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Tight-Binding Calculations of the Valence Bands 

of Diamond and Zincblende Crystals:': 

D. J. Chadi and Marvin L. Cohen 

Department of Physics, University of California, and 

Inorganic Materials Research Division, 

Lawrence Berkeley Laboratory, Berkeley, California 94720 

Abstract 

Using the tight-binding method, we have 

calculated the valence band structures and densities 

of states for C, Si, Ge, GaAs and ZnSe. We obtain 

very good agreement with other calculations when 

we include all nearest and one second nearest 

neighbor interactions. The effects of the various 

interactions on the density of states are discussed. 

I. Introduction 

The tight-binding approach to the problem of the 

electronic energy levels in solids is intuitively very 

appealing. The method provides a real space picture of the 

electronic interactions which give rise to the particular 

features of the energy band structure, density of states, etc. 

This is extremely useful in studies of how these features 

change when the electronic configuration is altered. The 

tight-binding method is most practical when only a few types 

of electronic interactions are dominant. In such a case an 

adequate description of the system of interest can be 
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obtained by specifying a small number of interaction 

parameters. In this way a qualitative description of the 

. 1-6 valence bands can be obta1ned for materials in the 

diamond, zincblende and other structures. 

In this paper we show that a tight-binding method us1ng 

a few interaction parameters gives accurate results for the 

valence bands of the diamond and zincblende crystals C, Si, 

Ge, GaAs, and ZnSe. The tight-binding method we use is 

equivalent to that of Slater and Koster.
6 

It can also be 

2 regarded as a more complete version of the Weaire and Thorpe 

model in which interactions between more distant directed 

orbitals are included. 7 ' 8 It is necessary to include these 

extra interactions for a more complete description of the 

valence bands. In section II we give a brief review of the 

method and consider the effects of the various interactions 

on the density of states. We show that the inclusion of 

all the possible nearest neighbor interactions 9 between s 

and p-tight-binding states is not sufficient to broaden the 

"p-like" bands along all symmetry directions. The resulting 

error in the energies is about 1 eV and occurs mostly for 

states near the surface of the Brillouin zone. With the 

inclusion of only one second-nearest-neighbor interaction, 

the accuracy is greatly improved and the resulting valence 

band structures and densities of states exhibit all the 

structures obtained in other calculations. 

The band structures, densities of states and interaction 
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parameters for C, Si, Ge, GaAs and ZnSe are discussed in 

section III. The dependence of the energy levels, along 

several symmetry directions and at some syrrunetry points, 

on the interaction parameters are also given in section III. 

These expressions are useful for obtaining information about 

the interaction parameters. 

II. Tight-Binding Method 

In diamond and zincblende crystals, every atom is 

' tetrahedrally coordinated and there are two atoms in the 

primitive cell. For each tight-binding basis function 

centered on these atoms, two Bloch functions can be con-

structed. For example for a tight-binding basis function 

b(r) we have the two Bloch functions -
1 ik·R = -- L e - - b 0 (r-R) , 

INR 
(1) 

and 

(2) 

where ~ is the vector joining the two atoms in the primitive 

cell and the subscripts on b refer to the atoms in the 

primitive cell. In the diamond structure crystals we take 

~<:> = ~<:>, but in the zincblende crystals the two functions 

are different. 

In o:r:•der to have 

<~.(k,r)l~·(k,r)> = ~ .• 
1 ~ - J - - 1] 

i,j = 0,1 (3) 

we must requir•e that the tight-binding functions on different 
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atomic sites be orthonormal: 

(4) 

<b. (r) lb. (r)> = 1 
l - l -

( 5) 

These conditions can always be accomplished by a method due 

to Lowdln 6 ' 10 without affecting the symmetry of the basis 

functions. 

The basic problem of the tight-binding method is to 

find the matrix elements of the Hamiltonian between the 

various basis states. For example, if we place s-states 

on each atomic site and take only nearest-neighbor inter-

actions, we find the following 2 x 2 matrix for the eigen-

values: 

v g 0<k> 
ss -

E -E(k) 
sl -

= 0 • (6) 

The parameters E and E are the energies of the tight-
sO sl 

binding s-states: 

E = <sjHjs> , so 

In diamond structure crystals E so 
denoted simply by E . The parameter s 

= E and will be 
sl 

measures the strength of the nearest neighbor interaction 

(the factor of 4 is used for convenience) and 
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( 7) 

results front the phase difference between the atoms at the 

four corners of the tetrahedron defined by !I = k<l,l,l)a, 

1 T - - - 1 - -~ 2 = ~(1, ,l)a, !J = (l,l,l)a and ! 4 = ~(l,l,l)a where a is 

the lattjce constant. (To obtain g 0 we ass~gn a phase factor' 

ik' T • h b ' l . F . 1 I h . e - -J to eac or ~ta ~n ~g. . n t ~s way the phase 

. ik•(T·-T·) 
of the,Bloch function changes bye- -J -~ = ik·R . . 

e - - ~n go~ng 

from atom ito j (i,j = 1,2, ... ,4), which is consistent 

with Eqs. 1-2.) 

