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ARTICLE

Genome-wide association meta-analyses and
fine-mapping elucidate pathways influencing
albuminuria
Alexander Teumer et al.#

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher

risk of kidney disease progression and cardiovascular events, but underlying mechanisms are

incompletely understood. Here, we conduct trans-ethnic (n= 564,257) and European-

ancestry specific meta-analyses of genome-wide association studies of UACR, including

ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic

correlation analyses and risk score associations in an independent electronic medical records

database (n= 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and

hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues

and plasma protein levels implicate genes potentially operating through differential expres-

sion in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR

associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs

in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs

slit diaphragm formation. These results generate a priority list of genes and pathways for

translational research to reduce albuminuria.
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H igher levels of the urinary albumin-to-creatinine ratio
(UACR) are associated with adverse clinical outcomes,
such as end-stage kidney disease, cardiovascular disease

(CVD), and mortality1–5. Elevated UACR is a measure of kidney
damage that is used to diagnose and stage chronic kidney disease
(CKD)6, which affects >10% of adults worldwide7, and represents
a hallmark of diabetic kidney disease8. Even moderate elevations
in UACR predict poorer health outcomes, independently of the
glomerular filtration rate4,5. Lowering of UACR by pharmacolo-
gical inhibition of the renin–angiotensin–aldosterone system
(RAAS) is considered renoprotective standard of care to slow
CKD progression.9–11 RAAS blockage is associated with a
reduction of albuminuria and lower risk of end-stage kidney
disease12 and CVD events10,13–15. However, the risk of CVD
events among CKD patients remains high3. A better under-
standing of the pathways related to the development and con-
sequences of albuminuria may facilitate the search for novel
therapies to treat or prevent CKD progression and CVD.

Levels of UACR have a heritable component in population-
based studies and groups at high risk of CKD, such as certain
indigenous populations or persons with diabetes16–20. However,
the identification of genetic loci for UACR through genome-wide
association studies (GWAS) has proven difficult, and detected loci
showed variable effects across ancestries or disease groups21.
Initial GWAS of UACR identified only two genome-wide sig-
nificant loci, CUBN22,23 and HBB24. A complementary approach
using admixture mapping also identified the BCL2L11 locus25.
One additional finding in patients with type I diabetes26 was not
detected in type II diabetes patients or the general population.
Only very recently, a Mendelian Randomization study assessing a
potentially causal effect of UACR on cardiometabolic traits based
on data from the UK Biobank (UKBB) reported 33 genome-wide
significant single-nucleotide polymorphisms (SNPs) associated
with UACR27. The study supported a causal effect of higher
UACR on elevated blood pressure and postulated that inhibition
of UACR-increasing pathways could have anti-hypertensive
effects and thereby reduce CVD risk.

In this project, we characterize known and identify additional
novel genetic loci for UACR through trans-ethnic meta-analysis
of GWAS from 564,257 participants, including an internal vali-
dation step and secondary analyses among participants with
diabetes. To prioritize the most likely causal variants, genes, tis-
sues, and pathways in associated loci, we perform functional
enrichment analyses, statistical fine-mapping and integrative
trans-Omics analyses, including with gene expression in 47
human tissues and plasma protein levels. Clinical correlates are
identified through genome-wide genetic correlation analyses and
a phenome-wide association scan of a genetic risk score for
UACR in a large independent population. We evaluate translation
to mechanistic insights in proof-of-concept studies for OAF and
PRKCI using an experimental model of albuminuria. Together,
the implicated variants, genes, proteins, tissues, and pathways
provide a rich resource of new targets for translational research.

Results
The workflow of our study, which identified 68 UACR-associated
loci across primary and secondary analyses, is illustrated in
Supplementary Fig. 1.

Primary analysis: identification of 59 loci for UACR. The data
based on 564,257 individuals from 54 studies were combined in a
trans-ethnic meta-analysis of UACR, including 547,361 of Eur-
opean ancestry (EA), 6795 African Americans (AA), 6324 of East
Asian ancestry, 2335 of South Asian ancestry, and 1442 Hispanics
(Supplementary Data 1). The median of the median UACR across

studies was 7.5 mg/g, and an average of 14.9% (range 3.2–70.9%)
of participants had microalbuminuria (MA, UACR > 30 mg/g).
Study-specific GWAS of UACR were carried out using imputed
genotypes (Methods, Supplementary Data 2). We performed
study-specific variant filtering and quality control (QC), followed
by fixed-effects inverse-variance weighted meta-analysis. There
was no evidence of unaccounted stratification (LD score regres-
sion intercept 0.95; genomic control (GC) parameter λGC 1.03).
Downstream analyses were based on 8,034,757 SNPs available
after variant filtering (Methods). Using SNPs of minor allele
frequency (MAF) > 1% across the genome, the heritability of
UACR was estimated as 4.3%.

We identified 59 UACR-associated loci, defined as 1Mb
genomic segments carrying at least one SNP associated with
UACR with p < 5 × 10−8 (Methods; Fig. 1, Supplementary Data 3).
The index SNP mapped within 500 kb of previously reported
index SNPs for UACR at 27 loci, considered known, and the
remaining 32 loci were considered novel. These 59 SNPs explained
0.69% of the variance of the inverse normal transformed UACR
residuals. There was little evidence of between-study heterogeneity
(median I2 statistic 3.2%; Supplementary Data 3), with all index
SNPs showing an I2 of <50%. In meta-regression analysis
(Methods), none of the 59 index SNPs showed evidence of
ancestry-related heterogeneity after multiple testing correction
(p < 8.5 × 10−4, Fig. 1; Supplementary Data 3)28. Regional
association plots of all loci are displayed in Supplementary Fig. 2.

Some of the loci contain biologically plausible candidates in
addition to the known CUBN (cubilin) locus: for example, rare
mutations in COL4A4 (Collagen Type IV Alpha 4 Chain) cause
Alport syndrome, a monogenic disease of basement membranes
that frequently leads to end-stage kidney disease. Recent
sequencing studies show that the phenotypic spectrum of rare
COL4A4mutations extends to focal segmental glomerulosclerosis,
which typically presents with proteinuria29,30. Our study extends
the genetic spectrum to common COL4A4 variants associated
with UACR in mostly population-based studies. Another example
is NR3C2 (Nuclear Receptor Subfamily 3 Group C Member 2),
which encodes the mineralocorticoid receptor that mediates
aldosterone action. Pharmacological inhibition of the RAAS is the
mainstay treatment to lower albuminuria, illustrating the
potential for pharmacological intervention on pathways identified
in this project.

Lastly, we estimated the number of expected discoveries and
the corresponding percentage of GWAS heritability explained in
future studies of yet larger sample size (Methods)31 and found
that such studies can be expected to detect additional UACR loci
(Supplementary Fig. 3).

