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Abstract of the Dissertation

Sensor Analytics for Healthcare Improvement

by

Ming-Chun Huang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Majid Sarrafzadeh, Chair

The increasing proportion of older adults and corresponding costs associated with

chronic disease management demand novel technological solutions. It is expect-

ed that new healthcare services will shift from clinical and hospital settings to

a personalized and homebound environment. Along with the rapid advances in

several technological domains including sensing, communication, and human fac-

tors design in the last decade, new technologies have led to the development of

new mobile and personalized systems capable of analyzing and visualizing varying

heterogeneous physiological signals. This dissertation presents an end-to-end re-

search methodology for design and development of next generation wireless health

applications, with a particular emphasis on innovative sensing systems design.

I summarize my research in wireless health domain: from On-bed physiological

signals monitoring, Contactless vital signs monitoring, Augmented visualization,

Virtual reality based rehabilitation, to Social activity promotion. Each project

involved medical problem identification, feasible solution development, and clinical

verification. In this dissertation, I address novel hardware and software sensing

and interaction technologies, including sensor system design, sensor modeling, and

sensor signal processing. The ultimate goals of this interdisciplinary research are

to support our medical hypothesis, verify the feasibility of technological solutions

in clinics, and eventually enable wireless health from concept to practice.
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CHAPTER 1

Introduction

To better incorporate science and technology into our lives, researchers are ea-

ger to understand human natural behaviors interacting with devices used daily.

By understanding the interaction between human behaviors and devices, we can

design better human-computer interfaces to facilitate and enrich our daily lives.

However, it is not trivial to design a system to continuously record natural hu-

man behaviors without interrupting people’s daily activities. Incautious designs

may result in mental or physical behavioral changes of the users. This disserta-

tion explores the feasibility of designing sensing and recording systems for On-bed

physiological signals monitoring, Contactless vital signs monitoring, Augmented

visualization, Virtual reality based rehabilitation, and Social activity promotion.

Due to the fact that the system is embedded in devices we are familiar with, it is

natural to retrieve collected human behaviors and interchange information with

the name of the devices we used daily. Each sensing and recording unit should

be able to securely share collected behavioral data with others in a distributed

manner via a hierarchical naming structure.

I summarize the progress on my five wireless health research. As part of

my research vision, I have identified and developed many novel, cost effective,

deployable, and application-specific medical sensing systems. They can be easily

used in daily life by exploring, designing and building advanced sensors and signal

processing technologies.

In Chapter 2, I present an on-bed motion monitoring system, which consists
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of a high density pressure-sensitive bedsheet and a sequence of methods to detect

sleep postures, movements, calculate pressure accumulation, and extract phys-

iological information. In contrast to existing techniques, our bedsheet system

offers completely unobtrusive methods to detect on-bed motion by using com-

fortable textile materials. We developed a novel framework for pressure image

analysis and ran a pilot study to evaluate the performance of our methods with

12 subjects, based on the high-resolution pressure data collected from the bed-

sheet system. Our experiment results revealed that our proposed method enables

reliable sleep posture recognition and pressure accumulation calculation. In ad-

dition, the proposed system has the potential to monitor human movement and

respiration without extra instruments involved. Physiological signals can be non-

invasively extracted by analyzing time-stamped pressure distribution sequences.

This is important information required in many clinical applications, including

detection and monitoring of sleep disorders, monitoring of newborns for Sudden

Infant Death Syndrome (SIDS), and identifying patients at high risk up to 24

hours before an adverse event like stroke and cardiac arrest. Failing to perform

continuous and quantified measurements could result in an inability to rescue a

patient exhibiting respiratory distress. Severe after effects hinder recovery, result

in loss of time, cost, and even life. The proposed bedsheet system provides a 24/7

quantified on-bed movement and physiological signals monitoring service. It is

made of textile and is similar to the regular bedsheet in comfort. As a result, it

can seamlessly fit in common clinic or home environment, reducing the possible

interference to a patient’s regular sleeping habits.

In Chapter 3, I present a noncontact, self-calibrating vital sign monitoring

system that comprises four layers based on Doppler radar. A framework was pro-

posed to automatically analyze I(t)/Q(t) signals collected from the radar sensor,

including direct signal modeling, model parameter identification, and demodula-

tion. Signal model identification was formulated into a quadratically constrained
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`1 minimization problem and solved using upper bound and LMI relaxation. Three

sets of experiments were conducted to evaluate the performance of the system.

The accuracy and stability of the proposed demodulation framework was demon-

strated and the end-to-end performance was examined using real-life scenarios.

The results indicated that our system can effectively measure human vital signs

without calibrating for each subject and distinct external environment.

In Chapter 4, I describe the design, implementation, and evaluation of our

Ultra Violet(UV) monitoring and visualization system to effectively warn users

to take protection and avoid possible sunburn beforehand. Four skin models help

us estimate damaging UV dose for an individual person. According to the UV

dose, our visualization system can provide a warning to the user beforehand by

over-amplified sunburn visual effect on the user’s arm. During the experiment,

our participants gave very positive feedback on the visualization effect.

In Chapter 5, I introduce an innovative frozen shoulder rehabilitation system

which is developed for the rehabilitation training of the patients shoulder Range of

Motion(ROM) and muscular endurance. This study successfully conducted RCT

clinical trials with 32 patients. While the feasibility of this system is demonstrated,

its rehabilitation effectiveness towards frozen shoulders has also been verified. It

was proven that it exhibited a rehabilitation effectiveness that was superior to

that of the conventional rehabilitation exercises. The technology acceptance was

identified from user perspective, indicating that participants were highly engaged

with game-like tasks and had strong intention to continue the use of the proposed

system for rehabilitation.

In Chapter 6, FridgeNet is introduced for older adults to share their diet

information, food suggestions, and comments with other participants and their

families. It provided a convenient social platform to exchange diet information

and provide novel social services to promote older adults social activities. The

findings reveal that sharing personal diet habits can be an attractive social topic
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among older adults. FridgeNet effectively motivated older adults to share their

knowledge, to communicate, and to meet with their peers virtually and physically.

Both virtual and physical social activities increased during the 12-week study

period. A virtual community was established and a group of shoppers formed

during the study period. It was also reported that elderly participants possessed

a more positive attitude and felt healthier after using FridgeNet than before.
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CHAPTER 2

On-bed Physiological Signals Monitoring

2.1 Introduction

Urgent medical care is required when patients have abnormal respiration such as

tachypnea (high respiration), bradypnea (low respiration), or apnea (no respira-

tion). Peberdy et al. reported that 44% of over 14,000 cardiac arrests in acute

care hospitals were attributed to respiratory problems [PKO03]. Furthermore, the

2011 HealthGrades study showed that 20% of post-operative respiratory failures in

5000 hospitals resulted in death [RM11]. Hodgetts et al. [HKV02] and Fieselmann

et al. [FHH93] observed a large proportion of cardiac arrest patients had high res-

piration rate. In addition, the variation in respiratory rate is another important

marker for cardiac arrest or admission to the intensive care unit [CCH07a].

Despite such information, respiration rate monitoring has not received the

same level of attention compared with monitoring of the other vital signs such as

blood pressure and heart rate [CBH08]. McBride et al. showed the lack of con-

sideration towards respiratory rate reporting that only 30% of patients have their

respiratory rate recorded daily [MKP05]. Reasons include the lack of a reliable

and unobtrusive respiration rate measurement systems [CCH07a]. Hospitals pay

less attention to respiratory rates due to the fact that current monitoring systems

require direct contact with the skin [KM67]. Other methods such as video anal-

ysis to infer breath rate are non-contact, however, there are issues with privacy

and low light level at night. Thus, in many hospitals, medical personnel manually
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measure breathing rates.

This paper introduces BreathSens, a system that unobtrusively monitors on-

bed respiration. By targetting the torso region of the body, this system converts

the pressure distribution to a respiratory signal. We also show a method of vi-

sualization of the breathing patterns and consistency of results for different bed

tilting commonly seen in hospital environments.

Figure 2.1: The high density pressure sensor array captures a full pressure distri-

bution. The pressure is represented as pixel intensities.

2.2 Related Work

This section describes the current state of the art in measuring respiration rate.

There are three main categories of respiratory rate monitoring: on-body, indirect

contact, and non-contact.

On-body sensors are either directly attached on the skin or wearable through

straps. The main problem with on-body sensors is their obtrusive nature and

setup issues. Hospitals use pulse oximeters, such as the Nellcor Respiratory Mon-

itor [Cov], to estimate respiratory rate from oximetry measurements on the pa-
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tient’s finger. However, the results are often inaccurate when patients have abnor-

mal levels of oxygen saturation or low pulses [DeM07]. Respiratory Inductance

Plesthysmography (RIP) is a dual belted sensor worn around the chest and ab-

domen. As patient’s body expands and contracts during breathing, this sensor

reflects changes in the inductance of its coils [KM67]. Now, many sleep centers use

this sensor solution, which is recommended by the American Academy of Sleep

Medicine [Car08].

The second category of respiratory rate monitoring is indirect contact. This

method typically involves sensors embedded in the mattress, sheet or pillow, which

overcomes the discomfort issues inherent with on-body sensors. An air mattress

sensor system [CHY05] allows measurement of the respiration and heart beat

movements without use of any on-body sensor. However, the shape, type, or

thickness of the mattress may introduce noise to the sensed data. Another type of

indirect contact sensor is capacitance sensor which measures the changes in elec-

trical permittivity above the sensor caused by air in the lungs [HTW10]. Again, it

required the subject to be localized directly above the sensor. Using hetero-core

fiber optic pressure sensors, Nishyama et al. [NMW11] relaxed the restriction of

sleep pose a little further by having a wider sensitivity to small pressure changes

and could account for large changes.

The third category of respiratory rate monitoring is non-contact. For instance,

using video or other electromagnetic radiation sensing [XGL12]. Current develop-

ment in video analysis can measure respiratory rate and heart rate by analyzing

the small changes in color of subjects’ faces [PMP10]. The Philips Vital Signs

Camera [Phi] application on iOS devices performs this contact-less measurement

of breathing rate. However, using video cameras leads to a concern about patient

privacy in hospital, and lighting during the night can be a significant problem.

The use of infrared sensors can diminish some of these issues. Murthy et al. used

an infrared imaging system to detect the temperature change of exhaled air out
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of patients’ mouths [MPT04].

In summary, non-contact based respiratory rate monitoring has the advantage

in non-invasiveness, however still suffers in accuracy and reliability. Contact sen-

sors need to be localized to the appropriate area. On the other hand, our system,

a high density pressure sensitive bed sheet, is non-invasive, comfortable and can

measure respiration at any location on the mattress.

2.3 Pressure Sensitive Bedsheet System

The designed prototype bed sheet is a 2.5m × 1.25m system that contains 64 ×

128 pressure sensors (see Figure 2.1). 64 column conductive lines and 128 row

conductive lines generate 8192 intersections. A sheet of e-Textile fabric which is

regular fabric coated with piezo-electric polymer is located in between the row and

column layers. Therefore, each joint intersection forms a pressure sensor within

the three-layer sandwich structure (the resistance of the e-Textile changes when

pressure is applied [RXS10]). Because of the fabric, the feel of the sensing system

is just like regular fabric.

A sampling unit is connected to all conductive lines and performs matrix s-

canning to measure pressure map sequences. Retrieved pressure map signals of

the 8192 sensors are quantified to values ranging from 0 to 255 [XLH11,LXH13].

Sampling rate is adjustable up to 10Hz. For this respiratory rate measurement, a

sampling rate of 1.5Hz was used . This allows the system to achieve a maximum

breathing detection rate up to 45 breaths per minute according to the Nyquist

rule.
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2.4 Breath Monitoring Algorithm

The method for monitoring respiration rate is composed of three parts: torso

localization, respiratory signal extraction, and peak detection (see Figure 2.2).

Locating the torso area in the time-indexed pressure images reduces interference

caused by extremities movement. The torso localization algorithm is based on a

pictorial model and cost minimization method. Mismatch and deformation costs

combine as the overall cost to most accurately fit a pictorial model into a pressure

image. The algorithm aims to find the best-fit among all possible configurations

in the pressure image. Once the torso area is localized, the pressure values in the

area of chest and stomach are used to extract respiratory signals using a vertical

weighting calculation. A peak detection algorithm with adaptive thresholding is

applied to mark breathing events and intervals. Figure 2.2 shows the overview of

the algorithm.

B. Respiratory 

Signal 

Extraction
A. Torso 

Localization

 using Pictorial 

Structure Modeling 

of shoulders, hips,  

and legs.

C. Peak 

Detection 

Adaptive 

ThresholdsInput:

Pressure Image

Output:

Respiration Rate

Figure 2.2: Respiration monitoring flow consists of three components: A. torso

localization; B. respiratory signal extraction; C. peak detection.

2.4.1 Pictorial Model-based Localization

The torso localization method is based on the pictorial structures model pro-

posed by Fischler and Elschlager [FE73] for identifying structured objects in im-

ages. Felzenszwalb and Huttenlocher improved the matching efficiency of the parts

based algorithm using distance transforms within dynamic programming [FH03].
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A simplification of the model is presented here and we apply it to finding the

bodyparts in pressure images.

A graph model can be used to represent the human body. Each part of the

human body can be represented as a node in a graph, e.g. shoulders, hips, upper

legs, and lower legs are nodes connected by edges. In this method, the appearance

of a bodypart j is measured using a mismatch cost mj(I, lj) where I is the image

and lj = (xj, yj, θj) is the center location and rotation of the bodypart. A low

value of mismatch means the bodypart model is well recognized at that location

and rotation. The calculation for mismatch cost is described in Section 2.4.1.1.

In addition to this appearance cost for each bodypart model, there is a cost

which measures the relationship between bodypart locations, called the deforma-

tion cost dij(li, lj). For bodyparts i and j, it gives a measure of the error of their

expected separation. For instance, the hip and shoulders are known to be sep-

arated by the spine length. The calculation for deformation cost is described in

Section 2.4.1.2.

So for a given set of bodypart models and relationships between them, the

best configuration of bodyparts L = (l1, ..., ln) in an image minimizes the total

cost of mismatch for all parts and deformation between all pairs of parts:

arg min
L

( ∑
allparts

mj(I, lj) +
∑

allpairs

dij(li, lj)

)
. (2.1)

For n bodyparts, the calculation of this expression grows exponentially. How-

ever, with the tree representation of bodyparts, it can be solved more efficiently

as a chain of computations using dynamic programming. For any leaf node (hav-

ing no children), its best location l̂j can be calculated as a function of its parent

location li. So the best leaf node location is a function of parent location:

Bj(li) = arg min
lj

(mj(I, lj) + dij(li, lj)) . (2.2)
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For a non-leaf, non-root node, its best location l̂j as a function of its parent

location li is given by

Bj(li) = arg min
lj

mj(I, lj) + dij(li, lj) +
∑
Ch(j)

Bc(lj)

 , (2.3)

where Ch(j) means children of j, and Bc(lj) are the costs of the best locations

of the children of j. This is already calculated and memorized via the dynamic

programming methodology.

Then for the root node (no parent), its best location is

l̂j = arg min
lj

mj(I, lj) +
∑
Ch(j)

Bc(lj)

 , (2.4)

where Bc(lj) is known for each of the children of j. This formulation, Equations

(2.2) to (2.4), reduces the number of computations from exponential to polynomial

while still producing the globally best solution.

2.4.1.1 Compute Mismatch Cost

To compute the mismatch cost mj(I, lj) for each bodypart, we select a repre-

sentative template. The bodyparts are simply represented as rectangular boxes

surrounded by a border (see Figure 2.3 which shows an example of the shoulder

and hip models). To account for different pressure images with varying weights

of subjects, the image I is binarized at different thresholds. A convolution oper-

ation of this kernel with the binary images efficiently gives the mismatch cost at

all locations. This computes how many pixels do not match inside the inner box

and within the border. Then, the mismatch cost is the smallest cost across all

threshold levels for each location.
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Figure 2.3: Transformation of bodypart models. The locations of the bodypart

models are transformed into a common space which allows the calculation of a

deformation cost.

