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A unified theory of zonal flow shears and density corrugations in

drift wave turbulence

Rameswar Singh and P H Diamond

CASS, University of California San Diego,

9500 Gilman Dr., La Jolla, California 92093, USA

A unified theory of zonal flow shears and density corrugations in drift wave tur-

bulence is presented. Polarization and density advection beat excitation are studied

in combination with modulational response. Noise is driven by two-time flux cor-

relation. While the effective zonal flow eddy viscosity can go negative , the zonal

diffusivity is positive definite. There is no inverse cascade of density corrugation.

The connection between avalanches and corrugations is discussed. The zonal cross-

correlation is identified and calculated. Conditions for alignment of zonal shears and

corrugation gradients are determined, and the implications for staircase structure

are discussed. We show that the synergy of beat noise and modulational effects is

stronger than either alone. Strong zonal flows can be excited well below the modu-

lational instability threshold. In the context of L-H transition, zonal noise quenches

turbulence overshoot by eliminating the threshold for zonal flow excitation. The

power threshold for L - H transition is lowered.
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I. INTRODUCTION

Appreciation of the role of zonal modes has lead to a paradigm shift in our conception

of drift wave turbulence, so much so that we now refer to it as “drift wave - zonal flow

turbulence(DW-ZFT)”. DW-ZFT self-regulates by the interaction of generation - i.e., non-

linear transfer to zonal modes with feedback of zonal structures on drift waves by shearing

and corrugation[1–3]. DW-ZFT has two components: drift waves (“wavy”-kθ 6= 0) and zonal

modes with kθ = kz = 0. Note that symmetry distinguishes zonal from wavy populations.

Of course, due to their two directions of symmetry, zonal modes are special, as they are

the modes of minimal inertia, transport and damping. It’s also important to recall that the

zonal mode equations differ in structure from the wavy mode equations, on account of the

constraints of symmetry upon electron dynamics. This differs from the corresponding case

for geophysical fluids, and renders zonal modes even more important in plasma systems.

Symmetry precludes an adiabatic electron response for zonal modes. Thus they are benign

repositories for fluctuation energy. Conversion of energy to zonal structures reduces trans-

port and improves confinement. The interaction of zonal and wavy components of DW-ZFT

has been encapsulated by an extended predator-prey model[4], which also includes profile

structure evolution. Zonal shear flows and profile corrugations have been shown to arrange

themselves into long lived quasi-periodic patterns, known as staircases[5–7]. Staircase forma-

tion is a striking consequence of inhomogeneous mixing in real space. A theory of DW-ZFT

should address both the k-space and real space manifestations of the dynamics.

Zonal modes have been intensively studied by theoretical work[1–3, 8–33]., simulations[34–

43] and experiment[44–58]. An uncountable infinity of color figures have been generated.

Interestingly though, nearly all theoretical models of zonal flow generation divides cleanly

into:

1. calculation of the ZF dielectric, or screening response, with occasional mention of

excitation by wavy component beat noise[10, 12]. Indeed, the details and consequences

of noise generation have received only cursory examination. This calculation ignores

modulational mechanisms.

2. modulational stability calculations, which consider the response of a pre-existing gas

of drift waves to infinitesimal test shears or profile corrugations, but ignore noise
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emission.

Clearly, this separation is artificial and indeed incorrect. A unified theory of zonal modes

is needed. Such a theory must necessarily be formulated at the level of coupled spectrum

evolution equations[9, 59], which treat the intrinsically comparable effects of noise emission

and coherent response (i.e., turbulent diffusive scattering, where the diffusivity can be neg-

ative) on an equal footing. This paper presents the requisite unified theory.

In this paper, we derive coupled spectral equations for zonal flows, density corrugations

and the wavy turbulence kinetic energy and internal energy for DW-ZFT in the simple-yet-

prototypical Hasegawa-Wakatani model[60, 61]. To eliminate the need to evolve the wavy

cross-correlation spectrum 〈nkφ?k〉, we limit this study to the case where
k2‖v

2
th

ων
≡ α > 1.

In this limit the non-adiabatic electron response is dominated by parallel diffusion, and is

laminar. We compute the zonal flow and zonal corrugation incoherent noise, determined by

vorticity advection
(
~̃v · ~∇∇2

⊥φ̃
)

and density advection
(
~̃v · ~∇ñ

)
, respectively. The turbulent

flow viscosity and density diffusivity set by the vorticity and density responses, respectively,

are also calculated. The analysis shows that the turbulent viscosity can go negative for

sufficiently steep energy spectra- ∂E
∂kr

< 0 and
∣∣∣ ∂E∂kr ∣∣∣ < ∣∣∣ ∂E∂kr ∣∣∣crit. This is consistent with the

prediction of the wave kinetic theory, and is a condition for nonlocal transfer of energy to

large scales. It begs the question of how the system will evolve - i.e., will the turbulence

act to relax the strong spectral gradient, thus ’turning off’ the familiar negative viscosity

phenomenon. The turbulent density diffusivity, however, is seen to be positive definite, sug-

gesting that density perturbations are mixed, and dissipated on small scale. It’s important

to note here that the turbulent diffusivity is a measure of mixing only for the non-adiabatic

density fluctuations. Adiabatic fluctuations
(
δnk

n0
= eδφk

Te

)
are unmixed, since ẑ× ~∇φ · ~∇n = 0

for them.

These developments in the basic physics have important implications for the formation of

zonal structures. Polarization beat noise seeds zonal potential at all kρi < 1 scales. If the

scale is modulationally unstable, this seeding results in the growth of strong zonal shears,

which then feed back on the primary mode dynamics. This scenario is akin to adding noise

to an unstable mode. If the scale is modulationally stable, a noise vs damping competition

(akin to that in Brownian motion, which leads to a balance of fluctuation and dissipation)

determines the ambient zonal flow levels. For weak damping, these shears can grow quite

large, thus rendering the question of modulational instability moot. Note that the presence
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of noise removes the threshold for zonal mode activity, thus resulting in zonal flow excitation

across a broad parameter range.

Corrugations, which are damped by turbulent particle diffusion, also are determined by a

noise vs diffusion balance. Thus we see that confronting the DW-ZFT problem now requires

one to :

1. to understand the interplay of noise seeding and negative viscosity, both of which are

due to advection of polarization charge.

2. calculate both shearing-feedback dominated, and fluctuation-dissipation type station-

ary states. Shearing feedback can regulate the effect of noise excitation on unstable

modes.

3. treat corrugations and flow shears on the same footing. Corrugations can induce

random refraction of the wavy modes. The interplay of refraction, shear in E × B

flow and density gradient is determined by the zonal density - vorticity (shear) cross

correlation, which is calculated. The importance of the zonal density - vorticity cross

correlation has not been appreciated previously.

4. determine the self-consistent drift-wave spectrum (i.e., not only intensity), and how it

compares to the critical slope spectrum of zonal mode dynamics.

In this paper, we present a complete, self-consistent study of zonal mode dynamics. The

zonal mode problem is well studied, so it is incumbent upon us to state what is new in this

paper. Hence, the novel elements are:

1. an analysis encompassing both noise generation, modulational instability and their

interaction, based upon a systematic spectral closure for zonal shears and corrugations.

2. the discovery of the forward transfer of internal energy of density corrugations ∼〈
|n/n0|2

〉
which occurs along with the familiar inverse transfer of kinetic energy. The

zonal flows may exhibit negative viscosity phenomena, but corrugations do not (i.e.,

diffusivity is positive!).

3. the realization of the important implications of the zonal cross-correlation
〈
n∇2

⊥φ
〉

which appear in spectral transfer rates and which governs the phasing of density
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corrugations and zonal shears. These can be correlated or anti-correlated, depending

upon the sign of
〈
n∇2

⊥φ
〉
.

4. the re-evaluation of predator-prey and L→H model dynamics in light of the role of

zonal noise.

Most generally, corrugations can be viewed as real space manifestation of the phase space

zonal distribution function and can be calculated from the velocity moments of the the zonal

phase space distribution function. Attempts along this line has been made in the Ref.[62]

and a transport equation for the zonal phase space distribution function has been derived.

However, such a gyro-kinetic description of corrugation has produced no conclusive answer

on modulational stability and the dynamics of density and temperature corrugations.

New challenges abound in this classic problem!

The theoretical developments discussed have important practical implications for DW-ZFT

evolution, including extended predator-prey models of the L → H transition. Nonlinear

noise excites zonal flows below the modulational instability threshold, thus explaining the

broad domain of zonal mode activity. The hard growth/power threshold for zonal flow onset,

characteristic of zero noise models, disappears. In L → H models, turbulence overshoot is

consequently eliminated. The steepening of ∇P occurs at lower power, since noise boosts

the drive of zonal flows and so necessarily reduces transport. Turbulence and zonal flow

energies balance prior to the steepening of ∇P . An improved model of the L→ H transition

is discussed at length in this paper.

The remainder of this paper is arranged as follows. Section(II) presents the drift wave - zonal

flow system. Section(III) discusses spectral evolution. (III A) calculates the induced diffusion

of spectral kinetic energy and internal energy. (III B) presents spectral evolution of zonal

intensity. (III C) discusses spectral evolution of density corrugations. (III D) calculates zonal

cross-correlations - a quantity heretofore not discussed. Section(IV) contrasts the familiar

wave kinetic analyses with the spectrum evolution results. The predator prey model is

extended to include the nonlinear noise in Section(V). The effect of noise on the L - H

transition is addressed in Section(VI). Section(VII) gives conclusions and discussions.
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II. DRIFT WAVE - ZONAL MODE SYSTEM

Here we present and discuss the basic model. We consider a plane slab geometry with

homogeneous, straight magnetic field in the z direction
(
~B = Bẑ

)
and inhomogeneous den-

sity n0(x). The ions are assumed cold and temperature gradient effects are ignored. The

nonlinear evolution of dissipative drift wave turbulence is then described by the following

2-field model, due to Hasegawa and Wakatani[60, 61].

d

dt
∇2
⊥φ̃+ ṽE · ~∇∇2

⊥φ = −χe∇2
‖

(
φ̃− ñ

)
−
{
φ̃,∇2

⊥φ̃
}

+ µ∇2
⊥∇2

⊥φ̃ (1)

dñ

dt
+ ṽE ·

~∇n0

n0

= −χe∇2
‖

(
φ̃− ñ

)
−
{
φ̃, ñ

}
+Dn∇2

⊥ñ (2)

The above equations(1) and (2) have been written in dimensionless form. Potential and

density are normalized as ñ = δn/n0, φ̃ = eδφ/Te respectively. Time and space are nor-

malized as t = ωcit, x⊥ = x⊥/ρs. The normalized E × B velocity is ṽE = δvE
cs

= ẑ × ~∇φ̃,

χe = v2
te/νeiΩi is electron parallel diffusivity, vte =

√
2Te/me is electron thermal speed, µ

is normalized ion viscosity µ = µ0/ρ
2
sΩi and D is normalized collisional particle diffusivity

Dn = D0/ρ
2
sΩi. These equations describe nonlinear evolutions of vorticity fluctuation ∇2

⊥φ̃

and density fluctuation ñ which are coupled through parallel electron diffusivity χe. The

parallel wave length is assumed to be k‖ ∼1/qR and perpendicular wavelength is k⊥ρs ∼ 1

so that k‖ � k⊥ and the equations(1) and (2) describe a quasi-two-dimensional system.

In the low collisionality limit, where ωk � χek
2
‖, the electrons are adiabatic i.e., ñ = φ̃.

Then equations(1) and (2) reduce to the Hasegawa-Mima, or the Rossby wave equation. In

the strongly collisional limit, ωk � χek
2
‖, ñ and φ̃ are weakly coupled and evolve separately.

Equation(1), for vorticity, reduces to the 2D Navier-Stokes equation where the vorticity is an

active scalar and advected by the E ×B velocity. Equation (2), for the density fluctuation,

reduces to a passive scalar equation where the density fluctuation is advected by the same

E × B velocity. Defining the adiabaticity parameter α ≡ χek
2
‖/ωk, the adiabatic regime

corresponds to α � 1 and the hydrodynamic regime corresponds to α � 1. The equations

for zonal vorticity and zonal density are obtained by zonal averaging (over the directions of

symmetry) of the respective fluctuation equations. The zonal density evolution is governed

by

d

dt
n = − ∂

∂x
ṽExñ+Dn∇2

xn (3)
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and the zonal vorticity dynamics is governed by

d

dt
∇2
xφ = − ∂

∂x
ṽEx∇2

⊥φ̃+ µ∇4
xφ (4)

where the first term on the right hand side is the divergence of the vorticity flux. The

vorticity flux can be expressed as divergence of Reynolds stress, using the Taylor identity

i.e., ṽEx∇2
⊥φ̃ = ∂

∂x
ṽExṽEy. The potential fluctuations are the drift waves governed by the

Hasegawa - Wakatani, model for simplicity.The set of equations (1), (2), (4) and (3) consti-

tute a self-consistent model for the coupled drift wave - zonal mode system.

To determine the linear responses, linearize the above equation and taking Fourier transform

in the symmetry directions y and z. This yields the dissipative drift wave dispersion relation

k2
⊥ω

2
k + iωkα̂

(
1 + k2

⊥
)
− iω?eα̂ = 0 (5)

where α̂ = χek
2
‖ and ω?e = (ρs/Ln) ky is the drift frequency normalized by Ωci. The roots of

the above dispersion relation equation(5) are:

ωk = − i
2
α̂

(
1 +

1

k2
⊥

)
± i

2

{
α̂2

(
1 +

1

k2
⊥

)2

− 4iω?e
α̂

k2
⊥

}1/2

(6)

In the two limiting cases mentioned above, simple expressions for the real frequencies(ωrk)

and growth rates(γk) of the unstable modes are obtained. These are:

1. the adiabatic regime (α > 1): where the real frequency and the growth rate are given

by

ωrk =
ω?e

1 + k2
⊥

(7)

and

γk =
k2
⊥
α̂

ωr2k
1 + k2

⊥
(8)

respectively. These modes are conventional drift waves.

2. the hydrodynamic regime (α < 1): In this regime, the growth rate and real frequency

are equal, and are given by

ωrk = sign(ky)

(
α̂ |ω?e|

2k2
⊥

)1/2

(9)

γk =

(
α̂ |ω?e|

2k2
⊥

)1/2

(10)
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III. SPECTRAL EVOLUTION

Here we derive spectral equations for the zonal modes and the wave fluctuation energy.

