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Tight-Binding Calculations of the Valence Bands

of Diamond and Zincblende Crystals*

D. J. Chadi and Marvin L. Cohen
Department of Physics, University of California, and
Inorganic Materials Research Division,

Lawrence Berkeley Laboratory, Berkeley, California 94720

Abstract ‘
Using the tight-binding method,:we have

calculated the valence band structures and densities

of states for_C, Si, Ge, GaAs and ZnSe. We obtain

very good agreement with other calculations when

we include all nearest and-oné second nearest

neighbor interactions. The effects of the various

interactions on the density of states aré discussed.
I. Introduction

The-tight-binding approach to the problem of the
electronic energy levels in solids is intuitively very
appealing. vThe method provides a real space picture of the
elec}ronic interactions which give rise to the particular
featﬁres of the energy band structure, density of states, etc.
This is extrémely useful‘in studies of how these features
change when the eiectronic configuration is altered. .The
tight-binding method is most practical when only a few types

of electronic interactions are dominant. In such a case an

adequate descriptionvof the system of interest can be



obtained by specifying a small number of interaction
parameters. In this way a qualitative description of the
valence bands can be obtainedl_6 for materials in the
diamond, zincblende and other structures.
In this paper we show that a tight-binding method using
a few interaction parameters gives accurate fesults for the
“valence bands of the diamond and zincblende crystals C, Si,
‘Ge, GaAs, and ZnSe. fhe tight-binding method we use is
equivalent to that of Slater and'Koster.6 It can also be
regarded as a more complete version of the Weaire and Thorpe2
model in which interactions between more distant directed

orbitals are_inciuded.7’8

It is necessary to include these
extra intéractions for a more complete description of the
/valence.bands. In section II we give‘a brief review of the
method and consider the effects of the various interactions
on the density of states. We show that the inclusion of
all the possible nearest neighbor interactions9 between s
and p-tight-binding states is not sufficient_fo broaden the
"p-like" bands along all symmetry directioné. The resulting
error in the energies is about 1 eV and occurs.mostly for
states near the surface of the Brillouin zone. With the
inclusion of Ohly.one second-nearest-neighborliﬁteraction,
the accuracy is gfeatly improved and the resulting valence
band structures and densities of states exhibit all the

structures obtained in other calculations.

The band structures, densities of states and interaction



parameters for C, Si, Ge, GaAs and ZnSe are discussed in
secfion ITI. The dependence of the energy levels, along
several symmetry directions and at some symmetry points,
on the interaction parameters are also given in section III.
These expressions are useful forvobtaining information about

the interaction parameters.

II. Tight-Binding Method

In diamond and zincblende crystals, every atom is
tetrahedrally coordinafed and there are t&o atoms in the
primitive cell. For each tight-binding basis fuﬁction
centered on these atoms, twoiBloch functibns can be con-
structed. For example for a tight-binding basis function

bh(r) we have the two Bloch functions

bokor) = =1 &8 b (-m) (1)
T YN R
and
wl(k,r) = 21 z e15°§ bl(r-R-T) ' (2)
~ /N_R ~ o~ A

where T is the vector 5oining thé two atoms in the primitive
cell and'the subscripts on b refer to thé atoms in the
primitive_cell. ' In the diamond structure crystals we take
Qfg) = ?{E), but in the zincblende crystals the two functions
are different.

In order to have

<Wl(l§,§)|¢3(1§,{‘)> = 6ij i,j = 0,1 : (3)

we must require that the tight-binding functions on different



atomic sites be orthonormal:
<bg(r-R )b (x-R -1)> =0 ()
<b;(2)[by(x)> =1 (5)

These conditions can always be accomplished by a method due

to Lwdin®210

without affecting the symmetry of the basis
functions.

The basic problem of the tight-binding method is to
find the matrix elements of the Hamiltonian between the
various basis states. For example, if we blace s-states
on each atomic site and take only nearest-neighbor inter-
actions, we find the following 2 x 2 matrix for thé eigen-
values: | |
, ESO—E(E) Vssgo(g) _ .

v &g k) B, “EO

. ' (6)

and E__ are the~energiés of the tight-

The parameters E
S 1

0
binding s-states:

'Eso = <s|H|s> , Eslz <s,|H|s;> .

