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ABSTRACT OF THE THESIS

Towards Fast and Stable GAN via Free Adversarial Training

by

Jiachen Zhong

Master of Science in Computer Science

University of California, Los Angeles, 2020

Professor Cho-Jui Hsieh, Chair

State-of-the-art Generative Adversarial Network (GAN) often relies on stabilization methods

to stabilize the training by constraining the global Lipschitz continuity. However, the global

constraint may result in under-fitting and slow convergence. RobGAN [LH19] proposed a

method to control the local Lipschitz value by adversarial training and achieved improved

performance and convergence speed. However, the adversarial training procedure in Rob-

GAN leads to significantly increased computational time which makes RobGAN less useful

in practice.

In this thesis, we propose to improve the training speed of RobGAN by free adversarial

training. In addition, we improve the loss function to diminish the natural flaw of using auxil-

iary classifier in RobGAN. We evaluate our method on three datasets, CIFAR10, CIFAR100,

and IMAGENET-143. Compared with previous works, our methods lead to significant im-

provements in term of both generation quality and training time in all experiments on these

datasets. Moreover, we propose a new point to explain why adversarial training on the

discriminator can improve the training of GAN.
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CHAPTER 1

Introduction

The generative ability of machine, which is the ability to learn and reproduce statistically

similar data from given data samples, is always an important sign of machine intelligence.

In the machine learning field, generative models are often used to perform the generation

tasks by directly modeling the data distribution of given data samples. A good algorithm to

perform generative tasks is very important not only because it is a critical part of machine in-

telligence but also it is very useful in many applications. In handling those high dimensional

multimedia data like images, a very powerful generative method, Generative Adversarial

Network (GAN) [GPM14], has shown considerable success in recent years. Although many

research works in GAN have already achieved significant results, lots of problems still remain

unsolved. In real practice, GAN training is often very unstable and sensitive to almost every

aspect of hyperparameters setting. One factor leads the GAN success is the development

of the stabilization techniques, and spectral normalization [MKK18] is the most popular

stabilization technique which plays an important role in most of the state-of-the-art image

generation works of GAN [MKK18, ZGM18, BDS18]. Spectral normalization constrains the

global Lipschitz continuity to force the GAN training become stable, but the global Lips-

chitz constraints may lead the the model less expressive and consume more time to converge.

In real experiments, a complete training on relatively large scale dataset may take several

weeks to finish. To solve this problem, instead of constraining the global Lipschitz conti-

nuity, RobGAN [LH19] proposed to restrict the local Lipschitz value by using adversarial

training [MMS17] during the GAN training to speed up the training. However, using ad-

versarial training may also become a computational bottleneck which leaves the space for

further improvement.
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Following the footsteps of RobGAN [LH19], we propose a new method by combining the

free adversarial training [SNG19] to eliminate the computational bottleneck and improve

the training speed. In addition, since the RobGAN uses the auxiliary classifier [OOS17]

which may unwittingly lead the model to generate the samples that are easily classified and

cause the generated images to lose the diversity inside each class. To solve this problem, we

further improve the loss function format to eliminate this problem. Moreover, we conduct

the experiments on 3 datasets to verify our proposed method. Our new method consistently

outperforms prior works in term of generation quality and training speed in all experiments.

We also propose a new perspective of view to explain why adding adversarial training during

the training of GAN may help. The contributions can be summarized as follows:

1. We introduce a fast training method of GAN on conditional image generation tasks by

combining the free adversarial training [SNG19].

2. We improve the loss format in order to eliminate the disadvantage of using auxiliary

classifier.

3. We conduct the experiments on three datasets to verify our method, and perform

detail comparison in term of generation quality and training speed with prior strong

works [MKK18, LH19].

4. We propose a new perspective to explain why adding adversarial training to the dis-

criminator is able to help the overall GAN training.

2



CHAPTER 2

Background and Prior Works

In this section, some background information and important prior works of generative models

and GAN will be introduced. Moreover, one of the important prior work related to this

project, RobGAN [LH19], will be discussed in detail.

