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6.10 Liquid jet surface at t∗ = 6; Û = 0.2. . . . . . . . . . . . . . . . . . . . . . . 236
6.11 Liquid-jet surface (a), and vortex structures indicated by λ2 = −1011 s−2
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The temporal evolution of three-dimensional instabilities on an incompressible planar liquid

sheet segment is studied using direct numerical simulation (DNS), and the level-set and

volume-of-fluid methods for the liquid-gas interface tracking. The purpose of this study is to

reveal new crucial insights into the development of three-dimensional instabilities on liquid

sheets, which result in formation of lobes, bridges and ligaments, and eventually break into

droplets. Three atomization cascades are distinguished at early breakup, which are well

categorized on a gas Weber number (Weg) versus liquid Reynolds number (Rel) map. Each

atomization domain has a distinct breakup mechanism with its own characteristic time and

length scales in the cascade process. λ2 method is used to identify the vortices near the liquid-

gas interface and relate the vortex interactions to the surface dynamics at different stages of

the jet breakup – namely, lobe formation, lobe perforation, ligament formation, stretching

and tearing. Vortex dynamics explains the hairpin formation, and the interaction between

the hairpins and the Kelvin-Helmholtz (KH) roller explains the perforation of the lobes at

high Weg, the formation of corrugations on the lobe front edge at high Rel, and the stretching

of lobes into ligaments at low Rel and low Weg. Streamwise vorticity generation – resulting

in three-dimensional instabilities – is mainly caused by vortex stretching and baroclinic

torque at high and low density ratios, respectively. Generation of streamwise vortices and

their interaction with spanwise vortices produce the liquid structures seen at various flow
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conditions, understanding of which is crucial for controlling the droplet-size distribution

and jet spread rate in primary atomization. Probability density functions (PDFs) of the

local radius of curvature and the local cross-flow displacement of the liquid-gas interface

are evaluated over wide ranges of Rel, Weg, gas-to-liquid density ratio and viscosity ratio,

and wavelength-to-sheet thickness ratio. A novel analysis enables us to show the temporal

cascade of liquid-structure length scales as well as quantify the spread rate of the liquid jet

during primary atomization. The spray angle and the mean surface length scale are evaluated

from the PDFs and are compared for wide ranges of dimensionless parameters. The validity

and usefulness of the temporal analysis is established by a comparison with dynamics of a

spatially developing liquid jet with slower coaxial gas flow. It is shown that the deformations

in the upstream region of the jet cap follow a periodic behavior that can be well portrayed

in a frame moving with the convective velocity of the liquid jet, as is implemented in our

temporal model.
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Chapter 1

Introduction

Transient nonlinear behavior and high-pressure conditions relevant to Diesel-engine operation

are the main themes of the proposed research. The focus of the research is in the identification

of the major physical mechanisms in the conversion of the planar liquid jet into droplets

during primary atomization. The breakup mechanisms are to be analyzed and the causes of

distinct liquid structure cascades are to be understood and related to the flow properties and

vortex interactions. The time and length scales associated with each breakup mechanism

are to be defined to help us evaluate the cascade rate and spread rate of the liquid jet during

primary atomization. The outcome of this study is essentially useful for designing potential

control mechanisms for the droplet size.

1.1 Background and Motivation

Atomization generally refers to the disintegration of a bulk liquid material into droplets in a

surrounding gas. Atomizers are utilized in spraying liquids in many industrial and household

applications. Gas-liquid two-phase jet flows are encountered in a variety of engineering
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applications such as fuel injection, propulsion and combustion systems, agricultural sprays

and chemical reactors. The atomizers could be categorized into planar sheets, cylindrical

jets, or annular jets, based on the cross-sectional geometry of the injecting liquid jet. Either

one of these jets could be accompanied by a coflowing high-speed gas stream, as in air-blasted

and air-assisted atomizers, which are integral parts in both aircraft propulsion systems and

internal combustion engines.

The unified design approach of atomizers in different fields requires the interrelations between

different spray characteristics of the atomizers with the pertinent input parameters such as

liquid fuel properties, injection conditions and atomizer geometries. This requires a physical

understanding of the flow field inside the atomizer and of the mechanism of spray formation

outside the atomizer. The modeling of the atomization process is a very challenging task as

it is affected by variety of factors such as the nozzle geometry, the thermo-physical properties

of the liquid, and the aerodynamic liquid-gas interaction. The initial breakup of a liquid jet is

often referred to as primary breakup or primary atomization. A population of larger droplets

produced in the primary atomization may be unstable at some critical flow conditions and

thus may undergo further disruption into smaller droplets. This process is usually termed

as secondary atomization. Many reasons can be given to explain why primary atomization

remains such a challenging topic. First, the complex flows associated with liquid breakup

involve turbulence, surface tension effects, and potentially large density and viscosity gradi-

ents. Then, the difficulty associated with modeling is due to the importance of small liquid

scales in combustion systems, in which the interest is mostly in the size distribution of small

liquid scales which determine the evaporation rate.

Liquid-fuel injection systems operate under conditions of high Weber numbers (We) induced

by the large velocity of the jet and high Reynolds numbers (Re). Our purpose is to under-

stand the mechanisms of jet flow under these extreme conditions which lead to the formation

of small drops and mist. The disintegration of liquid jets can be framed in terms of insta-
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bilities. The instabilities are well known to be critical in the distortion of the liquid/gas

interface and in the process by which ligaments of liquid are torn from the jet core. Three

kinds of instabilities that can lead to breakup are capillary instability, Kelvin-Hemholtz

(KH) instability, and Rayleigh-Taylor (RT) instability. These instabilities can take a sym-

metric/axisymmetric form at the early stages; however, three-dimensional (3D) instabilities

can also occur and prevail later in time. Various parameters affecting the liquid-gas interface

instabilities at the early stages of jet injection are to be investigated and compared in this

study.

The main focus of this research is on three-dimensional, transient computations of planar

liquid streams subject to atomization in a gaseous medium. A temporal analysis is performed

on a liquid segment with combined Navier-Stokes and level-set or volume-of-fluid calcula-

tions. Vortices are determined via post-processing the data for more detailed study of the

effects of vortex dynamics on the jet instabilities. The main objectives are to (i) detail and

explain cascade of structures on the liquid surface with time, including lobe, ligament, and

droplet formations; (ii) investigate the causes of different breakup mechanisms and relate the

surface dynamics to vortex dynamics; (iii) explain the roles different breakup regimes play

in the cascade of length scales and spray development during primary atomization; and (iv)

study the effects of the key non-dimensional parameters – i.e. Re, We, gas-to-liquid density

ratio and viscosity ratio, and the wavelength-to-sheet-thickness ratio – on the atomization

process and on the temporal variation of the spray width and the liquid-structures length

scale.

1.2 Literature review

In this section, the most important instabilities involved in liquid jet breakup are introduced;

then, the works and contributions of the previous researchers on the field of liquid-jet in-
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stability and atomization are presented in four different categories – liquid jet instability

development, breakup regimes, droplet-size distribution, and spray angle. The assumptions

made in each section, the key findings, and the remaining questions to be answered are

mentioned in the corresponding sections. Next, the vortex dynamics studies in homoge-

neous flows are presented and their relevance to the non-homogeneous (two-phase) flows is

established.

1.2.1 Capillary instability

The Plateau-Rayleigh instability, often just called the Rayleigh instability or the capillary

instability, explains why and how a falling stream of fluid breaks up into smaller packets

with the same volume but less surface area. In 1873, Plateau experimentally found that a

vertically falling stream of water will breakup into drops if its wavelength is greater than

about 3.13 to 3.18 times the stream diameter; i.e. λ ≥ πD. Later, Rayleigh [69] showed

theoretically that a vertically falling column of non-viscous liquid with a circular cross-

section should breakup into drops if the wavelength of the instabilities on the surface of the

column exceeded the circumference of the column cross-section.

Studies of capillary instability revealed that a liquid jet is unstable for axial disturbances with

wave numbers less than a cut-off wave number kc, but stable otherwise. For each wavelength

of an unstable disturbance one main drop and one or more usually smaller drop(s), referred

to as the satellite or spherous drop(s), are formed. Figure 1.1 shows image of a typical liquid

Figure 1.1: Typical photograph of a liquid jet, showing the formation of main and satellite
drops from capillary instabilities.
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jet becoming unstable when it is subject to small perturbation. The instabilities grow and

cause the liquid jet to finally breakup into the main and satellite droplets. The capillary

instability plays the most significant role in breakup of liquid ligaments during atomization.

The classical study of the capillary instability of liquid jets was published in the seminal

work of Lord Rayleigh [69]. With the assumption of an inviscid liquid, he obtained an

equation for the growth rate of a given axisymmetric surface disturbance by equating the

potential and kinetic energies computed for the flow. Further, with the hypothesis that

the disturbance with the maximum growth rate would lead to the breakup of the jet, he

obtained an expression for the resulting droplet size assuming that it would be of the order

of the wavelength of this disturbance. Later, Weber [90] included the effect of viscosity in his

analysis of the jet breakup based on the 3D partial differential equations of hydrodynamics

of Newtonian viscous liquids. He found that the effect of the liquid viscosity is to shift the

fastest growing waves to longer wavelengths and to slow down their growth rate, without,

however, altering the value of the cut-off wave-number.

The explanation of capillary instability begins with the existence of tiny perturbations in the

stream. These are always present, no matter how smooth the stream is. These disturbances

may be in the form of surface displacement, pressure or velocity fluctuations in the supply

system or on the jet surface, as well as fluctuations in liquid properties such as temperature,

viscosity, or surface tension coefficient. If the perturbations are resolved into sinusoidal

components, we find that some components grow with time while others decay. Among

those that grow with time, some grow at faster rates than the others. Whether a component

decays or grows, and how fast it grows is entirely a function of its wave-number and the

radius of the original cylindrical stream.

When a liquid-gas interface is deformed, as shown in Figure 1.2, the surface tension forces

may tend to bring it back to its equilibrium shape. The equilibrium shape of the interface is

defined based on all the forces that may act on it, including the gravitational and pressure
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Figure 1.2: Schematic of an unstable liquid jet or ligament.

forces. On a flat interface, as the disturbed interface tends to move to its equilibrium shape,

a wave-like propagation appears. If the forces that are acting on the disturbed interface are

the surface tension or the capillary forces, the waves are referred to as the capillary waves.

Although a thorough understanding of how this happens requires a mathematical develop-

ment, Figure 1.2 can provide a conceptual understanding. At the trough, the radius of the

stream R1 is smaller. Hence according to the Young-Laplace equation, the pressure due to

surface tension is increased. Likewise, the radius of the stream is greater at the peak and, by

the same reasoning, pressure due to surface tension is reduced. If this were the only effect,

we would expect that the higher pressure in the trough would squeeze liquid into the lower

pressure region in the peak. Therefore, the wave grows in amplitude over time. However,

the Young-Laplace equation is influenced by two separate radius components: one is the

radius R1, already discussed, of the stream itself, and the other is the radius of curvature of

the wave itself, R2. The fitted arc in the figure shows this radius at a trough. The radius

of curvature at the trough is in fact negative, meaning that, according to Young-Laplace,

it actually decreases the pressure in the trough. The radius of curvature at the peak, on

the other hand, is positive and increases the pressure in that region. The effect of these

components is opposite to the effects of the radius of the stream itself.

The two effects, in general, do not exactly cancel. One of them will have greater magnitude

than the other, depending upon wave-number and the initial radius of the stream. When the

wave-number is such that the radius of curvature of the wave dominates that of the radius
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of the stream, those waves decay over time. When the effect of the radius of the stream

dominates that of the curvature of the wave, such instabilities grow exponentially in time.

Provided that the wavelength of surface deformation is long, the curvature 1/R1 >> 1/R2

at the trough. Since liquid pressure is primarily balanced by capillary pressure due to

curvature 1/R1 , a greater liquid pressure is induced by a smaller radius of the cylinder.

Thus, the positive difference in the pressures induces a perturbed flow from trough to the

neighboring peak. Therefore, the system is unstable and breaks up the cylinder into droplets.

However, for deformation with small wavelength, the curvature 1/R2 >> 1/R1 at the trough.

Therefore, the perturbed pressures at trough decrease and it can be smaller than perturbed

pressure at the neighboring peak, driving the flow from the peak to the trough, and stabilizing

the system.

Figure 1.3: The speed of the fluid above is greater. The pressure is greater at crests (a) than
at troughs (b). The upper part of the interface is carried by upper fluid causing the interface
to overturn [39].
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1.2.2 Kelvin-Helmholtz instability

The instability of uniform flow of incompressible fluids in two horizontal parallel infinite

streams of different velocities and densities is known as the Kelvin-Helmholtz (KH) instability

[39]. The name is also commonly used to describe the instability of the more general case

where the variations of velocity and density are continuous and occur over a finite thickness,

as in the gas-liquid interface during injection of a liquid jet.

The KH instability is produced by the action of pressures on the perturbed interface; the

instability is often discussed as being due to shear, but shear stresses are not the major actor

here and in any event could not be inserted into an analysis based on potential flow even

when viscosity is not neglected [39]. The formation of the instability may be described in

terms of the action of pressure in Bernoulli equation. Pressure is smaller where the velocity

is larger (at the top fluid in Figure 1.3) and is large where velocity is small (in the bottom

fluid). A small perturbation on the interface is magnified by the action of pressure, as the

upper part of the interface is driven by upper fluid causing the interface to overturn and

create KH waves, as shown in Figure 1.3.

1.2.3 Rayleigh-Taylor instability

The Rayleigh-Taylor (RT) instability is very important in liquid jet breakup. It is driven by

acceleration when a liquid accelerates away from a gas or a lighter fluid. The signature of

this instability is the waves which corrugate the free surface at the instant of acceleration.

Ultimately, these wave crests will become fingers causing it to breakup [39].

Rayleigh [69] showed that a heavy fluid over a light fluid is unstable, as common experience

dictates. He treated the stability of heavy fluid over light fluid without viscosity, and found
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that a disturbance on the flat free surface grows exponentially like exp(ωt) where

ω =

{
kg(ρ2 − ρ1)

ρ1 + ρ2

}1/2

; (1.1)

where ρ2 is the density of the heavy fluid, ρ1 is the density of the light fluid, g is the

acceleration due to gravity and k = 2π
λ

is the wavenumber and λ is the wavelength. The

instability described by Equation (1.1) is catastrophic since the growth rate (ω) tends to

infinity, at any fixed time (no matter how small) as the wavelength tends to zero.

Nature does not allow such a singular instability; for example, neglected effects like viscosity

and surface tension enter the physics strongly at the shortest wavelength. These effects have

been taken into account in the study of RT instability by later researchers. Surface tension

eliminates the instability of the short waves; there is a finite wavelength depending strongly

on viscosity as well as surface tension for which the growth rate is maximum. This is the

wavelength that should occur in a real physical problem and would determine the wavelength

on the corrugated fronts of breaking drops in a high-speed air flow.

Figure 1.4: RT instability: (a) the liquid in the containers at rest is stable under gravity
(Rayleigh 1890) but if the container is turned upside down as in (c) the liquid falls out.
The liquid at rest in container can be destabilized by downward acceleration of the liquid
V̇ > g away from gas as in (b) and in the upside down case the liquid can be prevented from
falling out by accelerating downward with V̇ > g as in (d). If we open up the container and
accelerates the liquid downward with V̇ > g, the top surface which accelerates away from
the gas is unstable but the bottom surface which accelerates into the gas is stabilized as in
(e), with the opposite effect when the acceleration is reversed as in (f) [39].
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Taylor [85] extended Rayleigh’s inviscid analysis to the case where a constant acceleration of

the superposed fluids other than gravity is taken into account. Assuming a constant value

for the acceleration, Taylor showed that when two superposed fluids of different densities are

accelerated in a direction perpendicular to their unperturbed interface, the slightly perturbed

surface is unstable if the acceleration is directed from the lighter to the heavier fluid. The

Taylor instability depends strongly on the value of the acceleration. A more precise evalu-

ation of the RT instability (Rangel & Sirignano [68], Tryggvason & Unverdi [87]) indicates

a meta-stability. There actually must be a distortion of the surface so that the acceleration

has a component tangent to the interface. This results in a non-zero cross product of the

gradient of pressure and density, resulting in a baroclinic torque.

The idea behind Rayleigh and Taylor’s instabilities are embodied in the cartoons and caption

of Figure 1.4. These experiments show the difference between the theory of Rayleigh [69]

who considered gravity g and Taylor [85] who considered the effect of the acceleration V̇ .

The effect of acceleration destabilizes the liquid-gas surface which accelerates away from the

gas and stabilizes the liquid-gas surface which accelerates toward the gas (Figure 1.4 (e)).

The RT instability is very important in surface deformation of liquid jets since the liquid

is constantly accelerating/decelerating away/towards the gas at different locations on the

interface.

1.2.4 Liquid jet instability development

The wide range of liquid-jet applications have led to extensive investigations and have re-

ceived much attention in the literature since the classical studies of Rayleigh. A considerable

number of works on the instability of liquid sheets and jets are available in the literature. In

this section, mainly the analyses related to planar liquid-sheet (and cylindrical jets in a few

cases) instability are presented.
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In the earlier analytical studies, the disintegration of liquid jets was framed in terms of

instabilities, which are well known to be critical in the distortion of the liquid-gas interface

and in the formation of ligaments torn from the jet core. In the classical studies, it was usual

to study the instability by linearizing the nonlinear equations around the basic uniform

flow followed by analysis of normal modes proportional to exp(ωt + ikx); where k is the

wavenumber, and ω = ωr + iωi is the complex frequency. The real part of the frequency (ωr)

is the growth/decay rate of the perturbations, and the imaginary part (ωi) represents the

wave speed. It is clear that for positive ωr the perturbations will grow unstably. It is also

usual to assume that the fluids are inviscid and the amplitude of perturbations (ε) on the

liquid-gas interface are much smaller than their wavelength (λ) as well as the sheet thickness

(2h); i.e. ε << λ , ε << h.

The linear instability of a thin liquid sheet was first investigated by Squire [82] and Hagerty

& Shea [25], where both liquid and gas phases were taken as inviscid and incompressible.

They proved that there can only exist two modes of unstable waves on the two gas-liquid

interfaces for liquid sheets in a stationary gas medium, corresponding to the two surface waves

oscillating exactly in and out of phase. These two instability modes are commonly referred

to as the sinuous (antisymmetric) and varicose (symmetric, dilational) modes, respectively,

as schematically depicted in Figure 1.5. They also showed that the sinuous mode is always

predominant under the typical conditions for practical applications. However, later studies

revealed that this is not generally the case. They also performed the first experimental

measurements of the wavelength and its growth rate for liquid sheets under various flow

conditions, and the theoretical predictions were compared favorably with their experimental

results.

The growth rate found by Squire [82] and Hagerty & Shea [25] were of the form

ωr
kU0

=

{
ρ̂K

(ρ̂+K)2
− kh

We

1

ρ̂+K

}1/2

; (1.2)
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Figure 1.5: A schematic of the instability modes; Sinuous (left), Varicose (right).

where U0 is the liquid sheet velocity, ρ̂ = ρg/ρl is the gas-to-liquid density ratio, h is the sheet

half thickness and We = ρlU0
2h/σ is the Weber number. In this equation, K = tanh(kh)

for the sinuous mode and K = coth(kh) for the varicose mode.

Figure 1.6, adopted from Sirignano & Mehring [81], provides the growth rate of various

wavenumbers for both sinuous (antisymmetric) and dilational (symmetric) waves and for

different We and ρ̂ values. The results show that the varicose mode is more unstable for

density ratios near unity, while for low We, the growth of sinuous waves dominate the growth

of varicose waves due to the higher growth rates throughout the range of instability. The

range of We considered in these studies are, however, much lower than the values encountered

in many atomization applications of interest.

Dombrowski and Johns [19] combined a linear model for temporal instability analysis and

a breakup model for an inviscid liquid sheet in a quiescent inviscid gas to predict the liga-

ment and droplet sizes after breakup. The schematic of their wavy sheet is reproduced in

Figure 1.7. The equation of motion of the neutral axis mid-way between the two gas-liquid

interfaces was obtained for a sheet moving with velocity Ul through stationary gas. In this

equation, the forces due to gas pressure, surface tension, liquid inertia, and viscosity were

considered on an element of the sheet. As shown in the figure, waves grow on the sheet

until they reach a critical amplitude. Tears occur in the crests and troughs and fragments
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of sheet, corresponding to one-half wavelength, are broken off. The fragments contract by

surface tension into unstable ligaments which subsequently break into drops. The diameter

of the resulting cylindrical ligaments (dL) were obtained via a mass balance for a sheet of

thickness 2h and wavenumber of n; a relation between the size of droplets (dD) and ligament

diameter was also derived;

dL =

√
8h

n
, d3

D =
2πd2

L

n
. (1.3)

Li & Tankin [48] took into account the effects of liquid viscosity in their liquid sheet instability

Figure 1.6: Dimensionless growth rate Im[ω/(kU0)] as function of kh for different values of
We and ρ̂, for inviscid liquid sheet [81].
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analysis. They realized that, for sheets, the surface tension always opposes the onset and

development of instability, while in cylindrical jets, it is destabilizing at low velocities and

stabilizing at higher relative velocities. Li & Tankin called the instabilities that are caused by

velocity difference between the gas and liquid for an inviscid liquid sheet (Squire’s Equation

1.2) the aerodynamic instabilities. They then claimed that there is a range of instability

wavelengths that is induced and enhanced by liquid viscosity, which they called the viscosity-

enhanced instability. For low gas Weber numbers, the aerodynamic instability disappears,

but the viscosity-enhanced instability still exists. Some simplified relations for the cut-off

(neutral) and the dominant wavenumber (the wave number with maximum growth rate) for

very thin liquid sheets were also provided. The dominant wavenumber of the viscous liquid

sheet was found to be related to its counterpart for inviscid liquid for kh << 1 through the

Ohnesorg number; Oh =
√
We/Re = µl/

√
ρlhσ. Later, Li [47] developed a linear stability

analysis of planar liquid sheets in gas streams of unequal velocities, and found that the

instability is due to the velocity jump across the two liquid-gas interfaces and from one gas

h

Figure 1.7: Instability of a thinning liquid sheet and its breakup steps [19].
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stream to the other. Thus, the instability is related to the classical KH instability, and from

the disturbance energy equation it was shown that the mechanism of instability is due to

the interfacial pressure fluctuations.

The linear theory – employed in the above-cited works – does not offer a means for the liquid

sheet breakup because during the growth of the sinuous mode of disturbances (predominant

under practical conditions), the two gas-liquid interfaces remain a constant distant apart.

Therefore, the liquid sheet breakup length, which is an important parameter in the spray

modeling and spray system design, cannot be predicted based on the linear theory. In reality,

the liquid sheet breakup processes – especially near the breakup region – are nonlinear. The

most important nonlinear analyses employed in the literature are summarized in this section.

So far, only limited studies have been carried out on the nonlinearity of the liquid sheet

breakup process. Clark & Dombrowski [9] were the first to analyze nonlinear liquid sheet

disintegration through the perturbation expansion technique with initial disturbance ampli-

tude as the perturbation parameter. It was found that sheet thinning is caused by the growth

of the harmonic wave, with maximum thinning and subsequent rupture occurring at posi-

tions corresponding to 3/8 and 7/8 of the length of the fundamental wave. The theoretical

results were also used to calculate the breakup length of attenuating liquid sheets produced

by fan and swirl spray nozzles, and compared well with experimental measurements.

Rangel & Sirignano [68] used the vortex-sheet discretization method to investigate the non-

linear evolution of initially small disturbances at an interface separating two fluids of different

density and velocity with effects of surface tension included. Their nonlinear calculations

indicate the dominance of varicose oscillating modes when the density ratio is of the order

of one, while sinuous waves prevail at lower gas densities. It was shown that sinuous distur-

bances may result in the formation of ligaments interspaced at half the wavelength of the

fundamental mode [68].
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Jazayeri and Li [35] developed up to the third-order nonlinear analysis to determine the

breakup length of a liquid sheet. Their results indicate that, for an initially sinusoidal surface

disturbance, the thinning and subsequent breakup of the liquid sheet is due to the nonlinear

effects with the generation of higher harmonics as well as feedback into the fundamental

harmonic. The effect of various flow parameters on the liquid sheet breakup time (or length)

was investigated. It was found that the breakup time (or length) is reduced by an increase

in the initial amplitude of disturbances, an increase in We and an increase in the density

ratio, while it becomes asymptotically insensitive to the variations of We and ρ̂ when their

values become very large. It was also found that the breakup time (or length) is a very weak

function of the wavenumber unless it is close to the cut-off wavenumbers [35]. The distance

between the two interfaces vanishes near the half and full wavelength, which is different from

the conclusions reached by Clark and Dombrowski [9] (described above), who found that

the sheet breakup occurred at positions corresponding to 3/8 and 7/8 of the length of the

fundamental wave. However, the liquid sheet breaks up at half-wavelength intervals, a result

consistent with that of Clark and Dombrowski.

The breakup of thin planar liquid sheets due to the nonlinear growth of disturbances was

determined by Tharakan et al. [86]. They studied the effects of We on the size of ligaments

and found that the size and geometry of the ligaments formed during breakup vary with

We. Antisymmetric waves, which spontaneously intensify at higher values of We, give rise

to thin ligaments. At lower We, the initially formed antisymmetric waves get transformed

into symmetric interfaces, giving rise to larger ligaments.

The optical measurement techniques such as shadowgraph and Schlieren imaging and laser-

based techniques, e.g. Mie scattering imaging and laser-induced fluorescence produce obscure

images from the regions of high droplet density near the nozzle since the light scatters from

the surface of the droplets. The above mentioned reasons have made it a difficult, yet

interesting, task for many researchers to develop various experimental techniques to study the
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near nozzle jet instabilities. The transient behavior of liquid injection has been the subject

of numerous experimental studies for planar liquid sheets (Crapper et al. [13], Mansour &

Chigier [54], Lozano & Barreras [51], Carvalho et al. [7]), and cylindrical liquid jets (Varga

et al. [88], Marmottant & Villermaux [55]).

Crapper et al. [13] made a photographic study of KH waves on thin liquid sheets, and found

that, contrary to the two-dimensional theory, wave growth is critically dependent upon sheet

velocity and distance from the origin. For a given operating condition, a vortex is formed

upstream of each wave crest at a constant distance from the nozzle, and it is rapidly increased

in size. The boundary layer breaks away from the surface of the wave when appreciable

growth has occurred, attributed to the subsequent growth and movement of the vortex.

In a later study on the process of liquid sheet disintegration and breakup, Carvalho et al. [7]

used three different experimental techniques to quantify the breakup lengths, disintegration

frequencies and spray angles, and showed that the disintegration of the liquid sheet is asso-

ciated with a periodic process, which is mainly dependent on the absolute air velocity and

the air-liquid momentum ratio.

Within the context of numerical studies of gas-liquid turbulent two-phase flow phenomena,

the traditional Reynolds-averaged Navier-Stokes (RANS) modeling approach could lead to

poor predictions of highly unsteady and complex flow phenomena involving vortical struc-

tures due to the intrinsic time- or ensemble-averaging of governing equations. Large-eddy

simulation can be used to overcome the problems associated with the averaging involved

in RANS approach, but it may not be sufficient to understand the detailed mechanisms

in a high-speed multiphase flow since small scales still need to be modeled. In this con-

text, direct numerical simulation (DNS) can be a very powerful tool that not only leads to

a better understanding of the fluid mechanics involved, but also provides useful databases

for the potential development of physical models for liquid breakup and atomization in gas

environments.
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In one of the earliest numerical studies on the liquid-jet instability, Lozano et al. [53] im-

plemented a 3D Lagrangian code based on vortex dynamics methods to track the air-liquid

interfaces, treated as inviscid vortex sheets. Using the vortex dynamics and altering the

initial perturbations orientation with respect to the flow direction, they were able to pro-

pose mechanisms to explain the generation of spanwise ligaments parallel to the nozzle and

streamwise filaments. Their computations did not take into account the surface tension,

though. Later on, Klein [40] performed a Direct Numerical Simulation (DNS) coupled with

a Volume-of-Fluid (VoF) scheme for advection of the interface, and addressed the effect of

Re on the global jet characteristics, as well as on some spectral properties and turbulence

statistics. He was able to show that the turbulence level at the centerline is much lower

compared to a single-phase jet.

In all the theoretical (linear and nonlinear) studies above, the instability growth rates have

been the main focus. The parameters affecting the most dominant wavenumbers have been

investigated and the overall breakup mechanism, breakup length and droplet size have been

derived from simplified analyses. With the growth of experimental studies in this area, and

with possibility of conducting research at higher Re and We, it was found that the liquid-

jet breakup mechanism is more complicated than what the simplified theories are capable

of presenting. More recently, the main objective of many experimental and computational

studies has been to identify the liquid-jet breakup regimes, their domains of dominance, and

the key parameters affecting them. The most important liquid-jet (planar and cylindrical)

breakup categorizations developed throughout past decades are summarized in the next

section.

18



1.2.5 Regimes of liquid-jet breakup

Reitz and Bracco [71], following the original work of Ohnesorge [59], identified the operational

regimes of a round liquid-jet breakup into four distinct regimes. The regimes were separated

by straight lines with negative slope on the log-log plot of We (or Oh) versus Re, as shown

in Figure 1.8 reproduced by Sirignano and Mehring [81]. The first domain at lower values of

We and Re is the Rayleigh capillary mechanism region. Aerodynamic interaction with the

gas is not significant. Symmetric distortion occurs with the formation of droplets that have a

diameter of the same order as the jet thickness. Next is the first wind-induced region, where

sinuous oscillations occur resulting still in droplet sizes comparable to the jet thickness. The

second wind-induced region results in smaller droplets, while the atomization region at the

highest values of We and Re results in the smallest droplets. As We or Oh increases, the

breakup length tends to decrease. The atomization regime is the domain where the breakup

process essentially begins at the orifice exit and is of much broader practical interest but yet

far less studied than the other three domains. The atomization domain is the focus of our

study here.

Figure 1.8: Modes of disintegration of round liquid jet on a log-log plot of Re vs. We [81].

19



Figure 1.9: Coaxial round liquid jet disintegration modes [20]; axisymmetric Rayleigh
breakup (a); non-axisymmetric Rayleigh breakup (first wind-induced) (b); non-axisymmetric
Rayleigh breakup (second wind-induced) (c); membrane type breakup (d); fiber-type breakup
(e); superpulsating disintegration submode (f).

Fargo and Chigier [20] studied the disintegration of air-assisted (coaxial) round liquid jets and

observed several breakup regimes other than the ones that had been introduced already. A

summary of their experiments are shown in Figure 1.9. All these experiments are performed

at a fixed pressure; i.e. fixed gas density. At low Re and We (low liquid and gas velocities)

breakup regimes similar to the ones introduced by Reitz and Bracco [71] were seen. The

axisymmetric Rayleigh breakup leading to large droplet of order of magnitude of the jet

diameter are seen at the lowest Re range (Figure 1.9a). At higher Re, the instabilities

become non-axisymmetric and the aerodynamic effects become significant, corresponding
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to the first and second wind-induced breakup regimes (Figures 1.9b,c). At higher Re, the

atomization regime occurs, as shown in Figure 1.9(d)–(f). However, new breakup submodes

are introduced in the atomization regime by Fargo and Chigier [20] based on the momentum

flux ratio and the liquid Weber number. At higher We (25 < We < 70), the round jet

develops into a thin liquid sheet (membrane), which forms KH waves and breaks up into

drops. Owing to the small radius of curvature, the tip of the ligaments recede and a bulge

is formed. If the momentum flux ratio is large enough, the aerodynamic pressure exerted by

the gas can then blow up the sheet behind the bulge into a bag or membrane. This breakup

regime is often referred to as membrane breakup (Figure 1.9d). At still higher Rel and We

(100 < We < 500), considerably finer ligaments are produced. Fibers are formed and then

peel off the jet. The fibers break into drops via the Rayleigh mechanism. The length of

these ligaments is about two to five times the initial jet diameter. From the ligaments, new

fibers are peeled off. The diameter of the newly formed fibers increases with increasing axial

distance from the nozzle exit. At these large We values, the breakup is said to occur in the

form of fibers leading to the formation of smaller droplets (Figure 1.9e).

All the above categories can be divided into two submodes: pulsating jet disruption as the

normal submode of atomization; and superpulsating jet disruption, which is connected to

an extremely high periodical change between low- and high-density regions in the spray. An

example of the superpulsating atomization submode is shown in Figure 1.9(f). By reducing

Rel and/or by increasing the aerodynamic We, the intact liquid length of round jets in a co-

flowing gas stream decreases. Similarly, the axial distance at which the wave formation and

spray pulsation begins also decreases. Nevertheless, the amplitude of the spray pulsations

increases with increasing We and/or decreasing Rel. Based on the experimental observations

of Fargo and Chigier [20], if Oh based on aerodynamic Weber and Rel is higher than about

0.01, the superpulsating submode dominates for the jet disintegration.

Establishing a regime diagram for the coaxial jets similar to that used for pressure atomizers
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Figure 1.10: Breakup regimes of a coaxial round jet in the parameter space Rel–We. Lines
of constant M are calculated for water-air and D = 7 mm. Here, We = ρgU

2
gD/σ, Rel =

ρlUlD/µl, and M = ρgU
2
g /ρlU

2
l [30].

(Figure 1.8) is considerably more complicated. The composition of such a diagram can

be very cumbersome since one has to deal with a much larger number of nondimensional

numbers. An attempt to establish such a diagram was made by Fargo & Chigier [20], which

excludes the effect of momentum flux ratio M = ρgU
2
g /ρlU

2
l . A more complete diagram

was proposed later by Hopfinger [30]. Hopfinger’s diagram is reproduced in Figure 1.10 in a

slightly modified form. The various breakup regimes are presented in the parameter space

of Rel and the aerodynamic Weber number. Lines of constant M appear as straight lines

in this diagram. Unfortunately, there is not enough experimental data available to give the

precise location of the different boundaries to any degree of accuracy, except when We→ 0.

The farther to the right or top of the diagram, the finer is the spray.

Even though the general knowledge is that the breakup becomes more violent and the liquid

core length becomes shorter as Re and We increase, a more careful study of the vortex
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dynamics of the jet flow is needed to fully understand the surface deformation since counter-

intuitive behaviors are sometimes seen in the jet breakup. Figure 1.11 (left) shows the

photograph images taken by Rupe [73] who found that a fully-developed laminar jet of

Figure 1.11(b) is more prone to breakup than a turbulent jet of Figures 1.11(c) and 1.11(d).

In fact, the jet at Re = 2200 shows a burst at about 46D0 (estimated from the photograph

image) whereas the turbulent jet at Re = 53, 000 never shows such a violent motion. Pan

and Suga [62] simulated the laminar case in Figure 1.11(b) and studied its vortex dynamics to

explore the reason behind this behavior. The contours of vorticity and the liquid-jet surface

are illustrated in Figure 1.11(e)–(h). They summarized their understanding of the vortical

motion as follows: the radial motion due to the axial velocity rearrangement and the surface

shear generate initial large-scale longitudinal vortex structures inside the liquid core. Then,

those vortex motions are amplified due to the momentum supplied by surface instability and

vice versa, growing up to further amplified longitudinal vortices which eventually stretch,

distort and burst the liquid core from the inside. Vortex dynamics has been proven to be an

important asset in studying the liquid surface deformation and is able to explain the various

breakup regimes introduced in this section. This is one of the main objectives of the current

study.

The transient behavior of liquid injection has been the subject of numerous experimental

studies for planar liquid sheets as well [21, 51, 63, 83]. However, the breakup regimes are

not well-categorized based on Re, We, and other parameters as was done for round jets.

Typically, these experiments are conducted at atmospheric pressure with very low gas-to-

liquid density ratios. Fraser et al. [21] defined three modes of sheet disintegration, described

as rim, wave, and perforated-sheet disintegration. Later, Mansour and Chigier [54] suggested

that two forces act on the rim of the liquid sheet. Surface tension forces pull the two rims

toward the spanwise center of the sheet and this force is proportional to the square root

of the surface tension. The inertial force acts in the axial direction and is proportional to√
2gp/ρ. Without the air flow, the liquid sheet converges toward the axis as a result of
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Figure 1.11: Experimentally taken photograph images of free-liquid jets by Rupe [73] (left);
(a) and (b) jets from fully developed laminar pipe flows, fluid: glycerine-water mixture;
(c) and (d) jets from fully developed turbulent pipe flows, fluid: water. Distribution of
instantaneous vorticity fields in an axis plane of case (b) [62] (right); (e)

√
ω2
x + ω2

y + ω2
z in

the gas phase; (f) ωx in the liquid phase; (g) ωy in the liquid phase; and (h) ωz in the liquid
phase.

surface tension forces. There is a linear increase in convergence length with increases in

liquid flow rate. Increasing the liquid flow rate results in small distortions developing on

the sheet surfaces that are indicative of the transition to turbulence. The transition occurs

at around Re = 1471 [54]. These turbulent disturbances are dampened in the downstream

region. Turbulent energy production ceases at the nozzle exit and the liquid sheet tends to

laminarize as a result of viscous dissipation of turbulent energy.
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With an air flow, Mansour and Chigier [54] distinguished two modes of jet breakup: a

“mechanical” effect that is due to the action of liquid pressure inside the nozzle and an

aerodynamic effect that is due to the action of air friction. The mechanical effect can be

best displayed by the large drops that can be seen around the rims of the sheet where the air-

liquid relative velocity is low. Droplets detached from the rim become smaller as the liquid

flow rate is increased while maintaining the same air pressure. As the liquid mass flow-rate

increases, the liquid sheet issuing from the nozzle is drawn up into small but ordered “cell”

structures. These structures are bounded by large diameter bridges (ligaments) containing

thin membranes inside. The bridges are the origin of the large drops in the spray and

the membranes contribute to the formation of the smaller droplets. Membrane shattering

Figure 1.12: Schematic of face and side views detailing the structures in the breakup of a
liquid sheet for (a) cellular breakup, and (b) stretched streamwise ligament breakup [83].
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precedes the bridge breakup and a point is reached where the leading edge of the sheet is

anchored to the remaining liquid only through the cell frame.

Around the same time, Stapper et al. [83] observed the same two liquid sheet breakup mech-

anisms in their experiments and described the characteristics of these breakup regimes. A

schematic of the face and side views of the structures that form during the breakup of a

sheet provided by Stapper et al. [83] is illustrated in Figure 1.12. The air-stream velocity

is an order of magnitude greater than the liquid sheet velocity in their experiments. The

“cellular breakup” occurs at higher relative air-to-liquid velocities, but where the breakup

is well displaced from the nozzle tip. This breakup mechanism was also observed by Man-

sour and Chigier [54], as illustrated in Figure 1.13(a), and is characterized by the presence of

spanwise vortical waves (vortical waves are associated with ligaments in this section) that are

approximately equal in strength to the streamwise vortical waves. As the sheet is extruded

by the shearing action of the air, the membranes stretch between the spanwise and stream-

wise vortical waves, forming cell-like structures (see Figure 1.13a). Eventually, the sheet is

stretched to the point where (1) the streamwise vortical waves and connecting membranes

burst, and (2) the spanwise vortical waves separate into spanwise ligaments. The small

droplets in the resultant spray distribution originate from the bursting membranes. Larger

droplets are associated with the breakup of the streamwise waves. The largest droplets are

associated with the fragmentation of the spanwise ligaments.

The second breakup mechanism, referred to as “stretched streamwise ligament breakup”

occurs at low liquid velocities. As shown in Figure 1.13(b) from Mansour and Chigier [54],

this mechanism is dominated by the streamwise vortical waves in the breakup process. As

the sheet is stretched by the co-flowing air, the streamwise vortices amplify with thin liquid

membranes stretched in between. The sheet is a corrugated structure with the membranes

stretched sinusoidally about the plane of the sheet. As a result, the membranes are stretched

by the counter-rotation of the bounding vortices. When the membranes burst, the liquid film
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Figure 1.13: Cellular breakup of a water sheet with air co-flow, ṁliq = 45.42 g/s (a); stretched
streamwise ligament breakup of a water sheet with air co-flow, ṁliq = 11.34 g/s (b) [54].

forms small drops, while the vortical waves form streamwise ligaments. These ligaments are

then stretched by the shearing action of the air and transition to higher rotating velocities,

and finally fragment into relatively large drops when the surface tension forces can no longer

keep the ligaments intact. Stapper et al. [83] also showed that the variation in the liquid

properties did not alter the general character of the two breakup mechanisms. However, the

change in liquid properties had a pronounced effect on the time and length scales. Most of

their study was focused on relatively low Re (e.g. 100–3000) and low We of O(101–103).

The two breakup mechanisms introduced by Stapper et al. [83] were also seen by later exper-

imentalists [51, 63]. Lozano and Barreras [51] used planar laser-induced fluorescence (PLIF)

for the first time to visualize the air-flow field in the near field of an air-blasted breaking water

sheet. They used the air-water momentum ratio to characterize different breakup regimes.

Their two-phase flow visualization revealed detachment of the air boundary layer over the

air-water interface behind the zones of strong curvature, and identified the pressure field

induced by these vortices as a cause of the enhanced sheet flapping and instability growth.

Their experiments were conducted at fairly high Re of O(104) and low We of O(103).
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The cellular breakup mechanism was investigated for a planar liquid sheet with assisting air

streams from an air-blast nozzle, by Park et al. [63]. They showed that the cell size decreases

by increasing the relative velocity between the gas and liquid. The measured average size

of cellular structures, and thus, the dominant wavelength was found to be proportional to

the inverse square of the relative velocity between air and liquid, consistent with the linear

temporal instability theory. They also found that turbulent transition does not affect the

breakup length and time scales, as the length scale of turbulence is much less than a typical

cell size by about one order of magnitude.

1.2.6 Droplet-size distribution

The common purpose of breaking a liquid stream into spray is to increase the liquid surface

area so that subsequent heat and mass transfer can be increased or a coating can be ob-

tained. The spatial distribution, or dispersion, of the droplets is important in combustion

systems because it affects the mixing of the fuel with the oxidant, hence the flame length

and thickness. The size, velocity, volume flux, and number density of droplets in sprays

critically affect the heat, mass, and momentum transport processes, which in turn, affect the

flame stability and ignition characteristics. Smaller drop size leads to higher volumetric heat

release rates, wider burning ranges, higher combustion efficiency, lower fuel consumption

and lower pollutant emissions. In some other applications however, small droplets must be

avoided because their settling velocity is low and under certain meteorological conditions,

they can draft too far downwind.

Most previous researches have attempted to assess the manner by which the final droplet-

size distribution – after the atomization is fully developed – is affected by the gas and liquid

properties and by the nozzle geometry [7, 18, 52, 54, 55, 58, 79, 83, 88]. General conclusions

are that the Sauter Mean Diameter (SMD = ΣNid
3
i /Nid

2
i , where Ni is the number of droplets
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per unit volume in size class i, and di is the droplet diameter) decreases with increasing

relative gas-liquid velocity, increasing liquid density, and decreasing surface tension, while

viscosity is found to have little effect [83].

Dombrowski and Hooper [18] developed theoretical expressions for the size of drops pro-

duced from fan spray sheets, and showed that under certain operating conditions in super

atmospheric pressures, the drop size increases with ambient density. Verified experimen-

tally, the drop size initially decreases, passing through a minimum with further increase of

ambient density. They also showed that, for relatively thin sheets (h/λ < 1.25; h is sheet

thickness and λ is the unstable wavelength), the drop size increases with the surface tension

and the liquid density, but depends inversely on the liquid injection pressure and the gas

density. For relatively thick sheets (h/λ > 1.5), however, the drop size is independent of

surface tension or injection pressure and increases with increasing gas density. In another

linear stability analysis, Senecal et al. [79] derived expressions for the ligament diameter for

short and long waves. They showed that the ligament diameter is directly proportional to

the sheet thickness, but inversely to the square root of gas Weber number (Weg). They

also analytically related the final droplet size to the ligament diameter and the Ohnesorge

number, and showed that the SMD decreases with time. The gas viscosity and the nonlinear

physics of the problem, however, were neglected.