In a similar way, we can obtain the matrix elements of 

. the interactions between the other orbitals. We will consider 

here only the case where we have only one set of s, px' Py 

and p orbitals at each atomic site. We will denote these z 

by s 0 , x 0 , y 0 , z 0 or si' x
1

, y1 , z1 where the subscripts as 

before refer to the atoms in the primitive cell. The 

Hamiltonian matrix elements between an s and a ·p-state on 

the same atom or two different p-states on the same atom are 

zero because of symmetry in diamond and zincblende crystals. 

To describe the interaction of an s-state on one atom with 

the p-state of a nearest neighbor atom we need one parameter 

for the group IV crystals and two parameters for the zincblende 

crystals, where there are different s and p orbitals on the 

basis atoms. We will denote the interactions between s and 

P orbitals by V g and V g where 
X s 0p 1 s

1
p 1 

v = 4<s0 <~>1Hix1 <~-!1 >> s 0p 
(8) 
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v· = -4<s1 (r-T1 )1Hix 0 (r)> 
slp - - . -

(9) 

gl(~) _ 1( ik•Tl+ ik·T2 ik'T3 ik·T4) _ - 4 e - - e - - -e - _ -e _ _ (10) 

For the gro~p IV crystals V = V and will be denoted 
sop slp 

simply by V sp The minus sign in front of some of the phase 

factors ~esult from the fact that the sign of the matrix 

elements <s 0 <~>1Hix1 <~-~j)> ~nd <s1 <~-~j)IHix 0 (~)> depend
6 

on the sign of (~j)x. For ~land ~ 2 the sign is positive, 

for ~ 3 and ~ 4 it is negative. These differences in sign 

are incorporated into g
1

. To obtain the matrix elements for 

the s-p and s-p interactions g
1 

should be replaced by y z 

for s~p type interactions, and y 

(k) _ !( ik'Tl ik'T2 ik•T3+ ik'T4) 
g3 - - 4 e - - -e - - -e - - e - -

(11) 

( 1-2) 

for s-p type interactions. The matrix elements between z 

s, p and d basis functions have been derived in Ref. (6). 

The 8 x 8 secular matrix representing all possible nearest 

neighbor interactions between the tight-binding s and p 

orbitaLs centered on each atom in the crystal is: 

. .. 



~ 
so 

~ •o \ \~;:<~J 
1 

. -~ 
sl vssgo 

1~- l 

\ • X \ . 9-c:-"-. 0 \ 
\. -----4 

I_ Yo I 0 -=---..,;,.... 

~-z·o· 0 

s * xl vs pgl 
0 

~_;. Yl __ * vs pg2 
0 

l * zl v s pg3 
0 

------·------------- ------------- ----- -~- -----

~ ·• . 

~- " ·~ \ 2. 
sl xo y '-- t 

,o ~0 
s ' 7 
xl yl zl 

v ssgo 0 ._0 0 
~ -~ =---"'=-

v s pgl v s pg2 v s
0

pg3-
0 _0 

---~ 
* \ * * 

E~l~-~ '-~-) .. -~~1?.~.~--- ..... I~l~ -·----=~~l-12:.~. -- --· .. -----~---·-··--·- .... ·- 0 0 

~~v .~t._ :1 \1·E--·-~E"(~~\ -~ o v . g 0 ~· g3 ' 
"-- . s iJ J . ' p 0 -· ... , \. - \ .x;x , xy,....._, 

... '=" ~:-- _... \ . j ------ - ·-1 '--=---- --·· - ~~-

-~V.lg2 \-·--;----~ .-ECk>I -~o! ~ v .g
0 

----
s. P ~ _"" _PO _ ;,;_:_J . ; ~. , --}$X , c __,~a,;,_ 
.. . . - I ······--- "/' -."" ~/ i-

' -v!J.-~ o o -~J ~~ti .,~ ~~ · 
' * * n -·~I 0 V g V g3 V g

1
- E -.E(k) n 0 

xx o xy . xy· . p1 ""'--- T 

* ~ 
0 ~xxgo 

0 ,."".,Y:1
11
; . ~ v":~~/, o o ~t<~J 

(13) 