2.4.1.2 Compute Deformation Cost

To compute the deformation cost dij(li, lj) between bodyparts, we define this cost

to have the form

dij(li, lj) = ||Tij(li)− Tji(lj)||. (2.5)

This is a simple distance metric between locations transformed to a common space

(refer to Figure 2.3). The transforms can be translations, rotations, and scaling,

hence they are invertible. The effect of the transforms is to specify the expected

relations between the locations. I.e. if two bodyparts have no deformation cost

and are correctly positioned, then the transformed locations will coincide. The

pairwise distance metric takes quadratic time in the number of locations. For

every location of the parent, we want to compute the distance to each location

of the child. On the surface, quadratic time may seem satisfactory but this can

be improved to linear time through the use of distance transforms [Bor86]. In

fact, every pairwise distance between li and lj need not be computed. From

Equation (2.2), only the smallest sum of deformation cost and mismatch cost is
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needed at each location of li. Sample pseudo code is shown in the Algorithm 1.

Algorithm 1: Pictorial Model Localization

Input: mismatch cost, m; deformation cost, d; image, I;

center and rotation of the bodypart, l = (x, y, θ)

Output: best configuration of bodyparts, L̂

Initialize: L̂ = 0, B = 0,

1: for all leaf location lj in bodyparts do

2: li = lj’s parent location

3: Bj(li) = arg min
lj

(mj(I, lj) + dij(li, lj))

4: L̂(lj) = Bj(li)

5: end for

6: for all internal node location lj in bodyparts do

7: li = lj’s parent location

8: Bj(li) = arg min
lj

(mj(I, lj) + dij(li, lj) +
∑

Ch(j)Bc(lj))

9: L̂(lj) = Bj(li)

10: end for

11: for root location lj in bodyparts do

12: l̂j = arg min
lj

(mj(I, lj) +
∑

Ch(j)Bc(lj))

13: L̂(lj) = lj

14: end for

15: Return L̂ as best configuration of bodyparts

2.4.2 Respiratory Signal Extraction

This subsection describes the respiratory signal extraction method from the time

series pressure regions. This results in a pressure indicator which is based on

an observation that, while breathing, the pressure distribution along with verti-

cal direction (from chest to stomach direction) varies with certain patterns and
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rhythms. For every frame, the pressure indicator sums the pressure values with

their corresponding vertical directional coordinates:

Resp(t) =
∑∑
(x,y)∈torso

y ∗ I[x, y](t). (2.6)

The range of the pixels in the torso is the region between chest and hip bounding

boxes which is enclosed by the bottom of the shoulder bounding box and the top

of the hip bounding box. The calculated pressure indictor forms a time-series

respiratory signal stream.

2.4.3 Peak Detection with Adaptive Thresholding

In general, a simple peak detection algorithm [Bil] is sufficient to recognize the

periodic peak and valley of the time series data. However, arbitrary thresholding

does not always work since the magnitude difference between peak and valley of

time series data varies among testing subjects. Subjects breathing with moderate

muscle activity in their shoulder or back area tend to generate large magnitude

differences in the calculated pressure indictor time series. To accommodate the

differences among subjects, the selected peak detection algorithm is augmented

with adaptive threshold version as shown in the Algorithm 2.

Given a time series data of the extracted respiration signal, this adaptive

threshold method profiles the relationship between the number of breaths and

threshold values. A threshold is defined as the value difference by which a peak is

recognized from surrounding data. So for each threshold value between 0 and the

maximum magnitude difference in the data, the algorithm detects a peak when

the data falls below the peak value by more than the threshold value. Similar-

ly, a valley is detected when the data rises above the valley value by more than

the threshold. Once all thresholds have been tested, it then finds the range of

thresholds that have the least effect on the number of breathing events. This co-

incides with the flat area (see Figure 2.4). It means that, within certain threshold
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Algorithm 2: Peak Detection with Adaptive Thresholds

Input: time series data of size n

Output: number of detected breaths

Initialize: lookformax=true

1: maxdiff = maximum magnitude difference in data

2: for thresh = 0 to maxdiff do

3: for all n points in data do

4: if lookformax = true and data.value < currentmax− thresh then

5: Peak detected and set lookformax = false

6: else

7: Update currentmax

8: end if

9: if lookformax = false and data.value > currentmin+ thresh then

10: Valley detected and set lookformax = true

11: else

12: Update currentmin

13: end if

14: end for

15: Record the number of breaths (peak and valley pairs) and the

corresponding thresh in graph

16: end for

17: Find the first flat region in graph and output the number of detected breaths

ranges, the number of breathing events is consistent and implies those thresholds

are less sensitive to the random hardware noise. The number of breathing events

is recorded and the corresponding event intervals are used to calculate respiratory

rate. A period of peak and valley is viewed as a complete respiration and the

intervals between two peaks are viewed as breath intervals.
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Figure 2.4: Number of detected breaths for threshold values

2.5 Evaluation

Table 2.1: Information of the 12 participants

ID Gender Height(inch) Weight(lb) BMI

1 M 67 173 27.09

2 M 75 165 20.62

3 M 73 182 24.01

4 M 66 176 28.40

5 F 63 102 18.07

6 M 65 160 26.62

7 F 65 108 17.97

8 M 70 140 20.09

9 M 72 167 22.65

10 M 69 143 21.12

11 M 68 150 22.80

12 M 70 178 25.54
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12 subjects participated in the study with heights 63 to 75 inches, weights

102 to 182 pounds. Their gender, height, and weight information were recorded

in Table 2.1 and used in human model construction. The high density pressure

sensor sheet was deployed on top of a foam mattress with memory in a lab envi-

ronment. The experimental goals were to evaluate the effectiveness of the torso

localization algorithm for respiratory signals extraction on a regular soft bed en-

vironment. During experiments, subjects were allowed to lie in their preferred

posture and keep their regular lying habits. In addition, data was recorded in

full without segmentation and truncation due to interferences caused by extrem-

ity movements. Full experiment processes were taped, breath events were timed

and labelled manually from the taped videos according to the visible chest wall

movement. Recording started when the subjects lied on top of the pressure sens-

ing system in their preferred lying posture. They were asked to breathe as usual

and not to make any large posture changes, such as rolling or sliding, during the

recording. Furthermore, tilted bed situations as commonly seen in clinics were

simulated by changing the tilted angles of the bed head and foot areas. For these

tilted bed situations, the subjects were evaluated in supine posture only.

2.5.1 Results of Model-based Localization

Table 2.2 summarizes the accuracy of bodypart localization for the 3 postures com-

pared against prior work by Farshbaf et al. [FYP13] and Grimm et al. [GSH11].

We use the same metrics as described in the prior work, where error is measured

by Euclidean distance in inches between the tested and ground truth locations,

and accuracy is calculated as the percentage of bodyparts that have error of less

than 1 inch. In these experiments, the elbow resulted in the lowest localization

accuracy. This can be explained by the relative weakness in pressure compared

to the high pressure of the shoulder.
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2.5.2 Results of Respiration Monitoring

Table 2.3: Respiration results in three common lying postures (detected breath-

s/ground truth)

ID Supine Lateral Prone

1 174/176 169/172 176/177

2 147/155 137/154 143/152

3 171/175 162/173 170/175

4 184/185 184/186 187/188

5 127/130 125/133 130/127

6 136/142 138/144 139/144

7 155/162 162/162 157/160

8 179/177 174/176 172/175

9 160/166 158/167 162/166

10 138/144 137/142 139/141

11 164/168 170/172 168/172

12 152/150 147/146 148/148

Avg. 157.5/160.8 155.3/160.6 157.6/160.4

Error 2.0% 3.3% 1.8%

Pressure values variation within the torso region is of most interest for respi-

ratory signal extraction. In this experiment, respiratory signals were extracted
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from pressure image sequences when participants lied in common lying postures:

supine, side, and prone for 10 minutes each. The method of torso localization

was applied to the pressure image sequences to keep track of the regions between

chest and stomach areas. Then signal extraction via vertical weighting calcula-

tion and peak detection methods were used to extract breathing events. Table

2.3 summarizes the results and shows comparisons between the detected respira-

tion events and the ground truth visually recognized from video recordings for all

three lying postures. On average, the detected respiration events match well with

ground truth across the three common lying postures. Different lying postures

and extremities movements did not affect the quality of torso localization and the

extracted respiratory signals.

2.5.3 Visualization of Respiration Motion

It is useful to illustrate the effect that vertical weighting calculation makes on

respiratory signal extraction. There is an apparent geometrical delay from chest

to stomach area and weighted pressure values with its vertical coordinates relative

to the bounding box border emphasizes the respiration pattern. Visualizing the

vertical momentum calculation can be a useful tool to investigate the nature of

the geometrical delay phenomenon in pressure image sequences.

In order to visualize calculated vertical momentum, results from peak detection

algorithm are used. Peak detection algorithm returns a series of peaks and valleys

from the pressure indicator time series. By subtracting two consecutive peak

and valley indexed pressure images, the differences between images of peaks and

valleys are obtained. Figure 2.5 visualizes the peaks and valleys of respiration by

averaging the pressure differences between peaks and valleys. To better visualize

the difference of chest and stomach area, all positive differences were marked as

black and negative differences were marked as white. Gray area stands for no

obvious pressure differences. It can be seen that pressure distribution of chest
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Figure 2.5: Examples of change in pressure distribution for inhaling and exhaling

events. The red boxes show the location of detected shoulder and hip regions.

The black and white areas show the locations of the greatest pressure change.

area is in opposite phase of the stomach area. This opposite phase phenomenon

explains the reason why vertical weighting calculations can be a useful indicator

for respiratory patterns extraction, because the geometrical delay from chest to

stomach region is included in the indicator calculation.

2.5.4 Comparison of Body Region Locations

Three scenarios were evaluated and compared to demonstrate the importance of

torso tracking: signals from the whole sheet without applying torso localization

algorithm, signals from half of the sheet and centralized in the center of the weight,

and signals from torso localized area, same as the results presented previously. The

difference between the estimated breathing events and ground truth are reported

in Table 2.4 for the supine posture.

Extracted respiratory events from torso localized areas showed good consisten-

cy with the ground truth. This is because during breathing, large periodic pressure

variances are expected in the chest to stomach regions. Pressure variance outsides

the torso regions can be viewed as interference which directly impacts the calcula-
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tion of vertical weighted signal extraction. Interference caused by the extremities

movements were time-varied and subject-dependent; therefore, the accuracy of

respiratory signal extraction from the whole sheet largely was highly impacted

by the movements of the participants. For the case of extracting signals from

the area nearby the center of mass, the accuracy of respiratory signal extraction

was reduced because the targeted area included parts of extremities. In sum-

mary, respiratory signal extraction with torso localization effectively reduces the

interference caused by the extremities movement, and the accuracy of respiratory

signals were less varied across subjects.

2.5.5 Respiration in Tilted Bed Environment

Another common scenario of sleep environment in clinics is tilted bed setup. Tilted

bed environments change the original pressure distribution underneath a human

body. Hence, it is necessary to evaluate the effect of tilted environment on res-

piratory signal extraction. Figure 2.6 shows pressure image samples from tilted

environment with raised head (15◦), raise knee (15◦), and both raised head and

knee. Although pressure distribution changed with degree of tilting, the areas of

chest and stomach were still visually recognizable. Pressure redistribution caused

by tilted bed environment has limited effect on body contact area size and the

pressure values in chest and hips areas are still prominent compared to other re-

gions. However, the main difference is the distribution of pressure within the body

profile.

In this experiment, participants were requested to lie in supine position for 5

minutes of recording. Results of Figure 2.7 reveal that respiratory signals can be

extracted from tilted bed environment and show consistency. Actually, it is worth

noticing that much under body pressure was accumulated in the chest area for the

case of raised knee tilting; hence, the interference caused by the upper extremities

movements had larger weight in the vertical weighting calculation. On the other
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Table 2.4: Comparison of the standard deviation between the estimated breathing

events and the ground truth within full sheet area, by the center of mass, and by

torso localization

ID Fullsheet Center of Mass Torso Area

1 11 10 2

2 14 9 4

3 -8 -6 -3

4 -8 -4 -1

5 12 8 3

6 -7 -2 -2

7 6 1 3

8 -6 -5 -3

9 11 9 4

10 8 8 2

11 4 5 3

12 -9 -7 -2

Ave. 9.18 6.67 2.79

Error 5.7% 4.1% 1.7%

hand, much under body pressure was accumulated in the stomach and hip area

for the case of the raised head tilting; hence, the interference caused by the lower

extremities movements had larger impact on the respiratory signals extraction.
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Therefore, torso localization becomes more important in a tilted bed environment

because redistributed pressure tends to increase the weight of extremity move-

ments. Slight extremities movement may incur large interference to respiratory

signal extraction.

(a) Original (b) HeadLift (c) EndLift (d) BothLift

Figure 2.6: Tilted bed setup

Figure 2.7: Breath count comparison for each subject on a tilted bed

2.6 Conclusion

The ability to continuously monitor respiration rates of patients in homecare or in

clinics is an important goal. Past research showed that monitoring patient breath-
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Table 2.5: Respiration monitoring in different tilted bed environment

ID HeadLift BothLift EndLift

1 84 84 83

2 73 73 73

3 80 81 81

4 92 92 91

5 68 68 68

6 68 67 68

7 75 73 75

8 88 88 87

9 77 75 75

10 66 66 66

11 78 77 78

12 77 77 79

Avg. 77.17 76.75 77.0

ing can lower the associated mortality rates for long-term bedridden patients.

Nowadays, in-bed sensors consisting of pressure sensitive arrays are unobtrusive

and are suitable for deployment in a wide range of settings. Such systems aim to

extract respiratory signals from time-series pressure sequences. However, variance

of movements, such as unpredictable extremities activities, affect the quality of
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the extracted respiratory signals. BreathSens, a high density pressure sensing sys-

tem made of e-Textile, profiles the underbody pressure distribution and localizes

torso area based on the high resolution pressure images. Pictorial Structure mod-

els is introduced to localize pressure distribution of the body. With the robust

bodyparts localization algorithm, respiratory signals extracted from the localized

torso area are insensitive to arbitrary extremities movements. A pilot study in-

cluding 12 subjects reveals that the proposed method enables reliable localization

of body parts and demonstrates BreathSens’s capability of respiratory monitor-

ing with variations of sleep postures, locations, and commonly tilted clinical bed

conditions.
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CHAPTER 3

Contactless Vital Signs Monitoring

3.1 Introduction

Among the various medical signals, vital signs (i.e., heart rate and respiratory

rate) are the most crucial measures used to assess bodily functions and monitor

illness progression to determine the effective treatments that should be adminis-

tered [DBG05]. Furthermore, vital-sign measurements are helpful in predicting

potential clinical events. For example, the variation in respiratory rate is a marker

for cardiac arrest or admission to an intensive care unit [CCH07b].

Several off-the-shelf home devices are used measuring vital signs [Omr, For].

They require users to follow the instrument instructions strictly and to perform

the measurements under controlled conditions. For example, when a person uses

an electrocardiography (ECG) device to measure heartbeat, the electrode should

be attached on the correct parts of the body and the person should not talk while

conducting the measurements. Therefore, consistently obtaining valid vital sign

measurements without the assistance of medical personnel is difficult. Moreover,

because using these devices is inconvenient, patients are unlikely to perform vital

sign measurements by themselves.

For years, the research community has investigated unobtrusive methods for

vital sign measurement. Generally, existing work can be classified into three cate-

gories. The first category is based on direct skin contact. During measurements, a

device must be in direct physical contact with the body of the user. Valchinov et
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al. developed a dry skin electrode that reduced contact impedance and variation

and motion artifacts [VP04].