Mansour and Chigier [54] measured the SMD along and across the spray axis using a phase

Doppler particle analyzer (PDPA). The PDPA method is based upon the principles of light

scattering interferometry. Measurements are made at a small, non-intrusive optical probe

volume defined by the intersection of two laser beams. As a particle passes through the

probe volume, it scatters light from the beams into a multi-detector receiving probe. The

phase shift between the Doppler burst signals from different detectors is proportional to

the size of the spherical particles. SMD initially decreased followed by a gradual increase

along the spray axis. The initial decrease was shown to be due to secondary atomization
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and the subsequent increase was due to droplet coalescence. At all axial locations, SMD

increased substantially and its velocity decreased notably from the central part toward the

edge of the spray. The larger droplets seen around the rims of the sheet were due to the

mechanical effects of the lower air-liquid relative velocity on the sheet edges. They also

showed a significant reduction in droplet size by increasing the air-to-liquid mass-flux ratio.

Lasheras et al. [44] measured the SMD along the axis of air-assisted (Ul << Ug) round liquid

jets using high-speed flow visualization and PDPA techniques, and showed that there is a

non-monotonic variation of the droplet size measured along the central axis of the spray in

the far-field; i.e. x/D > 10. The SMD decreases with axial distance (x) until it reaches a

minimum at around x/D ≈ 20–30; the SMD increases again as we move further downstream

from that location. They described this behavior as the competition between turbulent

breakup and coalescence effects. Assuming local isotropy and fully developed turbulence at

the central axis of the jet, the argument made is that both turbulent breakup and coalescence

depend only on the value of the dissipation rate of turbulent kinetic energy (ε).

The maximum droplet size that can withstand turbulent breakup is

dc ∝
[

U3
g

Dg(1 +m)

]−2/5(
σ

ρg

)3/5

, (1.4)

where m is the mass flux ratio and Dg is the gas nozzle diameter, while the maximum droplet

size above which coalescence is negligible is dmax ≈ µg/ρl ε
−1/4 [43]. Thus, in regions of high ε

(after the length of the liquid core) turbulent breakup dominates, while further downstream,

as ε quickly decays, turbulent breakup ends, and coalescence effects determine the drop size

[44]. They did not visualize any droplet coalescence in the downstream region though.

Lozano et al. [51] correlated fluid properties, nozzle geometry and flow conditions with the

mean droplet diameter obtained by laser diffractometry. They found that the mean diameter

decreases with increasing gas velocity. For a fixed gas velocity and different liquid velocities,
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the mean diameter has a minimum near the frequency maximum. At large downstream

distances for a fixed gas velocity, the diameter always decreases with increasing momentum

flux ratio due to secondary breakup.

At present, it is not possible to predict the droplet diameter distribution as a function of

injection conditions. For combustion applications, many empirical correlations predict the

droplet size as a function of injection parameters [45]; however, more detailed studies of

fundamental breakup mechanisms are needed to construct predictive models. A summary

of several of these expressions for airblast atomization was compiled by Lefebvre [45]. The

dependence of the primary droplet size (d) on the atomizing gas velocity (Ug) is most often

expressed as a power law, d ∝ U−ng , where 0.7 ≤ n ≤ 1.5. Physical explanations for particular

values of the exponent n are generally lacking. Varga et al. [88] found that the mean droplet

size is not very sensitive to the liquid jet diameter – actually opposite to intuition; the

droplet size is observed to increase slightly with decreasing nozzle diameter. This effect was

attributed to the slightly longer gas boundary-layer attachment length. They also observed

a clear reduction in droplet size with lowering surface tension. The ratio of the water SMD

to the ethanol SMD appeared to be very close to
√
σwater/σethanol ≈

√
3, which suggests

the scaling d ∝ We
−1/2
g , where Weg is the Weber number based on gas properties and jet

diameter. Their study was limited to very low Oh (∼ 10−3).

Marmottant and Villermaux [55] presented probability density functions (PDFs) of the liga-

ment size and the droplet size in their experimental study of the round liquid spray formation.

The ligament size dl was found to be distributed around the mean in a nearly Gaussian dis-

tribution, but the droplet diameter d was more broadly distributed and skewed. Rescaled

by dl, which depends on the gas velocity Ug, the size distribution keeps roughly the same

shape for various gas flows. The average droplet size after ligament breakup was found to

be d ' 0.4dl, with its distribution P (d) having an exponential fall-off at large diameters

parameterized by the average ligament size 〈dl〉; P (d) ∼ exp(−nd/ 〈dl〉). The parameter
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Figure 1.14: Cross-sectional view of the spray using Nukiyama-Tanasawa distribution as
initial conditions. Contour color is scaled with the droplet size; red for large and blue for
small droplets. Droplet gradation is shown. As a result, the droplet size increases outwardly
(proportional to increasing radial direction) [94].

n ≈ 3.5 slowly increased with Ug. The mean droplet size in the spray decreases like U−1
g .

Most of their experiments were at low Re and low We range.

Yoon [94] examined the initial droplet distributions at the liquid core for various Weber

number and pulsing conditions. He found that the average droplet diameter tends to be

larger and the droplet velocity is smaller at larger radii for each downstream location. The

SMD decreases with increasing the axial location because of the gradual disappearance of

the smaller droplets further downstream. Their simulations captured the expected reduction

in the mean diameter with increasing We or jet velocity. Yoon [94] also showed that droplet

gradation occurs due to the dynamic segregation of small and larger droplets in both the

axial and radial directions. As shown in Figure 1.14, larger droplets are dispersed by the

spray initial cone angle and subsequent interactions with turbulent eddies in the entrained

air, while smaller droplets are generally swept toward the spray center line by aerodynamic

drag interactions with the entrained air. He explained that these entrained smaller droplets

maintain their launching velocity in the axial direction because (1) these small droplets

are surrounded by the larger droplets and, thus, preserve their initial velocity; and (2) the

entrained air affects the radial velocity of the small droplets only, not the axial component

of the velocity.
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In a later study, Yoon and Heister [95] studied the effects of We, jet speed and orifice length

on the number of droplets and the SMD. They showed that for low speed jets, viscosity does

not play a significant role in droplet sizes. As We increases many more atomization events

occur and the jet loses more mass; hence SMD decreases while the number of droplets and

the standard deviation of the droplet size increase. Their results matched perfectly with the

correlations given by Wu et al. [93]. Wu et al. [93] provided both an empirical model and

experimental observations for the SMD, emphasizing the role of turbulence in the process.

They correlated SMD to We using the following model;

SMD

D
=

46.4

We0.74
. (1.5)

where D is the nozzle diameter. Yoon and Heister [95] also showed a parabolic behavior

with the number of droplets growing as the square of circulation around the rotating ring.

The total number of droplets, number of drops per vortex ring, and its standard deviation

all tend to increase with increasing the jet speed. Their results also indicate that more

atomization events tend to occur with an increased orifice length. Even though the orifice

length does not notably change SMD, the number of produced droplets and its standard

deviation increase significantly by increasing the orifice length.

Herrmann [27] discussed the impact of grid resolution and refinement on the drop size PDF

for the round jets, finding a significant decrease in SMD with increasing mesh resolution,

as shown in Figure 1.15. Grid-independent drop sizes can be achieved for liquid structures

resolved by at least six grid points. Breakup at the tip of the jet is dependent on the grid

resolution, since increasing the grid resolution effectively decreases the automatic breakup

length scale. Analyzing qualitatively the locations where drops are produced, Herrmann [27]

found that a significant fraction is produced at or near the leading tip (Figure 1.15) since there

the liquid jet should experience large aerodynamic forces due to large velocity differences

between liquid and the essentially stagnant gas. Nonetheless, significant amounts of liquid
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Figure 1.15: Impact of G-grid resolution at t = 4µs for constant flow solver resolution
∆x = 1 µm and ∆xG = 1.56 µm (left), ∆xG = 0.78 µm (center), and ∆xG = 0.39 µm
(right). Only the region close to the liquid core is shown [27].

drops are also generated at the jet surface, so much that near the end of the computational

domain the jet appears to disintegrate into large-scale, highly irregularly shaped liquid blobs.

Rather than measuring the droplet diameter and its distribution, Chesnel et al. [8] proposed

a surface density equation to describe the subgrid spray characteristics. The surface density

is defined as the ratio of the interface area with the considered control volume. Contrary to

the droplet diameter, this variable is general enough to be applied to non-spherical liquid

parcels such as ligaments, liquid sheets, etc. Besides the convection and diffusion of the

surface density, they proposed a source term related to the physical phenomena that influence

the production and/or the destruction of the interface area, including destruction of surface

density due to the evaporation process, production of surface density due to liquid/gas

mixing, and the production/destruction of surface density by the mean shear, turbulence,

and liquid structure interactions. They plotted the variation of surface density and liquid

fraction both along and across the injection axis, and observed a peak in the liquid volume

fraction located at r = 0.5D at an axial distance of x = 5D. This peak corresponds to an

axial location where a strong velocity shear exists between the liquid and the gas phases.
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In this zone, the interface is strongly deformed by the liquid-gas instabilities. Farther in

the jet, at x = 10D and x = 20D, the mean shear level drops lower. As a consequence,

the profiles of standard deviation of volume fraction are much smoother and do not present

specific peaks. Chesnel et al. [8] showed that the global surface density level increases with

the injection velocity. The atomization process becomes more “efficient with increasing

turbulent conditions imposed by the injection velocity.

More recently, Negeed et al. [58] analytically and experimentally studied the effects of nozzle

shape and spray pressure on the liquid sheet characteristics. They showed that the SMD

decreases by increasing Rel or by increasing the water sheet We since the inertia force

increases by increasing both parameters. The spray pressure difference was also shown to

have a similar effect to Rel on the mean droplet size. Their study was limited to very high

Rel values (10, 000–36, 000) and very low Weg values of O(101).

1.2.7 Spray angle

The spray angle is a global quantity of considerable practical interest in atomization pro-

cesses. In combustion chambers the spray angle needs to be controlled as it affects the mixing

of the fuel with the oxidant, hence the flame length and thickness, which, in turn, affect the

flame stability and ignition characteristics. Measuring the spray angle is also a proper way

to measure the liquid sheet instability growth, which controls the rate and intensity of the

atomization. In this section the most important relations that have been proposed in the

literature to correlate different flow parameters to the spray angle are presented. For a

round jet, the spray angle is also sometimes called the “cone angle”, while it is usually called

“wedge angle” for planar sheets.

Mansour and Chigier [54] examined the effects of air pressure and liquid flow rate on the

spray angle in a liquid sheet disintegration with air co-flow. Substantial decrease in the
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spray angle occurs as a result of increasing the liquid flow rate while maintaining the same

air pressure. This behavior was related to the reduction in the specific energy of air per

unit volume of liquid leaving the nozzle. Moreover, increasing the liquid flow rate reduces

the air-liquid relative velocities at the interface, which is accompanied by a reduction in the

amplitude of oscillations of the liquid sheet, corresponding to a decrease in the spray angle.

Increasing the air pressure for a fixed liquid flow rate results in an increase in the spray angle.

Here again, it is seen that the effect of increasing the specific energy of air per unit volume

of liquid results in a substantial increase in the amplitude of oscillations of the liquid sheet.

The initial perturbations are amplified at a much faster rate and the liquid sheet becomes

highly unstable. The amplitudes of oscillation are the main parameters controlling the spray

angle. Mansour and Chigier [54] measured a reduction in the spray angle from 125o to 10o

as the liquid mass flow rate is increased from 10 to 65 g/sec.

The growth rate of the liquid-gas shear layer is related to the liquid jet core length, which

for large gas velocities gives an angle tan γ ≈
√
M/6; where M is the momentum flux ratio

[43]. This relation remains valid as long as the liquid core remains cone-like, that is, as long

as M is less than about 30, giving a maximum angle γmax of about 40o. The spray angle

is generally larger than the liquid-gas shear layer angle γ (assuming a steady shear layer)

because the inertia of the droplets allows them to escape the shear layer boundary. Raynal

[70] measured spray angles α of about 50o with respect to the liquid cone surface and this

angle was found to depend only weakly on M . The stability analysis of Lasheras & Hopfinger

[43] suggests a spray angle α of 45o when M1/2 >> 1. Because the liquid cone angle increases

with M , the total angle θ of the spray cone decreases with M from θ = 2(α− γ/2) ≈ 90o to

60o.

Carvalho et al. [7] performed detailed measurements of the spray angle versus gas and liquid

velocities in a planar liquid film surrounded by two air streams in a range of Re from 500

to 5000. The results of their spray visualizations are recast in Figure 1.16. For low gas-to-

36



Figure 1.16: Visualization of the flat liquid film for different liquid and air velocities: (a)
front view and side view of the liquid film for Ug = 15 m/s and Ug = 39 m/s, using strobe
light illumination; (b) side view of the liquid film for 15 ≤ Ug (m/s) < 39, using laser light
sheet illumination [7].
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liquid momentum ratio, the dilatational wave dominates the liquid film disintegration mode.

The atomization quality is rather poor, with a narrow spray angle (e.g. Ug = 15 m/s and

Ul ≥ 1.8 m/s). For higher gas-to-liquid momentum ratios, sinusoidal waves dominate and

the atomization quality is considerably improved, as the spray angle increases significantly

(e.g. UG = 39 m/s and UL ≤ 3.9 m/s). For considerably higher gas-to-liquid momentum

ratios, namely with low liquid velocities or high gas velocities (e.g. Ug = 15 m/s and Ul ≤

0.7 m/s; or Ug = 39 m/s and Ul ≤ 2.9 m/s), the liquid film emerging from the nozzle is

rapidly torn into small fragments by the immediate interaction between the liquid and the

impinging air streams. For considerably low gas-to-liquid momentum ratios, namely for high

liquid velocities or low air velocities (e.g. Ug = 15 m/s and Ul ≥ 4.3 m/s) no wave is seen on

the liquid surface.

Figure 1.17 shows measured spray angles making use of the laser light sheet technique by

Carvalho et al. [7]. For all operating conditions, regardless of the gas velocity, a region

of maximum spray angle occurs, followed by a sharp decrease for higher values of liquid

Figure 1.17: spray angles as function of liquid film velocity for 15 ≤ UG (m/s) < 39, using
laser light sheet visualization [7].
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velocity. The maximum values of the spray angle (e.g. for Ug = 15 m/s the maximum angle

is observed at Ul = 1.3 m/s) are displaced for higher values of liquid velocity as the gas flow

rate increases (e.g. for Ug = 30 m/s the maximum angle is observed at Ul = 1.8 m/s), the

maximum value decreasing with gas flow rate.

Experimental measurements of Park et al. [63] show consistency with the results of Carvalho

et al. [7]. At a fixed gas velocity, the spatial growth rate of the waves decreases with increasing

liquid velocity. A higher gas velocity results in a larger wave amplitude and a higher growth

rate with a shorter breakup length. This implies that the spatial growth rate cannot be

predicted properly by the linear analysis in case of a high Weber numbers. Park et al. [63]

also indicated an exponential increase in the wave amplitude with distance from nozzle exit.

Instability enhancing parameters in liquid sheets were analyzed by Sander and Weigand

[74, 75]. They showed the significant influence of the mean axial velocity profile (resulting

from the variation of the nozzle design) on the development of surface instabilities. The

kinetic energy per unit mass of the inflow was found to be one of the major influencing

parameters. It was also concluded that bubbly inflows do not enhance film instabilities;

in fact, the bubble size and especially small sized bubbles can reduce instabilities and the

spread rate.

1.2.8 3D single-phase vortex dynamics and jet instabilities

There have been several studies of the 3D jet instabilities from the vortex dynamics perspec-

tive. Most of them, however, do not address density and viscosity discontinuities. These

studies have mainly focused on understanding and relating the vortex stretching [65], vortex

tilting [42], and baroclinic effects [78] to the 3D single-phase instabilities. Earlier experimen-

tal studies in this field (Widnall & Sullivan [92], Widnall et al. [91], Breidenthal [6], Jimenez

[38], Bernal & Roshko [4], Liepmann & Gharib [49]) have been followed and reproduced in
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more detail by numerical simulations (Ashurst & Meiburg [3], Martin & Meiburg [56], Comte

et al. [11], Collis et al. [10], Schoppa et al. [77], Brancher et al. [5], Danaila et al. [15]).

Pope [65] was the first to suggest that the stretching of turbulent vortex tubes by the mean

flow has a significant influence on the process of scale reduction. Although not pointed out

in his paper, this influence directly relates to the size of ligaments and pinched-off droplets

in liquid jet disintegration process.

The existence of streamwise vortices in the planar mixing layers was reported by several ex-

perimentalists [4, 6, 38, 42]. Briedenthal’s [6] flow visualizations of 2D mixing layers clearly

showed the presence of a secondary vortex structure in the flow direction. In the planar view,

these streamwise structures appeared as thin periodic streaks spaced with a certain spanwise

wavelength. Jimenez [38] explored the fluctuations in the spanwise distribution of the mean

velocity of a plane shear layer. He proposed that the deformation of the shear layer implies

the presence of vorticity aligned in the transversal direction, which, when added to the clas-

sical spanwise component of vorticity (KH vortex) in the two-dimensional cores, suggests the

longitudinal (streamwise) vortices. Bernal and Roshko [4] noticed that the streamwise vortex

Figure 1.18: Instantaneous Schlieren picture of the helium-nitrogen mixing layer [4].
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is actually a hairpin vortex that wraps around the primary spanwise vortices. Figure 1.18 is

a photo from their experiments that shows the existence of streamwise vortex-lines (streaks).

The hairpin vortex changes direction and thereby produces counter-rotating vortex pairs in

the streamwise direction, as is illustrated in the schematic of Figure 1.19 from Bernal &

Roshko. These warped vortex structures, linking adjacent pairs of primary KH vortices,

align themselves with each other so that, in plan view they appear to be straight streamwise

streaks, as seen in the top view of Figure 1.18.

Liepmann and Gharib [49] studied the role of streamwise vortex structures in the near-field

evolution of a round water jet flowing into a water tank, using laser-induced fluorescence

imagining. They examined that the initial vortex rings remain axisymmetric for a short

distance until an azimuthal instability occurs. The secondary instability first develops in the

braid region between vortex rings producing streamwise vorticity. Azimuthal instabilities

develop from the rings too, although more slowly than in the braid region. This behavior

is similar to the vortical structures observed in 3D mixing layers [4, 6, 38]. They did not

discuss hairpin vortices for the round jet in connection with streamwise counter-rotating

vortex pairing, though. Liepmann & Gharib [49] also showed that the number of azimuthal

modes increases with Re, until a sudden drop occurs when the boundary layer undergoes

Figure 1.19: Topology of streamwise vortex lines showing hairpin vortices in 3D mixing
layers [4].
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Figure 1.20: Composite flow visualization of the plane shear layer subjected to a single
horizontal perturbation. Plan view obtained using the DIV technique (a); LTF simultaneous
cross-cuts (b, c). Cross-cut side view of a vertical plane through the central axis of the channel
(b); cross-cut end-view of a plane normal to the flow direction (c) [42].

transition to turbulence.

The 3D development of a plane free shear layer subjected to small sinusoidal horizontal

(indentations) and vertical (corrugations) perturbations periodically placed along the span

was experimentally studied by Lasheras & Choi [42]. Figure 1.20 obtained from their exper-

iments, shows the appearance of hairpin vortices similar to what was observed by Bernal &

Roshko [4]. Lasheras & Choi [42] attributed the appearance of three-dimensionality to the

stretching along the principal direction of the positive strain. The maximum amplification

occurs for the vortex lines near the braid region, where the positive strain is maximum.

Therefore, they called these vortices “strain-oriented vortex tubes” and described a mecha-

nism for evolution of the 3D instabilities, where vortices enhanced by stretching are pulled

more strongly into the streamwise direction until there are a series of hairpins extending from

42



Figure 1.21: Schematic representation of the development of the 3D instability. The pertur-
bation component of the vorticity existing in the braids is amplified through stretching. The
maximum amplification occurs along the principal direction of the positive strain at the free
stagnation point. Flow direction is along X [43].

the underside of one roller to the top of its neighbor. They also realized the non-uniformity

in the wavelength of the consecutive vortex pairs and thereby, modified the schematic given

by Bernal & Roshko [4] (Figure 1.19) to account for this variation. The schematic represen-

tation of the development of the hairpin vortices is given in Figure 1.21, taken from Lasheras

& Choi [42].

The effect of stratification on streamwise vortex structure in the shear layer has been investi-

gated experimentally by Schowalter et al. [78]. Figure 1.22 shows a cartoon for the behavior

of the layers in the cross-section of a KH roller [78]. The baroclinic torque will form two

vortex sheets of opposite sign along the unstable interface. Each vortex sheet will cause a

tilting of the other, which will lead to a greater cross product of the pressure gradient and
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Figure 1.22: Effect of baroclinic torque on streamwise vortex tubes and the mechanism for
the formation of the baroclinically generated vortices [78].

the density gradient, leading to a stronger torque, further tilting, and so on. In conclusion,

Schowalter et al. [78] assert that one may refer to the RT instabilities as being baroclinically

generated. In their studies, the hydrostatic pressure is assumed to be dominant, and thus

the pressure gradient is always directed downward. In most atomization processes however,

this is not usually the case since the flow experiences huge acceleration.

The onset of the azimuthal instability of the 3D round jet is known as the deformation of

the primary axisymmetric vortex rings, first observed experimentally by Widnall et al. [92].

The vortex ring was found to be unstable to bending waves. A simple theoretical model was

proposed to predict the unstable modes observed in the experiments. The wavenumber of

the most amplified mode was dependent on the radius of the vortex ring. The azimuthal

mode number is equivalent to the number of lobes of the deformed vortex ring. The mode

number predicted by Widnall et al. [92] varied between 7 and 9.

Numerical investigations of the 3D homogeneous round jets (a fluid flowing into a like-

density fluid) exposed to azimuthal and streamwise perturbation (by Brancher et al. [5])
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was an attempt to show that the development of the Widnall instability on the primary

vortex rings and the evolution of the Bernal & Roshko streamwise vortices, generated by the

instability of the braid, could be deeply intertwined. Brancher et al. [5] also showed that

the most unstable mode was three. Unforced simulations of Danaila et al. [15] predicted

a mode number equal to four for homogeneous jets. Although Widnall instability plays

an important role in producing the azimuthal instability on the vortex ring, formation of

streamwise counter-rotating vortex pairs is responsible for generation of the side jets (lobes).

Both experimental observations [42, 49] and numerical computations [5, 15] show that the

number of the lobes increases by increasing the jet Reynolds number.

1.2.9 Vortex dynamics of two-phase jets

In the first studies of the role of streamwise vorticity in round liquid jets flowing into a

gas, Jarrahbashi & Sirignano [33] and Jarrahbashi et al. [34] showed how lobe and ligament

formation mechanisms relate to augmentation of streamwise vorticity. They also showed that

a natural mode number of lobes exists for a given configuration and cannot be changed by

weak forcing; however, strong forcing can produce lobes of different mode numbers associated

with the mode number of the velocity perturbations. They also studied the contributions

of the azimuthal and radial vortex tilting and axial vortex stretching, and the baroclinic

effect on the production of streamwise vorticity for several density ratios. The baroclinic

effect was found to be the dominant mechanism in production of streamwise vorticity for

lower density ratios at early times. However, azimuthal and radial vortex tilting overcome

the baroclinic effect later. They came to the conclusion that, generally, the importance of

baroclinic vorticity generation (RT instability) has been overemphasized in the literature,

especially at very high pressures, and other important aspects of vorticity dynamics and

similarities with liquid injection into like-fluid have been neglected [33].
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Shinjo & Umemura [80] showed that ligament creation is strongly correlated with its local

velocity field, as the strong shear near the liquid surface deforms the liquid surface. Nearby

vortices determine the ligament formation direction. Axisymmetric vortices make ligaments

normal to the injection axis and streamwise vortices make ligaments parallel to the injection

axis. Even though the vortex dynamics have not been detailed in their study, their analysis

shows that vortex dynamics would be an insightful tool for understanding and controlling

the surface deformation and ligament formation in two-phase flows.

1.3 Research goals

As mentioned earlier in this chapter, the main focus of this research is on 3D, transient

computations of planar liquid streams through a high pressure ambient gas. The main goal

is to identify different breakup mechanisms in the atomization regime (Chapter 3) and to

detail and explain those mechanisms from vortex dynamics perspective (Chapter 4). The

temporal cascade of length scales and the sheet spread rate are also to be analyzed and

quantified during the the early stages of the jet development (Chapter 5). A brief list of the

scientific goals are in the introduction of each chapter.

The present thesis is organized as follows; computational methods and mesh study are dis-

cussed in Chapter 2. The results of the temporal 3D liquid-segment simulations are presented

in Chapter 3. In this chapter, three distinct breakup mechanisms are identified and catego-

rized on a Rel vs. Weg diagram. The effects of different flow parameters on the atomization

domains are discussed, and the characteristic time scales of each breakup mechanism is

presented.

In Chapter 4, a connection between the surface dynamics (growth of instabilities) and vor-

tex dynamics is investigated. A vortex dynamics approach is used to explain the different
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breakup mechanisms introduced in Chapter 3. The similarities and differences between the

hairpin vortex structures seen in the two-phase planar jet flow and the 3D mixing layers [4]

and homogeneous single-phase flows [42, 49] are also described in this chapter. The effects

of density ratio on the production of streamwise vorticity (3D instability) is investigated.

For this matter, the vortex stretching and vortex tilting effects (strain-vorticity interaction),

and baroclinicity are quantified and compared to find the dominant cause of 3D instability

at different domains.

Chapter 5 presents the temporal analysis of the length scale cascade and jet spread rate

during the different atomization domains. Both PDFs and mean length scales are quantified

and compared against the most important flow parameters; i.e. Rel, Weg, density ratio,

viscosity ratios, and wavelength-to-sheet-thickness ratio. The key parameters affecting each

stage of the cascade process are identified. The spray expansion rate and mass-averaged

length scales are also evaluated and compared in this chapter.

The usefulness and relevance of the temporal studies to a real atomization process are estab-

lished in Chapter 6, where our temporal results are compared to spatially developing full-jet

simulations. It is shown that the temporal studies are valid and useful in portraying the

deformations in the upstream region of the jet cap, where the instabilities follow a periodic

behavior. The effects of addition of coaxial gas flow (and the corresponding velocity ratio) on

the breakup mechanisms is also analyzed in this chapter. Chapter 7 presents the concluding

remarks and a summary of the most important outcomes of this study.
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Chapter 2

Computational modeling

In this chapter, the numerical methods that have been used to solve the incompressible

and unsteady Navier-Stokes equations will be discussed. This includes the discretization of

the convection-diffusion problem (QUICK algorithm), the coupling of velocity and pressure

through SIMPLE algorithm, and the application of the level-set (LS) and volume-of-fluid

(VoF) methods to track the liquid-gas interface. In later sections, the flow configuration, and

the boundary and initial conditions are introduced. A dimensional analysis is presented to

derive the most important non-dimensional groups in the atomization process. This chapter

ends with some grid refinement tests and verification of the code with some model tests.

Use has been made of the previously developed unsteady multidimensional code with the

finite-volume solver of the Navier-Stokes equations for the liquid stream and the adjacent

gas, uniform staggered griding scheme, and level-set method for liquid-gas interface tracking

applied by Dabiri [14]. The VoF method is added to the code for its better performance in

mass conservation at lower density ratios compared to the LS method.

48



2.1 Governing equations

The governing equations are the continuity, momentum and LS/VoF equations. Since both

the gas and the liquid are incompressible in this study, the continuity equation is

∇ · u = 0; (2.1)

however, it is not possible to have an abrupt change in the density and viscosity at the

interface of the two phases because of the numerical difficulties that are involved, and there

are a few cells that are not completely filled with either one of the fluids, and thus, have

a different density than either gas or the liquid. For this matter, density and viscosity

are allowed to vary smoothly across a few mesh points at the liquid-gas interface, as will

be discussed later. The equations of fluid motion are Navier-Stokes equations which in an

incompressible flow and considering the viscous and surface tension forces and neglecting the

gravitational forces have a conservative form as follows;

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p+ ∇ · (2µD) + F; (2.2)

where D is the strain rate tensor,

D =
1

2

[
(∇u) + (∇u)T

]
; (2.3)

and F is the surface tension force per unit volume

F = −σκδ(d)n. (2.4)

In the equations above, u = ui + vj +wk is the velocity vector, ρ and µ are the density and

viscosity of the fluid, respectively, p is the static pressure, σ is the surface tension coefficient,
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κ is the surface curvature, δ(d) is the Dirac delta function, d is the distance from the interface,

and n is the unit vector normal to the liquid-gas interface. The entire strain rate tensor has

been used in the viscous diffusion term because the viscosity varies near the interface zone,

and this will introduce extra terms in the momentum equations in each direction, which

include the viscous variation effects. This will be discussed in the next section.

2.1.1 Finite-Volume formulation for variable properties

The viscous stress term in the Navier-Stokes equations for an incompressible flow with vari-

able properties in the cartesian coordinates can be written as follows (for the first component)

[
∇ · (µ(∇u + ∇uT ))

]
1

=

=
∂

∂x

[
2µ
∂u

∂x

]
+

∂

∂y

[
µ
(∂u
∂y

+
∂v

∂x

)]
+

∂

∂z

[
µ
(∂u
∂z

+
∂w

∂x

)]

= ∇ · (µ∇u) +
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂v

∂x

)
+

∂

∂z

(
µ
∂w

∂x

)

= ∇ · (µ∇u) + µ
∂

∂x
(∇ · u) +

∂µ

∂x

∂u

∂x
+
∂µ

∂y

∂v

∂x
+
∂µ

∂z

∂w

∂x
; (2.5)

where the second term is zero due to the incompressibility of the fluids (Equation 2.1). As

we write the momentum equation in the following form, the last three terms in Equation

(2.5) will be included in the source term S, in addition to the pressure gradient and surface

tension forces.

∂(ρu)

∂t
+ ∇ · (ρuu) = ∇ · (µ∇u) + S. (2.6)

The complete form of the momentum equation in each direction could be written as:
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• x-momentum:

∂(ρu)

∂t
+ ∇ · (ρuu) = −∂p

∂x
+ ∇ · (µ∇u) +

∂µ

∂x

∂u

∂x
+
∂µ

∂y

∂v

∂x
+
∂µ

∂z

∂w

∂x
+ Fx; (2.7)

• y-momentum:

∂(ρv)

∂t
+ ∇ · (ρuv) = −∂p

∂y
+ ∇ · (µ∇v) +

∂µ

∂x

∂u

∂y
+
∂µ

∂y

∂v

∂y
+
∂µ

∂z

∂w

∂y
+ Fy; (2.8)

• z-momentum:

∂(ρw)

∂t
+ ∇ · (ρuw) = −∂p

∂z
+ ∇ · (µ∇w) +

∂µ

∂x

∂u

∂z
+
∂µ

∂y

∂v

∂z
+
∂µ

∂z

∂w

∂z
+ Fz. (2.9)

2.2 Numerical methods

A finite-volume discretization on a staggered grid has been considered in this study. The con-

servation equations come from the balance in the flux going in and coming out of the control

volume. Therefore, accurate calculation of these fluxes is of great importance. Third-order

accurate QUICK scheme has been used for spatial discretization and the Crank-Nicolson

scheme has been used for time-marching treatment in this research. SIMPLE algorithm has

been used for velocity-pressure coupling. In this section these algorithms will be reviewed

briefly.

2.2.1 QUICK discretization

The Quadratic Upwind Interpolation for Convective Kinetics (QUICK) was first introduced

by Leonard [46]. The method is based on a three-point upstream-weighted quadratic inter-

polation technique for cell face values on a staggered grid. This scheme has been shown to

51



have a better accuracy than central difference scheme while retaining the transportiveness

property of the upwind scheme. The face value of the scalar quantity φ is obtained from a

quadratic function passing through two bracketing nodes (on each side of the face) and a

node on the upstream side (Figure 2.1).

Figure 2.1: Quadratic profiles used in QUICK scheme

A uniform grid spacing is used here for simplicity but the concept can be easily extended

to nonuniform grids. The value of φ at the interface of the cell is calculated by fitting a

quadratic polynomial to three consecutive nodes – the two nodes located at either side of

the surface and another node on the upstream side. For example, when uw > 0 and ue > 0

a quadratic fit through WW , W and P is used to evaluate φw, and a further quadratic fit

through W , P and E to calculate φe. For a uniform grid the value of φ at the cell face

between two bracketing nodes i and i− 1 and upstream node i− 2 is given by the following

formula [46];

φface =
6

8
φi−1 +

3

8
φi −

1

8
φi−2. (2.10)

Using this formula, the value of the scalar φ at the west cell face can be written as:

φw =


6
8
φW + 3

8
φP − 1

8
φWW for uw > 0

6
8
φP + 3

8
φW − 1

8
φE for uw < 0

(2.11)
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and a similar relation for the east cell face value φe.

There have been several papers addressing the practical implementation of the QUICK

scheme, but among them Hayase et al. [26] presented a consistent formulation of QUICK

scheme, which is more stable and also fast converging. This scheme is used here. In this

formulation, the interpolated values of the scalar function are rearranged as

φw =


φW + 1

8
[3φP − 2φW − φWW ] for uw > 0

φP + 1
8
[3φW − 2φP − φE] for uw < 0

(2.12)

and

φe =


φP + 1

8
[3φE − 2φP − φW ] for ue > 0

φE + 1
8
[3φP − 2φE − φEE] for ue < 0

(2.13)

The terms in the brackets are treated as source terms using the values from previous iteration.

Hence, the values of φ at interface are given as an upwind estimation plus a corrective

source term. The advantage of this approach is that the main coefficients in the discretized

equation are positive and satisfy the requirements for conservativeness, boundedness and

transportiveness. The QUICK scheme is third order accurate.

2.2.2 Crank-Nicolson discretization scheme

The Crank-Nicolson method is a second-order and implicit finite difference scheme for dis-

cretizing the unsteady term of the momentum equations. The method was developed by

Cranck & Nicolson [12]. This method is unconditionally stable for discretizing the time
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derivative. Applying the Crank-Nicolson method to time derivative of u is as follows:

∂u

∂t
= F (u,x, t,

∂u

∂x
,
∂2u

∂x2
); (2.14)

un+1
i − uni

∆t
=

1

2

[
F n+1
i (u,x, t,

∂u

∂x
,
∂2u

∂x2
) + F n

i (u,x, t,
∂u

∂x
,
∂2u

∂x2
)

]
; (2.15)

The function F must be discretized spatially with a central difference or QUICK scheme.

2.2.3 SIMPLE algorithm

The acronym SIMPLE stands for Semi-Implicit Method for Pressure-Linked Equations. The

algorithm was originally put forward by Patankar and Spalding [64], and is essentially a guess-

and-correct procedure for the calculation of pressure on the staggered grid arrangement.

To initiate the SIMPLE calculation process a pressure field p∗ is guessed. Discretized mo-

mentum equations are solved using the guessed pressure field to yield velocity components

u∗ and v∗. Then a pressure correction equation which represents the continuity equation is

solved to give the pressure correction variable p′. Once the pressure correction field is known,

the correct pressure field and velocity components are obtained.

The SIMPLE algorithm gives a method of calculating pressure and velocities. The method

is iterative, and when other scalars are coupled to the momentum equations the calculation

needs to be done sequentially. The sequence of operations in a CFD procedure which employs

the SIMPLE algorithm is given in Figure 2.2. The equations that need to be solved in each

step are also shown there.
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Figure 2.2: The SIMPLE algorithm flow chart [89].

2.3 Interface tracking approach

Tracking the interface between two phases and modeling its physics such as surface tension

is of great importance in studying multiphase flows. Several methods have been developed

to handle the difficulties in interfacial modeling. The surface marker method or the front-
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tracking method explicitly tracks the position of the interface by updating the position of

marker points on it. For example, Tryggvason & Unverdi [87] and Glimm et al. [24] used this

method to study Rayleigh-Taylor instabilities. Popinet & Zaleski [66] did an accurate balance

of surface tension forces on a finite volume method by explicit tracking of the interface.

The method was applied only for 2D calculations because of the geometrical complexity

appearing in the 3D calculation. The drawback of the front-tracking method is the difficulty

in capturing the topological changes in the phases, such as breakup or coalescence of liquid

drops, specially in 3D calculations.

In the limit of inviscid flow, the interface could be modeled as a vortex sheet with zero

thickness. Rangel & Sirignano [68] performed a nonlinear analysis of temporal instability of

a liquid sheet using this idea. From the momentum equation on sides of the interface and a

balance of interfacial forces, they derived an equation for the evolution of circulation on the

interface for a case with density discontinuity and surface tension. The velocity field was

also found by the Biot-Savart law from the vorticity field.

Volume-of-Fluid (VoF) is another method developed to treat the multiphase flows. In this

method, a scalar parameter in each discretized cell is defined as the volume fraction of cell

filled with one of the phases. This scalar is updated in time by considering the convection

from and to neighboring cells. Even though it is harder to track back the volume of fluid to

find the interface, this method is very popular because of its high accuracy in mass conser-

vation. This method is used in our study for lower density ratio cases. A review of different

methods of interface tracking and surface tension modeling is developed by Scardovelli &

Zaleski [76].

In this work, the level-set (LS) method is employed to track the interface and model its

physics (except for lower density ratios where the VoF method is used). The LS method has

been developed by Osher and his coworkers (see Zhao et al. [99], Sussman et al. [84], and

Osher & Fedkiw [60]). In this method, the interface between two phases is defined as the zero
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level set of a scalar function called LS function and denoted by φ. The LS function is defined

over the whole computational domain as a signed distance function from the interface, i.e. it

has positive values on one side of the interface (gas phase), and negative values on the other

side (liquid phase) and the magnitude of the LS at each point in the computational domain

is equal to the distance from that point to the interface.

2.3.1 Level-set method

The LS function φ is defined as a smooth distance function allowing us to give the interface a

thickness fixed in time. Density, viscosity and surface tension all depend on the LS function

being a distance function. In this algorithm, the interface Γ is the zero level set of φ,

Γ = {x |φ(x, t) = 0} .

We take φ < 0 in the liquid region and φ > 0 in the gas region. Therefore, we have

φ(x, t)


> 0 if x ∈ the gas

= 0 if x ∈ Γ

< 0 if x ∈ the liquid

(2.16)

By virtue of the boundary conditions, u is continuous across the interface. Since the interface

moves with the fluid particles, the evolution of φ is then given by

∂φ

∂t
+ u ·∇φ = 0. (2.17)

Equation (2.17) is called the LS equation. If the initial distribution of the LS is a signed

distance function, after a finite time of being convected by a nonuniform velocity field, it
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will not remain a distance function. Therefore, we need to re-initialize the LS function in

such a way that it will be a distance function (with property of |∇φ| = 1) without changing

the zero LS (position of the interface). Suppose φ0(x) is the LS distribution after some time

step and is not exactly a distance function. This can be re-initialized to a distance function

by solving the following partial differential equation (Sussman et al. [84]):

∂d

∂τ
= sign(φ)(1− |∇d|); (2.18)

with initial condition

d(x, 0) = φ0(x);

where τ is a psuedo time. The steady solutions of Equation (2.18) are distance functions

with property |∇d| = 1. Furthermore, since sign(0) = 0, then d(x, t) has the same zero LS

as φ(x). Therefore, we simply solve Equation (2.18) to steady state and then replace φ(x)

by d(x, τsteady).

The 5th order accurate Weighted Essential Non-Oscillatory (WENO) scheme of Jiang &

Peng [37] has been used to solve the re-initialization Equation (2.18) in every time step.

For the multiphase flow, if Ωl and Ωg are defined as the domain occupied by the liquid and

the gas, respectively, the Navier-Stokes equations in each of the domains can be written as

ρl
Dul
Dt

= −∇pl + 2µl∇ ·Dl , ∇ · ul = 0 , x ∈ Ωl (2.19)

ρg
Dug
Dt

= −∇pg + 2µg∇ ·Dg , ∇ · ug = 0 , x ∈ Ωg (2.20)

where subscripts g and l denote the gas and liquid phases, respectively. The boundary
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conditions on the liquid-gas interface are

(2µlDl − 2µgDg) · n = (pl − pg − σκ)n and ul = ug ; x ∈ Γ (2.21)

where Γ is the liquid-gas interface, n is the unit vector normal to the interface towards the

gas phase, κ = ∇ ·n is the curvature of the interface and σ is the surface tension coefficient.

The normal unit vector n, drawn from the liquid into the gas, and the curvature of the

interface κ can easily be expressed in terms of φ(x, t);

n =
∇φ

|∇φ|

∣∣∣∣
φ=0

and κ = ∇ · n = ∇ ·
(

∇φ

|∇φ|

)∣∣∣∣
φ=0

. (2.22)

Expanding Equation (2.22) in Cartesian coordinates leads to the following equation for the

curvature of the interface in a 3D problem (x, y, z);

κ =
φxx(φ

2
y + φ2

z) + φyy(φ
2
x + φ2

z) + φzz(φ
2
x + φ2

y)− 2φxφyφxy − 2φyφzφyz − 2φzφxφxz

(φ2
x + φ2

y + φ2
z)

3/2
. (2.23)

The governing equations for the fluid velocity (Equations 2.19 & 2.20) along with their

boundary condition (Equation 2.21) can be written as a single equation containing both

liquid and gas properties in the whole domain, Ω = Ωl ∪ Ωg;

ρ(φ)
Du

Dt
= −∇p+ ∇ · (2µ(φ)D)− σκ(φ)δ(φ)n. (2.24)

Since the density and viscosity are constant in each fluid, they then take on two different

values depending on the sign of φ;

ρ(φ) = ρl + (ρg − ρl)H(φ); (2.25)
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and

µ(φ) = µl + (µg − µl)H(φ); (2.26)

where H(φ) is the Heaviside function given by

H(φ) =


0, if φ < 0,

1
2
, if φ = 0,

1, if φ > 0.

(2.27)

Therefore, the incompressible flow of a liquid-gas mixture could be treated as an incompress-

ible flow of a variable density fluid with surface tension modeled as a body force per unit

volume.

2.3.2 Interface thickness

In order to solve Equation (2.24) numerically, it should be modified slightly due to the

sharp changes in ρ and µ across the interface front and also due to the numerical difficulties

presented by the Dirac delta function δ(φ) contained in the surface tension force F. To

alleviate these issues, the interface is given a fixed thickness that is proportional to the

spatial mesh size. This allows replacing ρ(φ) and µ(φ) by a smoothed density and viscosity

which is denoted as ρε(φ) and µε(φ) and is given by

ρε(φ) = ρl + (ρg − ρl)Hε(φ), (2.28)
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and

µε(φ) = µl + (µg − µl)Hε(φ), (2.29)

with smoothed Heaviside function

Hε(φ) =


0, if φ < −ε,

1
2
(φ+ε

ε
) + 1

2π
sin(πφ

ε
), if |φ| ≤ ε,

1, if φ > ε;

(2.30)

where ε represents the half thickness of the interface and has the value of 1.5∆, where ∆ is

the cell size. The variation of Hε(φ) across the three interface cells is plotted in Figure 2.3.

This Heaviside function corresponds to a Delta function that can be used to evaluate the

surface tension force;

δε(φ) =
dHε

dφ
=


1
2ε

[
1 + cos(πφ

ε
)
]

if |φ| ≤ ε

0 otherwise

(2.31)
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Figure 2.3: The smoothed Heaviside function
variation across the interface.
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Figure 2.4: The modified Delta function vari-
ation across the interface.
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The variation of the modified Delta function across the interface cells is plotted in Figure 2.4.