~"\ ' l ~ 

J~ 

J-==o. 

g 

I 
.-..J 

I 
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For diamond structure crystals E 
so 

V = V and from this point we s 0p s 1p 

.1. 0 ~ 0 
\ ~,~ ~ ' ~ 
~ ~"t.- '?~ "N't- 'iA. ~ 

c1:P' ) ~--..,._J>. fjiP 
= E · E = E and 

sl' Po P1 
will drop the subscripts 

for these crystals. The functions g
0

, g
1

, g
2 

and g
3 

which 

(14) 

(15) 

(16) 

(17) 

I 

Fqr diamond structure crystals, the parameters 

appearing in (13) are related to those of Slater and Koster
6 

by 

E = E (000), E = E (000) s s,s p x,x 

v 1 1 1 v 4E (l ! !) (18) = 4Es,s<2 22), = ss XX x,x 2 2 2 

v 1 1 1 v 4V c! 1 !> = 4Ex,y<2 2 2), = xy SP, s,x 2 2 2 

Before describing the total interaction between s and 

p states, it is interesting to look at each one separately. 

If we set the s-p interaction parameters V p and V p equal 
so sl 

to zero the 8 x 8 matrix (13) decouples into a 2 x 2 (Eq. 6) 

and a 6 x 6 rna trix ~ The energy eigenvalues of the 2 x 2 ma·trix 

which describes the s-states is given by 



k ~k~ ' 
?_-:r 

-y<f) ~(( yl( ~ (C a/<( 
-9- e I 0 

( 0 ~ 112') 
\:"? __ , 

J I 

E(k) = E ± v jg0 <k> I (19) s ss . -

for diamond structure crystals. Although this expression 

is very simple it nevertheless provid~s a very good 

description of the lowest valence band in these crystals. 

Specifying the width of'the band (which is about 3.5-4.0 eV 
. 

in Si and Ge) determines the band structure to within a few 

tenths of an eV throughout the Brillouin zone. The largest 

errors (compared to c~lculations based on the empirical 

pseudopotential method (EPM)) occur along the A direction 

and along the Z direction which runs between the symmetry 

points X = !n (1,0,0) and W = !n (1,~,0) of the Brillouin 
\ 

zone. Along this direction the two bands are degenerate 

(by symmetry) and have no dispersion. The second valence 

band in the group IV crystals is p-like at t and (19) does 

not therefore provide a valid description for this band .. 

The band structure and density of states associate~ with 

the tight-binding s-like bands is shown in Fig. 2. The 

'dip in the density of states occurs near the line X + W 

in the Brillouin zone. For V < 0 the lower energy band 
.ss 

is bonding at r and the higher band is antibonding. For 

V > 0 the order of· the bonding-antibonding states is 
ss 

reversed. For th~ zinciblende crystals (6) gives 

E = (20) 

whereas as a result of inversion symmetry the two bands were 

degenerate at X in the diamond structure crystals, a gap of 
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magnitude IE -E I opens up at X for the zincblende crystals. 
. so sl 

The maximum of the first band and the minimum of the second 

still occur at x. But unlike the case of the group IV 

crystals the bands approach X with zero slope and this results 

in a sharp peak in the density of states (not shown) for 

states near X. Except for this structure the s-band density 

of states in the group IV and zincblende crystals are very 

similar to each other. The band structure and density of 

states associated with the six p-states of the group IV 

crystals lS shown in Fig. 3 for vxx = 0, v = 6.8 and xy 

E = o. The sharp rise and fall of the curve near threshold p 

occurs at rmin 
1 

and l.S very similar to the rmin 
1 

edge observed 

in the density of states of a number of diamond and zinc-

. 11-13 
blende crystals. As in the case of the s-bands there 

is no dispersion along the line joining the points X and W 

of the Brillouin zone and the dip in the density of states 

corresponds to these states. The overall shape of the curves 

for the s and p-states are similar in the region near the 

density of states minimum. For the zincblende crystals the 

band structure and density of states for the p-states is 

similar to that of Fig. 3. The maximum of the lower three 

bands and the minimum of the upper three bands occur at X 

and are separated by a gap. The zero slope of the bands at 

X gives rise, as in the case of the s-states, to a sharp 

struqture in the density of states (not shown). Except fo~ 

this structure the densities of states of the p-bands in 

the group IV and the zincblende ~ystals are very similar 
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as may be expected. 