The second category is based on indirect contact (i.e., sensors that do not

require direct physical skin contact). Under-bed mattress sensors have been

used to measure heartbeat, respiration, and body movements using thin, air-

sealed [WWT05], film [Bed], or hydraulic [HS10] pressure sensors. Chi et al. [C-

NK10] developed a capacitive electrode to measure heart rate that can function

through clothing.

The third category is based on noncontact techniques. Noncontact techniques

enable monitoring vital signs remotely and seem appealing for users. Aoki et

al. [ATM01] discussed a nonrestrictive visual sensing method for detecting res-

piration patterns by using a fiber grating camera and processor unit. Zhu et

al. [ZFP05] developed an infrared-camera-based system to monitor respiration

and infer the associated heart rate. Chekmenev et al. [CRF05] used a thermal

camera consisting of a focal plane array for a long-wave infrared sensor to extract

heart rate and respiration from temperature changes. However, all of the afore-

mentioned noncontact methods involve using sensors that are sensitive to changes

in environmental factors such as light or temperature, and no robust calibration

methods for compensating for these changes have been developed.

In this paper, a low-cost microwave Doppler-radar-based system complemen-

tary to existing noncontact techniques is presented. According to Doppler theo-

ry [Bla96], signals reflected by objects exhibit a quantitative phase change, called

Doppler shift, because of the movement of the objects. The magnitude of the

phase change is sufficiently large for measuring heartbeat and chest wall move-

ment. A novel framework based on the Doppler radar structure and signal model

was proposed to automatically demodulate the Doppler radar signals and extract

the heart and respiratory rates without precalibration.
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3.2 Doppler Radar Preliminaries

The Doppler effect was proposed by Christian Doppler in 1842 and has since been

widely applied in motion detection. Microwave Doppler radar was first applied to

measure respiratory rate and detect sleep apnea in 1975 [Lin92]. A Doppler radar

transmits a continuous-wave signal, which is reflected by a target and then re-

ceived and demodulated by a receiver. According to Doppler theory, the position-

varying information is proportionally demodulated in the reflected signal when

the net velocity is zero. Therefore, the chest wall movement caused by volume

change during respiration can be detected using the Doppler-radar motion-sensing

system. Because of the advances in wireless transmission and electronic devices,

using in-phase and quadrature (I/Q) Doppler radar for heartbeat detection is

feasible [DLL04,CLL08].

Figure 3.1: The I/Q Doppler radar block diagram for non-contact vital sign mon-

itoring

3.2.1 In-phase/Quadrature I/Q Doppler Radar

Figure 3.1 shows the operation theory and block diagram of an I/Q Doppler radar

for non-contact vital sign measurement. The Doppler radar system transmits the

continuous-wave signal T (t):
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T (t) = AT cos(ωt+ φ(t)), (3.1)

where AT is the amplitude of the carrier signal, ω = 2πf denotes the angular ve-

locity (carrier frequency), and φ(t) represents the time-varying phase information

of the transmitted signal.

The subject is at a distance d0 from the radar and the total traversal distance of

microwave signal is d(t) = 2(d0+x(t)), where x(t) is the time-varying displacement

caused by heart beat and respiration.

The transmission wave is reflected by the subject and received at Doppler

radar as R(t):

R(t) = AR cos[ωt− 4πd0
λ
− 4πx(t)

λ
+ φ(t− 2d0

c
)], (3.2)

where AR is the amplitude of the received signal, λ = c/f is the wavelength of

the carrier signal, and c is the speed of light. We can see that the time-varying

displacement x(t) is modulated in the phase change of the received signal. As

shown in Figure 3.1, R(t) is down-converted by T (t) and then generates two

baseband signals. One is the in-phase signal, denoted by I(t):

I(t) = AI cos[
4πx(t)

λ
+

4πd0
λ

+ φ(t− 2d0
c

)] +DCI , (3.3)

and the other is the quadrature signal, denoted by Q(t):

Q(t) = AQ sin[
4πx(t)

λ
+

4πd0
λ

+ φ(t− 2d0
c

) + φ0)] +DCQ, (3.4)

where AI is the amplitude of in-phase signal, AQ the amplitude of quadrature

signal, and φ0 is the phase offset between I(t) and Q(t). DCI and DCQ are the

DC offsets in I/Q channels, respectively. The ratio between AI and AQ is called

gain imbalance, and φ0 is called phase imbalance. Both gain imbalance and phase

imbalance are caused by circuit imperfection.
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I(t) and Q(t) are then digitized by the data acquisition block (DAQ), and the

phase change, x(t), is demodulated for heart beat and respiration measurement.

For the simplicity of presentation, we neglect the constant phase offset, 4πd0/λ+

φ(t− 2d0/c), in the I/Q receiver and use the following equations to describe the

baseband signals:

I(t) = AI cos(
4πx(t)

λ
) +DCI , (3.5)

Q(t) = AQ sin(
4πx(t)

λ
+ φ0) +DCQ. (3.6)

3.2.2 The Challenge

As shown in Figure 3.1, the demodulation module processes the baseband signals,

I(t) and Q(t), for heartbeat and respiration information extraction. If the circuit

in the Doppler radar is perfect, then no gain or phase imbalance occurs (i.e., AI

in Eq. (3.5) is equal to AQ in Eq. (3.6), and φ0 in Eq. (3.6) is equal to zero).

Based on these ideal-case assumptions, several techniques have been proposed

in the extant literature for demodulating Doppler radar signals to extract vital

signs. Droitcour et al. approximated I/Q signals as linear formulas when the

responding phase was small, and then extracted vital signs by using the tuning

carrier frequency [DLL04]. Tao et al. converted transmission waves to a set

of pulse signals and detected the phase change according to its peaks [TLW09],

whereas Lee et al. proposed a reassigned joint time-frequency transform to track

the heart rate [LYK11].

Lubecke et al. presented various demodulation methods involving the precali-

bration of dc offsets [PLL07,MLM09,BLP09]. Li and Lin formulated I/Q signals

into a complex vector to perform Fourier analysis, and the phase change was

calculated using iterative spectrum comparison [LL08].
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These existing demodulation methods have two main drawbacks. First, these

methods require either approximating I/Q signals [DLL04,TLW09] or accurately

precalibrating the dc offsets [LL08, PLL07]. Both the electronic components and

multichannel transmission and reflection, which is related to the environment, pro-

duce dc offset. Therefore, the dc offsets in the I/Q channels must be recalibrated

whenever the environment changes, which is not applicable in practice. Fletcher

and Han used dual beams to target various locations; one location was used as

a reference [FH09]. Second, these methods involve the assumption that circuit

components are perfect in that the gain and phase imbalances are minimal. In

real radar systems, the effect of gain and phase imbalance is considerable. Park

et al. [PYL07] measured the imbalance factors in a direct-conversion quadrature

radar circuit and reported that imbalance is unavoidable. In their experiments, the

gain imbalance was 4.7 and the average phase imbalance was 18.5 degrees. Thus,

phase imbalance has a severe negative effect on error the rate in signal demod-

ulation [ZH05]. Therefore, developing an accurate and robust signal-processing

technique for signal demodulation in Doppler radar systems is necessary. In the

application used in this study, the associated challenges are:

1. Accuracy: the demodulation method should account for all parameters (i.e.,

AI , AQ, φ0, DCI , and DCQ) in the signal model and directly extract the

motion component x(t) accurately from the I/Q signals;

2. Self-calibration: the environment might change, causing the signal model to

change during measurement. The demodulation method can self-calibrate

and tolerate the parameter changes. No manual setup is required.

3.3 Vital Signs Monitoring System

In this section, the proposed Doppler radar system for noncontact self-calibrating

vital-sign measurement is introduced. Figure 3.2 shows an overview of the struc-
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Figure 3.2: The layered structure of non-contact self-calibrating vital sign mea-

surement system, including sensor layer, pre-processing layer, modeling layer, and

information layer.

ture of this system, which comprises four layers: the sensor, preprocessing, mod-

eling, and information layers. The sensor layer and preprocessing layer were built

on the hardware, whereas the modeling layer and information layer were designed

using software. Each of the layers are described in the following subsections.

A hardware prototype of the radar sensor is shown in Figure 3.3 with its main

functional components. After preprocessing the sensed baseband radar signal, an

elliptic phase model was constructed and the model parameters were calculated

based on the proposed min-`1-based fitting (self-calibration). In the informa-

tion layer, these self-calibrated elliptic parameters were identified to reconstruct

baseband signals, perform demodulation to identify the corresponding chest wall

movement, and extract respiration and heartbeat signals using spectrum analy-

sis. The framework of self-calibration (modeling layer) and vital-sign extraction

(information layer) is shown in Figure 3.4.
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Figure 3.3: The hardware prototype of the Doppler radar vital signs measurement

system.

3.3.1 Sensor Layer

The sensor layer generated a single-tone carrier signal that was transmitted to the

target to gather the desired phase information [Lin92]. The key building blocks

used in the sensor system are shown in Table 3.1. The radar sensor system was

designed using a homodyne transceiver architecture integrated on a Rogers 4350

laminate for enhanced radio frequency (RF) performance. In this design, the

sensor layer was implemented using a voltage-controlled oscillator (VCO). The

single-tone signal produced by the VCO was divided by a balun into two com-

ponents: one component was transmitted through a transmitter antenna to the

target, and the second component served as the local oscillator (LO) signal sent

to the demodulator. If the target was moving (e.g., the chest wall of the sub-

ject), then the single-tone carrier signal was modulated in the phase containing

the movement information of the target, which is a process called nonlinear phase

modulation [GIL,GLF12]. Although a free-running VCO was used in this design,

coherent demodulation was achieved because the transmit signal and the LO sig-

nal arrived from the same signal source. The phase noise of the VCO does not
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affect sensitivity in noncontact vital-signal measurements, because of the range

correlation effect [DBL04]. Two patch antennas were specifically designed for use

in this radar sensor system. The total transmission power was −10dBm (0.1mW).

Table 3.1: Building blocks of the radar-sensing system

Blocks Manufacturer Specification

VCO Hittite 2.25-2.5GHz; Pout: 4.5dBm

Demodulator Skyworks RF/LO: 0.4 3GHz; Gain: 1.2dB

LNA Hittite 2.3-2.5GHz; NF: 1.7dB; Gain: 19dB; P1dBout: 6dBm

Gain Block RFMD Gain: 12dB; P1dBout: 11dBm

BPF Johanson Pass band: 2400 2500 MHz

Op Amp Maxim IC Bias: 3V; GBW: 3 MHz

Controller TI Bias: 3V; 10-bit ADC

3.3.2 Pre-processing Layer

Figure 3.4: The framework of signal demodulation in a non-contact vital sign

monitoring system.

The preprocessing layer was an RF receiver that received the signal from the

sensor layer and down-converted it to baseband I/Q signals. A low-noise am-

plifier (LNA) was placed at the front end of the preprocessing layer to ensure a

favorable noise figure for the receiver chain. The LNA also provided a 19-dB gain
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to boost the weak signal reflected from the moving target. A ceramic band-pass

filter (BPF), as shown in Table 3.1, followed the LNA to block the out-of-band

interference. This is critical because an abundance of strong interference is present

in the air (e.g., 900-MHz cellular signals and 5.8-GHz WiFi signals). The filtered

signal was further boosted by a gain block to reach a sufficient power level for

powering the RF port of the demodulator. A quadrature demodulator converted

the received signal to baseband I/Q signals, which were amplified by the baseband

operational amplifier (Op Amp). The Op Amp was configured with a differential

input structure and the baseband gain was determined using the feedback of the

amplifier. The Op Amp had a gain bandwidth product of only 3 MHz. There-

fore, the Op Amp also served as a low-pass filter that preserved the low-frequency

vital-sign signals and blocked any interference. The baseband output was digitized

using a 10-bit analog-to-digital converter integrated in a microcontroller. After

collection using an on-board data acquisition module, the digital baseband I/Q

signals were transmitted to a computer for phase demodulation.

3.3.3 Modeling Layer

In the I(t) and Q(t) domain, samples of the I/Q signals lie on an ellipse. So

the function of the modeling layer formulates the I/Q signals as an elliptic curve

fitting problem and reconstruct radar signal by finding six parameters to represent

the ellipse, A,B,C,D,E,G1. An ellipse is a special case in conic curves which

can be described by:

F (x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey +G = 0, (3.7)

with one constraint:

B2 − 4AC < 0, (3.8)

1For simplicity, we will use A ∼ G to represent A,B,C,D,E,G
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where (x, y) are simplified representative coordinates in I(t) and Q(t) space.

To solve the elliptic curve fitting problem from samples of the I/Q signals,

we propose `1 minimization with LMI relaxation. This will be described in the

next section. The radar signal parameters (i.e. AI , AQ, φ0, DCI and DCQ) that

describe the transmitted and received signals are derived from the six elliptic pa-

rameters. The full derivation from elliptic formulation to radar signal parameters

can be found in the submitted manuscript. After solving LMI problem and find-

ing six elliptic parameters, the five radar signal parameters (AI , AQ, φ0, DCI and

DCQ) can be calculated using the equivalences below.

DCI =
2CD −BE
B2 − 4AC

, (3.9)

DCQ =
2AE −BD
B2 − 4AC

, (3.10)

AI =

√
AE2 + CD2 +GB2 −BDE − ACG

(B2 − 4AC)[
√

(A− C)2 +B2 − (A+ C)]
(3.11)

AQ =

√
AE2 + CD2 +GB2 −BDE − ACG

(B2 − 4AC)[−
√

(A− C)2 +B2 − (A+ C)]
(3.12)

φ0 =
1

2
cot−1(

A− C
B

) (3.13)

3.3.4 Information Layer

The transmitted signal I(t) and received signal Q(t) models were recovered with

AI , AQ, φ0, DCI , and DCQ to increase the accuracy of respiration and heartbeat

signal extraction. Chest wall displacement x(t) was identified using the infor-

mation of gain imbalance (AI/AQ) and phase imbalance (φ0) derived from the
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aforementioned signals. The Gram-Schmit procedure [Bjo67] was used to recon-

struct (I(t), Q(t)) input.

 I ′(t)
Q′(t)

 =

 1 0

− tanφ0
AI

AQ cosφ0

 I(t)

Q(t)

 . (3.14)

The reconstructed baseband signal is (I ′(t), Q′(t)):

I ′(t) = AI cos(
4πx(t)

λ
) +DCI , (3.15)

Q′(t) = AI sin(
4πx(t)

λ
) +

AIDCQ
AQ cosφ0

− tanφ0DCI . (3.16)

Then we can demodulate heart beat and respiration related information, x(t), by

the arctangent formula directly:

x(t) = arctan[
Q′(t)− AIDCQ

AQ cosφ0
+ tanφ0DCI

I ′(t)−DCI
]. (3.17)

Spectral analysis of the demodulated time-variant chest wall movement x(t)

was performed to extract two prominent spikes: respiration (low frequency but

high amplitude in chest wall movement), and heartbeat (high frequency but low

amplitude in chest wall movement). Two band-pass filters with known knowledge

of the normal respiration and heartbeat frequency distributions were applied to

extract both signals simultaneously (for respiration detection, the BPF was set

between 0.05 Hz and 0.5 Hz, and for heartbeat detection, the frequency range

was set between 0.5 Hz and 2.5 Hz). Therefore, these BPFs covered ranges of 330

respirations per minute (RPM) and 30150 beats per minute (BPM). The breath

and heart rates were determined based on the maximal peak derived from fast

Fourier transform by using the Hanning window, and were rounded to the nearest

integer to represent the estimated breath and heart rates.
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3.4 `1 Minimization with LMI Relaxation to Solve the El-

liptic Fitting Problem

3.4.1 Preliminary: Model Parameters Identification

There are five unknowns in the radar signal model, (AI , AQ, φ0, DCI and DCQ).