Introduction of the modified Heaviside and Delta functions allows the density and viscosity to

vary smoothly across the interface cells, and is not in consistent with our earlier assumption

that the density is constant within each liquid or gas zone. This might result in minor errors

which are negligible in this context. At lower density ratios (higher density gradient), this

error cannot be neglected, and it poorly affects the mass conservation of the LS method.

Therefore, the VoF method is employed at lower density ratios to remedy this issue.

2.3.3 Volume-of-Fluid method

In the Volume-of-Fluid (VoF) method at low density ratios, a transport equation similar to

the LS Equation (2.17) is used for the volume fraction f , also called the VoF variable, in

order to describe the temporal and spatial evolution of the two phase flow [28];

∂f

∂t
+ u ·∇f = 0, (2.32)

where the VoF variable f represents the volume of (liquid phase) fluid fraction as follows:

f(t) =


0, outside of liquid pahse

0 < f < 1, at the interface

1, inside the liquid phase.

(2.33)

The normal direction of the fluid interface is found where the value of f changes most rapidly.

With this method, the free surface is not defined sharply; instead, it is distributed over the

height of the cell. Since fluid properties are required every time step in order to solve the

Navier-Stokes equations, the density and viscosity change continuously based on Equations

(2.25) and (2.26). However, in these equations, the argument of the Heaviside function is
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replaced by f , in the VoF method.

The formulation for the fully conservative momentum convection and volume fraction trans-

port, the momentum diffusion, and the surface tension are treated explicitly. To ensure a

sharp interface of all flow discontinuities and to suppress numerical dissipation of the liquid

phase, the interface is reconstructed at each time step by the PLIC (piecewise linear interface

calculation) method proposed by Rider & Kothe [72]. The liquid phase is transported on

the basis of its reconstructed distribution. The capillary effects in the momentum equations

are represented by a capillary tensor as introduced by Scardovelli & Zaleski [76].

2.4 Flow configuration

The computational domain, shown in Figure 2.5(a), consists of a cube, which is discretized

into uniform-sized cells. The liquid segment, which is a sheet of thickness h0 (h0 = 50 µm

for the thin sheet and 200 µm for the thick sheet), is located at the center of the box

and is stationary in the beginning. The domain size in terms of the sheet thickness is

16h0 × 10h0 × 10h0, in the x, y and z directions, respectively, for the thin sheet, and

4h0 × 4h0 × 8h0 for the thick sheet. The liquid segment is surrounded by the gas zones

on top and bottom. The gas moves in the positive x- (streamwise) direction with a constant

velocity (U = 100 m/s) at top and bottom boundaries, and its velocity diminishes to the

interface velocity with a boundary layer thickness obtained from 2D full-jet simulations, as

shown in Figure 2.6. In the liquid, the velocity decays to zero at the center of the sheet

with a hyperbolic tangent profile. This computational box resembles a segment of the liquid

sheet far upstream of the jet cap, as shown in Figure 2.5(b). This sub-figure shows the

starting behavior of a spatially developing full liquid jet injected with constant velocity Ul

into quiescent gas. A Galilean transformation of the velocity field shows that the gas stream

flows upstream with respect to the liquid jet with a relative velocity Urel = Ul (denoted
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Figure 2.5: The computational domain with the initial liquid and gas zones (a), and a
spatially developing full liquid jet (b).

by the red arrows) in the box shown in Figure 2.5(b). Our temporal study focuses on this

region of the jet stream away from the jet cap, where previous studies indicate that surface

deformations are periodic [80]. The relevance of the temporal computational box will be

detailed in Chapter 6.
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Z
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)
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Figure 2.6: Initial streamwise velocity profile, obtained from the 2D full jet computations.
The dashed-line indicates the initial location of the interface.
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This study involves a temporal computational analysis with a relative velocity between the

two phases. Due to friction, the relative velocity decreases with time. Furthermore, the do-

main is several wavelengths long in the streamwise direction so that some spatial development

occurs. In order to reduce the dependence of the results on details of the boundary condi-

tions, specific configurations (e.g., air-assist or air-blast atomization) are avoided. However,

calculations are made with the critical non-dimensional parameters in the ranges of practical

applications, as will be described in Section 2.5.

As shown in Figure 2.5, the liquid-gas interface is initially perturbed symmetrically on both

sides with a sinusoidal profile and predefined wavelength and amplitude obtained from the

2D full-jet simulations (see Ref. [96]). Two analyses without forced or initial surface pertur-

bations – the full-jet 2D simulations (Figure 17 of Ref. [96]) and the initially non-perturbed

3D simulations (Figure 4.45 in Chapter 4) – show KH wavelengths in the moderate range

of 80–125 µm over a wide range of Rel, Weg and density ratio studied here. In order to

expedite the appearance and growth of the KH waves, initial perturbations with wavelength

of 100 µm are imposed on the interface with a small amplitude of 4 µm. This amplitude

is small enough that subharmonics would have a chance to form and grow. Similar to [33],

our results show that at higher Rel and lower density ratio, smaller waves appear superim-

posed on the initial perturbations. The waves also merge to create larger waves at lower

Weg. Both streamwise (x-direction) and spanwise (y-direction) perturbations are consid-

ered in this study. Periodic boundary conditions for all components of velocity as well as the

LS/VoF variables are imposed on the four sides of the computational domain; i.e. the x- and

y-planes. A summary of the boundary conditions is presented mathematically in Table 2.1.

The fluid properties are summarized in Table 2.2. A wide range of Re and We at high and

low density and viscosity ratios are covered in this study. Kerosene (paraffin) with density

of 804 kg/m3 is used as the liquid, and air at high pressure (35 atm) is considered as the

surrounding gas. The velocity difference between the liquid film and the gas is considered to
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Boundary Condition formulation

yz-planes periodic uN = u2, u1 = uN−1

xz-planes periodic uN = u2, u1 = uN−1

Top & bottom constant streamwise u = 100 m/s,
planes velocity, zero normal

gradients

∂v
∂z

= 0, ∂w
∂z

= 0

Table 2.1: The boundary conditions of Figure 2.5.

Fluid Properties Liquid (Kerosene) Gas (air)

Dynamic viscosity, µ (kg/m.s) 2.7× 10−3 1.8× 10−5

Density, ρ (kg/m3) 804 40.0 (at 35 atm)
Surface tension coefficient, σ (N/m) 0.028 –
Jet velocity, U (m/s) 0 100

Table 2.2: Fluid properties.

be 100 m/s. The tabulated values are only for the base case; for other cases with different

Re and We, the liquid viscosity and surface tension coefficient are obtained from the given

Re and We values, respectively; the gas properties are calculated from the desired density

and viscosity ratios. The range of dimensionless parameters will be provided in next section.

2.5 Dimensional analysis

The main purpose of this study is to investigate the growth rate of the 3D instabilities

and their corresponding features, e.g. lobe, ligament and droplet formation, and vortex

interactions, as well as to find the dominant wavelength of those 3D instabilities. The most

important parameters that affect the instability growth rate ω (or the time at which the

instabilities occur first) could be written as,

ω (or t) = f(ρl, ρg, µl, µg, h0, λ (or k), U, σ); (2.34)
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where λ is the wavelength of the initial KH instabilities on the liquid-gas interface. k =

2π/λ is the instabilities wavenumber, and U is the far-field gas velocity. Using dimensional

analysis, Equation (2.34) can be reduced to the following dimensionless form

ω

kU
(or

Ut

λ
) = Φ

(ρg
ρl
,
µg
µl
,
λ

h
(or kh),

ρlUh0

µl
,
ρlU

2h0

σ

)
; (2.35)

The first two parameters in Equation (2.35) are the gas-to-liquid density ratio and viscosity

ratio; the third group is the wavelength-to-sheet-thickness ratio, and the last two dimen-

sionless parameters are the Reynolds number and the Weber number (based on the liquid

properties and sheet thickness), respectively.

It is also useful to write the momentum Equation (2.24) in dimensionless form. The following

dimensionless variables are used for non-dimensionalization:

x∗ =
x

h0

, u∗ =
u

U
, t∗ =

tU

h0

p∗ =
p

ρlU2
, ρ∗ =

ρ

ρl
, µ∗ =

µ

µl
; (2.36)

where the asterisks denote dimensionless variables. Substitution of these variables into Equa-

tion (2.24) and dropping the asterisks we obtain;

∂u

∂t
+ u ·∇u = − ∇p

ρ(φ)
+

1

ρ(φ)

(
1

Re
∇ · (2µ(φ)D)− 1

We
κ(φ)δ(φ)n

)
. (2.37)

The density and viscosity now become

ρ(φ) = η + (1− η)H(φ) and µ(φ) = ζ + (1− ζ)H(φ) (2.38)
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where H(φ) in here is the Heaviside function as introduced earlier. η is the liquid-to-gas

density ratio, and zeta is the liquid-to-gas viscosity ratio;

η =
ρl
ρg
, and ζ =

µl
µg
. (2.39)

In order to keep the convention, the gas-to-liquid density and viscosity ratios are used,

which are the reciprocal of η and ζ as defined above. So, the most important dimensionless

groups in this study are the Reynolds number (Re), the Weber number (We), as well as

the gas-to-liquid density ratio (ρ̂) and viscosity ratio (µ̂), as defined below. The initial

wavelength-to-sheet-thickness ratio (Λ) is also an important parameter.

Re =
ρlUh

µl
, We =

ρlU
2h

σ
, ρ̂ =

ρg
ρl
, µ̂ =

µg
µl
, Λ =

λ

h0

. (2.40)

The initial sheet thickness h0 is considered as the characteristic length, and the relative gas-

liquid velocity U as the characteristic velocity. The subscripts l and g refer to the liquid and

gas, respectively. Theoretically, if the flow field is infinite in the streamwise direction (as in

our study), a Galiliean transformation shows that only the relative velocity between the two

streams is consequential. Spatially developing flow fields, however, are at most semi-infinite

so that both velocities at the flow-domain entry and their ratio (or their momentum-flux

ratio) are important. A wide range of Re and We at high and low density and viscosity

ratios is covered in this study. The range of dimensionless parameters analyzed in this study

are given in Table 2.3. The range of parameters considered here covers the more practical

ranges usually seen in most atomization applications; however, higher ρ̂ (high pressures) and

higher We values are also studied to fully explore and portray their effects.

Re ranges from 320, which is in laminar regime, up to 5, 000, which is completely turbulent.
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Parameter Re We ρ̂ µ̂ Λ

Range 320–5000 3000–100,000 0.05–0.9 0.0005–0.05 0.5–2.0

Table 2.3: Range of dimensionless parameters.

We varies from 3000, indicating a very large surface tension, up to 100, 000 which corresponds

to a very low surface tension case. ρ̂ comprises three different orders of magnitudes, from a

very high density difference (ρ̂ = 0.05) to a value of ρ̂ = 0.9 indicating an almost like-density

liquid and gas. The same story goes on for µ̂; the chosen values include a highly viscous

gas (µ̂ = 0.1) and an almost inviscid gas with very low µ̂. The wavelength-to-thickness ratio

contains a very long KH wavelength in orders of the sheet thickness (thin sheet, Λ = 2), and

a short initial wavelength, half of the sheet thickness (thick sheet, Λ = 0.5).

2.6 Mesh study

A uniform staggered grid is used with the mesh size of 2.5 µm and a time step of 5 ns –

finer grid resolution of 1.25 µm is used for the case with higher We (We > 72, 000) or higher

Re (Re = 5000). The grid independency tests were performed previously by Jarrahbashi

& Sirignano [33], Jarrahbashi et al. [34], and Zandian et al. [96]. They showed that the

errors in the size of the ligaments, penetration length of the liquid jet and the magnitude

of the velocity computed using different mesh resolutions were within an acceptable range.

The effects of the mesh size, the thickness of the fuzzy zone between the two phases, where

properties have large gradients to approximate the discontinuities, and mass conservation of

the LS method have been previously addressed by Jarrahbashi & Sirignano [33]. The effects

of mesh resolution on the most important flow parameters, e.g. surface structures, velocity

and vorticity profiles, are studied in detail in this section. The domain-size independency

was also checked in both streamwise and spanwise directions to make sure that the resolved
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wavelengths were not affected by the domain length or width. The normal dimension of the

domain was chosen such that the top and bottom boundaries remain far from the interface at

all times, so that the surface deformation is not directly affected by the boundary conditions.

In addition, accuracy tests and validation with experiments and other numerical approaches

were performed previously [14, 33], and will not be repeated here.

The computational grid should be able to resolve well the boundary layer of the gas and liquid

near the interface in order to capture the frequency and growth of the interfacial instabilities

accurately [22]. More importantly, the requirement for sufficient numerical resolution to

compute the formation of holes and corrugations on the lobes indeed is a stricter restriction

on the mesh size in the current study. To assess the effects of grid resolution on the numerical

results of the DNS simulation of the atomization, three grid resolutions are considered in

this section: M1, M2, and M3, with ∆ = 5 µm, 2.5 µm, and 1.25 µm, respectively.

Figure 2.7 shows the mass conservation error in different mesh resolutions. The vertical axis

measures the instantaneous volume of the liquid phase V normalized by the initial volume

of the liquid in the domain V0. The coarse grid M1 clearly has the largest mass loss with

μ
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Figure 2.7: Mass conservation check for different mesh resolutions.
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an error of around 0.5% near the end of the computation. The M2 and M3 grids, however,

both have fair mass conservation with low errors of 0.15% and < 0.1%, respectively. The

results shown in Figure 2.7 are for a case with ρ̂ = 0.05. At higher density ratios, the mass

conservation is significantly better.

A close-up view of the different liquid surface structures found in different atomization do-

mains are shown in Figure 2.8 for different mesh resolutions of the same cases and at the

same time steps. Figures 2.8(a–c) show the effects of mesh resolution on depicting the hole

formation. Physically, holes are formed on the liquid lobes only when the lobe thickness is

very small (O(10) nm) and the disjoining pressure becomes active [50]. Here in the simula-

tions, holes appear when the thickness of the liquid lobe (sheet) decreases to about the cell

size ∆. Since mechanisms of sheet rupture, such as disjoining pressure, are absent in the

Figure 2.8: Close-up view of the liquid surface structures formed at the wave crest for
different mesh resolutions. Hole formation for Rel = 2500 and Weg = 7250 at 90 µs (a–c);
corrugation formation for Rel = 5000 and Weg = 7250 at 90 µs (d–f); droplet formation
for Rel = 2500 and Weg = 7250 at 95 µs (g–h). Comparison of the relative sizes of holes,
ligaments and droplets with the grid size for Rel = 5000 and Weg = 36, 000 at 13 µs (i).
ρ̂ = 0.1, µ̂ = 0.0066 and Λ = 0.5 for all images.
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present study, and because of this numerical cutoff criterion, the initial perforation of the

liquid sheets is highly dependent on the mesh resolution. As can be seen in Figures 2.8(a–c),

the M1 grid does not have enough resolution to capture the hole formation accurately. The

holes form much sooner and expand much faster in the M1 grid compared to the other two

finer grids. As seen in Figure 2.8(c), the large perforation seen on the lobe is a result of

merging of several smaller holes on the liquid sheet, which can be captured only by a high

resolution grid such as M3. The entire size of the hole is fairly similar for the M2 and M3

grids. The lobe rim is much thicker for finer resolutions. Consequently, a further increase of

mesh resolution will only delay the pinch-off point but will not affect the ligaments formed

from the expansion of the holes. Hole formation and rim dynamics are well captured by the

M2 and M3 grids.

At high Rel, corrugations form on the lobe rim (as will be described in Chapter 3). There

are typically three or four such small scale corrugations (per wavelength) on the lobe rims,

each having a size (thickness) of around 15–25 µm. Clearly, the M1 grid does not have

enough resolution to capture these corrugations, and only the larger ligaments are resolved

(Figure 2.8d). The M2 and M3 grids both resolve the corrugations correctly with very similar

sizes and structures (Figures 2.8e,f). Figures 2.8(g,h) compare the droplet formation and the

cascade of structures for the M2 and M3 grids. The general aspects of the process, e.g. size

and location of the lobes, ligaments, and holes and thickness of the rims, are fairly similar for

both grids. However, as described before, because of the numerical cut-off criterion, the holes

form and expand slightly sooner (< 1 µs) for the M2 grid. The size of the resolved droplets

and ligaments are also slightly smaller in the M2 grid. This is similar to what was seen by

Ling et al. [50] and Jarrahbashi & Sirignano [33] in their studies of the grid resolution. It is

well known that the size of corrugations and the resulting ligaments and droplets decrease as

Rel and Weg increase. In the current study, the M3 grid is used only for those higher Rel and

Weg values, and for the rest of the cases the M2 grid is adequate to capture the physics of the

cascade process. As shown in Figure 2.8(i) for a high Rel = 5000 and high Weg = 36, 000,
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the M3 grid resolution is fine enough to capture the smallest holes, ligaments, and droplets.

The radii of curvature of the corrugations and holes and ligaments can go down to around

6 µm, which can be resolved well only by the M3 grid with ∆ = 1.25 µm.

Since a major part of this study is concerned with the vortex dynamics of the cascade

process (Chapter 4), it is important that we resolve the velocity and vorticity in the gas-

liquid mixing layer correctly. A comparison of the streamwise velocity and spanwise vorticity

profiles near the wave crest at an early time (t = 10 µs) and a later time (t = 70 µs) are

shown in Figure 2.9. These profiles are obtained at the front-most tip of one of the lobe

crests at two distinct times. All three grids resolve the gas and liquid boundary layers

correctly at early times, with the M1 profile slightly shifted towards the sheet center near

the interface (Figure 2.9a). The gas vorticity layer δg imposed in this simulation is initially

≈ 200 µm, and the velocity gradient, hence the vorticity magnitude near the interface,

increases with time (see Figure 2.9c). At later times (Figure 2.9c,d), the M1 grid fails to

capture the velocity profile correctly and is also unable to resolve the small scale velocity

fluctuations and the small vortices near the interface. The M2 and M3 grids, however,

resolve the velocity fluctuations similarly with very little difference, and vividly portray the

location and amplitude of those fluctuations. The liquid sheet bulk velocity increases in the

meantime.

In terms of calculating the vorticity, Figure 2.9(b) shows that the magnitude of the spanwise

vorticity obtained from M1 grid is significantly lower than that of M2 and M3 even at early

times. The location of the vorticity peak is also closer to the sheet center and inside the

liquid phase because the velocity gradient and the vorticity magnitude cannot be predicted

correctly with the M1 grid. At later times (Figure 2.9d), this difference between the vorticity

magnitudes of M1 and M2/M3 becomes even more noticeable, where the M1 grid cannot

resolve the small vortices. The M2 and M3 grids have much better consistency in resolving

the number of peaks, their locations and their magnitudes; however, the M3 grid is required
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Figure 2.9: The streamwise velocity profile and the spanwise vorticity profile near the wave
crest for different mesh resolutions at an early time t = 10 µs (a),(b), and at a later time
t = 70 µs (c),(d). The gas-liquid interface locations are denoted by the dashed lines.

for capturing all the vortices correctly at such high Rel values. The spanwise vorticity is

not equally distributed between the two phases, and it mainly sits on the gas side since the

vorticity thickness (and the boundary layer thickness) is larger in the gas phase compared to

the liquid phase. The inclination of the vortices towards the gas phase is more pronounced

at lower density ratios [29].

Experiments and simulations show that as KH waves amplify, the convective velocity of the

waves becomes very close to the Dimotakis speed [17] defined as UD = (Ul+
√
ρ̂Ug)/(1+

√
ρ̂).

Considering the case shown in Figure 2.9(a) with ρ̂ = 0.5 and Ul = 20 m/s, Dimotakis speed
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gives UD ≈ 53 m/s. The interface velocity (at the base of the KH wave) in our simulation

(Figure 2.9a) indicates a value of Uint ≈ 52 m/s, which agrees well with the expected

Dimotakis wave speed.
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Chapter 3

Breakup mechanisms and atomization

domains

The liquid sheet breakup mechanisms and the cascade of surface structures in the atomiza-

tion regime are presented in this chapter. While increasing relative gas-liquid velocity has

been shown to produce smaller droplets, the mechanism for breakup has not been clearly

established yet. The common notion is that the shear causes spanwise waves to form on

the surface of the sheet, and the waves grow and separate from the sheet in the form of

ligaments, which then fragment into droplets [83]. There have been several numerical and

experimental studies on liquid-sheet breakup; however, until recently, none of them have

been able to explain the breakup mechanisms and delineate the flow parameters affecting

those mechanisms.

None of the studies presented in Section 1.2.4 of Chapter 1 addressed the 3D nonlinear

behavior and, thus, none addressed the key behavior for high Re and high We flows – a form

of transitional turbulence in the range of interest in practical atomizers. Addressing these

behaviors will be the main focus of this chapter.
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3.1 Problem description

Even though several types of breakup mechanisms and the corresponding ligament and

droplet sizes have been introduced by several experimentalists, they have not clearly identi-

fied the domain in which these breakups occur. Moreover, many of the studies focused on

very low Re and We, which is far from the domain of interest in most applications. Gen-

erally, experiments have not been able to reveal the details of the smaller structures that

develop during cascade of atomization (the work of Marmottant & Villermaux [55] is an

exception) and only the quality of the developed ligaments and droplets at the end of the

breakup has been discussed. In this regard, the numerical simulations have proven to be a

much better tool to investigate the mechanisms of the primary atomization.

A list of computational studies on planar and round liquid jets is given in Table 3.1. The

range of each non-dimensional parameter and the type of the study are also denoted in this

table. In one of the earliest numerical studies on the liquid-jet instability, Lozano et al. [53]

implemented a three-dimensional Lagrangian code based on vortex dynamics to track the air-

liquid interface, treated as inviscid vortex sheets. Using the vortex dynamics and altering the

initial perturbation orientation with respect to the flow direction, they were able to propose

mechanisms for generation of spanwise and streamwise ligaments.

Scardovelli and Zaleski [76] analyzed the response to spanwise perturbations of the two-

dimensional base flow in their 3D simulations at very low Re and We. They were able

Study Configuration Type of study Re We ρ̂ µ̂
Lozano et al. [53] planar temporal ∞ O(105) not reported NA
Scardovelli & Zaleski [76] planar temporal 1000 300–2000 0.1 not reported
Desjardins & Pitsch [16] planar temporal 2000–3000 500–2000 0.025 0.025
Shinjo & Umemura [80] round spatial 1000–3000 3000–30, 000 0.04 0.007
Herrmann [27] round spatial 5000 17, 000 0.03 0.01
Jarrahbashi et al. [33, 34] round temporal 320–16, 000 2000–230, 000 0.05–0.9 0.002–0.035
Zandian et al. [96] planar temporal 500–10, 000 3000–72, 000 0.5–0.9 0.0001–0.01

Table 3.1: List of computational studies on liquid jets, their parameters range, jet configu-
ration, and type of study.
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to distinguish two scenarios by which 3D flows set in. For small 3D perturbations, the

simulation remains 2D until the sheet breaks up and a cylinder with spanwise axis pinches

off. Subsequently, the capillary instability gives a 3D structure to the flow. In contrast, for

higher 3D perturbations, the rim-like edge concentrates in protruding ligaments that will

be subject to the capillary instability. However, the unstable cylinder is now streamwise

oriented. The formation of streamwise ligaments is also observed in real experiments on

shear layers [55].

A detailed numerical investigation of turbulent liquid jets in quiescent air at low density ratio

was conducted by Desjardins & Pitsch [16] to identify the key atomization mechanisms, and

to analyze the effects of the jet Re and We. Their work was limited to very low We compared

to the range of interest for common liquid fuels and high-pressure operations. They found

that liquid turbulence plays an important role in the generation of the first droplets, while

the KH instabilities are not visible at early times. Several detailed atomization mechanisms

have also been identified by them, such as bubble formation through sweep-ejection events

and ligament generation due to bubble bursting or droplet collision. The instantaneous

liquid-gas interface in their computations showed some hole formation near the tips of a few

of the liquid sheets expelled from the planar jet core, tearing of those sheets and formation

of the ligaments due to tearing for Re and We equal to 2000 and 1000, respectively. They

did not explain the mechanisms of hole formation, though.

Computational studies of Shinjo & Umemura [80] on the primary atomization of a round

liquid jet injected into high-pressure still air, at higher We than that of Desjardins & Pitsch

[16], indicated ligament formation from the development of holes in the liquid crests. They

showed that disturbances propagate upstream from the liquid jet tip through vortices and

droplet re-collision. They claimed that collision of the droplets – broken from the ligaments

formed at the back of the mushroom-shaped cap – with the liquid-jet core formed holes on

the lobes. When the lobe surface area increased and its rims became thicker, the lobe surface
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punctured to form two or three ligaments as the hole extended to the tip of the lobe.

Lobe perforation leading to ligament formation similar to the mechanism observed by Shinjo

& Umemura [80] was also observed by Jarrahbashi & Sirignano [33] for larger gas-to-liquid

density ratios. However, unlike the claims of Shinjo & Umemura [80], holes formed on the

lobes even before the ligaments form and break up into droplets. Therefore, most probably,

droplet collision with the liquid-jet core is not the only factor, nor even the major factor,

promoting hole formation [34]. Computational simulations of round liquid jets by Herrmann

[27] showed the disintegration of the liquid core to ligaments and droplets, and also predicted

the droplet sizes. However, ligament formation mechanisms were not addressed.

The liquid jet from a round orifice during the transient start-up and steady mass flux periods

of a high pressure injector was studied via Navier-Stokes and LS computations by Jarrahbashi

& Sirignano [33] and Jarrahbashi et al. [34]. A wide range of ρ̂, Re, and We were covered.

The role of vorticity dynamics was examined via post-processing. They showed that the 3D

instability starts as a result of the appearance of counter-rotating pairs of streamwise vortices

in between two consecutive vortex rings, which are actually hairpin vortices wrapped around

the vortex rings, and produce the first lobes. They also found that, for low ρ̂, ligaments

mostly form due to elongation of the lobes themselves; however, most of the ligaments form

as a result of hole tearing at higher ρ̂.

In the latest numerical analysis by Zandian et al. [96], various breakup patterns are identified

at different flow regimes for a wide range of µ̂, Re and We similar to the range covered by

Jarrahbashi & Sirignano [33], and high density ratios of a thin liquid sheet. Two distinct

mechanisms were proposed regarding breakup of the liquid lobes into droplets: i.e. hole

formation and expansion, and ligaments formation due to stretching of the lobes, which

happen at low/medium and high Re values, respectively. The cascade of structures and

their cause was explained from a vorticity dynamics perspective.
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The goals of this chapter are to detail and explain (i) cascade of structures on the liquid

surface with time, including lobe, ligament, and droplet formations; (ii) character of the

breakup mechanisms at different flow conditions; (iii) the effects of density ratio, viscosity

ratio, and sheet thickness on the liquid sheet breakup; and (iv) proper definition of the time

scale of each of the breakup mechanisms, which would help predict the dominant mechanism

at different flow conditions.

3.2 Results and discussion

3.2.1 Atomization classification

Three different processes for liquid surface deformation and breakup are identified – each

applying in a different domain of the liquid Reynolds (Rel) and Weber (Wel) numbers.

The liquid structures seen in each cascade process are sketched in Figure 3.1, where the

evolution of a liquid lobe is shown from a top view of Figure 2.5(a); i.e. in the negative

z-direction. At high Rel these breakup characteristics change based on the Ohnesorge num-

ber (Oh =
√
Wel/Rel). At relatively high Rel (> 2500), two of these mechanisms were

observed in our computations, as follows: (i) at high Oh and high Rel, the lobes become

thin and puncture, creating holes and bridges. The bridges break as the perforation expands,

and create ligaments. The ligaments then stretch and break up into droplets by capillary

action. This domain is indicated as Atomization Domain II, and its process is hereafter

called LoHBrLiD, based on the cascade or sequence of the structures seen in this domain;

e.g. Lo ≡ Lobe, H ≡ Hole, Br ≡ Bridge, Li ≡ Ligament, and D ≡ Droplet. (ii) At low Oh

and high Rel, lobe perforations are not seen at early times; instead, many corrugations form

on the lobe front edge and stretch into ligaments. This process occurs in Atomization Do-

main III and is called LoCLiD (C ≡ Corrugation). This cascade process results in ligaments
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Figure 3.1: Cascade of structures for the LoLiD (top), LoCLiD (center), and LoHBrLiD
(bottom) processes; sketch showing the top view of a liquid lobe undergoing these processes.
The gas flows on top of these structures from left to right, and time increases to the right.

and droplets without the hole and bridge formation steps in between. The ligaments formed

in this process are typically shorter and thinner, compared to the long and thick ligaments

in the former mechanism. The third mechanism follows a LoLiD process and occurs in

Atomization Domain I, at low Rel and low Wel, but with some difference in the details from

the LoCLiD process. The main difference between the two ligament formation mechanisms

at high and low Rel is that, at higher Rel the lobes become corrugated before stretching,

and then the corrugations are stretched into ligaments. Thereby, each lobe may produce

multiple ligaments, which are typically thinner and shorter than those at lower Rel. At low

Rel, on the other hand, because of the higher viscosity, the entire lobe stretches into one

thick and usually long ligament. The droplets produced in Domain I, at low Rel, are fairly

large compared to those of Domain III.

81



More cases were computed near the border of Domains I/III and II, showing that there is a

transitional region in which both lobe/ligament stretching and hole formation mechanisms

are seen simultaneously. Based on the cases that have been run, and also from the physics of

the problem, it seems that the liquid viscosity, and thus the liquid Re, has the most significant

effect on the stretching characteristic, while the surface tension and the gas inertia, thus the

gas We, has an important role in the hole formation. Pursuant to this notion, different

breakup characteristic domains are defined in the parameter space of the liquid Reynolds

(Rel) and gas Weber (Weg) numbers. Using Weg allows embedding the effects of density

ratio in the classification. Thus, a generic diagram is produced that represents all density

Figure 3.2: The breakup characteristics based on Weg and Rel, showing the LoLiD mech-
anism (Atomization Domain I) denoted by diamonds, the LoHBrLiD mechanism (Atom-
ization Domain II) denoted by circles, the LoCLiD mechanism (Atomization Domain III)
denoted by squares, and the transitional region denoted by triangles. The cases with ρ̂ = 0.1
are shaded, while the hollow symbols denote cases with higher ρ̂ = 0.5. The red symbols
denote the cases with lower ρ̂ = 0.05. The ρ̂ = 0.1 and ρ̂ = 0.5 cases that overlap at the same
point are noted. – · – · –, transitional boundary at low Rel; and – – –, transitional boundary
at high Rel.
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ratios on a single plot, which identifies the three atomization sub-domains defined above,

shown in Figure 3.2.

The high and low density-ratio cases that overlap in this diagram are indicated in Figure 3.2.

The transitional region at low Rel follows a hyperbolic relation, i.e. Weg = A/Rel, denoted

by dash-dotted line, while at high Rel limit, it follows a parabolic curve, i.e. Weg = B2Re2
l ,

denoted by dashed line. The constant B is a critical value of the product of Oh and the

square root of density ratio, and hereafter is defined as a modified Oh, i.e. Ohm. Ohm is

defined using the gas We and liquid Re, i.e. Ohm ≡
√
Weg/Rel =

√
ρ̂ × Oh. The critical

Ohm at the boundary for high Rel then becomes Ohmc = B ≈ 0.021.

Thus, two parameters, A and B, are used to define the domain boundary. At high Rel, we

have parameter B. The parameter B involves four forces, and is the ratio of the product

of liquid viscous force and square root of gas inertia to the product of liquid inertia and

square root of surface tension force. Asymptotically, the domain boundary goes to constant

B (constant Ohm) at high Rel. The second parameter is A ∼ Weg × Rel. It is the ratio of

the product of gas inertia and liquid inertia to the product of surface tension force and liquid

viscous force. Again, four forces are involved. At low Rel, the domain boundary approaches

A = const. as an asymptote.

Clearly, four forces are involved in different ways at the two (left and right) boundaries. The

connection between vortex dynamics and surface dynamics near the right (high Rel) and

left (low Rel) boundaries will be examined in Chapter 4, where the liquid structure cascade

processes in each domain will be explained. The two borderlines can be combined into a

single function with some extra constants for a better fit as follows;

Weg =
A

Rel + ε
+B2Re2

l + C, (3.1)

where A, B and C are empirical constants, and ε is a small parameter for better curve
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fitting. As Rel gets very large, we would retain the parabolic function (second term) with

the constant B being the product of critical Oh and
√
ρ̂. In the limit where Rel gets very

small, the hyperbolic function (first term) dominates and gives the asymptote.

The Weg and Rel variables in Equation (3.1) can be normalized by their values at the

minimum point on the parabola-like boundary of Figure 3.2 (Rer = 2500 and Wer = 4900).

The new minimum point then becomes Wen = 1 and Ren = 1, and the coefficients a, b

and c would become of order unity (the subscript n means that the variables have been

normalized). The normalized boundary equation then becomes

Weg
Wer

=
a

Rel
Rer

+ ε
+ b2

(
Rel
Rer

)2

+ c, (3.2)

with the normalized coefficients that best fit our transitional boundary

a = 0.816, b = 0.75, c = −0.4, ε = −0.04 . (3.3)

Based on these results, there are different characteristic times for formation of holes and

stretching of lobes/ligaments. At the same Rel, as surface tension increases (decreasing

Weg), the characteristic time for hole formation becomes larger, hence delaying the hole

formation. Thereby, most of the earlier ligaments are formed due to direct stretching of the

lobes and corrugations, while hole formation is hindered (Domain III). On the other hand, as

liquid viscosity increases (decreasing Rel and increasing Ohm), while keeping Weg the same,

the characteristic time for ligament stretching gets larger if Rel is high. In this case, the

hole formation prevails compared to the ligament stretching, resulting in more holes on the

lobes surface (Domain II). At very low Rel, the characteristic time of the hole formation is

also influenced by the liquid viscosity and gets larger with decreasing Rel; thus, the breakup

mechanism switches back to direct stretching as Rel is sufficiently lowered (Domain I).
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In conclusion, the transitional region is not monotonic on a Weg vs. Rel diagram, and has

a minimum value around Rel ≈ 2500. Thus, if Weg is less than a certain value (around

Weg = 5, 000), the ligament stretching mechanism will always prevail regardless of Rel. At

higher Weg (> 5, 000), the LoLiD and LoCLiD processes are dominant in Domains I and

III at very low and very high Rel values, respectively, but there exists a Domain II between

them where hole formation prevails.

The atomization processes are functions of Rel and Weg only. The following sub-sections

will show that the qualitative behavior is not much affected by the viscosity ratio (thus the

gas Re); the influence of density ratio appears only through Weg, and the effect of sheet

thickness appears only through Rel and Weg.

3.2.2 Reynolds and Weber numbers effects

As discussed above, Rel and Weg are the main parameters affecting the breakup mechanism.

The atomization regime is divided into three sub-domains, each having a distinct atomization

cascade during their early breakup: (i) LoLiD process at low Rel and low Weg in Atomiza-

tion Domain I; (ii) LoHBrLiD process at high Weg and moderate Rel in Domain II; and

(iii) LoCLiD process at high Rel and low Weg in Domain III, which involves corrugation

formation. There is also a transitional region between Domains I/III and II, where each

cascade process occurs locally. In this section, these processes and the cascade of structures

are discussed in detail.

Four cases are presented in this section for a thick liquid sheet (Λ = 0.5). Each of these

cases was chosen from a separate domain identified in Figure 3.2 – one from Domain II

at Rel = 2500 and Weg = 7, 250, one from Domain III at high Rel = 10, 000 and low

Weg = 29, 000, one from Domain I at very low Rel = 320 and low Weg = 23, 000, and

the last one from the transitional region with Rel = 5000 and Weg = 11, 300. Except for
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Figure 3.3: Liquid surface deformation for the LoHBrLiD process (Atomization Domain II)
at different times, for a thick liquid sheet h = 200 µm; Rel = 2, 500, Weg = 7, 250, ρ̂ = 0.5
and µ̂ = 0.0066 (Ohm = 0.034). Time is indicated on the left bottom corner of each frame.

the third case which is at a low density ratio of 0.1, the rest of the cases are at ρ̂ = 0.5.

The following figures show the atomization cascades occurring in each domain. In all of the

figures, the gas flows over the liquid sheet in the positive x-direction, from left to right.

Figure 3.3 shows the liquid surface deformation in a period between 86 µs to 94 µs, for a thick

sheet with Rel = 2500 and Weg = 7, 250 (Ohm ≈ 0.034). Based on the criterion that was

introduced in Figure 3.2, this case falls into Atomization Domain II with the LoHBrLiD

cascade process. The lobes puncture to make holes at 86 µs. The holes expand and create

bridges, which later break up and create one or two ligaments at 88 µs, depending on the
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breakup location. The ligaments stretch (at 92 µs) and break into droplets at later times

(94 µs). The final ligaments of this domain are comparatively long and thick.

Figure 3.4 shows the surface deformation for a thick liquid sheet with high Rel = 10, 000

and Weg = 29, 000 (Ohm ≈ 0.017) during 80–86 µs. The liquid sheet atomization does not

involve hole and bridge formation in this domain (III) and follows the LoCLiD process. The

lobe edges are not as smooth as in the previous case and several corrugations are formed on

the edge of the lobes at 82 µs. The corrugations stretch into ligaments later. In this domain,

Figure 3.4: Liquid surface deformation for the LoCLiD process at high Rel (Atomization
Domain III) at different times, for a thick liquid sheet h = 200 µm; Rel = 10, 000, Weg =
29, 000, ρ̂ = 0.5 and µ̂ = 0.0066 (Ohm = 0.017).
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each lobe may produce multiple ligaments. The ligaments look thinner and shorter, compared

to the earlier case. This breakup characteristics agree with the classification introduced in

Figure 3.2.

Figure 3.5 shows the atomization of a thick liquid sheet in the transitional region. In this case,

Rel = 5000 and Weg = 11, 300, resulting in Ohm = 0.021, placing this case in the transitional

category. Both hole formation and lobe stretching mechanisms are seen simultaneously at

different locations on the liquid surface. Thus, the characteristic times of these mechanisms

are comparable. Which mechanism prevails depends on the balance between the surface

Figure 3.5: Liquid surface in the transitional region at different times, for a thick liquid sheet
h = 200 µm; Rel = 5, 000, Weg = 11, 300, ρ̂ = 0.5 and µ̂ = 0.0066 (Ohm = 0.021).
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tension and viscous forces. If the surface tension force dominates, the hole formation is

hindered and lobes are stretched instead. On the other hand, if the viscous effects are

dominant, it is more difficult to stretch the lobes into ligaments, and more holes and bridges

are formed instead. Since the characteristic times of these two effects are of the same order

in the transitional zone, the prevailing mechanism varies locally. Thus, both processes occur

at different parts of the sheet surface. The ligaments that are formed due to the bridge

breakup are longer and thicker than those formed from direct stretching of the corrugations.

At low Rel and low Weg, the LoLiD process prevails. This is shown in Figure 3.6 for a case

at a very low Rel = 320 and Weg = 23, 000 (Ohm = 0.475). This case falls into Atomization

Domain I as predicted in Figure 3.2; i.e. lobes stretch directly into ligaments, without any

perforations on the lobes. The ligaments that are formed at low Rel are much thicker and

longer than those of the higher Rel, and the broken droplets are also larger; The results

at high Oh and low ρ̂ (Figure 3.6) are consistent with the numerical results of Jarrahbashi

et al. [34] (see their Figures 25 and 26), and the experimental results of Marmottant &

Villermaux [55] for round liquid jets, and the numerical results of Scardovelli & Zaleski [76]

Figure 3.6: Liquid surface showing the LoLiD process at low Rel (Atomization Domain I),
for a thick liquid sheet (Λ = 0.5) at low ρ̂; Rel = 320, Weg = 23, 000 (Ohm = 0.475), ρ̂ = 0.1
and µ̂ = 0.0022, at (a) 26 µs, (b) 36 µs, (c) 40 µs, (d) 44 µs, (e) 46 µs, (f) 48 µs, and (g)
52 µs.
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(see their Figure 18) for planar liquid sheets.

To clarify the breakup regimes at low Rel and to understand the Rel effects on the surface

deformation better, lower Ohm cases are studied by increasing Rel and decreasing Weg.

Figure 3.7: Liquid surface deformation in Domain I through time, for a thick liquid sheet
(Λ = 0.5) at low ρ̂; Rel = 1000, Weg = 7, 200 (Ohm = 0.085), ρ̂ = 0.1 and µ̂ = 0.0022, at
(a) 40 µs, (b) 42 µs, and (c) 44 µs.

Figure 3.8: Liquid surface deformation in Domain I at later times, for a thick liquid sheet
(Λ = 0.5) at low ρ̂; Rel = 1000, Weg = 7, 200 (Ohm = 0.085), ρ̂ = 0.1 and µ̂ = 0.0022, at
(a) 46 µs, (b) 48 µs, and (c) 50 µs.
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Figure 3.7 depicts the liquid surface deformation at ρ̂ = 0.1, Rel = 1000 and Weg = 7, 200

(Ohm = 0.085). This case still falls in Domain I. Since surface tension has increased and

liquid viscosity is lower compared to that of Figure 3.6, the ligaments are stretched longer;

compare Figures 3.6 and 3.7. The ligaments break at 42 µs and new ligaments are formed

at the breakup location, as shown in Figure 3.7(c) at t = 44 µs. The broken ligaments later

break into droplets due to capillary instability; see Figure 3.8. Corrugations are formed at

the location of primary ligament breakup, which will stretch into new ligaments at a later

time. The droplets and ligaments formed here are smaller and thinner than those of the

lower Rel shown in Figure 3.6.

In the next sections, the effects of density ratio, sheet thickness and viscosity ratio are studied

to give a more complete picture of the atomization categories. In Chapter 4, the contribution

of different factors in formation of the streamwise vorticity are examined at high and low

density ratios to establish the physical explanation required to better understand the role of

ρ̂ in the cascade process. The characteristic time for each of these mechanisms is determined

in Section 3.2.7. The characteristic time scales guide us in normalizing (generalizing) the

temporal behaviors; i.e. the cascade of the length scales and the sheet expansion.

3.2.3 Density-ratio effects

Since liquid Weber number (Wel) is usually used in the liquid jet atomization literature

rather than Weg, it would be interesting to see the effects of ρ̂ on the atomization cascades

using Wel parameter. ρ̂ has a clear effect on Weg; decreasing ρ̂ at the same Wel decreases

Weg. Figure 3.9 shows that increasing ρ̂ brings the transitional boundary closer to the Rel

axis on a Wel–Rel diagram. The lowest borderline in this figure is actually the same for the

Weg–Rel diagram also, since it represents a density ratio of unity (Wel = Weg for ρ̂ = 1.0).

As ρ̂ is lowered, the transitional curve between Domains I/III and II moves to higher values
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Figure 3.9: Effect of density ratio on the atomization domains on a Wel–Rel diagram.

in the Wel–Rel diagram. This means that, in reality, the points with medium Wel, that

were formerly in Domain II at higher ρ̂, might fall in Domains I or III at the lower density

ratio; i.e. a case that is closely above the borderline curve (in Domain II) for ρ̂ = 1.0 will fall

below the borderline curve (in Domains I or III) if ρ̂ is reduced to 0.1 at the same Wel. This

is true for all data points in the area between the ρ̂ = 0.1 and ρ̂ = 1.0 curves. In conclusion,

Domains I and III expand on the Wel–Rel diagram as ρ̂ is lowered, and the lobe/ligament

stretching becomes more dominant over a larger area of the Wel–Rel diagram.