In diamond structure crystals ES = ES and will be
o "1 '

denoted simply by Es. The parameter

Veg = u<so(g)|H|sl(§-z)>

measures the strength of the nearest neighbor interaction

(the factor of 4 is used for convenience) and



etk Ty (7)

golk) = % 1

L1 oo B =

3
results from the phase difference between the atoms at the

four corners of the tetrahedron defined by T, = %(l,l,l)a,

T, Ty = (1,1,7)a and T, = %(T,T,l)a where a is

the lattice constant. (To obtain gy we assign a phase factor

= %(I,T,T)a,

elk'fj to each orbital in Fig. 1. 1In this way the phase

of the Bloch function changes by ik (ry-14) _ ik:R . going
from atom i to j (i,j = 1,2,...,4), which is consistent
with Eqs. 1-2.)
In a similar way, we can obtain the matrix elements of
" the interaétions between the other orbitals. We will consider

here only the case where we have only one set of s, p P

x> Ty
and P, orbitals at each atomic site. We will denote these

by Sg» Xg» yb, Zg O Sj, X515 Yys 24 where the subscripts as
before‘refer to the atoms in the primitive cell. The
Hamiltonian matrix élements between an s and a p-state on

the same atom or two different p—states‘on the same atom are
zero because of symmetry in diamond and zincbiende crystals.
To_describe the interaction of an s-state an one atom with

the p-state of a nearest neighbor afom we need one. parameter
for the group IV crystals and two parameters for the zincblende
crystals, where there are different s and p orbitals on the
basis atoms. We will denote the interactions between s and

Py opbi%als‘by v |

g, and V g1 where

SOP Slp

VSop = 4<so(§)|H|xl(§—zl?> (8)



Vélp z -u<sl(g—zl)|H[x0(§)> _ (9)
gl(k) = %(elk'Il+elE'I2—el§'I3—elE'I“) . (10)
For the group IV crystals V =y and will be denoted
SoP 5P

simply by vsp' The minus sign in front of some of the phase
factors result from the fact that the sign of the matrix
elements fso(f)lﬂlxl(f—zj)> and <sl(€—zj)|H|x0(é)> depend6
on the sign of (Ij)x' For T and T, the sign is positive, -
for 1, and Iu'it is negative. . These differences in sign

are incofporated.into gq- To obtain the matrix elements for

the s—py and s-Pp, interactions g1 should be replaced by

(1K T1_ ik T2, ik T3 _ ik Ty (11)

=

g?(g) =
for S“-py type interactions, and

gyk) = %(elg.Il—elE.Iz—elE.I3+e1§'I”) (12)

for S‘Pé type interactions. The matrix elements between
s, p and d basis functioné have been derived in Ref. (6).
The 8 x 8 éecular matrix representing all possiblé nearest
neighbor interactions between the tight—binding s and p

orbitals centered on each atom in the crystal is:






(.QJV) 0, O\) 8- A o o

\ VXA s
1B NN 7
\ : \(L\(lg,‘\éN \L/L\OS
="
For diamond structure crystals E = E-, E = B and
- S0 17 Py Py
v =V and from this point we will drop the subscripts

SoP s,P
for these crystals. The functions 8g> 81> 8y and g3 which

we havé previously defined can also be expressed in the
RS Sed

following way:

A . ’
Tk /ﬂ‘ﬂ k ky | kg
CO.)TT——PXC 2 3 ‘i

3 N
(k) =t oqn—— COST=— - — ‘sinm—-_sinm— (14)
go i~ ~ ”\ v2‘ P 2 —’/‘)M— >‘~2~\___ '
| rfk> K. .k k!
g,(k) = —cogf——f51nn ‘3 ¢ 1 81nn—l cosT=% cosm=3 (15)
N QA oy ‘*/j\_' 5 =Sty =2AT
Mot Sl RS
ﬂ cosn2 51n1r2 ’)J;“SOSTT——-VSJ.DT_TT cosmz= (16)
, == _tr““' )~ e
o R 2‘ k3 kl k k3
gB(E) = -31nnj% SinTz= coswiy= +1i cosn2 coFﬁz 51nn2 (17)
| .
/’-—-“\\‘*‘\—__‘ !
where|k = 2“ (k ,-k ) (rﬁt.«‘b
3
For diamond structure crystals, the parameters

appearing in (13) are related to those of Slater and Koster6

by
Eg = Eg  (000), E = ,x(ooo)
Ves HE ,s(%A%,%)’ Vex © q£x,x<%‘% %) (18)
ny ) I+Ex,y(% % %)’ vsp - uvs,¥(%v% %) :
Before describing the total interaction between s»and_ .

p states, it is interesting to look at each one separately.