There are two potential methods to identify these unknowns. The first method is

based on statistical machine learning [Bis06]. Given a set of labeled inputs, x(t),

statistical learning can build up the relationship between unknowns in the model

and input signals. When the relationship model is established, it can estimate the

values of unknowns with any arbitrary input, x(t). Unfortunately, this method will

fail in this application because the Doppler radar signal model is time-varying and

non-stationary, which conflicts with the precondition of most of machine learning

methods [RW06]. The second method estimates model parameters based on the

signal model Eq. (3.5) and Eq. (3.6) with partial pre-calibration. It is assumed

that a prior calibration can be performed on the system such that gain imbalance

(the ratio of AI and AQ) is 1 and phase imbalance (φ0) is 0. Therefore, the I/Q

channel signals will become:

I(t) = A0 cos(
4πx(t)

λ
) +DCI , (3.18)

Q(t) = A0 sin(
4πx(t)

λ
) +DCQ. (3.19)

In this form, there are only three parameters, A0, DCI and DCQ. Note that

pairwise samples, I(n) and Q(n), will stay on a circle whose center is (DCI , DCQ)

and radius is A0 because

(I(t)−DCI)2 + (Q(t)−DCQ)2 = A0
2. (3.20)
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It is feasible to fit all samples on a circle via least squares optimization [ZRV12]

and then identify these three unknowns. However, this method is not suitable

for automated monitoring applications since it requires calibration of gain/phase

imbalance. It is impossible to have a pre-fixed calibration for perfect imbalance

compensation in practice.

3.4.2 `2 Minimization Based Fitting

In this work, we attempt to build up the I/Q signal model directly from Eq. (3.5)

and (3.6) and demodulate the phase accurately without precalibration.

Given a set of n measurements (I1, Q1), (I2, Q2), ..., (In, Qn), there is an ellipse:

arg min
A∼G

∑n
i=1 ‖F (Ii, Qi, A ∼ G)‖22

s.t. B2 − 4AC < 0
(3.21)

where the function F (x, y, A ∼ G) is defined as the algebraic distance of a point

(x, y) to an ellipse parameterized by A ∼ G.

With the result from Eq. (3.21), we can use Eq. (3.9) - (3.13) to calculate the

five parameters in the signal model from the values of A ∼ G.

We can see that Eq. (3.21) is in a form of quadratically constrained least

squares (min-`2). In general, it is a NP-hard problem [BV04] and impossible

to obtain the global optimal solution. Fitzgibbon et al. [FPF99] transferred the

quadratic inequality constraint, B2−4AC < 0, into an equality constraint, 4AC−

B2 = 1, under the assumption that all the points (x, y) are close to an ellipse and

all distances F (x, y) are close to zeros:

arg min
A∼G

∑n
i=1 ‖F (Ii, Qi, A ∼ G)‖22

s.t. 4AC −B2 = 1.
(3.22)

In this way, the formulation in Eq. (3.22) is well-posed and can be solved by
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Lagrange regularization and eigenvalue decomposition [FPF99]. There are also

some research work under the similar assumption above [HF98,SCH12]. However,

this method will suffer from the actual scattered data for two reasons. Firstly,

when data is noisy and F (x, y, A ∼ G) is relatively large, the equality constraint

in Eq. (3.22) will not be equivalent to the inequality constraint in Eq. (3.21).

Secondly, it is well-known that `2 minimization based fitting is sensitive to outlier

or sparse measurement errors.

According to compressed sensing theory [Don04] developed in recent years,

there are miscellaneous applications indicating that min-`1 based fitting is more

robust to outliers or errors than min-`2 based fitting [CRT06, WYG09, XZS12].

Inspired by this, we consider using min-`1 for signal model identification as follows:

arg min
A∼G

∑n
i=1 |aiA+ biB + ciC + diD + eiE +G|

s.t. B2 − 4AC < 0.
(3.23)

Eq. (3.23) is an `1 minimization problem with a non-linear constraint and even

harder than the quadratically constrained least square problems in Eq. (3.21).

3.4.3 Lower-bound and Linear Matrix Inequality (LMI) Relaxation

In this section, we introduce the method to solve Eq. (3.23) by lower-bound and

linear matrix inequality (LMI) relaxation. There are two relaxation steps to solve

Eq. (3.23). Firstly, we use the upper bound relaxation to change the objective

function. By defining an upper bound distance ti for each sample (Ii, Qi), (i.e.,

|F (Ii, Qi, A ∼ G)| ≤ ti), we can have the problem with a linear objective function:
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arg min
A∼G,t

∑n
i=1 ti

s.t. F (Ii, Qi, A ∼ G) ≤ ti,

−F (Ii, Qi, A ∼ G) ≤ ti,

ti ≥ 0, i = 1, · · ·, n

B2 − 4AC < 0.

(3.24)

By now, the new problem formulation in Eq. (3.24) is still a non-convex

problem and unsolvable. Here we apply LMI relaxation by adding a couple of

lifting variables and constraints. More specifically, let v = [1, A,B,C,D,E,G]T

be a basis to build a moment matric, M , by v × vT � 0:

M =



1 A B C D E G

A A2 AB AC AD AE AG

B AB B2 BC BD BE BG

C AC BC C2 CD CE CG

D AD BD CD D2 DE DG

E AE BE CE DE E2 EG

G AG BG CG DG EG G2



=



1 y1 y2 y3 y4 y5 y6

y1 y11 y12 y13 y14 y15 y16

y2 y12 y22 y23 y24 y25 y26

y3 y13 y23 y33 y34 y35 y36

y4 y14 y24 y34 y44 y45 y46

y5 y15 y25 y35 y45 y55 y56

y6 y16 y26 y36 y46 y56 y66


� 0,

(3.25)

where
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y1 = A, y2 = B, y3 = C, y4 = D, y5 = E,

y6 = G, · · ·, y22 = B2, · · ·, y13 = AC, · · ·.
(3.26)

Note that a 48 × 1 unknown, y, and a linear matrix inequality constraint,

M � 0, are introduced here. As a consequence, we can rewrite the formulation in

Eq. (3.24) as:

arg min
y,t

∑n
i=1 ti

s.t. F (Ii, Qi, y1 ∼ y6) ≤ ti,

−F (Ii, Qi, y1 ∼ y6) ≤ −ti,

ti ≥ 0, i = 1, · · ·, n

y22 − 4y13 < 0

M � 0.

(3.27)

Note that the moment matrix M is symmetric and positive semidefinite, and

the formulation in Eq. (3.27) is convex and can be solved by semi-definite pro-

gramming [BV04]. Therefore, we have a feasible solution to identify the signal

model with the five unknown parameters.

3.5 Evaluation

Experimental sets were designed to validate the performance of the system. First,

an actuator was employed as a controlled subject for a movement measurement

test. Second, a pilot study was conducted on 15 subjects to measure vital signs,

including heart and respiratory rates. Third, `1 minimization with LMI relaxation

was confirmed to be more robust than `2 minimization with environmental noise

when using simulated data as a test bench.
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3.5.1 Evaluation of the Self-calibration Function in a Controlled En-

vironment

Figure 3.5: Experiment setup for measuring the movement of a controlled actuator

The performance of the noncontact radar sensing system was tested in this

experiment. To evaluate the accuracy of the proposed system, a programmable

actuator was used to provide controlled motions. As shown in Figure 3.5, a linear

actuator (ZABER TNA08A50) and a linear translational stage (ZABER TSB28-

1) were placed 1 m from the Doppler-radar motion-sensing system. The actuator

was programmed to perform a series of standard sinusoidal movements, and the

radar system measured and demodulated the actuator motion. To mimic the

chest wall movement (by imitating the respiration and heartbeat of humans), an

actuator was programmed to perform a simple harmonic back-and-forth motion

toward the fixed position radar. The minimal and maximal displacement was

set from 0.1 cm to 4 cm, and the movement frequency changed from 0.2 Hz to

2Hz [GWC97,RS89]. The normalized root mean squared (NRMS) error was used

to quantify the measurement error.

NRMS =

∑n
i=1 dist(i)

n · A
, (3.28)

where dist(i) is the distance from the measured point to the sinusoidal curve, and
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A is the amplitude of movements.

The measured motion was consistent with the presetup harmonic motion of

the linear actuator, and the RMS error was less than 1%. To clearly represent the

residual change that occurred when using different magnitudes and frequencies,

the results are plotted in Figure 3.6. Based on this figure, the average measure-

ment error of the Doppler radar sensing system was less than 3%. This indicates

that the measurement error was uncorrelated with movement frequency (in this

frequency range) but strongly associated with the movement magnitude: the larg-

er the amplitude of motion, the smaller the measurement error was.

Figure 3.6: The residual surface of sinusoidal actuator movement measurement

with variations in amplitude and frequency.

To demonstrate the benefits of self-calibration, the same experiment was con-

ducted in three environments: a lab environment (results presented previously),

an outdoor environment, and a corridor on campus. The radar system was ini-

tially set up in the lab environment and then moved to the other two locations.

These two locations were randomly chosen to demonstrate the portability of a

self-calibrating radar. The results in Table 3.2 demonstrate the superiority of this

proposed modeling layer process. Without enabling self-calibration, when the op-

erating environment changed from the initial location, the NRMS error increased.

However, when enabling self-calibration, the RMS error remained less than 1%.
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Figure 3.7: Comparison of raw and demodulated signals and their respective

spectrum analysis for extracting respiration and heartbeat signals

The highest error occurred in the corridor environment because numerous fac-

tors cause multipath radar transmission in the long, narrow hallway. Although

the proposed methods can be used to calculate radar parameters in real time,

manual calibration performed more favorably. According to Table 3.2, manually

precalibrating the radar in a lab environment was more effective than using the

proposed method. This is because self-calibrated parameters always override a

preset default and manual calibration is typically more efficient than fitting-based

methods. Therefore, if a radar system must be operated to measure distance

with high accuracy, then manual calibration may still be required. However, the

relatively slow and periodic respiration and heartbeat signals that are identified

are not required to exhibit exact chest-movement displacement. Instead, extract-

ing the periodic changes is more critical than determining the absolute distances.

Furthermore, using a radar that is adaptable to various environments is desirable.

3.5.2 Human Vital-Signs Monitoring with 15 Subjects

Human vital signs derived from radar modulated signals were measured in this

experiment. Fifteen subjects were recruited and each subject sat in front of the

Doppler radar sensor in a lab environment, as shown in Figure 3.8. The distance
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Table 3.2: Error estimation of the radar measurement under three different envi-

ronment

NRMS(%) Lab Env Outdoor Corridor

with Self-calibration 0.78 0.87 0.92

w/o Self-calibration 0.72 6.21 9.43

Figure 3.8: The Doppler radar measures vital signs from a subject.

between the subject and the radar sensor varied according to the person. When

using the self-calibrating mechanism, tuning the radar for each subject was unnec-

essary. Each measurement lasted for 120 s, and each subject was tested 3 times.

To obtain the breath rate ground truth, a video camera was used to record the

chest wall movement and QPS ECG sensor [Car] waveform, and the number of

breaths and heartbeats were counted manually within 120 s. Figure 3.7 shows

the radar measurements and demodulation results for one subject analyzed using

the noncontact vital sign measurement system. Both the raw and demodulated

data were visualized. A substantial gain imbalance in I/Q signals was observed.

Spectral analysis was applied to extract respiration and heartbeat signals. To val-

idate the necessity of the signal-processing method, spectral analysis of the raw

radar signal was conducted. In this figure, the Q channel with a phase similar to

the demodulated chest wall displacement was chosen. The frequency components
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of respiration and heartbeat were prominent in the demodulated data spectrum.

The demodulated signals were compared with the respiration and heartbeat move-

ments of the subject and were determined to be matched with the ground truth

data. The detailed characteristics of the 15 subjects are presented in Table 3.3.

Respiration was measured using RPM and heartbeat was measured using BPM.

Both respiration and heartbeat signals were extracted and identified using

spectral analysis. As shown in Figure 3.7, extracting these signals from raw data

is difficult. Although respiration can be identified within a range of frequencies

(the largest peak in the figure is wider than the other peaks), the heartbeat signal

was barely identifiable. In addition, the amplitude of the peak of respiration

was much smaller than the spectrum of the demodulated displacement. Voltage

rather than centimeters was used to represent the displacement because the radar

was not used to measure precise chest wall displacement; instead, the periodic

phenomenon of the displacement was identified.

3.5.3 Empirical Comparison Between `1 Minimization with LMI Re-

laxation and `2 Elliptic Fitting

A simulated data set was developed to quantify the performance of the proposed

demodulation method. The data set was simulated using known ellipses with noise

and outliers. Specifically, the simulated dataset was divided into two classes. One

class comprised the simulated data with outliers, and the distance from the outliers

to the ellipse ranged up to 50% of the semimajor axis. The other class comprised

simulated data with noise, for which the signal-to-noise ratio (SNR) varied from

0.01 to 0.5. In the experiment, the proposed algorithm was applied to perform

ellipse fitting on the test bench. The Fitzgibbon `2 minimization method [FPF99]

was used for comparison. First, the performance of the algorithm when using the

outlier data set was evaluated. Figure 3.9(a) and Figure 3.9(b) show an example

of ellipse fitting using the traditional `2 minimization method and the proposed
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`1 minimization method, respectively. The blue dots represent the clean data

(zero offset), the red dots represent the outliers, the black curve is the fitting

result, and the red dashed curve is the ground truth. Based on this example (15%

outliers), the `1 based algorithm was robust to the red outliers, and the fitted

ellipse matched the clean data (Figure 3.9(b)). By contrast, the `2 based method

was affected by the outlier points, and an obvious mismatch existed between the

fitted ellipse and the ground truth (Figure 3.9(a)).

(a) `2 based method (b) `1 based method

Figure 3.9: An example of the fitting results on outlier dataset for both algorithms.

The outlier percentage is 15% and SNR=20.

Both methods with different outlier percentages, ranging from 5% to 40%,

were also evaluated. For simplicity, the overlap area between the fitted ellipse

and ground-truth ellipse was used to evaluate the matching accuracy [HC11].

Figure 3.10 illustrates two accuracy curves corresponding to these two strategies,

and shows that the `2-based method was sensitive to outliers, whereas the `1 based

method tolerated up to 20% of the outliers.

Second, the performance of the proposed system was tested using a set of

data containing Gaussian noise. Figure 3.11 illustrates the stability of the `1 and

`2 algorithms with noise. The SNR ranged from 10 to 100. As the noise levels

increased, the deviation from the ground truth for both the algorithms increased

(the red ellipse). However, `1 was still more favorable than `2 at all SNR levels.
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Figure 3.10: Two matching accuracy changing curves with different outlier per-

centages use `1 based method versus `2 based method.

Figure 3.11: Fitting results on noisy dataset for two algorithms. SNR ranges from

10 to 100. The first row (from (a) to (f)) is the fitting results of the `2 based

method, and the second row (from (g) to (l)) is the fitting results of the `1 based

method. In each figure, the red dashed curve is the ground truth and the black

solid curve is the fitted curve.
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3.6 Conclusion

Vital signs (i.e., heartbeat and respiration) are crucial physiological signals that

are useful in numerous medical applications. The process of measuring these

signals should be simple, reliable, and comfortable for patients. In this paper, a

noncontact self-calibrating vital signal monitoring system based on the Doppler

radar is presented. The system hardware and software were designed with a

four-tiered layer structure. To enable accurate vital-sign measurement, baseband

signals in the radar sensor were modeled and a framework for signal demodulation

was proposed. Specifically, a signal model identification method was formulated

into a quadratically constrained `1 minimization problem and solved using the

upper bound and linear matrix inequality (LMI) relaxations. The performance

of the proposed system was comprehensively evaluated using three experimental

sets, and the results indicated that this system can be used to effectively measure

human vital signs.
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CHAPTER 4

Augmented Visualization

4.1 Introduction

Excessive ultraviolet radiation is an important issue in skin healthcare. Over-

dosed ultraviolet exposure can lead to sunburn and even skin cancer, the most

common type of cancer in the United States [fac]. One in five Americans develops

skin cancer in lifetime [Rob05], more than incidences of 3.5 million skin cancer

diagnoses annually [RWH10]. According to a report [HFW03], skin cancer is also

the most costly of all cancers to treat.