A case at low ρ̂ = 0.1 and low Rel = 320 and high Wel = 230, 000 (in Domain I) was shown

earlier in Figure 3.6, which followed a LoLiD process in its early breakup. The same case

but with a higher ρ̂ = 0.5 is shown in Figure 4.2. Both cases are at a very low Rel but very

high Wel, resulting in Oh = 1.5. However, Weg and Ohm are different in these two cases

due to the difference in ρ̂. Weg of the case with ρ̂ = 0.1 was 23, 000, which places this case

under the transitional boundary curve in Figures 3.2 and 3.9; i.e. in Domain I. However, as ρ̂

is increased to 0.5, Weg becomes much higher (= 115, 000). Thus, the case with ρ̂ = 0.5 falls

in Domain II on top of the transitional curve in both Figures 3.2 and 3.9. Figure 4.2 shows

the surface deformation for this case, and manifests that its atomization cascade follows well
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Figure 3.10: Liquid surface deformation in Domain II through time, for a thick liquid sheet
(Λ = 0.5) at high ρ̂; Rel = 320, Weg = 115, 000 (Ohm = 1.05), ρ̂ = 0.5, and µ̂ = 0.0022, at
(a) 18 µs, (b) 22 µs, (c) 26 µs, (d) 28 µs, (e) 30 µs, and (f) 32 µs.

our scenario; i.e. holes and bridges form and break into ligaments and droplets. This proves

that density ratio has a substantial effect on the breakup process through Weg.

A closer look at Figures 3.6 and 4.2 reveals that, ρ̂ also affects the time scale of the droplet

formation and the shape of the lobes. Droplets form much sooner and the lobes are more

stretched at higher ρ̂, which involves hole formation. The lobes are thinned in the spanwise

(y) direction at lower ρ̂ but in the normal (z) direction at higher ρ̂.

3.2.4 Sheet thickness effects

Two different sheet thicknesses have been analyzed in this study; the thin sheet with

h = 50 µm resulting in Λ = 2.0, and the thick sheet with h = 200 µm resulting in Λ = 0.5.

The sheet thickness affects Ohm (=
√
ρ̂µl/
√
ρlhσ); therefore, it can change the atomization

characteristics especially at high Rel, even at constant fluid properties and flow velocity.

Recall that the transitional boundary between Domains II and III is a parabolic curve with
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Figure 3.11: Liquid surface deformation in Domain II through time, for a thin liquid sheet
(Λ = 2.0); Rel = 320, Weg = 115, 000 (Ohm = 1.05), ρ̂ = 0.5, and µ̂ = 0.0022, at (a) 10 µs,
(b) 11 µs, (c) 12 µs, (d) 13 µs, and (e) 14 µs.

constant Ohm (see Figure 3.2). A thicker jet would have smaller Ohm at the same flow con-

ditions and the same fluid properties; thus, with increasing sheet thickness, the atomization

cascade would move away from Domain II, towards Domain III, as Ohm is lowered below

the critical Ohm ≈ 0.021 (see Figure 3.2).

The sheet thickness effects are embedded in Weg and Rel parameters, and it does not change

the atomization characteristics on its own if Weg and Rel are kept constants. The case shown

in Figure 3.11 has the same Rel, Weg, and ρ̂ as those of Figure 4.2, but with a thinner sheet

(h = 50 µm compared to 200 µm in Figure 4.2). The results show that the sheet thickness

alone does not alter the atomization mechanism, as both thin and thick sheets (Figures 3.11

and 4.2, respectively) manifest the same LoHBrLiD cascade process. An increase in the

sheet thickness delays the breakup process though, thus, affecting the time scales of the

structure cascade and droplet formation. This will be discussed in Section 3.2.7.
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3.2.5 Viscosity ratio effects

In order to check the effects of viscosity ratio (µ̂) on the atomization cascades and their time

scales, different viscosity ratios in the range O(10−3) < µ̂ < O(10−1) have been studied at

several different Rel and Weg values in each domain. Figure 3.12(a) compares the surface

of two liquid sheets with different viscosity ratios at 22 µs – both in Atomization Domain

II. Even though the viscosity ratios are two orders of magnitude apart, the surfaces are

very similar. Both cases follow the LoHBrLiD cascade process, and the size and shape of

the holes and bridges (ligaments) are very similar at each time; the lower µ̂ case manifests

slightly larger size perforations. Figure 3.12(b) also compares two very different µ̂ cases from

Atomization Domain III. Both cases follow the LoCLiD process, and the size and shape of

lobe corrugations and ligaments are fairly equal at 50 µs.

From above discussion and the results illustrated in Figure 3.12, it is concluded that µ̂ does

not alter the atomization process; thus, the threshold between Domains I/III and II (the

transitional region) is independent of µ̂, which also has negligible effect on hole formation

Figure 3.12: Liquid surface deformation for two different viscosity ratios in Domain II;
Rel = 2500, Weg = 7250, ρ̂ = 0.5 (a); liquid surface deformation for two different viscosity
ratios in Domain III; Rel = 5000, Weg = 7250, ρ̂ = 0.5 (b).
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and lobe/ligament stretching time scales. In other words, the ligament stretching mechanism

is liquid dominated, as far as the viscosity is concerned; i.e. the gas viscosity does not have

a substantial role in ligament stretching. However, the gas density is significant in the hole

formation mechanism, as discussed before.

3.2.6 Comparison with other planar and round jet computations

In order to verify our findings of the atomization categories in the Weg–Rel map and to check

their dependence on the jet geometry (planar vs. circular), a similar diagram for round liquid

jets has been built using the numerical results of Jarrahbashi et al. [34]. In their work, both

Re and We are based on the initial liquid jet diameter. Their values are transformed to Weg

and Rel based on jet radius for the purpose of comparison. The results of other numerical

studies (Refs. [16, 27, 80]) are also compared qualitatively, where possible.

All of the cases studied by Jarrahbashi et al. [34] are shown in theWeg–Rel plot in Figure 3.13

(right plot). The cases are grouped into the three atomization categories we introduced;

i.e. LoHBrLiD, LoLiD/LoCLiD (stretching either with or without corrugations), and the

transitional domain. Since frame by frame surface deformation at the early breakup stages

was not given in Ref. [34], clear distinction between the two stretching mechanisms was not

possible, hence, both LoLiD and LoCLiD cases were put in the same group (denoted by

squares in Figure 3.13). Even though most of their results were for low Rel and high Weg,

they show some similarity in behavior with the planar liquid jets in different domains. With

the newly defined Rel and Weg based on the jet radius, instead of the diameter, all of the

data points fall in the proper zones in this diagram without notably altering the domains

boundary. The transitional boundary follows the same Equation 3.2, with the coefficients

a = 0.816, b = 1.07, c = −0.4, ε = 0.04, (3.4)
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Figure 3.13: The operation regimes of a round liquid-jet breakup by Reitz and Bracco [71]
recast on a Weg (log-based) vs. Rel plot (left); The breakup characteristics based on Rel
and Weg (using jet radius) for round liquid jets, from the results of Jarrahbashi et al. [34]
(right). The three breakup categories are shown by symbols, along with the transitional
boundary obtained from planar liquid sheet diagram with minor modification (dashed line).

and the same reference values for Rel and Weg; i.e. Rer = 2500 and Wer = 4900. Only b

has changed from the planar jet result. Above this transitional boundary the hole forma-

tion mechanism prevails and below this curve the lobe/ligament stretching is the primary

atomization cascade.

The left plot in Figure 3.13 shows the hyperbolas that bound the atomization regime from

the three other regimes of a round liquid-jet breakup presented by Reitz and Bracco [71]

(shown earlier in Figure 1.8), on a blown-up view of the lower left corner of our diagram

on the right. The purpose of putting these two plots side-by-side is to emphasize that the

Atomization Domain dwarfs the other domains in both parameter range and importance in

practical spray formation. Yet, surprisingly this domain is the least studied of all.

Rel for the planar liquid sheets studied by Desjardins & Pitsch [16] was in the range 2000–

3000, and the highest Weg in their study was O(102), which as they assert, puts all their

cases in the Second Wind-Induced breakup regime (see the left image in Figure 3.13), even
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though this regime was originally described for round jets [71]. Thus, all their results could

be considered to be in the LoLiD group in our classification. Even though only a few figures

at different steps of sheet breakup were presented there, they summarized the atomization

processes in three essential steps: (i) initial corrugation of the interface (i.e. formation of

lobes); (ii) formation and stretching of liquid ligaments; and (iii) rupture of the ligaments,

leading to droplet formation. They also mention that the ligaments are typically oriented

in the streamwise direction, and there is no sign of hole formation in their results. This is

consistent with our descriptions of Domain I.

Shinjo & Umemura [80] studied a smaller range of Rel (< 1500) and slightly higher Weg

(< 500) than Desjardins & Pitsch [16] for a round liquid jet. They studied startup of a full

liquid-jet injected into a gas, including the shredding of the cap. The range of Rel and Weg

puts their cases in the LoLiD group. The strong shear near the liquid surface deforms the

liquid surface, inducing ligament formation, as described by Shinjo & Umemura [80]. They

suggest that the main mechanism for ligament formation is the stretching of the sheared

liquid surfaces (lobes); however, most of the ligaments and droplets are formed near the

mushroom-shaped tip of the jet not the main body of the liquid jet, and ligament formation

occurs first from the tip edge. They also observed hole formation on the lobes; however, it

was not due to the vortex motion, but due to the inertial motion from the re-collision of the

broken droplets from the tip edge. Thus, the hole-formation mechanism seen in their study is

different from ours, since the jet tip physics are not included in our study of the liquid-sheet

segment. Herrmann [27] studied a round liquid jet with similar range of Weg as Shinjo &

Umemura and slightly higher Rel (= 2500) (based on nozzle radius). He did not witness any

hole formation in the liquid jet breakup, and only ligament stretching was observed. Since

his Rel was higher than Shinjo & Umemura’s, more corrugations and smaller and thinner

ligaments were observed in his study, which is in agreement with our findings.

The experimental results of Hoyt & Taylor [31] for round liquid jets at a very high Rel
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of O(105) show similar atomization characteristics with very small corrugations and very

thin ligaments as our results for Domain III. Even though their study focuses on spatial

development of a liquid jet and ours is temporal, a qualitative comparison with their results

shows that as Rel increases, the length scale of the ligaments and corrugations becomes

smaller – consistent with what has been found here.

From the analysis in this section, we conclude that the atomization domains are generic,

fairly independent of the liquid jet geometry. The same domains can be classified on the

Weg–Rel diagram with very minor modifications for both planar or round liquid jets.

3.2.7 Structure cascade time scales

As mentioned earlier, there are two different characteristic times for the formation of holes

and the stretching of lobes and ligaments. At the same Rel (high Rel), as the surface tension

increases (decreasing Oh and Wel), the characteristic time for hole formation becomes larger,

delaying the hole formation. Thus, for lower Oh (or Wel), most of the earlier ligaments are

formed due to direct stretching of the lobes and/or corrugations, while the hole formation is

halted. On the other hand, at relatively large Rel (> 3000), as liquid viscosity is increased

(decreasing Rel and increasing Oh), at the same Wel, the ligament-stretching time gets

larger. In this case, hole formation prevails compared to the ligament stretching mechanism,

resulting in more holes on the liquid lobes.

Figure 3.14 shows the first time at which a hole forms for three different Wel values at high

Rel = 5000 and high ρ̂ = 0.5. The other dimensionless parameters are the same for all

three cases. As Wel increases, from left to right, the hole formation time decreases. The

first hole is formed at 52 µs for Wel = 14, 400 (the left-most image), and at around 13 µs

for Wel = 72, 000. This indicates that the hole formation characteristic time should be

inversely proportional to Wel. The holes expand more rapidly at higher Wel. At high Rel,
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Figure 3.14: The time at which the first hole forms at different Wel values; Rel = 5000,
ρ̂ = 0.5, and µ̂ = 0.0066. The time and Wel are indicated on top and bottom of each image,
respectively.

the hole formation is delayed as ρ̂ decreases. Thus, the hole-formation time scale should also

be inversely proportional to ρ̂. This effect may be combined with the effect of Wel by using

the gas Weg rather than the liquid Wel.

The time scales are non-dimensionalized using the freestream gas velocity (U) and the sheet

thickness (h), as characteristic velocity and length. Figure 3.15 shows the non-dimensional

lobe/ligament stretching time scale (Uτs/h) as a function of Rel at several Weg values. τs is

the dimensional characteristic time for ligament stretching and corresponds to the first time

when a ligament is formed. The stretching time scale is proportional to the reciprocal of Rel

and has negligible dependence on Weg (see Figure 3.15). All of the cases at Weg values from

1500 to 29, 000 fit well on the same curve k0/Rel; where k0 is a nondimensional constant.

Based on the results presented in Figures 3.14 and 3.15, two different characteristic times

are formed at high Rel – one for each mechanism – involving surface tension and viscosity.

The hole-formation characteristic time (τh) is directly proportional to the surface tension

and inversely proportional to the density ratio, while the stretching characteristic time (τs)

is proportional to the liquid viscosity. Thus, the following two nondimensional characteristic
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Figure 3.15: Nondimensional stretching time scale versus Rel at different Weg values.

times are proposed for these mechanisms;

Uτs
h
∝ µl

ρlUh
=

1

Rel
, (3.5)

Uτh
h

∝ σ

ρgU2h
=

1

Weg
. (3.6)

As indicated in the equations above, the characteristic times can be written in terms of

the sheet thickness and jet velocity. In this form, the hole-formation nondimensional time

becomes inversely proportional to Weg, while the stretching nondimensional time is inversely

related to Rel. However, real times are independent of the thickness and only depend on

the fluid properties. Clearly, h/U is a convenient normalizing time. Aside from its accord

with our results, these time scales are consistent with intuition. The surface tension hinders

hole formation, thus increasing its time scale, while liquid viscosity resists stretching, hence

increasing the stretching characteristic time. Also, the time scales for both mechanisms

become larger for the same dimensionless parameters as the jet becomes thicker. The case
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with Rel = 2500 and Weg = 7, 250 and h = 200 µm perforates first at around 82 µs

(Figure 3.3), while a jet with the same Rel and Weg, and h = 50 µm perforates at around

20 µs, which is almost 4 times less than that of the thicker sheet.

Combination of the two Equations (3.5) and (3.6) yields a relation between the two time

scales at high Rel regions of interest, involving Ohm;

Uτh
h
∝
(
Uτs/h

Ohm

)2

. (3.7)

In the transitional region, near the boundary, where the two characteristic times are of the

same order, both hole formation and corrugation stretching appear at different parts of the

liquid surface, as shown in Figure 3.5.

At low Rel (< 3000) range, the liquid viscosity has an opposite effect on the hole formation

and ligament stretching. As shown in Figure 3.2, near the left boundary, the time scale of the

stretching becomes relatively smaller than the hole-formation time scale as Rel is reduced

at a constant Weg. Hence, there is a move back to ligament stretching from hole formation

with decreasing Rel at a fixed Weg. It is concluded that a term should be added in the

hole-formation time scale, which becomes larger at lower Rel. At higher Rel, however, this

term would vanish, with a return to the time scale in Equation 3.6. In order to generalize

the hole-formation time scale, a term is added with the reciprocal of Rel as its coefficient to

fix the opposite behavior seen at lower Rel. The new, more general, nondimensional time

scale then becomes

Uτh
h
∝ σ

ρgU2h
(1 +

k

Rel
) =

1

Weg

(
1 +

k

Rel

)
, (3.8)

where k is a nondimensional constant. The stretching time scale does not need any modifi-

cation for low Rel (see Figure 3.15).
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Figure 3.16: Nondimensional hole-formation time scale versus Weg at different Rel values
(a), and versus Rel at different Weg values (b).

Figure 3.16(a) shows the nondimensional hole-formation time scale versus Weg at different

Rel values. The hyperbolic relation between the hole-formation time scale and Weg at any

constant Rel is evident. As Rel decreases, the hyperbolas shift upward. The solid lines

represent Equation 3.8, where k1 and k2 are nondimensional constants. As Rel increases,

the hyperbolic curves get closer to one another, meaning that the effect of Rel becomes

less important at higher Rel. At very high Rel, the term in parenthesis in Equation 3.8

approaches unity and Equation 3.6 is retained.

The results shown in Figure 3.16(a) indicate that Rel is not as unimportant as Weg was for

τs (shown in Figure 3.15). Figure 3.16(b) shows the dependence of the hole-formation time

scale on Rel at different Weg values. At a constant Weg, the nondimensional hole-formation

time is a hyperbolic function of Rel but with a much slighter slope in the range considered

here. As Weg increases these hyperbolas (solid lines) move down in Figure 3.16(b). The

dependence of τh on Weg compared to Rel becomes clear as we compare Figure 3.16(b) with

Figure 3.16(a). At very high Weg (the bottom curves in Figure 3.16b), the hole-formation

characteristic time becomes almost independent of Rel for the range of Rel considered in
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this plot. The solid lines become almost straight horizontal lines as Weg becomes very large.

Combining Equations 3.5 and 3.8, the relation between the two time scales becomes

Uτh
h
∝
(
Uτs/h

Ohm

)2(
1 +

k

Rel

)
. (3.9)

At high Rel (> 3000), the second parenthesis approaches unity and the earlier derived

relation in Equation 3.7 is retained. At very low Rel limit (< 200), the asymptotic relation

between the two time scales becomes

Uτh
h
∝ 1

Rel

(
Uτs/h

Ohm

)2

=
Rel
Weg

(
Uτs
h

)2

. (3.10)

So, at low Rel, the hole formation and the ligament stretching time scales are not related

only by the modified Ohnesorge number; the flow Rel also has a substantial role in the

atomization cascade at low Rel.

3.3 Conclusions

Temporal development of surface waves on planar jets and their breakup into droplets are

studied numerically. Three main atomization cascades are identified. The atomization char-

acteristics are well categorized on a parameter space of gas Weber number (Weg) versus liquid

Reynolds number (Rel). The gas-to-liquid density ratio affects the breakup process, thereby

making We based on liquid density less important as a correlation factor. The Rayleigh

Domain, First Wind-Induced Domain, and the Second Wind-Induced Domain collectively

occupy a minor portion of the Weg vs. Rel diagram. Furthermore, the atomization portion

is now separated as three sub-domains. Atomization Domain I has a lobe-ligament-droplet

(LoLiD) cascade; Domain II involves a lobe-hole-bridge-ligament-droplet (LoHBrLiD) cas-
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cade; and Domain III shows a lobe-corrugation-ligament-droplet (LoCLiD) cascade.

At high Rel, the breakup characteristics change based on a modified Ohnersorge number

(Ohm =
√
Weg/Rel). At high Ohm, the lobes thin and perforate to form bridges, which

eventually break into one or two ligaments. At lower Ohm, the hole formation is hindered and

instead, the lobe rims corrugate and stretch into small ligaments. There is also a transitional

region, where both mechanisms co-exist. The transition region at high Rel follows a constant

Ohm line.

At low Rel, the transitional region follows a hyperbolic function in the Weg–Rel plot. At

low Weg and low Rel, the lobes stretch directly into ligaments. The ligaments created in

this domain are fairly thick and long, and result in larger droplets. As Weg is increased

while keeping Rel low, the hole formation process prevails. Thus, the hole formation process

dominates over a wide range of low and high Rel, but only over moderate to high Weg.

Below a critical Weg, hole formation is completely hindered at all Rel. These atomization

cascades are independent of the jet geometry (planar or round). Furthermore, a very similar

correlation describes the boundaries between different atomization domains for the planar

and round jets.

Viscosity ratio has no substantial effect either on the cascade processes or their time scales,

while the effect of sheet thickness is described only through Rel, Weg, and Ohm. Increasing

the sheet thickness delays the hole formation and the lobe/ligament stretching process.

Different characteristic time scales were introduced for the hole formation and lobe stretch-

ing – mainly related to the surface tension and liquid viscosity, respectively. At any flow

condition, the mechanism having a smaller characteristic time is the dominant process. In

the transitional region, both characteristic times are of the same order; thus, both mech-

anisms occur simultaneously and the cascade of liquid structures varies locally. The two

characteristic times are related to each other by Ohm, which involves the Weg and Rel.
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Chapter 4

Vortex dynamics of the primary

atomization

Vortex dynamics concepts can shed further light on surface deformation of a liquid jet in

the primary atomization process – a cascade involving the formation of smaller and smaller

liquid structures. The Kelvin-Helmholtz (KH) instability at the liquid-gas interface promotes

the growth of spanwise vorticity waves forming coherent vortices. These vortices evolve into

hairpins with counter-rotating streamwise legs [4]. The streamwise and spanwise vortical

waves combine to produce different surface structures, e.g. lobes, bridges, and ligaments,

which eventually break up into droplets. The link between the vortex dynamics and surface

dynamics in primary atomization is important, but rarely explored and poorly understood.

This study is an attempt to fill that gap. Vortex dynamics concepts are employed in this

chapter to explain the surface dynamics observed at each atomization domain introduced in

Chapter 3.
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4.1 Problem description

Earlier computational works on the breakup of liquid streams at higher We and Re (i.e. in

the atomization range) focused on the surface dynamics using either VoF or LS methods [16,

27, 80]. More recently, Jarrahbashi & Sirignano [33] and Jarrahbashi et al. [34] numerically

simulated the temporal behavior of round jets and we computed the temporal behavior of

planar jets (in Chapter 3) with additional data analysis that related the vorticity dynamics

to the surface dynamics. Several significant accomplishments were presented in Chapter

3 [97]: (i) three breakup mechanisms were identified and their zones of occurrence were

specified on the Weg versus Rel map; (ii) the most important actions in each of the three

breakup domains were explained; (iii) the effects of density ratio, viscosity ratio, and sheet

thickness on the breakup domains were described; (iv) characteristic times for each of these

breakup domains were correlated with key parameters; and (v) the same breakup domains

were shown to apply for round jets and planar jets with a very similar Weg versus Rel map.

In recent years, a number of analyses for spatially developing instability and breakup of liquid

streams have appeared. They do add interesting and useful information; however, all of those

analyses are at relatively low values of Weber number (Weg < 100). That is, although some

of those works are described as “atomization” studies, they all fit better under the classical

characterization of “wind-induced capillary instabilities” defined by Ohnesorge [59] and Reitz

& Bracco [71]. Ling et al. [50] use 3D direct numerical simulation (DNS) and resolve the

smaller scales; they treat air-assisted injection of a planar sheet and give detailed discussion

about the challenge of numerical accuracy. While they mention briefly vortex dynamics and

the use of the λ2 method, little detail is given. Zuzio et al. [100] include “preliminary” results

for sheet breakup in their 3D DNS analysis. The other papers give analyses that are linear

[61], two-dimensional inviscid [57], two-dimensional [1, 22], or 3D large-eddy simulations

[1]. Of course, these methods cannot resolve the smaller structures that form during the

cascade process of the breakup. An analysis with spatial development offers some advantage
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with practical realism over temporal analysis. At the same time, the additional constraints

imposed by the boundary conditions remove generality in the delineation of the important

relevant physics. For these reasons, we follow the path with temporal-instability analysis

in the classical atomization (high Weg range) provided by Jarrahbashi & Sirignano [33],

Jarrahbashi et al. [34]. The goal is to reveal and interpret the physics in the cascade process

known as atomization. Note that some spatial development is provided when the temporal

analysis covers a domain that is several wavelengths in size. Using linear theory, relations

between spatially developing results and temporal results have been demonstrated for single-

phase flows [23] and two-phase flows [22].

Jarrahbashi et al. [34] showed that important spray characteristics, e.g. droplet size and

spray angle, differed in different ranges of We, Re, and density ratio. Therefore, further

studies of the breakup mechanisms are needed to better understand the causes of these

differences. Consequently, there are unresolved questions to be addressed in this chapter:

What are the details of the liquid dynamics in each breakup domain? What causes the

difference in the breakup cascade? What roles do surface tension, liquid viscosity, and gas

density (i.e. pressure) play? How do the roles of streamwise vorticity (i.e. hairpin vortices)

differ in the three breakup domains? How does the behavior of a jet flow into a like-fluid

(e.g. water into water or air into air) compare with liquid-jet flow into gas? The answers to

these questions would be crucial in understanding and controlling the ligament and droplet

size distribution in the primary atomization of liquid jets.

Empirical evidence [45] has long been available that spray character differs significantly

for differing values of Re and We. Jarrahbashi et al. [34] showed that different breakup

mechanisms result in differing spray angles and droplet-size distributions. Thus, we see

that, for control of spray character, it is very valuable to understand the details of the

cascade processes for each of the identified atomization domains. Control and optimization,

although not addressed in this study, motivate the detailed exploration and the behavioral
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Case Rel Weg ρ̂ µ̂

D1a 320 23000 0.1 0.002
D1b 1000 3000 0.05 0.01
D2a 5000 20000 0.5 0.006
D2b 2500 5000 0.05 0.01
D3a 5000 7250 0.5 0.006
D3b 5000 3000 0.05 0.01

Table 4.1: The main cases studied with their dimensionless parameter values

characterizations reported here.

Our objectives for the planar jet are to (i) explain the mechanisms of surface deformation and

breakup in the three domains introduced in Chapter 3 using more sophisticated data analysis

for the vortex dynamics (i.e. the λ2 method); (ii) determine the importance of streamwise

vorticity (i.e. hairpin vortices) in the breakup mechanisms; (iii) identify the generation mech-

anisms for the streamwise vorticity; and (iv) learn the differences in generation and role of

the spanwise and streamwise vorticity at low and high density ratios.

A wide range of Rel and Weg at high and low density ratios is covered in this study. The

main six cases studied in this chapter are presented in Table 4.1. The cases are called in

a “Dnx” format, where “n” presents the Domain number (1, 2 or 3), and “x” presents the

range of the case (“a” for high density ratio, and “b” for low density ratios). Two cases

– one at high ρ̂ and fairly high Weg, and one at low ρ̂ and low Weg – are studied in each

domain to clearly show the effects of density ratio on the vortex dynamics of each atomization

process. The “b” cases are more practical and in the ranges usually seen in most atomization

applications. The range of parameters for other cases presented in this article is indicated

in their corresponding figure captions.
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4.1.1 Data analysis

Our goal is to study the vorticity dynamics as well as the liquid surface dynamics in order

to understand breakup mechanisms at different flow conditions. To this end, λ2 contours

at different cross-sections of the domain are analyzed in time. Here, we briefly review the

definition of the λ2 method.

An objective definition of a vortex should permit the use of vortex dynamics concepts to

identify coherent structures (CS), to explain formation and evolutionary dynamics of CS,

and to explore the role of CS in turbulence phenomena. Jeong and Hussain [36] define a

vortex core as a connected region with two negative eigenvalues of S2 + Ω2; where, S and

Ω are the symmetric and anti-symmetric components of ∇u; i.e. Sij = (ui,j + uj,i)/2 and

Ωij = (ui,j − uj,i)/2. If λ1, λ2, and λ3, are the eigenvalues such that λ1 ≥ λ2 ≥ λ3, this

definition is equivalent to the requirement that λ2 < 0 within the vortex core, since λ3 is

always negative because the sum of the normal viscous stresses is zero. This definition is

proven to meet the requirements for existence of a vortex core in different flow conditions

[36], while the vortex identification by the Q-criterion [41] may be incorrect when vortices

are subjected to a strong external strain [36], as in our study.

4.2 Results and discussion

In this section, the vortex dynamics associated with each of the breakup mechanisms are

analyzed to explain the hole formation, the corrugation formation and the lobe/ligament

stretching at different Reynolds and Weber numbers. For this purpose, one case is picked

from each domain (see Figure 3.2), and its vortex dynamics are studied using the λ2 criterion.

The gas flows in the positive x-direction, from left to right, in all of the figures in this section.
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4.2.1 Vortex dynamics and surface dynamics

To interpret the surface deformation via vorticity concepts and to more clearly delineate the

complex 3D flow physics, the dual approaches of vortex dynamics and surface wave dynamics

are employed. The language of wave dynamics focuses on crests, troughs, and lobes, while

the vortex-dynamics terminology refers to vortex rollers (eddies), braids, and hairpins. The

instability starts from the initially symmetric KH waves. The crest of the KH waves, when

amplified and slightly stretched in the flow direction, is referred to as “KH crest”. As the 3D

character of instability develops, “KH crests” divide into distinct “lobes”. The forward-most

tip of the lobe is referred to as “spanwise crest”, and the region between two adjacent crests

is called “spanwise trough”. In terms of the vorticity dynamics, the “KH crests” and “KH

troughs” are equivalent to “vortex rollers” and “braids”, respectively; see Figure 4.1.

The spanwise vorticity rolls up as KH rollers. The braid connects two adjacent rollers

separated in x, which stretch the fluid in between. There are two modes of unstable waves,

corresponding to the two surface waves oscillating exactly in or out of phase, commonly

referred to as the sinuous (anti-symmetric) and varicose (symmetric) modes, respectively

Figure 4.1: Terminology used for vorticity and liquid-gas interface deformations from side-
view (left), and top view (right).
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(discussed in Chapter 1); see Figure 4.1.

4.2.2 Hole and bridge formations (LoHBrLiD mechanism)

The LoHBrLiD mechanism occurs at medium Rel and high Weg; see Figure 3.2. This

process is shown in Figure 4.2. The lobes form and thin on the primary KH wave crests.

The middle section of the lobes (the braid), where the highest strain occurs, thins faster and

thus perforates, creating a hole and a bridge on the lobe rim. Bridges become thinner as the

holes expand. Finally, the bridges break and create one or two ligaments depending on the

breakup location. The ligaments stretch and eventually break into droplets under capillary

action.

At lower Weg, the surface tension force resists the formation of holes. In this range, usually

one hole forms on the liquid lobe and stretches into a large one. At higher Weg, lobes thin

much easier since the resistance due to the surface tension forces is not large enough to

Figure 4.2: Liquid surface deformation in the LoHBrLiD mechanism; Rel = 320, Weg =
115, 000 (Ohm = 1.06), ρ̂ = 0.5, and µ̂ = 0.0022, at t = 18 µs (a), 22 µs (b), 26 µs (c), 28 µs
(d), 30 µs (e), and 32 µs (f ).
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Figure 4.3: Close-up view of the hole formation and expansion on a single liquid lobe;
Rel = 5000, Weg = 36, 000, ρ̂ = 0.1, and µ̂ = 0.0066. t = 10 µs (a), 11 µs (b), 12 µs (c),
13 µs (d), 14 µs (e).

stabilize the growth of the instabilities. In this range usually several small scale holes appear

at different locations on the lobe, as seen in the close-up view of Figure 4.3(a). As these

perforations grow, several of these holes merge to create larger holes (Figure 4.3b), and a

thick liquid bridge is created on the lobe rim (Figure 4.3c). As the lobes continue to stretch

and the holes continue to expand, the bridges become thinner (Figure 4.3d) and finally break

to create several ligaments (Figure 4.3e). The mechanism of hole formation, to be discussed

in this section, is believed to be the same at high and low Weg and density ratios; the only

difference is in the time, location and size of the holes.

Case D2a (Table 4.1), which falls in the LoHBrLiD class, is chosen in this section to study

and explain the vortex dynamics in the hole-formation mechanism. At the end of this section,

Case D2b is studied to clarify the effects of lowering density ratio. Zandian et al. [96] and

Jarrahbashi et al. [34] related the hole formation to the overlapping of the hairpin vortices

that form on the braids. Their finding is confirmed here and more details in the vortex

overlapping process are revealed. In this section, λ2 contours are elucidated in two cross-

sections in x–z planes – one passing through the spanwise crest and the other through the

trough – along with the instantaneous liquid-gas interface (red lines) position at different

times.

Figure 4.4(a) shows the formation of lobes and hairpin vortices that occur on the braid on

both top and bottom sheet surfaces, at very early time t = 6 µs. The vortex structure is
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Figure 4.4: λ2 contours on the spanwise crest (left), and the top view of the liquid
surface (right), at t = 6 µs (a), 10 µs (b), and 14 µs (c) of Case D2a.

symmetric at this time and consists of a large vortex just downstream of the wave, which

is hereafter called the “KH vortex” (indicated by the white arrows), and hairpin vortices

on the braid, between two adjacent KH rollers. The location of the vortices relative to the
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interface are the same on the spanwise crest and trough cross-sections at this time; i.e. the

vortices on the spanwise trough cross-section (not shown here) are slightly upstream of those

on the spanwise crest; see the top views of Figure 4.4. The vortices have some undulations

in x and manifest a hairpin structure similar to what was observed by Bernal ad Roshko [4].

Lasheras and Choi [42] attributed the appearance of three-dimensionality to the stretching

along the principal direction of the positive strain. The maximum amplification of the vortex

lines occurs near the braid region, where positive strain is the maximum. Therefore, they

called these hairpin vortices “strain-oriented vortex tubes” and described a mechanism for

evolution of the 3D instabilities, where vortices enhanced by stretching are pulled more

strongly into the streamwise direction until a series of hairpins extend from the underside

of one roller to the top of its neighbor. A similar mechanism is seen here for the two-phase

flow.

As shown in Figure 4.4(b), the upstream hairpins are pulled downstream by the KH vortex

on the outer side of the roller, while the downstream hairpins are pulled upstream on the

inner side of the KH roller (easily understood from a frame fixed with the KH vortex). The

direction of the streamwise hairpin stretch is determined by the global induction of the KH

roller, as indicated by the black arrows in Figure 4.4(b). Martin & Meiburg [56] explained that

the sign of the streamwise vorticity component is determined by the competition between

global and local inductions; i.e. between the overall effect of the vorticity field and the

locally self-induced velocity of a vortex tube. While the global induction effect continues to

determine the sign of the streamwise braid vorticity, the direction of the streamwise vorticity

component in the crest region is determined by the local induction of the vortex tube [56].

The motion of the upstream and downstream hairpins on the outer and inner sides of the

KH roller – due to the roller’s induced motion – causes these two hairpins to align spanwise

and overlap – one layer locating on the outer surface of the lobe, i.e. on the streamwise

wave crest, and the other layer on the inner side of the lobe. This hairpin overlapping has
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Figure 4.5: 3D Schematics showing the overlapping of the two hairpin vortices – one from
the lobe crest (outer black tube, pointing downstream), and the other from the braid (inner
red tube, pointing upstream) (a); A is the plane in which (b) is drawn; cross-sectional view
of the A-plane, showing the thinning of the lobe sheet due to the combined induction of the
two oppositely orientated overlapping hairpins (b). The vortex schematics are periodic in x-
and y-directions.

been observed and explained in both mixing layers (see figures 3 through 6 of Comte et

al. [11]) and in two-phase round jets (see figure 9 of Jarrahbashi et al. [34]). Comte et al. [11]

discuss helical pairing of the oppositely-oriented hairpins and the formation of diamond-

shaped vortex-lattice structures. As shown in the illustrative sketches of Figure 4.5 and also

described by Jarrahbashi et a. [34], the liquid sheet between a pair of these overlapping,

oppositely-pointed hairpins becomes thinner.

Figure 4.5(a) schematically depicts two overlapping hairpin vortices in the liquid-gas interface

region – one outer vortex originating from the lobe crest and stretching downstream (the

slender black tube), and the other inner vortex originating from the braid and stretching

upstream (the red tube). The KH vortex is shown by the thicker gray tube in this figure.

Figure 4.5(b) shows a cross-sectional view of the vortex structure along with the lobe located

between the two hairpin vortices on the A-plane of Figure 4.5(a). The induced velocity of the

two oppositely oriented overlapping hairpin vortices (see the qualitative streamlines shown by

the black and red arrows in Figure 4.5b) pushes the top surface of the lobe downward and the
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bottom surface upward, causing the lobe to become thinner in the middle and thus becoming

vulnerable to puncture at that region. This occurs at t = 16 µs, on the top surface of the

liquid sheet, as shown in Figure 4.6. Three λ2 isosurfaces are shown in this figure: the gray

isosurface denotes the KH vortex (the gray tube in Figure 4.5); the green isosurface denotes

the outer hairpin (the black hairpin in Figure 4.5); and the red isosurface denotes the inner

hairpin (the red hairpin in Figure 4.5). The λ2 isosurface tracks the strength of the vorticity

but circulation on its surface is not constant (as it is not a vortex surface); thus, it slightly

differs from the surface of a vortex tube. The λ2 magnitude of each isosurface is denoted in

the figure caption. The KH vortex in Figure 4.6 is the strongest (i.e., greatest circulation)

and, at its core, has larger λ2 values than the hairpins; however, the outer isosurface, with

a lower λ2 value, is depicted to give a better indication of its size. The hairpin overlapping

region is denoted by a hatched area in Figure 4.6(b). The overlapping of the outer and

inner hairpins can be clearly observed in Figure 4.6(c), where the gray KH vortex isosurface

and the blue liquid surface have been removed from the box drawn in Figure 4.6(a). The

Figure 4.6: λ2 isosurfaces in a top close-up view of a liquid lobe in Case D2a (a), and a
3D view of the same snapshot (b), at t = 16 µs. Top view of the box drawn in image (a),
showing the overlapping of the red and green isosurfaces without the blockage of the gray KH
isosurface and blue liquid surface (c). The isosurface values are: λ2 = −2× 1010 s−2 (gray),
−3 × 1010 s−2 (green), and −3 × 109 s−2 (red). The gray isosurface is made transparent in
subfigures (a) and (b) to display the inner hairpin underneath it. The hatched area denotes
the approximate hairpin overlapping region, where the hole would appear on the lobe later.
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Figure 4.7: Schematic showing the transition of a symmetric thin sheet (a) to antisymmetric
mode (c). The dashed lines denote the sheet center plane. The black and dark gray circles
denote the two adjacent KH vortices on the top surface, and the light gray and white circles
are two adjacent KH vortices on the bottom surface.

hatched area shows the zone where the lobe thinning occurs and the first hole forms a few

microseconds later; see Figures 4.8 and 4.9(a).

The sketches in Figure 4.7 show the transition of a thin sheet from a symmetric mode to

an antisymmetric mode with the qualitative location of the KH vortices at the two liquid

surfaces. In the beginning, the top and bottom sheet surfaces as well as their KH vortices

are symmetric with respect to the center-plane, as shown in Figure 4.7(a). All plane jets in

reality exit with symmetric perturbations because of the long-wavelength perturbations due

to the upstream chamber’s Helmholtz resonance modes or driving compressor blade wakes,

but the antisymmetric mode has a much higher growth rate and thus eventually dominates.

The true physical explanation of this transition is intriguing, but remains somewhat elusive,

and deserves careful examination and explanation. Ashurst & Meiburg [3] showed that the

loss of symmetry in the two vortex layer calculation is related to the enhancement and

reduction of relative streamwise displacements for filaments in the stronger layer by the

addition of the second layer of vorticity.
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Figure 4.8: λ2 contours on the spanwise crest (a), and the spanwise trough (b), and the top
view of the liquid surface (right), at t = 18 µs of Case D2a.

Due to this transition towards antisymmetry, the KH rollers on one of the layers (the bottom

layer in our case) are not able to stretch the bottom lobes and cause the hairpins overlapping

at early times; thus, lobe formation and thinning are delayed on the bottom surface. This

corresponds to the instant in Figure 4.7(b) and the period 18–34 µs in our simulation, shown

in Figures 4.8 through 4.13. As the sheet gets thicker, i.e. the two vorticity layers get more

independent, the transition towards antisymmetry is delayed, and both sides have time to

roll up the surface waves and stretch them into lobes. For the rest of this section, our focus

will be only on the top interface where lobe stretching and hole formation are evident at

early times.

As Figure 4.8 shows, the KH vortex starts to move away from the KH wave at 18 µs.
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However, it has had enough time to roll the lobe and make the overlapping occur on the

top sheet surface. Notice that the KH vortex on the trough cross-section (Figure 4.8b) is

still closer to its original location compared to the same vortex on the crest cross-section

(Figure 4.8a). As described earlier, this results in further stretching of the hairpins near

the sides of the lobe compared to its crest; hence, holes occur sooner near the lobe sides

than at the lobe crest. This motivates the idea that the KH vortex location and strength

are important in formation or inhibition of holes at early times. The KH vortex transition

and structure is directly related to the liquid viscosity, thus Rel. At high Rel, even though

vorticity diffusion is slower, the fluids motion is less constrained by the viscous forces; thus,

the KH vortices advect away from the interface much easier, and do not acquire enough time

Figure 4.9: λ2 contours on the spanwise crest (left), and the top view of the liquid surface
(right), at t = 20 µs (a), and 24 µs (b) of Case D2a.
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to roll up the lobes and stretch the hairpins. Hole formation also depends on the surface

tension. The inertia should have enough strength to overcome the surface tension forces in

order to perforate the lobe. In conclusion, the LoHBrLiD mechanism becomes less probable

as Weg decreases or Rel becomes very high or very low; see Figure 3.2.

λ2 contours of Figure 4.9 clearly show the overlapping of the outer and inner hairpins at

the location of the holes. The holes expand and create bridges at t = 20 µs (Figure 4.9a).

Meanwhile, the KH vortices advect both downstream and away from the interface. Later at

24 µs (Figure 4.9b), the bridges break and create spanwise ligaments. If the bridge breakup

would have happened at the spanwise crest instead of its trough, the resulting two ligaments

would have been streamwise oriented, as in the sketch of Figure 3.1.

Figure 4.10: λ2 contours on the spanwise crest (a), and the spanwise trough (b), and the top
view of the liquid surface (right), at t = 28 µs of Case D2a.
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The broken bridges undergo capillary instability and break further into droplets and smaller

ligaments, as shown in Figures 4.10 and 4.13. Meanwhile, the hairpin vortices that are over-

lapping near the spanwise trough, thin the bridges, as has been indicated by the red arrows

in Figure 4.10(b). This thinning along with the stretching of the bridges by the induced

velocity of the KH roller deforms the bridge and makes it thinner and on the verge of further

breakup. This completes the LoHBrLiD breakup mechanism at primary atomization. The

liquid interface at this time has become completely antisymmetric (Figure 4.10) following

the KH vortices that became antisymmetric earlier.

The role of vortices in the LoHBrLiD breakup mechanism is summarized schematically in

Figure 4.11. This figure shows the liquid surface and also the qualitative location of the

nearby vortices at four consecutive times. At an early time t1, hairpin vortices form on the

braids due to the strain caused by the neighboring KH vortices. The hairpins closer to the

KH wave crest – shown by black lines – are stretched downstream, and the hairpins near the

KH wave trough – shown by red lines – are stretched upstream by the induced motion of the

KH rollers. The hairpin parts that are stretched downstream are rolled over the KH vortex

tube, and are denoted by solid lines, while the hairpin parts that are stretched upstream are

pulled under the KH vortex tube, and are denoted by dashed lines.

Later at t2, the KH vortices deflect more under the induction of the hairpin vortices. The

KH vortex stretches the lobes over itself and covers underneath the lobe surface at later

times (see bottom images of Figure 4.11). The black and red hairpins that roll over and

under the KH vortex, respectively, overlap later at the center of the lobe as well as the two

sides of the lobe; i.e. at the spanwise troughs. These overlapping regions have been denoted

in Figure 4.11 at t3. The lobe sheet fills the vertical gap between these overlapping hairpins,

causing the lobe to become thinner and thus vulnerable to puncture at the overlapping

regions, as was described in Figure 4.5.

Whether the liquid sheet subject to these conditions punctures or not depends on other flow

122



Figure 4.11: Schematics of the LoHBrLiD process at four consecutive times. The liquid/gas
interface is shown in blue, and the KH vortex by black tubes. The red and black lines
denote the inner and outer hairpin vortices near the KH wave trough and crest, respectively.
The solid or dashed lines denote where the hairpins are stretched upstream and inward, or
downstream and outward, respectively.

conditions, particularly the surface tension. At high Weg (high Ohm), the hole formation

prevails and the lobes perforate at the predicted locations, as shown at t4 in Figure 4.11.

As the overlapping hairpin filaments continue to stretch, the holes also stretch and expand,
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creating even larger holes and thinner bridges. If Weg is not large enough, the liquid lobe in

the overlapping region can recover instead. In this case, hole formation is inhibited and the

lobes stretch directly into ligaments via LoLiD or LoCLiD mechanisms, as discussed later.