If we set the s-p interaction parameters V and V_ equal
soP S1P

to zero the 8 x 8 matrix (13) decouples into a 2 x 2 (Eq. 6)

and a 6 x 6 matrix. The energy eigenvalues of the 2 x 2 matrix

which describes the s-states is given by



) € kelz

v, % Y cof. -
Q/(( <{ 4 -9- © gL(;a/q D »'I
E(k) = E_ ¢ Vsslgo(}f)l (19)
for diamond structure crystals. Although this expression

is very simplé it nevertheless provides a very good
descriptipn of the lowest valence band in these crystals.
Specifying the width of ‘the band (which is about 3.5-4.0 eV
in Si and Ge) determines the band structure to within a few
tenths of an eV throughout the Brillouin éone. The largest
errors (compared to calculations bésed on the empirical
pseudopotedtial method (EPM)) occur along the A direction

and along the Z direction which runs between the symmetry
1
,‘i"
zone. Along this direction the two bands are degenerate

points X = §1 (1,0;0) and W = §£ Q1 0) of the Brillouin
(by symmetry) and have no dispersion. The second valence
band in the group IV crystals is p-like at T and (19) does
not therefore provide a valid description for this band.
The baﬁdvstructure.and density of states associated with

the tight-binding s~like bands is shown in Fig. 2. The

‘dip in the density of states occurs near the line X > W

in the Brillouin zone. For Yss < Ovthe lower energy band
is bonding at T and the higher band is antibonding. For
VSS > 0 the order of the bondihg-antibonding states is
reversed. For the zincblende crystals (6) gives

I N NN
E=—g—1t /) |—5] * Vg 88" (20

whereas as a result of inversion symmetry the two bands were

degenerate at X in the diamond structure crystals, a gap of



-10-

magnitude IESO—ESlI opens up at X for the zincblende crystals.
'The maximum of the first .band and the minimum of the second
still occur at X. But unlike the case of the group IV

~ crystals the bands approach X with zero slope and this results
in a sharp peak in the density of states (not shown) for
states near X. Except for this structure the s-band density
of states in the‘group IV and zincblende crystals are very
similar to each other. The band structure and density of
states associated with the six p-states of the group IV
crystals 1is éhown in Fig. 3 for Vxx =0, V = 6.8 and

Xy

Ep = 0. The sharp rise and fall of the curve near threshold

occurs at I min

TN and is very similar to the £y edge observed

1
in the density of states of a number of diamond and zinc-

11-13 As in the case of the s-bands there

blende.crystals.
.is no dispersion along the line joining the points X and W
of the Brillouin zone and the dip in the dénsity of states
éorresponds to thesevsfates. The overall shape of the curQeé
for the s and p-states are similar'in the region neér the
density of states minimum. For the zincblende crystals the
band structure and density of states for fhe‘p-states is
similar to that of Fig. 3. The'maxiﬁum of the lower three
bands and the minimum of the upper three bands occur at X

and ére separated by a gap. The zero slope of the bands at

X gives rise, as in the case of the s-states, to a sharp
structure in the density of states (not shown). Except for

this structure the densities of states of the p-bands in

the'group'IV and the zincblende crystals are very similar

\
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as may be expected.