Sometimes it is more convenient (e.g.: surface calcu-

lations: R~f. 7) to use tight-binding orbitals directed 

along the bond directions. The parameters which appear in 

this approach can be ea~ily related to s and p interaction 

parameters; This can be done by taking the Hamiltonian 

matrix elements between the following directed orbitals 

(see Fig. 3). 

l 1 (21) <1>1 = 2<so+xo+yo+zo> <l>s = 2(sl+xl+yl-zl) 

1 1 (22) <1>2 = 2<so+xo-Yo-zo> <1>6 = 2(sl+xl-yl+zl) 

"'3 = 1 
2<so-xo+Yo-zo> <1>7 = 1 

2(sl-xl+yl+zl) (23) 

4>4 
1 

<I> a 
1 . ( 24) = 2<so-xo-Yo+zo> = 2(s1-x1-yl-zl) 

The results for diamond structure crystals in Hirabayashi's 

notation are: 

yl = <<1> -I HI <I>·> = !<E +3E ) 
l. .l. s p 

(25) 

<ci>1 1Hic1> 2> 
1 

y2 = = -[E -E ] 4 s p 
(26) 

y3 = <cl>liHicl>a> = 
1 . 

---[V -3V -6V -6V ] 16 ss xx xy sp (27) 

<ci>21Hlcl>a> 
1 

y4 = = 16 [V +V +2V -2V ] ss xx xy sp (28) 

Ys = <<fi21HI<fls> = l~[V +V -2V +2V ] ss xx xy sp 
(29) 

y6 = <c1>2IHI<f17> = l~[Vss-3Vxx+2Vxy+2Vsp] (30) 

7 
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The parameter y 1 appears in the diagonal matrix elements and 

cah be taken equal to zero. The param~ters y 2 and y 3 are 

the 2 same as the parameters v1 and v2 of Weaire and Thorpe 

and from Fig. 4 it can be expected that they represent the 

most important interact~ons. The properties of a model 

Hamiltonian based only on these two types of interactions has 

2 14 been studied in detail by Weaire and Thorpe ' and has been 

employed in a number of calculations involving crystalline 

3 polytypes of Si and Ge. These calculations show that the 

two parameter model gives a relatively good description of 

the lower "s-like" valence bands but gives a poor description 

of the higher p-like bands which appear as delta functions 

in the density of states. ·The inclusion of the other inter­

actions broadens the delta functions 8 and gives a better 

description of the valence bands. 

For zincblende crystals we ~eed three extra para-

meters to describe the overlaps corresponding to nearest-

neighbor s-p interactions. The interaction parameters are: 

al = <4>1IHI4>1> = ~(E +3E Po> 
(31) 

so 

Bl = <4>alHI4>a> = ~(E +3E ) (32) 
51 pl 

<4>1IHI4>2> 
1 ) (33) a2 = = -(E -E 
4 so Po 

82 <4>7IHI4>a> = 1 
pl) 

(34) = -(E -E 
4 51 

B3 <4>1IHI4>a> 
1 -6V -3V -3V ] (35) a3 = = = I6[V

55
-3V XX xy sop slp 
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= 1
1
6 [V +V +2V -3V +Vs. p] 

SS XX xy s 0p l 

= 1
1
6[V +V +2V +V -3V ] 

SS XX xy s 0p s 1p 

= ~[V +V -2V +V +V ] 16 SS XX xy s 0p s
1

p 

(36) 

(37) 

(38) 

. The fact that the interactions represented by a 4 and a4 are 

different is caused by the lack of inversion symmetry. 

It can be shown that independent of the choice of th~ 

interaction parameters y1 , ... ,y6 (diamond structures) 

and a1 , ..• ,a9 (zincblendes), the bands have no dispersion 

along the symmetry direction Z which goes through the points 

2~ 2~ 1 X =_a- (1,0,0) and W =a-· (1,2,o> of the Brillouin zone. 

Other calculations such as those based on the empirical 

pseudopotential method (EPM) show11 however a dispersion 

of about one eV between X and W for the upper two valence 

bands. This dispersion is reflected in the density of states 

where each of these points gives rise to a characteristic 

and well resolved peak., To obtain this result in the tight-

binding calculation it is necessary to include at least one 

second nearest-neighbor interaction. Figures.S show the 

density of states of a crystal such as Ge with and without 

second nearest neighbor interactions. For the nearest­

neighbor calculation the parameters used were (in eV): 

(E -E ) = 8.41, V = -6.78, V = 2.62, Vxy = 6.82 and p S SS XX 

V = b.3l. The second nearest neighbor interaction we have sp 
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used (in Fig. 7) arises from the overlap of a·p orbital at 
X 

the origin with a ~ orbital separated by a lattice vector 
X 

of the type (O,±~,~~)a. Its effect is to change the diagonal_ 

matrix elements to <xiiHixi>-+ Ep + Uxx cos k 2 cos k 3 , etc. 