The mechanism of hole formation at low density ratios is similar to the high ρ̂ described in

Figure 4.11, with minor differences. Figure 4.12 shows the vortex structures and the lobe

deformation at 90–94 µs for ρ̂ = 0.05 (Case D2b). Three λ2 isosurfaces corresponding to

the KH vortex (gray), the outer hairpin (green), and the inner hairpin (red) are shown in

Figure 4.12(a) at 90 µs. The liquid surface has been removed from this image to reveal all the

vortex structures, but the black solid line indicates the location of liquid lobe front edge for

comparison. The liquid surface at the same time is shown in Figure 4.12(b). The outer and

Figure 4.12: λ2 isosurface in a top close-up view of a liquid lobe in Domain II at low density
ratio (Case D2b) at 90 µs (a); the solid black line shows the lobe front edge location and
the hatched area shows the location of hairpin overlapping. The isosurfaces represent: the
KH vortex with λ2 = −4 × 109 s−2 (gray), the outer crest hairpin with λ2 = −6 × 109 s−2

(green), and the inner trough hairpin with λ2 = −3 × 109 s−2 (red). Lobe surface showing
the hole formation from a top view at 90 µs (b), 92 µs (c), and 94 µs (d) of Case D2b.
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inner hairpins at this low ρ̂ stretch and wrap around the KH vortex in opposite directions,

and overlap on top and bottom of the lobe. The difference here is that the hairpins are more

stretched and the overlapping region is more elongated in the streamwise direction, as shown

by the hatched area in Figures 4.12(a,b). The holes that are formed near the hatched area at

later times (Figures 4.12c,d) are also more elongated in the streamwise direction compared

to the high ρ̂ case shown in Figure 4.9, where the holes were more spanwise oriented. This

finding agrees with the predictions of hole location by Jarrahbashi et al. [34] (see their figure

20). There when the gas density increased, the edge curvature decreased and the locations

of the holes in neighboring lobes became closer to each other. This caused the neighboring

holes to merge and expand the hole in the azimuthal (spanwise) direction.

The breakup mechanism involving hole and bridge formation and the role of vortical struc-

tures in this regard were discussed in this section via consecutive tracking of λ2 contours

near the interface. Vortex dynamics is able to explain the breakup process at high Weg and

medium Rel. In the remainder of this section, λ2 contours along with the interface location

are shown at a few later time steps to track the deformation of the ligaments and also to see

the evolution of the surface waves after the KH vortices have left the interface.

Figure 4.13 shows λ2 contours of the liquid jet in the period 30–34 µs. Even though the

original KH vortex (denoted by the white arrow) is now advected downstream and away

from the waves, the vorticity contours on the braid stretch and collect at the crest of the

new KH waves and create new KH vortices (Figure 4.13a). These vortices roll a new KH wave

and stretch new sets of lobes similar to the original ones; see Figure 4.13(b). The direction of

the induced motion by these new vortices are indicated by the black arrows in Figure 4.13(b).

The direction in which the fluids are swirling around the KH vortices are also denoted by

the blue curly arrows. At 34 µs, the sheet and the vortices are antisymmetric with half a

wavelength phase difference between the top and bottom surfaces in the streamwise direction.

The vortices on the bottom side are now nearly stationary with respect to the interface;
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Figure 4.13: λ2 contours on the spanwise crest (left), and the top view of the liquid surface
(right), at t = 30 µs (a), 32 µs (b), and 34 µs (c) of Case D2a.

hence, they have enough time to roll the waves and form stretched lobes on the bottom

surface (Figure 4.13b). As the new lobes get stretched, new pairs of hairpins form on their

braids, and the whole LoHBrLiD process repeats, creating new holes, bridges, ligaments,

and droplets. Meanwhile, the formerly broken bridges undergo capillary instability and thin

at the necks and break into droplets, as shown in the right image of Figure 4.13(b).

Overlapping of the oppositely oriented hairpins is the cause of lobe perforation, as described

in this section; however, the locations of the perforations and the direction and rate of

their growth depend on the overlapping location with respect to the lobe sheet. What

was presented in this section was an ideally simple case to explain the process. In reality,

the hairpin structures can be more irregular than what was presented here, which would
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shift the overlapping zones and hence change the location of the first perforations. More

hole formation examples are presented by Jarrahbashi et al. [34] and Zandian et al. [96].

Jarrahbashi et al. [34] also showed the direction in which the holes merge and expand at

high and low density ratios.

4.2.3 Corrugation formation at high Rel (LoCLiD mechanism)

The LoCLiD mechanism occurs at high Rel and low Weg (low Ohm), as indicated in Figure

3.2. This process is shown in Figure 4.14. The lobes form similar to the previous case, but

do not stretch as much. Corrugations form on the lobes’ front edge and stretch to create

ligaments. Multiple ligaments are formed per lobe, typically shorter and thinner compared

to the ligaments seen in the LoHBrLiD Domain. Eventually, the ligaments detach from the

liquid jet and break up into droplets by capillary action. These droplets are consequently

smaller than the ones formed in the LoHBrLiD mechanism. Sequential evolution of λ2

contours on y-plane cross-sections are used in this section to delineate the physics of this

process and more particularly describe why lobes do not perforate but get corrugated at

higher Rel and lower Weg. Case D3a (see Table 4.1) is analyzed in this section; at the end

Figure 4.14: Liquid surface deformation following the LoCLiD mechanism in Case D3a, at
t = 44 µ (a), 48 µs (b), 50 µs (c), 52 µs (d), 56 µs (e), and 60 µs (f).
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Figure 4.15: λ2 contours on the spanwise crest cross-section, at t = 6 µs (a), and 10 µs (b)
of Case D3a.

of this section, the effects of lower density ratio are described by analyzing Case D3b.

Figure 4.15 shows λ2 contours on a y-plane passing through the spanwise crest at 6 µs and

10 µs. Since the vortex structure passing through the spanwise trough has similar features,

albeit with some phase difference with respect to the vortices at the spanwise crest, it will

not be shown here. In the beginning, the vorticity field contains a series of hairpin filaments

on the braid and a stronger KH vortex just downstream of the KH wave crest (indicated by

the white arrows). The hairpins are stretched by the neighboring rollers as discussed before.

As also described by Martin & Meiburg [56], since stretching is the most intense in the

downstream half of the braid region, hairpin vortices acquire a larger streamwise component

in the upstream neighborhood of a vortex roller, i.e. on the lobe crest, than its downstream

side; i.e. on the trough. Hence, the hairpin filaments that are closer to the streamwise wave

crest (denoted by the gray arrows) are stronger than the upstream braid hairpins. Ashurst

& Meiburg [3] also found that, while in one vortex layer the filaments at the center between

two spanwise rollers experience the most stretching, if a second vortex layer is added, the

filaments with the strongest spanwise modulation will be located closer to the downstream

roller; i.e. three-dimensionality occurs first in the downstream half of the braid region. The
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vorticity field as well as the sheet itself are initially symmetric with respect to the center

plane. The hairpin filaments reside near the interface, slightly inclined towards the gas zone.

At high Rel, inertia dominates the viscous forces and the fluid particles are more free to

move around as the viscous forces do not produce enough resistance against their motion –

especially in the gas zone. The higher velocity of the gas layer compared to the liquid layer

causes the KH roller to split into two vortices at 10 µs (see Figure 4.15b); this process is

shown schematically in Figure 4.16 and using the λ2 isosurfaces in Figure 4.17. The outer

part of the KH vortex (indicated by the white arrow in Figure 4.15b), which resides in the

Figure 4.16: Schematic of how KH vortex splits into a slow-moving vortex (denoted by s)
in the liquid and a fast-moving vortex (denoted by f) in the gas zone, at four consecutive
times. The qualitative velocity magnitudes are denoted by the straight arrows in the gas
and the liquid. The vortices are nearly uniform in the y direction, normal to the paper.

Figure 4.17: λ2 isosurfaces in a close-up view of a liquid lobe in Case D3a, from a top view
(a), and a 3D view (b), at t = 12 µs. The isosurface values are: λ2 = −8× 1010 s−2 (gray),
−4× 1010 s−2 (green), and −1010 s−2 (red). The liquid surface is shown in blue.
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fast-moving gas layer, separates from the part that is inside the surface of the lower speed

liquid (indicated by the black arrow in Figure 4.15b). The splitting of the KH vortices

starts at 10 µs (Figure 4.15b) and continues until 12 µs (Figure 4.17). The gray, green, and

red λ2 isosurfaces in Figure 4.17 denote the KH vortex, the outer (crest) hairpin, and the

inner (braid) hairpin, respectively (the magnitude of each λ2 isosurface is indicated in the

caption). The split slow- and fast-moving vortices are denoted by ‘s’ and ‘f ’ in Figure 4.16,

respectively.

As demonstrated in Figures 4.16 and 4.18(a), part of the KH vortex that resides in the

faster moving gas, near the liquid interface, advects downstream with the gas, while the

slow-moving vortex (indicated by the black arrow in Figure 4.18a) advects more slowly with

the interface velocity, remaining stationary relative to the liquid surface. The two vortices are

completely separated at t4 in Figure 4.16, corresponding to t = 16 µs in our simulation (see

Figure 4.18b). This vortex separation has two significant consequences. (i) The slow-moving

vortex (black vortex) downstream of the KH wave is not strong enough to curl the KH wave

and stretch the lobe downstream over itself. Consequently, the outer hairpins do not overlap

in x with the inner trough hairpins, as in the LoHBrLiD Domain; hence, the hole formation

is inhibited at early times. (ii) The fast-moving vortex (the white vortex) gets closer to the

Figure 4.18: λ2 contours on the spanwise crest cross-section, at t = 14 µs (a), 16 µs (b), and
18 µs (c) of Case D3a.
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downstream outer hairpin as it advects away from the upstream hairpins, residing in the

vicinity of the trough; see Figure 4.18(b). This successive variation in the distance between

the hairpins and the fast-moving vortex induces a fluid motion that stretches the hairpins in

the opposite directions, resulting in a less-orderly hairpin structure with more undulations,

as shown schematically in Figure 4.19.

After splitting of the KH vortex into fast- and slow-moving vortices (t2 in Figure 4.19), the

fast-moving vortex (1f) advects downstream over the outer hairpin (t3 in Figure 4.19). As

the faster-moving vortex (1f) passes over the hairpin, its induced motion pulls the crest

of the hairpin in the upstream direction under vortex 1f , causing the hairpin to undergo

an undulation with smaller local wavelength (≈ 45 µm). Meanwhile, the tip of the hairpin

(now having two crests) is stretched downstream over the neighboring slow-moving vortex

(2s), and the trough of the hairpin is stretched upstream under the upstream slow-moving

Figure 4.19: Schematic of the hairpin undulation formation under the influence of the fast-
moving KH vortex (denoted by 1f) at four consecutive times t1–t4, from a frame of reference
moving with the slow-moving KH vortices (denoted by 1s and 2s).
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vortex (1s) (t3 in Figure 4.19). The streamwise stretching on different parts of the hairpins

are indicated by the black curly arrows. As the faster-moving vortex (1f) moves further

downstream, the newly formed undulation wraps around it and stretches downstream, as

shown at t4 in Figure 4.19. Therefore, another turn is created on the hairpin vortex and the

local wavelength of the undulations decreases (15–35 µm). As the fast-moving vortex keeps

moving downstream, the hairpin corrugations stretch with it. It will be shown below that

this hairpin structure results in less stretched (slower stretching) and more corrugated lobes.

The direction of the streamwise stretch on the hairpin filaments – based on the velocity field

induced by the two split rollers – is denoted by the red arrows in Figure 4.18(c). The sheet is

still symmetric at this moment, while the vortices have lost their symmetry with respect to

the center-plane. The fast-moving vortex (1f) finally reaches the downstream slower-moving

vortex (2s) and combines with it to create a stronger KH vortex, which stretches the now

corrugated hairpin in the downstream direction.

To better understand the consequence of hairpin vortex structure on the liquid surface de-

formation at high Rel and low Weg, the evolution of the vortices and the interface in the

LoCLiD process (Domain III) are schematically depicted in Figure 4.20 at four consecutive

instances. At an early time t1, the braid regions connecting the emerging KH rollers become

progressively more depleted of vorticity. The spanwise vortices on the braid deflect due to

the induced motion of the neighboring KH rollers in both the upstream and downstream

directions – creating the hairpin vortex structures with a spanwise size equal to the spanwise

perturbation wavelength (100 µm). Two hairpins are formed on the braid – one located

near the lobe crest, called the outer hairpin and denoted by the black line (corresponding

to the green isosurface in Figure 4.17), and the other slightly upstream near the trough,

called the inner hairpin and denoted by the red line (corresponding to the red isosurface in

Figure 4.17). The deflected hairpin filaments form the lobes as they are stretched by the KH

roller. So far, the process is similar to the LoHBrLiD process.
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Figure 4.20: Schematic of the LoCLiD process at four consecutive times. The liquid surface
is shown in blue, and the the KH vortex is denoted by the black tube. The red and black
lines denote the inner and outer hairpin vortices near the trough and crest of the KH wave,
respectively. The solid and dashed lines indicate the parts of the hairpins that are stretched
upstream and inward, or downstream and outward, respectively.

As discussed earlier and demonstrated in Figure 4.19, the hairpin vortices get corrugated

under the influence of the fast-moving vortex that hovers over the interface after splitting

of the KH vortex. This corresponds to t2 and t3 in Figure 4.20. Only the deformation of

the outer hairpin (black hairpin) was shown in Figure 4.19; the inner hairpin (red hairpin)

undergoes the same process, but in the opposite direction – stretching downstream and over
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the fast-moving vortex. The upstream turns and bends on the hairpins prevents further

downstream stretching of the lobes. Consequently, the lobes are less stretched and more

blunt compared to the lobes in Domain II (compare t2 in Figure 4.20 with t2 in Figure 4.11).

The fast-moving vortex moves closer to the interface to merge with the downstream slow-

moving vortex and later passes through the lobe and reaches the slower vortex below the

lobe. In this process, the faster vortex carries along the corrugated outer hairpin that is

wrapping around it. Consequently, the corrugated outer hairpins penetrate through the lobe

and locate underneath the lobe in contrast to Domain II, where the outer hairpins were

located on top of the lobe. Since this process occurs quickly, the corrugated hairpins do

not have enough time to completely wrap around the faster vortex and create a combined

vortex; therefore, after the merging of the two split KH vortex counterparts, only two pairs

of undulated hairpins – which are separate from the KH vortex – remain on top and bottom

of the reformed KH vortex, right below the lobe. The liquid surface approximately follows

the hairpin structures with some delay at this high Rel range – as the vortex lines are nearly

material lines. Because of these shorter hairpin wavelengths, corrugations with length scales

comparable to the local hairpin wavelengths (15–25 µm) form on the front-most edge of the

lobes, as shown in Figure 4.20 at t3. Both experimental observations [43, 49] and numerical

simulations [5, 15] for homogeneous jets show that the size of vortex pairs (lobes in two-phase

flows) decreases with increasing Rel.

Upon creation of a stronger KH vortex downstream of the KH waves at t4 – after merging

of the fast- and slow-moving vortices – the new KH roller, which is now located under the

lobe (now a thicker tube) is strong enough to stretch the hairpins and the corrugations.

The two hairpin layers overlap as illustrated in Figure 4.20 at t4. In this figure, the dashed

lines represent the hairpins stretching upstream and on the streamwise trough, i.e. lower

surface of the gas tongue, while the solid lines denote parts of the hairpins that are stretched

downstream below the lobe; i.e. upper surface of the gas tongue.
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Figure 4.21: 3D Schematics showing the overlapping of the outer hairpin (black slender tube)
and the inner hairpin (red tube) resulting in formation of lobe corrugations (a) – A is the
plane in which (b) is drawn; cross-sectional view of the A-plane showing the corrugation
formation and thinning of the gas tongue due to the combined induction of the overlapping
hairpins (b). The vortex schematics are periodic in x- and y-directions.

The illustrative sketches of Figure 4.21 show the corrugated hairpin structures and their

position with respect to the lobe in the LoCLiD process (corresponding to t4 in Figure 4.20).

The black tube represents an outer hairpin on the lobe crest and the red tube represents

an inner hairpin on the streamwise trough (originating from the braid). The two hairpin

layers – after getting corrugated due to the induced motion of the two halves of the split KH

vortex (see t2 and t3 in Figure 4.19) – overlap under the lobe, as shown in Figure 4.21(a).

Following the fluid motion induced by the vortex pairs, the lobe front edge gets corrugated

with comparable length scales to the hairpin undulation wavelength; see Figure 4.21(a).

The layer of the outer hairpin (black tube) is located underneath the lobe (on top of the gas

layer), and the layer of the inner hairpin (red tube) is located on top of the interface at the

trough; see Figure 4.21(b). The induced flow creates undulations on both the bottom surface

of the lobe and the trough surface. The combined induction of the two oppositely oriented

overlapping hairpin layers thins the gas layer that fills the vertical gap underneath the lobe;

i.e. the lobe collapses on the liquid sheet as the bottom surface of the lobe descends and the

trough surface ascends; see the qualitative streamlines in Figure 4.21(b).
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As the counter-rotating pairs of hairpins stretch under the induction of the KH vortex, the

corrugations on the lobes stretch with them and form thin ligaments (see t4 in Figure 4.20).

The ligaments stretch downstream and break up into droplets as they undergo capillary

instabilities (the ligament breakup mechanism is discussed in Section 4.2.4). In the meantime,

the eddies cascade into smaller vortical structures as transition to turbulence occurs. The

smaller vortices are moved towards the gas by the induction of the larger eddies. The outward

movement of the vortices spreads the droplets in the normal direction, helps the expansion

of the spray angle, and enhances the two-phase mixing.

The process of lobe-sheet collision after the merging of the two split KH vortices is shown

in the side views of the liquid sheet along with λ2 contours near the interface in Figure

4.22. The antisymmetric vortices, which now are strong enough to stretch the lobes, create

antisymmetric KH waves, at 44 µs (Figure 4.22a). The hairpin vortices on the KH wave

crest and trough stretch in the opposite directions following the induced fluid motion of the

KH roller. Following the direction of the swirl, the hairpin projections on the trough are

stretched upstream from the inner side of the roller, while the hairpin projections on the KH

crest are stretched downstream from the outer side of the roller. The direction of streamwise

stretch on the fluid elements is shown by the red arrows in Figure 4.22.

Figure 4.22: λ2 contours on the spanwise crest cross-section, at t = 44 µs (a), 46 µs (b), and
48 µs (c) of Case D3a.
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Recall that at lower Rel the two overlapping hairpins lie above and below the lobe and cause

its thinning. At higher Rel, on the other hand, the outer and inner hairpins are inside the

liquid (very close to the surface), and overlap on outer and inner sides of the gas layer that

penetrates under the lobe. To understand this better, consider the opposite perspective;

i.e. the layer of gas that fills the vertical gap underneath the KH waves can be considered as

an upstream-pointed gas tongue, surrounded by the liquid; see Figure 4.22(b). The combined

induction of the overlapping hairpins thins the tongue similarly to the process described in

Figure 4.5. The thinning regions are indicated by the two thin black arrows in Figure 4.22(c).

Since it would be confusing to describe a hole formation in the tongue, we could interpret

this phenomenon as the collapse of the lobe on the jet, encapsulating the gas in between.

Figure 4.23 shows the top view of a corrugated lobe and the λ2 contours at three spanwise

(y–z) planes passing though the lobe body (plane A–A), through lobe corrugations (plane

B–B), and through the braid (plane C–C), at 50 µs. The λ2 contours clearly show the

vortical structures suggested by the schematics of Figure 4.21. Upstream of the lobe front,

at plane A–A, one downstream stretching vortex pair is seen just underneath the lobe –

indicated by the black curly arrows – and three upstream stretching counter-rotating vortex

pairs are seen just above the trough surface – indicated by the red curly arrows. At this cross

section, the red hairpin shows the three vortex pairs shown in Figure 4.21(b), but the black

hairpin still has the main two legs and does not manifest undulations in this plane. That

is, the undulations have not stretched enough to reach the A–A plane yet. The effects of

these vortex pairs on the liquid surface is evident in this figure. Moving slightly downstream,

in plane B–B, both black and red hairpins manifest three vortex pairs, located under the

lobe and above the trough, respectively. The λ2 contours at this cross-section agree well

with the scenario depicted in Figure 4.21(b) on plane A. However, the vortex pairs are not

nicely aligned in y, as shown in Figure 4.21(b). The distance between the two legs of each

vortex pair has been denoted on the figure. As indicated before, the vortex undulations

with wavelengths in the range 15–35 µm are seen in this picture. The creation of bumps
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Figure 4.23: Top view of a liquid lobe in Case D3a at t = 50 µs (left), and the λ2 contours on
three yz-cross-sections (right); A–A passing upstream of the lobe front (top), B–B passing
through the corrugations (center), and C–C passing downstream of the lobe (bottom).

and craters on the liquid surface induced by these vortex pairs is also seen here. Further

downstream, on plane C–C, only the two main legs of the red hairpin and parts of the KH

vortex are seen. This is what would be expected based on the 3D schematic of Figure 4.21(a).

The distance between the two legs of this hairpin vortex is 70 µm at this cross section. The

wavelength of the undulations and the scale of surface corrugations presumably depend on

other parameters such as surface tension and liquid viscosity; however, analysis of the effects
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of these parameters is beyond the scope of this article and would be an interesting subject

for a prospective study.

The mechanism of corrugation formation at lower ρ̂ is similar to what was shown above

in this section. However, the hairpins are not as easily bent (corrugated more slowly) as

in high density ratios and, consequently, the number of corrugations are less. Figure 4.24

shows the vortex structures along with the images of a lobe from a top view in the 64–68 µs

period of Case D3b (see Table 4.1). The vortex structures in Figure 4.24(a) correspond to

the liquid lobe in Figure 4.24(b). The liquid surface has been removed from Figure 4.24(a)

to show all the vortices under the liquid surface; to facilitate the comparison between the

Figure 4.24: λ2 isosurface in a top close-up view of a liquid lobe in Domain III at low
density ratio (Case D3b) at 64 µs (a); the solid black line shows the lobe front edge. The
isosurfaces represent: the fast- and slow-moving KH vortices with λ2 = −7×1010 s−2 (gray),
the outer crest hairpin with λ2 = −4 × 1010 s−2 (green), and the inner trough hairpin with
λ2 = −3× 1010 s−2 (red). Lobe surface showing the corrugation formation from a top view
at 64 µs (b), 66 µs (c), and 68 µs (d) of Case D3b.
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vortex structures and surface structures, the lobe front edge is denoted in this figure by the

solid black line. The outer hairpin (green isosurface) and the fast-moving KH vortex still lie

above the lobe surface at 64 µs, while the inner hairpin (red isosurface) and the slow-moving

KH vortex lie underneath the lobe and closely downstream of the lobe front. Following the

illustrations in Figure 4.19 (at t3 and t4), the tip of the outer hairpin stretches upstream

while the inner hairpin stretches downstream under the influence of the fast-moving vortex.

This process creates the hairpin undulations and increases the number of counter-rotating

vortex pairs along the lobe span. However, comparison of Figures 4.24(a) and 4.23 reveals

that the hairpin corrugation appears much more quickly at high gas density, as three pairs

of counter-rotating hairpins are seen at an earlier time in Figure 4.23. At low gas density,

the hairpins are not easily deflected and bent; the reason is conjectured to be the lower gas

inertia. While the hairpins are in the gas, the lower inertia of the gas slows down the process

of hairpin deflection. By the time the outer hairpin and the fast-moving vortex move into

the liquid, the hairpin deformation hastens and another turn forms at its trough (at the

center of Figure 4.24a), where the green hairpin stretches downstream, over the fast-moving

vortex. Thereafter, the number of undulations increases and the corrugations stretch. The

relatively higher inertia of the neighboring liquid retards the rate of growth of the instability.

That is, the reaction of the hairpins to the KH vortex is slowed.

Figure 4.24 confirms that the lobe deformation is in fact an outcome of the KH and hairpin

vortex distortions, not the other way around. The vortex and liquid structures at 64 µs,

shown in Figures 4.24(a,b), prove that the vortex deformation precedes the surface defor-

mation. At this time, the hairpins have been already distorted and manifest two pairs of

counter-rotating streamwise vortices near the lobe front, while the lobe front itself does

not show any corrugation. At later times (Figures 4.24c,d), two corrugations start to form

following the structure of the undulated hairpins. This transforms the lobe from a singu-

lar protrusion to two smaller ones growing out of the corrugated rim. While the lobe rim

stretches under the influence of the KH vortex (after the two split counterparts merge), it
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also retracts towards the center by the capillary forces. This brings the hairpins and the

corrugations closer to the center of the lobe, as seen in Figure 4.24(d). This retraction is

faster at lower Weg; compare Figures 4.24 and 4.23.

4.2.4 Lobe and ligament stretching at low Rel (LoLiD mechanism)

At low Rel and low Weg, the surface tension force resists perforation. The liquid viscosity is

also fairly high and damps the small scale corrugations on the lobe front edge. Consequently,

the entire lobe stretches slowly into a thick and long ligament, which eventually breaks into

large droplets. This terminates the LoLiD breakup mechanism, which prevails in Domain

I, shown in Figure 3.2. The LoLiD process is shown step by step in Figure 4.25. The case

shown in this figure (Case D1a) is taken for vortex analysis in this section. λ2 contours on

y-planes and λ2 iso-surfaces in the interface vicinity are used in this section to explain the

vortex dynamics of the LoLiD process.

As shown in Figure 4.26(a), the process starts with a large KH roller downstream of the

KH wave (denoted by the white arrow), hairpin filaments on the braid, and a much stronger

Figure 4.25: Liquid surface deformation following the LoLiD mechanism in Case D1a, at
t = 26 µs (a), 36 µs (b), 40 µs (c), 44 µs (d), 46 µs (e), 48 µs (f), and 52 µs (g).
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Figure 4.26: λ2 contours on the spanwise crest cross-section, at t = 6 µs (a), 10 µs (b), and
14 µs (c) of Case D1a.

hairpin filament on the KH wave crest (denoted by the dark gray arrow). Because of the

high gas viscosity, the KH vortex diffuses much faster into the gas and at 6 µs the vortex core

is entirely in the gas zone. Since the gas phase has higher velocity compared to the liquid

phase, the gas distant from the liquid surface advects faster with respect to the interface.

Hence, a few microseconds later, say at 10 µs (Figure 4.26b), the entire KH roller advects

downstream with respect to the interface as its core moves farther from the interface via

diffusion. The KH roller gains speed as it moves away from the interface. In contrast, the

hairpin filaments that are closer to the liquid surface remain almost stationary with respect

to the interface; see Figure 4.26(c). The KH vortex gets larger with time as it diffuses;

compare Figures 4.26(a-c).

The KH roller reaches the neighboring downstream crest hairpin at 16 µs (Figure 4.27a).

Meanwhile, the braid hairpins overlap with the crest hairpins, constraining the lobe sheet in

between. So far, the vortex dynamics manifest the conditions required for hole formation,

i.e. overlapping of two oppositely-oriented hairpins on top and bottom of the lobe, as well

as for corrugation formation; i.e. constant pull in opposite directions induced by a moving

vortex hovering over the hairpins. However, none of these structures are seen on the lobe at

this moment (see Figure 4.25a). The inhibition of hole formation is due to the high surface
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Figure 4.27: λ2 contours on the spanwise crest cross-section, at t = 16 µs (a), 20 µs (b), and
22 µs (c) of Case D1a.

tension. In such a low Weg, the inertia and viscous forces are not strong enough to overcome

the surface tension force to stretch and thin the lobe; hence, the lobe perforation is inhibited.

Also, because of the high liquid viscosity at such a low Rel, the liquid surface deformation is

much slower. Hence, the corrugation formation on the lobe edge does not occur as quickly

as for the higher Rel. Small scale corrugations are damped by both the high viscous and

high surface tension forces. Thus, the lobe slowly stretches into a thick ligament. Moreover,

the KH roller is also farther away from the interface in this case compared to the LoCLiD

process (compare Figures 4.27a and 4.18c), which means that it has a much weaker influence

on the hairpin filaments.

The tip of the KH wave acts like a backward-facing step for the gas flow and a temporary

recirculation zone forms immediately downstream of the wave, as shown in Figure 4.28. This

is very similar to the scenario seen at low density ratios by Hoepffner et al. [29]. They also

showed that the head of the wave appears to the gas stream as a fixed obstacle, with the

ensuing vortex shedding. The high strain rate at the braid depletes the vorticity upstream

of the braid and collects the vorticity into a new vortex just downstream of the KH wave,

in the recirculation zone at 20 µs. This new vortex is indicated by the thick black arrow in

Figure 4.27(b) and the black circles in Figure 4.28. When the KH roller (vortex 1) passes
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Figure 4.28: Schematic of the recirculation zone downstream of the KH wave. The hollow
circles denote the KH vortex and the black circles denote the newly formed vortex in the re-
circulation zone. The induction of each vortex on the neighboring vortices is indicated by the
straight arrows with the same shading as the source vortex. The curly arrows qualitatively
indicate the streamlines near the interface.

over the KH wave front (see t1 in Figure 4.28), the mutual induction of this roller and the

new vortex (vortex 3) causes the KH roller to advect farther downstream, further stretching

the KH vortex. The local induction of each vortex on the neighboring vortices is indicated

by the straight arrows of the same shading as the source vortex in Figure 4.28. When the

KH vortex (vortex 1) passes over the downstream wave at 22 µs (Figure 4.27c), the mutual

induction of the vortices pushes away the KH vortex, advecting it in the z-direction; see t2

in Figure 4.28. The stronger induction by vortex 4 pushes vortex 1 in the direction normal

to the line connecting the centers of the two vortices (in the direction of the black arrow).

Vortex 3 also induces a flow that would bring vortex 1 closer to the interface; however, this

induction is much weaker as vortex 3 is more distant from vortex 1 compared to vortex 4.

The new vortex wraps under and around the KH roller at its crest and later over the trough

of the adjacent downstream KH roller, as shown in Figure 4.29. Thus, this new vortex

(the red tube in Figure 4.29) transforms into a hairpin vortex that is stretched between two

adjacent KH vortices and wraps around them at their crests and troughs.

Schematics of the vortex structures corresponding to t = 26 µs (shown in Figure 4.30a) are

illustrated in Figure 4.29. The KH vortex has a larger undulation in this domain compared

to the other two domains and is also farther away from the interface in the gas zone (compare
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Figure 4.29: 3D Schematics showing the vortex structures in the LoLiD Domain (a) - A is
the plane in which (b) is drawn; cross-sectional view of the A-plane, showing the spanwise
squeezing of the lobe by induced flow of the hairpin vortices (b). The vortex schematics are
periodic in x- and y-directions.

Figure 4.29 with Figures 4.5 and 4.21). Two pairs of counter-rotating hairpins – one on the

lobe crest (the black tube), and the other on the trough (the red tube) – stretch and wrap

around the KH vortex (Figure 4.29a). Notice that the red hairpin in Figure 4.29 is actually

the new vortex that was formed at the wave front end and was indicated by the black arrows

in Figures 4.27 and 4.30. These hairpins are periodic in both spanwise (y) and streamwise (x)

directions; i.e. the tubes that emerge at the bottom corner or the left side of Figure 4.29(a),

re-enter from the top corner or the right side of the sketch, respectively. As shown in the

cross-sectional view of the A-plane passing through the lobe in Figure 4.29(b), both the black

and the red hairpins are located slightly above and on both sides of the lobe at this moment.

While the flow induced by the KH vortex creates a streamwise flow on top and bottom of

the lobe, the gas flow induced by these two counter-rotating hairpins (shown by the curly

arrows is Figure 4.29b) generates a spanwise flow towards the lobe midplane. Consequently,

the lobe is both squeezed in the spanwise direction – via the induced flow of the hairpins –

and stretched in the streamwise direction by the induced flow of the KH vortex. The gas

flow induced by the hairpins also lifts the lobe in the z-direction; see Figure 4.29(b).

While the KH vortex keeps diffusing due to the high gas viscosity, the dark gray and black
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Figure 4.30: λ2 contours on the spanwise crest cross-section at t = 26 µs (a), and 30 µs (b)
of Case D1a.

vortices wrap around it and are stretched with it as it moves downstream (Figure 4.30b).

Meanwhile, another vortex forms downstream of the wave crest at 30 µs, indicated by the

light gray arrow in Figure 4.30(b). This vortex advects downstream closely hovering over the

interface at 36 µs, while new vortices keep forming downstream of the KH wave crest at the

Figure 4.31: Velocity fluctuation vector field with respect to the average velocity of the vortex
cores near the interface, and ωy contours on the spanwise crest cross-section at t = 36 µs of
Case D1a. The thick arrows refer to the vortices shown in figure 4.30(c). The star symbol
marks the saddle point, and the liquid is shown in light blue.
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recirculation zone to replace it; see Figure 4.31. Hoepffner et al. [29] were the first to identify

this vortical mechanism at low density ratios. Similar to Figure 4.31, they showed that two

vortices exist in the gas – one is at the instant of leaving the shelter of the wave (the dark gray

curly arrow in Figure 4.31), and the second further downstream is the result of the previous

shedding event (the light gray curly arrow in Figure 4.31). The induced motion of these

vortices entrains the gas and draws it under the protruding lobe (follow the velocity vectors

in the gas zone near the interface in Figure 4.31). As is well-known, the streamwise strain rate

is highest at the saddle [32, 43]. The location of the saddle point is marked by a star symbol

in Figure 4.31. The vortices that reach the saddle point stretch in the streamwise direction

and transform into hairpin vortices with streamwise legs. The location of the black and dark

gray hairpins that are wrapping around the KH vortex are denoted by straight arrows of the

corresponding vortex color. Since these vortices are mostly streamwise at this cross-section,

they do not have ωy contours. The streamwise elongation of the vortices progressively aligns

the two counter-rotating legs of the hairpins in the streamwise direction. The self-induction

of the counter-rotating legs of the KH vortex and the hairpin vortices, moves the vortex tubes

in the normal direction away from the interface, as shown schematically in Figure 4.32.

The temporal evolution of the vortex structures in the LoLiD process is illustrated in Fig-

ure 4.33 from a top view of the liquid surface. The liquid surface is illustrated in the right

Figure 4.32: Schematic showing the self-induction of the streamwise counter-rotating hairpin
legs (a), and in a yz-plane crossing the legs (b). The gray arrows in (b) show the direction
of the self-induction.
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Figure 4.33: λ2 isosurface in a top close-up view of a liquid lobe in Domain I (Case D1a)
on the left and the liquid surface from a top view on the right, at t = 6 µs (a), 16 µs (b),
and 26 µs (c). The solid black line on the left images shows the location of lobe front edge.
The isosurfaces represent: the KH vortex with λ2 = O(−1010) (gray), the crest hairpin with
λ2 = O(−1011) (green), and the trough hairpin with λ2 = O(−1011) (red).

panel of this figure, and the λ2 isosurfaces (vortex filaments) are depicted in the left panel. In

the beginning of the process (Figure 4.33a), the KH vortex (gray tube) and the crest hairpin

filament (green tube) are completely spanwise oriented (in the y-direction). The braid hair-

pins (thinner green tubes) are also primarily spanwise with some undulations and are half
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a wavelength (180◦) out of phase with respect to the crest hairpins in y. This is consistent

with the findings of Jarrahbashi et al. [34] for non-homogeneous round jets, and Danaila et

al. [15] for like-density jets. At 16 µs, the KH vortices stretch more; the hairpins on the

braid also collect into the crest hairpin and manifest higher undulations (green isosurface

in Figure 4.33b). The trough vortex (red isosurface), which was first seen in Figure 4.27(b)

(indicated by black arrow) also manifests at this time. Both the green and the red vortex

filaments slide underneath the KH roller at the spanwise wave crest (lobe crest), and wrap

over it at the spanwise wave trough (lobe sides). The wave front has been marked with solid

black line in Figure 4.33 to help find the location of the lobe crest and trough with respect to

the vortices. The KH roller in this process is more stretched than the other two mechanisms

(compare Figure 4.33 with Figures 4.11 and 4.20).

The vortices become streamwise near the braid in both spanwise crest and trough at 26 µs

(Figure 4.33c). Except for the tip of the KH roller, which is still spanwise, the rest of the

vortex structures are nearly streamwise-oriented. Both the green and the red hairpins wrap

around the KH vortex on top of each other (see Figures 4.29a and 4.33c). As the vortices

get stretched in the streamwise direction, the lobes follow their shape and get thinner in the

spanwise direction because of the induced gas flow by the hairpin legs; compare the shape of

the lobes with that of the KH vortex just downstream of the lobe in Figure 4.33(c) to observe

their similarity. A neck starts to form on the lobe edge right between the two hairpins on

the two sides of the lobe. This completely follows the mechanism introduced in Figure 4.29.

Figure 4.34 shows the cascade and deformation of the vortex filaments in the period 6 µs –

52 µs. The λ2 isosurfaces are colored by the streamwise velocity contours here. The vortices

start from a spanwise orientation and gradually turn streamwise. The vortex structures

cascade from thick and uniform vortices to thin and chaotic structures as they stretch.

The gradual departure of the vortices away from the liquid surface is also shown in this

figure, where the KH roller, indicated by the white arrow, starts on the liquid surface at
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Figure 4.34: Temporal evolution of the vortices indicated by the λ2 iso-surface colored by
the streamwise velocity contours, at t = 6 µs (a), 16 µs (b), 26 µs (c), 40 µs (d), 48 µs (e),
and 52 µs (f) of Case D1a. The liquid surface is shown in blue. The arrows refer to the
vortices denoted in Figures 4.26–4.30.

6 µs (Figure 4.34a) and advects away from the interface as it gets streamwise due to the

self-induction process described in Figure 4.32.
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At 40 µs (Figure 4.34d), almost all of the vortex structures have become streamwise except

for a short section at the tip of the KH roller. This confirms that the vortices become

streamwise-oriented as they get close to the saddle point. Meanwhile, the vortices cascade

into smaller structures due to turbulence; compare Figures 4.34(c) and 4.34(d). As the legs

of the hairpins get closer to each other, the mutual-induction of the legs lifts the hairpins in

the normal direction (Figure 4.32), and locates the hairpins above the lobes. The lobes get

thinner as the streamwise counter-rotating legs induce a gas flow in the spanwise direction

towards the lobe midplane, squeezing the lobe and transforming it into a ligament. Ligament

creation is strongly correlated with its local velocity field, and is induced by the local shear,

as indicated by Shinjo & Umemura [80]. Nearby vortices determine the ligament formation

direction. Spanwise vortices form ligaments normal to the injection direction, i.e. spanwise,

and streamwise vortices form ligaments parallel to the injection direction; i.e. streamwise.

The influence of the vorticity field on the ligament orientation is consistent with the findings

of Shinjo & Umemura [80]. Following the streamwise-oriented hairpin vortices in the LoLiD

process, mostly streamwise ligaments form in Domain I.

Velocity contours in Figure 4.34(e) show that the streamwise velocity of the vortices increases

at higher z-levels. This can be clearly seen from the gradient of colors from green (50 m/s)

– near the liquid surface – to red (90 m/s) – at the tip of the KH vortex. The liquid surface

also experiences a similar velocity gradient, where the velocity at the tip of the lobe is higher

compared to its root; i.e. where the lobe connects to the liquid sheet. This velocity gradient

manifests how the lobe elongates under the streamwise strain and forms the ligament. The

ligaments finally pinch-off and create droplets, as shown in Figure 4.34(f). The ligament

pinch-off follows the short-wave breakup mode introduced by Shinjo & Umemura [80]. The

ligament acts as a very small round liquid jet emanating from the sheet surface. The ligament

tip pressure is high in the beginning and contracts due to surface tension and pushes the

inner part along the ligament axis (Figure 4.35a). This motion emanates compression waves

in the upstream direction and a neck forms. The tip bulb grows as it absorbs the liquid
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Figure 4.35: Pressure contours on the surface of a ligament at t = 42 µs (a), 44 µs (b),
45 µs (c), and 46 µs (d) of Case D1a, showing the ligament pinch-off following the short-
wave breakup mode.

from the upstream liquid sheet by contraction (Figure 4.35b). As the tip bulb size grows,

its inner pressure drops. Consequently, the tip bulb sucks the liquid further from the neck,

as shown in Figure 4.35(b) – causing the neck to become narrower. When the neck becomes

thin enough and its pressure high enough, the circumferential surface tension cuts the neck

and a droplet pinches off (Figure 4.35c). This process reiterates from the beginning, and the

next droplets pinch off identically. The droplets fly away from the interface under the vortex

induction and gain a higher velocity than the liquid sheet; therefore, the droplets advect

downstream with respect to the jet (Figure 4.34f).

The vortex structures and lobe deformation at low ρ̂ (Case D1b) are shown in Figure 4.36.
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Figure 4.36: λ2 isosurface in a top close-up view of a liquid lobe in Domain I at low density
ratio (Case D1b) at 16 µs (a); the solid black line shows the lobe front edge. The isosurfaces
represent: the KH vortex with λ2 = −1011 s−2 (gray), the outer crest hairpin with λ2 =
−2 × 1011 s−2 (green), and the inner trough hairpin with λ2 = −3 × 1011 s−2 (red). Lobe
surface showing the corrugation formation from a top view at 16 µs (b), 18 µs (c), and a 3D
view at 22 µs (d) of Case D1b.

The lattice made by the KH vortex and the hairpin vortices is very similar to what was

proposed in Figure 4.29 for high density ratios. The only difference being that as gas density

decreases, the KH vortices are less bound to the liquid and depart from the interface much

easier and meanwhile stretch in both streamwise and normal z-directions (Figure 4.36a). All

the vortices in Figure 4.36(a) exist in the gas zone and above the liquid interface. Following

this vortex deformation, the lobe is squeezed and thinned in the spanwise direction, while

being stretched and lifted by the KH vortex normally outward. This causes the ligaments

to protrude farther and faster in the normal direction (Figure 4.36d) compared to higher ρ̂.

This figure also proves that the vortex deformation leads the surface deformation, and not

153



the other way around.

As will be discussed in Section 4.2.5, when ρ̂ gets higher, i.e. higher Weg, the vortices are

closer to the interface and are less stretched, and more spanwise rather than streamwise

oriented. Hence, the gas flow that is induced by the KH vortex shears the lobe from its

top and bottom sides. In this scenario, the lobe thins in the normal direction instead of

the spanwise direction, as shown schematically in Figure 4.37(a). The blue curly arrows

illustrate the qualitative streamlines in this situation, and the red straight arrows denote the

direction of lobe squeeze. The shear due to the gas flow induced by the spanwise vortices

stretches the lobe in streamwise direction and thins the lobe and makes it more vulnerable

to puncture. This is consistent with the map in Figure 3.2; as Weg increases, the breakup

mechanism shifts from LoLiD to LoHBrLiD.

At lower ρ̂ and lower Weg (Domain I), the vortices are more stretched in the streawise

direction. In this domain (LoLiD mechanism), the streamwise legs of the hairpin vortex

on the two sides of the lobe induce a gas flow in the spanwise direction towards the lobe

midplane, which squeezes and thins the lobe in the spanwise direction and transforms it into

a thick ligament, as shown schematically from the top view of a lobe in Figure 4.37(b). A

neck forms at the location of the red arrows. The induced motion of the hairpin legs also lifts

the lobe in the z-direction. Eventually, the ligament pinches off at the neck and a droplet

Figure 4.37: Schematic showing the lobe thinning in the normal direction in the LoHBrLiD
process from a xz plane (a), and lobe thinning in the spanwise direction in the LoLiD process
from a xy plane (b).
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forms following the short-wave mode discussed above.

In summary, whether the lobe thins in the z-direction and perforates or thins in the y-

direction and forms a ligament depends on the orientation of the vortices in the vicinity

of the lobe. The spanwise vortices result in hole formation and spanwise bridges, while

streamwise vortices result in spanwise lobe compression and streamwise ligament stretching.