Sometimes it is more convenient (e.g.: surface calcu-
latinns: Ref. 7) to use tight-binding nrbitals directed |
along the bond directions. The parameters which appear in
this approach can be easily related to s and p interaction
parameters: This can be done by taking the Hamiltonian
matrix elements between the following directed orbitals

(see Fig. 3).

o1 -1 -

N -‘7(80+x0+y0+zo) | O "2(Sl+xl+yl zl) (21)

b, = 2(s +Xo=y=2,)  bp = E(s.+x, -y, +z,) (22)

2 270 7070 70 6 2°71 71 71 71
o, = l(s‘-x ty. =z.) ¢, = i(s -X ;y +z.) (23)
3 7 200" V0" %0 70 2° 5171715
$,, = l(s “X =Yatz,) ¢, = l(s -# -y.=2z,) - - (24)
T4 270 "0 70 “0 8 271 71 71 71
The results for diamond structure crystals in Hirabayashi's7
notation are:

= < = 1

Yy ® <¢i|H|¢i> = u(Es+3Ep) \ o (25)
- o 1

Y, = <¢1|H|¢2> = E[Es'Ep] | | (26)
] - Ity 3y ey - | '

Yg = <¢1|HI¢8> = Ig[vss 3V_ svxy svSpJ (27)
- o= 1 -

Yy ~ <¢2|Hl¢8>" ls[vss+vxx+zvxy 2Vsp] (28)
_ _ __]; o .

Yo © §¢2|H|¢5> = 150VestVyx 2vxy+2vsp] (29)

. ! -
Yo * <¢,|H|$,> = I-6-[vss-avxx+'zvxy+2vSp] , (30)
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The parameter Y, appears in the diagonéljmatfix elements and
can be taken equal to zero. The parameéeters Y, and Y3 are

the same as the parameters Vl and V2 of Weaire and Thorpe

and from Fig. 4 it can be expected that they represent the
most important interactions. The properties of a model
Hamiltonian based only'on these two types of interactions has

been studied in detail by Weaire and Thorpez’lu

and has been
employed in a number éf calculations involving crystalline
polytypes of Si and Ge.3 These calculations show that the
two parameter model gives a relatively good description of
the lower "s-like" valence bands but gives a péor description
of the higher p-like bands which appear as delta functions
in the density 6f states. 'The‘inclusion of the other inter-
actions broadens the delta functions® and gives a better
description of the valence bands.

For zincblende crystals we need three extra para-

meters to describe the overlaps corresponding to nearest-

neighbor s-p interactions. The interaction parameters are:

. _ 1

a; = <¢,|H|¢,> = E(BSO+3EPO) | (31)
- R -

B, = <¢8IHI¢8§'- E(Esl+3EPl) (32)
- P P

a, = <¢;[H[¢,> = E(ESO Epo) | (33)
_ _ 1

32 = <¢7|H|¢8> = E(Esl-Bpl) (34)

- B = - Lrv _av _gv - N
@y = By = <o, [H[¢g> = 75V -3V 6Vyy~3Vs p~3Y ! (35)
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1

a, = <o, |H[¢g> = I€[Vss+Vxx*2ny‘3Vsop+Vs1p] (36)
, S
B, -,<¢1|H|¢5> -‘16[yss+vxx+zvxy+vsop-3vslpl (37)
0, = <0, |H|é.> = ==[V__+V__=2V_ +V_ +V_ _] - (38)
75 2 5 16~ "ss "xx Xy '8gP 8,P
- <o lHle > = Lry - K '
“6 - <¢2|H|¢7> - ls[vss 3Vxx+2vxy+vsopﬂlslp:| (39)

. The fact that the interactions represented by du and'Bu are
different is caused by the lack of inversion symmetry. |
It can be shown that independent of.the choice of the
interaction parameters YooY (diamond structures)
and Q50,09 (zincblehdes), the bands have no dispersioh

along the symmetry direction Z which goes through the points

X = 2% (1,0,0) and W = 2% (1,%,0) of the Brillouin zone.
____",;g—%-_ — .
Other calculations such as those based on the empirical

' pseudopotential method (EPM) show'?!

however a dispersion

of about one eV between X and W for the upper two valence
bands. This dispersion is reflected in the density’of states
where each of these points gives rise fo a characteristic
and well resolved peak.(‘To obtain this result in the tight-
binding calculation it is necessary to include at least one
second nearest-neighbor interaction. Figures 5 show the
density of states of a crystal such as Ge with and Qithout
sécond nearest neighbor interactions. ‘For the nearest-
neighbor calculation the parameters used were (in eV’:
_(Ep—ES) = 8.u41, Vss = -6.78, Vxx = 2.62, Vx& = 6.82 and