Concordance between CKDGen cohorts and UK Biobank. To
assess the influence of the UKBB, the largest study in the dis-
covery sample (n= 436,392), we compared association statistics
for the 59 index SNPs from the UKBB to the corresponding
estimates from the 53 other studies participating in the CKDGen
Consortium (n ≤ 127,865). Effect direction was consistent for all
59 index SNPs (pbinomial test= 3.5 × 10−18; Fig. 2a), and 53 showed
nominally significant associations in the CKDGen cohorts alone
(p < 0.05; Supplementary Data 4). Two loci with strong effects in
UKBB but not significant in CKDGen were AHR (aryl hydro-
carbon receptor) and CYP1A1 (Cytochrome P450 Family 1
Subfamily A Member 1), potentially reflecting factors related to
standardized sample handling, storage, and measurements in the
UKBB, or population-specific exposures.

Secondary ancestry-specific and diabetes-specific analyses. First,
we conducted ancestry-specific meta-analyses for EA (n=
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547,361) and for AA (n= 6795), where ancestry-specific loci have
been described32,33. There was little evidence of inflation of the
results (λGC 1.06 for AA and 1.01 for EA; Methods). These meta-
analyses identified 61 loci in EA, of which 56 overlapped with
those from the primary trans-ethnic meta-analysis (Supplemen-
tary Data 5 and further discussed below), and no genome-wide
significant loci in AA. The known UACR-associated sickle cell
trait variant rs334 in HBB showed suggestive association in the
AA-specific analysis (p= 6.1 × 10−8).

The other secondary analysis was restricted to 51,541
individuals with diabetes, in whom a larger effect of the known
CUBN locus has been reported23. This analysis identified eight

loci (Supplementary Fig. 4), four of which were not detected in
the primary meta-analysis (KAZN [Kazrin, Periplakin Interacting
Protein], MIR4432HG-BCL11A, FOXP2, and CDH2). Internal
validation of the UKBB (n= 21,703) and CKDGen cohorts (n ≤
29,812) statistics found the effects to be direction consistent, of
similar magnitude and at least nominally significant in both
subsets at all eight loci (Supplementary Data 6). Index SNPs at
CUBN and HPN (Hepsin) showed larger effect sizes among those
with diabetes compared with the overall sample (Supplementary
Data 6). Among the novel loci, it is noteworthy that BCL11A, a
transcriptional regulator of insulin secretion34, is involved in
fetal-to-adult globin switching, as is the known UACR risk gene
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Fig. 1 Genome-wide association results. The circos plot provides an overview of the association results: Red band: –log10(p) for association in the trans-
ethnic meta-analysis of urinary albumin-to-creatinine ratio (UACR), ordered by chromosomal position. The blue line indicates genome-wide significance
(p= 5 × 10−8). Black gene labels indicate novel loci, blue labels indicate known loci (known index SNP within ± 500 kb region of current index SNP), gray
labels indicate loci not associated with UACR at the nominal significance level (p≥ 0.05) in the 53 CKDGen cohorts without UKBB. Blue band: –log10(p) for
association with microalbuminuria (MA), ordered by chromosomal position. The red line indicates genome-wide significance (p= 5 × 10−8). Green band:
measures of heterogeneity related to the UACR-associated index SNPs, where the dot sizes are proportional to two measures of heterogeneity, I² and the
–log10(p) for heterogeneity attributed to ancestry (pA)
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HBB. KAZN encodes for a protein with a role in actin
organization and adhesion35 that is highly abundant in glomeruli.
QQ plots and Manhattan plots of the secondary meta-analyses
are shown in Supplementary Figs. 5 and 6.

Functional enrichment and pathways. We searched for tissues,
cell types, and systems that are enriched for the expression of
genes mapping to the UACR-associated loci (Methods)36. Based
on all SNPs with p < 5 × 10−8 from the trans-ethnic meta-

analysis, there was no significant (false discovery rate [FDR] <
0.05) enrichment after correction for multiple testing (Supple-
mentary Data 7). Nominally significant associations (p < 0.05)
were observed for 37 annotations mapping into six systems
(urogenital including kidney, endocrine, digestive including liver,
musculoskeletal, respiratory, sense organs; Supplementary Fig. 7)
and five tissues (exocrine glands, prostate, mucous membrane,
membranes, and respiratory mucosa). These results reveal plau-
sible enrichments although they did not reach significance after
correction for multiple testing.
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Fig. 2 Internal concordance of the urinary albumin-to-creatinine ratio (UACR) results, and association with microalbuminuria, urinary creatinine and
albumin. a Comparison of effect estimates of the 59 genome-wide significant trans-ethnic UACR index SNPs in the UKBB (x-axis) and in the CKDGen
cohorts without UKBB (y-axis). Blue dots indicate nominal significance (p < 0.05) in the CKDGen cohorts without UKBB, and loci at genome-wide
significance (p < 5 × 10−8) in that meta-analysis are labeled with the closest gene. b Comparison of effect estimates of the 59 trans-ethnic UACR index
SNPs (x-axis) with their corresponding estimate from the GWAS of microalbuminuria (MA; y-axis). Blue dots indicate significance in the MA results after
multiple testing correction (p < 0.05/59= 8.5 × 10−4), and loci that achieved genome-wide significance (p < 5 × 10−8) for MA are labeled. In both panels,
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Next, we evaluated whether reconstituted gene sets were
significantly (FDR < 0.05) enriched for genes mapping to UACR-
associated loci, and identified three sets with FDR < 0.01
(embryonic development, partial embryonic lethality during
organogenesis, abnormal placental labyrinth vasculature mor-
phology). The remaining significant gene sets included terms that
can be reconciled with existing knowledge about albuminuria,
including “tube development”, “abnormal kidney morphology”,
and several terms related to vascular development and morphol-
ogy (Supplementary Data 8).

UACR-associated loci are associated with MA. Clinical MA
(UACR > 30 mg/g) is associated with increased risk for adverse
kidney and cardiovascular outcomes, as well as mortality3. We
therefore evaluated the association of the 59 UACR index SNPs
with MA by meta-analyzing data from 36 cohorts and 347,283
individuals (Supplementary Data 1; Fig. 1). Figure 2b shows that
for all UACR index SNPs, the allele associated with higher UACR
was associated with an increased risk of MA (Supplementary
Data 3). Of the 59 SNPs, 49 were significantly associated with MA
after correction for multiple testing (p < 0.05/59= 8.5 × 10−4),
including 17 that reached genome-wide significance. The low-
frequency missense SNP rs45551835 in CUBN showed the largest
effect with an odds ratio (OR) of 1.76 (95% CI 1.67–1.87) per
minor allele. When 232,751 UKBB participants were grouped into
quartiles based on a UACR genetic risk constructed from the 59
index SNPs, each quartile showed a significantly higher OR for
MA compared with the lowest quartile (e.g., OR of 1.69 for
quartile 4 vs. 1, p= 3.0 × 10−191, Supplementary Table 1).