~for diamond structure crystals. The interaction U is 
XX 

denoted by 4E (011) in Ref. 6. The interaction parameters 
XX 

when both nearest and second nearest interactions were used 

(Fig. 5) are: (E -E ) = 8.41, V = -6.78, V = 1.62, p S SS XX 

V = 6.82, V = 5.31 and U = -1.0 (eV). The resulting xy sp xx 

density of states in Fig. 5 shows the separate structures 

arising from the points X and W. These structures coalesce 

into a single peak when U is set equal to zero. It should 
XX 

be pointed out here. that not all second nearest neighbor 

interactions are useful in broadening the bands along Z. 

Interactions between two s-states or between s and p states 

separated by a primitive lattice vector have no effect on 

the dispersion along Z which is affected mainly by second-

----6 
nearest neighbor interactions between p-states, the largest~ 

one being U . 
XX 

III. Results for C, Si, Ge, GaAs and ZnSe 

Since there is not sufficient information on the valence 

bands of C we have used only nearest-neighbor interactions 
~ ~ - ......,_ ___... 

in our calculations on C. The parameters were obtained by 

fitting to the results of a variational calculation
15 

and 

they are shown in Tables I. The energy eigenvalues are 

compared to other calculations in Table II and the resulting 

-
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band structures and densities of states are shown in Fig. 6. 

Table II shows good agreement between the simple tight-

b . d" 1 1 t" d h . . 115 1 1 . f 1n 1ng ca cu a 1on an t e var1at1ona ca cu at1ons or 

the valence bands of C. The results are also very similar 

to those obtained from an APW16 calculation. The conduction 

bands are not well reproduced by the simple tight-binding 

method except at r where the splittings were fitted. 

For Si and Ge we have used one second nearest neighbor 

interaction in addition to the nearest neighbor interactions 

in the calculations. The nature of these interactions was 

discussed in Sec. II. The interaction parameters for Si and 

Ge are listed in Table I and the eigenvalues at some symmetry 

points in the Brillouin zone are compared to the EPMl?,lS 

values in Table II. The corresponding band structures and 

densities of states are shown in Figs. 7-8 and compared to 

those obtained from recent EPM calculations17 , 18 involving 

non-local (angular momentum dependent) potentials. The 

agreement in all cases is within a few tenths of an eV for 

the valence bands but for the conduction bands the method is 

not as successful. For the sake df completeness we give in 

Tables III and IV the interaction parameters for C, Si, and 

Ge if only nearest neighbor interactions are used. These 

tables show that the strength of nearly every interatomic 

interaction decreases as we go from C to Si to Ge . 

. In the case of the zincblende crystals GaAs and ZnSe 

we have only used nearest neighbor interactions for convenience. 
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A second nearest neighbor interaction between the Ga or Zn 

p-states similar to the one used for Si and Ge is, however, 

necessary to broaden the upper two valence bands. The band 

structures and densities of staTes for GaAs and ZnSe are 

shown in Figs. 9-10 and .compared to nonlocal (angular momentum 

dependent) EPM calculations. 19 , 20 The interaction parameters 

are listed in Tables V and VI. The largest error in the band 

min structures occur for the states denoted by E1 . The tight-

binding results are actually much closer to older EPM calcu-

lations which used local pseudopotentials resulting in upper 

valence bands which are narrower. Ultraviolet and X-ray 

photoemission spectra however reveal a larger width for 

these bands than those indicated by local pseudopotentials 

and this has been one reason for the use of nonlocal pseudo-

potentials. The energy eigenvalues at some symmetry points 

in the Brillouin zone are given in Table VII and compared 

to the EPM values. For more accurate conduction bands 

second nearest neighbor interactions, especially those between 

s and p states, need to be included. 

The tight-binding method allows a simple calculation of 

the s and p character of the valence bands and it is inter­

esting to see how close to ideal. sp3 they.are. We have 

therefore computed the average s and p components of the 

wavefunctions for the valence bands. We find the top two 

valence bands to be completely p-like in character in all 

five crystals. The differences in the s-p characters occur 
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alt (t_, o..)o) 
q_ 

mainly for the first two valence bands and these are shown 

in Table VIII. The average of the s and p-electrons in the 

four valence bands of C, Si and Ge are, C: l.25s, 2.75p; 

Si: l.4s, 2.6p and Ge: l.Ss, 2.5p. The ratio of the number 

of. s to p electrons is B.45 for C, 0.54 for Si and 0.6 for 

Ge. Carbon is therefore as expected the closest to the 

ideal ratio of 0.333. In GaAs and ZnSe the first valence 

band is s-like around As and Se. The second valence band 

is mainly s-like around Ga and Zn and p-like around As and Se. 