4.2.5 Streamwise vorticity generation

The streamwise vorticity (ωx) is crucial in initiation of the three-dimensional instability on

liquid jets. ωx generation via vortex stretching and vortex tilting – i.e. strain-vorticity inter-

actions – and baroclinic effects are studied in this section for a low density ratio of 0.05 and a

high density ratio of 0.5. The contributions of the different terms in the vorticity equation to

ωx generation are compared at two distinctly different density ratios, to understand the role

of ρ̂ in the liquid-jet breakup. Specifically, the generation of the three-dimensionality on the

liquid sheet interface is addressed in this section. Jarrahbashi & Sirignano [33] performed

a similar analysis for the round jet at several different density ratios. They showed for a ρ̂

of 0.01 that the baroclinic effect, i.e., the Rayleigh-Taylor (RT) instability, is the dominant

cause of the initiation of 3D structures. This is consistent with the suggestion of Marmot-

tant & Villermaux [55] who performed their experiment at lower pressures and gas density.

However, for a ρ̂ of 0.1 or greater, Jarrahbashi & Sirignano [33] showed that the azimuthal

tilting and radial tilting of the ring vortices are the dominant effects in streamwise vorticity

generation.

The complete vorticity equation is

Dω

Dt
= (ω ·∇)u− ω(∇ · u) + ∇×

(
∇ · τ
ρ

)
+

1

ρ2
∇ρ×∇p+ ∇× Fσ, (4.1)
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where u and ω are the velocity and vorticity vectors, respectively. τ is the viscous stress

tensor, and Fσ is the surface tension force. Since the fluids are incompressible in this study,

the second term on the right hand side is zero. A simple dimensional analysis shows that

the viscous diffusion term (the third term on the right hand side) scales as µU/ρ∆3, which

for a typical case considered in our study, e.g. µ = O(10−3) kg/(m.s), U = O(10) m/s,

ρ = O(103) kg/m3, and a mesh size of ∆ = 2.5 µm, gives a magnitude of ≈ O(1010) s−2.

The surface tension term (the last term) scales as σκ/ρ∆2; which for a typical case with

σ = O(10−2) N/m, and a radius of curvature of 100 µm (κ = 104 m−1), also gives a result

in the order of 1010 s−2. As will be shown in this section, these two terms are 2 to 3 orders

of magnitude smaller than the other terms in Equation 4.1, and therefore have negligible

contributions to vorticity generation; thus, the rate of change of ωx is approximately

Dωx
Dt

= ωx
∂u

∂x
+ ωy

∂u

∂y
+ ωz

∂u

∂z
+

1

ρ2

[
∂ρ

∂y

∂p

∂z
− ∂ρ

∂z

∂p

∂y

]
, (4.2)

where ωx, ωy, ωz, and u denote the streamwise, spanwise, and cross-stream (normal) vor-

ticities, and streamwise velocity, respectively. The terms on the right-hand-side denote

streamwise stretching, spanwise tilting, normal tilting, baroclinic effect due to normal pres-

sure gradient, and baroclinic effect due to spanwise pressure gradient, respectively. Density

gradient is normal to the liquid interface: i.e. approximately in the z direction. The spanwise

density gradient, i.e. ∂ρ/∂y, is negligible compared to ∂ρ/∂z, since the sheet cross-section

remains fairly rectangular during early instability development. Yet, this term accounts for

the baroclinic effect, which can deform the interface in the spanwise direction.

In the cases studied in this section, no initial perturbation is imposed on the liquid surface.

Except for numerical errors which for our purpose correspond to small random physical dis-

turbances, all terms in the ωx generation equation (Equation 4.2) are initially zero. Namely,

the first and the third terms are zero because there is no vorticity components in the x and

z-directions initially, and the second term is zero since the streamwise velocity is uniform in
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the spanwise direction. The baroclinic terms are identically zero since density and pressure

gradients in the y-direction are initially zero.

Since the streamwise (ωx) and normal vorticities (ωz) cannot be generated, but can be en-

hanced, the main source of ωx generation at early times is either the spanwise vorticity tilting

or the baroclinic torque, which become non-zero as a result of small perturbations of u and

p in the spanwise direction. This intuition is consistent with the results of Jarrahbashi &

Sirignano [33] in round jets at early times, where for a wide range of ρ̂, the baroclinic torque

and the azimuthal vortex tilting terms are dominant for the first 5 µs of their computa-

tions; however, they might be overtaken later by other terms. Baroclinicity becomes more

pronounced at lower density ratios, since the density gradient across the interface is higher.

In the data analysis, the gradients have been calculated and averaged over the computational

interface thickness that equals three mesh points in the z and tangential directions. The

terms in Equation (4.2) are:

• Streamwise vortex stretching: ωx
∂u

∂x

• Spanwise vortex tilting: ωy
∂u

∂y

• Normal vortex tilting: ωz
∂u

∂z

• Baroclinic vorticity generation:
1

ρ2

[
∂ρ

∂y

∂p

∂z
− ∂ρ

∂z

∂p

∂y

]

Since the peak of the streamwise vorticity occurs at the wave braids (as shown by Fig-

ure 4.43a), the absolute value of the four above-mentioned terms are averaged only at the

braid region. Both top and bottom surfaces have been considered in this measurement.

Two different density ratios have been analyzed in this section. The non-dimensional char-

acteristics of these two cases are: Rel = 2500, Wel = 14, 400, µ̂ = 0.0066, and ρ̂ = 0.05
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Figure 4.38: Contributions of streamwise vortex stretching (squares), spanwise vortex tilting
(triangles), normal vortex tilting (diamonds), and baroclinicity (circles) to the generation
of ωx at the liquid surface for two density ratios; Rel = 2500, Wel = 14, 400, µ̂ = 0.0066;
ρ̂ = 0.05 (left), and ρ̂ = 0.5 (right).

and 0.5. The sheet thickness is h = 50 µm, and no initial perturbation is imposed on the

liquid-gas interface.

Figure 4.38 shows the contribution of each term in the generation of ωx for the high and

low density ratios, in the first 20 µs. Baroclinicity (circles) is the most important factor

at low density ratio, since the density gradient normal to the interface is higher, and also

the local density in the gas zone near the interface is lower (see the baroclinic vorticity

generation expression given above). However, at high ρ̂, baroclinicity is the least significant.

Baroclinicity is only slightly larger than the streamwise stretching (squares) in the beginning

of the computations for high ρ̂, but it is outrun by this term at about 13 µs and remains the

lowest of all terms thence. The baroclicinc vorticity generation term is an order of magnitude

smaller than the vortex stretching and tilting terms at the end of the computations.

In both low and high density ratios, the spanwise and normal tilting seem to be more

important than the streamwise stretching for the first 20 microseconds. The spanwise tilting

is high because the initially spanwise vortex lines are gradually tilted in the streamwise

direction. The normal tilting is also high since the velocity gradient is much higher in the
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normal direction (∂u/∂z), in the beginning of the computations. The streamwise stretching

however has the highest growth rate and almost reaches the magnitude of vortex tilting at

about 20 µs. Later on, as ωx grows, the vortex stretching becomes more significant. These

results are consistent with the findings of Jarrahbashi & Sirignano [33] for round liquid jets.

Jarrahbashi & Sirignano [33] also concluded that, generally, the importance of baroclinic

vorticity generation (RT instability) has been overemphasized in the literature, especially at

very high pressures, and other important aspects of vorticity dynamics and similarities with

injection into an alike fluid have been neglected. As described by them and also evident in

our figures, the vortex tilting terms are the largest at early times; however, new findings

show some cancellations, discussed below.

Figures 4.39 and 4.40 show the contours of the four ωx generating terms at 13 µs, on a y-plane

and x-plane, respectively. The spanwise and normal vortex tilting terms (Figures 4.39b,c and

4.40b,c) are stronger than the streamwise stretching, but with opposite signs. As demon-

strated in Figure 4.38, the two vortex tilting terms are also nearly equal. A closer look at

their equations explains the reason:

ωy
∂u

∂y
=

∂u

∂z

∂u

∂y
− ∂w

∂x

∂u

∂y
, (4.3)

ωz
∂u

∂z
=

∂v

∂z

∂u

∂z
−
∂u

∂y

∂u

∂z
. (4.4)

The two terms in bold font are exactly the same but have opposite signs. Thus, the only

difference in the magnitudes of the spanwise and normal tilting comes from the other terms

(the second term in Equation 4.3 and the first term in Equation 4.4). However, since these

terms deal with gradients of v and w of O(1), which are two orders of magnitude smaller

than u of O(102), they are much smaller than the boldface terms, at the beginning of the
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Figure 4.39: Contours of streamwise vortex stretching (a), spanwise vortex tilting (b), normal
vortex tilting (c), and baroclinic generation (d) on a y-plane at t = 13 µs for ρ̂ = 0.05;
Rel = 2500, Wel = 14, 400, µ̂ = 0.0066.

computations. Thus, the deviation of the vortex tilting terms from the boldface terms is

very small, and the two terms nearly cancel each other early on. Based on this, our earlier

conclusion (and also that of Jarrahbashi & Sirignano [33]) should be modified: the spanwise

and normal vortex tilting terms, even though the largest among the ωx generating terms,

are not the most important in ωx generation, since they nearly cancel each other. The

streamwise vortex stretching and baroclinic effects (RT instability) are the most important
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Figure 4.40: Contours of streamwise vortex stretching (a), spanwise vortex tilting (b), normal
vortex tilting (c), and baroclinic generation (d) on a x-plane at t = 13 µs for ρ̂ = 0.05;
Rel = 2500, Wel = 14, 400, µ̂ = 0.0066.

in generation of ωx, at high and low density ratios, respectively.

Figure 4.39(a) also confirms that the vortex stretching originates from the braids first, as

the strain due to the adjacent primary vortical structures is highest at the saddle (braid)
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and the ribs are aligned along the diverging separatrix [32]. Note that most of the colored

spots in Figure 4.39(a) are on the braids and not the wave crests. This is consistent with

the experimental observations of earlier researchers [4, 43, 49] for uniform-density flows.

The location and direction of the stretch can also be seen in Figure 4.41, which shows the

fluctuation velocity vectors relative to the average KH vortex velocity on a blown-up section

of the liquid jet at 13 µs. It is evident that the saddles with the highest strain rate are

on the braids between two adjacent vortices, where the fluctuation velocity vectors depart

in the opposite directions. The stretch direction at the saddle point is shown by the green

arrows in Figure 4.41. The saddle points are in the gas phase, close to the interface. The

streamwise vortex stretching is highest at the saddle points (see Figure 4.39a), where the

flow is primarily discrete ribs [32]. The fluid elements are stretched along the interface,

i.e. along the diverging separatrix shown by the green arrows, and compressed normal to

the interface at the saddle points. The center of the spanwise vortices (rolls) are at the

Figure 4.41: Perturbation velocity vectors superimposed on ωy contours at t = 13 µs on a
y-plane; Rel = 2500, Wel = 14, 400, ρ̂ = 0.05, and µ̂ = 0.0066. Green arrows denote the
maximum stretch along the diverging separatrix. The liquid-gas interface is indicated by the
red line.
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Figure 4.42: Contours of baroclinicity on a y-plane at t = 13 µs for ρ̂ = 0.5; Rel = 2500,
Wel = 14, 400, µ̂ = 0.0066.

crest of the interface waves, as denoted by the velocity vectors and the vorticity contours.

Interestingly, the vorticity peak coincides with the interface at the crests, but not at the

troughs, where the vorticity has migrated into the gas phase further away from the interface.

Note that the vorticity contours look like crescents and not circular as the vorticity is not

uniformly distributed as in a vortex column (like the typical Oseen vortex; see Ref. [67]); the

non-centric vorticity distribution is due to the curved KH rollers.

The stretching and tilting terms are centered at the interface (see Figures 4.39a–c and 4.40a–

c), but the baroclinic torque term
1

ρ2
∇ρ×∇p is always larger in the gas phase (see Figures

4.39d and 4.40d). Baroclinic generation, being proportional to 1/ρ2, is two orders of magni-

tude larger in the gas phase compared to the liquid phase (for ρ̂ = 0.05). As ρ̂ increases, the

difference between the gas and liquid densities decreases; thus, the contours of baroclinicity

get closer to the liquid interface. This is seen in the baroclinicity contours of ρ̂ = 0.5 in

Figure 4.42. Since ρ̂ is an order of magnitude higher than that of Figure 4.39(d), the local

density in the gas zone is much higher, hence the baroclinicity in the gas is lower and closer

to its value in the liquid. Thus, the contours are closer to the interface (compare Figures

4.42 and 4.39d). This contributes to the ωx peak being closer to the interface and grow-

ing larger compared to the low density ratios, hence creating and stretching more lobes at

higher density ratios. Also, the peak of baroclinic torque is an order of magnitude smaller in

Figure 4.42 compared to Figure 4.39(d), since the density gradient normal to the interface
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Figure 4.43: Contours of streamwise vorticity ωx (a), and spanwise vorticity ωy (b) at t =
13 µs for ρ̂ = 0.05; Rel = 2500, Wel = 14, 400, µ̂ = 0.0066.

is lower at higher density ratios.

As shown in Figure 4.39(d), the baroclinicity contours change sign (i.e. color) continuously

in x. This pattern is very similar to the hairpin pattern seen in the ωx contours presented

by Jarrahbashi & Sirignano [33]. The ωx and ωy contours for the current case are illustrated

in Figure 4.43. Comparison of the contours of ωx and baroclinicity (compare Figures 4.43a

and 4.39d) shows that they follow a very similar pattern. Hence, we can conclude that

baroclinicity is the most important factor in creation of the hairpin vortex structure at low

ρ̂. The role of the baroclinic torque in deformation of the surface waves in a stratified shear

layer is studied in detail by Schowalter et al. [78], and is consistent with our results. The

vector field of Figure 4.41 shows that ωx and ωy are highest at the braids and wave crests,

respectively. This is also evident in the vorticity contours of Figure 4.43.

In order to understand how fast the liquid sheet deforms and manifests 3D instabilities, the

magnitudes of the vorticity components are examined through time. The 3D instabilities

are directly related to the magnitudes of ωx and ωz against ωy, which exists from the begin-
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Figure 4.44: Temporal variation of the vorticity components for Rel = 2500, Wel = 14, 400,
µ̂ = 0.0066; ρ̂ = 0.05 (left), ρ̂ = 0.5 (right).

ning when the flow is still 2D. As mentioned earlier by Jarrahbashi & Sirignano [33], and

Jarrahbashi et al. [34] the streamwise vorticity is the main cause of the 3D instabilities and

interface distortion.

The absolute value of each vorticity component, averaged over the entire liquid-gas interface,

is plotted in Figure 4.44 for low and high density ratios. The spanwise vorticity ωy (KH

vortex) is the only component that exists initially. In both cases, ωy grows for a certain

time, until about 15 µs, and then onward keeps more or less the same order of magnitude.

The spanwise vorticity is larger for lower ρ̂.

ωx and ωz grow very slowly up to 10 µs, after which, there is a sudden increase in their

growth rate. In both cases, ωx and ωz are of the same order of magnitude, which indicates

that initially spanwise vortex filaments are lifted in the normal direction and tilted in the

streamwise direction at almost equal rates. The growth rate of ωx is higher at higher ρ̂. ωx

reaches the same order of magnitude as ωy at t = 20 µs, for the high ρ̂. For the lower ρ̂,

however, the growth is slower. Hence, three-dimensionality manifests sooner at higher gas

densities. For ρ̂ = 0.05, the magnitude of ωx and ωz are still half of ωy at 20 µs; notice that ωy
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always remains much higher. Thus, ωy is still dominant and 2D deformations build up while

the streamwise vorticity grows. ωx growth has consequent impacts on the surface dynamics.

In order to understand this, the liquid surface has been compared at two instances for both

low and high density ratios in Figure 4.45. The boxes in this figure show the computational

domain edges. The boundary remains far away from the liquid surface; hence the results are

not influenced by the domain size.

Figure 4.45: Liquid-gas interface at t = 15 µs (top) and 18 µs (bottom) for Rel = 2500,
Wel = 14, 400, µ̂ = 0.0066; ρ̂ = 0.05 (left), ρ̂ = 0.5 (right).
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The higher ωx growth rate at high ρ̂ causes the liquid surface to undergo 3D instabilities

faster, and there are more streamwise lobes seen at high ρ̂ than at low ρ̂. At 15 µs, the

surface of the sheet with ρ̂ = 0.05 is still roughly 2D, while the high ρ̂ case manifests more

3D deformations, and streamwise lobes are apparent on top of the primary KH waves. On

the other hand, the higher ωy compared to ωx at low ρ̂ causes the liquid sheet to become

antisymmetric much faster (compare the top images of Figure 4.45). Recall that as explained

in Section 4.2.2, transition towards antisymmetry expedites when the two vorticity layers –

on top and bottom surfaces – become stronger, as ωy grows.

The difference in the vorticity dynamics between the two cases has significant effects on the

characteristics of the jet instabilities. As can be seen at t = 18 µs (Figure 4.45), the low ρ̂

case can be characterized by roll-up of the KH waves, which creates more spanwise-aligned

liquid structures and fewer stretched lobes; the entire sheet thins faster, and the liquid sheet

breaks sooner. On the other hand, at high ρ̂, the liquid structures orient streamwise more

and manifest more lobes. The lobes are more stretched and thinned due to the larger ωx of

the KH vortex legs and are more prone to perforation. Hence, the hole-formation mechanism

is expected to prevail over a larger area in the parameter space of Wel versus Rel, at higher

ρ̂. This is consistent with the zones in Figure 3.2, and is in accordance with the density ratio

effects discussed in Chapter 3 [97].

The top and bottom liquid surfaces tend towards an antisymmetric mode, whether we start

with a flat surface or symmetric perturbations. The antisymmetric behavior is eventually

favored since a planar jet is more unstable to the antisymmetric mode than the symmetric

mode in the parameter range of interest. The transformation towards antisymmetry occurs

sooner as density ratio is lowered.

Marmottant & Villermaux [55] “suggest” that, for a coaxial round jet, the transverse (az-

imuthal) deformation of the wave crests depends on surface tension (Weg), density ratio,

and thickness of the vorticity layer. They propose the possibility that the transverse insta-
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bility of the wave crest is the result of lobe and ligament formation due to opposing shear

and surface tension. Unsteady motions at the sheet rim confer transient accelerations to

the liquid perpendicular to the liquid-gas interface, which trigger a RT type of instability,

producing indentations of the rim, which later result in ligaments.

In a physically different configuration for leading rim of a transient liquid sheet, Agbaglah

et al. [2] also propose that the dynamics of a receding liquid sheet initiates a RT instability

due to surface tension. They show that the growth rate of this transverse RT instability

increases as the liquid sheet decelerates. Hence, they suggest that this instability is dominant

at low Weg, where the deceleration is strong enough so that the retraction forces overcome

the liquid/gas inertia. Our mechanisms for the lobe and ligament formation – via vortex

interactions – would not be in effect for a configuration where the oppositely-oriented hairpin

pairs do not exist – such as the leading rim of a liquid sheet studied by Agbaglah et al. [2].

Our results here do not indicate that capillary action plays a major role in the deformation of

the crest rim to create 3D structures, e.g., lobes, corrugations and ligaments. Once ligaments

are formed, capillary action becomes important.

4.2.6 Vortex dynamics of round jets

In this section, a qualitative comparison is made between the vortex dynamics of the planar

jets (studied here) and round jets (from previous studies) to show that the causes of different

liquid structures, e.g. lobes, holes, corrugations, and ligaments, are the same from the vortex

dynamics perspective. For this purpose, the round liquid jet computational analysis of

Jarrahbashi et al. [33, 34] are mainly incorporated, which are most pertinent to our vortex

dynamics analysis. In a few cases, numerical results of Shinjo & Umemura [80] are also

addressed.

Jarrahbashi & Sirignano [33] used the vorticity dynamics to explain the formation of lobes
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and ligaments in their computations. They mainly used the vorticity contours and the vortex

lines projection on the liquid surface in their analysis. Even though the explanation for the

hole and corrugation formation was less detailed in their analysis, the vortex dynamics related

to lobe formation and ligament elongation in their round jets is very similar to our findings.

Similar to the planar jets, Jarrahbashi & Sirignano [33] and many researchers before them

[5, 49, 56, 80] observed the origination of the streamwise vorticity in the braid region of the

round jet first. Later, as the vortices stretch in the streamwise direction, counter-rotating

streamwise vortex pairs are formed. These are shown to be 3D hairpin vortices that wrap

around the KH rollers. The streamwise vorticity in the ring originates from the upstream

braid adjacent to the ring. The hairpin vortex in the ring region is 180◦ (half wavelength)

out of phase with respect to that of the braid region, similar to what we observed in our

planar sheet. The lobe locations on the cone crests is correlated with locations of the hairpin

vortices in the ring (crest) region.

A very similar mechanism involving hairpin vortices is proposed by Jarrahbashi & Sirignano

[33] for the formation of ligaments. They show that the streamwise vorticity projection on

the ligament surface changes sign inside the ligament. Therefore, counter-rotating vortex

structures exist both near the lobes in the gas phase and inside the elongated ligament.

The side-jet phenomenon in homogeneous jets is similar to the formation of the ligaments

in two-phase jet flow based on these hairpin vortical structures. The effects of the pressure

gradient on the ligament elongation and breakup is also addressed by Jarrahbashi & Sirignano

[33]. The absolute value of the pressure decreases toward the center of the ligament at the

smallest cross-sectional area; however, the pressure decreases radially outward at the tip of

the ligament. Therefore, there is an oscillation of the pressure gradient inside a ligament

that produces a waviness on its surface. According to Shinjo & Umemura [80], capillary

waves in the short-wave mode propagate inside the ligament and decrease the diameter

of the ligament locally. Surface tension pinches the ligament at minimum cross-sectional

area. However, the large streamwise vorticity observed inside the ligament might produce
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Figure 4.46: Isosurface of the liquid-gas interface accompanied by schematic of hairpin vor-
tices on the ring and braid region (a); magnified lobe with projected vortex lines, showing
two families of hairpin vortices from the braid and crest and their pairing at the center of the
lobe leading to the lobe tearing and hole formation (b). ρ̂ = 0.1, Rel = 1600, Weg = 23, 000.
The solid and dashed lines show hairpin portions stretching downstream and upstream,
respectively. Gas flows from right to left. Recast from Jarrahbashi et al. [34].

a large angular momentum and compete with the capillary force. Jarrahbashi & Sirignano

[33] define the competition between the vorticity effects and the capillary forces through a

local Weber number, which is the ratio of the radial pressure gradient due to the transverse

velocity difference caused by the streamwise vorticity inside the ligament and the radial

pressure gradient due to surface tension, i.e. We = ρlω
2
xR

3/σ; where R is the radius of the

ligament. These two pressure gradients have different signs. If this We is much larger than

one, the vorticity effects inside the ligament can be more important than the capillary force.

In computations of Jarrahbashi & Sirignano [33] We is very close to unity, hence inertia can

be as important as capillary forces in the ligament breakup.

In a later study, Jarrahbashi et al. [34] described the mechanism of hole and bridge formation

in a round jet using the vorticity dynamics. They arrived at the same conclusion of hairpin

overlapping for hole formation as described herein (Figure 4.46). However, the spanwise

measure is replaced by the azimuthal angle for round liquid jets. At high Rel of interest,
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inertial effects dominate and vortex lines and material lines are almost identical. Thus, the

hairpins are stretched around the braid and curled at the front of the crest following the fluid

motion. In the vicinity of the lobe, the downstream stretching hairpin from the ring passes

over the upstream stretching hairpin from the braid as the curling action continues, causing

the phase variation sketched in Figure 4.46(a). Jarrahbashi et al. [34] also observed that the

hairpin vortices approach each other and form a diamond-shaped region of the type shown by

Comte et al. [11], very similar to the vortex lattice observed experimentally for single-phase

planar mixing layers (see figures 3 and 4 of Comte et al. [11]). The hole formation process

relates to the increase in circulation originated from the hairpin vortices that envelope the

lobe and make it thinner with time, as was explained earlier. Hole formation begins on a lobe

sheet where the We, based on lobe thickness and relative gas-liquid velocity, is too large for

capillary action to be the initiating mechanism. As discussed earlier (Figure 4.5), where two

hairpin vortices with same-sign circulation overlap, the liquid sheet between them becomes

thinner because their mutual induction moves the material lines closer to the same radial

position and a hole can form (Figure 4.46b).

Jarrahbashi et al. [34] express that, although the hole location can be predicted by hairpin

overlap, other flow parameters, e.g. density ratio, viscosity ratio and surface tension, play

a role in changing the flow details and the hole formation process. For example, when the

surface area of the lobe increases and its edge curvature decreases, the locations of the holes

in neighboring lobes will be closer to each other, and the holes merge to create larger holes.

The hole formation and ligament creation from the extension of the holes and tearing of the

rim were observed in the computations of Shinjo & Umemura [80] for the same range of Re

and We as Jarrahbashi et al. [34]. However, the lobe puncture was stated to be due to the

impact of the droplets that formed earlier from the breakup of the mushroom-shaped cap on

the jet core. Hence, their hole formation was inertially driven not vortically. Our temporal

study produces no cap but better represents the behavior of spatial development after the
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cap has moved far downstream.

Jarrahbashi et al. [34] relate the formation of small-scale corrugations to the smaller and less

orderly alternating streamwise vorticity regions near the lobes for lower Rel. However, they

do not present a detailed explanation of the corrugation formation and stretching, nor do

they explain the reason for such less orderly vortical structures near the ring region. Hence,

even though our corrugation formation for planar jets is also related to smaller scales of

the hairpin filaments (at high Rel), this mechanism cannot be directly compared with their

observations.

4.3 Conclusions

The present study has focused mainly on the vortex dynamics of planar liquid jets. A vortex

has been defined using the λ2 criterion. The relation between the surface dynamics and the

vortex dynamics is sought to explain the physics of different breakup mechanisms that occur

in primary atomization, by conducting DNS with LS and VoF surface tracking methods.

Vortex dynamics is able to explain the hairpins formation. The interaction between the

hairpin vortices and the KH vortex explains the perforation of the lobes at moderate Rel

and high Weg, which is attributed to the overlapping of a pair of oppositely-oriented hairpin

vortices on top and bottom of the lobe. The formation of corrugations on the lobe front

edge at high Rel and low Weg is also explained by the structure that hairpins gain due to

the induction of the split KH vortices. At low Rel and low Weg, on the other hand, the

lobe perforation and corrugation formation are inhibited due to the high surface tension

and viscous forces, which damp the small scale corrugations and resist hole formation. The

hairpin vortices stretch in the normal direction while wrapping around the KH vortex. The

induced gas flow squeezes the lobe from the sides and forms a thick and long ligament. In
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summary, the vortex dynamics analysis helps explain the three major atomization cascades

at different flow conditions. The atomization mechanisms for the planar jet are qualitatively

identical to the round-jet mechanisms.

Baroclinicity is the most important factor in generation of the streamwise vortices and man-

ifestation of 3D instabilities at low density ratios. At higher density ratios, the stream-

wise vortices are mostly rendered by streamwise vortex stretching. The streamwise vorticity

growth is higher at higher density ratios, resulting in a faster appearance of three-dimensional

instabilities. As density ratio is reduced, fewer lobes with less undulation form; hence, hole

formation prevails more at higher density ratios. The relation between vortex dynamics and

surface dynamics aids prediction of liquid-structure formations at different flow conditions

and different stages of the primary atomization. This is very important in prediction and

control of the droplet size distribution in liquid-jet primary atomization.
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Chapter 5

Length-scale cascade rate and jet

spread rate

As discussed in Chapter 1, the main focus of the literature has been on the final droplet-size

distribution and the spatial growth of the spray (spray angle), but little emphasis has been

placed on the temporal cascade of the surface length scales – growth of Kelvin-Helmholtz

(KH) waves and their cascade into smaller structures leading to final breakup into ligaments

and then droplets – and the spread rate of the spray (spray angle) in primary atomization.

In order to better control and optimize the atomization efficiency, the transient process from

the point of injection to the fully-developed state needs to be better understood. Hence the

spray angle and the rate at which the length scales cascade at different flow conditions must

be analyzed. This is the main focus of this chapter. The data presented herein will be crucial

in the analysis and design of atomizers.
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5.1 Problem description

In recent years, more computational studies have addressed the liquid-jet breakup length

scales and spray width. Most of these, however, have qualitatively investigated the effects

of fluid properties and flow parameters on the final droplet size distribution or the spray

angle – as were introduced in Chapter 1. Only a few studies quantified the spatial variation

of the droplet/ligament size along or across the spray axis. However, there are no detailed

studies of the temporal variation of the liquid-structure size distribution and the spray width

(spray angle) during primary atomization. Most recent computational studies [1, 22, 57, 61]

analyze the spatially developing instability leading to breakup of liquid streams; however, all

of them are at relatively low values of the Weber number (We < 2000). That is, although

some of those works are described as “atomization” studies, they all fit better under the

classical “wind-induced capillary instabilities” defined by Ohnesorge [59] and Reitz & Bracco

[71]. Most of these studies are linear [61], 2D inviscid [57], two-dimensional [1, 22], or 3D

large-eddy simulations [1]. Of course, these did not resolve the smaller structures that form

during the cascade process of the breakup. An analysis with spatial development offers some

advantage with practical realism over temporal analysis. At the same time, the additional

constraints imposed by the boundary conditions remove generality in the delineation of the

important relevant physics. For these reasons, we follow the path of temporal-instability

analysis in the classical atomization (high We range) as was introduced in Chapters 3 and 4.

The goal is to reveal and interpret the physics in the cascade process known as atomization.

Note that some spatial development is provided when the temporal analysis covers a domain

that is several wavelengths in size.

Jarrahbashi et al. [34] studied wide ranges of density ratio (0.05–0.5), Re (320 < Re < 8000),

and We of O(104–105) in round liquid jet breakup. They defined the radial scale of the two-

phase mixture as the outermost radial location of the continuous liquid and showed that the

radial spray growth increases with increasing gas-to-liquid density ratio (ρ̂). They showed
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Figure 5.1: Schematic showing the spray width basis as defined by [96].

that droplets are larger for higher gas densities and lower We values, and form at earlier

times for higher ρ̂. However, the effects of Re and We were not fully studied there.

In a similar study, Zandian et al. [96] explored the effects of We on the droplet size as well

as the liquid sheet expansion rate. They also showed the variation in the size and number

density of droplets for We in the range 3000–72, 000; however, both these quantities were

obtained from visual post-processing, which incur non-negligible errors. Their qualitative

comparison showed that droplet and ligament sizes decrease with increasing We, while the

number of droplets increases. Their results applied for a limited time after the injection and

did not show how fast the length scales cascade. Zandian et al. [96] in similar fashion to

Jarrahbashi et al. [34] defined the distance of the farthest point on the continuous liquid

sheet surface from the jet centerplane as the cross-flow width of the spray, as schematically

depicted in Figure 5.1. Even though this definition provides a simple description of the

spray growth, it lacks statistical information about the number density of liquid structures

at different cross-flow distances from the jet centerplane. Thus, this definition is not optimal

for the spray width analysis and failed to show the effects of We on the spray expansion

rate.

Desjardins & Pitsch [16] defined the half-width of the planar jets as the distance from the jet

centerline to the point at which the mean streamwise velocity excess is half of the centerline

velocity. They showed that high We jets grow faster, which suggests that surface tension
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stabilizes the jets. They also demonstrated that, regardless of We, droplets are generated

through the creation and stretching of liquid ligaments (pertinent to Domain I in Figure 3.2

of Chapter 3). Ligaments are longer, thinner, and more numerous as We is increased. The

corrugation length scales appear larger for lower Rel – attributed to lesser energy contained

in small eddies at lower Rel. Consequently, earlier deformation on the smaller scales of the

interface is more likely to take place on relatively larger length scales as Rel is reduced. Their

work was limited to We of O(102–103), which were low compared to our range of interest

for common liquid fuels and high-pressure operations. The effects of density ratio were also

not studied in their work.

The scarcity of studies in Domain II – i.e. high Weg and moderate Rel, refer to Figure 3.2

– is especially notable since the trend towards much higher operating pressures has started

in engine designs. The studies introduced above (and also in Chapter 1) indicate that there

is no proper method in the literature for quantification of the cascade rate and spray spread

rate at early liquid-jet breakup. Therefore, implementation of a new methodology – as will

be introduced here – is essential for evaluation of these quantities. Quantification of these

parameters is very important for understanding and identifying the most significant causes,

which are helpful in controlling the atomization process.

Our objectives are to (i) study the effects of the key non-dimensional parameters, i.e. Rel,

Weg, gas-to-liquid density ratio and viscosity ratio, and also the wavelength-to-sheet-thickness

ratio, on the temporal variation of the spray width and the liquid-structures length scale;

(ii) establish a new model and definition for measurement of the liquid surface length-scale

distribution and spray width for the early period of spray formation; and (iii) explain the

roles different breakup regimes play in the cascade of length scales and spray development

during the early atomization period. The results are separated by atomization domains to

clarify the effects of each atomization mechanism on the cascade process and spray expan-

sion. Moreover, the time portions of the behaviors are related to the various structures
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formed during the primary atomization period.

To address these objectives, two probability density functions (PDFs) are obtained from

the numerical results, for a wide range of liquid-structure size and transverse location of

the liquid-gas interface at different times to give a broader understanding of the temporal

variation of the length-scale distribution and the spray width. The temporal evolution of the

distribution functions is given rather than just showing the fully-developed asymptotic length

scales, as is well explored and examined in the literature. The first PDF indicates the size of

the small liquid structures through the local radius of curvature of the gas-liquid interface.

The novelty of this model is that we do not address only the droplets that are formed, nor

present only the size of the droplets as the length scale of the atomization problem – as

what the SMD presents. Instead, the length-scale distribution here comprises the size of all

the liquid structures – from the initial surface waves, to the lobes, bridges, ligaments, and

finally droplets. Thus, this analysis reveals the change in the overall length scale of the jet

surface even before the droplets are formed – not examined or quantified before. The second

PDF indicates the location of the liquid-gas interface, giving more than just the outermost

displacement of the spray, as was typically measured in most past computational studies.

Rather, we present the “density” of the liquid surface at any transverse location, which

provides a more meaningful and realistic presentation of the spray width. “Density” here

means the relative liquid surface area at a given control volume at any distance from the jet

midplane.

5.1.1 Data analysis

Twice the inverse of the liquid surface curvature (κ = 1/R1 +1/R2, where R1 and R2 are the

two radii of curvature of the surface in a 3D domain) has been defined as the local length scale

in this study. This length scale represents the local radius of curvature of the interface, and
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is a proper quantity enabling us to monitor the overall size of the surface structures. It would

eventually asymptote to the droplet radius after the entire jet is broken into approximate

spherical droplets. Based on this definition, a length scale is obtained at each computational

cell in the fuzzy zone at the interface. The curvature of each cell containing the interface is

computed at every time step; then, the structure length scale (L) is defined as

Lijk =
2

|κijk|
, (5.1)

where κ is the curvature, and the ijk indices denote the coordinates of the cell in a 3D mesh.

The length scale Lijk of each cell is used to create a PDF of the length scales. The κijk value

is measured per computational cell and weighted by the interface area in that cell to obtain

the PDFs. Only cells containing the interface are included in this analysis. The bin size

used for the length-scale analysis is dL = ∆ = 2.5 µm. The probability of the length scale

in the interval (L,L + dL) is obtained by multiplying the PDF value at that length scale,

f(L), by the bin size:

prob(L ≤ L′ ≤ L+ dL) ≡ P (L) = f(L)dL. (5.2)

This is an operational definition of the PDF. Since the probability is unitless, f(L) has

units of the inverse of the length scale; i.e. m−1. However, in our study, the length scale is

nondimensionalized by the initial wavelength. Thus, f(L/λ0) becomes unitless. The relation

between the length-scale PDF and its probability could be derived from Equation (5.2);

f(L/λ0) =
P (L/λ0)

dL/λ0

= 40P (L/λ0), (5.3)

where dL is the bin size and λ0 = 100 µm is the initial KH wavelength. The probability of

having the length scale in the finite interval [a, b] can be determined by integrating the PDF;
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prob(a ≤ L

λ0

≤ b) ≡ P (a ≤ L

λ0

≤ b) =

∫ b

a

f(
L′

λ0

)
dL′

λ0

.

In order to obtain the average length scale at each time step, the length scales are integrated

along the liquid-gas interface and divided by the total interface area. The average length

scale δ is nondimensionalized using the initial perturbation wavelength, λ0. The average

length scale is defined as

δ =
1

λ0

∫
Lds

S
≈ 1

λ0

∑
Lisi∑
si

, (5.4)

where S is the total surface area of the interface, si is the interface area in cell i and Li is

the length scale of that particular cell.

Since the length scale L has a wide range from a few microns to infinity (if the curvature

is zero at a cell), we neglect the length scales that are very large, i.e. L > 4λ0, so that the

average length scale would not be biased towards large scales due to those off values. The

mean length scale can show the overall change in the size of the structures on the liquid

surface; therefore, one can track the stretching of the surface – if the mean length scale

grows – or its cascade into smaller structures and appearance of subharmonic instabilities –

as the mean decays.

Similar to the length scale, a PDF is obtained for the transverse distance of the interface

from the centerplane. This is related to the interface density model introduced by Chesnel

et al. [8], where the interface density was defined as the ratio of the interface area within

the considered control volume. In our study, however, the interface density is measured at

different transverse locations to form the PDFs. This PDF also has units of m−1, as discussed

before; however, it is normalized by the initial sheet thickness (h0). This gives a better
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statistical data about the distribution of the transverse location of the spray interface rather

than just presenting the outermost location of the liquid surface. Thereby, the concentration,

or density, of the liquid surface at any transverse plane is measured. This quantity also

shows the breakup of surface structures and demonstrates how uniformly the spray spreads;

i.e. the quality of spray development. In fact, this PDF is a more generalized version of the

average liquid volume fraction distribution. To account for both sides of the liquid sheet in

this analysis, the cross-flow distance h of each local point at the interface is defined as the

absolute value of its z-coordinate (z = 0 at the centerplane);

hijk = |zijk|. (5.5)

The probability of the spray width is obtained from an equation similar to Equation (5.2),

where L is replaced by h. The relation between the spray-width PDF, f(h/h0), and its

probability, P (h/h0), is

f(h/h0) =
P (h/h0)

dh/h0

, (5.6)

where dh is the bin size for the spray-width PDF, taken to be equal to the mesh size,

i.e. dh = ∆ = 2.5 µm, and h0 is the initial sheet thickness; h0 = 50 µm for the thin sheet,

and 200 µm for the thick sheet.

The average spray width (sheet thickness) ζ is also obtained by integrating h along the inter-

face, and dividing it by the total interface area. The mean spray width is nondimensionalized

by the initial sheet thickness h0;

ζ =
1

h0

∫
hds

S
≈ 1

h0

∑
hisi∑
si
, (5.7)

where hi is the cross-flow distance of the interface in cell i from the midplane. This definition
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represents how dense the surface is at any distance from the jet centerplane. Therefore, it

gives a more realistic representation of the jet growth in a way that is more useful for many

applications such as combustion and coating.

5.2 Results and discussion

5.2.1 Data analysis verification

The choice of bin size and the sensitivity of the measurements against the mesh resolution and

computational-domain size are tested and verified in this section. The results of these tests

are given in Figures 5.2 and 5.3. Figure 5.2(a) compares the temporal variation of the average

length scale δ with two different bin sizes used for measurement of this parameter. The solid

line is the result obtained by the actual bin size used in our analysis (dL = ∆ = 2.5 µm),

and the dashed line denotes the variation of δ with time using a bin size twice as big;

i.e. dL = 2∆ = 5 µm. Both cases converge at about 40 µs and are in good agreement

Figure 5.2: Effect of bin size (a) and mesh resolution (b) on the temporal evolution of the
mean length scale; Rel = 2500, Weg = 7250, ρ̂ = 0.5, µ̂ = 0.0066, and Λ = 2.0.
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thereafter. Both test cases result in the same asymptotic length scale at the end of the

computation; however, in the early stages, the larger bin size produces slightly larger scales,

especially around the maximum point (t ≈ 10 µs). The maximum error in the larger bin

size is around 13%. The error gradually decreases after 10 µs and becomes less than 1% at

40 µs. The temporal trend of the length scales, i.e. when the scales are growing or declining,

predicted by both test cases, match very well. The only difference is that the larger bin

overpredicts the length scales at early stages. Since the magnitude in the early stage of the

length scale growth (around the time when the maximum errors occur) is not the main goal

of our research, it can be concluded that choosing dL = 2.5 µm as the bin size is acceptable

for the purposes of this study.

Figure 5.2(b) shows the same length scale evolution in time for three different grid resolutions.

The result for the grid size used in this study (∆ = 2.5 µm) is denoted by dashed line in

this plot. Two other grid resolutions – one twice as big (∆ = 5 µm) and the other one half

of the current grid size (∆ = 1.25 µm) – are also plotted in dash-dotted and solid lines,

respectively. The larger grid is unable to predict the asymptotic length scale and has about

5% error near the asymptote. The maximum error of this large grid is about 10% and occurs

near the maximum scale. The result of the finest grid however, matches perfectly with the

current grid after 15 µs. The maximum difference between the results of the two finer grids is

less than 1%. Therefore, this comparison verifies that the 2.5 µm grid resolution is justified

for our study.

The size of the computational domain (especially in the transverse direction) has a major

influence on the evaluation of the mean spray width. Figure 5.3 compares the temporal

growth of the mean spray width for three domain sizes – the original domain used in this

study (1X), a domain half the original size (0.5X), and another 1.5 times larger (1.5X).

The largest domain predicts a very similar result compared to the original case, with very

slight difference in ζ after 70 µs. However, the difference in the results of the two larger
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domains never exceeds 1.5%, which verifies the appropriateness of our chosen domain size.

However, a larger domain is definitely required if one wants to study the process further in

time. The predicted spray width of the 0.5X Domain is acceptable until 55 µs, but it departs

from the correct trend henceforth and becomes noticeably underpredicted. The error of the

smallest domain reaches about 14% by the end of the simulation. This clearly shows that

the boundary conditions have a major impact on the predicted results for the small domain.

5.2.2 Weber number effects

The temporal variation of the average length scale for low, medium, and high Weg and

moderate Rel are illustrated in Figure 5.4. The density ratio is kept the same (0.5) among

all these cases; hence, Weg is only changed through the surface tension. The effects of ρ̂

are analyzed in Section 5.2.4, and the combined effects of ρ̂ and We are revealed there.

The symbols on the plot denote the first instant at which different liquid structures form

during the atomization process. The definition of each symbol is introduced above the plot in

Figure 5.4 and will be used hereafter in the proceeding plots. The symbols help us compare

Figure 5.3: Effect of computational domain size on the temporal evolution of the mean spray
width; Rel = 2500, Weg = 7250, ρ̂ = 0.5, µ̂ = 0.0066, and Λ = 2.0.
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Figure 5.4: Effect of Weg on the temporal variation of the average dimensionless length scale
δ; Rel = 2500, ρ̂ = 0.5, µ̂ = 0.0066, and Λ = 2.0. The symbols indicate the first time when
different liquid structures form. The definition of each symbol is introduced above the plot.

the rate of formation of each structure, say ligament or droplet, at different flow conditions.

The relation between the formation of each structure and the behavior of the length scale

or spray width can also be better understood using these symbols. The atomization domain

for each process is also denoted on the plot. Note that the zigzag symbol denoting the

“corrugation” formation does not appear in Figure 5.4 because this structure forms only in

Domain III (a Domain III result will be discussed in the next sub-section). All computations

are stopped at 100 µs, which is sufficient for the quantities of interest to reach a steady state.

It will be shown later that further continuation of the computations is not justified because

the interface gets too close to the top and bottom computational boundaries, so that the

length scale and sheet width get affected by the boundary conditions.