Figure 4.1: UV sensing and visualization system prototype.
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UV Monitoring by 
Wearable Sensor

Modeling of Skin 
Color and UV Dose

UV Damage 
Visualization

Figure 4.2: Three components in the UV sensing and visualization system: UV

sensor, UV-Skin modeling, and Damage visualization.

Overexposure to sun radiation, especially within the ultraviolet region of the

spectrum, is the predominant risk factor for the development of skin cancer [HM-

C04]. While a moderate amount of sunlight is helpful to synthesize vitamin D,

excessive UV radiation exposure can increase the chance of skin cancer and cause

severe eye injuries. A field study [HGR94] investigated UV exposure of six different

outdoor activities (Tennis, Sailing, Swimming, Walking, Golfing and Gardening)

in seven anatomical sites over two consecutive days. The result of high amount

of UV exposure verified the necessity to monitor UV radiation during outdoor

activities in order to avoid skin and eye damage.

The effect of UV exposure can first darken and tan [tan] surface skin. When

UV radiation is abundant, The skin cells in the top layer, Epidermis, efficiently

produce melanin, a pigment giving skin its natural color. Therefore, skin color

change caused by sunburn is widely used as an indicator of the degree of UV expo-

sure. Unfortunately, it is always too late to apply protection when overexposured.

Therefore, a UV real-time monitoring and warning system is desirable to notify

users before they get sunburned.

In this paper, we present the design of a wearable UV sensing and visualization

system for outdoor skin protection, as shown in Figure 4.1. There are three main

components in the system. UV radiation monitoring and recording are the first

component. UV index is a commonly accepted parameter for measuring UV
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radiation intensity. Our system uses ML8511 UV sensors to monitor UV index

and record the monitoring results. Since the damage caused by UV is accumulated

over days, the sensor data should be stored in order to make personalized skin

care suggestions. These data can be also sent to doctors for receiving analysis

and feedback. In addition, a skin color model based on four different skin types

was built. We refer preliminary knowledge about human skin to develop the

ultraviolet responsive color model of skin. Thus we can predict and show users

the sunburn visual effects on a variety of skin types. Finally, participants wear

AR glasses in order to see augmented sunburn effects on their body parts. Our

visualization deliberately over-amplifies the effect of overexposure to better warn

users the consequence of overexposure.

4.2 Related Work

There are two types of UV monitoring products in the market. The first type

records accurate measurement with a personal UV meter. The second type pro-

vides a visual warning to users by using a paper wrist strap which will change

color under high UV index.

Personal UV meters [met] are normally designed as accessories on bag or

clothes. Some of them may have small screens to display the current UV in-

dex. The advanced ones can directly connect to computers to exchange recorded

daily UV data. These UV meters let users know a real-time UV index in current

location. The measurement is more accurate than a weather report, which only

provides hourly forecast in a large area. However, the UV meter is not visually

convincing. The best visualization it can achieve is to display a UV index on a

small screen. However, users have little idea about what the UV index means and

how serious the damage will be.

A commercial available product uses a paper wrist strap [wri] to warn users
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by visual effect. It changes color with UV index so that users will be notified

when the UV index is high. However, it is disposable and becomes non-resuable

once triggered by high UV index. Thus users have to prepare several wrist straps,

which can be inconvenient. Moreover, it can neither provide accurate UV data,

nor record daily UV dose for long term analysis.

These attempts confirm the need of an effective personalized UV monitoring

and visual notification system. They inspire us to come up with a new system

which can monitor UV dose by wearable sensors, analyze with skin model, and

exaggerate sunburn effect to notify users to apply protection, such as sunscreen.

4.3 Design Overview

Our system, as shown in Figure 4.2, monitors UV index from sensors, calculates

effective UV dose based on skin model, and finally visualizes UV effects to warn

users. The UV sensitive sensor only provides output voltage corresponding to

UV intensity; thus we have to first derive UV index from the output voltage.

Then, the system accumulates UV radiation information to calculate the effective

dose of UV. After users enter their personal skin information, our system can

choose a proper skin model for the user. With personalized skin model, our

system can better estimate possible sunburn effective skin color. Finally, AR

glass visualizes over-amplified sunburn on the skin in order to warn the user. The

following sections provide more system design detail in hardware, modeling and

visualization.

4.4 UV Monitoring and Visualization System

In this section, we discuss the hardware design of our personalized UV monitoring

and visualization system. The system structure is shown in Figure 4.3. In our
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Figure 4.3: Hardware design diagram.

design, the system consists of three main parts: a wearable UV sensing system,

a skin color computational model and a UV effect visualization glasses. Firstly,

the sensor measures UV intensity and computes UV index. When a Bluetooth

adapter sends UV data from sensors to an AR glasses controller, the computational

model can predict the UV effect on the skin. In the end, our system augments

the results on the AR glasses for users. In the following part, we will introduce

hardware components in detail.

4.4.1 UV Sensor System

We collect UV data using portable sensors with controlling and wireless transmis-

sion system.

The ML8511 sensor in Figure 4.4 is a photo diode that measures UV intensity

by thin-film Silicon-On-Insulator (SOI) Technology. The additional filter further

improves the accordance with the erythema action spectrum curve of the human

skin. Its current-to-voltage conversion amplifier is comprised of an operational

amplifier and a resistor, which provides output voltage proportional to electrical

current value. The output voltage can be sent directly to the analog-to-digital
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Figure 4.4: ML8511 UV sensor on a patch.

Table 4.1: UV indices correspond to the sensor and ADC outputs (Vcc=3.0V).

converter (ADC), where the voltage is converted into a digital signal. The resulting

digital signal is processed by the Atmel ATmega128 microcontroller to lookup the
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current UV index from Table 4.1. Finally, it sends UV index data to the RN-24

Bluetooth adapter every 15 seconds.

Figure 4.5 shows the spectral sensitivity characteristics of the photo diode in

ML8511. Due to its SOI structure, this silicon photo diode is highly sensitive and

selective only in the UV-A (320 to 400 nm wavelengths) and UV-B (280 to 320

nm wavelengths). This property is useful in our UV measurement, as UV-A and

UV-B are the UV radiations which do damage to the human skin. The sensor

producer also takes different wavelength’s spectral sensitivity into account, thus

providing output voltage after correction.

Figure 4.5: Spectral sensitivity characteristics of ML8511. It is highly sensitive

and selective to UV-A and UV-B.

The calculation of the UV index is: UVI = d(ADC − 320)/5e ∗ 0.2. In the

darkness, the sensor output is 0.993V and ADC output is 320. Therefore, we

should subtract 320 from the current ADC output and scale it. This equation

determines that our UV index calculation precision is 0.2 unit.

Furthermore, we should consider the effect of incidence angle. If the sunshine

is not vertical to the sensor, the UV measurement will be less than the real value.

According to our experiment Table 4.2, we find the incidence angle less than 20
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Table 4.2: Sensor output for different incidence angles.

Incidence angle Sensor output voltage ADC output Corresponding UV index

0° 1.811 574 10.0

20° 1.731 550 9.2

45° 1.473 472 6.8

degree is acceptable. As a result, we put two UV sensors on the user and take the

largest measurement value of the measurements.

4.4.2 Augmented Reality Glass

The visualization part is made possible by an augmented reality glasses. In our

system prototype, we choose Epson Moverio BT-100, a light-weighted augmented

reality glasses shown in Figure 4.6. This pair of AR glasses has see-through display

for each eye; thus we can display a sunburn effect layer on top of the skin. Its

head display connects with a controller running Android system. Thus, it is easier

to develop our client app and later port to other hardwares also running Android

system. Moreover, a head mounted camera is necessary to fetch the user’s skin

image and then visualize the UV effect. As the glasses is not equipped with a

camera, we add a CMOS Camera Module (resolution 728x488) which connects

with the glasses controller. The user can touch the trackpad on the controller

to interact with the glasses. In the future system implementation, we aim to

take advantage of the lighter, more wearable Google Glass for better wearing

experience.
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Figure 4.6: Epson Moverio BT-100 AR glass with a camera.

4.5 Skin Modeling and Visualization

The glasses controller receives UV index data via Bluetooth. According to the

user skin model, the client app processes UV index data and generates an AR

layer of sunburn effect visualization on the skin. Thus, the user can be warned to

take sunburn protection in time.

4.5.1 Modeling

In order to predict and visualize the sunburn effect on skin, we need preliminary

knowledge about human skin, and then develop the ultraviolet responsive color

model of skin.

4.5.1.1 Damaging UV Radiant Flux Calculation

We calculate damaging UV radiant flux based on McKinlay-Diffey erythema ac-

tion spectrum curve shown in Figure 4.7. The calculations are weighted in favor

of the most sensitive UV wavelengths to human skin. We derive the UV index by

integrating human body erythema action spectrum and the intensity of solar UV

radiation at different wavelengths.
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Figure 4.7: McKinlay-Diffey Erythema action spectrum.

As seen in McKinlay-Diffey erythema action spectrum curve, skin damage due

to sun exposure is dependent on wavelength over the UV range (295 to 325 nm),

as the shorter wavelength can cause around 30 times damage of the longer one’s.

UV dose =
∫ T
0

∫ 400

190
Wn ∗ Eλdλdt

This equation calculates the effective dose of UV in general form. To get the

effective irradiance, we integrate the multiplication of weighting of the erythema

action spectrum (Wn) and the solar spectral irradiance radiated on the surface

(Eλ) in the UV radiation hazard bandwidth (190 to 400 nm). The time integral of

the effective irradiance is called effective dose; the unit of effective dose is W/m2.

Original Simulate 30 min 
exposure

Simulate 1 hour 
exposure

Simulate 2 hours 
exposure

Figure 4.8: Normal arm skin color and the sunburn effect visualization after 30

mins, 1 hour, and 2 hours.

The studies of the erythemal influence are frequently based on the minimum

dose of UV erythemal radiation, which can produce a noticeable reddening on
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human skin. This dose is known as the MED (minimum erythemal dose) and

is always related to a specific skin type. If the UV irradiance is 1 MED/hour,

it should take an hour to receive the minimum erythemal dose when a person is

exposed to this irradiance. 1 MED corresponds to a total dose of 210 J/m2. Thus

1 MED/hour = (210 J/m2)/3600 s = 58.3 mW/m2 = 2.33 UVI.

4.5.1.2 Skin Type

People with different skin types skin react differently towards UV exposure. At

present, the majority of countries has adopted four skin types for tanning capacity,

on the basis of COST-713 [713] recommendations. The principal characteristics

of these skin types indicate the tolerable MEDs and maximum exposure time per

UVI, which are defined by the DIN 5050 standard in Table 4.3.

For example, an unprotected type 3 skin person will start to have sunburn in

just 20 minutes, under UVI 10 sun exposure: [200 (min) / 10 (UVI) = 20 min].

If the same person uses an SPF 30 sunscreen, the time will be extended to 600

minutes, or 10 hours: [20 (min) x 30 (SPF) = 600 min].

Table 4.3: Skin types with the corresponding tolerated MEDs and the maximum

exposure time.

Color, burning and tanning in the sun Tolerable MEDs Max exposure

White, always burns, never tans 2 hecto J/m2 67 min/UVI

Yellow, usually burns, sometimes tans 4 hecto J/m2 100 min/UVI

Yellow, sometimes burns, usually tans 5.75 hecto J/m2 200 min/UVI

Black, rarely burns, always tans 8.5 hecto J/m2 300 min/UVI
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4.5.1.3 Skin Color

Every person has a different response to sunburn, so there exists no model that

fits perfectly for everyone. Instead we build models based on four skin types and

positive correlation of the dose - response curve.

Based on skin type and UV dose, we can predict when the user will start to

sunburn on the skin. Human’s skin has two kinds of colors: constitutive and

facultative [col]. Constitutive skin color (see the underside of the arm) is the

natural, genetically determined color of the epidermis. It is hardly influenced

by ultraviolet light or hormone exposure. As the result, our research focuses on

facultative skin color which, in contrast, results from exposure to UV light and

other environmental factors. Tanning, for instance, changes the composition of

melanin in the skin and increases the amount and size of melanin produced by

melanocytes. Thus, facultative skin is normally darker than constitutive skin.

In daily life, we assess the level of severity of sunburn damage based on the

unusual ”redness” we see on the skin. According to medical researches [Lee95],

the redness of the skin is increased by UV-induced erythema. Moreover, another

research [WEM90] indicated positive correlations between UV dose and increase

of redness. Also, in lightly pigmented skin, the dose-response curves were steep,

whereas in darkly pigmented skin the curves were much flatter.

4.5.2 Visualization

Based on the skin model, our system can visualize sunburn effect on the user’s

arm. However, our visualization is not an exact match or perfect prediction of

sunburn effect. Our primary goal is to bring caution towards possible outcomes;

thus, the visual effect is a bit over-amplified to better warn users.

From our model, we first notice the positive correlations between UV dose and

the increase of redness. From experimental data of [WEM90], we approximate
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their correlation as linear relationship.

In real life setting, the UV index will change with user’s activities. For example,

a user may only stay outside for 1 or 2 minutes and then go indoor. Under these

circumstances, we should not disturb the user by alerting unnecessary sunburn

information. Thus, we use method mentioned before to integrate UV index and

UV dose every 5 minutes. Based on average UVI, we can predict how long it will

take to sunburn.

In order to analyze skin color and increase redness, we introduce HSV, a com-

monly chosen color model in computer vision research and application. HSV

stands for Hue, Saturation and Value. The Hue channel obtains robustness to

lighting changes or removing shadows. This property is useful for us to find and

analyze a specific range of color. In this case, using HSV in skin color analysis is

better than using the normal RGB color space. During our experiment on partic-

ipants’ normal skin colors, we find the Hue channel ranges from 0 to 43 and 338

to 360 (maximum value 360). We also collect mild sunburn photos, and find the

Hue channel ranges from 0 to 12 and 355 to 360. We can see the Hue range in

Figure 4.9. In order to present sunburn starting effect, we use a fitting equation

to convert Hue channel: ((HueSunburned + 6) mod 360) / 17 = ((HueNormal + 22)

mod 360) / 67. We can use this relation to calculate the sunburn effect of Hue of

skin.

Normal Skin Hue

Sunburn Skin Hue

Figure 4.9: Hue range of the normal and sunburned skin.
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Mild and heavy sunburn mainly differ from their Value channel, which takes

charge of skin brightness. The heavier the sunburn is, the darker the skin is.

Thus, from linear correlation of dose-response, we can decrease Value channel by

2% for every 50mJ/cm2 dose.

Figure 4.8 is an example of sunburn warning effect. The normal arm is near

yellow-brown. When we apply the fitting equation on Hue channel, the arm turns

out to be red and similar to mild sunburn. After this, we decrease Value channel

based on a UV dose to show different levels of sunburn during different time

periods under this UV.

After the user sees sunburn effect layer, our system provides detailed informa-

tion in case the user hopes to learn more to take protective actions.

4.6 Evaluation

After implementing our system, we evaluate the system with participants for

feedback and design improvement suggestion. A total of 9 healthy UCLA under-

graduates took part in the experiment. Before the experiment, we debriefed our

procedure to participants. We also told them that we would only collect UV data

from sensors, without recording any private information from our camera.

Participants’ personal information is needed to select a proper skin model. As

different users have different skin types, their ultraviolet tolerance may also be

different. When a user logs on to our system first time, we will ask the user for

his/her skin type. The user can look up for skin type from Table 4.3. In order

to better monitor UV intake for individual users, we recommend users to confirm

their skin information with their doctors.