2.1 Generative Modeling

In machine learning field, types of models can be roughly divided into two categories, dis-

criminative and generative models. Given some data X with corresponding label Y , discrim-

inative models try to predict the conditional probability P (Y |X) whereas Generative models

try to model the joint probability P (X, Y ) if with labels, or P (X) if the data are unlabeled.

The task of discriminative models can be seen as drawing the decision boundary between

data while generative models directly approximate the overall data distribution. Generally

speaking, generative tasks is much more difficult than discriminative tasks. Some famous

examples of generative models are näıve Bayes, hidden Markov models (HMM), Markova

random field (MRF), Gaussian mixture models, auto-encoder, and GAN. Generative models

are very useful in a wide variety of applied science and engineering domains. Since the gen-

erative models directly approximate the distribution of data, one of the direct applications

of generative model is sampling. Another application of generative models is to perform

classification by combining with Bayes rules (e.g. naive Bayes, HMM, MRF). Before the

recent development of deep generative model (e.g. Variational Auto-Encoder(VAE) [KW13]

and GAN) classical generative models are often hard to handle the high-dimension data like

images, music, and videos, due to the model capacity. Classical generative models often
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can only learn discrete distributions whereas deep generative models could learn continue

distributions. With the development of deep learning, deep generative models are able to

perform very high fidelity multimedia data generation, which may even not be distinguished

by human-being [BDS18].

2.2 Generative Adversarial Network

Generative Adversarial Network (GAN) [GPM14] is a relatively new type of generative model

and it can be described as a adversarial game between two sides of computational models,

generator(G) and discriminator(D), which are usually neural networks in most of the GAN

related works. The game can be simply summarized in the following mathematical for-

mula (2.1):

min
G

max
D

E
x∼pdata

[logD(x)] + E
z∼pz

[log(1−D(G(z)))] (2.1)

where G and D are the two players. x are the real training samples from real data distribution

pdata, and z are the random latent codes from the simple distribution pz which can usually

be directly sampled, like uniform or normal distribution. The G tries to learn a good map

between pz and pdata in order to fool the D, and the D tries to distinguish whether the

current inputs are real data x or generated(fake) data from G. As D learns a better way

to distinguish the real and fake data, G learns a better ability to generate data which are

closer to the real data distribution. Therefore, after the training, G can be seen as an

approximation of the real data distribution. Moreover, since z is sampled from a simple

distribution, G can be efficiently used for sampling. In the real implementation, iteratively

updating G and D toward their own optimization goal via mini-batch stochastic gradient

descent (SGD) method is a very common way to perform the training of this adversarial

competition. Eq. 2.1 gives the most original form of GAN (we use the vanilla GAN to

denote it in the later content). The generation quality of this vanilla GAN form is usually

limited and its training process is unstable. To conquer these problems in vanilla GAN, many

researches have been conducted and they can be roughly divided into three lines: supervision

method, architecture exploration, and stabilization technologies which will be introduced in
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the following sections.

2.3 Supervision Method of GAN

The vanilla GAN can be seen as an unsupervised learning process since there is no super-

vised label information involved in the training. By adding supervised label information into

GAN training, the generation quality and stabilization of GAN can be improved. In image

generation researches, the tasks of utilizing label information are usually called conditional

image generation. In term of conditional image generation, there are several ways to utilize

label information for both G and D. Conditional GAN (CGAN) [MO14] is the first work

which directly feeds the one-hot class vector into both G and D. Later, feeding class infor-

mation into the hidden layer of networks is also explored in [RAY16]. GAN with auxiliary

classifier (ACGAN) [OOS17] utilizes an auxiliary classifier in D to further improve the effec-

tiveness of label information. More recently, conditional GAN with projection discriminator

(Projection-cGAN) [MK18] proposes the methods which use conditional batch normaliza-

tion [DSM17] to handle class information in G and use a learned embedding of classes to

project the label information in D. And this combination, conditional batch normalization

in G plus projection D , becomes a standard in the later works of large scale image gen-

eration tasks [MKK18, ZGM18, BDS18]. BigGAN [BDS18] further explored the ways of

utilizing conditional latent code in G by applying the shared embedding of conditional batch

normalization and the hierarchy latent code (also called skip-z). Moreover, self-supervised

GAN [CZR19] utilizes self-rotation label information to perform the self-supervised learning,

and it is successfully applied in the work [LTR19] for large scale semi-supervised conditional

image generation.