VSp = 5.31. The second nearest neighbor interaction we have
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used (in Fig. 7) arises from the overlap of a'p, orbital at
the origin with a Py orbital separafed by a lattice vector
of the type (O,i%,¢%)a. Its effect is to chaﬁge the.diagdnaL
matrix elements to <x.[H[x.,> » Ep + U, cos k, coé kg, ete.
for diamond structure crystals. The interaction U, x is
denoted by HEXX(Oll) in Ref. 6. The interaction parameters
when both nearest and second nearest interactions were used
(Fig. 5) are: (Eé-ES) = 8.41, V__ = -6.78, V= 1.62,

ny = 6.82, Vsp = 5.31 and Uxx = =1.0 (eV). The resulting
density of states in Fig. 5 shows the separate structures
arising from the points X and W. Thése structures coalesce
into a single peak when Uxx is set equal to zero. It should
be pointed out here that not all second nearest neighbor
interactions are useful in broadening the bands along Z.
Interactions between two s-states or between s and p states
separated by a primitive lattice vector have no effect on
the dispersion élong Z which is affected mainly by second-

. . . . )
nearest neighbor interactions between p-states, the largest~~

one being U__.
_ XX

III. Results for C, Si, Ge, GaAs and ZnSe
Since there is not sufficient information on the valence

bands of C we have used only nearest-neighbor interactions

in our calculations on C. The parameters were obtained by
| 15

fitting to the results of a variational calculation™” and

they are shown in Tables I. The energy eigenvalues are

compared to other calculations in Table II and the resulting

e



=15~

band structures and densities of states are shown in Fig. 6.
Table II shows ggod agreement between the éimple tight-
binding calculation and the variational15 calculations for
the valence bands of C. The results are also very similar
to those obtained from an APW16 calculation. The conduction
bands are not well reproduced by the simple tight-binding
method exéept at T where the splittings were fitted.

For Si and Ge we’have used one second nearest neighbor
interaction in addition to the nearest neighbor interactions
in the calculations. The nature of these interactions was
discussed in Sec. II. The interaction parameters for Si and
Ge are listed in Table I and the eigenvalues at some symmetry
points in the Brillouin zone are compared to the gpml’»18
values in Table II. The corresponding band structures and
densities of states are shown in Figs. 7-8 and compared to
thbse obtained from recent EPM calculationsl7’18 in&olving
non-local (angular momentum dependent) potentials. The
agreement in all cases is‘within a few tenfhs of an eV for
the valéhce bands but for the conduction bands the method is
not as sucéessful. For the sake of completeness we give in
Tables III and IV the interaction parameters for C, Si, énd
Ge if only nearest neighbor interactions are gsed. These
tables show that the strength of nearly every interatomic
-interactioﬁ decreases as we go from C to Si to Ge.

In the case of the zincblende crystals GaAs and ZnSe

we have only used nearest neighbor interactions for convenience.
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L]
.

A second nearest neighbor interaction bétween the Ga or Zn
p-states similar fo the one qsed for Si and Ge is, however,
necessary to broaden the upper twoAvalence bands. The band
structures and densities of states for GaAs and ZnSe aré

shown in Figs. 9-10 and_éompared to nonlocél (angular momentum

19,20

dependent) LEPM calculations. The interaction parameters

are listed in Tables V and VI. The largest error in the band
structures occur for the states denoted by ZTln. The tight-

binding results are actually much closer to older EPM calcu-
lations which used local pseudopotentials resulting in upper
valence bands which are narrower. Ultraviolet and X-ray
photoemission spectra however reveal a larger width for
these bands‘than those indicated by lécal pseudbpotentials
and this has been one reason for the use of nonlocal pseudo-
potentials. The energy eigenvalues at some symmetry points
in the Brillouin zone are given in Table VII and compared

to the EPM values. For more accurate conducfion bands
second nearest neighbor interactidns, especiélly‘those.between
s and p states, need to be included.