We encourage users to take sunscreen in order to protect themselves. Thus

our model needs to consider SPF (Sun Protection Factor) of sunscreen to better

predict the UV effect. Every time a user launches our client app, we will provide
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local weather forecasts (from Yahoo! Weather API). Based on the UV index,

we will recommend whether the user should use sunscreen and which SPF is

necessary. If the user decides to use sunscreen, he/she will need to enter its SPF

in our system before he/she uses.

4.6.1 Result Analysis of UV Monitoring

Figure 4.10: UV index monitoring results from the local weather forecast(green)

and our wearable sensor(blue).

Figure 4.10 shows UV index monitoring result in one day. The local weather

forecast (green line) can best provide an hourly report. In contrast, our sensor

makes measurement every 15 seconds. Higher sample rate can provide better

measurement of UV dose during user daily activities. Moreover, the forecast

curve is an approximate result of outdoor UV index across a large area, so the

forecast is not applicable to each person’s activity range. Most importantly, as

we can see in the plot, the user may not always stay outside, so the UV index

forecast cannot accurately indicate cumulative UV dose. These are the reasons to

use wearable UV sensor.
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4.6.2 User Experience of Visualization

We asked each participant to wear our system for two days and give us their

feedback. During the first day, we only equipped our UV sensor on the user’s

arm and allowed him/her to check the UV index on our website. We sent a

questionnaire to the user for feedback at the end of that day. On the next day,

we provided AR glasses to the user for the visualization functionality. At the end

of the day, we sent the same questionnaire to the user; thus we can compare the

subjective experience with and without visualization.

4.6.2.1 Questionnaire.

(Q1) I can better protect myself under sun with this system.

(Q2) The interface is easy to interact with.

(Q3) The hardware system is heavy and cumbersome.

(Q4) I feel my skin is healthier and less likely to burn.

(Q5) (Only for AR glasses) The visualization is effective to warn me.

(Q6) (Only for AR glasses) The visualization effect disturbs my daily life.

(Q7) (Open Question) It will be great if the system includes this feature:

All these statements were answered with a 9-point Likert scale [Lik32], where

1 = strongly disagree, 3 = disagree, 5 = neither agree nor disagree, 7 = agree,

and 9 = strongly agree.

Figure 4.11 shows the average response from participants in both with and

without AR glasses settings. We use t-test for a population mean for AR glasses

setting. The response without AR glasses is also on the plot for comparison. Our

null hypothesis is µ=5, which means that according to our participants’ feedback,

our visualization system is unlikely to have an obvious positive effect on others.

Our alternative hypothesis is µ >5, which means our visualization system has an

obvious positive effect on others. For Q6, as the sample mean < 5, our alternative
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Figure 4.11: The participants’ average responses with(blue) and without(green)

AR glass settings.

hypothesis turns out to be µ <5. We choose 0.05, an often chosen fixed number,

as our significance level.

Q1 (AVG=7, STDEV=1.72, p-value=4.23e-3) reflects the subjective experi-

ence in UV protection. We found that the null hypothesis is rejected due to small

p-value(much smaller than 0.05), which validates our visualization has a positive

impact on UV protection.

Q3 (AVG=5.89, STDEV=1.67, p-value=5.31e-2) reflects users’ consideration

about the weight of the system. The null hypothesis is not rejected, which indi-

cates that users are not particularly worry about the system weight and under-

stand that the finalized solution will use even lighter AR glasses. However, we

can still find p-value is not significantly larger than 0.05, so we need to consider

this problem seriously.

Q4 (AVG=7.44, STDEV=1.56, p-value=1.14e-3) reflects the users’ feeling of

their skin. The null hypothesis is rejected, which indicates that users satisfy with

our system to improve their skin health.

Q5 (AVG=7.22, STDEV=1.83, p-value=1.37e-3) rejects the null hypothesis
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and validates that visualization is an effective warning notification.

4.7 Conclusion

These days, as the Earth’s protective ozone layer gets thinner, ultraviolet (UV)

radiation threat is growing. In addition, getting tanned as a fashion leads people

to wear less clothing, which increases UV intake. Excessive exposure to ultravio-

let will lead to sunburn and even skin cancer. Therefore, neither insufficient nor

excessive exposure is desirable. Although there are tons of UV meters on the mar-

ket, users may have a hard time to understand the unintuitive UV index reading.

Thus, there is a potential demand for a portable system which can keep track

of users’ daily UV exposure dose, visualize possible sunburned consequences, and

provide appropriate skin care recommendations. In this paper, we present a per-

sonalized UV monitoring and notification system. This system can continuously

track UV exposure by wearable UV sensors. It can also visualize the cumulative

UV exposure dose according to a predictive sunburned skin color model. Such

an augmented skin color can provide a warning message to indicate the possible

result of continuous UV exposure. Compared with existing systems, our solution

not only allows users to monitor their daily UV exposure, but also provides an

unobtrusive UV visualization model which effectively warns users to take appro-

priate actions to avoid potential skin damage. This system has been tested on 9

subjects, and the evaluation feedback indicates that our system is promising for

UV monitoring and sunburn prevention.

70



CHAPTER 5

Virtual Reality Based Rehabilitation

5.1 Introduction

Frozen shoulder refers to a condition caused by impaired soft tissues and artic-

ular capsule of the shoulder. It commonly happens to people aged between 40

and 65 years old and it is more likely to appear in female than males [CBH08].

Frozen shoulder severity can be categorized into four stages: Preadhesive, Adhe-

sive, Maturation, and Chronic. In Preadhesive stage (0-3 months), a fibrinous

synovial inflammatory reaction is detectable only by arthroscopy. The patients

usually present with signs and symptoms of impingement syndrome. The main

complaint is pain and minimum deficit in range of motion is detected. Adhesive

stage (4-9 months), the acute synovial inflammation is apparent on physical e-

valuation. Arthroscopic findings demonstrated that the normal spacing between

capsular fold, humeral head and biceps tendon, glenoid and humeral head dimin-

ish significantly. The patient experiences severe pain and loss of motion. Patients

in Maturation stage (10-15 months) and Chronic stage (16-24 months) are treated

as having frozen shoulder problem. These stages are evident by the maturation of

the inflammatory process. The dependent fold is only half of its original size and

adherence between various structures are formed. Eventually, Capsular adhesions

are fully mature and markedly restricted. Clinically, the shoulder is frozen [Bat10].

Patients with frozen shoulder usually accompanied with limitation of range of

shoulder motion and pain. Therefore, the goal of treatment is to restore, retain
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range of their shoulder motion, muscle strength and alleviate their pains [KKW64].

Using Pandol and antiphlogistic medicine or steroid injection can alleviate pains;

however, the effect is very limited for severe frozen shoulder patients. Surgery may

be needed for those patients instead, but both medicine or surgery treatments

require continuous physical shoulder rehabilitation to retain the original function-

ality. Common rehabilitation exercises including shoulder joints stretching and

rotating exercises, such as Codman’s exercise, pulley therapy, finger crawling ex-

ercise, and joint mobilization, should be applied to stretch the adhesive capsulitis

for retaining original shoulder joint mobility.

In addition, appropriate bridge muscle strength training is also required to pre-

vent muscle atrophy [CCH07a]. Bergmark [PKO03] reports that bridge muscles

control the exercise direction of the spinal cord and affect extremities’ movemen-

t. Bridge muscle maintains the balance of the spinal cord; therefore, it allowed

extremities to move, such as shoulders and arms. Appropriate bridge exercises

can effectively strength bridge muscle and provide positive effect on frozen shoul-

der rehabilitation, such as reducing cervical muscle activity and reinforce trunk

muscle strength [Sec]. Hodges and Richard [RM11] confirmed that all movements

involved upper/lower extremities are followed by bridge muscle shrinks. There-

fore, improving muscle strength of the bridge muscle largely affects the recovery

of the frozen shoulder patients.

It is reported that if rehabilitation exercises are transformed into interac-

tive and entertaining games, patients will pay attention to the games and ig-

nore the tedious training repetitions and pains during the rehabilitative exercis-

es [CHY05, CZN05]. By interacting with VR gaming exercises, patients com-

plete standard rehabilitation tasks natural [HKV02]. To design an interactive

and effective rehabilitation environment for frozen shoulder patients, four com-

mon rehabilitative exercises should be included in design: flexion, abduction,

internal rotation, and external rotation [MKP05]. Our proposed virtual reality
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Figure 5.1: Six VR training tasks are grouped based on the rehabilitation targets.

User motions are recorded as trajectories, projected onto 2D plane, and compared

with the ideal path of the corresponding training task. Note that motion start is

marked as a yellow box, end point is marked as a blue box, projected trajectories

is indicated by a blue curve, and the ideal path is marked as a red curve.

(VR) game-based treatments fuses these important exercises together with muscle

strength enhancement practices into three type of games: forearm extension train-

ing, shoulder-elbow interconnection training, and shoulder joint rotation training.

Our study focuses on providing interactive treatments to encourage patients’ par-

ticipation and provides quantifiable monitoring and guiding system to assist physi-

cal therapists to track, design, and adjust training materials. The objective of this

research is to combine virtual reality technology and wireless sensor technology to

develop assessment instrument for self-measurement of the shoulder joint mobility

and situated frozen shoulder rehabilitation system. Our real-time interaction and

feedback design loyally presents the progress made by individual patients in real-

time; therefore, patients can spontaneously inquiry their rehabilitation progress

and understand their goals [KM67].
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Figure 5.2: Virtual reality game-based training system

5.2 Frozen Shoulder Rehabilitation System

The system architecture is composed by VR game-based training task, real-time

sensor system, and assisted daily objects. Patients are required to complete stan-

dard training tasks: flexion, abduction, external rotation, and internal rotation

by interacting with designed VR rehabilitative training games. Six VR training

tasks (Figure 5.1) are designed and categorize into three major exercises: forearm

extension, shoulder elbow, and coordination, and joint rotation. Sensor system

(Figure 5.2) collects patients’ motion data during the game tasks by vision and

inertial sensors. Collected data are stored in cloud repository for further analy-

sis. Physical therapists can use this system to track, design, and adjust training

materials for individual patients. In fact, each training step is adjustable based

on patients’ physical condition. For instance, a simple adjustment is to select an

appropriate game level based on patients’ current shoulder flexion and abduction

condition. A patient is requested to face a wall and raise their hand to the highest

height of the wall for estimating flexion. The same movement but the patient

is requested to stand against to the wall on his/her side in the second time for

estimating the shoulder abduction. Game level can be adjusted based on these

initial measurements.
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5.2.1 Forearm Extension

Two tasks are designed into this exercise mode to train the flexion and abduction

ability of the patient. The first task is called Tracing. In this task, the patient has

to link the targeted object on the left side of the screen to the object on the right

with his/her palm of the affected shoulder. The trajectory from the left to the

right may be horizontal, moving upward from the left and downward to the right,

or moving downward from the left and moving upward to the right. The design

allows the frozen shoulder patient to slowly stretch and extend his/her affected

shoulder. The second task is called Reaching Fruit. In this task, the patient has to

control a virtual palm in the task with his/her affected shoulder so as to reach all

the fruits that appear continuously in the screen. This design allows the patient

with frozen shoulder to lift his/her shoulder as high as possible and to stretch or

extend the affected shoulder in the up, down, left, and right directions.

5.2.2 Shoulder-Elbow Exercise

Three games are designed in this exercise mode to enhance the flexion and abduc-

tion angles of the patient. In the beginning of the game, the patient is asked to

lean his/her affected shoulder against a white wall, start stretching the affected

shoulder, and hold for 10 seconds. Two of the tasks are related to Spiderman and

Jungle Adventure. The player has to move his/her palm to the targeted object

and as the player advances to a higher level of difficulty, he/she will need to lift

his/her hand higher up in order to complete the task. The higher the level of

difficulty, the more scores can be collected. The third game is called the Barman.

The player controls the hand of a bartender in the virtual reality screen and has to

complete tasks like taking the glass, filling it up, and placing it. The task allows

the patient to stretch his/her affected arm against the white wall for 10 seconds.
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5.2.3 Shoulder Joint Internal/External Rotation

Two games are designed in this exercise mode for stretching of the shoulder such

as internal rotation, external rotation, and circumduction. The first task is called

Ladybugs Game. In this task, the patient has to straighten his/her elbow to trace

the motion trail of a ladybug. The second task is called Ship Driving. In this task,

the patient is asked to straighten his/her elbow and turn the rudder clockwise or

anti-clockwise for one full circle, as instructed.

5.2.4 Virtual Tutor

Real-time sensing technology further allow patients to watch their performance in

real-time. Quantified progress results provides patient motivation to get better;

therefore, patients are able to realize how much they have done and how much

they should work on (Figure 5.3). Research showed that score feedback in VR

can positively affect patients’ motivation and have positive relationship with the

improvement of disease [Cov, DeM07]. It is because that patient can actively in-

volve in the self-measurement process and understand their body condition more.

In addition the virtual tutor design let patients quickly examine themselves to see

if they correctly follow the video guidance. Virtual tutor works as an mirror in

front of the user, but it shows quantified numbers and visualizes the differences

between the current progress and the desired goal. Video guidance and virtu-

al tutor provides patients self-training capability. On the other hand, daily life

objects, such as a tower and a wall, provide assisted functions to help patients

complete game tasks without human intervention. Patients are learned to retain

their body control with their own effort. Daily life objects, such as a tower and a

wall, provide assisted functionality to help patients to complete game tasks. For

instance, in Figure 5.2, a VR-game based training task is projected to a wall and

guide a patient to exploit reacting counterforce from a wall to move their extrem-
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Figure 5.3: Video guidance and virtual tutor are used in the treatment process.

ities. As a result, they do not need any external assistance provided by therapists

to stretch and rotate their joints of the extremities. Physical therapists merely

need to demonstrate or tape the correct way to utilize common daily life object,

such as stretching out a tower to play with ship driving game. Hence, Limited

therapists are able to handle more suffered patients than before.

5.2.5 Real-time Interaction

Quantified data are collected from skeleton information of Microsoft Kinect. Ac-

celeration and orientation data are from inertial sensors. User motions are record-

ed as time-indexed trajectories. Patients can immediately adjust their reaction

based on the real-time fused kinematics feedback. Physical therapists can adjust

gaming difficulties and design detailed parameters design based on the statistical

analysis results. The analysis can provide them a quantifiable measurement for

each patient’s training and suggest a direction for future adjustment for individ-

ual patient. For example, some patients are suggested to use elastic ribbons to

further enhance their muscle strength when they generate much of acceleration in

manipulating virtual objects in the game scenes.
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Table 5.1: Demographics of participants

Study Group Control Group

Case number 20 20

Average age 60.65 ± 11.84 61.45 ± 12.84

Male / Female 5/15 9/11

Course of disease (in month) 12.2 ± 6.2 10.4 ± 7.3

5.3 Evaluation

There were 40 patients with frozen shoulder problem were recruited for this

prospective, interventional, randomized controlled, and single-blind study (Ta-

ble 5.1). The experiment period is four weeks. Included subjects (1) were aged

more than 20 years; (2) were never taken any physical therapy; (3) had frozen

shoulder symptoms more than 3 months; and (4) were capable of participating

in frozen shoulder rehabilitation based on VR. Patients were excluded from the

study when they had (1) weakness or paralysis in the lower limbs; (2) current

treatment with drugs for ototoxicity; (3) medical or surgical vestibular ablation

treatment during the study period; or (4) cognitive dysfunction. Patients are

randomly grouped into control and study groups following standard randomized

clinical trials (RCT) criterion to evaluate the therapeutic effects and system fea-

sibility. Each training tasks and the balance test were conducted and designed by

a currently practicing licensed physical or occupational therapist.
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Experiment procedures includes rehabilitation exercising training and hot pack

and ultrasonic treatment [Car08]. All participants take hot pack and ultrasonic

treatment to increase their muscle elasticity before they involve in the rehabilita-

tive training. Patients are randomly selected as a member of study and control

groups. Study group takes VR-based immersed training program and the control

group takes traditional rehabilitation exercises. Both exercises are similar but

members of study group have the privilege to receive real-time quantified motion

feedback and VR game-based training. Full training program takes 20 minutes per

visit and patients need to visit the rehabilitation center twice a week, 4 weeks in

total. Study group patients are required to finish a series of rehabilitative exercise

with/without physical objects, depending on the judgement made by the physical

therapist. Sample motion tracking data are shown in Figure 5.1. The motion

trajectories are extracted from the tracing game, barman, and ship driving. The

rightmost plots present the 2D projection of the time-index trajectory data. T-

wo boxes (colored with orange and blue) indicate the start and end point of the

motion. Each game includes an ideal path which stands for the expected motion

trajectory. The difference between the ideal path and the projected motion tra-

jectory represents patients’ gaming performance. To evaluate the affectivity of the

VR system, patients of both study and control groups are evaluated with standard

protractors by the authorized physical therapist. Both shoulders of freedom are

tested with four basic exercises for every participants: flexion, abduction, internal

rotation, and external rotation. Midspread estimation (interquartile range, IQR)

of the joints angles analysis is performed and summarized in Table 5.2 to quantify

the affectivity of VR-based and traditional rehabilitation methods. Members of

the study group have 26% improvement after four weeks VR rehabilitative train-

ing, but members of the control group only have 18% improvement within the

same four weeks period in general. In fact, the performance of the study group

is outperformed than the control group in all four exercises. By examining the
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pre-test data collected before the rehabilitation training, we can discover that

the shoulder joints dexterity between the study and the control group is small.