UACR loci: association with urinary albumin and creatinine.
The UACR is a ratio. Understanding whether a genetic locus is
more strongly associated with its numerator, albumin, or with its
denominator, creatinine, may provide important physiological
insights. We therefore performed separate tests for urinary
albumin and creatinine in the UKBB sample (nUalbumin=
436,398; nUcreatinine= 436,412). Of the 59 index SNPs, 31 were
significantly associated with urinary albumin (p < 8.5 × 10−4), 21
with urinary creatinine, and two with both. The CUBN locus
showed the largest effect on urinary albumin, and was not sig-
nificantly associated with urinary creatinine levels (Fig. 2c), fol-
lowed by ST8SIA6 (ST8 alpha-N-acetyl-neuraminide alpha-2,8-
sialyltransferase 6), PRKCI (protein kinase C iota),
TRIM46/MUC1 (Mucin 1, cell surface associated), HNRNPU
L1/TGFB1 (transforming growth factor beta 1), FOXD2, KCNK5,
WIPF3 (WAS/WASL interacting protein family member 3),
LRMDA, and NR3C2.

A genetic UACR score is associated with medical diagnoses.
Next, we evaluated whether a weighted genetic risk score (GRS)
composed of UACR-increasing alleles was associated with clinical
endpoints in a large, independent electronic medical record
database to detect diagnoses with potentially shared genetic
components or co-regulation. We tested associations with 1422
billing code-based phenotypes of up to 192,868 EA participants
of the Million Veteran Program (MVP) from US Veterans’
Administration facilities37. Significant associations (p < 3.5 ×
10−5, 0.05/1,422) were detected with 10 diagnoses: proteinuria,
four related to hyperlipidemia, two related to hypertension, two
related to gout, as well as Fuchs’ dystrophy (Fig. 3). While the
association with disorders of lipoid metabolism had the lowest p-
value (p= 4.1 × 10−11), the association with Fuchs’ dystrophy
showed the greatest magnitude (OR= 6.68 per SD increase of log
[UACR], 95% CI 3.06–14.59, p= 1.9 × 10−6), followed by pro-
teinuria (OR= 2.7, 95% CI 1.76–4.14, p= 5.0 × 10−6). Many

other associations that approached statistical significance were
related to the kidney and metabolic diseases (Supplementary
Data 9).

The association with Fuchs’ disease, a dystrophy of the corneal
endothelium, was unexpected and assessed in greater detail.
Autosomal-dominant forms of Fuchs’ dystrophy have been
attributed to genetic variation in TCF4 (transcription factor 4)38,
a novel UACR-associated locus identified here (index rs11659764,
p= 2.8 × 10−11; r2= 0.21, D'=−0.97 with rs613872, a previously
reported Fuchs index SNP39). After exclusion of the TCF4 index
SNP, the GRS was still significantly associated with proteinuria,
hyperlipidemia codes, gout, and hypertension with nearly identical
ORs, but the association with Fuchs’ dystrophy disappeared (p=
0.2). This illustrates that unexpected significant associations from
PheWAS require careful evaluation.

We also evaluated an association of the GRS with cardiovas-
cular outcomes based on published GWAS and the UKBB
(Supplementary Table 2). This revealed significant (p < 0.007,
Methods) positive associations of the GRS with an increased risk
of hypertension (p= 2.4 × 10−21). Conversely, weighted genetic
risk scores based on recently published GWAS of systolic and
diastolic blood pressure as well as of type 2 diabetes were
positively associated with UACR (p= 3.5 × 10−63 for systolic and
p= 1.2 × 10−24 for diastolic blood pressure, p= 1 × 10−10 for
type 2 diabetes; Supplementary Table 2).

Genome-wide genetic correlations of UACR. Albuminuria is
associated with multiple cardiovascular and metabolic traits and
diseases4,40–42. In addition to the GRS analyses, we thus also
assessed genome-wide genetic correlations between the EA-
specific UACR association statistics and 517 traits and diseases
(Methods; Supplementary Data 10). Significant genetic correla-
tions (p < 9.7 × 10−5 [0.05/517]) were observed for 67 traits
(Fig. 4). The strongest negative correlations were observed for
urinary creatinine and other urinary parameters, and the largest
positive genetic correlations with different measures of hyper-
tension. These findings provide support for the observational
association between albuminuria and blood pressure on a genetic
level, the significant associations between the UACR GRS and
hypertension in the MVP population, and the recent Mendelian
Randomization study of UACR27. Negative genetic correlations
with anthropometric measures are potentially explained by their
positive associations with muscle mass, and hence creatinine
concentrations.

Statistical fine-mapping and secondary signal analysis. Statis-
tical fine-mapping was performed using summary statistics to
prioritize SNPs or sets of SNPs (credible set) driving each asso-
ciation signal (Methods). These analyses were limited to EA,
comprising > 97% of the total sample, for whom large data sets to
estimate reference LD for summary statistics-based fine-mapping
were publicly accessible43,44. Based on 57 combined genomic
regions from the 61 genome-wide significant loci in EA (Meth-
ods, Supplementary Data 5), we identified 63 independent SNPs
(Supplementary Data 11). Next, 99% credible sets were computed
based on Approximate Bayes Factors, resulting in a set of SNPs
that with 99% posterior probability (PP) contained the variant(s)
driving the association signal for each of the 63 conditionally
independent signals45. The credible sets contained a median of 25
SNPs (Quartile 1: 10; Quartile 3: 74). Two credible sets at CUBN
and one at PRKCI consisted of a single SNP (Supplementary
Data 12). The previously described CUBN missense SNP
rs45551835 (p.A2914V) had a PP of causing the association signal
of >99.9%. There were 11 small credible sets with ≤5 SNPs,
representing candidate causal variants for further study.
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All 995 SNPs with PP > 1% were annotated. Regulatory
potential was assessed via mapping into regions of open
chromatin identified from primary cultures of human tubular
and glomerular cells (GEO accession number GSE115961)46 and
from publicly available kidney cells types (ENCODE and
Roadmaps Projects; Methods). Supplementary Data 12 sum-
marizes annotation information for all variants with PP > 1% that
mapped into small credible sets or those containing a SNP with
PP > 50%. Among these, there were four missense SNPs in CUBN,
CPS1, EDEM3, and GCKR (Fig. 5a; Supplementary Table 3). One
non-exonic SNP near NUMA1 with PP > 50% mapped into open
chromatin in both glomerular and tubular primary cell cultures,
and four other SNPs in or near WIPF3, WDR81, CUBN, and
CYP26A1 mapped into putative regulatory regions in other
kidney tissues or cell lines (Fig. 5b, Supplementary Data 12).

Association with gene expression and co-localization. We
investigated whether the UACR-association signals co-localized
with association signals for transcript abundance of any genes in
cis across 47 tissues, thereby implicating effector genes at asso-
ciated loci (Methods). Gene expression was quantified via RNA-
seq in 44 tissues from the GTEx Project [https://gtexportal.org/]
and in kidney cortex from The Cancer Genome Atlas47, and via
microarray from microdissected glomerular and tubulointerstitial
portions of kidney biopsies from participants of the NEPTUNE
study48 (Methods).