The tight-binding method allows a simple calculation of
the s and p character of the valencé bands and it is inter-
esting to see how close to ideal,sp3 they . are. We have
therefore computed fhe average s and p combonents of the
wavefunctions for the valence bands. We find the top two
valence bands to be completely p-like in character in all

five crystals. The differences in the s-p characters occur
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.5, (T00)
mainly for the first two valence bands and these are shown
in Table VIII. The average of the s and p-electrons in the
four valence bands of C, Si and Ge are, C: 1.25s, 2.75p;
Si: i.us; 2.6p and Ge: 1.5s, 2.5p. The ratio of the number
of s to p electrons is 0.45 for C, 0.54 for Si and 0.6 for
Ge. .Carbon 1s therefore as expected the closest to the
ideal ratio of 0.333. In GaAs and ZnSe the.first valence
band is s-like around As and Se. The second valence band
is mainly s-like around Ga and Zn and p-like around As and Se.
In the Simple model of Weaire and Thorpe2 in which only

two interaction parameters (equivalent to Y, and Y3) are

.used the bonding and antibonding p states give rise to two

G-functions, each of weight two, in the density of states.
The delta functions correspond to doubly degenerate bands
which are flat throughout the Brillouin zone. The addifign
of extra interactions obviodsly broadens these bands and

the §-functions. It is interesting to see which interactions
are most important in producing this broadening of the bands.

In the s-p interaction picture, it can be shown that if we

‘set Vx =V then we immediately obtain, for both diamond

Y Xy
and zincblende crystals, two sets of bands which are doubly

degenerate and fiat_throughout the Brillouin zone independent
of the magnitude of the other nearest neighbor interactions.
In the directed-orbital representation Eqs. (39)-(30), and
Eqgs. (38)—(37) show that Vxx =z ny corresponds to Ys = Yg

(diamond structures) or ag = ag (zincblendes).b Therefore

{

{

T o o)
k - %_Tf ((/OJOU ‘_5(5_,)“(}'0 )
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independent of the other interactions between the orbitals

if Yg = Yg Or Gg = ag we will have flat‘prbands in the entire
Brillouin zone. The broadening 6f'fhe p bands can be
expected to be related to Vxx—vxy' In fact if we take

second nearést neighbob interactions to be zero then in
diamond structure crystals the width of the doubly degenerate
| or 4]y -vg] with

_ Xy’
the top of the bands at T and the bottom at X. It is

valence bands is exactly equal to A

obviously not a good‘approximation to take.VxX = ny or

Yg 7 Yg- In fact we expect the intefaction:vxy to be stronger
than V. -because the overlap between the orbitals XgsYq is
larger than the overlap between the orbitals Xg and X - This
is born out in Tables I, III, and V.

In order to calculate fhe interaction‘parameters we used
the dependence of the energy gaps at a few‘points in the
Brillouin zone on the potentials. Along some symmefry
directions and at some symmetry points the dependence of.the
energies on the potentials can be obtained ih closed form.
Here we list some of these relations a number of which were
first obtained in Ref. (6).

For the diamond structure crystals we have:

s

E(Tye) = Eg - v%i////f
- /
,/
E(1125') i/Es * £;p7gs) YU ex f Vix

e/

) = Es + (EP-ES) + Uxx‘+ '

E(Fl)‘=-ES + VS

E(T

15 XX
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At L the doubly degenerate eigenvalues are given by

(vxx+vxy)

[

E(Lg) = Eg + (E-EQ) ¢

and the four non-degenerate states are: \\\

E -E ‘ :
- s 1
E(L) = ES + [-27——J + E(vss-vxx+2vxy)

V__+V__ -2V 2
SS XX XY . - 2
//I — 7 (E, ES)] + 3V

(There is a slight error in Ref. (6) for this expression, <—

+
o+

i.e., Ves outside the sQuare'root is replaced by vsp') At

X the energy of the doubly degenerate roots are given by

_ ey "
722 " 5 T Byl 7 T P )
2

E_-E_+U -
» s xx .1 _ 2 '
t 3 /?Ep E_+U ) +(2v )i .

E(Xl) = ES + 5 t p
When Uxx is set equal to zero the energy of the bands for
K = él (1,k,0) are equal-to the energies at X. Along the
symmetry direction A = %1 (k,k,k) only the energy of the

doubly degenerate bands can be obtained in closed form:

2

E(A) = E, *+ Uy, cos'mk # |vxxg05vxygl|
) 2 |
= EP + Uxx cos 7Tk |
3 k . 2.k k.2 . 3 k 2 kK _. k.2 .
i//(Vxxcos L +nysln Ly cosnf) +(Vxx51n L +nycos T 31nn7) .