Our motivation is to develop the most general inclusive analysis of DW-ZFT. The H-W

system in spectral form reads(
∂

∂t
+ µk2

⊥ +
α̂k
k2
⊥

)
k2
⊥φk − α̂knk =

1

2

∑
~p+~q=~k

ẑ · ~p× ~q
(
q2 − p2

)
φpφq (11)

(
∂

∂t
+ α̂k

)
nk + (−α̂k + iω?e)φk =

1

2

∑
~p+~q=~k

ẑ · ~p× ~q (φpnq − φqnp) (12)

It is straightforward to see that the mode coupling coefficients M1
kpq = ẑ · ~p× ~q (q2 − p2) /k2

⊥

and M2
kpq = ẑ · ~p× ~q satisfy the the detailed conservation conditions:

σQ1

1kM
1
kpq + σQ1

1pM
1
pqk + σQ1

1q M
1
qkp = 0; Q1 = (E,Z) (13)

and

σQ2

2kM
2
kpq + σQ2

2pM
2
pqk + σQ2

2q M
2
qkp = 0 (14)

where σQ1

1k = 1
2

(k2
⊥, k

4
⊥) and σQ2

2k = 1. These symmetry properties guarantee that the polar-

ization nonlinear term in equation (11) conserves kinetic energy E =
∑

k Ek =
∑

k
1
2
k2 |φk|2

and fluid enstrophy Z =
∑

k Zk =
∑

k
1
2
k4 |φk|2, and that the convective nonlinear term in

equation(12) conserves internal energy En =
∑

k Enk =
∑

k
1
2
|nk|2. In purely adiabatic limit

α̂ =∞, the density fluctuation is ñ = φ̃ and the Hasegawa - Wakatani equations reduce to

the Hasegawa - Mima (H-M) equation[63].(
∂

∂t
+ iωk

)
φk =

1

2

∑
~p+~q=~k

ẑ · ~p× ~q (q2 − p2)

1 + k2
⊥

φpφq (15)

The mode coupling coefficient Mkpq = ẑ · ~p× ~q (q2 − p2) / (1 + k2
⊥) satisfy the detailed con-

servation condition:

σQkMkpq + σQp Mpqk + σQq Mqkp = 0; Q = (E,Z) (16)

where σQk = 1
2

(
1 + k2

⊥, (1 + k2
⊥)

2
)

. This property guarantees non-linear invariance of total

energy E =
∑

k Ek =
∑

k (1 + k2) |φk|2 and total enstrophy Z =
∑

k Zk =
∑

k (1 + k2)
2 |φk|2

for the Hasegawa - Mima system.
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For the two-field drift wave turbulence model, the relevant spectra are the kinetic energy

spectrum
〈
|vk|2

〉
= k2

〈
|φ|2k
〉
, the internal energy spectrum

〈
|nk|2

〉
and the cross correlation

spectrum 〈nkφ?k〉. Note that the cross-spectrum is intimately related to the flux i.e., Γn =∑
k−iky 〈nkφ?k〉 etc. Thus the wave cross-correlation 〈nkφ?k〉 may be thought of as a measure

of alignment in drift wave turbulence, much like cross-helicity
〈
~v · ~B

〉
measures alignment

in MHD turbulence. A state of high normalized cross-correlation is one where transport is

small, and density mixing or scattering is weak. Likewise, a state of low cross-correlation

could support stronger transport and mixing. Zonal fluctuation cross-correlation, discussed

later is of broader and different significance. The evolution equation for the kinetic energy

spectra is obtained by multiplying the equation(11) by φ?k and adding the resulting equation

with the conjugate of equation(11) multiplied by φk. Taking a statistical average (denoted

by the angular bracket 〈〉) of the resulting equation yields(
∂

∂t
+ 2µk2

⊥ + 2
α̂k
k2
⊥

)
k2
⊥
〈
|φk|2

〉
− 2α̂k< 〈nkφ?k〉 = <

∑
~p+~q=~k

ẑ · ~p× ~q
(
q2 − p2

)
〈φ?kφpφq〉 (17)

Similarly, the internal energy spectrum is obtained as(
∂

∂t
+ 2α̂k

)〈
|nk|2

〉
− 2α̂k< 〈nkφ?k〉+ 2ω?e= 〈nkφ?k〉 = <

∑
~p+~q=~k

ẑ · ~p× ~q (〈n?kφpnq〉 − 〈n?kφqnp〉)

(18)

The evolution equation for the cross correlation spectra is obtained by multiplying the

conjugate of equation(11) by nk and adding the resulting equation to the equation(12)

multiplied by φ?k, yielding:(
∂

∂t
+ µk2

⊥ +
α̂k
k2
⊥

+ α̂k

)
k2
⊥ 〈nkφ?k〉 − α̂k

[〈
|nk|2

〉
+ k2

⊥
〈
|φk|2

〉]
+ iω?ek

2
⊥
〈
|φk|2

〉
〈nkφ?k〉

=
∑
~p+~q=~k

ẑ · ~p× ~q
[(
q2 − p2

) 〈
nkφ

?
pφ

?
q

〉
+ k2

⊥ (〈φ?kφpnq〉 − 〈φ?kφqnp〉)
]

(19)

The triplet correlations are determined by the phase coherency of the three modes ~k, ~p, ~q.

To first order, in a state of turbulence, this phase coherency is determined by the direct

interaction among these three modes in the presence of the stochastic background of all

other interactions. Denoting the perturbation in φk due to this direct interaction by δφk,

the triad correlations are approximated as

〈φ?kφpφq〉 = 〈δφ?kφpφq〉+ 〈φ?kδφpφq〉+ 〈φ?kφpδφq〉 (20)



10

The first term on the right hand side in the above equation ultimately leads to nonlinear

noise or incoherent emission as δφk ∼ φpφq and so that 〈δφ?kφpφq〉 ∼
〈
|φp|2

〉 〈
|φq|2

〉
. Similarly

the remaining two terms on the right hand side ultimately represents nonlinear relaxation or

coherent damping as δφp ∼ φkφ
?
q and so that 〈φ?kδφpφq〉 ∼

〈
|φk|2

〉 〈
|φq|2

〉
. The perturbations

δφk and δnk are driven by the direct interaction between modes ~p and ~q:(
∂

∂t
+ ηk

)
k2
⊥δφk + α̂k (δφk − δnk) = S1k (21)

(
∂

∂t
+ ηk

)
δnk + α̂kδnk + (−α̂k + iω?e) δφk = S2k (22)

where the source terms are given by

S1k = ẑ · ~p× ~q
(
q2 − p2

)
φpφq (23)

S2k = ẑ · ~p× ~q (φpnq − φqnp) (24)

The solutions of the beat mode equations(21) and (22) are obtained as

δφk =

ˆ t

−∞
dt′e−(iωk+ηk)(t−t′) [akS1k(t

′) + bkS2k(t
′)] (25)

δnk =

ˆ t

−∞
dt′e−(iωk+ηk)(t−t′) [ckS1k(t

′) + dkS2k(t
′)] (26)

where only the dominant virtual mode eigenvalues are retained for simplicity. Heavily

damped modes make a small contribution to mediating spectral transfer. The coupling

coefficients are given by

ak =

(
1− iωk

α̂k

)
bk; bk =

1

det(Ak)
(27)

ck =

(
1− iωkk

2

α̂k

)
ak; dk =

(
1− iωkk

2

α̂k

)
bk (28)

where ωk is the frequency of the linear eigenmode and det(Ak) is given by

det(Ak) =

√
(1 + k2)2 − 4iω?e

(
k2

α̂k

)
(29)

In the following the triad correlations are obtained. Using the expression for δφk from

equation(25) the incoherent part of the potential triad correlation becomes

〈δφ?kφpφq〉 =

ˆ t

−∞
dt′e−(−iωk+ηk)(t−t′) [a?k 〈S?1k(t′)φp(t)φq(t)〉+ b?k 〈S?2k(t′)φp(t)φq(t)〉]
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where

〈S?1k(t′)φp(t)φq(t)〉 = ẑ · ~p× ~q
(
q2 − p2

) 〈
φ?p(t

′)φ?q(t
′)φp(t)φq(t)

〉
= ẑ · ~p× ~q

(
q2 − p2

) 〈
φ?p(t

′)φp(t)
〉 〈
φ?q(t

′)φq(t)
〉

and

〈S?2k(t′)φp(t)φq(t)〉 = ẑ · ~p× ~q
[〈
φ?p(t

′)n?q(t
′)φp(t)φq(t)

〉
−
〈
φ?q(t

′)n?p(t
′)φp(t)φq(t)

〉]
= ẑ · ~p× ~q

[〈
φ?p(t

′)φp(t)
〉 〈
n?q(t

′)φq(t)
〉
−
〈
φ?q(t

′)φq(t)
〉 〈
n?p(t

′)φp(t)
〉]

Note that the 4th order moment-correlation has been written in terms of products of two

second order moment using the assumption of quasi-normal (Gaussian) fluctuation statistics.

Similarly using the expression for the potential perturbation δφp the coherent part of the

triad correlation becomes

〈φ?kδφpφq〉 =

ˆ t

−∞
dt′e−(iωp+ηp)(t−t′) [ap 〈φ?k(t)S1p(t

′)φq(t)〉+ bp 〈φ?k(t)S2p(t
′)φq(t)〉]

where

〈φ?k(t)S1p(t
′)φq(t)〉 = ẑ · ~k × ~q

(
k2 − q2

) 〈
φ?k(t)φ

?
q(t
′)φk(t

′)φq(t)
〉

= ẑ · ~p× ~q
(
k2 − q2

) 〈
φ?q(t

′)φq(t)
〉
〈φ?k(t)φk(t′)〉

and

〈φ?k(t)S2p(t
′)φq(t)〉 = −ẑ · ~k × ~q

[〈
φk(t

′)n?q(t
′)φ?k(t)φq(t)

〉
−
〈
φ?q(t

′)nk(t
′)φ?k(t)φq(t)

〉]
= −ẑ · ~p× ~q

[
〈φk(t′)φ?k(t)〉

〈
n?q(t

′)φq(t)
〉
−
〈
φ?q(t

′)φq(t)
〉
〈nk(t′)φ?k(t)〉

]
Expressing two-time correlations as follows

〈φ?k(t′)φk(t)〉 = 〈φ?k(t)φk(t)〉 e−(iωk+ηk)(t−t′) (30)

〈n?k(t′)nk(t)〉 = 〈n?k(t)nk(t)〉 e−(iωk+ηk)(t−t′) (31)

〈φ?k(t′)nk(t)〉 = 〈φ?k(t)nk(t)〉 e−(iωk+ηk)(t−t′) (32)

yields the incoherent emission part as

〈δφ?kφpφq〉 = Θkpq (ẑ · ~p× ~q)

×
[(
q2 − p2

)
a?k
〈
|φp|2

〉 〈
|φq|2

〉
+ b?k

(〈
|φp|2

〉 〈
n?qφq

〉
−
〈
|φq|2

〉 〈
n?pφp

〉)]
(33)
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where the triad interaction time is

Θkpq =
1

i (ωp + ωq − ωk) + ηk + ηp + ηq

Here we note:

Θ
(r)
kpq =

|ηk + ηp + ηq|
(ωp + ωq − ωk)2 + |ηk + ηp + ηq|2

=

πδ (ωp + ωq − ωk) for η < freq. mismatch

1
|ηk+ηp+ηq | for η > freq. mismatch

Note causality requires the absolute value Θ transitions from its “weak” to “strong” turbu-

lence for mismatch frequency ωMM ∼ ωk ∼ ηk, which defines the effective Rhines scales[41]

k2
⊥ρ

2
sωk ∼ ηk. Note that the Kubo number in this analysis is Ku = ṽτac/∆ ≤1. Here ṽ

is the fluctuation velocity, τac is the autocorrelation time, and ∆ is the fluctuation scale.

This analysis is a closure theory, which encompasses both ’weak’ and ’strong’ turbulence

limits. For weak turbulence Ku ∼ ṽτac/∆ < 1, as ṽ < v? (i.e., weak). For strong turbulence

τac ∼ η−1
k and ηk ∼ (k2ṽ2)

1/2
so Ku ∼ 1/k∆ ∼ 1. The coherent part of the triplet correlation

becomes

〈φ?kδφpφq〉 = Θkpq (ẑ · ~p× ~q)

×
[
ap
(
k2 − q2

) 〈
|φq|2

〉 〈
|φk|2

〉
+ bp

(〈
|φq|2

〉
〈nkφ?k〉 −

〈
|φk|2

〉 〈
n?qφq

〉)]
(34)

Finally the spectral intensity equation becomes:(
∂

∂t
+ µk2

⊥ + 2
α̂k
k2
⊥

)
k2
⊥
〈
|φk|2

〉
− 2α̂k< 〈nkφ?k〉

= <
∑
~p+~q=~k

(ẑ · ~p× ~q)2 (q2 − p2
)

Θkpq

[
2ap
(
k2 − q2

) 〈
|φq|2

〉 〈
|φk|2

〉
+ 2bp

(〈
|φq|2

〉
〈nkφ?k〉 −

〈
|φk|2

〉 〈
n?qφq

〉)]
+<

∑
~p+~q=~k

(ẑ · ~p× ~q)2 (q2 − p2
)

Θkpq

[
a−k

(
q2 − p2

) 〈
|φp|2

〉 〈
|φq|2

〉
+ b−k

(〈
|φp|2

〉 〈
n?qφq

〉
−
〈
|φq|2

〉 〈
n?pφp

〉)]
(35)

The above equation can be written as(
∂

∂t
+ 2µk2

⊥

)〈
|φk|2

〉
+

2α̂k
k2
⊥

(
1− <〈nkφ

?
k〉〈

|φk|2
〉 ) 〈|φk|2〉+ 2ηk

〈
|φk|2

〉
= Fk (36)

where the eddy damping rate is

ηk = −<
∑
~p+~q=~k

1

k2
⊥

(ẑ · ~p× ~q)2 (q2 − p2
)

Θkpq

[
ap
(
k2 − q2

)
+ bp

(
〈nkφ?k〉〈
|φk|2

〉 − 〈n?qφq〉〈
|φq|2

〉)] 〈|φq|2〉
(37)
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and the nonlinear noise term is

Fk = <
∑
~p+~q=~k

1

k2
⊥

(ẑ · ~p× ~q)2 (q2 − p2
)

Θkpq

[
a−k

(
q2 − p2

)
+ b−k

(〈
n?qφq

〉〈
|φq|2

〉 − 〈n?pφp〉〈
|φp|2

〉)] 〈|φp|2〉 〈|φq|2〉
(38)

From the above equations, one can see that the nonlinear transfer of turbulent kinetic energy

is dominated by the nonlocal interactions (i.e., ~p 6= ~q), due to presence of the factor (q2 − p2).

It is also straight forward to see that the cross correlation terms exactly cancel i.e.,

〈nkφ?k〉〈
|φk|2

〉 − 〈n?qφq〉〈
|φq|2

〉 = 0

and 〈
n?qφq

〉〈
|φq|2

〉 − 〈n?pφp〉〈
|φp|2

〉 = 0

in the strongly adiabatic regime α→∞, so the above spectral equation reduces to that for

the Hasegawa-Mima equation.

Similarly, it straightforward to arrive at the following evolution equation for density fluctu-

ation spectrum(
∂

∂t
+ 2Dnk

2
⊥ + 2α̂k

)〈
|nk|2

〉
− 2α̂k< 〈nkφ?k〉+ 2ω?e= 〈nkφ?k〉

= 2<
∑
~p+~q=~k

(ẑ · ~p× ~q)2 Θkpq

[
ap
(
k2 − q2

)
〈n?kφk〉

〈
nqφ

?
q

〉
+ bp

(〈
nqφ

?
q

〉 〈
|nk|2

〉
− 〈n?kφk〉

〈
|nq|2

〉)]
+ 2<

∑
~p+~q=~k

(ẑ · ~p× ~q)2 Θkpq

[
cq
(
p2 − k2

)
〈n?kφk〉

〈
|φp|2

〉
+ dq

(
〈n?kφk〉

〈
n?pφp

〉
−
〈
|nk|2

〉 〈
|φp|2

〉)]
+ <

∑
~p+~q=~k

(ẑ · ~p× ~q)2 Θkpqc
?
k

(
q2 − p2

) (〈
nqφ

?
q

〉 〈
|φp|2

〉
−
〈
npφ

?
p

〉 〈
|φq|2

〉)
+ <

∑
~p+~q=~k

(ẑ · ~p× ~q)2 Θkpq2d
?
k

(〈
|nq|2

〉 〈
|φp|2

〉
−
〈
nqφ

?
q

〉 〈
n?pφp

〉)
(39)

The first and second terms on the right hand side result from the coherent parts, (〈n?kδφpnq〉−

〈n?kδφqnp〉) and (〈n?kφpδnq〉 − 〈n?kφqδnp〉) respectively, of the triad correlation on the right

hand side of equation(18). The last two terms on the right hand side result from the

incoherent part, (〈δn?kφpnq〉 − 〈δn?kφqnp〉), of the triad correlation. It is easy to verify that

in the strongly adiabatic limit α̂→∞, a = b = c = d and nk = φk, which makes the transfer

function (the entire right hand side) vanish. Equation(39) reveals that transfer of internal
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energy fluctuation is dominated by local interactions (p ∼ q).

In the purely adiabatic limit α̂ → ∞, the equations(35) and (39) reduce to the spectral

equation for turbulence intensity of H-M system:

∂

∂t

〈
|φk|2

〉
+ 2ηk

〈
|φk|2

〉
= Fk (40)

Here the eddy damping rate is

ηk = −<
∑
~p+~q=~k

MkpqMpqkΘkpq

〈
|φq|2

〉
(41)

and the incoherent noise is

Fk = <
∑
~p+~q=~k

M2
kpqΘkpq

〈
|φp|2

〉 〈
|φq|2

〉
(42)

A. Induced diffusion of non-linear invariants by zonal modes

In this section, we calculate the effect of zonal modes on wavy scales. The dominance

of nonlocal spectral transfer and the accumulation of energy in the natural repository of

zonal modes suggest that the direct effect of zonal modes is of primary importance. This is

calculated without further assumptions. In the following, we show how zonal modes induce

diffusion of quadratic nonlinear invariants in kx- space.

1. Induced diffusion of spectral kinetic energy and internal energy at α̂ 6=∞

In non-adiabatic (α̂ 6=∞) case, the non-linear invariants are kinetic energy, internal en-

ergy, enstrophy, and cross-helicity. We show that the turbulence kinetic energy diffuses in

kx-space under the influence of zonal modes. This clarifies a key result of adiabatic theory.