In the simple model of Weaire and Thorpe 2 in which only 

two interaction parameters (equivalent to y 2 and y 3 ) are 

used the bonding and antibonding p states give rise to two 

o-functions, each of weight two, in the density of states. 

The delta functions correspond to doubly degenerate bands 

which are flat throughout the Brillouin zone. The addition 

of extra interactions obviously broadens these bands and 

the o-functions. It is interesting to see which interactions 

are most important in producing this broadening of the· bands. 

In the s-p interaction picture, it can be shown that if we 

set V = V then we immediately obtain, for both diamond 
XX xy 

and zincblende crystals, two sets of bands which are doubly 

degenerate and flat throughout the Brillouin zone independent 

of the magnitude of the other nearest neighbor interactions. 

In the directed-orbital representation Eqs. (39)-(30), and 

Eqs. ·(38)-(37) show that Vxx 

(diamond structures) or as = 
= V corresponds xy 

a 6 (zincblendes). 

to y - y 5 - 6 

Therefore 
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independent of the other interactions between the orbitals 

if y 5 = y 6 or a 5 = a
6 

we will have flat p bands in the entire 

Brillouin zone. The broadening of'the p bands can be 

expected to be related to V -V 
XX xy In fact if we take 

second nearest neighbor interactions to be zero then in 

diamond structure crystals the width of the doubly degenerate 

valence bands is exactly equal to IVxx-Vxyl or 4lr5 -r6 1 with 

the top of·the bands at rand the bottom at X. It is 

obviously not a good approximation to take V = V or 
XX xy 

y 5 = y 6 • In fact we 

than V -because the 
XX 

expect the interaction V to be stronger xy 

overlap between the orbitals x 0 ,y1 is 

larger than the overlap between the orbitals x 0 and x 1 . This 

1s born out in Tables I, III, ~nd V. 

In order to calculate the interaction parameters we used 

the dependence of the energy gaps at a few points in the 

Brillouin zone on the potentials. _Along some symmetry 

dir'cctions and at some synunetry points the dependence of the 

energies on the potentials can be obtained in clOsed form. 

Here we list some of these relations a number of which were 

first obtained in Ref. (6). 

For the diamond structure crystals we have: 

E(fl) = E + V ' s ss 

E(r2,) = Es- V/ss / ~ 

E ( r 
2 

S , ) = E . + ( ~~~ ) + - v 
XX / 5 / p/5 · xx 

J -----

E<r15 > = E + (E -E ) + U + V 
6 p S XX XX 



-19-

At L the doubly degenerate eigenvalues are given by 

E(L ,) = E + (E -E ) ± 
1
2CV +V ) 

3 S p S . XX · xy 

and the four non-degenerate states are: 

l ~(V .+V -2V ± SS XX XY 
2 . 2 + 

1 -(V -V +2V ) 
4 SS XX xy 

(E -E >)
2 

+ 3V 
2 

p s sp 

(The~e is a slight error in Ref. (6) for this expression, 

i.e., Vss outside ~he square root is replaced by Vsp") At 

X the energy of the doubly degenerate roots are given by 

7~'~~~1 =~ + 
E -E +U' 

E(Xl) = E + p s XX 
s 2 

1 I( 2 2 ± - (E -E +U ) +(2V ) , - 2 p S XX sp : 

When Uxx is set equal to zero the energy of the bands for 

k = 21T (l,k,O) are equal to the energies at X. Along the 
- a 

21T symmetry direction A = -- (k,k,k) only the energy of the a 

doubly degenerate bands can be obtained in closed form: 

E(A ) - E + U cos1 1Tk ± 3 - p XX 

= E + U cos 21Tk p .XX 

/(v 3 k V . 2 k k)2 (V . 3 k V 2 k . k)2 ± xxcos 1r2 + xys~n 1r2 cos1r2 + xxs~n 1r 2 + xycos 1T2 s~n1T2 

Along the symmetry direction A 

degenerate eigenvalues are given by 

21T =-- (k,O,O), the singly a 



E(k) = :L 
s 
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E -E +U ±(V +V ;)cosn ~2 + p S XX SS XX 
2 . 