The lowest Weg falls in the ligament stretching (LoLiD) category in Atomization Domain

I, while the two higher Weg cases follow the hole-formation mechanism (LoHBrLiD) in

Domain II; see Figure 3.2. The average length scale decreases with time for all cases, to be
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expected for the cascade of structures presented in Figure 3.1 – lobes to holes and bridges,

to ligaments and then to droplets. δ becomes smaller as Weg increases, and its cascade is

hastened by increasing Weg. At 40 µs, the average length scale for Weg = 36, 000 is almost

0.22λ0 = 22 µm, while it increases to 0.3λ0 for Weg = 7250, and to 0.5λ0 at the lowest Weg.

This shows the clear influence of surface tension on the length-scale cascade and on the size

of the ligaments and droplets. An increase in surface tension suppresses the instabilities and

increases the structure size. This trend is consistent with both analytical [58] and numerical

[16] results. The droplets and ligaments formed in Domain II are generally smaller than in

Domain I.

The length scale starts from 0.9λ0 in all three cases due to the initial perturbations, and

the average scale increases for the first 10 µs, until it reaches a maximum. Weg, and hence

surface tension, does not notably affect the initial length scale growth. This growth involves

the initial stretching of the waves, which creates flat regions near the braids – they have low

curvatures, hence large length scales. As lobes and ligaments form later, the length scale

decreases because (i) the radius of curvature of these structures is much smaller than the

initial waves, and (ii) the total interface area increases by the formation of lobes, bridges,

ligaments, and droplets, smearing out the influence of the large length scales. Figure 5.4

also shows that all the structures – especially ligaments and droplets – form sooner with

increasing Weg. Moreover, ligaments and droplets form slower in Domain I than in Domain

II; that is, the LoHBrLiD mechanism is more efficient than the LoLiD process in terms of

cascade rate at the same Rel range.

As discussed in Chapter 3, two distinct characteristic times exist for the formation of holes

and the stretching of lobes and ligaments. At a given Rel, as surface tension increases

(i.e. decreasing Weg), the characteristic time for hole formation increases, thereby delaying

the hole formation. Thus, for lower Weg, most of the earlier ligaments are formed by direct

stretching of the lobes and/or corrugations, while the hole formation is inhibited. On the
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other hand, at relatively large Rel (> 3000), as liquid viscosity is increased (i.e. decreasing

Rel), at the same Weg, the ligament-stretching time gets larger. In this case, hole formation

prevails over the ligament stretching mechanism, resulting in more holes on the lobes. As

Weg increases, the time at which the first hole forms decreases. This indicates that the hole

formation time should be inversely proportional to Weg.

At low Rel (< 3000), the liquid viscosity has an opposite effect on the hole formation and

ligament stretching. As shown in Figure 3.2, near the left transitional boundary, the time

scale of the stretching becomes relatively smaller than the hole-formation time scale as Rel

is reduced at a constant Weg. Therefore, there is a reversal to ligament stretching as Rel is

decreased at a fixed Weg. Keeping all these effects in mind, the following two nondimensional

characteristic times were proposed (Chapter 3);

Uτh
h0

∝ 1

Weg

(
1 +

k

Rel

)
, (5.8)

Uτs
h0

∝ 1

Rel
; (5.9)

where τh and τs are the dimensional characteristic times for hole formation and ligament

stretching, respectively, and k is a dimensionless constant. The results in Figure 5.4 are

consistent with Equation (5.8), which suggests the hole formation time scale to be inversely

proportional to Weg. Therefore, the hole formation time for Weg = 36, 000 should be nearly

5 times smaller than for Weg = 7250 since Rel is the same for both cases. From Figure 5.4,

the first instant when a hole is formed is 22 µs for Weg = 36, 000 (solid line), and almost

5 µs for Weg = 7250 (dashed line). Thus, the ratio of τh for these two cases is about 4.4, in

good agreement with the result obtained from Equation (5.8).

Even though the average length scale gives a good insight into the temporal variation of the
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Figure 5.5: Probability distribution of the normalized length scales at different times for
Weg = 1500 (a), Weg = 7250 (b), and Weg = 36, 000 (c); Rel = 2500, ρ̂ = 0.5, µ̂ = 0.0066,
and Λ = 2.0. The broken green lines indicate the cell size.

overall scale of the liquid structures, it does not show the distribution of the scales, for which

the length-scale PDFs are needed. Figure 5.5 compares the probability distribution of the

length scales of the three Weg cases at different times on a log-scale.

All cases start from the same initial distribution indicated by the red line. The length scales

in the range 0.5λ0–0.6λ0 have the maximum probability of approximately 10%. Later, the

most probable length scale becomes smaller, while the probability of the dominant scale

increases. The transition towards smaller scales is faster as Weg increases since lowering
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surface tension reduces the resistance of the liquid surface against deformations. At 50 µs,

the most probable length scale becomes 0.1λ0 for Weg = 1500 (dashed-line in Figure 5.5a).

Higher Weg cases reach the same most probable length scale at 40 µs (dash-dotted line in

Figure 5.5b) for Weg = 7250, and at less than 10 µs (not shown) for Weg = 36, 000.

The PDFs also show an increase in the probability of smallest scales at higher Weg. At

t = 70 µs, for example, the lowest Weg has a probability of about 27% for the smallest

computed length scale of 2.5 µm; see where the blue curve intersects the vertical axis in

Figure 5.5(a). That probability at the same time increases to 59% as Weg increases to 7250.

At even higher Weg = 36, 000, the probability of 2.5 µm or lower is slightly more than 64%

at 70 µs. Since the smaller length scale also implies smaller volume, the conclusion is that

the number density of the small droplets also increases with Weg. The green broken lines

in Figure 5.5 indicate the normalized cell size. In all cases and at all times, more than 98%

of the computed length scales lie to the right of this line and are larger than the mesh size,

which justifies the sufficient resolution of the current grid. The effects of grid resolution on

the liquid structures scale was demonstrated in detail in Chapter 2, and it was shown that

the grid resolution used for the current analysis is fine enough to capture the smaller radii

of curvature.

Figure 5.6 shows the liquid surface for the moderate Weg = 7250 case at 70µs. As shown in

the magnified image, at this time the liquid surface is mainly comprised of ligaments (either

broken or still attached) and droplets, while little or almost no lobes with very large scales

are present. Therefore, the evolution of the surface is summarized mainly in stretching and

breakup of the ligaments henceforth.

As shown in Figure 5.7, there are two radii of curvature in a typical perturbed ligament.

R1 is the smaller azimuthal radius which is initially equal to the radius of the cylindrical

ligament. R2, the radius of curvature of the streamwise arc of the ligament after it undergoes

Rayleigh-Plateau (RP) instability, is much larger than R1. Theoretical analyses of Rayleigh
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[69] show that for a cylindrical liquid segment of radius R1, unstable components are only

those where the product of the wave number with the initial radius is less than unity;

i.e. kR1 < 1. Thus, the minimum unstable RP wavelength for a ligament of radius R1 is

λRP = 2πR1. The volume of a cylinder of radius R1 and length λRP is V = 2π2R3
1. If

this segment of the cylinder (ligament) breaks into a droplet, a simple mass balance shows

that the resulting droplet radius (Rd in Figure 5.7b) would be Rd ≈ 1.67R1. R2 is never

smaller than R1; R2 ≈ R1 based on an approximate sinusoidal surface shape at the instant

of ligament breakup, and R2 = ∞ in case of unperturbed ligament; i.e. R1 ≤ R2 < ∞.

Considering these limits and using the relation between R1 and Rd, the extents of ligament

length scale Ll = 2/(1/R1 + 1/R2) as a function of Rd follow

if R2 =∞→ Ll =
2

1/R1

= 2R1 ≈ 1.2Rd, (5.10a)

Figure 5.6: Liquid-jet surface at 70 µs for Weg = 7250; Rel = 2500, ρ̂ = 0.5, µ̂ = 0.0066,
and Λ = 2.0.
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Figure 5.7: Schematic of the radii of curvatures on a typical ligament (a), and its resulting
droplet (b).

if R2 = R1 → Ll =
2

1/R1 + 1/R1

= R1 ≈ 0.6Rd; (5.10b)

thus, 0.6Rd < Ll < 1.2Rd. The droplet length scale is Ld = Rd. Therefore, the time-

averaged ligament length scale is approximately equal to the droplet length scale during the

short period of RP instability growth and ligament breakup. This simple analysis explains

why the average length scale becomes almost constant after 70µs (see Figure 5.4) while

the ligament breakup is still occurring and the number of droplets is increasing. Since the

ligament formation is delayed (about 30 µs) at lower Weg, the asymptotic length scale is

also expected to occur later for Weg = 1500. This is consistent with Figure 5.4, where the

length scale asymptotes about 27 µs later for Weg = 1500 compared to Weg = 7250.

The standard deviation of the PDFs of Figure 5.5, illustrated in Figure 5.8, provides a more

accurate quantitative measure of the length-scale distribution. The length scales range from

a few microns, i.e. a small fraction of the initial wavelength, to several hundred microns,

e.g. four times the initial wavelength. Therefore, the standard deviation of δ is very large,

even in the beginning. δ is about 0.9λ0 = 90 µm at the start of the computations (see

Figure 5.4), but the standard deviation of the length scales (σδ) is about 0.85λ0 = 85 µm at

this time.
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Figure 5.8: Temporal variation of the standard deviation of the dimensionless length-scale
PDFs of Figure 5.5 for Weg = 1500, 7250, and 36, 000; Rel = 2500, ρ̂ = 0.5, µ̂ = 0.0066,
and Λ = 2.0.

At the early stage, the standard deviation increases as larger scales become more probable

following the flattening and stretching of the waves. Later, the flow field gets filled with

more small ligaments and droplets and more curved surfaces, which reduce both the mean

and the standard deviation. However, even at the end of the process, the standard deviation

is still around 0.2–0.4λ0 = 20–40 µm; so, a wide range of length scales is still present in the

flow. The standard deviation decreases with increasing Weg, as the smaller capillary force

allows the larger scales to deform easily and cascade more quickly into smaller scales with

higher curvatures; this reduces the deviation of the scales. The standard deviation becomes

almost constant when δ asymptotes to its ultimate value.

The length-scale PDFs show that: (i) the asymptotic length scale (ligament and droplet size)

decreases with increasing Weg; (ii) the number of small droplets increases with increasing

Weg; and (iii) the cascade of length scales occurs faster at higher Weg. The last item is

also implied by the temporal evolution of the mean length scale. The first two items are
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Figure 5.9: Temporal growth of the non-dimensional liquid surface area (S∗) for Weg = 1500,
7250, and 36, 000; Rel = 2500, ρ̂ = 0.5, µ̂ = 0.0066, and Λ = 2.0.

consistent with the literature, but the third item is a new finding.

Temporal growth of the non-dimensional liquid surface area (S∗) for the three Weg cases

is plotted in Figure 5.9. The surface area (S) is non-dimensionalized by the initial liquid

surface area; i.e. S∗ = S/S0. Therefore, S∗ grows monotonically in time from 1 at t = 0;

S0 ≈ 0.8 mm2.

As expected, the surface area growth rate is higher for higher Weg, where the surface de-

formations occur and grow faster and ligaments and droplets form earlier. S∗ grows very

gradually in the first 30 µs, but experiences a sudden increase in the growth rate after the

formation of first ligaments and droplets. This abrupt growth in surface area occurs sooner

and at a higher rate for higher Weg following the earlier formation of ligaments in those

cases. The S∗ growth rate decreases slightly towards the end of the computations, while

the area still keeps growing. The cause of this gradual decrease in growth rate is speculated

to be mainly due to the breakup of ligaments into droplets. Surface tension minimizes the
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surface area after ligament breakup. The surface deformation at later times mainly consists

of formation of ligaments and their breakup into droplets. Following the simplified ligament

and droplet radii model shown in Figure 5.7, a simple calculation reveals that the surface

area of the resulting droplet is 10% smaller than the surface area of its mother ligament;

i.e. Sd = 0.9Sl. Therefore, the ligament breakup decreases the S∗ growth rate associated

with mere stretching of the ligaments. Even though the mean length scale has reached an

asymptote at the final stage (t > 70 µs), the increase in S∗ indicates that the surface dy-

namics are still in progress and ligament and droplet formation still continues. The rate of

growth of S∗ becomes almost constant in the asymptotic phase. At 100 µs, the surface area

has grown more than 11 times for Weg = 36, 000, while for Weg = 1500, the surface has less

than 6 times its initial area.

As mentioned earlier, defining the jet width (thickness) as the distance to the farthest liquid

point from the centerplane might render results which are prone to misinterpretation. This

definition does not take into account the interface location distribution and only considers

the farthest liquid location. For this purpose, the PDFs of the transverse interface location

are used to describe the expansion of the liquid sheet in a more meaningful form.

The effect of Weg on the temporal evolution of the average spray width is shown in Fig-

ure 5.10 along with the liquid-jet interface picture at 70 µs of each process. The spread rate

of the liquid jet can be distinguished better with the new definition of the jet width (compare

this plot with figure 40 of Zandian et al. [96]). The spray expands faster at higher Weg and

results in a wider spray at the end – a result which is in agreement with numerical results of

Desjardins & Pitsch [16]. The average spray width remains close to the initial sheet thick-

ness for the first 50 microseconds for Weg = 1500 since the high surface tension suppresses

instability waves, lobe stretching, and ligament breakup. The jet expands much sooner at

higher Weg; for example, at about 20 µs for Weg = 7250, and at 7 µs for Weg = 36, 000.

The structures stretch much more quickly at higher Weg and are less suppressed by the
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surface tension forces; thus, they can expand more freely and are carried around more easily

by the gas flow, after breakup. The expansion of the jet at the lowest Weg (dash-dotted line

in Figure 5.10) coincides with the formation of the first ligament (at 50 µs). Therefore, the

lobes are much less amplified at such a low Weg, and the ligament formation and stretching

are primarily in the normal direction in Domain I. Generally, the spray angle is larger in

Domain II than in Domain I at a comparable Rel range.

The spikes and oscillations in the average spray width ζ are caused by the detachment of a

liquid structure, e.g. bridges, ligaments or droplets, from the jet core. The first decay in ζ

coincides with the formation of the first droplets; i.e. the black circles in Figure 5.10. The

spray-width PDFs, given in Figure 5.11, support this view.

All three cases in Figure 5.11 start from a bell-shaped distribution around h = h0, denoted

Figure 5.10: Effect of Weg on the temporal variation of the average dimensionless spray
width ζ; Rel = 2500, ρ̂ = 0.5, µ̂ = 0.0066, and Λ = 2.0. The liquid jet surface at 70 µs is
shown for each process.
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Figure 5.11: Nondimensional spray-width probability distribution at different times for
Weg = 1500 (a), Weg = 7250 (b), and Weg = 36, 000 (c); Rel = 2500, ρ̂ = 0.5, µ̂ = 0.0066,
and Λ = 2.0.

by the red solid lines. The two peaks on the two sides of h/h0 = 1 are due to the initial

perturbations amplitude of 5 µm imposed on the surface of the sheet. Since there are more

computational cells near the peak and trough of the perturbations compared to the neutral

plane, i.e. h/h0 = 1, the probability of those sizes are slightly higher. The probability of the

initial thickness value increases in all cases during the first 20 µs since the wave amplitude

decays as the waves get stretched in the flow direction, in the initial stage.
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Later, when the waves start to grow due to the KH instability and roll-up of the lobes over the

primary KH vortices, the jet width increases and the distribution becomes wider and skews

towards larger values on the right. Meanwhile, smaller lengths are also observed. With time,

the peak of the initial distribution curve decreases while the distribution broadens. This

decline occurs faster at higher Weg, since the spray grows faster for lower surface tension.

At t = 50 µs, only 8% of the surface, i.e. computational cells at the interface, lie near the

initial thickness for Weg = 36, 000 (dashed-line in Figure 5.11c), and the spray has grown

upto three times the initial sheet thickness; i.e. h/h0 ≈ 3. At the same time, the farthest

transverse distance reached by the liquid is about 2.8h0 from the centerplane for Weg = 7250;

see where the dashed-line in Figure 5.11(b) meets the horizontal axis. At still lower Weg,

the maximum spray width is just slightly more than 2h0 at 50 µs, and still more than 16%

of the surface lies around the initial sheet thickness; see Figure 5.11(a).

Figure 5.11(b) shows a missing section (having zero probability) around 1.4 < h/h0 < 1.8 at

t = 30 µs. The same missing section moves to the right (to 1.5 < h/h0 < 2.0) at t = 40 µs,

and finally vanishes at 50 µs. These sections – marked as the “first breakup” – coincide

with the places where the sudden decline in the average jet size was seen in Figure 5.10 for

Weg = 7250, explaining the oscillations in the average spray width. The missing section

appears since some part of the liquid jet (ligament, bridge or droplet) detaches from the

jet core into the gas flow, leaving behind a vertical gap empty of any liquid surface at the

breakup location, as shown in the sequential liquid surface images in Figure 5.12.

The lobes form and stretch until about 25 µs, resulting in an increase in the average sheet

thickness. At 30 µs (Figure 5.12b), the bridge breaks from the lobe and creates a gap

near the detachment location, where there are no liquid elements. Therefore, the average

spray width suddenly drops at that instant, even though the distance of the farthest liquid

element from the centerplane is still growing; i.e. the intersection of the PDF curves with the

horizontal axis in Figure 5.11(b) moves to the right. While the detached liquid blob moves
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away from the interface, the jet surface stretches outward again due to KH instability; the

missing zone moves outward following this motion (Figure 5.12c). The average spray width

grows again when the new lobes and ligaments stretch enough to compensate for the broken

(missing) section. At this time, the lobes and ligaments fill in the missing gap while the

broken liquid structures advect farther from the interface, as shown in Figure 5.12(d) at

50 µs. Figure 5.12 also shows that the instabilities start from a symmetric distribution

but gradually move towards an antisymmetric mode (Figure 5.12d). The transition towards

antisymmetry is seen in all cases studied here and was explained in detail in Chapter 4 via

vortex dynamics analysis [98]. It was shown that transition towards antisymmetry is faster

for thin liquid sheets due to the higher induction of the KH vortices on the opposite sides of

the liquid surface. In practical atomization conditions, the antisymmetric mode has a higher

growth rate and thus eventually dominates the symmetric mode.

The PDFs and the average spray-width plots indicate the first instance of ligament/bridge

breakup, when the average spray width ζ starts to decline. Since the lower Weg has less

stretching and fewer ligament detachments at early time – due to the high surface tension –

its spike is less intense and also appears much later (about 55 µs). The higher Weg, however,

breaks much sooner, at about 27 µs.

Figure 5.12: Side view of the liquid sheet surface at t = 20 µs (a), 30 µs (b), 40 µs (c), and
50 µs (d); Rel = 2500, Weg = 7250, ρ̂ = 0.5, µ̂ = 0.0066, and Λ = 2.0. Gas flows from left
to right.
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There are also some later oscillations near the maximum spray width of the PDF plots (see

Figure 5.11), for all three cases. The reason for these spikes is explained using the liquid

iso-surface at 70 µs for Weg = 1500, illustrated in Figure 5.13. The planes 2.5h0 and 3.0h0

away from the centerline are marked with the red lines. Undulations in the PDF curve

occur in this range; see the blue line in Figure 5.11(a) marked as “containing droplets”.

This range is mostly empty of liquids, i.e. filled with gas, except for rare cells which contain

the occasional droplets or detached ligaments. In the spray PDF plot, the empty spaces

have zero or almost negligible probability, while other transverse heights containing liquid

droplets and broken ligaments have greater probability. Thus, waviness is seen in the spray

width probability distribution at later times and at greater distances from the centerplane.

Those spikes represent the droplets that are thrown outward from the jet core, as the spray

expands.

The reason for having non-zero probability for zero width in the PDF plots of Figure 5.11 can

also be assessed in Figure 5.13. Since the antisymmetric mode is dominant in the considered

range of Rel and Weg, the trough of the surface wave reaches the centerplane (indicated by

the broken black line in Figure 5.13) and even crosses it. Thus, after some time, non-zero

probabilities occur for the surfaces that intersect the centerplane.

Figure 5.13: Side-view of the liquid surface at t = 70 µs; Weg = 1500, Rel = 2500, ρ̂ = 0.5,
µ̂ = 0.0066, and Λ = 2.0. Gas flows from left to right.
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Figure 5.14: Temporal variation of the standard deviation of the dimensionless spray-width
PDFs of Fig. 5.11 for Weg = 1500, 7250, and 36, 000; Rel = 2500, ρ̂ = 0.5, µ̂ = 0.0066, and
Λ = 2.0.

Figure 5.14 shows the standard deviation of the spray-width PDFs of Figure 5.11. Initially,

the standard deviation is slightly below 0.2h0 = 10 µm, which is exactly equal to the peak-

to-peak amplitude of the initial perturbations. At early times, as the waves stretch in the

streamwise direction, their amplitude decreases; hence, a larger portion of the interface gets

closer to the initial sheet surface. This reduces the standard deviation of ζ. This reduction

is greater for lower Weg because of the stabilizing role of surface tension. Later, as the spray

expands, the distance between the outermost and the innermost liquid surface grows, and

the spray-width PDF gets wider; see Figure 5.11. The standard deviation increases with

increasing Weg. The rate of increase of standard deviation decreases at about 70 µs for the

highest Weg and at 90 µs for the lowest one. The reason for this change in pace is that,

beyond this point, some kind of saturation occurs in the computational box by the broken

liquid blobs that get too close to the top and bottom boundaries; notice that the liquid

particles cannot leave the box from the normal boundaries. This could clearly influence the

dynamics of atomization. Thus, the computations are not continued beyond 100 µs. A larger
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Figure 5.15: Effect of Rel on the temporal variation of the average dimensionless length scale
δ (a) and the average dimensionless spray width ζ (b); Weg = 7250, ρ̂ = 0.5, µ̂ = 0.0066,
and Λ = 2.0.

computational box is required if one would want to continue the analysis in time, but this

is not plausible for this study due to its computational cost.

5.2.3 Reynolds number effects

Practically, Rel should have a major effect on both the final droplet size and the spray angle

as well as the rate of spray expansion or liquid structure cascade, since both the inertia

and viscous effects are involved in these quantities. These effects are studied quantitatively

here. Three different Rel values are compared in this study; Rel = 1000, 2500, and 5000

– each representing one of the domains in the Weg vs. Rel plot with a particular breakup

characteristic, as defined in Figures 3.2 and 3.1. Rel = 5000 (in Domain III) and Rel = 1000

(in Domain I) have the stretching characteristics during the primary breakup, with and

without the corrugation formation, respectively. The Rel = 2500 case follows the hole/bridge

formation mechanism in Domain II.
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Figure 5.15(a) demonstrates the effects of Rel on the average length scale variation in time.

As expected, the liquid surface is stretched more in the streamwise direction with increasing

Rel, creating flatter surfaces early on. Thus, as Rel increases, relatively larger length scales

occur at early times. For higher Rel, the lobes stretch for a longer time before breakup,

yielding maximum length scale at a later time. The actual breakup process and decrease of

length scales occur later for higher Rel.

After the early injection period, the rate of cascade of the large liquid structures, e.g. lobes

and bridges, into smaller structures, e.g. corrugations, ligaments and droplets, is greater at

higher Rel, as observed from the mean slopes in Figure 5.15(a) in the downfall portion of the

plot. By decreasing the liquid viscosity, i.e. increasing Rel, with the other properties held

constant, the breakup occurs faster and the rate of cascade of length scales grows. This can

be attributed to the stabilizing effects of viscosity, which damps the small scale instabilities

at low Rel. Figure 5.15(a) also shows that Rel affects the ultimate mean length scale. Even

though the effect of Rel on the final length scale is not as significant as Weg, the magnified

subplot of Figure 5.15 shows that the asymptotic scale decreases from 0.11λ0 to 0.09λ0 as

Rel increases from 1000 to 5000. Even though the rate of cascade of length scales is larger

at higher Rel, the asymptotic length scale is achieved later for higher Rel since the largest

length scales are also larger for higher Rel. The mean length scale of the highest Rel case

just becomes smaller than the two lower Rel cases at about 75 µs. Negeed et al. [58] and

Desjardins & Pitsch [16] also qualitatively showed that the final droplet size decreases with

increasing Rel; however, they did not quantify the droplet size nor its cascade rate.

Even though the formation of lobes is not affected much by Rel, the ligaments and droplets

form notably later as Rel increases. This counter-intuitive fact is related to the process of

ligament and droplet formation. At a constant Weg, the ligament formation in the LoCLiD

process (Domain III) is slower than in the LoHBrLiD process (Domain II), and both are

slower than that in the LoLiD process (Domain I). All these cascade processes are explained
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Figure 5.16: PDF of the normalized length scales at t = 5 µs (solid lines) and 10 µs (dashed-
lines) for Rel = 1000 (red line), Rel = 2500 (black line), and Rel = 5000 (blue line);
Weg = 7250, ρ̂ = 0.5, µ̂ = 0.0066, and Λ = 2.0.

via vortex dynamics in Chapter 4 [98]. It was shown that the formation of corrugations

at higher Rel takes longer and requires downstream advection of the split KH vortex by a

distance of one wavelength (≈ 100 µm), until the hairpin vortices get undulated and induce

the corrugations. The LoHBrLiD process, on the other hand, requires only stretching and

overlapping of the hairpins over the KH vortices, which occur faster. The LoLiD mechanism

involves cross-flow advection of the KH vortices, which occurs slightly more quickly. However,

the droplets formed in the LoCLiD process are smaller than in the other two processes, and

the LoLiD process results in the thickest ligaments and the largest droplets.

To better understand the difference in the mean length scale for the three Rel cases at

early injection stage, the length scale PDFs for these cases are plotted at 5 µs and 10 µs in

Figure 5.16. Both times are within the initial injection period when the maximum length

scale occurs; see Figure 5.15(a). The Rel = 1000, 2500, and 5000 cases are shown by red,

black, and blue lines in Figure 5.16, respectively. The PDFs are denoted by solid lines at
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5 µs and by dashed lines at 10 µs.

The highest Rel (blue line) has the highest probability of larger length scales (L/λ0 > 2.0)

at both 5 µs and 10 µs, confirming the earlier claim that higher Rel causes more stretched

surfaces and larger scales (less curved surfaces) early on. Even though the maximum distri-

bution of the length scales moves to smaller scales from 5 µs to 10 µs for Rel = 5000, the

average scale still grows, as shown in Figure 5.15(a). In particular, a large population of the

cells contains surfaces with very large length scales. As Rel decreases, transition towards

smaller scales occurs faster at these early times. Therefore, the mean length scale decreases

sooner for lower Rel. Clearly, there are two factors in determining the mean length scale:

the sizes of the smallest and largest length scales, and the population of those scales. At an

early stage, i.e. t < 10 µs, the smallest as well as the largest length scales are the same for

all cases; however, it is the population of those small scales compared to the large ones that

determines the mean scale. Since there are more large scales at higher Rel, more time is

needed for those structures to cascade to smaller scales; thereby, the mean length scale keeps

growing for a longer period at higher Rel. After this initial period, however, the cascade is

faster for the higher Rel because of the lower viscous resistance against surface deformation;

therefore, the smallest bin gets populated at a higher rate.

There are two distinct spikes in the length-scale PDFs of Figure 5.16 at 5 µs – one at a low

Figure 5.17: Liquid surface at t = 5 µs from a side view (a), and top view (b); Rel = 1000,
Weg = 7250, ρ̂ = 0.5, µ̂ = 0.0066, and Λ = 2.0.
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scale of approximately L = 0.08λ0 = 8 µm, and another with lower probability but larger

scale of L = 0.8λ0 = 80 µm for Rel = 1000. Similar two spikes are seen for other Rel cases

at an early time. The cause of the two spikes is shown in Figure 5.17. The smaller scale

represents the radius of curvature of the streamwise KH wave crest, which has the largest

probability because this length scale exists for many cells along the spanwise direction on

the front edge of the waves. This is shown in the side-view of Figure 5.17(a). The other

spike with the larger length scale but smaller probability applies to the radius of curvature

of the spanwise waves. These points are indicated on the top-view of Figure 5.17(b). This

length scale occurs for all the cells near the tip of the protruded liquid lobe.

The conclusion from the above results is that there are two stages in the liquid-sheet distor-

tion: (i) the initial stage of distortion when the lengths grow, and (ii) the final asymptote

in time. Viscosity but not surface tension is dominant in the first stage, which is inertially

driven, while surface tension more than viscosity affects the mean scale at the latter stage.

Figure 5.15(b) shows the effects of liquid viscosity on the jet width. Since liquid inertia

dominates the viscous effects at higher Rel, the spray is oriented more in the streamwise

direction, and the mean spray width and accordingly the spray angle are smaller at higher

Rel. This is consistent with both numerical simulations [34] and experimental results [7, 54].

Mansour & Chigier [54] and Carvalho et al. [7] showed that the spray angle is reduced by

increasing the liquid velocity (or mass flowrate); i.e. increasing Rel. However, they only

reported the final spray angle, but did not address its temporal growth. We show here that

the growth rate of the spray angle (width) is lower at higher Rel. The expansion of the

spray starts much sooner in Domain I than in Domains II and III, and the asymptotic spray

growth rate, indicated by the slopes in Figure 5.15(b), is lower for higher Rel.

Even though both the lowest and the highest Rel cases produce similar lobe stretching

mechanisms, there is a significant difference in their spray expansion. At high Rel, the

corrugations on the lobes stretch into streamwise ligaments, resulting in thinner and hence
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Figure 5.18: Liquid surface at t = 70 µs from a side view for Rel = 1000 (a), and Rel = 5000
(b); Weg = 7250, ρ̂ = 0.5, µ̂ = 0.0066, and Λ = 2.0. The red lines indicate the qualitative
form and angle of the ligaments.

shorter ligaments. The time lapse between ligament formation and ligament breakup is much

shorter in Domain III since the ligaments are generally shorter and need less time to thin

and break. At low Rel, on the other hand, the lobes directly stretch into ligaments, and

the stretching is oriented in the transverse (normal) direction as the viscous forces resist

streamwise stretching caused by the inertia. It takes more time for the ligaments to break

up into droplets. The ligaments are generally thicker and longer, as also shown for low Rel by

Marmottant & Villermaux [55]. This difference originates from the difference in the vortex

structures of these two regimes, and shows that these two mechanisms have different causes

from vortex dynamics perspective. As explained in Chapter 4, streamwise vortex stretching

is stronger at higher Rel, resulting in streamwise oriented ligaments.

The difference in the jet expansion rate at low and highRel manifests in the angle of ligaments

that grow out of the liquid surface. This is clearly illustrated in Figure 5.18, where the liquid

surface at a low Rel (Figure 5.18a) and high Rel (Figure 5.18b) are shown at 70 µs. The

overall shape of ligaments is denoted by the red lines in this figure, and the average angle of

the ligament tips (measured from the streamwise direction) are also indicated. At high Rel,

the lower viscous forces on the ligaments are not able to overcome the relatively high gas

momentum, and the ligament angle decreases as it penetrates further into the gas. Thus, the
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transverse velocity is much smaller than the streamwise velocity and the angle is small (about

20o). On the other hand, the higher liquid viscosity at lower Rel balances the gas inertia

and opposes the streamwise stretching of the ligaments. Consequently, the ligament angle

increases as it penetrates further into the gas, resulting in a 50o angle at the ligament tip.

The ligament shapes can be attributed to the velocity profile – the boundary layer becomes

thinner and the velocity gradient in the z-direction becomes steeper as Rel increases. These

results are consistent with the temporal variation of ζ shown in Figure 5.15(b). Our results

correctly predict that the asymptotic jet expansion rate (dζ/dt) is higher at lower Rel. This

was not the case for jet expansion rate versus Weg. This confirms that the reason for faster

growth of jet width at higher Weg was mainly due to the fact that the droplets breakup faster

and can be carried away by the vortices near the interface, which is completely different from

the cause-and-effect of Rel.

5.2.4 Density-ratio effects

The effect of density ratio (ρ̂) on the average liquid-jet length scale is shown in Figure 5.19(a).

Three density ratios are studied in a range of 0.05 (low gas pressure) to 0.9 (high pressure

gas). The liquid Weber number, and thereby the surface tension coefficient, is kept the same

for all three cases; thus, Weg is also different for these three cases through gas density. The

lowest ρ̂ falls in Domain I, where lobes stretch directly into ligaments, and the other two

higher density ratios belong to Domain II, and involve hole and bridge formation in their

breakup.

ρ̂ has only a slight effect on the final length scale. All cases asymptotically reach a nearly

similar average length scale of about 0.1λ0, with the final length scale being slightly smaller

(≈ 0.09λ0) for the lowest ρ̂ (dash-dotted line in Figure 5.19a). Besides, ρ̂ clearly affects the

rate at which the ultimate length scale is achieved. The rate of length-scale cascade is higher
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at lower gas densities. As ρ̂ increases, the cascade of length scales becomes slower. The

asymptotic length scale is achieved at 64 µs for ρ̂ = 0.05, but at about 68 µs for ρ̂ = 0.5, and

at 70 µs for ρ̂ = 0.9. As denoted by the symbols in Figure 5.19(a), the rate of ligament and

droplet formation is notably affected by ρ̂. As ρ̂ grows, so that the Domain changes from I

to II, the ligament and droplet formation rates undergo a large jump. As ρ̂ keeps increasing

in the same Domain (II), the ligaments and droplets form faster, but the difference is not as

notable as the jump during the domain transition. Jarrahbashi et al. [34] also showed that

the drops form earlier at higher ρ̂; however, they did not address the relation between this

trend and the change in the breakup process. As gas density increases, the higher gas inertia

intensifies the hole formation, therefore expediting the formation of ligaments and droplets.

ρ̂ does not alter the initial length-scale growth rate significantly – the maximum scale occurs

at nearly the same time – which proves it to be correlated with the liquid inertia and not

the gas inertia. The asymptotic stage is also driven by the liquid inertia and is almost

independent of the gas density in the ρ̂ range considered here. As shown in Section 5.2.2,

Figure 5.19: Effect of density ratio on the temporal variation of the average dimensionless
length scale δ (a), and the average dimensionless spray width ζ (b); Rel = 2500, Wel =
14, 500, µ̂ = 0.0066, and Λ = 2.0.
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this stage is also correlated with surface tension. Therefore, the liquid Weber number (Wel)

and not the gas Weber number (Weg) is the key parameter in determining the asymptotic

droplet size – discussed more in this section.

Figure 5.19(b) shows the temporal variation of the average spray width for low, medium,

and high density ratios. ζ increases with increasing ρ̂, similar to the findings of Jarrahbashi

et al. [34] for round jets. The jet with the highest ρ̂ (solid line in Figure 5.19b), which

approximates a homogeneous liquid jet, expands much more rapidly than the case with

smaller ρ̂ (dash-dotted line). The spray width grows from its initial thickness at 10 µs for

the highest ρ̂, while the expansion is postponed to 46 µs for the lowest ρ̂. Some researchers

have reported growth of the spray angle with increasing ρ̂ or gas-to-liquid momentum ratio

[7, 34] – based on the final stage of the fully-developed jet – but none has shown the temporal

growth of the spray to be correlated with ρ̂. Our results show that the jet expansion rate is

also higher at higher ρ̂.

Even though the average spray expansion rate is lower for lower gas densities, the asymptotic

expansion rate is nearly the same after a long time from the start of the injection, regardless

of ρ̂. This is seen from the slopes of the curves in Figure 5.19(b), which become approximately

equal near the end of the computations; i.e. the asymptotic slopes appear to be independent

of the gas density. Jarrahbashi et al. [34] also found that the spray expansion rate is higher

at higher ρ̂ for circular jets. However, they used the traditional definition for the jet size,

i.e. distance of the farthest continuous liquid structure from the centerline, which would be

ambiguous in some cases, as discussed.

The lower spread rate for low ρ̂ is directly related to the vortex dynamics near the interface.

The main cause of the lower expansion is the baroclinic effects which are drastically different

amongst the range of density ratios considered here. Due to the larger density gradient, the

baroclinic torque is higher at low gas densities. Thus, the vortex cores locate farther from

the interface [98]. The induced flow of the vortices away from the interface entrains more

209



Figure 5.20: Effects of density ratio and Wel on the temporal variation of the average
dimensionless length scale δ (a), and the average dimensionless spray width ζ (b); Rel = 2500,
Weg = 1500, µ̂ = 0.0066, and Λ = 2.0.

gas into the mixing layer and expedites the two-phase mixing [34]. However, if the vortices

remain closer to the interface, as in higher gas densities, KH roll-up occurs more vigorously,

causing a higher growth rate of the instabilities and a faster transverse expansion of the

jet. The detailed analysis of vortex dynamics and its connection with surface dynamics was

provided in Chapter 4.

Since an increase in ρ̂ increases the spray width and expansion rate, and the sheet expansion

is also directly proportional to the liquid We (shown in Section 5.2.2), both Wel and ρ̂

affect similarly the jet expansion. It is interesting now to examine the effects of We and ρ̂

combined with the gas-phase Weber number (Weg). This is delineated in Figure 5.20(b),

where the temporal evolution of the spray width for two cases that overlap at the same

point in the Weg–Rel map of Figure 3.2 are compared; both cases have the same Weg =

1500, but different ρ̂ and Wel. Since Weg = ρ̂Wel, ρ̂ and Wel should change in opposite

directions to keep Weg constant; i.e. as ρ̂ increases (increasing the jet expansion), Wel should

decrease (decreasing the jet expansion). Figure 5.20(b) shows that the two cases behave very
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similarly in temporal expansion; both sprays expand at almost the same time and at the

same asymptotic rate. The rate of ligament and droplet formation is also comparable in these

two cases – consistent with Equation (5.8) – where the ligament stretching time scale τs is

inversely proportional to Rel, but independent of the Weber number. Since both cases in

Figure 5.20 have equal Rel, their ligament stretching rates are also nearly equal. Therefore,

the two parameters, Wel and ρ̂, could be combined into a single parameter Weg for jet

expansion analysis. The gas inertia – and not the liquid inertia – and liquid surface tension

are the key parameters in determining the spray width. This confirms Weg to be the proper

choice for categorizing the liquid-jet breakup characteristics, as used in Chapter 3.

In Section 5.2.2, it was shown that a decrease in surface tension reduces the asymptotic

droplet size and the average liquid-structures length scale. ρ̂, however, has negligible effect

on the average length scale. Thus, Wel is expected to be the key factor in determining the

final droplet size. Figure 5.20(a) confirms this notion and shows that even though the two

cases have the same Weg, they manifest a significant difference in the cascade process and

the asymptotic length scale. Since the case with higher ρ̂ has a lower Wel – keeping Weg

constant – it produces larger average length scales and has a slower cascade. Thus, the liquid

inertia is also important for the liquid structure cascade. Even though two jets at the same

Rel and Weg exhibit the same atomization mechanism (both from Domain I), the length

scales of the resulting liquid structures depend on the density ratio. The lower gas density

would result in finer structures. In other words, the atomization domain only determines

the breakup quality (the type of process during the cascade), but other factors need to be

considered to control the quantitative characteristics of the atomization; e.g. droplet size

and structure length scales.
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Figure 5.21: Effect of viscosity ratio on the temporal variation of the average dimensionless
length scale δ (a), and the average dimensionless spray width ζ (b); Rel = 2500, Weg = 7250,
ρ̂ = 0.5, and Λ = 2.0.

5.2.5 Viscosity ratio effects

Stapper et al. [83] showed that viscosity ratio (µ̂) has little or no effect on the final droplet

size (i.e. Sauter mean diameter) of liquid jets. Here, the same conclusion is reached, as

shown in Figure 5.21(a). A wide range of viscosity ratios 0.0005 < µ̂ < 0.05 covering three

orders of magnitude are compared here. All cases follow the same cascade with an almost

identical rate. The cascade is delayed less than a few microseconds in the period 10–40 µs

for higher µ̂, but the small difference vanishes at later times. The asymptotic length scale is

the same for all viscosity ratios, i.e. about 0.1λ0 = 10 µm, and the rate of droplet formation

also remains the same regardless of µ̂. The gas viscosity is the least important factor in

determining the droplet size and has no effect on the structure stretching and length scale

growth in the initial stage; i.e. at t = 0–10 µs.

Moreover, µ̂ does not have a notable influence on the expansion rate of the sheet either. As

plotted in Figure 5.21(b), the sheet expands at the same time regardless of the gas viscosity.
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The growth rate of the sprays, i.e. the slopes of the curves in Figure 5.21(b), is also the same

at the end of the process for all viscosity ratios. The only minor difference is that the spray

growth gets delayed a few microseconds as gas viscosity increases. This minor variation

over three orders of magnitude µ̂ variation is insignificant. Therefore, the gas viscosity is not

important in determining the spray angle and its growth rate, as it was not also for the mean

droplet size. The importance of viscosity only manifests through Rel, where an increase in

the liquid viscosity, i.e. lowering Rel, increases the size of droplets and increases the spray

angle, as discussed in Section 5.2.3.

5.2.6 Sheet thickness effects

Senecal et al. [79] showed that ligament diameter is directly proportional to the initial sheet

thickness. Our results, illustrated in Figure 5.22(a), confirm their findings; the length scales

grow as the sheet thickens. For this comparison, two sheets of different widths have been

analyzed – a thin sheet of 50 µm thickness with Λ = 2.0 and a thicker sheet of 200 µm

thickness with Λ = 0.5. The initial perturbation wavelength is the same for both cases –

i.e. λ0 = 100 µm.

The cascade occurs much slower and the mean length scale oscillates more in its cascade

process for the thicker sheet; see Figure 5.22(a). The extra oscillations found in the thicker

sheet occur because the initial KH waves take more time to stretch and break into smaller

structures as sheet thickness increases. This is explained via vortex dynamics of the interface

deformation, where the two vortex layers on top and bottom of the sheet become farther apart

and more independent as the sheet becomes thicker. The interaction between the two vortex

layers is more intense for the thinner sheets – a simple consequence of Biot-Savart mutual

induction between the vortices in the two layers – and consequently the cascade occurs faster

under the local induction of these two vortex layers [98]. As the initial sinusoidal KH wave
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stretches in the streamwise direction, the curvature of the interface decreases and the mean

length scale grows; as the waves roll over the vortices and the lobes form, the mean length

scale decreases. If the waves dampen again, the length scale temporarily increases until the

next waves start to grow. The process of wave stretching and curling occurs continuously

until the lobes stretch enough to cascade into smaller structures; e.g. ligaments and droplets.

Because of the higher local induction of the KH vortex layers on top and bottom surfaces, the

transition towards antisymetry is also faster for thinner sheets, which helps bringing down

the length scales more quickly. The length scale keeps on decreasing until the asymptotic

length scale is achieved. Increasing sheet thickness also significantly delays the structure

formations on the sheet surfaces. The lobes and ligaments form respectively 40 µs and 60 µs

later on the thick sheet than on the thin sheet.

The asymptotic length scales for the thin and thick sheets are 0.1λ0 and 0.46λ0, respectively

– agreeing with the findings of Senecal et al. [79]. Based on their analytical study, the

ligament size should be directly proportional to the initial sheet thickness; thus, as the sheet

Figure 5.22: Effect of sheet thickness on the temporal variation of the average dimensionless
length scale δ (a), and the average dimensionless spray width ζ (b); Rel = 2500, Weg = 7250,
ρ̂ = 0.5, and µ̂ = 0.0066.
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becomes four times thicker, the mean ligaments size should increase by a factor of four. Since

the larger length scales caused by the curvature of the waves are also included in our mean

length scale calculation, the ratio of the mean length scale for the thick-to-thin sheets in our

case is about 4.6 – in fairly good agreement.

The spray expansion is significantly delayed as the sheet thickness increases; see Figure 5.22(b).