Assume that ~q is a zonal wave number. For convenience, we re-write the coherent and the

noise terms on the right hand side of the spectral kinetic energy equation(35) as

T
(1)
φk ≡ <

∑
~p+~q=~k

(ẑ · ~p× ~q)2 (q2 − p2
)

Θkpq2ap
(
k2 − q2

) 〈
|φq|2

〉 〈
|φk|2

〉
+<

∑
~p+~q=~k

(ẑ · ~p× ~q)2 (q2 − p2
)

Θkpqa
?
k

(
q2 − p2

) 〈
|φp|2

〉 〈
|φq|2

〉
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T
(2)
φk ≡ <

∑
~p+~q=~k

(ẑ · ~p× ~q)2 (q2 − p2
)

Θkpq2bp
(〈
|φq|2

〉
〈nkφ?k〉 −

〈
|φk|2

〉 〈
n?qφq

〉)
+<

∑
~p+~q=~k

(ẑ · ~p× ~q)2 (q2 − p2
)

Θkpqb
?
k

(〈
|φp|2

〉 〈
n?qφq

〉
−
〈
|φq|2

〉 〈
n?pφp

〉)
Using the detailed balance equation(13) for the kinetic energy Ek = 1

2
k2
〈
|φ|2k
〉
, T

(1)
φk can be

expressed as

T
(1)
φk = <

∑
~p+~q=~k

(ẑ · ~p× ~q)2 (q2 − p2
) (
k2 − q2

)
EqΘ

E
kpq

[
aEp Ek − aE−kEp

]
(43)

where now ΘE
kpq =

8Θkpq

k2⊥p
2
⊥q

2
⊥

and aEk = 1
2
k2
⊥ak. Similarly, ignoring the zonal density potential

correlation
〈
n?qφq

〉
, T

(2)
φk can be expressed as

T
(2)
φk = <

∑
~p+~q=~k

(ẑ · ~p× ~q)2 (q2 − p2
)
EqΘ

E
kpq

[
bEp RnkEk − bE−kR?

npEp
]

(44)

Neglect of zonal correlation can be justified in case of evolution for α > 1. Here we focus

in detail on the physics processes. Now, as shown in Appendix(A), expanding T1k and T2k

around ~p = ~k and retaining terms up to to O(q4
x) yields the following,

T
(1)
φk =

∂

∂kx

[∑
q

1

2
k2
yk

4q4
xEqΘ

Er
kkq

(
aErk

∂Ek
∂kx
− ∂aErk

∂kx
Ek

)]

=
∂

∂kx

[∑
q

4k2
y

(
k

k⊥

)4

q2
xEqΘ

(r)
kkq

(
aErk

∂Ek
∂kx
− ∂aErk

∂kx
Ek

)]
(45)

and

T
(2)
φk =

1

k2

∂

∂kx

[∑
q

1

2
k2
yk

4q4
xEqΘ

Er
kkq

(
bEk

∂

∂kx
(RnkEk)−

∂bEk
∂kx

RnkEk

)(r)
]

=
1

k2

∂

∂kx

[∑
q

2k2
y

(
k

k⊥

)4

q2
xEqΘ

(r)
kkq

(
bEk

∂

∂kx
k2 〈nkφ?k〉 −

∂bEk
∂kx

k2 〈nkφ?k〉
)(r)

]
(46)

Here Eq refers to kinetic energy of large scales. Equation(45) shows that spectral turbulence

kinetic energy Ek is convected and diffused in k-space by by large scale straining due to

zonal shear kinetic energy q2
xEq. The sign of the convection speed depends on the sign of

∂aEr
k

∂kx
. It turns out that

∂aEr
k

∂kx
< 0 hence, the sign of the convection speed is positive. Θ

(r)
kkq

sets the strain coherence time. Equation(46) has structure of diffusion of spectral cross-

correlation k2 〈nkφ?k〉. This shows that the diffusion of spectral kinetic energy is coupled to

the diffusion of spectral cross-correlation. In fact, all nonlinear invariants can be shown to
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diffuse in k-space by zonal mode scattering. Ignoring the zonal-cross correlation
〈
n?qφq

〉
, it

is convenient to split the internal energy transfer function into:

T
(1)
nk = 2<

∑
~p+~q=~k

(ẑ · ~p× ~q)2 〈|φq|2〉Θkpq

[
d?k
〈
|np|2

〉
− dp

〈
|nk|2

〉]

T
(2)
nk = 2<

∑
~p+~q=~k

(ẑ · ~p× ~q)2 〈|φq|2〉Θkpq

[(
q2 − k2

)
cp 〈n?kφk〉 −

(
q2 − p2

)
c?k
〈
npφ

?
p

〉]

T
(3)
nk = 2<

∑
~p+~q=~k

(ẑ · ~p× ~q)2 Θkpq

[
−bp 〈n?kφk〉

〈
|nq|2

〉]
Now, as shown in Appendix(B), expanding T 1

nk and T 2
nk around ~p = ~k and retaining terms

upto to O(q4
x) yields the following,

T
(1)
nk =

∂

∂kx

[∑
q

k2
yq

4
x

〈
|φq|2

〉
Θ

(r)
kkq

(
drk

∂

∂kx

〈
|nk|2

〉
− ∂drk
∂kx

〈
|nk|2

〉)]
(47)

T
(2)
nk =

∂

∂kx

[∑
q

k2
yq

4
x

〈
|φq|2

〉
Θ

(r)
kkq

(
c?k

∂

∂kx
k2 〈nkφ?k〉 −

∂ck
∂kx

k2 〈n?kφk〉
)(r)

]
(48)

Here q4
x

〈
|φq|2

〉
is energy associated with zonal velocity shear - i.e zonal vorticity. Equa-

tion(47) shows that spectral internal energy is convected and diffused in k-space by mean

square zonal velocity shear. The sign of the convection speed depends on the sign of
∂drk
∂kx

.

It can be checked that
∂drk
∂kx

< 0, and hence, the sign if the convection speed is positive.

Again, equation(48) has structure of diffusion of spectral cross-correlation k2 〈nkφ?k〉. This

shows that the diffusion of spectral internal energy is coupled to the diffusion of spectral

cross-helicity.

2. Induced diffusion of spectral total energy and enstrophy at α̂ =∞

Let’s define a generalized invariant Qk = σQk
〈
|φk|2

〉
, where Q = (E,Z). Then the spectral

equation for Qk becomes:

∂Qk

∂t
= 2

∑
~p+~q=~k

MQ
k M

Q
p ΘQ

kpqQqQk +
∑
~p+~q=~k

∣∣∣MQ
k

∣∣∣2 ΘQ
kpqQpQq (49)
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where MQ
k = σQkMkpq etc., and ΘQ

kpq = <Θkpq/σ
Q
k σ

Q
p σ

Q
q . Using the detailed balance equa-

tion(16) the nonlinear transfer function can be reduced to

Tk = 2
∑
~p+~q=~k

MQ
k M

Q
p ΘQ

kpqQq (Qk −Qp)

= 2
∑
~q

k2
yq

2
x

σQk
1 + k2

(
q2 − p2

) σQk
1 + p2

(
k2 − q2

)
ΘQ
kpqQq (Qk −Qp) (50)

Assume that ~q is a zonal wave number. As shown in the Appendix(C), expanding around

~p = ~k and retaining terms up to to O(q4
x) yields the following,

Tk =
∂

∂kx

∑
q

k2
yq

4
xQqk

4

(
σQk

1 + k2

)2

ΘQ
kpq

∂Qk

∂kx

 (51)

, where Qq can be either zonal kinetic energy or zonal enstrophy. This shows that in the

pure adiabatic limit, all non-linear invariants are diffused in kx- space by mean square zonal

velocity shear.

B. Spectral evolution of zonal intensity

Here we calculate the spectral evolution equation of zonal kinetic energy - i.e., the energy

of zonal flows. This analysis elucidates the fundamental mechanisms of zonal flow excitation,

without further assumption. In particular, no explicit appeal to the adiabatic approximation

is invoked. For zonal mode ky = k‖ = 0, hence the kinetic energy spectrum equation(17) for

the zonal mode becomes(
∂

∂t
+ 2µk2

⊥

)
k2
⊥
〈
|φk|2

〉
= <

∑
~k=~p+~q

ẑ · ~p× ~q
(
q2 − p2

)
〈φ?kφpφq〉 (52)

Now the triplet correlations are approximated as

〈φ?kφpφq〉 = 〈δφ?kφpφq〉+ 〈φ?kδφpφq〉+ 〈φ?kφpδφq〉 (53)

The zonal perturbation δφk is driven by the beat interaction between modes ~p and ~q:(
∂

∂t
+ ηk

)
k2
xδφk = S1k (54)

where S1k is same as given in equation(23). The solution of the zonal beat mode equation

(54) is

δφk = 1
k2x

ˆ t

−∞
dt′e−ηk(t−t′)S1k(t

′) (55)
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Then the incoherent part of the triplet correlation becomes

〈δφ?kφpφq〉 =
1

k2
x

ˆ t

−∞
dt′e−ηk(t−t′) 〈S?1k(t′)φp(t)φq(t)〉

= Θkpq
1

k2
x

ẑ · ~p× ~q
(
q2 − p2

) 〈
|φp|2

〉 〈
|φq|2

〉
where the triad interaction time is

Θkpq =
1

i (ωp + ωq) + ηk + ηp + ηq
(56)

It is easy to see that the coherent part of the triplet correlation is same as obtained in

equation(34), with the expression for Θkpq given by equation(56). Hence the zonal spectral

intensity equation becomes:(
∂

∂t
+ 2µk2

x

)〈
|φk|2

〉
+ 2η

(r)
1k

〈
|φk|2

〉
+ < [2η2k 〈nkφ?k〉] = Fφk (57)

In the above equation, the second term on the left proportional to zonal intensity represents

nonlinear damping of zonal flow with the damping rate

η
(r)
1k = −<

∑
~k=~p+~q

1

k2
x

(ẑ · ~p× ~q)2 (q2 − p2
)

Θkpq

[
ap
(
k2 − q2

)
− bp

〈
n?qφq

〉〈
|φq|2

〉] 〈|φq|2〉
The second term on the left hand side shows coupling to zonal cross correlation 〈nkφ?k〉 with

the cross coupling coefficient given by

η2k = −
∑
~k=~p+~q

1

k2
x

(ẑ · ~p× ~q)2 (q2 − p2
)

Θkpqbp
〈
|φq|2

〉
. This is a novel effect ! Finally, the term on the right hand side is the zonal nonlinear noise:

Fφk = <
∑
~k=~p+~q

1

(k2
x)

2 (ẑ · ~p× ~q)2 (q2 − p2
)2

Θkpq

〈
|φp|2

〉 〈
|φq|2

〉
(58)

Note that the zonal noise term here is exactly the same as the zonal noise term for the

Hasegawa-Mima equation and is positive definite. It is determined by the advection of

vorticity. However, the eddy damping term is different from the corresponding Hasegawa-

Mima case due to non-adiabaticity of electrons. The electron non-adiabaticity parameter

enters through the coupling parameters ap, bp, the turbulent density potential correlation〈
n?qφq

〉
and the triad interaction time Θkpq. In the following we use the linear density-

potential response relation for wavy modes to simplify
〈
n?qφq

〉
correlations, so that

〈
n?qφq

〉
=

R?
nqIq. This is defensible only for the α > 1 regime, where density and potential fluctuations
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are strongly correlated and the density response is laminar. We leave the zonal density

potential correlation for later discussion - i.e., 〈nkφ?k〉 appears explicitly in the theory. Using

k2 � q2 and expanding the triad interaction time Θkpq around ~p = −~q

Θ
(r)
kpq ≈ Θ

(r)
k,−q,q + ~k ·

∂Θ
(r)
kpq

∂~p
|~p=−~q = Θ

(r)
k,−q,q −

~k

2
·
∂Θ

(r)
k,−q,q

∂~q
(59)

the nonlinear damping rate is seen to be:

η
(r)
1k = −

∑
~q

k2
rq

2
y

(
Θ

(r)
k,−q,q + qx

∂Θ
(r)
k,−q,q

∂qx

)(
a−qq

2 + b−qR
?
nq

)(r)
Iq

= −
∑
~q

∂

∂qx

[
k2
xq

2
yqxΘ

(r)
k,−q,q

(
a−qq

2 + b−qR
?
nq

)(r)
Iq

]
+
∑
~q

k2
xq

2
yΘ

(r)
k,−q,qqx

∂

∂qx

[(
a−qq

2 + b−qR
?
nq

)(r)
Iq

]
(60)

where the first (surface) term vanishes. So the general expression for the nonlinear damping

rate becomes

η
(r)
1k =

∑
~q

k2
xq

2
yΘ

(r)
k,−q,qqx

∂

∂qx

[(
a−qq

2 + b−qR
?
nq

)(r)
Iq

]
(61)

Since, < [η2k 〈nkφ?k〉] = η
(r)
2k 〈nkφ?k〉

(r) − η
(i)
2k 〈nkφ?k〉

(i), one needs to evaluate both real and

imaginary parts of the cross-coefficient ηzonal2k . Using the above expansion procedure, the

real part of η2k becomes

η
(r)
2k = −

∑
~q

k2
xq

2
yΘ

(r)
k,−q,qqx

∂

∂qx

[
b

(r)
−qIq

]
(62)

and the imaginary part becomes

η
(i)
2k = −

∑
~q

k2
xq

2
yΘ

(r)
k,−q,qqx

∂

∂qx

[
b

(i)
−qIq

]
= 0 (63)

Note that η
(i)
2k = 0 due to the qy-symmetry of b

(i)
q - i.e., it is odd in qy. This means that

only 〈nkφ?k〉
(r)-i.e., the real part of the zonal cross-spectrum affects the evolution of zonal

intensity. The zonal noise term can be reduced to

Fφk =
∑
q

4q2
yq

2
xΘ

(r)
k,−q,qI−q(t)Iq(t) +O(k2

x/q
2
x)

≈ 4
∑
q

Π2
qΘ

(r)
k,−q,q (64)
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where Πq = qyqxIq is spectral form of Reynolds stress. .

Adiabatic regime ωq < α̂q: The linear density potential response function, in the weakly

adiabatic regime can be reduced to

Rnq =

(
1− iω?e

α̂q

)(
1− i ω

α̂q

)−1

= 1 +
q4
⊥

1 + q2
⊥

1

α2
q

− iq2
⊥
αq

+O
(

1

α3
q

)
(65)

The coupling parameters in the adiabatic regime become

aq =

(
1− i

αq
+

1

1 + q2

q2
⊥
α2
q

)
bq (66)

bq =
1

1 + q2

(
1 + i

2

1 + q2

q2

αq

)
+O

(
1

α2
q

)
(67)

. Using the expression for Rq in the adiabatic regime, the nonlinear zonal damping rate

becomes

η
(r)
1k =

∑
q

k2
xq

2
yΘ

(r)
k,−q,qqx

∂

∂qx

[(
1− 2q4

⊥

(1 + q2
⊥)

2

1

α2
q

)
Iq

]
(68)

This shows that the nonlinear damping of zonal flow is negative when the turbulence intensity

spectra satisfies ∂Iq
∂qr

< 0, which is usually the case. In this case, negative viscosity results

i.e., η
(r)
1k < 0 and ∼ k2

x, symptomatic of transfer to large scales by negative viscosity. The

total growth Gk of zonal flows is determined by η
(r)
1k and the linear damping µk2

x, so, Gk =

−η1k−µk2
x. Gk defines a critical spectral slope for marginality to modulational instability. It

is also clear that the zonal growth rate is maximum for the strongly adiabatic regime, when

αq → ∞. This suggests that non-adiabatic density fluctuations inhibit the inverse transfer

of energy to zonal flows.

The cross-coefficient η
(r)
2k is independent of α since b

(r)
q (from equation(67)) is independent of

α. Hence, η
(r)
2k is always positive for negative spectral slope. This means that the zonal cross

correlation can cause either forward or inverse transfer of energy, depending on the sign of

the cross-correlation 〈nkφ?k〉, i.e., the relative phase between zonal density and potential.