We identified nine genes for which cis eQTLs in kidney tissues
co-localized with the UACR association signals with a high PP
(≥80%), implicating a shared underlying variant (Fig. 6). These
represent candidate causal genes for further investigation
(Table 1). Alleles associated with higher UACR were associated
with higher expression of MUC1 and PRKCI across a range of
tissues. This observation is consistent with a gain-of-function
mechanism proposed for the monogenic kidney disorder caused
by MUC1 variation49. Conversely, alleles associated with higher
UACR were associated with lower OAF and TGFB1 expression.

The co-localization with expression of WIPF3 in glomerular
kidney portions illustrates an example of a potentially regulatory
causal variant, rs17158386, which maps into open chromatin in
kidney tissue (Figs. 5b, 6). Across kidney tissues, co-localization
was most often observed in glomerular kidney portions,
consistent with the prominent role of the glomerular filtration
barrier in albuminuria. Altogether, there were 90 significant co-
localizations in at least one of the 47 evaluated tissues
(Supplementary Fig. 8).

Association with gene expression in trans requires large sample
sizes and was thus evaluated for all index SNPs in whole blood.
Excluding the extended MHC region, there was one SNP
associated with expression of one or more transcripts in trans
in more than one study (Supplementary Table 4): genotype at
rs12714144, upstream of PARTICL on chromosome 2, was
associated with the expression of DPEP3, encoded on
chromosome 16.

Association with protein levels and co-localization analyses.
Recently, large GWAS of plasma protein levels have been pub-
lished, which allow for systematic investigations of associated
variants (pQTLs). Using these data, we investigated the associa-
tion of the 61 EA index SNPs in a pQTL study of 3301 healthy EA
participants of the INTERVAL study50. Genome-wide significant
associations were identified between 17 UACR-associated SNPs
and plasma levels of 53 unique proteins, for a total of 56 asso-
ciations (Supplementary Data 13). Interestingly, concentrations of
three proteins each showed associations with two UACR-
associated index SNPs on different chromosomes, thereby con-
necting the two genetic loci through association with plasma
concentrations of the same protein: SNPs rs34257409 on chro-
mosome 1 and rs838142 on chromosome 19 with plasma
gastrokine-2 (GKN2) concentrations, rs12714144 on chromo-
some 2 and rs1010553 on chromosome 3 with concentrations of
Janus kinase and microtubule interacting protein 3 (JAKMIP3),
and rs1010553 on chromosome 3 and rs2954021 on chromosome
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8 with inter-alpha-trypsin inhibitor heavy chain 1 (ITIH1)
concentrations.

Co-localization of UACR association signals with those for
pQTLs of 38 proteins (Methods, Supplementary Table 5)
provided evidence for a shared underlying SNP for plasma
concentrations of the Out At First Homolog (OAF) protein. This
was consistent with the eQTL co-localization analyses, with the
minor T allele at rs12790943 associated with higher levels of
UACR as well as with both lower OAF transcript levels in
multiple tissues and lower OAF plasma levels (Fig. 7). Association
patterns with UACR (Fig. 7a) and OAF transcript levels (Fig. 7b)
looked similar, as expected for a shared underlying variant. The
pattern looked different for OAF plasma levels, and conditional
analyses revealed two independent SNPs (rs117554512 and
rs508205; r2= 0, D '= 0.02 in the 1000 Genomes Project EUR
sample). There was no evidence for a shared variant underlying
the associations of UACR and OAF plasma levels for the signal
tagged by the initial index SNP for OAF plasma levels,
rs117554512 (PP H4= 0; Fig. 7c), which was also significantly
associated with plasma levels of IL25 in trans (p= 1.3 × 10−12,
Supplementary Data 13). Conversely, there was strong evidence
for a shared variant underlying associations with UACR and OAF
plasma levels tagged by the second, independent signal at
rs508205 (PP H4= 0.99; Fig. 7d), allowing to follow associations
from genetic variants to transcript, protein, and phentoype. The
SNP rs508205 is located upstream of OAF, and was also the index
variant identified in the trans-ethnic meta-analysis of UACR
(r2= 0.94 with rs12790943 in the 1000 Genomes Pro-
ject EUR sample). It represents an interesting regulatory
candidate variant because of its relatively small credible set of
eight SNPs, a CADD score of 13, and its localization in open
chromatin in kidney tissue.

In vivo analyses of Drosophila orthologs. Finally, we used a
Drosophila model to establish proof-of-principle that prioritized
candidates can be used to gain mechanistic insights into albu-
minuria. Drosophila nephrocytes are specialized cells that harbor
a slit diaphragm formed by the orthologs of the mammalian slit
diaphragm proteins. These cells exhibit size-dependent molecule
filtration across the slit diaphragm, followed by endocytosis via

the scavenger receptor Cubilin and finally lysosomal degradation
or storage. Protein endocytosis mainly occurs within a network of
membrane invaginations, the labyrinthine channels. Formation of
the labyrinthine channels depends on presence of functional slit
diaphragms. Thus, these cells reflect aspects of glomerular
(slit diaphragm) and proximal tubular function (protein endo-
cytosis)51. Studying endocytosis of a tracer molecule able to pass
the slit diaphragm, such as albumin, renders an integrative read-
out of nephrocyte function52: FITC-albumin uptake declines both
through loss of slit diaphragms and also through impaired pro-
tein endocytosis. We selected three candidates for functional
study, based on their associations with urinary albumin (Fig. 2c),
support from downstream fine-mapping and co-localization
analyses (Table 1), and degree of conservation and availability
of at least two independent Drosophila RNAi lines per gene: OAF,
PRKCI, and WIPF3. Orthologs of OAF (oaf), PRKCI (aPKC), and
WIPF3 (Vrp1) were silenced specifically in nephrocytes by
crossing Dorothy-GAL4 with the respective UAS-RNAi line.

Nephrocytes stained with an available antibody for aPKC
showed a strongly reduced signal using two independent aPKC-
RNAi lines (Supplementary Fig. 9A–C). We observed no effect of
Vrp1-RNAi on nephrocyte function studying FITC-albumin
endocytosis (Supplementary Fig. 9D, E). In contrast, we detected
a significant reduction of tracer endocytosis upon silencing oaf
and aPKC (Fig. 8a, b). This indicates a functional requirement of
these genes within nephrocytes and supports a role of their
human orthologs in glomerular filtration or tubular re-uptake of
albumin. To distinguish between these roles, we studied
immunofluorescence of the Drosophila slit diaphragm proteins,
whose staining patterns remain unaltered in isolated defects of
protein endocytosis. Despite the significant impairment of
nephrocyte function, we observed a slit diaphragm staining
pattern comparable to control conditions for oaf-RNAi (Fig. 8c–f).
This suggests that oaf may be dispensable for slit diaphragm
formation, but likely is involved in protein reabsorption.
Accordingly, co-localization with OAF gene expression in human
kidney was observed in the renal cortex, reflecting largely
tubulointerstitial portions, and protein staining in the Human
Protein Atlas is observed in tubules but not glomeruli.
Conversely, silencing the ortholog of PRKCI entailed an extensive
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loss of slit diaphragm proteins (Fig. 8g, h; 3D reconstruction
Supplementary Fig. 9K). This implies that the polarity factor
aPKC is directly involved in slit diaphragm formation, consistent
with studies in murine podocytes53. Staining patterns were
comparable when silencing oaf and aPKC using second RNAi
lines (Supplementary Fig. 9F–I). In summary, the Drosophila data
support a role of OAF in tubular protein endocytosis and PRKCI
in slit diaphragm formation.