Patients in both groups has very similar capability in manipulating their shoul-

ders. However, the result of the post-test of the study group reveals that patient’s

mobility of their shoulder joint are significantly improved than the control group

treated with traditional rehabilitative method. Furthermore, subjects in the study

group show high degree of technology acceptance and are willing to continue to

use the proposed VR system for their rest of frozen shoulder rehabilitation.

5.4 Conclusion

Frozen shoulder or adhesive capsulitis, which is reported to affect 2% to 5% of

the general population, describes the common shoulder condition characterized by

painful and limited active and passive range of motion. Frozen shoulder patients

in metropolitan area often dropped out their necessary rehabilitation according

to our prior clinical experiences in Taipei Veteran General Hospital. One quar-

ter of patients dropped out the standard treatment and rehabilitation processes

because of their fast-pace and busy lifestyle. To overcome this situation, this

study focuses on providing interactive treatments to encourage patients’ partici-

pation in regular rehabilitation appointments. Patients can spontaneously inquire

their rehabilitation progress with real-time sensing and game-based feedback. In

addition, six progressive and hierarchical training tasks make each training step

adjustable based on patients’ physical condition. Forty patients were recruited for

a sequence of trials within four weeks, following standard randomized clinical tri-

als criterion. The evaluation of the study group reveals that patient’s mobility of

the shoulder joint and their muscle strength are significantly improved comparing

with traditional rehabilitation method.
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CHAPTER 6

Social Activity Promotion

6.1 Introduction

Research in many cultural settings has indicated that elderly people who choose

to remain in their original homes and communities, despite their children living

far away, often end up living alone [Cit11a]. Based on the U.S. Census in 2011,

29% of senior adults in the U.S. (8.1 million women and 3.2 million men) live

alone [Cit11b]. A portion of this population gradually loses their connection with

their families and friends because of isolated living situations and deteriorating

social skills. A survey conducted by the Joseph Rowntree Foundation revealed

that 19% of seniors in the U.K. who live alone communicate with their families

on a face-to-face basis less than once a month [LXH13]. In addition, 17% of them

are in contact with their families, friends, and neighbors less than once a week;

instead, television becomes their main form of company [Bra13]. Gradually, these

people lose their ability and willingness to communicate with others and often feel

estranged and lonely for the remainder of their lives.

The fast pace of modern life further enlarges the gap between elderly people

and the rest of society. They no longer remain informed about the world and

express diminished enthusiasm for many former interests. Furthermore, the fast-

paced lifestyles of younger generations results in having less time and patience for

their parents and grandparents. BBC News [Cit05] reported that more than three

million people feel disconnected from the modern life and isolated from society.
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The lack of connection to the rest of the world affects people’s health and can lead

to severe mental illness, such as depression [Cit01]. Based on these facts, a social

technology is introduced to assists elderly people in re-establishing communication

with their families, old acquaintances, and making new friends.

Some researchers believe that a convenient interactive platform can help people

to overcome their isolated living situations. They are encouraged to use the social

technology to participate discussions of their living concerns with their peers and

families [CZN05, PMP10]. Common topics of interest among elderly population

are chronic diseases, personal life histories, and diet suggestions. Internet and

wireless health technologies can provide health-related information, record and

update personal and medical information, and offer remote health services to the

community. Their daily activities and personal health conditions can be moni-

tored, recorded, and summarized using cloud health care services; thus providing

valuable health care information for personalized diagnosis. Their families can

better understand the health and social conditions of their parents and obtain

basic knowledge to help their parents. Nevertheless, medical information is so

personal and private that most people do not like to share it openly. To address

this privacy concern, Waycott et al. [Bat10] indicated that by sharing some daily

photos and associated stories instead, elderly people can express themselves cre-

atively and have regular communication with their friends as well. Nevertheless,

it has been reported that some efforts to engage participants in the interests of

their peers have been unsuccessful because of different life experiences.

Healthy diets and lifestyles can be another topic to be addressed [CGC12]. Be-

cause body composition and the health conditions of elderly people changes with

age [FE73], they require nutrition information updates. Nevertheless, the process

of searching nutrition information is time-consuming and often unstructured. In

addition, requiring people to remember the food they consume daily and compare

with their recommended intake is impractical because they are likely to forget and
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confuse about what they have eaten. As a result, a system that enables people

to log their dietary intake and look up nutrition information is necessary. The

logged and cached nutrition information can be shared with other peers who have

similar nutrition related concerns and with their families who are looking for help

in caring for their parents.

Figure 6.1: FridgeNet implementation on a single fridge

FridgeNet (Figure 6.1) is designed for recording personal food intake infor-

mation and promoting communication and social activity among senior citizens.

The system employs sensor-equipped processing units (tablets mounted on stan-

dard refrigerators) and a cloud service to store and propagate food information.

The system automatically stores users’ dietary histories and downloads the corre-

sponding nutrition information identified in the users’ personal dietary histories.

Similarly to existing social networking websites, the system enables users to post

comments, pictures, and leave voice messages. The tablet-system also serves to

propagate aggregated diet information among peers. Users can evaluate their

nutrition intake by comparing their dietary history with other FridgeNet users.

People can engage in FridgeNet social activities by regularly posting personal sto-

ries and subscribing food-consumption information within their online community.

Furthermore, shared diet information can immediately assist those newcomers un-

dergoing body condition changes during aging to adjust their diet styles.
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6.2 Social Activity Promotion for Elderly People

Social activity has been a popular area of research since the introduction of social

network media. A growing interest exists concerning the design and implementa-

tion of suitable social networks for aging populations as a means of reducing their

experienced social isolation [DeM07, CHY05]. Some researchers have suggested

that elderly people should participate in social networks to virtually connect with

their families and friends, particularly if they live in isolated environments. For

example, Burmeister et al. demonstrated that online communities can provide

a space for elderly adults to share their life experiences and to create mutually

supportive virtual communities. As elderly participants increase their online ac-

tivities, they begin to value their participation in and contributions to a virtual

community [Cov]. On the other hand, Bloch and Bruce observed an apparent

disconnect between elderly people and their online participation. They suggest

that additional research is required to determine enhancements to the online ex-

perience [Sec, LHS08]. For example, discovering a relevant topic may motivate

people to use social network media spontaneously.

6.3 FridgeNet: Social Activity via Diet Sharing

FridgeNet is a prototype system consisting of multi-sensor-equipped tablets and

a cloud-enabled application. This system is recommended for mounting on a

standard refrigerator to monitor its changing content. User interactions with the

refrigerator such as opening and closing actions are monitored by the system.

Once an action is detected, users are prompted to input necessary information for

daily dietary tracking, nutrition information retrieval, updated images, and social

activity promotion (Buy2+gether). The following sections describe the individual

functions of the FridgeNet related to diet monitoring and virtual social activity

promotion.
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6.3.1 Sensor-driven Interaction

Common inertial sensors are used on the tablet for automating the data recording

process. When a user opens the fridge, the corresponding fluctuation is detected

by the built-in accelerometer of the tablet. A prompt message is then triggered

that instructs the user to scan a grocery receipt or select the food item name and

take a picture to the food item taken out of the fridge. Both scanned receipt images

and food snapshots are uploaded to the web service after recording. The item

names on the receipt are recognized by an optical character recognition library

[FH03] installed on the server-end. Information is processed by the FridgeNet

software on the tablets and stored in the local database for periodic updating from

the cloud server. An averaging peer diet intake information of every FridgeNet

entity are accumulated in the cloud-end, so that each elderly participant can track

their own diet habits and compare with this averaging truth from an elderly group

daily. Therefore, a WiFi connection is required for each FridgeNet-enabled tablet.

WiFi connectivity also provides FridgeNet location information. This information

is used in the Buy2+gether service when a user enables the service and accepts

invitations from peers.

Figure 6.2: Client and server fridge network
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6.3.2 Diet Tracking and Nutrition Analysis

Each food item on the receipt is tracked by FridgeNet. Users can browse the

nutrition information of the tracked food through simple clicks on the tracked

food list. If a food image is available, clicking on the image displays its nutrition

information. Personal dietary history can be tracked and aggregated based on

the history of receipt scanning. Consumed food is marked by users and recorded

in the users’ stored dietary history. Daily and weekly personal nutrition intake

are calculated by accumulating the intake nutrition of all consumed food items.

FridgeNet then periodically synchronizes individual dietary history, together with

the cached nutrition information of newly added food, to the cloud server. The

cloud end aggregates and calculates the average daily and weekly nutrition intake

of the users. This summarized information is retrieved by FridgeNet when the

next periodic update is issued by the cloud server.

6.3.3 Cloud Updates Visualization

Figure 6.3: A sample nutrition comparison among peers

Figure 6.3 shows a donut chart that compares the differences in diets between

the users and the peers. The chart is split into four sections representing four

nutrition requirements for elderly people: iron, calcium, vitamin C, and vitamin

D. When a user selects one of the four sections, the comparative results between

the user and the peers are shown in the center and a pop-up notification appears
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to indicate the amount the user requires. Each section of the donut chart is color

coded based on the level of nutrition that the user requires, where green represents

”sufficient”, yellow represents ”might be insufficient”, and red represents ”insuf-

ficient”, and a user can quickly identify the nutrition component he or she lacks.

This information is recalculated when an update from the server is retrieved by

the FridgeNet tablet. On the right side of the donut chart, recommended foods

for the user are displayed. The types of food recommendations are based on the

pre-loaded and peer-recommended food types. The order of recommended food is

sorted based on the amount of nutrition each item contains and the requirements

for the user. For example, Figure 6.3 shows a hypothetical user who requires 200

mg or more of calcium in his or her daily diet. Thus, the most calcium-rich foods

are listed and a recommended intake amount is provided below the food image.

Users may click the button next to the image for more recommendations if the

current suggestions are not preferred.

6.3.4 Food Recommendations and Response

Figure 6.4: The main page of the recommended food photo stream

Whenever a food item is removed from the refrigerator, a user is expected to

mark the item name as consumed from the scanned receipt list and take a picture

of that item. This action marks the food item as eaten and its nutrition informa-
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tion is recorded in the user’s daily log. If the food item is not fully consumed, the

user should take another picture of the food item or simply input how much of

the food remains. The current prototype assumes that all food contents inside the

refrigerator were consumed by the elderly who lived alone and they are suggested

to leave some messages if they share food with some visitors.

Users can selectively choose to provide comments on the food items they like.

FridgeNet encourages and facilitates recommendations to peers. When users want

to recommend a food item to peers, they can first press and hold the onscreen name

or image of the item they want to recommend. A pop-up menu is displayed that

confirms the recommendation. Users can optionally add text or voice messages to

more adequately describe his or her recommendation. By contrast, if users discover

that some recommended food is healthy, they can ”like” the item (by pressing an

indicator on the screen) or provide comments, and then place the food item in

their virtual shopping cart. Figure 6.4 shows an example of a user who removed

an apple from her refrigerator. Few minutes later, she leaves a comment saying

she believes the apple is more delicious than the recommended food, cherries, even

though cherries contain more vitamin C, as shown in the nutrient database.

6.3.5 Buy2+gether

Figure 6.5: Buy2+gether application

FridgeNet is not only designed to promote virtual social interaction among
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elderly people, but also to encourage elderly people to meet face to face. The

Buy2+gether service (Figure 6.5) is an application that enables senior citizens to

send shopping invitations to their neighbors to meet and purchase food together.

Users can send shopping invitations based on the following criteria: 1) nutritional

requirements, 2) the nearest three neighbors, or 3) an acquaintance (email address

required), such as friends or family members. The person who initiates the shop-

ping invitation can specify what he or she wants to buy, when to buy, and the

deadline to accept the invitation. If invitations are accepted by the peers within

the specified time frame, the participants can form a group and share contact

information. FridgeNet helps to determine the most convenient location for the

group to meet based on WiFi-positioning information, if requested. Figure 6.5

shows a FridgeNet suggestion for the most convenient grocery store for the group

of participants.

6.4 Field Study

6.4.1 Participants

FridgeNet was evaluated with a group of 15 elderly people (10 women and 5 men)

who lived alone and were between 55 and 76 years of age (AVG = 66.27, SD =

6.13). Some participants already knew other participants, but they did not reg-

ularly interact before the trial. Among the 15 participants, only five possessed

experiences of using tablets for daily entertainment and none of them regularly

used social networking media such as Facebook or Twitter. The families of the

elderly participants also participated in the trial, although they were mainly ob-

servers and participated in a limited way during the study. They were allowed

to access a FridgeNet website to see the general nutrition information and the

aggregated diet information produced by participants. They were requested to

observe rather than to join, except in the following two situations: 1) When a

90



senior family member had technical difficulty in using the FridgeNet system, and

2) When a senior family member sent Buy2+gether invitations to them.

6.4.2 Procedure

The whole study lasted 3 months. At the beginning of the experiment, every

senior participant was taught how to use FridgeNet by the authors. To ensure

safety, participants were recommended to consult with their personal doctors be-

fore changing their diet. Health effects associated with iron, calcium, vitamin

C, and vitamin D deficiencies, as tracked by the FridgeNet prototype, were fully

explained. They were then trained to scan their grocery receipts, photograph the

food, read food nutrition information, respond with a ”like” and provide com-

ments and recommendations, and send invitations to specific groups of people.

At least one family member of each elderly participant joined the training session.

To encourage senior participants to use the Buy2+gether service, the authors

suggested that families of the participants join in shopping events during the first

month to help the senior participants to build confidence in meeting their peers.

Participants were asked use the FridgeNet system to search for foods containing

high percentages of calcium. Additional information about food nutrition was not

provided in this study because it was expected that all participants would enjoy

the process of determining nutrition requirements and locating that information

in FridgeNet more than they would a lecture about nutrition.

6.4.3 Data Collection

Two types of data were collected during the experiment: FridgeNet data and

questionnaire feedback. The following sections describe each type of data.
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6.4.3.1 FridgeNet Data

Data from each FridgeNet entity were aggregated to the server (Figure 6.6). Each

data stream included a unique ID. Researchers produced mapping tables to match

unique IDs to the senior participants’ personal information. This information

was not accessible by participants nor family members. At the end of study,

all tablets were collected to examine if any data was not correctly uploaded to

the cloud servers and removed any of the participants’ personal information on

the tablets. FridgeNet collected food nutrition information and tablet usage log

information such as the number of ”likes” associated with a food item, comments,

and Buy2+gether invitation messages.

Figure 6.6: Food information is stored on a shared database for further analysis.