C. Spectral evolution of density corrugations

Here we calculate the generation of zonal density perturbations by non-linear interaction

of wavy modes. Note that the mechanisms for zonal density (which is intrinsically non-

adiabatic) generation can not be presumed to be the same as for zonal flows. For the zonal
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mode ky = k‖ = 0, hence the spectral equation (18) for zonal internal energy/ density

corrugations becomes(
∂

∂t
+ 2Dnk

2

)〈
|nk|2

〉
= <

∑
~p+~q=~k

ẑ · ~p× ~q (〈n?kφpnq〉 − 〈n?kφqnp〉) (69)

Now using the procedure outlined for the zonal flow energy derivation, it is straightforward

to arrive at the following equation for the density corrugations intensity,(
∂

∂t
+ 2Dnk

2

)〈
|nk|2

〉
+ 2ζ

(r)
1k

〈
|nk|2

〉
+ < [2ζ2k 〈n?kφk〉] = Fnk (70)

Here, the corrugations damping rate due to turbulent mixing is

ζ
(r)
1k = <

∑
~k=~p+~q

Θkpq (ẑ · ~p× ~q)2 [dp 〈φqφ?q〉− bp 〈φ?qnq〉]
, the coefficient of coupling to zonal cross correlation is

ζ2k =
∑
~k=~p+~q

Θkpq (ẑ · ~p× ~q)2 [ap (q2 − k2
) 〈
φ?qnq

〉
+ bp

〈
n?qnq

〉
+ cq

(
k2 − p2

) 〈
φpφ

?
p

〉
− dq

〈
φpn

?
p

〉]
and the noise is

Fnk = 2<
∑
~k=~p+~q

Θkpq (ẑ · ~p× ~q)2 [〈φ?pφp〉 〈n?qnq〉− 〈φ?qnq〉 〈n?pφp〉]
The corrugations damping and the zonal cross-correlation result from the coherent parts,

(〈n?kδφpnq〉 − 〈n?kδφqnp〉) and (〈n?kφpδnq〉 − 〈n?kφqδnp〉), of the triad correlation on the right

hand side of equation(69). The noise term Fnφ results from the incoherent part, (〈δn?kφpnq〉−

〈δn?kφqnp〉), of the triad correlation. Clearly, like zonal flow energy, the evolution of corru-

gation intensity is dynamically coupled to the zonal cross-correlation spectrum. Now, as-

suming linear density potential response for the turbulent density potential correlations i.e.,〈
φ?qnq

〉
= RnqIq and using the fact that k2 � q2 and expanding around ~p = −~q yields the

damping rate:

ζ
(r)
1k = <

∑
~q

Θk,−q,qk
2
xq

2
y [d−q − b−qRnq] Iq

Similarly, the cross-coefficient becomes

ζ2k =
∑
~q

Θk,−q,qk
2
xq

2
y

[
q2
(
a?qRq − cq

)
+ b?q |Rnq|2 − dqRnq

]
Iq
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In general, this is a complex quantity. But, using the qy symmetry properties of the coeffi-

cients aq, bq, cq, dq and Rq, it straight-forward to show that imaginary part of ζ2k vanish i.e.,

ζ
(i)
2k = 0. Hence < [2ζ2k 〈n?kφk〉] = ζ

(r)
2k 〈n?kφk〉

(r). That is only the real part of the zonal cross-

spectrum couples to the corrugation intensity evolution. Finally, the noise term reduces

to

Fnk = 2<
∑
~q

Θk,−q,qk
2
xq

2
y

[
|Rnq|2 −R2

nq

]
I2
q

= 4
∑
~q

Θ
(r)
k,−q,qk

2
xq

2
y

(
Ri
nq

)2
I2
q

. A negative damping rate would mean modulational growth of density corrugations. We

shall see, however, that this is not the case. The noise term is always positive definite. It is

important to note that, in contrast to the case of zonal flows, both modulational growth and

the corrugation noise are independent of the spectral slope. In contrast, the modulational

growth of zonal flow requires a negative spectral slope of kinetic energy.

Adiabatic regime ωq < q2
‖χe: The coupling parameters in the adiabatic regime become

bq =
1

1 + q2

(
1 + i

2

1 + q2

q2

αq

)
+O

(
1

α2
q

)

cq =

(
1− i q

2

αq
+

q4
⊥

1 + q2
⊥

1

α2
q

)
aq

=
1

1 + q2

(
1− i

αq

2 + (1 + q2)
2

1 + q2
− 2q2

α2
q

)
+O

(
1

α3
q

)

dq =

(
1 +

q4
⊥

1 + q2
⊥

1

α2
q

− i q
2

αq

)
bq

. Using the expression for Rq in the adiabatic regime one finds the nonlinear density corru-

gation damping rate:

ζ
(r)
1k =

∑
~q

Θ
(r)
k,−q,qk

2
xq

2
y

4q4

(1 + q2)2

1

α2
q

Iq (71)

. Note that sign of the damping rate ζk is positive definite in the adiabatic regime! This

means that the zonal density corrugations are modulationally stable - indeed diffusively

damped - for α > 1. In, contrast to the case of zonal flows, distant interaction of small and
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large scales does not generate density corrugations. After some algebraic manipulations, one

can show that the cross-coefficient ζ
(r)
2k becomes

ζ
(r)
2k =

∑
~q

Θ
(r)
k,−q,qk

2
xq

2
y

(1 + 2q2)

(1 + q2)2

q4

α2
q

Iq

Similarly, the the noise term becomes

Fnk = 4
∑
~q

Θ
(r)
k,−q,qk

2
xq

2
y

q4
⊥
α2
q

I2
q (72)

Note that the modulational growth ζ
(r)
1k , the cross-coefficient ζ

(r)
2k and the noise Fnk- all

scale as 1
α2
q
, and are positive definite. This means the density corrugations get weaker as α

increases ,- i.e., as the response become more adiabatic.

D. Spectral evolution of zonal cross-correlations

It is interesting to note that several of the results of this section depend sensitively upon

the cross-correlation 〈n?kφk〉. The impact of cross-correlation on spectral transfer process has

long been appreciated in the context of waves and transport[59]. This was discussed above.

However, the significance of zonal cross-correlation has not been appreciated, and is discussed

here for the first time. While the cross correlation for the wavy component can be simplified

(for α > 1) by using the linear response, this is not valid for the zonal modes. Moreover

the accumulation of energy in the zonal modes suggests that zonal cross correlation merits

special attention. Finally, we note that the cross-spectrum encodes information concerning

the relative phasing of zonal shears and density corrugations. Thus it is central to the

description of staircases, and other spatial patterns[5, 6]. In staircases, zonal density and

potential self-organize in a quasi-periodic pattern, and thus are spatially correlated. Here

follows an approach to calculate the zonal correlation. Multiplying the zonal density equation

by zonal vorticity (i.e., zonal shear) and multiplying the zonal vorticity equation by zonal

density and adding the resulting equations yields

∂

∂t
n̄∇2

xφ̄− µn̄∇4
xφ̄−Dn∇2

xφ̄∇2
xn̄ = −∇2

xφ̄∇xΓnx − n̄∇2
xΠxy (73)

where Γnx = ṽxñ is radial particle flux and Πxy = ṽxṽy is the Reynolds stress. Now consid-

ering 〈〉 ≡
´
dx/L, the equation for the zonal correlation becomes

∂

∂t

〈
n̄∇2

xφ̄
〉
− (µ+Dn)

〈
∇2
xn̄∇2

xφ̄
〉

=
〈
Γnx∇3

xφ̄
〉

+ 〈∇xΠxy∇xn̄〉 (74)
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This shows that the zonal correlation is determined by the correlations of profiles and fluxes.

The first term on the right hand side is the correlation of the radial particle flux with zonal

vorticity gradient and the second term is correlation of Reynolds force (vorticity flux) with

the zonal density gradient. Thus zonal correlations are relevant to spatial structure of

the profiles. Setting ky = k‖ = 0 in equation(19), the evolution equation for zonal cross-

correlation spectrum becomes(
∂

∂t
+ (µ+Dn) k2

x

)
〈nkφ?k〉 =

∑
~k=~p+~q

ẑ · ~p× ~q
[

(q2 − p2)

k2
x

〈
nkφ

?
pφ

?
q

〉
+ 〈φ?kφpnq〉 − 〈φ?kφqnp〉

]
(75)

Now the triplet correlations are calculated as outlined in the previous sub-sections and details

are provided in Appendix(D). It is straight forward to arrive at the following evolution

equation for the real part of zonal correlation < 〈nkφ?k〉.(
∂

∂t
+ (µ+Dn) k2

x

)
< 〈nkφ?k〉+< [2ξ1k 〈nkφ?k〉] + 2ξ

(r)
2k

〈
|nk|2

〉
+ 2ξ

(r)
3k

〈
|φk|2

〉
= Fnφk (76)

where the terms on the left hand side result from the coherent part of the triplet correlations

and that on the right hand side is the incoherent noise term. Here

ξ1k =
∑
~k=~p+~q

(ẑ · ~p× ~q)2 Θ?
kpq

(q2 − p2)

k2
x

[
a?p
(
q2 − k2

) 〈
|φq|2

〉
+ b?p

〈
nqφ

?
q

〉]
+
∑
~k=~p+~q

(ẑ · ~p× ~q)2 Θkpq

[
dq
〈
|φp|2

〉
− bp

〈
nqφ

?
q

〉]
= η1k + ζ1k

so that its real part

ξ
(r)
1k = η

(r)
1k + ζ

(r)
1k

is the sum of the zonal flow intensity and corrugation intensity damping rates. Expanding the

imaginary part of ξ1k about ~p = −~q and using the qy-symmetry properties of the coefficients

aq, bq, dq and Rq shows that ξ
(i)
1k = 0. This implies that < [2ξ1k 〈nkφ?k〉] = 2ξ

(r)
1k < 〈nkφ?k〉. The

coefficient of coupling to corrugations intensity is

ξ2k = −
∑
~k=~p+~q

(ẑ · ~p× ~q)2 Θ?
k,p,q

(q2 − p2)

k2
x

b?p
〈
|φq|2

〉
= η2k
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so that ξ
(r)
2k = η

(r)
2k , and the coefficient of coupling to zonal flow intensity is

ξ3k = −
∑
~k=~p+~q

(ẑ · ~p× ~q)2 Θkpq

[
ap
(
k2 − q2

) 〈
φ?qnq

〉
− bp

〈
|nq|2

〉
+ cq

(
p2 − k2

) 〈
|φp|2

〉
+ dq

〈
φpn

?
p

〉]
= ζ2k

so that ξ
(r)
3k = ζ

(r)
2k . Finally, the noise term is

Fnφk = <
∑
~k=~p+~q

(ẑ · ~p× ~q)2 1

k2
x

(
q2 − p2

) [
Θ?
kpq + Θkpq

] [〈
|φp|2

〉 〈
nqφ

?
q

〉
−
〈
|φq|2

〉 〈
npφ

?
p

〉]
. Expanding about ~p = −~q, and using the linear density potential relation for the wavy

mode
〈
nqφ

?
q

〉
= RqIq, it is obvious to see that Fnφk = 0. Hence the evolution equation for

< 〈nkφ?k〉 becomes(
∂

∂t
+ (µ+Dn) k2

x

)
< 〈nkφ?k〉 + 2ξ

(r)
1k < 〈nkφ

?
k〉 + 2ξ

(r)
2k

〈
|nk|2

〉
+ 2ξ

(r)
3k

〈
|φk|2

〉
= 0 (77)

In steady state,

< 〈nkφ?k〉 =
2ξ

(r)
2k

〈
|nk|2

〉
+ 2ξ

(r)
3k

〈
|φk|2

〉
− (µ+Dn) k2

x − 2ξ
(r)
1k

(78)

The sign of the real of the zonal cross correlation spectrum is determined by the sign of

− (µ+Dn) k2
x − 2ξ

(r)
1k , where ξ

(r)
1k is the sum of the nonlinear damping rates of the zonal

intensity and density corrugation ξ
(r)
1k = η

(r)
1k + ζ

(r)
1k . Note that zonal flow nonlinear damping

rate is negative while the nonlinear damping rate for density corrugation is positive. This

implies that the zonal cross correlation is positive when the −η(r)
1k −ζ

(r)
1k > (µ+Dn) k2

x/2 i.e.,

when the modulational growth of zonal flow intensity exceeds the nonlinear damping rate of

density corrugation by (µ+Dn) k2
x/2. Otherwise, the sign of < 〈nkφ?k〉 is negative. A positive

value of < 〈nkφ?k〉 suggests that zonal density and zonal potential tend to align. A negative

value of < 〈nkφ?k〉 suggests that zonal density and zonal potential are anti-correlated. zonal

correlation suggests that corrugations and shears tend to align. A negative value suggests

that corrugations and shears are anti-correlated.

Note that this is a spectral correlation. Multiplying by −k2
x and summing over all ~k yields

the correlation of zonal density and zonal vorticity

〈
n∇2

xφ
〉

=
∑
kx

−<
〈
nkk

2
xφ

?
k

〉
=
∑
kx

−k2
x

2ξ
(r)
2k

〈
|nk|2

〉
+ 2ξ

(r)
3k

〈
|φk|2

〉
− (µ+Dn) k2

x − 2ξ
(r)
1k

(79)
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To obtain correlation of density gradient and vorticity〈
∇xn∇2

xφ
〉

=
∑
kx

−<
〈
ikxnkk

2
xφ

?
k

〉
=
∑
kx

k3
x= 〈nkφ?k〉 (80)

one has to obtain imaginary of the correlation spectra = 〈nkφ?k〉. This must be obtained from

equation(D4) in the appendix. From equation(D4) one can arrive at the following equation

for = 〈nkφ?k〉:(
∂

∂t
+ (µ+Dn) k2

x

)
= 〈nkφ?k〉+ 2ξ

(r)
1k = 〈nkφ

?
k〉+ 2ξ

(i)
1k< 〈nkφ

?
k〉

+2ξ
(i)
2k

〈
|nk|2

〉
+ 2ξ

(i)
3k

〈
|φk|2

〉
= F

(i)
nφk (81)

Now it is straight forward to to show that the coupling coefficients ξ
(i)
1k , ξ

(i)
2k and ξ

(i)
3k and

the imaginary part of the zonal cross correlation noise i.e., F
(i)
nφk, all vanish for a small k/q

expansion due to qy - symmetry properties of the coupling coefficients a(i), b(i), c(i), d(i) and

the imaginary of the response function R
(i)
n i.e., all are odd in qy. As a concrete example, we

show how noise term vanishes in the following. The imaginary noise term F
(i)
nφk is given by

F
(i)
nφk = =

∑
~k=~p+~q

(ẑ · ~p× ~q)2 1

k2
x

(
q2 − p2

) [
Θ?
kpq + Θkpq

] [〈
|φp|2

〉 〈
nqφ

?
q

〉
−
〈
|φq|2

〉 〈
npφ

?
p

〉]
Now expanding about ~p = −~q and using q2−p2 = −k2+2kxqx and Θ

(r)
kpq ≈ Θ

(r)
k,−q,q−

~k
2
· ∂Θ

(r)
k,−q,q

∂~q

one obtains

F
(i)
nφk = −4

∑
k2
xq

2
y

(
Θ

(r)
k,−q,q + qx

∂Θ
(r)
k,−q,q

∂qx

)(
IqR

(i)
nq +O(kx)

)
= 4

∑
k2
xq

2
yΘ

(r)
k,−q,qqx

∂

∂qx

(
IqR

(i)
nq +O(kx/qx)

)
Note that R

(i)
nq is odd in qy and hence Fnφk vanishes to leading order. Similarly, one can show

that coupling coefficients ξ
(i)
1k , ξ

(i)
2k and ξ

(i)
3k vanish to leading order. Note that the imaginary

of the triad response time for ~p = −~q is always zero i.e., Θ
(i)
k,−q,q = 0 and hence does not play

any role in setting up the coupling coefficients in a low k expansion. Hence the equation for

the imaginary cross correlation becomes(
∂

∂t
+ (µ+Dn) k2

x

)
= 〈nkφ?k〉 + 2ξ

(r)
1k = 〈nkφ

?
k〉 = 0 (82)

Note that this equation is decoupled from the other three equations - zonal intensity

equation(57), density corrugation equation(70) and the real of zonal cross correlationequa-

tion(76). The equation(82) can have either an exponentially growing or exponentially decay-

ing solution depending on the sign of (µ+Dn) k2
x + 2ξ

(r)
1k . Since this equation has no steady
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state solution, a physically constrained solution will be an exponentially decaying solution

which vanish asymptotically i.e., = 〈nkφ?k〉 = 0. This constrains (µ+Dn) k2
x + 2ξ

(r)
1k > 0.

Connection with observations: This implies that in DW turbulence the zonal den-

sity and potential cross-correlation is negative i.e.,
〈
nφ
〉
< 0. The zonal density and

vorticity cross-correlation is then positive i.e.,
〈
n∇2

xφ
〉
> 0. However the zonal density

gradient and zonal vorticity cross-correlation should vanish as = 〈nkφ?k〉 = 0 to leading

order, i.e.,
〈
∇xn∇2

xφ
〉

= 0. The density gradient and vorticity gradient cross-correlation

becomes positive i.e.,
〈
∇xn∇3

xφ
〉
> 0. This means that the zonal density jumps are

co-located with the zonal vorticity jumps. Finally, another correlation of interest could

be between zonal density gradient and zonal flow
〈
−∇xn∇xφ

〉
. This can be obtained as〈

−∇xn∇xφ
〉

=
∑

kx
−k2

x< 〈nkφ?k〉 > 0. This means density gradient peaks are co-located with

the zonal flow peaks. These results align with the observations of staircase features in the

GYSELA simulations[6], with the caution that they studied temperature profile corrugation

rather than density. For better comparison with simulations and experiments, temperature

corrugation dynamics should also be investigated. This can be achieved through spectral

closure theory of ITG turbulence. This clearly is a subject for a separate study.