Discussion
In this GWAS meta-analysis of UACR, we identified 68 loci in
total, the majority of which was associated with urinary albumin
concentrations and MA. Statistical fine-mapping and co-
localization analyses with gene expression across 47 human tis-
sues and with plasma protein levels resolved GWAS loci into
novel driver genes and variants. This approach allowed for
translating two genes prioritized in our workflow, OAF and
PRKCI, into mechanistic insights in an in vivo experimental
model of proteinuria. Genome-wide genetic correlation analyses

and a phenome-wide association study of a genetic risk score for
UACR in a large independent population highlighted a common
genetic component or co-regulation with traits and diseases with
renal, hepatic, or endothelial components. Together, these results
represent a comprehensive resource for translational research
into albuminuria.

Until recently, GWAS of UACR in mostly population-based
studies only identified and replicated two loci: CUBN22,54 and
HBB24, detected through an earlier candidate gene study33. In
addition to these two loci, we also identified the BCL2L11 locus,
reported in an earlier admixture mapping study25, with the index
SNP mapping to the neighboring ACOXL gene. Our fine-
mapping workflow did not provide strong evidence for either
ACOXL or BCL2L11 as the likely causal gene. We did not identify
genome-wide significant signals at RAB38 and HS6ST1 among
persons with diabetes, which we reported in an earlier study at
suggestive significance23. Potential reasons include differences in
quantification and statistical transformation of UACR, different
participating studies, and false-positive results in the initial
report. Twenty-eight of the 61 loci detected in EA individuals
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were also reported in the recent Mendelian Randomization study
of albuminuria27, which is not surprising given the inclusion of
UKBB data in our meta-analysis. Still, our study identifies 32
additional loci for UACR in the overall sample, as well as four
among people with diabetes. Moreover, results allow for prior-
itization of loci with respect to their association with urinary
albumin, whereas previous studies have not evaluated whether
UACR-associated loci were driven by associations with urinary
albumin, creatinine, or both.

Previous GWAS of albuminuria have not resolved associated
loci into underlying genes and variants. Our workflow identified
co-localization of UACR-associations with differential gene
expression of PRKCI, TGFB1, WIPF3, PTH1R, CYP2S1, and
MUC1 in glomerular kidney portions and OAF, SRD5A3, and
CCDC157 in tubulointerstitial tissue. Some of these genes already
have established roles in the function of the glomerular filter in
diabetic (TGFB1)55,56 and monogenic kidney disease (MUC1)49,
while others such as OAF or WIPF3 represent novel candidates
or, as for PRKCI, have not yet been implicated in humans53. Our
combination of human and Drosophila studies support a role of
PRKCI in glomerular filtration function and of OAF in tubular
protein reabsorption, where reduced endocytosis upon gene
silencing reflects the human allele associated with higher UACR
and lower OAF expression and plasma levels. The lack of a
phenotype upon silencing of the WIPF3 ortholog may reflect the
unclear state of orthology, a lack of evolutionary conservation, or
potentially an insufficient knockdown.

Several insights from our study are of clinical interest. First, the
clinical relevance of genes detected in our screen, CUBN and
COL4A4, is underscored by a respective monogenic disease fea-
turing albuminuria and kidney disease, Imerslund-Grasbeck
(MIM 261100) and Alport syndrome (MIM 203780). Second,
the identification of NR3C2, encoding an essential component of
the RAAS, links this pathway to both albuminuria and adverse
clinical outcomes. Pharmacological inhibition of the RAAS has
been shown to be associated with reduced risk of end-stage kid-
ney disease12 and cardiovascular events10,13–15, suggesting that
genetic studies of UACR in large human populations may identify
pathways amenable to pharmacological intervention that reduce
both albuminuria and CVD risk. Third, the genome-wide genetic
correlations of UACR and the UACR GRS associations may point
toward diseases with a common genetic basis or to co-regulation
of disease-relevant cell types. The latter could be reflected in the
role of the liver in lipid metabolism and albumin production, the
role of the kidney in urate metabolism and albumin excretion,
and the role of the endothelium in hypertension and glomerular
filtration. A potential role of the endothelium and the vasculature
is further corroborated by the significantly enriched pathway
“abnormal placental labyrinth vasculature morphology” and
many other nominally enriched pathways related to angiogenesis,
as well as the identification of the VEGFA (Vascular Endothelial
Growth Factor A; LINC01512) locus, an important growth factor
for vascular endothelial cell migration and proliferation. Inter-
estingly, a recent Mendelian Randomization analysis of UACR
and blood pressure supported a causal relationship between the
two, but reported that SNPs in CUBN and CYP1A1 were only
associated with UACR and not blood pressure. We find that the
index SNPs in CUBN and CYP1A1 are related to UACR via
tubular albumin reabsorption and an association with urinary
creatinine but not albumin, respectively. This may indicate that
the increased filtration of albumin in the glomerulus, potentially
as a result of endothelial damage, and not albuminuria per se may
link albuminuria to hypertension and increased CVD risk.
Fourth, albuminuria is a hallmark of diabetic kidney disease and
associated with unfavorable outcomes. Understanding pathways
underlying albuminuria in diabetes may therefore be of particular

relevance, and the four novel diabetes-specific loci identified in
our study may represent a first step into this direction. Lastly,
translation of GWAS loci into differential plasma protein levels as
observed for OAF is of particular interest, as plasma protein levels
represent both potential biomarkers and interventional targets.

Strengths of our study include its standardized approach to
phenotype definition, its large samples size, internal locus vali-
dation, and the study of participants with diabetes. The identifi-
cation of a previous Amerindian-specific locus25 in our trans-
ethnic analysis underscores the value of studying diverse ances-
tries, but EA individuals are still strongly overrepresented, which
limits the power to detect heterogeneity correlated with ancestry.
Limitations that are not specific to our study are related to the
accurate quantification of UACR, which is influenced by biologic
variation of urinary albumin, by the sensitivity and variation of
albumin assays, and by standardization to urinary creatinine to
account for urine dilution23. We addressed these issues by har-
monizing UACR calculation across cohorts, and by separate
assessment of associations with urinary albumin and creatinine.
Across-cohort variation was overcome to some degree by the use
of a central lab in the large UKBB, but may also introduce
findings related to UKBB-specific sample handling, storage,
measurement, or exposures. The statistical fine-mapping focused
on SNPs available in the majority of studies, which might have
limited the discovery of novel associations or the fine-mapping of
population-specific or low-frequency variants. Such analyses
represent avenues for future research. Other fine-mapping
methods such as Bayesian approaches that incorporate priors
based on variant annotation exist, but ultimately all statistically
prioritized variants need to be experimentally validated.