2.4 Architecture Exploration of GAN

In the vanilla GAN, both G and D are parameterized by fully connected neural networks.

This type of neural networks is not efficient and effective in image related tasks. Deep
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convolutional GAN (DCGAN) [RMC15] firstly uses the convolutional neural networks to

build G and D. Plug and Play Generative Network(PPGN) [NCB17] employs additional

pre-trained models to give additional objectives during the training. ProGAN [KAL17]

finds training high-resolution GAN can benefit from progressively increasing the resolution

during training a single model. In the recent researches of exploring GAN architectures, self-

attention GAN (SAGAN) [ZGM18] proposes the non-local (self-attention) blocks to improve

the capacity of both G and D which gives the network’s ability to modeling long-range

dependencies between image regions. Following the result of SAGAN, BigGAN [BDS18]

scales up the GAN architectures and finds a large batch size leads a better quality of GAN.

2.5 Stabilization Technologies of GAN

For stabilization technologies, one line is to find the alternative adversarial objective function

to enhance the convergence efficiency [ACB17, MLX17, LY17]. Another line for stabilizing

GAN training can be seen as a regularization strategy for enhancing the Lipschitz continuity

constraint of gradient during training. Wasserstein GAN (WGAN) [ACB17] proposes the

concept of Wasserstein distance which is a better alternative of the original probability format

loss. By using empirical weight clipping, WGAN is able to achieve a more stable training.

Following WGAN, WGAN with gradient penalty (WGAN-GP) [GAA17] further improves

the stability by using an improved gradient penalty method. Many other methods, weight

normalization [SK16], singular value clipping [SMS17], orthogonal regularization [BLR16],

orthogonal normalization [HLL18], also show benefits to improve the stability of training.

To the state-of-the-art regularization method, spectral normalization [MKK18] controls the

global Lipschitz continuity of networks by dynamically normalizing the parameters in each

layer with running estimates of first singular values, and it has been successfully applied

in large scale image generation tasks [MKK18, ZGM18, BDS18]. Instead of constraining

global Lipschitz continuity, RobGAN [LH19] proposes the methods which utilize adversarial

training [MMS17] to maintain the local Lipschitz value in order to lead a fast as well as

better convergence. Moreover, empirically, GAN training is relatively more stable under the
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imbalanced updates between G and D and this trick is used in training of many cutting edge

GAN models [MKK18, MK18, ZGM18, BDS18]. However, imbalanced updates trick may

cause extra computational costs. Two time-scale update rule (TTUR) [HRU17] uses different

learning rates between G and D to perform the balance and avoid repeated computational

costs. In practice, these two methods are usually used together.

2.6 RobGAN

RobGAN is a recently proposed method of training conditional GAN in image genera-

tion tasks. Without using methods to regularize the global Lipschitz continuity, RobGAN

empirically finds that constraining the local Lipschitz values by adding adversarial train-

ing [MMS17] in the training of GAN is able to speed up the overall convergence and improve

the generation quality. In order to perform the standard adversarial training, RobGAN uses

the auxiliary classifier [OOS17] in D to handle the label information. One drawback of

RobGAN is the computational bottleneck of the adversarial training. In this project, we

use the idea of free adversarial training [SNG19] to further reduce the computational cost

in the RobGAN training. Another problem of the RobGAN is the natural flaw of using the

auxiliary classifier which may lead the intra-class model collapse. We firstly introduce the

notations and review the training process of the original RobGAN in Alg. 1 and then extend

it to the ”fast” version in Chapter 3.1.