A quasilinear alternative: The correlations
〈
Γnx∇3

xφ̄
〉

and 〈∇xΠxy∇xn̄〉 can be obtained

by quasilinear calculations as follows. Quasilinear expression for particle flux is obtained as

Γnx =
∑
k

−kyR(i)
nk |φk|

2

where the imaginary part of the density-potential response function is

R
(i)
nk = − α̂ (ω?e − ωr) + γω?e

|ω + iα̂|2

The dispersion relation with mean/zonal vorticity gradient ∇3
xφ can be obtained as

k2
⊥ω

2
k + ωk

{
iα̂
(
1 + k2

⊥
)
− ky∇3

xφ
}
− iα̂

{
ky∇3

xφ+ ω?e
}

= 0 (83)

. The the expression for real frequency in the adiabatic regime becomes

ωr =
ky∇3

xφ+ ω?e
1 + k2

⊥

and the growth rate in the adiabatic regime becomes

γ =
ω2
r

α̂
k2
⊥ −

ωr
α̂
ky∇3

xφ
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Clearly, the vorticity gradient induces a frequency shift and reduces the growth rate. Now

R
(i)
n to leading order in 1

α̂
in the adiabatic regime becomes

R
(i)
nk = −k

2
⊥ωr
α̂

= −k
2
⊥
α̂

ky∇3
xφ+ ω?e

1 + k2
⊥

Hence the particle flux can be expressed as

Γnx =
∑
k

ky
k2
⊥
α̂

ky |φk|2

1 + k2
⊥

[
∇3
xφ−∇xn

]
= l1∇3

xφ− l2∇xn

Next, the vorticity flux S = ∇xΠxy is obtained as

S = −χy∇3
xφ+ Sres

where the diffusivity is χy =
∑

k

k2yγ|φk|
2

|ω|2 and the residual vorticity flux is

Sres = <
∑
k

kyα̂

ω

ω?e − ω
ω + iα̂

|φk|2

The residual flux must be expandable in the form

Sres = L1∇3
xφ− L2∇xn

where the first term represents negative diffusion of zonal vorticity and hence, accounts for

the modulational growth of zonal flow. The second term is the density gradient dependent

residual flux, which vanish in the limit α → ∞. So now the cross-correlation
〈
Γnx∇3

xφ̄
〉

becomes 〈
Γnx∇3

xφ̄
〉

= l1
∑
q

q6
x

〈∣∣φq∣∣2〉+ l2<
∑
q

q4
x

〈
nqφq?

〉
and the cross-correlation 〈∇xΠxy∇xn̄〉 becomes

〈S∇xn̄〉 = − (L1 − χy)<
∑
q

q4
x

〈
nqφq?

〉
+ L2

∑
q

q2
x

〈
|nq|2

〉
In the adiabatic regime[64]

χy =
∑
k

k2
y

α̂

k2
⊥

1 + k2
⊥
|φk|2

Sres = −
∑
k

k2
y

α̂

k2
⊥

1 + k2
⊥
|φk|2∇xn
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. Hence the evolution equation for zonal cross-correlation obtained from quasilinear calcu-

lations becomes

∂

∂t
<
〈
n̄qφ̄

?
q

〉
− (µ+Dn) q2

x<
〈
n̄qφ̄

?
q

〉
+
(
l2q

4
x − (L1 − χy) q4

x

)
<
〈
nqφq?

〉
+l1q

6
x

〈∣∣φq∣∣2〉+ L2q
2
x

〈
|nq|2

〉
= 0 (84)

This is morphologically the same as equation(77), obtained by spectral calculations. Simi-

larly an equation for =
〈
n̄qφ̄

?
q

〉
can be obtained from the evolution equation for correlation〈

∇xn∇2
xφ
〉
, which is similar to (82).

This sub-section elucidated the zonal cross-correlation, it’s physics content and what spec-

tral transfer process determines it. The zonal cross-correlation is of potential significance

to layering or staircase structure, as it sets the relative phasing of shear layers and regions

of ∇n steepening. Further analysis of zonal cross-correlation in layering in model boundary

value problems is clearly necessary. The results of spectral calculations for zonal flows and

corrugations excitation and their interaction are concisely summarized in Table(I), below.
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TABLE I. Summary of zonal flow and corrugations interactions

A) Zonal flow: Vorticity equation - Polarization charge flux

Process Impact Key Physics Result

Polarization beat noise Seeds zonal flow Polarization flux correlation,

positive definite

Equation

(64)

Zonal flow response

(comparable to noise)

Drives zonal shear

using DW energy

Non-local inverse transfer in

kx, Negative viscosity

Equation

(68)

Zonal shear straining

of small scale

Regulates waves

via straining

Stochastic refraction

straining waves, induced

diffusion to high kx

Equation

(45)

B) Density corrugations: Density equation - Particle flux

Process Impact Key Physics Result

Density advection

beat noise

Seeds density

corrugation

Advection beats due to

non-adiabatic density

Equation

(72)

Zonal corrugations response Dampes and regulates

density corrugations

Non-local forward transfer in

kx, Positive diffusivity,

turbulent mixing weak for

α >> 1

Equation

(71)

Zonal shear straining

of small scale

Regulates waves

via straining

Stochastic refraction

straining waves, induced

diffusion to high kx

Equation

(47)

B) Zonal cross-correlation: Vorticity and density transport processes

Process Impact Key Physics Result

Noise and response Sets corrugation - shear layer

correlation; staircase states

Real cross-correlation

spectrum +ve when growth

of zonal intensity exceeds

damping rate of corrugation,

otherwise negative

Equation

(78)
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IV. WAVE KINETIC ANALYSIS

Here we present adiabatic theory of zonal modes generation and compare the results with

spectral calculations presented in the previous section.

A. Zonal mode equations

The zonal mode equations are obtained by flux surface average of the turbulence equa-

tions.

∂

∂t
∇2
xφ− µ∇4

xφ = ∇2
x<
ˆ
d~kkykx |φk|2 (85)

and

∂

∂t
n−Dn∇2n = −∇x<

ˆ
d~kikyRn |φk|2 (86)

In a system turbulence and zonal modes co-exist, the modulations of micro-scale fields by

mesoscale zonal modes are adiabatic, and so conserve wave action density Nk = Ek/ωrk,

where Ek is the energy density of the kth wavey mode, with real frequency ωrk. The action

density N(~k, ~x, t) may be thought of as a wave population density - analogous to phase space

density. The action density of the wavy mode has the form of N
(
|φk|2 , |nk|2

)
which using the

linear Fourier amplitude relations can be expressed as N
(
|φk|2

)
. Then the modulated fluxes

can be expressed in terms of modulation of action density via δ |φk|2 = CkδNk. For the drift

wave turbulence described by Hasegawa-Wakatani equations Ck = ωrk/
(
k2
⊥ + |Rnk|2

)
, where

Rnk is density - potential response function Rnk = ω?e+iα̂k

ωk+iα̂k
. The wave kinetic equation[13, 65]

describing the evolution of action density is given by

∂Nk

∂t
+
∂ωrk

∂~k
· ∂Nk

∂ ~X
− ∂ωrk

∂ ~X
· ∂Nk

∂~k
= γkNk −∆ωN2

k (87)

where ωrk and γk are the real frequency and growth rate in the presence of slowly varying

mesoscale zonal modes. The first term on the right hand side is the linear growth and the

second term is the eddy damping due to nonlinear interaction which are local in k. Growth

and nonlinear damping balance to yield the steady state population via γkNk −∆ωN2
k = 0,

in the absence of modulations. For stability analysis we make a Chapman-Enskog expansion

of Nk; Nk = 〈Nk〉 + δNk, where 〈Nk〉 is the slowly varying mean wave action density and
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δNk is the perturbation induced by the gradients of 〈Nk〉 in the phase space
(
~X,~k

)
. The

linearized wave kinetic equation for δNk becomes(
∂

∂t
+ ~vgk ·

∂

∂ ~X
+ γk

)
δNk =

∂δωrk

∂ ~X
· ∂ 〈Nk〉

∂~k
+ δγk 〈Nk〉 (88)

Assuming ψ = ψqe
(−iΩt+qxX)where ψq = {δNk,q, φq, nq} the wave kinetic equation yields

δNk,q = Rk,q

(
∂δωrk
∂X

∂ 〈Nk〉
∂kx

+ δγk 〈Nk〉
)

(89)

where the propagator Rk,q is given by

Rk,q =
i

Ωq − qxvgx + i |γk|
(90)

Now the frequency modulation by the zonal modes can be obtained as

δωrk = ky∇Xφ− ky
∂ωrk
∂ω?e

∇Xn (91)

Similarly the growth rate modulation can be obtained as

δγk = −ky
∂γk
∂ω?e

∇Xn (92)

where

∂ωrk
∂ω?e

=
α̂ (2k2

⊥γ + α̂ (1 + k2
⊥))

|2k2
⊥ω + iα̂ (1 + k2

⊥)|2

and

∂γk
∂ω?e

=
α̂2k2

⊥ωr

|2k2
⊥ω + iα̂ (1 + k2

⊥)|2

Finally, using the above expressions for action density modulation, frequency and growth

rate modulations, the equation for zonal vorticity becomes

∂

∂t
∇2
xφ− µ∇4

xφ = ∇2
x

ˆ
d~kkykxCkRk,q

[
ky

{
∇2
Xφ−

∂ωrk
∂ω?e

∇2
Xn

}
∂ 〈Nk〉
∂kx

− ky
∂γk
∂ω?e

∇Xn 〈Nk〉
]

= ∇2
x

ˆ
d~kkykxCk

[
R(r)
k,qky

{
∇2
Xφ−

∂ωrk
∂ω?e

∇2
Xn

}
∂ 〈Nk〉
∂kx

− iR(i)
k,qky

∂γk
∂ω?e

∇Xn 〈Nk〉
]

(93)

Similarly the equation for zonal density becomes

∂

∂t
n−Dn∇2

xn = ∇x

ˆ
d~kkyR

(i)
nkCkRk,q

[
ky

{
∇2
Xφ−

∂ωrk
∂ω?e

∇2
Xn

}
∂ 〈Nk〉
∂kx

− ky
∂γk
∂ω?e

∇Xn 〈Nk〉
]

−∇x

ˆ
d~kl1∇3

xφCk 〈Nk〉

= −∇x

ˆ
d~kkyR

(i)
nkCkR

(r)
k,qky

∂γk
∂ω?e

〈Nk〉∇Xn−∇x

ˆ
d~kl1∇3

xφCk 〈Nk〉 (94)
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Note that the first term on the right hand side in the above equation results from the flux

modulation due to modulation of action density, and the second term results from flux

modulation via modulation of the wavy density-potential response function R
(i)
n . The terms

proportional to ∂〈Nk〉
∂kx

vanished because the integrand is odd in ky. That is, action density

modulation due to frequency modulation does not contribute to flux modulation. Hence

particle flux modulation is independent of the spectral gradient. Note that particle flux

modulation occurs via growth rate modulation of action density and frequency modulation

of R
(i)
n whereas the Reynolds stress modulation occurs via frequency and growth rate mod-

ulation of action density, only. The particle flux modulation is independent of the spectral

slope, whereas the Reynolds stress modulation depends upon spectral slope. The above

equation shows that zonal density modulations are damped for α > 1. The above zonal

mode equations show that the evolutions of zonal flow and corrugations are coupled, but

different, and are consistent with the results obtained by the spectral calculations.

B. Back reaction of zonal modes on drift wave turbulence

While the zonal flows and corrugations are generated by turbulence, they also react

back on turbulence via random refraction (shearing and corrugation) in k-space. The back

reaction of the zonal modes on the turbulence can be studied by taking the average of the

WKE(87).

∂ 〈Nk〉
∂t

=

〈
∂ωrk

∂ ~X
· ∂Nk

∂~k

〉
+ 〈γkNk〉 −∆ω

〈
N2
k

〉
=

〈
∂δωrk

∂ ~X
· ∂δNk

∂~k

〉
+ 〈δγkδNk〉 −∆ω 〈δNkδNk〉 (95)

Using the linear response of δNk for the zonal mode perturbation, a quasilinear expression

for the first term on the right hand side of the above equation is obtained〈
∂δωrk

∂ ~X
· ∂δNk

∂~k

〉
=

∂

∂kx

[〈
∂δωrk
∂X

Rkq
∂δωrk
∂X

〉
∂ 〈Nk〉
∂kx

+

〈
∂δωrk
∂X

Rkqδγk

〉
〈Nk〉

]
Similarly,

〈δγkδNk〉 =

〈
∂δωrk
∂X

Rkqδγk

〉
∂ 〈Nk〉
∂kx

+ 〈δγkRkqδγk〉 〈Nk〉

Eventually, we arrive at the following evolution equation for the mean action density under

the influence of zonal modes.

∂ 〈Nk〉
∂t

=
∂

∂kx

[
Dkk

∂ 〈Nk〉
∂kx

+ Vk 〈Nk〉
]

+ Vk
∂ 〈Nk〉
∂kx

+ Γk 〈Nk〉 (96)
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Equation(96) is a convection-diffusion equation, with kx-space diffusivity Dkk given by

Dkk ≡
〈
∂δωrk
∂X

Rkq
∂δωrk
∂X

〉
=

ˆ
d~qq2R(r)

k,q |δωkq|
2

=

ˆ
d~qR(r)

k,qk
2
yq

4
x

∣∣∣∣φq − ∂ωrk
∂ω?e

nq

∣∣∣∣2 (97)

, the convection speed Vk is

Vk ≡
〈
∂δωrk
∂X

Rkqδγk

〉
= −<

ˆ
d~qiRk,qkyq

3

(
φq −

∂ωrk
∂ω?e

nq

)
ky
∂γk
∂ω?e

n−q

=

ˆ
d~q

vgxk
2
yq

4
x

|Ωq − qxvgx + iγk|2

(
φq −

∂ωrk
∂ω?e

nq

)
∂γk
∂ω?e

n−q (98)

and the nonlinear growth rate Γk becomes

Γk ≡ 〈δγkRkqδγk〉 =

ˆ
d~qR(r)

k,q |δγkq|
2

=

ˆ
d~qR(r)

k,qq
2
xk

2
y

(
∂γk
∂ω?e

)2

|nq|2 (99)

Equation(96) describe how a zonal flow shear and density corrugations lead to diffusion of

turbulence in k-space. While zonal flow shear only diffuses turbulence in k-space, density

corrugations play a role in both in k-space diffusion and nonlinear growth of turbulence.

The expression for diffusivity Dkk reveal that density corrugation can enhance or reduce

turbulence diffusion depending on the phase relation between zonal potential and zonal

density -i.e., zonal cross correlation!. It is also interesting to note that density corrugation

contributes to convection of turbulence in k-space. Clearly, the sign of the convection speed

Vk depends on the zonal cross-correlation. The nonlinear growth rate Γk due to linear

growth modulation by density corrugation injects energy back into the turbulence, locally.

Thus, there is a competition between the random shearing of the zonal flow as a saturation

mechanism, and energy reintroduction into the turbulence via density corrugations.

Comparison with the spectral calculations shows that turbulence kinetic energy and internal

energy diffusivity scale as the square of zonal shear q4φ2
q, whereas WKE analysis shows that

the action density diffusivity scales as q4
x

∣∣∣φq − ∂ωrk

∂ω?e
nq

∣∣∣2. This clearly shows the important

role of zonal cross-correlation in setting the k-space diffusion of action density. In contrast,

the role of zonal cross-correlation in spectral energy diffusivity is not immediately clear from

the spectral analysis so far. Further investigation of this point is necessary.

To put Section(III) and (IV) in perspective, Table(II) below gives a comparison of wave

kinetic theory results for zonal modes (flows and corrugations) with the spectral equation

calculations presented earlier in this paper.
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TABLE II. Comparison of spectral and wave kinetic results

Physical

effect

Spectral theory(1) Adiabatic theory (2) Comments

Zonal flow

modulation

Viscosity∑
~q

q2
yΘ

(r)
k,−q,qqx×

∂

∂qx

[(
a−qq

2 + b−qR
?
nq

)(r)
Iq

]

Viscosity
´
d~kkykxCkR

(r)
k,qky

∂〈Nk〉
∂kx

−ve

for ∂〈Nk〉
∂kx

< 0

For α→∞, both

predict same

growth rate due

to −ve viscosity

with

Θk,−q,q ↔ Rk,q .

Corrugations

modulation

Particle diffusivity∑
~q Θ

(r)
k,−q,qq

2
y

4q4

(1+q2)2
1
α2
q
Iq

+ve for α > 1, scales as 1
α2 .

Particle diffusivity

−
´
d~kkyR

(i)
nkCkR

(r)
k,qky

∂γk
∂ω?e
〈Nk〉

+ve for α > 1, scales as 1
α2 .

Both predict

same damping

rate for

corrugation due

to +ve diffusivity

with

Θk,−q,q ↔ Rk,q .

Induced

diffusion

Kinetic energy diffusivity∑
q 4k2

y

(
k
k⊥

)4
q2
xEqΘ

(r)
kkqa

r
k,

Internal energy diffusivity∑
q k

2
yq

4
x

〈
|φq|2

〉
Θ

(r)
kkqd

r
k

Mean action density

diffusivity
´
d~qR(r)

k,qk
2
yq

4
x

∣∣∣φq − ∂ωrk
∂ω?e

nq

∣∣∣2
Density corrugations decrease

(increase) action diffusivity

when the zonal density and

potential are correlated

(anti-correlated).

Both kinetic and

internal energy

diffuse by zonal

shear energy.