/

·-··--···-·------ ·--···-····---------"-i(~-2---·· ... ·---~-.. - "j( '2' 
± 1

2 (E -E +U · ±(V -V )cosn -
2

) +(2V s1nn -
2

) 
p S XX XX SS . Sp 

The doubly degenerate eigenvalues along ~ are g1ven by 

Along the symmetry direction E 2 =a (k,k,O), the energy of 

the fourth valence band is given by 

E(k) = E +(E -E )+U cosnk-(V cos 2 nk+V sin2nk) 
S p S XX XX xy 

Changing the s1gn of Vxx and Vxy gives the result for one 

of the conduction bands. 

The tight binding expressions sometimes give equalities 

between energies at different points in the Brillouin zone, e.g. 

1 1 1 1 1 1 
E4 <2'2'2) = E4 <2'2'0) = Ep - 2 (Vxx+Vxy)' where the subscripts 

refer to the band index. This equality holds only when a 

few parameters are used and as it stands it is incompatible 

with the results of EPM calculations16 , 17 which show a 

difference of 0.1-0.2 eV between the two states. The inter-

action parameters can be determined by using the following 

eigenvaiues E(f1 ), E(r 25 ,), E(r15 ), E<r 2 ,), E(X1 ), E(X 4 ), and 

E(L1 )-E(L
2
,). 

For the zincblende crystals the eigenvalues at the 

symmetry points r, X and L are given by 

E(rl) = Eso;Esl ± ~~r + v!s 
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(triply degenerate) 

I:so +EPl ffi ----~-------·······-
E(X1 ) ± ( so-EPl) + V2 = 2 2 - s 0p 

;rs;·-····---··-·-- .... 
E(X3 ) 

Esl+Epo 
± ( Epo)2 + v2 = 2 slp 

Epo+Epl ;r·-··-·--.----····- ···"' ·-
E(X 5 ) ± (Epo-EP1) 2 2 = 2 + v 2 xy 

ECL3 ) 
EpO+Epl 

± ~ /[EPo;EP1] 2 
+ (V +V >2 = 2 XX XY 

The energies of the bands for ~ = !1T (l,k,O) is equal to 

the energies at X when only the nearest neighbor interactions 

listed above are used. 
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Table Captions 

Table I. Tight-binding interaction parameters (in eV) for 

C, Si and Ge. The parameter U represent a second 
XX 

nearest neighbor interaction. The parameter E determines s 

the zero of energy and is arbitrary. 

Table II. Comparison of the energy eigenvalues of C, Si 

and Ge at some symmetry points in the Brillouin zone. 

The energies in (eV) are measured relative to the top 

of the valence bands at r 25 ,. 

Table III. Interaction parameters (in eV) appropriate for 

C, Si and Ge when second nearest neighbor interactions 

are ignored. The parameter E is arbitrary. s 

Table IV. Interaction parameters (in eV) between directed 

orbitals for C, Si and Ge. These parameters are related 

to those in Table III through the equations given in 

Sec. II. The parameter y 1 can be chosen arbitrarily. 

Table V. Interaction parameters (in eV) for GaAs and ZnSe. 

The four intra-atomic parameters E , E , E and E give 
so 8 1 Po P1 

information only on the relative energy differences 

between the tight-binding s and p functions. The sub­

scripts 0 and l refer to As (or Se) and Ga (or Zn) 

respectively. 

Table VI. Tight-binding parameters (in eV) between directed 

orbitals for GaAs and ZnSe. These parameters are related 

to those in Table V through the relations given in Sec. II. 
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Table VII. Comparison of the energy eigenvalues of GaAs 

and ZnSe at some symmetry points in the Brillouin zone. 

The energies in (eV) are measured relative to the top 

of the valence bands at r 15 . 

Table VIII. The average s and p characters for the valence 

bands of C, Si, Ge, GaAs and ZnSe. 
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Table I 

E (E -E ) v v s p s ss sp 

c 7.40 -15.2 10.25 

Si 7.20 -8.13 5.88 

Ge 8.41 -6.78 5.31 

lb:l . 
:1<. 

J -, "'!:... .. 'J.__ 
I• I 

v v 
XX xy 

3. 0 8. 30 

l. 71 7.51 

l. 62 6.82 

,. 

I g~~Cc0-~ ~ 

I \~ 

ILl. 