In summary, we identified and characterized 68 loci associated
with UACR and highlight potential causal genes, driver variants,
target tissues, and pathways. These findings will inform experi-
mental studies and advance the understanding of albuminuria
and correlated traits, an essential step for the development of
novel therapies to reduce the burden of CKD and
potentially CVD.

Methods
We set up a collaborative meta-analysis based on a distributive data model. An
analysis plan was developed and circulated to all participating studies via a Wiki
system [https://ckdgen.eurac.edu/mediawiki/index.php/
CKDGen_Round_4_EPACTS_analysis_plan]. Phenotypes were generated and
quality checks performed within each study in a standardized manner through
scripts provided to all study centers. Before conducting the analyses, studies
uploaded automatically generated PDF and text files. After approval of the phe-
notype quality, ancestry-specific GWAS were performed in each study and
uploaded centrally. Files were quality controlled using GWAtoolbox57 and custo-
mized scripts, harmonized, and meta-analyzed. Details regarding each step are
provided below. Each study was approved by the respective ethics committee, and
all participants provided written informed consent. Drosophila research was car-
ried out in compliance with all relevant ethical regulations. Drosophila experiments
are exempt from a specific regulatory approval.

Phenotype definition. Methods for the measurement of urinary albumin and
creatinine in each study are reported in Supplementary Data 1. Urinary albumin
values below the detection limit of the used assays were set to the lower limit of
detection, and the UACR was assessed in mg/g and calculated as urinary albumin
(mg/l)/urinary creatinine (mg/dl) × 100. MA cases were defined as UACR > 30, and
controls as UACR < 10mg/g, no other exclusions were applied. These steps were all
included in the distributed phenotyping script. MA GWAS analyses were limited to
studies with ≥100 MA cases.

GWAS in individual studies. In each study, genotyping was performed using
genome-wide arrays followed by application of study-specific quality filters prior to
phasing and imputation. Genome-wide data were imputed to the Haplotype
Reference Consortium (HRC) version 1.1, 1000 Genomes Project (1000G) phase 3
v5 ALL, or the 1000G phase 1 v3 ALL reference panels using the Sanger [https://
imputation.sanger.ac.uk/] and Michigan Imputation Server [https://
imputationserver.sph.umich.edu/]. Detailed information on study-specific
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genotyping, imputation, and QC is provided in Supplementary Data 2. Unless
indicated differently, variants are annotated according to the GRCh37 (hg19)
reference build.

The inverse normal transformed age-adjusted and sex-adjusted residuals of log-
transformed UACR, as well as urinary albumin and urinary creatinine levels
separately for the sensitivity analysis in the UKBB sample, were used as the
dependent variable in a linear regression model fitted in each study-specific GWAS.
For MA, a logistic regression model adjusted for sex and age was used. The models
were adjusted for study-specific covariates, such as recruitment site and genetic
principal components where applicable. Family-based studies used mixed-effect
models by including the relationship of the individuals as a variance component.
Additive genetic models were fitted using the SNP’s allele dosage as an independent
variable. The analysis programs used for the GWAS are provided in Supplementary
Data 2.

GWAS meta-analysis. For UACR, studies contributed a total of 54 GWAS
summary statistics files. After QC, the total samples size was 564,257 (547,361
individuals of European ancestry [EA], 6324 of East Asian ancestry [EAS], 6795
African Americans [AA], 2335 of South Asian ancestry [SA], and 1442 Hispanics;
Supplementary Data 1). For MA, a total of 38 GWAS summary files were con-
tributed, totaling a post-QC samples size of 348,954 (51,861 cases; Supplementary
Data 1). Both meta-analyses included individuals with and without diabetes.

Before meta-analysis, study-specific GWAS files were filtered to retain only
SNPs with imputation quality (IQ) score > 0.6 and MAC > 10, effective sample
size ≥ 100, and a |beta| < 10 to remove implausible outliers. Within study, we
estimated the genomic inflation factor λGC and applied GC correction when λGC
was >1. Fixed effects inverse-variance weighted meta-analysis of the study-specific
GWAS result files was performed using METAL58, which was adapted to obtain
effects and standard errors of higher precision if required (seven decimal places
instead of four). After meta-analysis of 37,915,339 SNPs, we retained only variants
that were present in ≥50% of the GWAS data files (27 studies) and had a total MAC
of ≥400. Across ancestries, this yielded 8,034,757 variants for UACR (8,603,712 in
EA with an observed MAF > 0.3%), and 8,326,000 variants for MA.

The inflation of p-values attributed to reasons other than polygenicity was
assessed by LD score regression.59 The intercept was estimated as 0.95, and thus ≤1,
indicating that any residual inflation was likely due to polygenicity rather than
confounding. Therefore, p-values were not corrected for a second round of
genomic control after the meta-analysis.

The genome-wide significance level was set at 5 × 10−8. Between-study
heterogeneity was assessed using the I2 statistic60. Variants were assigned to loci by
selecting the SNP with the lowest p-value genome-wide as the index SNP, defining
the corresponding locus as the ±500 kb region around it, and repeating the
procedure until no further genome-wide significant SNP remained. A locus was
considered novel if it did not contain any variant identified by previous GWAS of
UACR. The loci were named according to the nearest gene of the index SNP, the
SNP with the lowest p-value within a locus.

For UACR, we evaluated heterogeneity correlated with ancestry using study-
specific GWAS files filtered for polymorphic SNPs with an IQ score > 0.3, an
effective sample size ≥ 100, and a |beta| < 10. Analysis was performed using the
software Meta-Regression of Multi-Ethnic Genetic Association (MR-MEGA
v0.1.2.25)28, where the meta-regression model included the three axes explaining
the largest genetic variation estimated from allele frequencies provided in the
study-specific GWAS files.

The narrow-sense heritability of the trait based on all SNPs with a MAF > 1%
was estimated using the genome-wide summary statistics for UACR with the MHC
region removed as input for the LD score regression software59, using the 1000
Genomes phase 3 EUR reference panel for estimating LD. The proportion of
phenotypic variance explained by the index SNPs was estimated as β²*2*MAF*(1-
MAF), with β representing the SNP effect and accounting for a trait variance of 1
due to the inverse normal transformation of the analyzed trait. Thus, the estimates
provide the proportion of the variance of sex- and age-adjusted log-transformed
UACR that is explained by the respective SNPs. The expected number of
discoveries in future, larger studies and the corresponding percentage of GWAS
heritability explained with increases in sample size was estimated using a recently
published method31. The summary statistics of the UACR trans-ethnic meta-
analysis were used as input.

