocks,

evidencing potential over�tting. For example, the home (east), home (west), and mixed block

have similar tra�c with blocks other than their own. However, models of this subnetwork

with fewer than �ve blocks do not cleanly distinguish the �park" block of stations from other

residential stations.

Figure 8.5.11: Estimated time-dependent block-to-block parameters ω̂ght for (left) a TDMM-
SBM with �ve blocks and (right) a TDD-SBM with �ve blocks of the Manhattan subnetwork
of the New York City bicycle-sharing network.

One reason that our time-dependent SBMs of the Manhattan subnetwork of New York

City bicycle-sharing network perform better (with respect to detecting functionally meaningful

blocks) than any models that we applied to the entire system is the dependence of station-

to-station trip counts on the distance between stations. Although our SBMs correct for the

overall activity of each station, they do not normalize expected edge values by the distance

between stations. In a small geographic area, such as the coverage areas of the Los Angeles

4We obtain similar block identi�cations for this subnetwork using a discrete, directed, degree-corrected,
time-independent SBM as we do from a TDD-SBM with the same number of blocks. We do not show the
time-independent SBM results, but they can be produced using the code in our supplementary material.
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and San Francisco networks, this is a reasonable choice, as all stations are within �biking

distance" of each other. However, when examining a system as large as New York City's,

the lack of distance correction weakens the functional groupings that we obtain with our

time-dependent SBMs. Intra-block trips dwarf inter-block trips (see Figure 8.5.8), and it

seems more reasonable to construe each block as its own ecosystem.

8.5.4 Model Selection

Although statistically rigorous model selection is outside the scope of our paper, we brie�y

compare the number of parameters in our mixed-membership and discrete SBMs. This is

valuable for considering model-selection criteria, such as the Akaike information criterion

(AIC) and Bayesian information criterion (BIC), that penalize a model based on its number

of parameters. For a network with N nodes, K blocks, and T time slices, the number of

parameters for the TDMM-SBM is

K ×N −K + T ×K2 , (8.5.1)

and the number of parameters for the TDD-SBM is

2×N −K + T ×K2 . (8.5.2)

The �rst term of (8.5.1) comes from the fact each node in our mixed-membership model

has K parameters (Cig, with g ∈ {1, . . . , K}) that express the strength of membership in

each block. By contrast, each node in our discrete-membership model has one parameter for

block membership and one degree-correction parameter. Therefore, given a value of N , the

�rst term in (8.5.1) increases linearly with the number of blocks, whereas the corresponding

term in (8.5.2) is �xed. Otherwise, formulas (8.5.1) and (8.5.2) are equivalent. The −K

term in each formula arises from identi�ability constraints for each model. As we described

in Section 8.3), these constraints are
∑

iCig = 1 for all g for the mixed-membership model
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and
∑

i∈g θi = 1 for all g for the discrete model. The last term in each formula is the total

number of ωght terms in the model (see Section 8.3.1).

In Table 8.5.1, we show the unnormalized log-likelihood and number of parameters (Np)

for TDMM-SBM and TDD-SMB of the Manhattan subnetwork (which has N = 166 nodes)

with two, three, four, and �ve blocks.

TDMM-SBM TDD-SBM
Number of blocks Np log-likelihood Np log-likelihood

2 426 −260625 426 −270809
3 711 −235162 545 −254779
4 1044 −212295 712 −236198
5 1425 −198489 927 −222539
6 1854 −189670 1190 −216468

Table 8.5.1: Comparison of log-likelihood and number of parameters in models of the
Manhattan subnetwork, which has N = 166 nodes.

In this example, TDMM-SBM outperforms TDD-SBM with respect to log-likelihood

when the two models have the same number of parameters. This result makes sense because

of the additional constraint of the TDD-SBM that stations must belong to exactly one block.
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Figure 8.5.12: Akaike information criterion for maximum likelihood TDMM-SBM with 2�10
blocks for the Los Angeles bicycle-sharing network.

Calculating AIC, which is given by [Aka74]

AIC = (2×Np)− (2× log-likelihood) ,

for TDMM-SBM with 2�10 blocks for the Los Angeles bicycle-sharing network selects the

TDMM-SBM with the largest number of blocks. The AIC is a cost function for comparing
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the relative quality of statistical models; one construes the model with a smaller AIC as

the �better� model. The AIC takes into account both the likelihood and how description

complexity of a model is in its two summands. The negative log-likelihood is smaller for

models with higher likelihood, and one measures the complexity of a model based on its

number of parameters. From this perspective, a model with a smaller AIC is better at

capturing the trends of a data set while avoiding over�tting. In Figure 8.5.12, we see that

AIC decreases as we increase the number of blocks for 2�10 blocks. However, the graphs of the

MLE values of ωght for TDMM-SBM with 7 or more blocks on the Los Angeles network are

no more informative than models with fewer blocks. We make this observation for TDMM-

SBM with large numbers of blocks using the LA network rather than the Manhattan network,

because computing models on data with fewer stations takes less time; and we are con�dent

that the noisy and/or redundant information from using 7 or more blocks on the LA network

arise from over�tting.