Role of zonal

cross-correlation

unclear in (1),

ignored for

simplicity.

V. PREDATOR PREY DYNAMICS WITH NONLINEAR ZONAL NOISE

Here we study the effect of zonal noise on the predator prey dynamics of turbulence

energy and zonal flow energy. Here, we follow the model of Ref[1] which evolves turbulence

energy and zonal flow energy in 0D for the strongly adiabatic limit. The turbulence energy
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ε evolves as

∂ε

∂t
= γε− σEvε− ηε2 (100)

where the first term on the right hand side represents linear growth of turbulence with

growth rate γ. The second term represents turbulence damping due to diffusion induced by

zonal flow in the kx-space. The third term represents the nonlinear damping of turbulence,

by self-interaction. The zonal flow energy Ev evolves as

∂Ev
∂t

= σεEv − γdEv + βε2 (101)

where the first term on the right hand side represents modulational growth of zonal flow and

the second term represents collisional damping of zonal flow, with damping rate γd. The

third term βε2 on the right hand side of equation (101) represents drive by the zonal noise, a

new element in the model as presented here. It is this term which makes our predator-prey

model different from previous incarnations of the model[1]. The parameters of this model

are γ =
k2⊥
α̂

ωr2
k

1+k2⊥
, σ =

∑
q 2k2

xΘ
(r)
k,−q,q, β =

∑
q 4k2

xq
−2
y q2

xΘ
(r)
k,−q,q, γd = µk2

x.

Fixed point analysis : The above equations yield, for steady state:

σEv = γ − ηε (102)

and

(σε− γd)Ev + βε2 = 0 (103)

Defining ε1 = γd/σ and ε2 = γ/η and using the above equations, the fixed points are

obtained by the roots of the following equation(
1− β

η

)
ε2 − ε (ε1 + ε2) + ε1ε2 = 0

, which are:

ε± =

(ε1 + ε2)±
√

(ε1 + ε2)2 − 4
(

1− β
η

)
ε1ε2

2
(

1− β
η

) (104)

The corresponding zonal flow energies are

E±v = σ−1
(
γ − ηε±

)
(105)
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Note that for the case without noise β = 0, ε+
0 = ε2, ε−0 = ε1, E+

v0 = 0 and E−v0 =

σ−1η (ε2 − ε1). It is straight forward to check that the fixed point
(
ε−0 , E

−
v0

)
= (ε1, σ

−1η (ε2 − ε1))

is stable. Clearly, there is a threshold in growth rate γ for excitation of zonal flow in the

noise free case. This threshold is

γ > η
γd
σ

(106)

and can be linked to a threshold in edge gradients or flux (power). Is there a threshold in γ

for zonal flow excitation with noise? Using equation(104) and (105), we see:

γ > η

(ε1 + ε2)±
√

(ε1 + ε2)2 − 4
(

1− β
η

)
ε1ε2

2
(

1− β
η

)
which implies

γ2

η2

[(
1− 2

β

η

)2

− 1

]
> 0

This clearly shows that, with noise, there is no threshold in γ for zonal flow excitation. This

is consistent with numerical solutions plotted in figure(1). The phase plane in figure (1) is

obtained by performing a linear growth rate scan with noise strength as a parameter. A

linear growth rate scan is a proxy for a power scan, as power changes the pressure gradient

and hence the growth rate. The figure shows that, without noise, there is a threshold in

growth rate (or power) for appearance of stable zonal flows. Below the threshold, there is

only turbulence, and no zonal flows. Beyond the threshold growth rate -both turbulence

and zonal flows co-exist. On ramping up the growth rate (or power), the turbulence energy

increases as γ/η below the threshold, until it locks at γd/σ, at the threshold. Beyond the

threshold, turbulence energy remains locked at the value γd/σ while the zonal flow energy

continues to grow as σ−1η (γ/η − γd/σ). With noise, both zonal flow and turbulence co-exist

at any value of growth rate -i,e., there is no threshold for zonal flow excitation. Both zonal

flow and turbulence increase with growth rate. In this case, zonal flow energy is related

to turbulence energy as Ev = βε2/ (γd − σε). Note that, with noise, the turbulence energy

never hits the modulational instability threshold, absent noise! Significant zonal flows are

generated well below the modulational instability threshold.
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FIG. 1. Zonal flow energy Ev vs turbulence energy ε in a linear growth rate γ scan with noise

strength β as a parameter.

The next question is how does the noise free base state change with a weak noise? Taylor

expanding about β
η

= 0, it is straight forward to show

ε± = ε±0 ±
β

η

ε±2
0

ε+
0 − ε−0

+O
(
β2

η2

)
(107)

and

E±v = E±v0 ∓
β

η

η

σ

ε±2
0

ε+
0 − ε−0

+O
(
β2

η2

)
(108)

Since ε+
0 > ε−0 , the above equations show that the turbulence energy decreases and zonal

energy increases with noise corresponding to the stable fixed point. This is consistent with

the numerical solutions shown in figure2. Why? - Noise feeds energy into zonal flows!

Stability of fixed points : The Jacobian of the system of equations (100) and (101) is

D(ε, Ev) =

 −ηε −σε

γ + (−η + 2β) ε σε− γd

 (109)

The stability of the fixed points are determined by the eigenvalues λ of the D(ε, Ev)

λ2 + λ [(η − σ) ε+ γd] + γdγ + ησ

(
β

η
− 1

)
ε2 = 0 (110)
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FIG. 2. Left: Stable fixed points with noise strength β. Zonal flow energy increases and turbulence

energy decreases with β. Right: Eigenvalues λ of the stable fixed points.

The roots are obtained as

λ =

− [(η − σ) ε+ γd]±
√

[(η − σ) ε+ γd]
2 − 4

[
γdγ + ησ

(
β
η
− 1
)
ε2
]

2
(111)

At β = 0 and ε = γd/σ

λ0 =

−η γd
σ
±
√[

η γd
σ

]2 − 4ηγd

[
γ
η
− γd

σ

]
2

This shows that the steady state
(
ε−0 , E

−
v0

)
is stable without noise. To study effect of noise

on the stability of the steady states, numerical solution of equation(102) is more convenient.

The results are plotted in figure (2), which show that the fixed point stability degrades with

increasing noise strength.

Hence, we see that polarization beat noise affects the predator-prey dynamics significantly,

by eliminating the threshold in the linear turbulence growth rate. Zonal flows and turbulence

always co-exist at any growth rate. The zonal flow energy-to-turbulence energy branching

ratio increases with noise strength, as the polarization beat noise pumps energy into zonal

modes.

VI. NOISE EFFECT ON THE L -H TRANSITION

The previous section showed that polarization beat noise has a significant effect on

predator-prey dynamics of zonal flows and turbulence. It eliminates the threshold (in the



40

linear growth of turbulence) for the onset of zonal flows. This indicates that zonal noise may

have an observable effect on the dynamics of the L-H transition. So here, in this section, we

study the effect of noise on the dynamics of the L-H transition. We examine a 0D model

evolving turbulence energy ε, zonal flow energy, and mean pressure gradient P for this pur-

pose. This minimal model is an extension of the KD03 model ala Kim and Diamond[4].

The model is exceedingly simple. The point here is to illustrate noise effects in a familiar

setting. The normalized turbulence kinetic energy ε = q2
yρ

2
sIq/q

2
yρ

2
sρ
?2 evolves as:

∂ε

∂t
=

a1Pε
1 + a3V2

− a2ε
2 − a4v

2
zε

1 + b2V2
(112)

Here t is time normalized by gyro-Bohm diffusion time i.e., t ≡ tDGB/a
2, whereDGB = ciρiρ

?

is gyro-Bohm diffusivity and a is the minor radius. The first term on the right hand side

represents linear growth of turbulence driven by pressure gradient P = a |∇P | /Po, via

instability. The growth rate coefficient is normalized as a1 ≡ a1a/ciρ
?2 and the nonlinear

damping rate coefficient is normalized as a2 ≡ a2a/ciρ
?2. The factor 1

1+a2V2 represents

linear growth rate reduction by mean flow shear V . The second term represents nonlinear

damping of turbulence and the third term represents local damping of turbulence due to

kx-space diffusion induced by mean square zonal flow shear. The evolution of normalized

zonal flow kinetic energy v2
z = k2

xρ
2
sIk/k

2
xρ

2
sρ
?2 is governed by

∂v2
z

∂t
=

b1εv
2
z

1 + b2V2
− b3v

2
z + b4ε

2 (113)

The first term on the right hand side represents modulational growth of zonal flow by

Reynolds stress, where b1 = 2(k2
xρ

2
s/ρ

?2)
∑

q q
2
yρ

2
sΘcs/a and Θ is triad interaction time, in

dimensional form. The factor 1
1+b2V2 represents inhibition of modulational growth by mean

flow shear. This inhibition is due to the weakening of the response of drift wave spectrum to

a seed zonal flow, via the enhanced decorrelation of drift wave propagation by a mean shear

flow. Note that the same suppression factor is appears in the damping, due to diffusion

induced by zonal flow shear. This guarantees conservation of total energy of turbulence and

zonal flow. The second term is the linear damping of zonal flow due to collisional drag.

The third term, proportional to turbulence energy squared, represents the zonal noise with

b4 = (4/ρ?2)
∑

q q
2
xρ

2
sq

2
yρ

2
sΘ(cs/a). This is the unique feature of this incarnation of the KD03
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model. The pressure gradient P evolves according to:

∂P
∂t

= −c1
εP

1 + c2V2
− c3P +Q (114)

where the first term on the right hand side represents local damping by turbulent dif-

fusion. The normalized turbulent damping coefficients are c1 = (a/L)2 (DT/DGB) and

c3 = (a/L)2 (Dnc/DGB), where DT and Dnc are turbulent and neoclassical diffusivities and

DGB is gyro-Bohm diffusivity. The factor 1
1+c2V2 accounts for transport suppression due to

transport cross-phase reduction by the mean flow shear. The second term represents neoclas-

sical transport. The third term Q is a normalized source function gradient that represents

input external power, Q = a2∇Sp/P 2
0 ciρ

?2. Here Sp is the actual pressure (i.e., heat) source

function. Finally, the normalized mean flow shear V ≡ V ′Ea/ρ
?ci is related to the pressure

gradient P through the diamagnetic part of radial force balance

V = −P2 (115)

where coupling to mean poloidal and toroidal flows are ignored and a constant ion tem-

perature profile is assumed for simplicity. Note that this model is an outgrowth of, and

yet significantly different from, the KD03 model, in the sense that it not only considers

the effect of zonal noise but also includes the effect of mean E × B induced suppression of

turbulence growth, modulational zonal growth and transport cross-phase reduction. These

physically motivated modifications allow producing an H-mode with residual turbulence,

and manifest hysteresis phenomenon in a cyclic power ramp.

The input power Q is the main control parameter of this model. The noise strength b4 is

a subsidiary control parameter which facilitate study of effect of noise on L - H transition.

The equations(112), (113), (114) and (115) are solved numerically for the Q = 0.01t, and

assuming constant values for the parameters ai, bi and ci. Figure(3) shows the evolution of

turbulence energy, zonal flow energy and pressure gradient as the input power is ramped

up, with noise strength b4 as a parameter. First, we discuss the noise-free case i.e., b4 = 0.

Clearly there are three distinct stages. The L-mode, I(intermediate)-phase and the H mode.

L mode is the initial stage in which (as the input power Q ramped up from zero), the mean

pressure gradient P steepens and excites turbulence from linear instability. Notice that there

is no zonal flow in the L-mode. Upon further heating, turbulence continues to grow and

excites zonal flows when the input power exceeds a threshold set by turbulence level and
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flow damping. When the turbulent drive becomes strong enough to overcome flow damping,

it generates zonal flows by Reynolds stress. The turbulence energy overshoots dramatically

before exciting the zonal flow. Turbulence and zonal flows then form a self-regulating sys-

tem, as the shearing by zonal flows damps the turbulence. The first appearance of zonal flow

marks the beginning of the I-phase. In the I-phase, zonal flows and turbulence compete,

and oscillatory behavior emerge. A gradual increase in the turbulence energy is noticed in

the I-phase. This is due to the reduction in the zonal flow growth by the mean shear flow,

which strengthens the growth of turbulence. The behavior of the turbulence envelope in

the I-phase is given by the stationary solution of equation(113) i.,e ε = b3 (1 + b2V2) /b1,

which increases as the pressure gradient increases with Q. At sufficiently high Q, the system

bifurcates into H mode, when turbulence energy drops suddenly as the pressure gradient

jumps up and zonal flows disappear. This is the H mode, with non-zero residual turbulence.

This is more realistic than the Quiescent H mode with no turbulence, predicted by the KD03

model. After the transition to H mode, the pressure gradient continues to rise and turbu-

lence energy continues to fall. The pressure gradient is primarily set by the neoclassical

transport, since the turbulent transport is drastically reduced due to cross-phase reduction

by the strong mean shear. Further heating may excite MHD instabilities, which are not

modelled here.
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FIG. 3. (a) L H transition dynamics without noise. Notice that zonal flow exist only within the

I-phase and residual turbulence exists in H-mode. (b) L H transition dynamics with noise. Notice

that zonal flow exists at any power, but is most prominent within the I-phase. Noise eliminates

the threshold for zonal flow appearance, increases the duration of I-phase, reduces the turbulence

energy and reduces the ultimate power threshold for L H transition. Parameters are a1 = 1,

a2 = 0.2, a3 = 0.7, a4 = 0.7, b1 = 1.5, b2 = 0.7, b3 = 1, c1 = 1, c2 = 0.7 and c3 = 0.5.

Next, we discuss the case with finite zonal noise (b4 6= 0). The dashed and dotted dashed

curves in figure(3) correspond to finite noise. There are several important differences as

compared to the case without noise.

1. The most striking change is that significant zonal flows appear much earlier than for

the modulational instability threshold without noise. In fact, now there is no clear

threshold in Q (unless there is a threshold for linear instability, which is assumed not

to be the case here) for zonal flow appearance.

2. The turbulence level is reduced, there is no overshoot, and zonal flows are enhanced.

3. The I-phase oscillations are smaller.

4. The transition to H-mode (marked by a sharp jump in pressure gradient) occurs at

lower Q - i.e., the power threshold is lower. This is because zonal noise couples more

fluctuation energy to benign zonal modes.

5. Zonal flow remains small but finite in H mode.
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The zonal flow in the early phase is noise driven. The initial exponential rise of the zonal

flow tracks the exponential rise of turbulence energy. This phase of exponentially rising

turbulence is the L mode. On increasing power, the system enters the I-phase, marked by

an approximately linear growth of turbulence and zonal flow energy. Notice that the I-phase

with noise begins with small overshoot of turbulence. On further heating, there comes a

point when the steepening of the pressure profile starts to accelerate, and mean shear begins

to overtake zonal flow shear. The modulational growth is then reduced by the mean shear

and the zonal flow beings to decay. Notice that turbulence intensity begins to roll down at

a higher Q than does the zonal flow. This transient nonlinear rise of turbulence is due to

depletion of zonal flows by mean shear. In the H mode, the residual turbulence emits zonal

noise and hence zonal flow energy tracks the turbulence energy. So zonal flows are present

in all the three phases (i.e., at any Q)!
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0.4
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Turb Energy
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FIG. 4. The H-L back transition is accompanied by hysteresis. In presence of zonal noise, hysteresis

is robust with respect to variations in initial conditions and the point of retreat (in Q) in the H

mode.
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FIG. 5. Noise reduces the area enclosed in the hysteresis curve.

Hysteresis: Figure(4) shows the evolution of turbulence energy, zonal flow energy and

pressure gradient in a cyclic power ramp at a finite noise strength. Clearly, such a cyclic

evolution exhibits hysteresis. Turbulence, zonal flow and pressure gradient do not retreat

along the same respective curves, and the H-I back transition occurs at a lower Q than that

of I-H. Notice that the back transition is associated with an oscillating I-phase, while the

I-phase in the forward transition is not oscillatory. The hysteresis, with noise, is robust with

respect to variations in the initial conditions and the depth of the H mode (i.e., how far

in to the H mode the power ramp down begins). Whereas without noise, the hysteresis is

sensitive to the initial condition and the depth of the H mode i.e., hysteresis depends on

where in H mode the power ramp-down begins. In the absence of noise, hysteresis is not

robust.

Figure(5) shows effect of increasing noise strength on the hysteresis in flux and pressure

gradient. It can be seen that the threshold power for both forward and backward transition

decreases at different rates with noise strength. As a result the area enclosed by the hysteresis

curve decreases with noise. Also the I-phase oscillations in the back transition are reduced

with noise strength.

This section elucidated the effect of zonal noise on the dynamics of L-H transition and on

L-H hysteresis in a cyclic power ramp. The most significant effect is that noise-driven zonal
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flows appear in all modes of the discharge. Zonal flows appear far below the modulational

stability threshold. Zonal noise increases the extent of the I-phase, reduces overall turbulence

energy and reduces the threshold power for the I-H transition. Zonal noise makes hysteresis

phenomenon robust and reduces the area enclosed by the hysteresis curve in a cyclic power

ramp.