While the thin sheet expands at 20 µs, the expansion of the thicker jet does not start until

80 µs. Even though a thin sheet has higher growth rate at the early stages of spray forma-

tion, the thicker sheet achieves a comparable growth rate at its final stage. This is seen from

the slopes of the solid and dashed-lines in Figure 5.22(b) at the end of the processes, where

the slopes are quite equal. This major difference in the jet width is caused by the reduced

influence of the vortex layers in the thicker sheet, resulting in a slower shift towards anti-

symmetry as the vortex layers get farther apart. Since the mean spray width is normalized

by the initial sheet thickness, the absolute growth rate of the thicker sheet in the final phase

is much higher than the thin sheet. The instantaneous growth rates become the same after

the vortices have grown sufficiently and both sheets have become totally antisymmetric. At

this final stage, the vortices in the two layers are equally effective in influencing each other

via mutual induction and thus the effect is independent of the sheet thickness.

5.2.7 L32 calculation

In liquid-jet atomization, the injector designer is usually interested in the average size based

on mass distribution. Sauter mean diameter (SMD, d32) is an average of particle size,

defined as the diameter of a sphere that has the same volume/surface-area ratio as a particle

of interest, normally used in the literature for this purpose. SMD is calculated using the
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following equation;

SMD =
ΣiNid

3
i

ΣiNid2
i

, (5.11)

where Ni is the number of droplets per unit volume in size class i, and di is the droplet

diameter.

The main assumption in SMD calculation is that all the liquid particles are in form of

spherical droplets. For the early atomization period considered here, however, a combination

of droplets, ligaments and unbroken surfaces exist at the end of computations (see Figure 5.6).

Therefore, more than just the droplet diameter is considered for the measurement of the mean

length scale of the spray. Specifically, the Sauter mean diameter is generalized by considering

the scales (radius of curvature) of all the droplets, ligaments, waves, and any other liquid

structures either broken or still attached to the jet core. In this respect, we present the mean

length scale weighted on both spherical droplets (L32) and cylindrical ligaments (L21).

Similar to SMD (Equation 5.11), we calculate a mean based on the length scale Li and its

probability P (Li). This parameter, called L32, is defined as

L32 = 2
ΣiP (Li)L

3
i

ΣiP (Li)L2
i

. (5.12)

Since Li asymptotes to the droplet radius after all of the jet has broken into droplets, a

coefficient of 2 is multiplied in Equation (5.12) in order to make it comparable to the mean

diameter rather than radius. All the length scales greater than 100 µm are neglected in this

analysis since those length scales are much larger than even the largest droplet diameters and

instability wavelengths in our computations, and do not represent liquid structures but rather

some flat surface on the interface. Consequently, L32 is expected to be much larger than

SMD in such a parameter range. L32 is calculated after the length scales reach a constant
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Figure 5.23: Effects of Weg and Rel (a), and ρ̂ and µ̂ (b) on L32; Rel = 2500, Weg = 7250,
ρ̂ = 0.5, and µ̂ = 0.0066.

value at the end of the computations, and it is expected to reach SMD asymptotically at

later time.

The effects of Weg and Rel on L32 are shown in Figure 5.23(a). As expected, Weg has the

most significant influence on L32, where it decreases from 54.5 µm to less than 46 µm as Weg

is increased from 1500 to 36, 000. Even though this decrease is not as huge as was predicted

by Varga et al. [88] for SMD – since all the length scales are not attributed to droplets only

– its influence is more significant than of the other parameters. The dependence of SMD on

Weg as given by Varga et al. [88] is limited to a much smaller Weg range than considered

in our study. Our study shows that, at the higher range of Weg, the effect of Weg is not as

pronounced as at lower ranges, though certainly not negligible.

Increasing Rel also reduces L32, as shown in Figure 5.23(a). The difference in L32 is slightly

over three microns over the range of Rel considered in this study; i.e. 1000 < Rel < 5000.

However, Rel clearly influences L32 and the final droplet size, as was discussed in Sec-

tion 5.2.3. Both the range of L32 and its behavior with respect to Rel are in fair agreement
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with results of Lozano et al. [52]. The decrease in L32 becomes more gradual at high Rel.

Figure 5.23(b) shows the effects of ρ̂ and µ̂ on L32. Both parameters have very minor influence

on L32 compared to Rel and Weg; even though µ̂ changes over three orders of magnitude

and ρ̂ ranges from 0.05 to 0.9, the difference in L32 is only slightly over 1 µm. L32 slightly

increases with increasing ρ̂ and µ̂, where the rate of increase is higher at lower ρ̂ ranges. In

the ranges covered here, the dependence on ρ̂ becomes almost linear at high density ratios

(ρ̂ > 0.5), while the dependence on µ̂ is completely linear on the log-scale.

The results presented in Figure 5.23 identify the trend in length scale growth or decline for

the most important parameters; however, the differences are not very large compared to

SMD measurements available in the literature. The reason behind this observation is that

there are still many unbroken liquid structures with large scales in the flow field, which have

higher influence on the L32 and increase its value; thus, the L32 measurements end up much

closer to each other.

L32 is based on the assumption that the disintegrated elements are spherical droplets, and

it gives a volume-to-surface weighting. In the primary atomization period considered here,

however, much of the mass will be closer to cylinders (ligaments) rather than spheres. Thus,

a comparison between L21 (Equation 5.13) might be more suitable, as it gives the volume-

to-surface area weighting for a cylinder;

L21 = 2
ΣiP (Li)L

2
i

ΣiP (Li)Li
. (5.13)

Figure 5.24 shows that (as expected) L21 magnifies the difference between the non-dimensional

parameter values. Even though the trends of L21 and L32 are very similar, more than 12 µm

and 9 µm difference in the value of L21 is observed over the range of Weg and Rel considered

here, respectively. This indicates that the diameter of ligaments decreases significantly as
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Figure 5.24: Effects of Weg and Rel (a), and ρ̂ and µ̂ (b) on L21; Rel = 2500, Weg = 7250,
ρ̂ = 0.5, and µ̂ = 0.0066.

the atomization domain is moved from Domain I to Domain III, following an increase in Rel,

or as the atomization moves from Domain I to Domain II, due to an increase in Weg. Both

of these behaviors are in accordance with the characteristics of the atomization domains

and the form of ligaments introduced in these three domains; see Figure 3.1. Figure 5.24(b)

shows that in Domain II (Rel = 2500, Weg = 7250), lowering ρ̂ reduces the size of liga-

ments. This is consistent with the influence of ρ̂ on the KH vortex structures downstream

of the waves, as was indicated in Chapter 4. The lobe rims become thicker as ρ̂ increases,

resulting in thicker liquid bridges and consequently thicker ligaments after bridge breakup.

The effects of viscosity ratio on the size of ligaments can be neglected compared to the other

parameters. Viscosity ratio was also shown to have no effect on the atomization mechanisms

and the vortex dynamics near the interface (Chapters 3 and 4).

The use of the approximation Rd ≈ 1.67R1 (introduced earlier) yields a new L32 ≈ 1.67L21

for droplets formed from these ligaments. This new L32 is notably smaller than the values

in Figure 5.23.
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5.2.8 Spray angle

Even though it is not possible to directly measure the spray angle in temporal studies like

ours, we have calculated the spray angle using the spray width and length in this section. The

spray angle α is twice the half-angle θ, as shown in Figure 5.25. The spray width (hmax) can

be measured at any time from the simulations. The distance that the liquid jet has traveled

(penetration length, l), however, needs further analysis, since it cannot be measured directly.

The penetration length of the jet at any instance can be obtained by integrating the jet

convective velocity (Uc) from the beginning of the simulation; i.e. l =
∫ t

0
Ucdt. Uc is the liquid-

jet convective velocity, also known as Dimotakis velocity [17], Uc = (Ul +
√
ρ̂Ug)/(1 +

√
ρ̂).

The convective velocity represents the velocity of the interface at the base of KH waves.

Since the liquid velocity Ul grows with time, Uc is not constant and needs to be measured

at every time step. The spray angle can then be calculated from the following relation;

α = 2θ = 2 tan−1

(
hmax − h0

2l

)
. (5.14)

Using Equation (5.14), the spray angle is measured in time and is presented in Figure 5.26.

In these plots, the values are for the converged value of the spray angle, after which the angle

remains almost constant in time.

As shown in Figure 5.26(a), Rel has the most significant impact on the spray angle, which

Figure 5.25: Definition of the spray angle, penetration length, and expanded width.
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Figure 5.26: Spray angle α as a function of Weg and Rel (a), and ρ̂ and µ̂ (b); Rel = 2500,
Weg = 7250, ρ̂ = 0.5, and µ̂ = 0.0066.

decreases with increasing Rel, but less so at higher Rel. Both the range of spray angle and

its trend are in good agreement with the experimental results of Mansour & Chigier [54] and

Carvalho et al. [7] at high liquid mass flow rate. Both of these studies show that α becomes

almost independent of the mass flow rate (or Rel) at very high liquid velocity (or Rel). In

our results, α decreases from 41◦ to about 13◦ as Rel increases from 1000 to 5000, because

of the reasons that were detailed in discussion of Figure 5.18. As was shown for low Rel,

the ligaments bend and grow normally away from the surface, thus increasing the transverse

expansion of the spray and the spray angle. It was shown in Chapter 4 that the KH vortices

convect away from the interface faster in domain I (low Rel) compared to domains II and

III. Thus, as Rel increases and the breakup regime moves from domain I to domains II and

III, the vortices remain closer to the interface and the transverse growth is hindered.

Weg has an opposite effect on the spray angle compared to Rel (Figure 5.26a). The increase

in Weg increases the spray angle, but this variation becomes less effective at higher Weg.

At very low Weg, the surface tension is very large and prevents the transverse growth of the

instabilities, which results in small α. As Weg increases, the instability growth rate increases
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– due to the smaller surface tension resistance – and the spray angle increases. Since the

breakup of ligaments occurs faster at high Weg, the broken ligaments and droplets can be

easily carried in the transverse direction by the gas flow; this increases the spray angle. The

far-field gas stream bounds the transverse growth of the spray, and prevents the spray angle

from growing indefinitely with increasing Weg; thus, the spray angle grows very gradually

at very large Weg. Also, as Weg increases, the breakup regime of the liquid jet moves from

Domains I/III to Domain II (Figure 3.2), where the movement of vortical structures are

mostly in the normal direction [98]. This contributes to increase of α.

Figure 5.26(b) shows that ρ̂ also has a significant effect on the spray angle, but µ̂ effects

are almost negligible. The effect of density ratio on the growth of instabilities and spray

angle is consistent with vortex dynamics analyses of Hoepffner et al. [29] and Zandian et

al. [98]. Both theses studies show that at higher density ratios, the KH vortex remains

closely downstream of the KH waves and rolls up the KH waves and increases the growth

of instabilities. At low ρ̂ on the other hand, the downstream KH vortex fails to roll gas and

liquid together, but takes the form of a gas vortex sheltered from the main stream by the

liquid body of the wave [29]. The wave grows a tongue which undergoes flapping. Liquid

drops are torn from the wave through this flapping motion, and sent partly off to the gas

stream and partly into the vortex core. The droplets are mostly convected in the streamwise

direction; thus, the spray width and the spray angle become smaller than in the higher ρ̂

cases. As ρ̂ decreases further, the vortices become smaller and α decreases. Since the vortices

cannot decrease indefinitely, the change in α becomes almost negligible at very low ρ̂. The

effect of ρ̂ on spray angle, as given in Figure 5.26(b), agrees with experimental results of

Mansour & Chigier [54], where they showed that increasing the gas pressure (gas density)

for a fixed liquid flow rate increased the spray angle.
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Table 5.1: Summarized effects of non-dimensional parameters on quantities of interest.

Quantity L32 & L21 Cascade rate Spray angle

Weg ↑ ↓ ↑ ↑
Rel ↑ ↓ ↑ ↓
ρ̂ ↑ ↑ ↓ ↑
µ̂ ↑ ↑ – –

Λ ↑ ↓ ↑ ↑

5.3 Conclusions

Two PDFs were formed for the liquid-structure length scale and the spray width from the

numerical data that was obtained from a transient 3D DNS on a liquid-sheet segment. The

PDFs provided statistical information about the length-scale distribution and the qualitative

number density of ligaments/droplets during early liquid-jet atomization. The temporal

variation of the mean of the PDFs gave the rate of cascade of liquid structures in different

atomization domains. The mean and PDF of the spray width also showed the first instance

of lobe and ligament breakup. The effects of gas Weber number (Weg), liquid Reynolds

number (Rel), density ratio (ρ̂), viscosity ratio (µ̂), and wavelength-to-sheet-thickness ratio

(Λ) on the mean length scale, the cascade rate, and the spray angle are quantified and

summarized in Table 5.1. The size of arrows in this table indicate the relative significance

of the change.

As the resistance of surface tension forces against surface deformation decreases by increasing

Weg, the droplet size decreases, the cascade of structures and ligament breakup occur faster,

and the spray width as well as the liquid surface area grow at higher rates. The initial growth

of the length scales due to the stretching of the waves and lobes is affected by liquid inertia

more than by the surface tension, as higher inertia results in a more vigorous and prolonged
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Table 5.2: Summarized effects of Domain change on quantities of interest.

Domains L32 & L21 Cascade rate Spray angle

I → II ↓ ↑ ↑

II → III ↓ ↑ ↓
I → III ↓ ↑ ↓

stretching and more flat surfaces. The asymptotic stage of length scale cascade, on the other

hand, is affected mostly by surface tension and liquid inertia, but less by liquid viscosity.

The liquid-structure cascade rate is significantly increased by increasing Rel as the viscous

resistance against surface deformation decreases. The spray width is larger at lower Rel,

and the spray angle and the spray spread rate decreases as Rel increases – attributed to the

change in the angle of ligaments that stretch out of the sheet surface. Gas-to-liquid density

ratio has minor influence on the final length scale, but the cascade occurs slower as density

ratio increases. Gas inertia and liquid surface tension are the key parameters affecting the

spray width, where it grows significantly with increasing gas density. Viscosity ratio has

negligible effect on both the spray width and the final droplet size. Increasing the sheet

thickness, however, decreases both the normalized spray width and its growth rate, while

decreasing the structure cascade rate and producing larger droplets.

The cascade process and the spray expansion rate are decoupled for different atomization

domains, and the trend of these quantities following the transition between the atomization

domains is summarized in Table 5.2. Differences were notable for the length-scale distribution

and spray expansion, which were correlated with the vortex structures at each domain. The

times of length-scale cascade and sheet expansion were related to the formation of various

liquid structures, showing that the ligament and droplet formation occurs faster at higher

density ratios.
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Chapter 6

Spatially developing coaxial jet

When a liquid jet discharges into a gaseous medium, it becomes unstable and breaks into

droplets due to the growth of instabilities. In combustion and jet propulsion applications,

the common purpose of breaking a liquid stream into spray is to increase the liquid surface

area so that subsequent heat and mass transfer can be increased. Even though the liquid jet

breakup has been studied theoretically, experimentally and numerically for more than half a

century, the liquid surface deformation mechanisms and its causes are still not satisfactorily

understood and categorized at different flow conditions. In this chapter, a spatially develop-

ing round liquid jet with slower coaxial gas flow is analyzed numerically. The main objective

here is to examine the interaction of the vortices near the liquid-gas interface, and to see

how those interactions vary with gas-to-liquid velocity ratio, and their consequent effects on

the surface deformation and growth of instabilities.
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6.1 Problem description

Lasheras and Hopfinger [43] in their review of the liquid-jet atomization in a coaxial gas

stream, categorized the regimes of liquid-jet breakup and showed the effects of gas-to-liquid

momentum ratio on those regimes (Figure 1.10). However, they did not relate those regimes

to the dynamics of vortices generated prior to atomization. Shinjo and Umemura [80] briefly

touched upon the axial and radial vortices generated in a round liquid-jet atomization process

(without coaxial flow) and showed that the orientation of vortices determines the orientation

of ligaments created during the primary breakup; however, they mainly focused on the vor-

tices near the jet tip and claimed that the primary breakup is mainly affected by the vortices

that are convected upstream from the jet tip, without detailing the vortex interactions. More

recently, Jarrahbashi & Sirignano [33] and Jarrahbashi et al. [34] studied the details of vortex

dynamics in a temporal study of a round liquid jet segment, and showed that the vortices can

also form far upstream of the jet cap, independent of the vortices shed behind the cap region.

They were able to relate the vortex interactions to the surface deformation, lobe formation

and perforation. In Chapter 4, we extended the vortex dynamics analysis to the atomization

of planar liquid sheets. Three main atomization regimes were identified in Chapter 3 with

different characteristic length and time scales and unique breakup mechanisms based only

on the liquid Reynolds number (Rel) and gas Weber number (Weg). It was shown that

one can understand each breakup mechanism by following the vortex interactions near the

gas-liquid interface. Ling et al. [50] also observed the hairpin vortex structures emphasized

by us (Chapter 4) at the surface of a spatial liquid jet, but failed to explain the details of

those vortex interactions.

Here, we perform an analysis similar to what was presented in Chapter 4, but with inclusion

of a slow coaxial gas flow and for a spatially developing jet. This study also shows the

validity of the prior temporal studies and their relevance to a real atomization application.
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6.1.1 Flow Configuration

The 3D computational domain forms a rectangular box, which is discretized into uniform-

sized cells. The domain is initially filled with quiescent gas. The liquid jet of diameter

D = 200 µm is injected from the left boundary at time zero with a constant velocity of

Ul = 50 m/s. The domain size is 15D × 6D × 6D, in the x (axial), y and z (radial)

directions, respectively. The coaxial gas stream fills the rest of the inlet boundary with a

constant velocity of Ug = 5, 10, and 25 m/s resulting in velocity ratios of Û = 0.1, 0.2 and

0.5, respectively. The other sides are outlet boundaries, where the Lagrangian derivatives

of the velocity components are set to zero. A similar axisymmetric (2D) domain is also

considered and solved for comparison, where necessary.

The most important dimensionless groupings in this study are the liquid Reynolds number

(Rel), the gas Weber number (Weg), and gas-to-liquid density ratio (ρ̂), viscosity ratio (µ̂),

and velocity ratio (Û), as defined below.

Rel =
ρlUR

µl
, Weg =

ρgU
2R

σ
, ρ̂ =

ρg
ρl
, µ̂ =

µg
µl
, Û =

Ug
Ul
. (6.1)

The jet radius R is the characteristic length, and for the characteristic velocity the liquid jet

velocity Ul is mainly used in the literature. However, our results show that the more relevant

characteristic velocity in this problem is the relative velocity of the liquid with respect to

gas; i.e. Ur = Ul−Ug. The subscripts l and g refer to the liquid and gas, respectively. In this

study we mainly focus on Û effects and for this purpose the three values indicated above are

considered. For the other four parameters, the chosen values are kept constant: Rel = 2000,

Weg = 420, ρ̂ = 0.05, and µ̂ = 0.01.

Our goal is to study the vortex dynamics and its influence on the liquid surface dynamics in

order to understand breakup mechanisms at different coaxial flow conditions. To this end,
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the λ2 criterion introduced by Jeong & Hussain [36] is used to define a vortex.

6.2 Results and Discussion

6.2.1 Surface deformation regions

Two types of surface perturbations are distinguished when a liquid jet is injected in a gaseous

medium. These two surface deformations and their regions of occurrence are shown schemat-

ically in Figure 6.1 and the 3D simulation result shown in Figure 6.2. The detached droplets

and ligaments have been removed in Figure 6.2 to better display the surface waves on the

liquid-jet core. The first region is right behind the jet start-up cap, to the right of the broken

red line in Figure 6.1, and is called the Behind the Cap Region (BCR). In this region, the gas

phase velocity is faster compared to the liquid jet and thus, the relative local velocity of the

gas stream points downstream. The gas shear creates negative azimuthal vorticity (ωz) near

the interface, which generates KH vortices and consequently downstream facing KH waves,

as shown in Figure 6.3. The vortices in this region are encapsulated inside the recirculation

Figure 6.1: Schematic of Vortex regions and
wave transmission paths.

Figure 6.2: Liquid jet surface showing differ-
ent instability types and their propagation
directions; Û = 0.1.
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Figure 6.3: Azimuthal vorticity (ωz) contours and the various vortices generated near the
interface in the axisymmetric jet; Û = 0.1.

zone behind the cap – the region inside the box in Figure 6.3 – and the surface deformations

are directly related to the dynamics of the growing cap and can be explained by the vortex

interactions in that region. Shinjo & Umemura [80] briefly discussed this region in their 3D

simulation of a round liquid jet with no coaxial flow, and while describing that the vortex

dynamics in this region are very complex, they showed that the vortex orientation deter-

mines the orientation of the ligaments that are broken from the cap. The surface pattern is

not periodic in BCR. Even though this region is not the main focus of our study, kinematics

of the cap and the BCR waves are analyzed in a later section.

The second kind of surface deformations occurs farther upstream of the cap, to the left of

the broken red line in Figure 6.1, and is called the Upstream Region (UR). In this region, the

liquid-phase velocity is faster than the gas, and the relative gas velocity points upstream.

The gas shear creates positive azimuthal vorticity which creates KH vortices that roll-up

the liquid surface and generate upstream facing KH wave pattern. As also mentioned by

Shinjo and Umemura [80], relatively periodic wave patterns can be observed in this region.

They claim that the UR dynamics are highly affected by the BCR dynamics since the shed

vortices and the broken droplets are transmitted upstream from the jet cap. However, our

analysis shows that the vortices shed from the cap rim mainly affect the droplet propagation
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in the downstream region and are far from the interface and have minor interactions with the

UR KH waves (see Figure 6.3); thus, the surface dynamics in UR can be studied separately

from the BCR in a temporal analysis with periodic boundary conditions similar to studies

presented in Chapters 3–5.

As shown in Figures 6.1–6.3, a large indentation exists between the UR and BCR regions.

This indentation is caused by the radially inward gas flow which impinges on the jet stem

upstream of the cap. The gas stream then branches into two opposite streams, one flowing

downstream and the other upstream in the frame of reference of the jet. The same indentation

was also observed in results of Shinjo and Umemura [80] (see their Fig. 15a), although

not emphasized by them. We draw the line between the two regions at the center of this

indentation. Shinjo and Umemura [80] however, did not identify an exact criterion for the

borderline between these two regions, and their BCR and UR regions overlapped at some

places and also stretched beyond our proposed segmentation line.

6.2.2 Waves kinematics

Figure 6.4 shows the time and length of the first KH perturbation occurrence at different

velocity ratios. Time has been non-dimensionalized by the injection velocity and jet diameter

(t∗ = Ult/D), and the length is normalized by the jet diameter. Both jet smooth length and

time increase substantially by increasing the coaxial gas velocity. The increase in the length

seems to be almost linear, which means that the perturbations are transmitted downstream

according to the gas stream velocity. However, the time at which the first perturbation

occurs gets delayed exponentially by increasing the velocity ratio.

Figure 6.5 compares the average length of surface waves in the axial direction for different Û

values. By increasing Û from 0.1 to 0.5, the average wavelength increases from 80 to 100 µm.

The effect of coaxial gas velocity on axial wavelength becomes less significant as Û increases.
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Figure 6.4: Non-dimensional time and distance of the first perturbation at different velocity
ratios.

Results of Figures 6.4 and 6.5 clearly indicate that the most relevant characteristic velocity in

coaxial injection problems is the relative velocity between the liquid and gas streams; i.e. Ur.

Thus, since obviously Rel is the same for all three cases, the most pertinent Reynolds number

Figure 6.5: Non-dimensional average KH wavelength for different velocity ratios.
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Figure 6.6: Definition of the tip length (Lt), the smooth region length (Ls), and the first
UR-KH-wave length (Lw).

should also be based on Ur and not the injection velocity as is used in many studies in the

literature. As Û decreases, hence Rel,r increases, axial wavelength decreases, as intuitively

expected.

Figure 6.6 schematically defines the length of the jet tip (Lt), the jet smooth length (Ls),

and the length of the first surface wave in the UR region (Lw), which are measured for three

Û cases in time in Figure 6.7. All of the lengths are measured from the injection plane and

all are normalized by the jet diameter. The average velocity of each length (in terms of the

fraction of Ul), measured from the slope of each trend, is also computed and presented on

the plots. The solid lines indicate the simple convection of the first perturbation with the

Dimotakis velocity Ud = (Ul +
√
ρ̂Ug)/(1 +

√
ρ̂).

In all cases, the wave speed follows the Dimotakis speed at early times after its appearance,

but it diverges and becomes slightly larger at later times. This divergence is more apparent

at lower Û . The smooth length also grows in time for all cases, but it is always below Lw.

Shinjo and Umemura [80] also observed a similar difference in the rate of smooth region

growth and the injection speed. They concluded that this difference means that the size of

the region of influence of the tip is spreading toward upstream as time passes. However, we

do not see a direct connection between these perturbations and the vortices generated in the
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(a) (b)

(c)

Figure 6.7: Temporal plot of Ls/D, Lt/D, and Lw/D for Û = 0.1 (a), Û = 0.2 (b), and
Û = 0.5 (c). The solid line indicates simple convection with Dimotakis velocity.

BCR, and the only conclusion that can be drawn here is that new instabilities keep forming

upstream of the initial perturbation, resulting in growth of the UR. We showed earlier that

UR is not much affected by the BCR and thus, the only reason for the upstream spreading

of the instabilities is concluded to be the increase in the strain rate on the surface after the

growth of the former KH waves. This triggers new KH vortices, which result in new waves

upstream. The rate of growth of the smooth length increases as Û increases.
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Figure 6.8: Change in roll-up direction of the KH wave as it moves from UR to BCR region;
Û = 0.2.

The tip velocity is always smaller than the wave speed. This means that the KH waves that

form in UR, finally enter BCR and catch up with the tip. The rate at which the KH waves

reach the tip is directly proportional to the difference between the tip speed and the wave

speed. This velocity difference becomes smaller at higher Û and thus, it takes more time for

the UR waves to merge with the cap and disappear. This happens at t∗ = 15 for Û = 0.1,

and at t∗ = 17.5 for Û = 0.2. For Û = 0.5, this catchup is so slow that the cap moves out of

the domain before the KH wave has enough time to reach it. When the UR waves get into

BCR, their roll-up direction changes since the relative gas stream direction changes. This

phenomenon is clearly shown in Figure 6.8, where the KH wave indicated by the black arrow

faces upstream at t∗ = 12.5 while it is in UR, becomes neutral as it enters BCR boundary

at t∗ = 13, and faces downstream while it is in BCR at t∗ = 13.5. Notice the formation of a

negative KH vortex just as the wave enters the BCR region.

6.2.3 Vortex dynamics of the coaxial jet

The liquid jet at a few time steps before the start of perturbations is shown in Figure 6.9.

The vortex structures indicated by the λ2 isosurface are also shown in the same figure at the

same time step. The vortices that are attached to the jet tip include the vortex structure

that covers the front of the jet cap (Tip Vortex), which is caused by the gas flow that goes

around the mushroom-shaped cap, and a vortex ring that is shed from the rim of the cap

(Rim Vortex), due to flapping of the rim. As discussed earlier, on the stem of the jet, there

234



Figure 6.9: Liquid-jet surface on the left and vortices indicated by λ2 = −1011 s−2 isosurface
on the right at t∗ = 5; Û = 0.2.

are two sets of oppositely oriented KH vortex rings which are formed due to the shear caused

by the entrained gas in the downstream and upstream directions. As seen in Figure 6.9, the

KH vortices deform and take a hairpin structure before the surface of the jet is deformed.

Figure 6.10, shows that the first liquid lobes are formed at the exact same location where

the KH vortices are turned streamwise and create a hairpin structure, at a later time. This

conveys that the vortex dynamics drives the surface dynamics, as was first identified by

Jarrahbashi et al. [34] and shown in Chapter 4. Even though these studies were temporal

with periodic conditions on a liquid segment, our spatial results show that the temporal

study of vortex dynamics can capture well the mechanisms in the UR region, where fairly

similar physical behaviors occur.

Figure 6.11 shows the liquid jet and its vortices at t∗ = 11.5 for Û = 0.1. The KH vortex rings

start from an axisymmetric form and grow and deform as they move downstream. Following

this change in the KH vortex structure, we can see that the initially axisymmetric KH waves

(closer to the nozzle) also become more corrugated as they move downstream. The mode
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Figure 6.10: Liquid jet surface at t∗ = 6; Û = 0.2.

number (azimuthal wavelength) of the lobes is directly related to the number of counter-

rotating streamwise vortex pairs that form as the KH vortices become streamwise oriented.

Thus, a detailed analysis of the causes of streamwise vortex generation and its growth rate

(similar to analyses of Jarrahbashi & Sirignano [33] for round jets and our analysis for planar

sheets in Chapter 4) can explain a lot regarding the future behavior of the lobes and their

Figure 6.11: Liquid-jet surface (a), and vortex structures indicated by λ2 = −1011 s−2

isosurface (b) at t∗ = 11.5; Û = 0.1.
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Figure 6.12: Liquid-jet surface and the axial vorticity (ωx) contours on the plane intersecting
the jet at x/D = 8.5 at t∗ = 11.5; Û = 0.1.

breakup mechanism and size of ligaments and droplets. This analysis will not be quantified

here, but the effects of velocity ratio on the mode number will be discussed qualitatively

here.

The axial vorticity (ωx) contours on a spanwise plane intersecting with the liquid jet stem

at x/D = 8.5 and x/D = 8.75 at t∗ = 11.5 (same time as Figure 6.11) are shown in

Figures 6.12 and 6.13, respectively. The plane in Figure 6.12 cuts the jet at the braid of one

of the newer KH waves slightly upstream of the former wave that is located at x/D = 8.75

and is the subject of Figure 6.13. Two layers of counter-rotating streamwise vorticity are

seen in Figure 6.12. The inner layer closer to the liquid surface is the hairpin vortex ring with

several counter-rotating axial vortices, a pair of which is indicated by the simple arrows. This

hairpin stretches upstream and over the next consecutive KH wave upstream of the current

wave. Right on the outer side of this vorticity layer is another layer of counter-rotating

vorticity, shown by double-lined arrows. Since these counter-rotating vortex pairs are 180◦

out of phase with respect to the inner layer, it is concluded that this layer belongs to another

hairpin vortex layer with opposite direction. This layer is called the outer hairpin layer and is
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Figure 6.13: Liquid-jet surface and the axial vorticity (ωx) contours on the plane intersecting
the jet at x/D = 8.75 at t∗ = 11.5; Û = 0.1.

stretched downstream and underneath the next downstream KH wave, shown in Figure 6.13.

The reason why much axial deflection is still not seen in this vortex ring in Figure 6.11 is

that the ωx magnitude is an order of magnitude smaller than the azimuthal vorticity (ωθ)

magnitude at this time. Even though the vorticity layers are not very neat and organized at

all azimuthal locations of this picture, seven counter-rotating vortex pairs are distinguished

in Figure 6.12, which indicates that seven lobes are expected to form on this KH wave later.

In the downstream cross-sectional plane shown in Figure 6.13, three counter-rotating axial

vortex layers are observed. The outer layer – indicated by thick arrows – is the outer hairpin

vortex layer for this new wave which stretches downstream. This hairpin layer is right on

the outer surface of the KH wave. Right on the inner side of this wave, there is another

layer of counter-rotating hairpin vortex, indicated as inner hairpin layer. This layer is the

same outer hairpin layer seen in Figure 6.12 and is stretched underneath the wave shown

in Figure 6.13. A comparison between the counter-rotating vortex pairs of these two layers

shows that they both belong to the same hairpin structure that wraps over the upstream

wave and under the next downstream wave. There is another vortex ring on the inner side
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Figure 6.14: Liquid-jet surface (blue) and vortex structures (gray) at t∗ = 12; Û = 0.1.

of this hairpin, which is less organized and more chaotic, but with smaller axial vorticity

component. This layer is part of the KH vortex located underneath the wave and slightly

deflected.

The effects of the counter-rotating axial vortex pairs shown in Figures 6.12 and 6.13 are

more clear at a later time (t∗ = 12) shown in Figure 6.14. When ωx grows enough to

become comparable to ωθ, 3D instabilities occur and the vortices lose their axisymmetry.

This phenomenon creates corrugations in the KH vortex ring and also larger axial stretch

on the hairpin vortices that are also stretched by the KH vortex. The corrugated KH vortex

and the hairpin vortex that stretches over it are shown in Figure 6.14. The inner hairpin

vortex is not clearly seen in this figure since the KH vortex and the liquid lobes on the outer

side of this hairpin block those hairpins from the view. As was shown in Chapter 4 [98],

overlapping of these oppositely oriented counter-rotating hairpins that are on the outer and

inner sides of the lobe, thins the lobe at its center and creates holes on the lobes. Thinning

of the lobes (wave) can be clearly seen in the cross-sectional view of the plane illustrated in

Figure 6.13.
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Figure 6.15: Liquid-jet surface at t∗ = 12.5; Û = 0.1.

Following the same wave at a later time (t∗ = 12.5), shown in Figure 6.15, it is seen that

holes form on the lobes and they expand as the lobes get stretched in the axial direction. The

liquid bridges that are formed around the lobe rim finally break and create the first ligaments,

which then break into droplets or detach from the jet core. Figure 6.15 also shows that there

are in fact seven liquid lobes on each KH wave, as was inferred earlier by the number of

counter-rotating axial vorticity pairs. Four of these lobes are already seen in this figure,

and the other three are on the hidden side of the jet stem, which are blocked in this view.

As we follow the jet structure at much later time (t∗ = 15.5 shown in Figure 6.16), we see

that the same hole formation and breakup mechanism repeats for other waves as well. This

confirms that the breakup mechanism on the jet stem in UR is periodic and occurs for all the

waves formed in that range until they reach the BCR region and break into droplets and/or

coalesce with the cap. This validates the temporal studies of Jarrahbashi et al. [33, 34] and

our own studies presented in Chapters 3–5. The formation of holes on the rim of the jet

cap (see Figure 6.15) is also conjectured to follow the same vortex overlapping mechanism,

where the overlapping vortices in that case are the tip vortex and the downstream KH vortex

(see Figure 6.9) as it runs along the inner side of the mushroom-shaped cap; however, these
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Figure 6.16: Liquid-jet surface at t∗ = 15.5; Û = 0.1.

vortex structures are much harder to follow and are not analyzed in this Chapter.

Based on Rel and Weg values of the current study, this jet (without coaxial gas flow) should

belong to Domain I as indicated in Chapter 3 (Figure 3.2). In Domain I, lobes stretch

directly into ligaments without formation of holes. The hole formation mechanism occurs in

Domain II, at higher ranges of Rel and Weg. Thus, we can conclude from this study that

addition of coaxial gas flow shifts the breakup mechanism, as this jet now belongs to Domain

II, which is consistent with the use of relative velocity for defining Weg and Rel.

The same jet with a higher velocity ratio is simulated and the results are depicted in Fig-

ure 6.17 for t∗ = 15 and 17. A few main differences are observed at a first glance between

these results and the lower Û cases. First, the azimuthal mode number has significantly

decreased from seven (for Û = 0.1) to four. Four liquid lobes are seen in this figure – one in

the front view, one on top, one on bottom, and one on the hind view which cannot be seen

here, following the four axial pairs of KH vortices shown in Figure 6.17(b,d). The next main

change is that the lobes, ligaments and cap rim seem much thicker compared to lower Û .

Because of this thickening in the lobe structures, the lobes do not thin easily and they are

stretched directly into thick ligaments. This means that the breakup mechanism has moved
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Figure 6.17: Liquid jet surface (a,c) and vortex structures (b,d) at t∗ = 15 (a,b) and t∗ = 17
(c,d); Û = 0.5. The surface of liquid jet is colored by the axial velocity contours.

from Domain II towards Domain I by increasing Û . This clearly shows that the Reynolds

and Weber numbers in such coaxial flow should be based on the relative gas-liquid veloc-

ity rather than just liquid jet velocity. By increasing Û , the relative velocity Ur decreases,

and thus, Rel,r and Weg,r decrease too. This decrease in the Reynolds and Weber numbers

is consistent with shifting from the hole formation breakup (Domain II) to lobe stretching

mechanism (Domain I), as predicted by our analysis in Chapter 3. Therefore, a more thor-

ough analysis of the effects of velocity ratio is required to generalize the breakup mechanisms

formerly developed for non-coaxial jet flows. This is left for a prospective study.

6.3 Conclusions

A three-dimensional round liquid jet with coaxial, outer gas flow is numerically analyzed.

The evolution of instabilities on the liquid-gas interface were observed to be correlated with

the vortex interactions around the liquid-gas interface using a λ2 analysis. Two main regions

were identified on the liquid jet separated by a large indentation on the jet stem with distin-

guished surface deformations. The Behind the Cap Region (BCR) is encapsulated inside the

recirculation zone behind the mushroom-shaped cap. The KH waves formed on the jet core

roll downstream in BCR and flow downstream until they coalesce with the cap. The vor-

tices and surface deformations in BCR are not periodic and are controlled by the dynamics

of vortices in the recirculation zone. The second region (Upstream Region, UR) is farther
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upstream of the cap. The gas speed is lower than the liquid jet in UR, and the shear caused

by this upstream flowing gas stream relative to the liquid triggers a KH instability. The

3D deformation of the initially axisymmetric KH vortices leads to several liquid lobes. The

lobes either thin and form holes at lower velocity ratios or stretch directly into elongated

ligaments at higher velocity ratios, which could be explained by the vortex interactions in the

UR region. The deformations developed in UR can be portrayed better in a frame moving

with the convective velocity of the liquid jet with periodic conditions. The azimuthal and

axial wavelengths of the instabilities and the breakup mechanism in UR can be well defined

using a Reynolds and Weber number based on the relative gas-liquid velocity. The temporal

study of the stem region (presented in Chapters 3–5) is legitamized by this study.
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Chapter 7

Summary and conclusions

The Navier-Stokes equations combined with level-set and volume-of-fluid surface tracking

methods were used to simulate the temporal behavior of a three-dimensional planar liquid jet

segment during primary atomization. The spatially developing full-jet calculations revealed

two regions on the liquid jet – a behind the cap region, where the surface deformation

and vortex dynamics are irregular, and an upstream region, where a periodic behavior is

witnessed in both surface dynamics and vortex dynamics near the interface. The spatial

calculations legitamized the temporal analysis on the liquid segment in the upstream region.

Three main atomization cascades were identified on the liquid sheet. The atomization char-

acteristics were well categorized on a parameter space of gas Weber number (Weg) versus

liquid Reynolds number (Rel). The gas-to-liquid density ratio affects the breakup process,

thereby making We based on liquid density less important as a correlation factor. The

atomization regime is now separated as three sub-domains. Atomization Domain I has

a lobe-ligament-droplet (LoLiD) cascade; Domain II involves a lobe-hole-bridge-ligament-

droplet (LoHBrLiD) cascade; and Domain III shows a lobe-corrugation-ligament-droplet

(LoCLiD) cascade.
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At high Rel, the breakup characteristics change based on a modified Ohnersorge number

(Ohm =
√
Weg/Rel). At high Ohm, the lobes thin and perforate to form bridges, which

eventually break into one or two ligaments. At lower Ohm, the hole formation is hindered and

instead, the lobe rims corrugate and stretch into small ligaments. There is also a transitional

region, where both mechanisms co-exist. The transition region at high Rel follows a constant

Ohm line.

At low Rel, the transitional region follows a hyperbolic function in the Weg–Rel plot. At

low Weg and low Rel, the lobes stretch directly into ligaments. The ligaments created in

this domain are fairly thick and long, and result in larger droplets. As Weg is increased

while keeping Rel low, the hole formation process prevails. Thus, the hole formation process

dominates over a wide range of low and high Rel, but only over moderate to high Weg.

Below a critical Weg, hole formation is completely hindered at all Rel. These atomization

cascades are independent of the jet geometry (planar or round). Furthermore, a very similar

correlation describes the boundaries between different atomization domains for the planar

and round jets.

Different characteristic time scales were introduced for the hole formation and lobe stretch-

ing – mainly related to the surface tension and liquid viscosity, respectively. At any flow

condition, the mechanism having a smaller characteristic time is the dominant process. In

the transitional region, both characteristic times are of the same order; thus, both mech-

anisms occur simultaneously and the cascade of liquid structures varies locally. The two

characteristic times are related to each other by Ohm, which involves the Weg and Rel.

The vortex dynamics of the planar liquid jet was analyzed and the relation between the sur-

face dynamics and the vortex dynamics is sought to explain the physics of different breakup

mechanisms that occur during primary atomization. A vortex has been defined using the λ2

criterion.
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Vortex dynamics is able to explain the hairpins formation. The interaction between the

hairpin vortices and the KH vortex explains the perforation of the lobes at moderate Rel

and high Weg, which is attributed to the overlapping of a pair of oppositely-oriented hairpin

vortices on top and bottom of the lobe. The formation of corrugations on the lobe front

edge at high Rel and low Weg is also explained by the structure that hairpins gain due to

the induction of the split KH vortices. At low Rel and low Weg, on the other hand, the

lobe perforation and corrugation formation are inhibited due to the high surface tension

and viscous forces, which damp the small scale corrugations and resist hole formation. The

hairpin vortices stretch in the normal direction while wrapping around the KH vortex. The

induced gas flow squeezes the lobe from the sides and forms a thick and long ligament. In

summary, the vortex dynamics analysis helps explain the three major atomization cascades

at different flow conditions. The atomization mechanisms for the planar jet are qualitatively

identical to the round-jet mechanisms.

Baroclinicity is the most important factor in generation of the streamwise vortices and man-

ifestation of 3D instabilities at low density ratios. At higher density ratios, the streamwise

vortices are mostly rendered by streamwise vortex stretching. The streamwise vorticity

growth is higher at higher density ratios, resulting in a faster appearance of 3D instabilities.

As density ratio is reduced, fewer lobes with less undulation form; hence, hole formation

prevails more at higher density ratios. The relation between vortex dynamics and surface

dynamics aids prediction of liquid-structure formations at different flow conditions and dif-

ferent stages of the primary atomization. This is very important in prediction and control

of the droplet size distribution in liquid-jet primary atomization.

The liquid-structure length scale cascade rate and jet spread rate were quantified during

primary atomization using two PDFs. The PDFs provided statistical information about the

length-scale distribution and the qualitative number density of ligaments/droplets during

early liquid-jet atomization. The temporal variation of the mean of the PDFs gave the rate
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of cascade of liquid structures in different atomization domains. The effects of gas Weber

number (Weg), liquid Reynolds number (Rel), density ratio (ρ̂), viscosity ratio (µ̂), and

wavelength-to-sheet-thickness ratio (Λ) on the mean length scale, the cascade rate, and the

spray angle were quantified.

As the resistance of surface tension forces against surface deformation decreases by increasing

Weg, the droplet size decreases, the cascade of structures and ligament breakup occur faster,

and the spray width as well as the liquid surface area grow at higher rates. The initial growth

of the length scales due to the stretching of the waves and lobes is affected by liquid inertia

more than by the surface tension, as higher inertia results in a more vigorous and prolonged

stretching and more flat surfaces. The asymptotic stage of length scale cascade, on the other

hand, is affected mostly by surface tension and liquid inertia, but less by liquid viscosity.

The liquid-structure cascade rate is significantly increased by increasing Rel as the viscous

resistance against surface deformation decreases. The spray width is larger at lower Rel,

and the spray angle and the spray spread rate decreases as Rel increases – attributed to the

change in the angle of ligaments that stretch out of the sheet surface. Gas-to-liquid density

ratio has minor influence on the final length scale, but the cascade occurs slower as density

ratio increases. Gas inertia and liquid surface tension are the key parameters affecting the

spray width, where it grows significantly with increasing gas density. Viscosity ratio has

negligible effect on both the spray width and the final droplet size. Increasing the sheet

thickness, however, decreases both the normalized spray width and its growth rate, while

decreasing the structure cascade rate and producing larger droplets.

The cascade process and the spray expansion rate are decoupled for different atomization

domains. Differences were notable for the length-scale distribution and spray expansion,

which were correlated with the vortex structures at each domain. The times of length-

scale cascade and sheet expansion were related to the formation of various liquid structures,

showing that the ligament and droplet formation occurs faster at higher density ratios.
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