We firstly introduce the notations. We use X and Y to present the set of training samples

and labels; x (xf for fake, and xr for real), y and z to represent the mini-batch of samples,

labels, and latent noise sampled by function Batch(·); G and D to represent the generator

and discriminator parameterized by θG and θD; stepD to represent the number of updates

of the D per one update of the G; N(·) to represent the function to generate latent noise

z and labels yf for generated fake images; σ, ε, τ , and K to represent the perturbation,

perturbation bound, step size, and steps of L∞ PGD-attack [MMS17]; g to represent the

gradient; L to represent a general loss function for simplicity (i.e. L could be different under

different cases); η to represent the learning rate; U(·) to represent the uniform distribution.
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Algorithm 1: RobGAN Training

1 for iterations do

2 for stepD do

3 z, yf ← Batch(N(·))

4 xf ← G(z)

5 xr, yr ← Batch(X, Y )

6 σ ← U(−ε, ε)

7 for K do

8 gadv ← ∇(xr+σ)L[xr + σ, yr, θD]

9 σ ← σ + τ · sign(gadv)

10 σ ← clip(σ,−ε, ε)

11 end

12 grθD ← ∇θDL[xr + σ, yr, θD]

13 gfθD ← ∇θDL[xf , yf , θD]

14 θD ← θD − ηD · (grθD + gfθD)

15 end

16 z, yf ← Batch(N(·))

17 xf ← G(z)

18 gθG ← ∇θGL[xf , yf , θD, θG]

19 θG ← θG − ηG · gθG
20 end

As shown in the Alg. 1, the major difference compared with other GAN training as well as

the computational bottleneck in RobGAN is the K-step PGD-attack (row 7 to 10 in Alg. 1).

It requires K steps more forward and backward processes of D to construct the perturbation

σ. In the experiments of the RobGAN [LH19], stepD and K are both set to 5, which costs 25

forward processes of D to build the perturbation in 1 iteration. Another key improvement

of RobGAN is the new format of loss function which can be summarized in the following

8



Eq. 2.2:

LG = −E[log Pr(real|Db(xf ))]− E[log Pr(yf |Dc(xf ))]

LD = LrD + LfD
(2.2)

where LG and LD are the loss function of G and D to minimize; Db and Dc are the outputs of

D for performing fake/real adversarial classification and multi-classes classification (auxiliary

classifier). LrD and LfD are the loss function of D for real and fake data respectively. The

LG is same as the ACGAN [OOS17] and it aims to force the G to generate data close to real

samples conditionally. For LrD and LfD:

LrD = −E[log Pr(real|Db(xr + σ))− E[log Pr(yr|Dc(xr + σ))]

LfD = −E[log Pr(fake|Db(xf ))]
(2.3)

where σ is the perturbation. Same as ACGAN, LrD aims to push the D to recognize the real

data and predict its class labels. The major change of RobGAN from ACGAN loss is LfD
which only force D to distinguish the fake data without classifying them.

2.7 Evaluation Metrics of GAN

Different from discriminative tasks (e.g. classification or regression), it is hard to numerically

measure the quality of data generation, especially for high dimensional data like images.

A very direct way is to use human eyes for scoring the generated images but it is very

expensive, subjective, and hard to be applied to large amounts of data. Besides using

human force to evaluate, an idea is to use a pre-trained powerful computational model to

measure the quality. Currently, there are two popular and reliable methods which use pre-

trained Inception-V3 Network [SVI16]: Inception Scores (IS) [SGZ16] and Fréchet Inception

Distance (FID) [HRU17] which will be used in this project for evaluation methods. Both of

the methods utilize the statistic of the Inception Network’s outputs to perform evaluation

and they can be efficiently computed. IS aims to measure the realism and diversity of the

images. It can be described as the following mathematical form:

IS = exp( E
x∼pg

[DKL(p(y|x)||p(x))]) (2.4)
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where DKL is the KL-divergence, pg is the generated distribution, p(y|x) and p(x) are the

conditional and marginal label distribution of generated images samples measured by pre-

trained Inception Network. The higher the IS score is, the better the generated images are.