Functional enrichment. We used DEPICT36 version 1 release 194 to identify gene
sets and tissue/cell types enriched in UACR-associated loci. DEPICT performs gene
set and tissue-/cell-type enrichment analysis by testing whether genes in GWAS-
associated loci are enriched in 14,461 reconstituted gene sets. These reconstituted
gene sets were generated based on a large number of predefined gene sets from
diverse molecular pathway databases including protein–protein interactions, and
gene sets from mouse gene knockout studies. The function of each gene in 14,461
reconstituted gene sets was predicted from co-regulation analyses of 77,840
expression microarray samples. Tissues and cell-type enrichment was conducted in
DEPICT by testing whether the genes in associated regions were highly expressed
in any of 209 MeSH annotations for 37,427 microarrays. We included all variants
that reached a genome-wide significant p-value of association with UACR (p < 5 ×
10−8) from the trans-ethnic meta-analysis. DEPICT analysis was conducted with

500 repetitions to compute FDR and 5000 permutations to compute enrichment
test p-values adjusted for gene length by using 500 null GWAS.

Phenome-wide association study. All analyses were conducted using standard
PheWAS coding methodologies37 using the R-package “PheWAS”. Models were
adjusted for ten genetic principal components and sex, when appropriate. All
analyses were conducted among 192,868 participants of European ancestry in the
Million Veteran Program sample. A weighted genetic risk score was first built using
the 59 UACR-associated SNPs (Supplementary Data 3) where the UACR-
increasing allele was coded as the effect allele. Based on the number of covariates
included in the model, only traits with ≥100 cases were included in the analysis
resulting in evaluation of 1422 traits. A Bonferroni threshold of 3.5 × 10−5 (0.05/
1422) was applied for assessing significance of the association test.

The genetic UACR risk score was also tested for association with additional
outcomes using GWAS summary statistics with association testing implemented in
the function grs.summary() of the R-package “gtx”. The summary statistics for
hypertension and heart failure were calculated in the UKBB prior to the risk score
association analysis. Hypertension cases were defined based on ICD-10 codes (I10,
I11, I11.0, I11.9, I12, I12.0, I12.9, I13, I13.0, I13.1, I13.2, I15, I15.0, I15.1, I15.2,
I15.8, and I15.9), as self-reported hypertension or essential hypertension, by
measured systolic blood pressure ≥ 140 mmHg, diastolic blood pressure ≥ 90
mmHg, or by taking blood pressure medication. Hear failure cases were defined
based on ICD-10 codes (I11.0, I13.0, I13.2, I25.5, I42.0, I42.5, I42.8, I42.9, I50,
I50.0, I50.1, and I50.9), or by self-reported cardiomyopathy, excluding
hypertrophic cardiomyopathy. The summary statistics for other outcomes were
based on results from published GWAS meta-analyses with references provided in
Supplementary Table 2. Statistical significance was defined as p < 0.007 of the
association test after correction for the number of evaluated associations (0.05/7).

Genetic correlation with other traits. Genome-wide genetic correlations between
UACR and UK Biobank traits and diseases were evaluated to investigate whether
there was evidence of co-regulation or a shared genetic basis, both known and
novel. Using LD score regression that can account for overlapping samples61 and
the EA association summary statistics as input, we evaluated pair-wise genetic
correlations between UACR and each of 517 pre-computed GWAS summary
statistics of UKBB traits and diseases available through the web-platform LDHub.
An overview of the sources of these summary statistics and their corresponding
sample sizes is available at [http://ldsc.broadinstitute.org]. Statistical significance
was assessed at the Bonferroni corrected level of 9.7 × 10−5 (0.05/517).

Second signals within identified loci. To identify additional, independent UACR-
associated variants within the identified loci, approximate conditional analyses
were carried out that incorporated LD information from an ancestry-matched
reference population. We used the genome-wide UACR summary statistics from
the EA meta-analysis as input, because an LD reference sample scaled to the size of
our meta-analysis was only available for EA individuals43,44. We randomly selected
15,000 participants from the UK Biobank data set (UKBB; application ID 2027,
data set ID 8974). Individuals who withdrew consent and those not meeting data
cleaning requirements were excluded, keeping only those who passed sex check,
had a genotyping call rate of ≥95%, and did not represent outliers with respect to
SNP heterozygosity. For each pair of individuals, the proportion of variants shared
identical-by-descent (IBD) was computed using PLINK [https://www.cog-
genomics.org/plink/]. We retained only one member of each pair with an IBD
coefficient of ≥0.1875. Individuals were restricted to those of EA by excluding
outliers along the first two PCs from a principal component analysis using the
HapMap phase 3 release 2 populations as reference. The final data set to estimate
LD included 13,558 EA individuals and 16,969,363 SNPs.

Basis for statistical fine-mapping were the 61 1-Mb genome-wide significant loci
identified in the EA meta-analysis, clipping at chromosome borders. Overlapping
loci as well as pairs of loci whose respective index SNPs were correlated (r² > 0.1 in
the UKBB data set described above) were merged, resulting in a final list of 57
regions prior to fine-mapping. Within each region, the GCTA stepwise model
selection procedure (cojo-slct algorithm) was used to identify independent variants
employing a stepwise forward selection approach44. We used the default
collinearity cutoff of 0.9 and set the significance threshold to identify independent
SNPs to 5 × 10−8.

Estimation of credible sets. Statistical fine-mapping was carried out for each of
the 57 merged regions used as input for GCTA cojo-slct. For each region that
contained multiple independent SNPs identified by the GCTA stepwise forward
selection approach, approximate conditional analyses conditioned on all remaining
independent SNP of this region were carried out using the GCTA cojo-cond
algorithm to estimate conditional effect sizes. The derived effect estimates were
used in the Wakefield’s formula as implemented in the R-package‘gtx’ version 2.0.1
[https://github.com/tobyjohnson/gtx] to derive approximate Bayes factors (ABF)
from conditional estimates in regions with multiple independent SNPs, and from
the original estimates for regions with a single independent SNP. Given that 95% of
the SNP effects from the UACR GWAS were within ±0.03, the standard deviation
prior was chosen as 0.0153 based on formula (8) in the original publication45. For
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each variant within an evaluated region, the Approximate Bayes Factor obtained
from the effect and its standard error of the marginal (single signal region) or
conditional estimates (multi-signal regions) was used to calculate the PP for the
variant driving the association signal (causal variant). For each region, 99% credible
sets, representing the set of SNPs that contain with a 99% PP the variant causing
the association, were calculated by summing up the PP-ranked variants until the
cumulative PP was >99%.

Functional annotation of identified variants. Functional annotations of index
variants of associated loci and credible set variants were performed by querying the
SNiPA database v3.2 (March 2017) [https://snipa.helmholtz-muenchen.de/snipa/].
SNiPA includes extensive annotations ranging from regulatory elements, over gene
annotations to variant annotations and published GWAS associations. SNiPA
release v3.2 is based on 1000 the Genomes phase 3 version 5 and Ensembl version
87 data sets. The Ensembl VEP tool [https://www.ensembl.org/info/docs/tools/vep/
] was used for primary effect prediction of SNPs. The CADD score62 provided by
SNiPA is based on CADD release v1.3 and presented as PHRED-like transfor-
mation of the C score.