Along the symmetry direction A = %1 (k,0,0), the singly

degenerate eigenvalues are given by
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vl k
Ep_Es+Uxxi(vss+vxﬁ)C°S" >
2 .

E(k) = E_ +
s

e I . -y
-Vss)cosn 7) +(2VSp81nn 7) .

N /.__.____,_.___ﬂ:___._ —_
i—2— ('f.p—}:swxxi(vXx

The doubly degenerate eigenvalues along A are given by

R T
= + - —_ =
E ES (Ep ES)+UXXcosnk + /vaxcosn 2) +(ny51nn 2)

Along the symmetry direction I = é (k,k,0), the energy of

the fourth valence band is given by

- 2 . 2
E(k)A— ES+(Ep—ES)+UXXcosnk-(Vxxcos nk+nysln k) .

Changing the sign of Vx and ny gives the reésult for one

X

of the conduction bands.
The tight binding expressions sdmetimes give equalities

between energies at different points in the Brillouin zone, e.g.

111, _ 11 - 1 .
7,7a7) = Eu(2,2,0) = Ep vl (Vxx+ny), where the subscripts

refer to the band index. This eQuality holds only when a

Eu(

few parameters are used and as it stands it is incompatible

16,17

with the results of EPM calculations which show a

difference of 0.1-0.2 eV between the two states. The inter-
action parameters can be determined by using the following
eigenvalues E(T)), E(F25')’ E(Pls), E(Fz,), E(Xl), E(Xu), and
E(Ll)—E(Lz,).

For the zincblende crystals the eigenvalues at the

symmetry points I'y; X and L are given by

E(T.) = Fso'Fsy | / Fsofsn)? 2
1 2. - 2 ss
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: Ep,+E E_  -E .12 f
' Pg "P1 PO Pl 2 .
n(rls) = ey //T-——————J + Vxx (triply degenerate)
T S5 L
}-(xl) - “——,2"-"'—" — ~—-—-T——-J ) + Vsop
) = Es1*Epg + //ﬂEsl-EPO‘zﬁwwm;.w
BXg) = —— /77| *Vep
. . / 1

B(x.y = CPOYERL /Epo"Epl’z ey

5 2 - 2 ) Xy

" Ey +Eq. T i
po*Ep; 1 / po~Ep; 2
E(L3) ——7—— * 7 -—T—— + (vxx+vxy)

The energies of the bands for k = %1 (1,k,0) is equal to
the energies at X when only the nearest neighbor interactions

listed above are used.
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Table Captions'

Table I. Tight-binding interaction parameters (in eV) for
C, Si and Ge. The parameter UXX represent a second
nearest neighbor interaction. The parameter ES determines
the zero of énergy and is arbitrary.

Table II. Comparison of the energy eigenvalges of C, Si
and Ge at some symmetry points in the Brillouin zone.

The enérgies in (eV) are measured relative to the top
of the valence bands at F25,.

Table III. Interaction parameters (in eV) appropriate for
C, Si and Ge when second nearest neighbor interactions
are ignored. The parameter ES is arbitrary.

Table IV. Interaction parameters (in eV) between directed
orbitals for C, Si and Ge. These parameters are related
to those in Table III through the équations given in
Sec. I1. The parameter Y, can be chosen'arbitrarily.

Table V. Interaction parameters (in eV) for GaAs and ZnSe.
The four intra-atomic parameters ESO,.ESl, Epo and Epl give
information only on the relative energy differences '
between the tight-binding s and p functions. The sub-=
scripts 0 and 1 refer to As (or Se) and Ga (or Zn)
respectively.