Although our calculations above are straightforward, choosing appropriate model-selection

criteria deserves serious consideration [Yan16, YSJ14]. We leave such an investigation for

future work.

8.6 Conclusions and Discussion

We developed time-dependent degree-corrected stochastic block models and used them to

analyze daily commute patterns in bicycle-sharing systems in Los Angeles, San Francisco,

and New York City. Our SBMs group stations based on their activity over time, allowing

us to identify them with home and work roles. Work stations are characterized by in�ow

from home stations in the morning and out�ow to home stations in the afternoon and

evening, and residential stations have the opposite characterization. It is also sometimes

possible to identify other roles, such as a Manhattan park block that combines residential

and leisure/tourist behavior.
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We found that many stations in our three focal cities serve a mixture of roles, which

we captured with our mixed-membership SBM. However, in some cases, we observed that

discrete-membership SBMs that use fewer parameters can provide a clearer picture of the

usage patterns that are associated with each. We illustrated through case studies how

our discrete and mixed-membership SBMs can provide complementary insights about the

bicycle-sharing system behavior. We also demonstrated that applying a time-independent

degree-corrected SBM on time-aggregate networks tends to divide stations into contiguous

geographic groupings, rather than functional ones.

We evaluated our block labels by comparing them to city zoning maps. The home�work

structure that we detected generally aligns well with the underlying zones. However, we

found important deviations near major transit hubs. For example, we identi�ed bicycle

stations near Union Station in Los Angeles and the San Francisco Caltrain station as home

stations because they have high out�ow during the mornings and high in�ow during the

evenings, even though they are not located in residential areas.

It is common to evaluate the results of community detection by comparison with so-called

�ground-truth� communities [BDL17, FH16]. (However, it is crucial to encourage caution

with respect to such evaluations [PLC17].) The time-dependent commute �ows that we

detected with our SBMs enabled us to identify and label the functional roles of our blocks.

This, in turn, is useful for revealing functional districts without a corresponding zoning

map. In the future, it will be worthwhile to compare our detected tra�c �ows to activity

patterns from other mobility data, such as taxis, subway systems, e-scooters, and geo-tagged

mobile-app usage [ZKK18].

Developing a deeper understanding of the relationships between station roles and usage

patterns throughout a day (and in weekdays versus weekends) can improve the design of

bicycle-sharing systems. For example, it can help determine where to place stations and

the appropriate sizes of di�erent stations. It can also provide actionable information for

e�cient redistribution of bicycles, a question that has received much research attention
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[SCL13b, PWS14, SSF15, FRT15].

Although our SBMs revealed work and home blocks across di�erent cities, such roles

do not describe identical activity patterns. (Accordingly, our labels of �home" and �work"

should not be taken as strict classi�cations of the trips made between blocks, but rather

as indicative of dominant activity patterns in a network.) For example, in downtown Los

Angeles, the work-to-work activity peaks in the middle of a day, perhaps suggesting that the

bicycle-sharing system is being used for errands or leisure activity. In San Francisco and New

York City, home-to-home activity has morning and evening peaks, which may be due to the

use of the system for �last-mile� transportation or short commutes within mixed-use areas.

Such possibilities are reminiscent of recent work on human mobility motifs [SBC13, GHB08].

Using our statistical models, it may be possible to examine footprints of motifs of individual

transportation patterns, although it will be necessary for the examined data to include day-

by-day movement patterns of individuals to establish a direct connection. Accordingly, we

expect it to be fruitful to apply our statistical approaches to the analysis of mobile GPS

data.

We now discuss worthwhile future e�orts for improving our models and algorithms. In this

paper, we presented two types of time-dependent SBMs and used them to reveal interesting

urban structures in bicycle-sharing networks. We formulated these SBMs to account for

degree heterogeneity and for a balance between cumulative in-degrees and out-degrees of

bicycle stations over the course of a day. (The latter feature re�ects the classic axiom of

Ravenstein [Rav85] that every current of human mobility has an associated countercurrent

[BBG18].) However, there is scope for improving our models, just as there is scope for

improving SBMs more generally. One area to improve is the �tting of Poisson random

variables to the numbers of trips between pairs of stations. Additionally, although it is a

convenient simpli�cation to assume independence of edges conditioned on the latent block

structure, it would be nice to relax these assumptions. It would also be useful to examine

the assumption that the number of trips during each hour are independent random variables.
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For example, they are not independent if there are stations that run out of bicycles at some

point. As we observed previously, mixed-membership and discrete-membership SBMs can

reveal di�erent insights, as can examining SBMs with di�erent numbers of blocks. This helps

illustrate why it is important to consider model selection in greater depth.

It would also be useful to explore practical ways that a bicycle-sharing system can exploit

our models. Peaks in the computed mean out-degree
∑

j µijt not only indicate expected

usage, but they are also suggestive of the main purpose of a docking station (e.g., home,

work, or a mixture of the two). A patron who wants to use a bicycle would be very unsatis�ed

if they walked to a station to pick up a bicycle to ride to work, but they found that no bicycles

were available. This suggests that one potentially viable strategy for maintaining the stock

bicycles at a station is to ensure that it is above the expected use that is estimated by our

SBMs, as our results from both the TDD-SBM and TDMM-SBM identify the most important

ways that people are using these stations.