VII. CONCLUSIONS AND DISCUSSION

In this paper we presented a unified theory of zonal mode dynamics. We linked the

mechanism of zonal flow excitation by polarization flux beat noise to that of modulational

instability (i.e., instability due to negative turbulent viscosity), by situating both in a single

formalism based on spectrum evolution equations. The physics of zonal density corrugations

(i.e., zonal density structures which distort ∇n) is shown to differ substantially from that

of zonal shear flows. This unified analysis addresses the dynamic interplay of different

mechanisms and the implications thereof for feedback on turbulence and system states.

This work yielded several new theoretical results worthy of note. These are:

1. the derivation of a unified set of spectral equations, encompassing nonlinear response

and polarization and density advection beat noise. Zonal flows and density corru-

gations are calculated. Table(I) summarize the key theoretical results. Nonlinear

invarients are diffused and advected in kx - space by zonal shear kinetic energy.

2. vorticity flux correlation is shown to drive zonal flow noise. Likewise, density corruga-

tion noise is driven by density flux correlations. Here “correlation” refers to two-time

correlation. Note it is the flux correlation time which is of interest here.

3. while the effective viscosity for zonal flows can go negative, the zonal diffusivity re-

mains positive definite for α > 1. Thus, DW-ZFT can manifest bi-directional transfer

of kinetic energy to large scale with internal energy
(
∼
〈∣∣ ñ

n

∣∣2〉) to small scale. This is

consistent with familiar 2D fluid phenomenon of the dual cascade of potential enstro-

phy

(
∼
〈∣∣∣ ñn − ρ2

s∇2
⊥
eφ̃
T

∣∣∣2〉) to small scale, and kinetic energy

(
∼
〈∣∣∣ρs∇⊥ eφ̃T ∣∣∣2〉) to

large scale. The quantity 〈n2〉 is the unique inviscid, α→ 0 invarient of the Hasegawa -

Wakatani system involving only the density field. As there are no other such quadratic

invarients involving only density, it tends toward equipartition in k, as in equilibrium
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statistical mechanics. Physically, this means that the velocity straining field tends

to ’chop - up’ density, producing smaller scale elements, and accessing smaler sacles

until cut-off by resolution or dissipation. Note for α → ∞, density is unaffected and

so no inverse cascade occurs, in that limit either. This should be contrasted to the

potential field, which is constrained by dual quadratic invarients of energy
〈
(∇φ)2〉

and enstrophy
〈

(∇2φ)
2
〉

. These force the inverse cascade of energy[66]. This is fun-

damentally why the viscosity can go negative while the density diffusivity is positive,

also a symptom of the absence of inverse cascade.

4. the effective zonal viscosity can be negative, but need not be! Indeed, the zonal viscos-

ity goes negative only for an energy spectrum which decays sufficiently rapidly in kr

-i.e., µeff < 0 for ∂E
∂kr

< 0 and
∣∣∣ ∂E∂kr ∣∣∣ < ∣∣∣ ∂E∂kr ∣∣∣crit. This is consistent with wave kinetics,

which links modulational instability to the condition that the slope of the action den-

sity in kr be sufficiently negative. The sensitivity of µeff to spectral slope re-enforces

the importance of treating noise and modulational instability in a unified theory, since

the oft-invoked negative viscosity instability (i.e., modulational instability) may be ab-

sent or very weak, on account of fluctuation spectrum structure. Table(II) compares

wave kinetic and spectral closure results.

5. the importance of the zonal cross-correlation spectrum 〈nkφ?k〉 was identified. This

naturally appears in the statistical theory, and has been heretofore ignored. The spec-

tral closure theory yields the zonal density-potential cross-correlation spectra 〈nkφ?k〉,

whose real part turns out to be negative i.e., < 〈nkφ?k〉 < 0 and the imaginary part

= 〈nkφ?k〉 vanishes. This means that the zonal density and zonal potential are anti-

correlated. This follows from constraining the solution for = 〈nkφ?k〉 to be bounded,

which constrains that modulational growth rate of zonal intensity be less than the non-

linear damping of density corrugation. 〈nkφ?k〉 is significant in all regimes of electron

adiabaticity and determines the relative phasing of zonal density and zonal potential.

All real space zonal cross-correlations can be determined from zonal density-potential

cross spectra 〈nkφ?k〉.

6. The zonal density and zonal vorticity cross-correlation is
〈
n∇2φ

〉
> 0, which means

that the density peaks are co-located with the vorticity peaks. The density gradient

and vorticity gradient cross-correlation becomes positive i.e.,
〈
∇xn∇3

xφ
〉
> 0. This
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means that the zonal density jumps are co-located with the zonal vorticity jumps. Fi-

nally, another correlation of interest could be between zonal density gradient and zonal

flow
〈
−∇xn∇xφ

〉
. This can be obtained as

〈
−∇xn∇xφ

〉
=
∑

kx
−k2

x< 〈nkφ?k〉 > 0.

This means density gradient peaks are co-located with the zonal flow peaks. Zonal

correlations appear quite relevant to staircase structure characteristics.

The theoretical results listed above have several immediate pragmatic implications, which

this paper explores and develops. These are discussed below.

1. While polarization beat noise and modulational effects are comparable intrinsically

(both set by the Reynolds stress !), the synergy of the two mechanisms is stronger

than either alone. This is because zonal noise acts to excite marginally stable and

weakly damped zonal flows. It thus expands significantly the range of zonal flow

activity relative to that predicted by modulational instability calculations. Noise also

increases the branching ratio between zonal flow and turbulence energy.

2. The interaction of zonal noise and modulations has a significant effect on feed-back

processes, and thus the global characteristics of DW-ZFT. Regarding the L→H transi-

tion, as described by a simple predator - prey model, we see that noise eliminates the

threshold for zonal flow excitation, and so expands the predicted range of the interme-

diate phase (for all else fixed), while drastically reducing turbulence overshoot. Thus,

the nagging question of “if zonal flows are the L→H trigger, what triggers the trigger?”

is eliminated i.e., polarization beat noise triggers the trigger. Since energy transfer to

the zonal flow is accelerated, the threshold for L→H transition (which occurs when

∇P steepens, due to a decrease in transport to neoclassical levels) is lowered.

3. Zonal corrugations are excited by noise, regardless of modulational stability. The zonal

density diffusivity is positive definite. Corrugation generation is thus seen a means for

seeding transport events.

When reading this rather theoretical paper, the experimentalist (either physical or digital)

may ask “what’s in for me?” To this end we note that:

1. the spectral transfer mechanism for corrugations (i.e., positive diffusivity) is as yet

untested. This could be tested using bicoherence analysis of zonal density perturba-

tions and intensity with smaller scale fluctuatios.
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2. the zonal cross-correlation has not been measured, its theory is untested, and its rela-

tion to staircase structure has not been addressed. Zonal cross correlation necessitates

measurement of the mesoscale (∼
√
ρiLi) potential structure. In practice, this seems

possible only via Heavy Ion Beam Probe (HIBP)[45], or by Langmuir probe, - usually

in a limited region near the edge. For either, a measurement might be performed by

measuring the density and potential perturbations at low frequency, and on mesoscales,

windowing at kθ = 0 to obtain the zonal component, and then constructing the corre-

lations. Long range correlation analysis[67] is a possibility for this.

3. the predator-prey dynamics (intensively studied !) drastically changes when zonal

noise is accounted for. The domain of zonal flow excitation expands, and the system

never reaches the modulational instability threshold.

4. the improved L-H transition model presented in this paper is eminently testable. In

particular, the weak overshoot, expanded domain of zonal mode activity, absence of a

’trigger’ modulation and the level of residual H mode turbulence are all seemingly in

accord with experimental findings.

5. one might consider comparisons of ’fits’ of I-phase and LH data to the KD’03 model

and to it’s extension reported here. In particular, the presence or absence of large

overshoot, as predicted by KD’03[4], is one way to dicsriminate between model ver-

sions.

6. one could examine zonal shear bicoherence with smaller scale fluctuations for the

footprint - or lack thereof - of a coherent energy transfer events, symptomatic of a

trigger modulation.

More generally, one might:

1. construct the pdf of zonal flow shears, especially approaching, an in, I-phase.

2. examine spectral structure for evidence of universality and a critical slope. Some

evidence of this short already exists[68].

This paper stimulated several plans for future study. First of these is to understand zonal

flow generation when modulational instability is weak or absent. In that case, does shearing
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occurs in intermittent and bursty avalanche - like feedback events[69]? Does a critical spec-

tral slope self-organize from these interactions? A related question concerns understanding

the interaction of corrugations (driven by particle, or more generally heat flux correlations)

with avalanches. In particular, we speculate that corrugations occurring in the states of high

zonal cross-correlation can be sustained as localized transport barriers, staircase elements,

etc by the accompanying shear flow. Likewise, bi-stable systems can sustain a long lived

corrugation. However, corrugations occurring in states of low zonal cross-correlation seem

likely to overturn, and drive avalanches, as in a running sandpile. This concern seems espe-

cially relevant to collisionless trapped electron mode turbulence. Does the density gradient

state consist of standing corrugations, running avalanches, or mixtures thereof?

Staircases and layering loom large as topics for further study. Theory should understand

the role of noise in staircases, which have been considered only in the context of mean field

theory, which neglects fluctuations. One might expect noise to cause an effective increase

in turbulence spreading, and so tend to smooth staircase features, along with causing a

decrease in the number of steps. Finally, the relation between zonal cross-correlation and

staircase structure should be explored. Does the zonal cross-correlation and the physics

which governs it set the relative position of corrugation steps and zonal shear layers? Is

there an optimal zonal correlation for the staircase state? Note that absolute value cross

correlations may also be invoked to infer the staircase pattern. However, spectral closure

theory yields spectral cross- correlation 〈nkφ?k〉. So any kind of cross-correlation must be

obtained in terms of 〈nkφ?k〉. However to obtain correlation of absolute values in terms of

spectral quantities is much more difficult as, it involves convolution of modulii of two infinite

series. This can be realized from the following

〈
|∇xn|

∣∣∇2
xφ
∣∣〉 =

〈∣∣∣∣∣∑
k1x

ik1xnk1e
ik1xx

∣∣∣∣∣
∣∣∣∣∣∑
k2x

−k2
2xφk2e

ik2xx

∣∣∣∣∣
〉

(116)

Now, how to express the right hand side in terms of the spectral cross correlation is not at

all obvious. Hence, we defer such a mathematically challenging analysis to future work.
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Appendix A: Derivation of spectral kinetic energy diffusion

It is convenient to define F1p = ΘE
kpq

[
aEp Ek − aE−kEp

]
and F2p = ΘE

kpq

[
bEp RnkEk − bE−kR?

npEp
]
.

Expanding F1 around ~p = ~k yields

F1p = F1k − qx
(
∂F1p

∂px

)
~p=~k

+
q2
x

2

(
∂2F1p

∂p2
x

)
~p=~k

+ ... (A1)

It is obvious that F r
1k = <

(
ΘE
kkq

[
aEk Ek − aE−kEk

])
= 0 as <aEk = <aE−k and =ΘE

kkq = 0.

Using q2 − p2 = 2qxkx − k2 one gets

T
(1)
φk = <

∑
~p+~q=~k

k2
yq

2
xk

2Eq

[
−2q2

xkx

(
∂F1p

∂px

)
~p=~k

− k2 q
2
x

2

(
∂2F1p

∂p2
x

)
~p=~k

]

= <
∑
~p+~q=~k

1

2
k2
yq

4
xEq

[
−4kxk

2

(
∂F1p

∂px

)
~p=~k

− k4

(
∂2F1p

∂p2
x

)
~p=~k

]
(A2)

= <
∑
~p+~q=~k

1

2
k2
yq

4
xEq

[
− ∂

∂px
p4∂F1p

∂px

]
~p=~k

Next (
∂F1p

∂px

)
~p=~k

=

(
∂ΘE

kpq

∂px

)
~p=~k

[
aEk Ek − aE−kEk

]
+ ΘE

kkq

[
∂aEp
∂px

Ek − aE−k
∂Ep
∂px

]
~p=~k

so that the real part becomes(
∂F1p

∂px

)r
~p=~k

= ΘEr
kkq

[
∂aErk
∂kx

Ek − aErk
∂Ek
∂kx

]
(A3)

Similarly(
∂2F1p

∂p2
x

)
~p=~k

=

(
∂2ΘE

kpq

∂p2
x

)
~p=~k

[
aEk Ek − aE−kEk

]
+ 2

(
∂ΘE

kpq

∂px

)
~p=~k

[
∂aEp
∂px

Ek − aE−k
∂Ep
∂px

]
~p=~k

+Θkkq

[
∂2aEp
∂p2

x

Ek − aE−k
∂2Ep
∂p2

x

]
~p=~k

so that the real part becomes(
∂2F1p

∂p2
x

)r
~p=~k

=

(
∂ΘEr

kkq

∂kx

)[
∂aErp
∂kx

Ek − aErk
∂Ek
∂kx

]
+ Θkkq

[
∂2aErk
∂k2

x

Ek − aErk
∂2Ek
∂k2

x

]

=
∂

∂kx

[
ΘEr
kkq

(
∂aErp
∂kx

Ek − aErk
∂Ek
∂kx

)]
(A4)
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Hence the expression for T
(1)
φk becomes

T
(1)
φk =

∂

∂kx

[∑
q

1

2
k2
yk

4q4
xEqΘ

Er
kkq

(
aErk

∂Ek
∂kx
− ∂aErk

∂kx
Ek

)]
(A5)

Similarly F2 is expanded about ~p = ~k,

F2p = F2k − qx
(
∂F2p

∂px

)
~p=~k

+
q2
x

2

(
∂2F2p

∂p2
x

)
~p=~k

+ ... (A6)

where F2k = ΘE
kkq

[
bEk RnkEk − bE−kR?

nkEk
]

so that it’s real part F r
2k = 0.(

∂F2p

∂px

)
~p=~k

=

(
∂ΘE

kpq

∂px

)
~p=~k

[
bEk RnkEk − bE−kR?

nkEk
]

+ ΘE
kkq

[
∂bEk
∂kx

(RnkEk)− bE−k
∂

∂kx
(R?

nkEk)

]
so that the real part(

∂F2p

∂px

)r
~p=~k

= ΘEr
kkq

[
∂bEk
∂kx

(RnkEk)− bEk
∂

∂kx
(RnkEk)

]r
(A7)

Similarly(
∂2F2p

∂p2
x

)
~p=~k

=

(
∂2ΘE

kpq

∂p2
x

)
~p=~k

[
bEk RnkEk − bE−kR?

nkEk
]

+ 2

(
∂ΘE

kpq

∂px

)
~p=~k

[
∂bEp
∂px

RnkEk − bE−k
∂R?

npEp

∂px

]
~p=~k

+Θkkq

[
∂2bEp
∂p2

x

RnkEk − bE−k
∂2R?

npEp

∂p2
x

]
~p=~k

so that the real part becomes(
∂2F2p

∂p2
x

)r
~p=~k

=
∂ΘEr

kkq

∂kx

[
∂bEk
∂kx

RnkEk − bEk
∂RnkEk
∂kx

]r
+ Θr

kkq

[
∂2bEk
∂k2

x

RnkEk − bEk
∂2RnkEk
∂k2

x

]r
=

∂

∂kx

[
ΘEr
kkq

(
∂bEk
∂kx

RnkEk − bEk
∂RnkEk
∂kx

)r]
(A8)

Eventually it is straightforward to show

T
(2)
φk =

1

k2

∂

∂kx

[∑
q

1

2
k2
yk

4q4
xEqΘ

Er
kkq

(
bEk

∂

∂kx
(RnkEk)−

∂bEk
∂kx

RnkEk

)r]
(A9)

Appendix B: Derivation of spectral internal energy diffusion

It is convenient to define

F1np = Θkpq

[
d?k
〈
|np|2

〉
− dp

〈
|nk|2

〉]
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and

F2np = Θkpq

[(
q2 − k2

)
cp 〈n?kφk〉 −

(
q2 − p2

)
c?k
〈
npφ

?
p

〉]
. Expanding F1 around ~p = ~k yields

F1np = F1nk − qx
(
∂F1np

∂px

)
~p=~k

+
q2
x

2

(
∂2F1np

∂p2
x

)
~p=~k

+ ... (B1)

It is obvious that F r
1nk = <

(
ΘE
kkq

[
d?k
〈
|np|2

〉
− dp

〈
|nk|2

〉])
= 0 as <d?k = <dk and =Θkkq = 0.