.~t> 

'I <61-
i 'S?... 

u 
XX 

-1.46 

-1.0 



l 
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Table II 

c Si Ge 

• State Tight- DVMa Tight- EPMb Tight- EPMc 
Binding Binding Binding 

r25' 0 0 0 0 0 0 

r1 -19.6 -19.6 -12.16 -12.16 -12.57 -12.57 

r15 6.0 6.0 3.42 3.42 3.24 3.24 

r2, 10.8 10.8 4.10 4.10 0.99 0.99 

L2, -15.2 -14.5 -9.44 9.57 -10.30 -10.30 

L1 -9.8 -11.7 -7.11 -6.98 -7.52 -7.52 

L3' -2.6 -2.4 -1.44 -1.23 -1.60 -1.44 

' x1 -11.6 -11.6 -7.70 -7.7 0 -8.60 -8.56 , . . ; 

x4 -5.3 -5.3 -2.87 -2.87 -3.10 -3.20 -
1:(0.5,0.5,0) -2.35 -3.84 -3.74 -3.80 -3.80 

1:(0.7,0.7,0) -1.83 -4.32 -4.46 -4.29 -4.29 

a. Ref. 15. 

b. Ref. 17. 

c. Ref. 18. 
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Table III 

E (E -E ) v v v v s p s ss sp XX xy 

c 7.40 -15.2 10.25 3. 0 8. 3 

Si 7.20 -8.13 5.88 3.17 7.51 

Ge 8.41 -6.78 5.31 2.62 6.82 

Table IV 

yl y2 y3 y4 Y5 y6 

c -1.85 -8.47 -1.01 -0.52 0.81 

Si -1.80 -6.13 -0.11 -0.51 0.57 

Ge -2.10 -5.46 -0.07 -0.45 0.60 

Table v 

E E E E v v v v v 
so sl Po pl ss s 0p slp XX xy 

GaAs -6.01 -4.79 0.19 4.59 -7.00 7.28 3. 7 0 0. 93 4.72 

ZnSe -8.92 -0.28 0.12 7.42 -6.14 5.47 4.73 0.96 4.38 

.Table VI 

GaAs -1.36 2.25 -1.55 -2.35 -4.44 -0.92 -0.03 -0.28 0.66 

ZnSe -2.14 5.57 -2.26 -1.93 -4.12 -0.51 -0.32 -0.23 0.62 

• 
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Table VII 

State Tight-binding EPMa Tight-binding EPMb 

rl5v 0 0 0 0 

rlv -12.4 -12.4 -12.1 -12.1 

r1c 1.6 1.6 2.9 2.9 

r15c 4.8 4.8 7.5 7.5 

11v -10.7 -10.5 -11.0 -10.9 

1 2v -6.2 -6.7 -4.7 -4.9 

13v -1.2 -1.2 -0.75 -0.75 

11c 1.7 1.6 3. 9 4.1 

1 3c 6.0 4.8 8. 3 7.9 

xlv -9.7 -9.7 -10.6 -10.6 

x3v -6.8 -6.8 -4.8 -4.8 

x5v -2.8 -2.8 -1.9 -1.9 

x1c 2.2 2.2 4.7 4.7 

rmin 
1 -3.1 -4.1 -2.1 -3.2 

a. Ref. 19. 

b. Ref. 20. 
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Table VIII 

Band 1 Band 2 Bands 3,4 
s,p s,p s,p 

c 0.84,0.16 0.39,0.61 -o,l 
I 

Si 0.9,0.1 0.45,0.55 -0,1 • ! 

Ge 0.9,0.1 0.57,0.43 -0,1 

GaAs 0.88,0.12 0.61,0.39 -o,l 

ZnSe 0.94,0.06 0.42,0.58 -o,l 

·[ 
:.• 1 



-31-

Figure Captions 

Fig. 1. Tight-binding s-orbitals on a tetrahedron. 

Fig. 2. Band str~cture and density of states of s-states for 

diamond structure crystals. 

Fig. 3. Band structure and density of states of p-states for 

d~amond structure crystals. 

Fig. 4. Directed sp 3 orbitals on two adjacent tetrahedrons. 

The different possible interactions of the orbitals on 

the nearest neighbor atoms are given in Sec. II. 

Fig. 5. The density of states of Ge with and without second 

nearest neighbor interaction. The second nearest neighbor 

interaction splits the energies at X and W and gives rise 

to extra structure in the density of states. 

Fig. 6. Band structure and density of states of diamond. 

Fig. 7 • Tight-binding band structure and density of states 

of Si as compared to the results obtained from empirical 

pseudopotential calculations. (Ref. 17) 

Fig. 8. Tight-binding band structure and density of.states 

of Ge as compared to the results obtained from empirical 

pseudopotential calculations. (Ref. 18) 

Fig. 9. Tight-binding band structure and density of states 

of GaAs compared to the results of EPM calculations. (Ref. 19) 

Fig. 10. Tight-binding band structure and density of states 

of ZnSe compared to the results of EPM calculations. (Ref. 20) 
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