Another important direction for future work is the exploration of di�erent methods for

preprocessing data to include only the most signi�cant edges. The two most apparent ways

to do this are (1) eliminating insigni�cant edges by thresholding and (2) choosing time slices

that reduce variance. The preferential attachment model of [ZYM13] gives one possible

approach for eliminating insigni�cant edges. The way that one splits the times of a day

can improve both accuracy and computational e�ciency by reducing the total number of

parameters. For example, in the cities that we studied, bicycle trips occurred sporadically

between 1 am and 5 am, so it may be desirable lump all of these time slices into one time

interval to decrease the number of parameters by 3 and thereby decrease the variance. There

exist methods to �nd suitable ways to segment time periods [CB13], and trying to �nd the

best ones to use in di�erent situations is an active area of research.

Broadening our models to incorporate spatial data is another natural direction to build on

our research [Bar18]. The radiation, intervening opportunities, and gravity models have had

some success at modeling human mobility over various distances [BBG18]. These models put
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more weight on longer trips, and some of them take into account opportunities (the so-called

intervening ones) that lie between an origin and destination location. Some of these mobility

models also possess statistical justi�cation based on entropy arguments, and it is worthwhile

to investigate methods to incorporate them into SBMs. Some of these mobility models

have already been incorporated into null models in time-dependent modularity objective

functions in the work of Sarzynska et al. [SLC16], who found that radiation and gravity null

models perform better than the usual Newman�Girvan null model (which is a variant of a

con�guration model [New06, FLN18]) for spatial networks. Given that there is an equivalence

between a SBM and modularity maximization in a planted-partition model [New16] (and a

generalization of this idea arises in multilayer networks [PHL19]), the stage seems to be

set for e�orts to incorporate spatial information into SBMs. The value of using spatial

null models for bicycle-sharing systems was examined in [AOS13, Tai14], so this is a very

interesting direction to pursue.

It would be interesting to build on our work using urban spatial null models that go

beyond distance and incorporate route di�culty due to tra�c or terrain. Some bicycle-

sharing researchers are harnessing route information from GPS systems to better understand

relationships between station usage and availability of bicycling infrastructure (such as bike

lanes) [WB18]. One can also develop models that incorporate station roles. For example,

one expects a higher tolerance to distance for traveling between home and work than for a

quick bite to eat. Spatial null models can also uncover other types of communities, such as

ones that stem from variables (like spoken language and socioeconomic status) that are not

directly explainable by spatial data [EEB11, SLC16].

Our time-dependent SBMs are useful for studying many types types of mobility data.

For example, it would be interesting to study dockless vehicle-sharing networks, such as e-

scooter-sharing programs, using our time-dependent SBMs. If we view the usage of stations

as a proxy for a spatial function of demand for bicycles, then data from dockless systems

may better approximate such a spatially varying function. One possibility is to partition a
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city into a grid (including comparing computations that use di�erent levels of granularity)

and measure the usage in each region, taking care to recognize irregularities from transit

hubs. Depending on how heavily these systems are used in commuting, we may discover

primary functional blocks other than �home� and �work�. Looking even further forward,

it will also be possible to tailor our methods to analyze multimodal transportation system

usage and other urban �ows, which are particularly suitable for the setting of multilayer

networks [KAB14, AM19, NBI19, GBD19].
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8.7 Appendix

8.7.1 Singular vectors for Los Angeles and San Francisco

We show our singular vectors for the bicycle-sharing networks for downtown Los Angeles in

Figure 8.7.1 and for San Francisco in Figure 8.7.2.

Figure 8.7.1: The �rst two singular vectors of data for the downtown Los Angeles bicycle-
sharing network.

273



Figure 8.7.2: The �rst two singular vectors of the data for the San Francisco bicycle-sharing
network.

8.7.2 Proof that expected node degrees are the same as node degrees in the

data generated from our TDD-SBM

Suppose that we are given a network that is generated by our time-dependent discrete-

membership stochastic block model (TDD-SBM). We prove that the expected value of the

total degree (i.e., the sum of the in-degree and the out-degree) of a node is the same as the

total degree of the node in the observed data.

Let Xijt for each node pair i, j and time t ∈ {0, 1, . . . , 23} be random edge weights

distributed according to the TDD-SBM and inferred from the data Aijt. Recall that g

denotes block g in the SBM and that κg is the sum of the in-degrees and out-degrees of all

nodes in block g over all time periods. For node i, we show that the mean degree of i is

equal to the degree of i in the data. That is, E
(∑

j

∑23
t=0Xijt

)
= ki =

∑
j

∑23
t=0Aijt. We

274



have

E

(
23∑
t=0

∑
j

(Xijt +Xjit)

)
=

ki
κgi

∑
t

∑
h

∑
j∈h

kj
κh

(mgiht +mhgit)

=
ki
κgi

∑
h

(mgiht +mhgit)

= ki .

We are not aware of a relationship between the expected degrees and degrees of the observed

data for our mixed-membership stochastic block model.
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