The primary statistical items used in the study were:

• Insufficient In-take Nutrition Statistics

• Click Rate of the Recommended Food

• Number of Comments and Feedback

• Number of Buy2+gether Invitation Replied

Data and an in-depth analysis are provided in the Results section.
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6.4.3.2 Questionnaire

The elderly participants and their family members were asked to complete a ques-

tionnaire to provide feedback about their experiences. The participants rated

their experiences base on a 9-point Likert scale, where 1 = strongly disagree, 3 =

disagree, 5 = neither agree nor disagree, 7 = agree, and 9 = strongly agree. In

addition, they were asked to answer a few open questions to suggest improvements

to FridgeNet functionality. The questionnaire included the following items:

For Elderly Adults

(Q1) I feel I eat healthily.

(Q2) The system is easy to use.

(Q3) Reminding me what food is in the fridge is useful.

(Q4) I worry about privacy leaks concerning my eating habits.

(Q5) I am more willing to go outside.

(Q6) My children and I communicate more often.

(Q7) Open Question: It would be great if the system had this feature:

For Family Members

(Q1) I am learning about my parent’s eating habits.

(Q2) My parent is in a good mood more often.

(Q3) I feel less anxious that they live alone.

(Q4) I will also use this system if you can provide a version for young adults.

(Q5) The message notification is disturbing.

(Q6) Open Question: It would be great if the system had this feature:
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6.5 Results

This study attempts to answer three questions regarding the functionality of Frid-

geNet: 1) Does FridgeNet assist elderly people to choose healthy foods? 2) Does

FridgeNet promote online social activities for participants? 3) Do the participants

engage in more physical social activities after using FridgeNet than before using

the system?

To answer the first question, statistics reveal the number of participants who

had insufficient nutrition intake during the study period. To answer the second

question, two categories of statistics are considered: a) the number of passive

online activities the participant engages in, such as viewing food items or mes-

sages from peers, and the number of active online social activities the participant

engages in, such as responding to peers recommendations with ”likes” and per-

sonal comments. The last question is answered by determining the way in which

Buy2+gether was used during the 12-week study. Each statistics analysis is dis-

cussed in the subsections below.

6.5.1 Insufficient Nutrition Intake Statistics

Analyzing nutrition intake trends is a method to determine whether FridgeNet

improves elderly participant’s food selection. Figure 6.7 presents the number

of participants exhibiting insufficient nutrition intake in 12 weeks. Four major

nutrition components for elderly people were tracked: iron (blue), calcium (green),

vitamin C (yellow), and vitamin D (red). The figure shows that some of the

participants exhibited lower levels of nutrition-intake sufficiency in the first week

than did their peers on average. Eighteen insufficient-intake events were marked

over 60 samples (15 participants x 4 tracked nutrition components). However,

only 14 insufficient intake events were marked at the end of the study (51.7%

improvement compared with the number in week 1). This phenomenon indicated
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that the diet of the senior participants improved during the study period. One

participant, a vegetarian, expressed that she never considered that she possesses

insufficient levels of nutrition intake. She eats ample vegetable and fruits every

day. However, by using this system, she realized that iron intake is commonly

ignored by vegetarians. She quickly discovered that spinach, recommended by

another vegetarian peer, could be appropriate for her. Furthermore, some of the

participants said that they worried about insufficient nutrition and, therefore,

required a system such as FridgeNet to determine their nutrition needs. Based on

their feedback and nutrition-intake trends, this study determined that FridgeNet

caused changes in the dietary behavior of those participants that possessed low

levels of nutrition and was a catalyst for them to consider superior food choices.

Figure 6.7: Four types of nutrition components which are commonly ignored by

the elderly people in our study are presented. Most of participants learn to find

out appropriate food for supplying the insufficient nutrition, but they seem to

have difficulty in finding food with ample iron elements.

6.5.2 Click Number of the Recommended Food

Determining the number of clicks produced by each participant is an effective

method to evaluate the frequency of FridgeNet use in the daily life of participants.

Statistics on peer-recommended foods and the number of clicks associated with

those foods are an indicator of levels of dietary improvement. Figure 6.8 shows

that the participants made food recommendations to peers frequently. They pos-
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sessed fewer privacy concerns regarding personal recommendations. Elderly par-

ticipants recommended 47 foods in addition to the pre-loaded 50 food types. In

addition, this study discovered that 76.3% of the recommended foods were se-

lected more than once in the 12-week period. Popular foods such as apples were

selected by all participants. In total, 1273 clicks occurred for all recommended

foods in the course of the 12 weeks. On average, 7.07 clicks were produced per

week by each person. Figure 6.8 presents the weekly average click counts of all

15 participants. Although some individuals produced more clicks than others, the

click distribution shows that every participant used FridgeNet often to view peer

recommendations. The analysis results revealed that the information obtained

through FridgeNet was valuable to the senior community.

Figure 6.8: Numbers of recommended food by peers and the click number of the

recommended food of all fifteen participants are presented. We can observe that

most of participants check their peers’ recommendation frequently and sometimes

they recommend their favorite food to their peers.

6.5.3 Number of Likes and Comments

In addition to determining whether FridgeNet provides valuable information to

elderly people, this study investigated whether FridgeNet promotes online so-

cial activities for elderly people. Specifically, this study attempted to determine

whether FridgeNet encouraged them to acknowledge and comment during their

online interactions with peers. First, the numbers of and trends associated with

likes and comments were analyzed. The study was able to establish the frequency
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with which senior participants participated in food-related discussions. Figure 6.9

revealed that the participants required approximately 2 weeks to familiarize them-

selves with the FridgeNet system. Only a few likes and comments were posted in

the first week. The bulk of the comments and feedback started to appear dur-

ing Week 3. In Week 3, 30 ”likes” and 15 comments were posted. By Week 12,

the number of likes tripled and comments doubled. This trend revealed that an

increasing number of people were engaged in actively providing feedback. Even

if they did not comment about a certain food type, they still participated by

adding a like. Regarding the contents of comments, this study observed that cer-

tain food nutrition information was controversial For example, although spinach

is said to contain abundant amounts of iron, many participants deemed it a po-

tential cause of gall stones. Numerous discussions occurred about this concern

and one participant stated that he read some articles online to contribute to the

discussion. These observations demonstrated that FridgeNet encouraged people

to share their knowledge and life experiences. Most elderly people in the study

tended to be interested in and willing to join discussions.

Figure 6.9: Numbers of feedback and comments leave in the FridgeNet system

within 12 weeks. Although most people tends to ’like’ the recommended food

than leaves their comments, the increasing trend of both plots indicates that they

become more active in participating FridgeNet online social activities.
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6.5.4 Number of Replies to Buy2+gether Invitations

FridgeNet helped in building a virtual community focused on the topic of a healthy

diet. It was also expected to promote physical social activities for elderly people

by introducing the service, Buy2+gether. Unfortunately, only 11 shopping invi-

tations were sent and only six were accepted during the 12-week study, indicating

that this service was not used very often. Only seven events were recorded and

the same group of four people were involved in these seven events. Figure 6.10

presented the people who participated in Buy2+gether service by Week 10. The

shopping group originated with two senior adults, grew to three people by Week 7,

and to five people by Week 10. The two group leaders were interviewed after Week

12 and stated that they preferred buying food with someone with whom they felt

comfortable and that they selected friends based on replies to their recommen-

dations rather than based on those who possessed similar food requirements. In

fact, these two leaders knew each other because of the frequency with which they

participated in online discussions about food. This demonstrates that online dis-

cussion about food nutrition can enhance understanding and familiarity among

senior adults. These findings provide valuable information on the effect of the

FridgeNet and Buy2+gether systems. Elderly people can more adequately use

this system if frequent online interactions or regular social events occur that help

them become familiar with their peers.

6.5.5 Questionnaire Statistics

Questionnaires were administered to both elderly people and their relatives. Their

feedback enabled the evaluation of users subjective experiences related to multiple

aspects of the system design and the studys effectiveness in promoting it. The

analysis provided an enhanced understanding of user experience of the FridgeNet

system.
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Figure 6.10: There are only five participants using Buy2+gether service withint

12 weeks. Subjects are marked as B, K, T, J, and A. We can observe that the

same group of people uses this system and the group grows larger along with time.

Black circle shows the initial group uses this service, Subject K joins later, and

then Subject J and Subject A join. This indicates that Buy2+gether service is

affective and attractive. Users have high loyalty in continuously using this service

and are willing to recommend it to their friends.

Figure 6.11: Old adults’ averaging feedback

Figure 6.11 shows the average response from elderly participants. This study

uses the t test for a population mean. This studys null hypothesis is µ = 5, which

means that, based on the studys participant feedback, the system is unlikely to

produce a noticeably positive effect on users. This studys alternative hypothesis

is µ>5, which means the system will produce a noticeably positive effect on users.

For Q4, because the sample mean is less than 5, this studys alternative hypothesis

proves to be µ<5. This study used 0.05 as the level of significance.

Q1 (AVG = 7.13, STDEV = 1.77, p = 1.838e-4) reflects the subjective experience
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of nutrition promotion. This study demonstrated that the null hypothesis is re-

jected because of a low p value (<.05), which validates that FridgeNet promotes

nutrition.

Q2 (AVG = 5.4, STDEV = 1.72, p = 1.915e-1) reflects the users experience in

interacting with the FridgeNet system. This study demonstrated that the null

hypothesis is not rejected because of a high p value (>.05), which indicates ad-

ditional studies can improve user experience. The primary reason is that users

must scan food every time they remove an item from the refrigerator.

Q4 (AVG = 3.93, STDEV = 1.49, p = 7.356e-3) reflects users’ worries about pri-

vacy leaks. The null hypothesis is rejected, which indicates that users consent to

this studys data collection.

Q5 (AVG = 6.73, STDEV = 1.83, p = 7.489e-5) rejects the null hypothesis and

validates FridgeNet as effective in promoting outdoor activities.

Q6 (AVG = 7.53, STDEV = 1.77, p = 3.668e-5) rejects the null hypothesis and

validates FridgeNet as effective in promoting family communication.

Figure 6.12: Old adults’ relatives’ averaging feedback

Figure 6.12 reveals the average response from relatives who receive daily nu-

trition summaries about their elderly relatives. This study uses the t test for a

population mean. The null hypothesis, alternative hypothesis and significance

level are the same as those for the elderly participant questionnaire, whereas Q5

and Q6 possess an alternative hypothesis µ<5.
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Q1 (AVG = 7.27, STDEV = 1.67, p = 5.983e-5) indicates that FridgeNet success-

fully delivers required nutrition information to relatives of participants.

Q4 (AVG = 4.2, STDEV = 1.26, p = 1.378e-2) reflects that young people do not

require a refrigerator to promote their social activities. This studys design focuses

on the promotion of activity among elderly people who use the FridgeNet system.

Q5 (AVG = 3.93, STDEV = 1.83, p = 1.997e-2) indicates the daily summaries

provided to relatives are helpful to understanding their parents’ nutrition infor-

mation.

6.6 Discussion: Nutrition Recommendation

Nutrition recommendations and discussions can be promoted either online or

through physical activities. By sharing dietary habits and other comments and

recommendations, elderly people in the study group learned to create and main-

tain a healthy lifestyle. FridgeNet provided a convenient framework, a popular

topic for discussion, and a valuable healthy-diet database. Nevertheless, some lim-

itations were revealed in the prototype. For example, although debatable nutri-

tion information can be a topic for general discussion, a doctor’s input is expected.

One participant remarked, ”I like discussion, but I love conclusion.” The current

FridgeNet community did not include medical or healthcare-related professionals.

Therefore, if certain discussions contained errors or confusion regarding nutrition

information, these may not have been corrected. A solution is to recruit certified

medical professionals to monitor and participate in FridgeNet online discussions.

Another approach is to encourage family members of participants to join discus-

sions and provide professional references and articles about the discussed topics.

For example, family members can send their elderly relatives monthly or quarterly

reports to the medical professionals.
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In addition, the system considers neither the different body types nor pre-

existing conditions of participants, and it does not completely track the nutrition

components of food. Users suggested that FridgeNet could include more intelligen-

t grouping methods for recommending food based on different types of common

illnesses and pre-existing conditions. In other words, FridgeNet may be able to

provide a more reliable service by categorizing users into pre-defined groups. How-

ever, this strategy requires access to personal and medical information. Thus, a

tradeoff is necessary in creating a system that offers comprehensive service and

ensures privacy.

6.7 Discussion: Social Activity Promotion

FridgeNet not only promotes social activity among senior peers, it also reduces the

distance between the elderly participants who live alone and their families. Both

elderly participants and their families reported that voice messages were easy to

produce through the FridgeNet system but more difficult to respond to regular-

ly. Future research on how to convert voice messages to plain text may resolve

this problem. Participants suggested that enabling FridgeNet to automatically

schedule general activities could be an effective way to promote both virtual and

physical activities among senior participants. Although this suggestion is consid-

ered, it should be noted that such a feature may reduce FridgeNet to a general

social medium and cause it to lose its purpose as a health-specific tool for elderly

people.

6.8 Conclusion

Social isolation among the elderly who live alone is an emerging social concern.

A society in which elderly people have fewer offspring or have children who live
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far away increases the number of people living alone. Inevitably, these isolated

adults gradually lose their connection with society and their social skills worsen.

FridgeNet is proposed to promote social activities for these people. By automat-

ing and encouraging the sharing of their diet information, mutual support in the

virtual community is established. Continual communication and discussion fur-

ther promote physical social activities such as groceries shopping with their peers.

Based on the empirical results, this study concludes that FridgeNet is capable

of increasing their social activities. 9 of 15 participants reported that they in-

creased their interactions and received more attention from their families during

the 3-month pilot study.
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CHAPTER 7

Conclusion

This dissertation seeks new solutions to make medical resources, including medi-

cal facilities, medicine and professionals, accessible to anyone, anytime, anywhere.

Technologies discussed should reduce medical costs, increase the engagement be-

tween patients and doctors, and promote inclusion and connectivity of individual-

s. Findings from this dissertation have the ability to make our healthcare system

more effective and economic, which benefits both billions of individuals and the

societies in which we live. My work not only develops complete solutions for in-

novative sensing and accurate analysis, but also leads to effective evaluation and

actionable feedback design for the future healthcare field. Due to the complete-

ness and interdisciplinary nature of my research, my research continually involves

and benefits from researchers in a variety of research fields, such as public health,

nursing, and behavioral science. I will further extend my research and collabora-

tion to impact the development of the future medical and health services. Plenty

of past studies have shown that the effectiveness of the medical treatment and

intervention highly depends on the quality of patient compliance, such as whether

taking medicine on time, doing exercise regularly, and having healthy food or not.

My future research plan will work to understand patient behaviors, track their re-

actions with new sensing and interacting technologies, and explore new possibility

of introducing technology into our everyday living.

My short-term future plan, three new potential healthcare applications are

identified and debriefed below. Firstly, I plan to develop an unobtrusive sleep
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quality monitoring system with continuous biophysical detectors to explore and

quantify whether an appropriately designed environment can help people relax

and have a good sleep. Furthermore, we can investigate whether people change

their sleep patterns or behaviors (sleep postures, muscle pressure distribution,

and breathing rhythms) along with environment changes and whether this knowl-

edge can be exploited to promote better sleep habits. Secondly, designing eating

pattern detection accessories, such as a fabric necklace, to remind people to eat

healthy food and take medications on time. It can detect and record what is

eaten, how much is eaten, and when does the eating event happen. The acces-

sories should also support effective feedback methods, such as vibration or color

changes to remind people to take appropriate actions in the right time. Last but

not the least, I am interested in understanding human perception of surround-

ing atmosphere and comfortableness. By measuring biophysical signal changes on

human bodies, we can explore whether human perception changes along with en-

vironmental changes. Specifically, we can investigate whether changing household

environment can reduce people’s feeling of high temperature and thus, eliminating

unnecessary energy consumption.
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