Next(
∂F1np

∂px

)
~p=~k

=

(
∂Θkpq

∂px

)
~p=~k

[
d?k
〈
|np|2

〉
− dp

〈
|nk|2

〉]
~p=~k

+ Θkkq

[
d?k

∂

∂px

〈
|np|2

〉
− ∂dp
∂px

〈
|nk|2

〉]
~p=~k

so that the real part becomes(
∂F1np

∂px

)r
~p=~k

= Θr
kkq

[
drk

∂

∂kx

〈
|nk|2

〉
− ∂drk
∂kx

〈
|nk|2

〉]
(B2)

Similarly (
∂2F1np

∂p2
x

)
~p=~k

=

(
∂2Θkpq

∂p2
x

)
~p=~k

[
d?k
〈
|np|2

〉
− dp

〈
|nk|2

〉]
~p=~k

+2

(
∂Θkpq

∂px

)
~p=~k

[
d?k

∂

∂px

〈
|np|2

〉
− ∂dp
∂px

〈
|nk|2

〉]
~p=~k

+Θkkq

[
d?k

∂2

∂p2
x

〈
|np|2

〉
− ∂2dp

∂p2
x

〈
|nk|2

〉]
~p=~k

so that the real part becomes(
∂2F1np

∂p2
x

)r
~p=~k

=
∂Θr

kkq

∂kx

[
drk

∂

∂kx

〈
|nk|2

〉
− ∂drk
∂kx

〈
|nk|2

〉]
+ Θr

kkq

[
d?k

∂2

∂k2
x

〈
|nk|2

〉
− ∂2dk

∂k2
x

〈
|nk|2

〉]
=

∂

∂kx

[
Θr
kkq

(
drk

∂

∂kx

〈
|nk|2

〉
− ∂drk
∂kx

〈
|nk|2

〉)]
(B3)

Hence expression for T
(1)
nk becomes

T
(1)
nk =

∂

∂kx

[∑
q

k2
yq

4
x

〈
|φq|2

〉
Θ

(r)
kkq

(
drk

∂

∂kx

〈
|nk|2

〉
− ∂drk
∂kx

〈
|nk|2

〉)]
(B4)

Notice that,
(
∂F1p

∂px

)r
~p=~k

did not contribute to T
(1)
nk as the integrand becomes odd in qx. Using

q << k, expanding F2 around ~p = ~k yields

F2np = F2nk − qx
(
∂F2np

∂px

)
~p=~k

+
q2
x

2

(
∂2F2np

∂p2
x

)
~p=~k

+ ... (B5)
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Now F2nk = Θkkq [(q2 − k2) ck 〈n?kφk〉 − (q2 − k2) c?k 〈nkφ?k〉] so that it’s real part F r
2k = 0.

Similarly, it is straightforward to show that(
∂F2np

∂px

)r
~p=~k

= Θr
kkq

[
ck

∂

∂kx
k2 〈n?kφk〉 −

∂ck
∂kx

k2 〈n?kφk〉
](r)

and (
∂2F2np

∂p2
x

)r
~p=~k

= Θr
kkq

[
c?k

∂

∂kx
k2 〈nkφ?k〉 −

∂ck
∂kx

k2 〈n?kφk〉
](r)

Hence the expression for T
(2)
nk becomes

T
(2)
nk =

∂

∂kx

[∑
q

k2
yq

4
x

〈
|φq|2

〉
Θ

(r)
kkq

(
c?k

∂

∂kx
k2 〈nkφ?k〉 −

∂ck
∂kx

k2 〈n?kφk〉
)(r)

]
(B6)

Appendix C: Derivation of induced diffusion of spectral total energy and enstrophy

at α̂ =∞

It is convenient to define

fp =
σQp

1 + p2
ΘQ
kpq (Qk −Qp) (C1)

. Expanding F1 around ~p = ~k yields

fp = fk − qx
(
∂fp
∂px

)
~p=~k

+
q2
x

2

(
∂2fp
∂p2

x

)
~p=~k

+ ... (C2)

Obviously, fk = 0. Then using q2 − p2 = 2qxkx − k2 and the above expansion, one gets

Tk = 2
∑
~q

k2
yq

2
x

σQk
1 + k2

k2Qq

[
−2q2

xkx

(
∂fp
∂px

)
~p=~k

− k2 q
2
x

2

(
∂2fp
∂p2

x

)
~p=~k

]
(C3)

The derivatives are easily calculated from the expression for fk above.

(
∂fp
∂px

)
~p=~k

= − σQk
1 + k2

ΘQ
kkq

∂Qk

∂kx
(C4)

and (
∂2fp
∂p2

x

)
~p=~k

= − ∂

∂kx

(
σQk

1 + k2

)
− ∂

∂kx

(
σQk

1 + k2
ΘQ
kkq

∂Qk

∂kx

)
(C5)

Using the derivatives given by equations(C4) and (C5) in equation(C3), after some easy

manipulations, yields

Tk =
∂

∂kx

∑
q

k2
yq

4
xQqk

4

(
σQk

1 + k2

)2

ΘQ
kpq

∂Qk

∂kx


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Appendix D: Derivation of zonal cross-spectrum equation

The triplet correlations on the right hand side of equation(75) are determined by the

phase coherency of the three modes ~k, ~p, ~q. To first order, in a state of turbulence, this

phase coherency is determined by the direct interaction among these three modes in the

presence of the stochastic background of all other interactions. Denoting the perturbation

in φk due to this direct interaction by δφk, the triad correlations are approximated as

〈
nkφ

?
pφ

?
q

〉
=
〈
δnkφ

?
pφ

?
q

〉
+
〈
nkδφ

?
pφ

?
q

〉
+
〈
nkφ

?
pδφ

?
q

〉
(D1)

〈φ?kφpnq〉 = 〈δφ?kφpnq〉+ 〈φ?kδφpnq〉+ 〈φ?kφpδnq〉 (D2)

〈φ?kφqnp〉 = 〈δφ?kφqnp〉+ 〈φ?kδφqnp〉+ 〈φ?kφqδnp〉 (D3)

For zonal density beat mode δnk〈
δnkφ

?
pφ

?
q

〉
=

ˆ t

−∞
dt′e−ηk(t−t′) 〈S2k(t

′)φ?pφ
?
q

〉
where〈

S2k(t
′)φ?p(t)φ

?
q(t)
〉

= ẑ · ~p× ~q
[〈
φp(t

′)nq(t
′)φ?p(t)φ

?
q(t)
〉
−
〈
φq(t

′)np(t
′)φ?p(t)φ

?
q(t)
〉]

= ẑ · ~p× ~q
[〈
φp(t

′)φ?p(t)
〉 〈
nq(t

′)φ?q(t)
〉
−
〈
φq(t

′)φ?q(t)
〉 〈
np(t

′)φ?p(t)
〉]

Hence 〈
δnkφ

?
pφ

?
q

〉
= Θ?

kpqẑ · ~p× ~q
[〈
φpφ

?
p

〉 〈
nqφ

?
q

〉
−
〈
φqφ

?
q

〉 〈
npφ

?
p

〉]
For zonal potential beat mode δφk

〈δφ?kφpnq〉 =
1

k2
x

ˆ t

−∞
dt′e−ηk(t−t′) 〈S?1k(t′)φpnq〉

where

〈S?1k(t′)φp(t)nq(t)〉 = ẑ · ~p× ~q
(
q2 − p2

) 〈
φ?p(t

′)φ?q(t
′)φp(t)nq(t)

〉
= ẑ · ~p× ~q

(
q2 − p2

) 〈
φ?p(t

′)φp(t)
〉 〈
φ?q(t

′)nq(t)
〉

Hence

〈δφ?kφpnq〉 =
1

k2
x

Θkpqẑ · ~p× ~q
(
q2 − p2

) 〈
φ?pφp

〉 〈
φ?qnq

〉
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and

〈δφ?kφqnp〉 =
1

k2
x

Θkpqẑ · ~p× ~q
(
q2 − p2

) 〈
φ?qφq

〉 〈
φ?pnp

〉
. So the noise term becomes

F zonal
〈nφ〉k

=
∑
~k=~p+~q

(ẑ · ~p× ~q)2 1

k2
x

(
q2 − p2

) [
Θ?
kpq + Θkpq

] [〈
φpφ

?
p

〉 〈
nqφ

?
q

〉
−
〈
φqφ

?
q

〉 〈
npφ

?
p

〉]
Now the coherent terms are calculated.〈

nkδφ
?
pφ

?
q

〉
=

ˆ t

−∞
dt′e−(−iω?

p+ηp)(t−t′) [a?p 〈nkS?1p(t′)φ?q〉+ b?p
〈
nkS

?
2p(t

′)φ?q
〉]

where 〈
nkS

?
1p(t

′)φ?q
〉

= −ẑ · ~q × ~k
(
k2 − q2

) 〈
nk(t)φq(t

′)φ?k(t
′)φ?q(t)

〉
= ẑ · ~p× ~q

(
k2 − q2

)
〈nk(t)φ?k(t′)〉

〈
φq(t

′)φ?q(t)
〉

and 〈
nkS

?
2p(t

′)φ?q
〉

= −ẑ · ~q × ~k
〈
nk(t)φq(t

′)n?k(t
′)φ?q(t)− nk(t)nq(t′)φ?k(t′)φ?q(t)

〉
Hence〈
nkδφ

?
pφ

?
q

〉
= Θ?

k,p,qẑ · ~p× ~q
[
a?p
(
k2 − q2

)
〈nkφ?k〉

〈
φqφ

?
q

〉
+ b?p

(〈
n2
k

〉 〈
φ2
q

〉
− 〈nkφ?k〉

〈
nqφ

?
q

〉)]
Again

〈φ?kδφpnq〉 =

ˆ t

−∞
dt′e−(iωp+ηp)(t−t′) [ap 〈φ?kS1p(t

′)nq〉+ bp 〈φ?kS2p(t
′)nq〉]

where

〈φ?kS1p(t
′)nq〉 = −ẑ · ~q × ~k

(
k2 − q2

)
〈φ?k(t)φ−q(t′)φk(t′)nq(t)〉

= ẑ · ~p× ~q
(
k2 − q2

)
〈φ?k(t)φk(t′)〉

〈
φ?q(t

′)nq(t)
〉

and

〈φ?kS2p(t
′)nq〉 = −ẑ · ~q × ~k 〈φ?k(t)φ−q(t′)nk(t′)nq(t)− φ?k(t)n−q(t′)φk(t′)nq(t)〉

= ẑ · ~p× ~q
[
〈φ?k(t)nk(t′)〉

〈
φ?q(t

′)nq(t)
〉
− 〈φ?k(t)φk(t′)〉

〈
n?q(t

′)nq(t)
〉]

Therefore

〈φ?kδφpnq〉 = Θk,p,qẑ · ~p× ~q
[
ap
(
k2 − q2

)
〈φ?kφk〉

〈
φ?qnq

〉
+ bp

(
〈nkφ?k〉

〈
nqφ

?
q

〉
− 〈φ?kφk〉

〈
n?qnq

〉)]
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〈φ?kδφqnp〉 = Θk,p,qẑ · ~p× ~q
[
aq
(
q2 − k2

)
〈φ?kφk〉

〈
φ?pnp

〉
+ bq

(
〈φ?kφk〉

〈
n?pnp

〉
− 〈φ?knk〉

〈
φ?pnp

〉)]
Next we calculate〈

nkφ
?
pδφ

?
q

〉
=

ˆ t

−∞
dt′e−(−iω?

q+ηq)(t−t′) [a?q 〈nkφ?pS?1q(t′)〉+ b?q
〈
nkφ

?
pS

?
2q(t

′)
〉]

where 〈
nkφ

?
pS

?
1q(t

′)
〉

= −ẑ · ~k × ~p
(
p2 − k2

) 〈
nk(t)φ

?
p(t)φ

?
k(t
′)φp(t

′)
〉

= ẑ · ~p× ~q
(
p2 − k2

)
〈nk(t)φ?k(t′)〉

〈
φ?p(t)φp(t

′)
〉

and 〈
nkφ

?
pS

?
2q(t

′)
〉

= −ẑ · ~k × ~p
〈
nk(t)φ

?
p(t) (φ?k(t

′)np(t
′)− φp(t′)n?k(t′))

〉
= ẑ · ~p× ~q

(
〈nk(t)φ?k(t′)〉

〈
np(t

′)φ?p(t)
〉
− 〈nk(t)n?k(t′)〉

〈
φ?p(t)φp(t

′)
〉)

so that〈
nkφ

?
pδφ

?
q

〉
= Θ?

kpqẑ · ~p× ~q
[(
p2 − k2

)
a?q 〈nkφ?k〉

〈
φ?pφp

〉
+ b?q

(
〈nkφ?k〉

〈
npφ

?
p

〉
− 〈nkn?k〉

〈
φ?pφp

〉)]
〈φ?kφpδnq〉 =

ˆ t

−∞
dt′e−(iωq+ηq)(t−t′) [cq 〈φ?kφpS1q(t

′)〉+ dq 〈φ?kφpS2q(t
′)〉]

〈φ?kφpS1q(t
′)〉 = −ẑ · ~k × ~p

(
p2 − k2

) 〈
φ?k(t)φp(t)φk(t

′)φ?p(t
′)
〉

= ẑ · ~p× ~q
(
p2 − k2

)
〈φ?k(t)φk(t′)〉

〈
φp(t)φ

?
p(t
′)
〉

〈φ?kφpS2q(t
′)〉 = −ẑ · ~k × ~p

[〈
φ?k(t)φp(t)

(
φk(t

′)n?p(t
′)− φ?p(t′)nk(t′)

)〉]
= ẑ · ~p× ~q

[
〈φ?k(t)φk(t′)〉

〈
φp(t)n

?
p(t
′)
〉
− 〈φ?k(t)nk(t′)〉

〈
φp(t)φ

?
p(t
′)
〉]

〈φ?kφpδnq〉 = Θkpqẑ · ~p× ~q
[
cq
(
p2 − k2

)
〈φ?kφk〉

〈
φpφ

?
p

〉
+ dq

(
〈φ?kφk〉

〈
φpn

?
p

〉
− 〈φ?knk〉

〈
φpφ

?
p

〉)]
〈φ?kφqδnp〉 =

ˆ t

−∞
dt′e−(iωp+ηp)(t−t′) [cp 〈φ?kφqS1p(t

′)〉+ dp 〈φ?kφqS2p(t
′)〉]

〈φ?kφqS1p(t
′)〉 = −ẑ · ~q × ~k

(
k2 − q2

) 〈
φ?k(t)φq(t)φ

?
q(t
′)φk(t

′)
〉

= ẑ · ~p× ~q
(
k2 − q2

)
〈φ?k(t)φk(t′)〉

〈
φq(t)φ

?
q(t
′)
〉

〈φ?kφqS2p(t
′)〉 = −ẑ · ~q × ~k

〈
φ?k(t)φq(t)

(
φ?q(t

′)nk(t
′)− φk(t′)n?q(t′)

)〉
= ẑ · ~p× ~q

[
〈φ?k(t)nk(t′)〉

〈
φq(t)φ

?
q(t
′)
〉
− 〈φ?k(t)φk(t′)〉

〈
φq(t)n

?
q(t
′)
〉]
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〈φ?kφqδnp〉 = Θkpqẑ · ~p× ~q
[
cp
(
k2 − q2

)
〈φ?kφk〉

〈
φqφ

?
q

〉
+ dp

(
〈φ?knk〉

〈
φqφ

?
q

〉
− 〈φ?kφk〉

〈
φqn

?
q

〉)]
Eventually one gets(

∂

∂t
+ (µ+Dn) k2

x

)
〈nkφ?k〉

= 2
∑
~k=~p+~q

(ẑ · ~p× ~q)2 Θ?
k,p,q

(q2 − p2)

k2
x

[
a?p
(
k2 − q2

)
〈nkφ?k〉

〈
φqφ

?
q

〉
+ b?p

(〈
n2
k

〉 〈
φ2
q

〉
− 〈nkφ?k〉

〈
nqφ

?
q

〉)]
+2

∑
~k=~p+~q

(ẑ · ~p× ~q)2 Θk,p,q

[
ap
(
k2 − q2

)
〈φ?kφk〉

〈
φ?qnq

〉
+ bp

(
〈nkφ?k〉

〈
nqφ

?
q

〉
− 〈φ?kφk〉

〈
n?qnq

〉)]
+2

∑
~k=~p+~q

(ẑ · ~p× ~q)2 Θk,p,q

[
cq
(
p2 − k2

)
〈φ?kφk〉

〈
φpφ

?
p

〉
+ dq

(
〈φ?kφk〉

〈
φpn

?
p

〉
− 〈φ?knk〉

〈
φpφ

?
p

〉)]
+
∑
~k=~p+~q

(ẑ · ~p× ~q)2 1

k2
x

(
q2 − p2

) [
Θ?
kpq + Θkpq

] [〈
φpφ

?
p

〉 〈
nqφ

?
q

〉
−
〈
φqφ

?
q

〉 〈
npφ

?
p

〉]
(D4)

The first, second and third, square bracketed terms on the right hand side of the above

equation are the coherent terms and the last square bracket term is the incoherent noise

term.
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