Co-localization of UACR and cis-eQTL associations. Co-localization analysis
was based on the genetic associations with UACR in the EA sample (because the
great majority of gene expression data sets was generated from EA). Gene
expression was quantified from microdissected human glomerular and tubu-
lointerstitial kidney portions from 187 individuals participating in the NEPTUNE
study48, as well as from the 44 tissues included in the GTEx Project version 6p
release [https://gtexportal.org/]. The eQTL and GWAS effect alleles were harmo-
nized. For each locus, we identified tissue–gene pairs with reported eQTL data
within ±100 kb of each GWAS index variant. The region for each co-localization
test was defined as the eQTL cis window defined in the underlying GTEx and
NephQTL studies. We used the default parameters and prior definitions set in the
“coloc.fast” function from the R-package “gtx” version 2.0.1 [https://github.com/
tobyjohnson/gtx], which is an adapted implementation of Giambartolomei’s co-
localization method63. The same package was also used to estimate the direction of
effect as the ratio of the average PP (that was obtained from credible set estimation)
weighted GWAS effects over the PP weighted eQTL effects.

An additional co-localization analysis was performed using a complementary
gene-expression data set derived from healthy human kidney tissue. The
corresponding eQTL data set was generated by correlating genotype with RNA-
seq-based gene expression levels from 96 human kidney samples47. Co-localization
analysis of GWAS signals and eQTL signals was performed using Coloc63, using
the same distance criteria to identify shared eQTL and GWAS regions as
above, including variants within the cis-window (±1Mb from TSS) of each
identified candidate gene, and the parameters p1= 1 × 10−4, p2= 1 × 10−4, and
p12= 1 × 10−5.

For all co-localization analyses, a PP ≥ 0.8 of the H4 test (one common causal
variant underlying UACR and eQTL association signal) was applied to select a
significant result.

Trans-eQTL analysis. We performed trans-eQTL annotation through LD map-
ping based on the 1000 Genomes phase 3 version 5 European reference panel with
a r2 cutoff of >0.8. We limited annotation to index SNPs with a fine-mapping
PP ≥1% in at least one fine-mapped-region. Due to expected small effect sizes, only
available genome-wide trans-eQTL studies of either peripheral blood mononuclear
cells or whole blood with a sample size of ≥1000 individuals were considered,
resulting in five non-overlapping studies64–68. For the study by Kirsten et al.68, we
had access to an update with larger sample size combining two nonoverlapping
studies (LIFE-Heart and LIFE-Adult) resulting in a total sample size of 6645. To
improve stringency of results, we focused the analysis on inter-chromosomal trans-
eQTLs with association test p-values of p < 5 × 10−8 reported by ≥2 studies (Sup-
plementary Table 4).

pQTL lookup and co-localization. The pQTL data were generated using an
aptamer-based multiplex protein assay (SOMAscan) to quantify 3622 proteins
from stored EDTA plasma of 3301 healthy participants of the INTERVAL study,
which were genotyped on the Affymetrix Axiom UK Biobank genotyping array and
imputed to a combined 1000 Genomes Phase 3-UK10K reference panel50. For this
lookup, all pQTLs with p < 1 × 10−4 were selected.

Co-localization analysis for pQTL data was performed using the same analysis
approach as described for eQTL co-localization. For associations with plasma
protein concentrations, pQTL results of 1927 genetic associations with 1478
proteins obtained by the Somalogic proteomics platform GWAS50 were included.
In a first instance, pQTLs within a ± 500 kb region of each UACR-associated SNP
(Supplementary Data 5) were identified. In case a pQTL region contained multiple
independent index SNPs, additional pQTLs were calculated conditioning on the
respective index SNP. Next, the conditional and unconditional pQTLs (n= 38)
were included in the co-localization analysis using the coloc.abf() function with
default priors of the R-package “coloc” implementing the co-localization method of
Giambartolomei63.

The intra-assay coefficient of variation for the OAF protein, for which evidence
for co-localization of the UACR association and OAF plasma levels was identified,
was 5.7% and 16.9% in the two batches of SOMAscan measurements50.

Drosophila experiments. Transgenic RNAi studies were performed using the
UAS/GAL4 system, flies were raised on standard agar cornmeal molasses. RNAi
crosses were grown at 30 °C. The RNAi stocks were obtained from the Bloo-
mington Drosophila Stock Center at Indiana University (oaf-RNAi-1 BDSC
#40926, aPKC-RNAi-1 BDSC # 35001, aPKC-RNAi-2 BDSC #34332) or the
Vienna Drosophila Resource Center respectively (oaf-RNAi-2 VDRC #38257,
Vrp1-RNAi-1 VDRC #102253, Vrp1-RNAi-2 VDRC #23888). Control RNAi was
directed against EGFP (BSDC# 41553). Dorothy-GAL4 (BDSC #6903) was used to
drive expression in nephrocytes.

To perform the FITC-albumin endocytosis assay, garland cell nephrocytes were
dissected from wandering third instar larvae in PBS and incubated with 0.2 mg/ml
FITC-albumin (Sigma) for 30 s. Cells were rinsed briefly with ice-cold PBS four
times and fixed immediately for 5 min in 8% paraformaldehyde in presence of
Hoechst 33342 (1:1000). Cells were mounted in Roti-Mount FluorCare (Carl Roth
GmbH) and imaged using a Zeiss LSM 880 confocal microscope. Quantification of
fluorescent tracer uptake was performed with ImageJ software. Average
fluorescence of the three brightest cells was measured and intensity of the
background subtracted. The results are expressed as a ratio to a control experiment
with EGFP-RNAi that was performed in parallel.

For immunohistochemistry, garland cell nephrocytes were dissected from
wandering third instar larvae, fixed for 20 min in PBS containing 4%
paraformaldehyde, and stained according to the standard procedure. The following
primary antibodies were used: rabbit anti-sns (1:500, gift from S. Abmayr), guinea
pig anti-Kirre (1:200, gift from S. Abmayr), and rabbit anti anti-PKCζ (C20) (1:200,
sc-216-G, Santa Cruz Biotechnology) that was previously shown to detect
Drosophila aPKC69. For imaging, a Zeiss LSM 880 confocal microscope was used.
Image processing was done by ImageJ and Gimp software. Three-dimensional
reconstruction of confocal images was done using Imaris software.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Summary genetic association results are freely available on the CKDGen Consortium
website [https://ckdgen.imbi.uni-freiburg.de/]. The source data underlying Figs. 1, 2, 5–8
and Supplementary Figs. 8 and 9 are provided as a Source Data file. The source data
underlying Figs. 3, 4, and Supplementary Fig. 7 are provided in Supplementary Data 9,
10, and 7, respectively, and the data underlying the Supplementary Figs. 2–6 are based on
the respective downloadable summary genetic association results.

Code availability
The script for generating the phenotypes used in the GWAS is available via GitHub
[https://github.com/genepi-freiburg/ckdgen-pheno].
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