Table VI. Tight-binding parameters (in eV) between directed
orbitals for GaAs and ZnSe. These parameters are related

to those in Table V through the relations given in Sec. II.
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Table VII. Comparison of the energy eigenvalues of GaAs
and ZnSe at some symmetry points in the Brillouin zone.
The energies in (eV) are measured relative to the top
of the‘valence bands at rlS'

Table VIII. The average s and p characters for the valence

bands of C, Si, Ge, GaAs and ZnSe.
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Table I
E (E_-E ) \Y v v v
s P s EE sp XX Xy
c  -- 7.40 -15.2 10.25 3.0 . 8.30
Si --  7.20 ~8.13 5.88 1.71 7.51
Ge -— 8.41 -6.78 5.31 1.62 6.82
Yo
A

= L
RL
i & L
2T
L
\ \ \q
L
B 1o
h aYA
=7 2

20



Tight-
Binding

2(015,0-5,0) -2035

£(0.7,0.7,0) -1.83

a.
bl

c.

Ref.
Ref.
Ref.

15.
17.
18.

Tab

DVM

-19.6

10.8

-luns

-11.7

—1116
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le II

Tight-
Binding

0

-12.16

-9.4Yy
-7.11
-1.uy
-7.70
-2.87
-3.84

-4.32

Si

EPMP

.
-12.16
3.u42
4.10

9.57

-6.98 .

-1.23
~7.70

-2.87

-4.46

Tight-
Binding

0

~12.57

3.24
0.99
-10.30

-7.52

- -1.60

-8.60
-3.20
-3.80
-4.29

Ge

EPM

-12.57

0.99
-10.30
-7.52

-1.44

-3.20
-3080
-4.29



GaAs

ZnSe

Si -

- Ge -

Si

Ge

™

-6.01

-8.92

-1.36

-2.14
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Table III
¢ (E_-EQ) Voo Vep Voo Vg
- 7.40 -15.2 10.25 3.0 8.3
- 7.20 -8.13 5.88 3.17 7.51
- 8.u41 -6.78 5.31 2.62 6.82
Table IV
Yy Yq Yq Yy, Ys Yg
--  -1.85 -8.47 -1.01 -0.52 0.8l
-- -1.80 -6.13 -0.11 -0.51 0.57
-—  -2.10 <5.46 -0.07 -0.45 0.60
Table V
E E E Y V' v v Y
51 P Py ss SoP s, P XX Xy
-4.79 0.19 4.59 =7.00 7.28 3.70 0.93 4.72
-0.28 0.12 7.42 =6.14 5.47 L4.73 0.96 4.38
Table VI
By o) By 03By oy, By ag
2.25 -1.55 =-2.35 -4.44 -0.92 -0.03 =-0.28 O
5.57 =-2.26 -1.93 -4.,12 -0.51 -0.32 =-0.23 O.

%g
.66

62



State

15v
lv
lc

15¢

[
H
<

XX X X ot
o W W H W N
< < < 0o o < <

—
0

mi
L in

—t

a. Ref.
b. Ref.

19.
20,

Tight-binding

0
-12.4

1.6
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Table VII

gpM?

0
-12.4

1.6

4.8
-10.5

Tight-binding
0
=12.1
2.9
7.5

—11.0



Si
Ge
GaAs

ZnSe

0

0

0.

Band 1
- 8,P

.84,0.16
.9,0.1
9,0.1
.88,0.12

.94 ,0.06
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Table VIII

Band 2
S,P

0.39,0.61
0.45,0.55
0.57,0.43
0.61,0.39

0.42,0.58




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.
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Fiéure Captions
1. Tight-binding s-orbitals on a tetrahedron.
2. Band structure and density of states of s-states for
diamond structure crystals.
3. Band structuré and density of states of p-states for
diamond structure crystals. |
4, Directed sp3 orbitals on two adjacent tetrahedrons.
The different possible interacfions of the orbitals on
the néarestvneighbor atoms are given in Sec. II.

5. The density of states of Ge with and without second

nearest neighbor interaction. The second nearest neighbor

interaction splits the energies at X and W and gives rise

to extra structure in the density of states.

6. Band structure and density of states of diamond.

7. Tight-binding band structure and.density of states
of Si as compared to the results obtained from empirical
pseud0potential calculations. (Ref. 17)

8. Tight-binding band structure and density of states
of Ge as compared to the results obtained from empirical
pseudopotential calculations. (Ref. 18)

9. Tight-binding band structure and density of states

of GaAs compared to the results of EPM calculations. (Ref

10. Tight-binding band structure and density of states

of ZnSe compared to the results of EPM calculations. (Ref.

. 19)

20)
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