To our best knowledge, IS scores for real datasets are always higher than the generated data

in all works so far, no research work on image generation currently can match or outperform

real datasets on IS metric. However, IS is limited to measure the sample diversity inside

each class (e.g. IS should still be high even if a model can only produce one good sample for

each class).

FID mainly measures the difference between the real data distribution and generated data

distribution by Fréchet distance [DL82] . The mathematical form is described as following:

FID = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)
1
2 ) (2.5)

where µr, µg, Σr, Σg are the respective means and covariance matrices of the 2048-dimensional

activations of the Inception-V3 pool3 layer of real and generated samples. The lower the

FID score is, the better the generated images are. If the two sets of images are the same,

FID should be zero. Moreover, FID is able to measure the intra-class diversity.

In real practice, FID and IS are usually used together to measure the generation quality

of GAN. And they are often processed by sampling large enough numbers of generated data

(usually 50K) with taking the average of computing multiple times. In this project, we use

both FID and IS as the metric to evaluate the generation quality.

10



CHAPTER 3

Proposed Methods

In this section, we introduce the proposed method which overcomes the disadvantages of

RobGAN and we call it Fast-RobGAN for simplicity in the following content. We firstly

discuss the Fast-RobGAN on how to incorporate free adversarial training in RobGAN to

eliminate the computational overhead. Then, we propose an improved loss function format

modified from RobGAN in Chapter 3.2. In addition, we introduce a new perspective about

the theories of global and local Lipschitz continuity as well as their relations to adversarial

training in Chapter 3.3 in order to better explain the effectiveness of adversarial training in

GAN.

3.1 Fast-RobGAN Training

To solve the disadvantage of using adversarial training in RobGAN, we use the idea of free

adversarial training [SNG19]. The detail of Fast-RobGAN training is shown in the Alg. 2.

Most notations in the Alg. 2 are same in Alg. 1 but we change the step of L∞ PGD-attack K

to the free-step M , and change the perturbation σ to δ as the global perturbation. The main

difference between the original version and ”fast” version of RobGAN training is that we

use a global perturbation δ to accumulate the perturbation value during the whole training

process, and update D as well as δ in every Free step M (row 7 to 13 in Alg. 2) which

can be computed by using only 1 forward and backward process. By taking the advantage

of free adversarial training [SNG19], we could perform a more frequent update of D with

perturbation and speed up the convergence of overall training. One limitation of using free

adversarial training is that we have to perform M updates of D in order to simulate the K
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steps PGD-attack and this will lead the unbalanced updates between D and G. Although,

most prior works [MKK18, GAA17, BDS18] use more frequent update of D than G during

training, it is necessary to search a new hyperparameters setting of stepD and M in order to

balance the training. In real practice, setting stepD = 1 and M = 2 are empirically good for

most of the experiments. The experiment results show the effectiveness of the Fast-RobGAN

training in both generation quality and convergence speed and the detail will be presented

in Chapter 5.

Algorithm 2: Fast-RobGAN Training

1 δ ← U(−ε, ε)

2 for iterations do

3 for stepD do

4 z, yf ← Batch(N(·))

5 xf ← G(z)

6 xr, yr ← Batch(X, Y )

7 for M do

8 gadv, g
r
θD
← ∇(xr+δ),θDL[x

r + δ, yr, θD]

9 gfθD ← ∇θDL[x
f , yf , θD]

10 θD ← θD − ηD · (grθD + gfθD)

11 δ ← δ + τ · sign(gadv)

12 δ ← clip(δ,−ε, ε)

13 end

14 end

15 z, yf ← Batch(N(·))

16 xf ← G(z)

17 gθG ← ∇θGL[xf , yf , θD, θG]

18 θG ← θG − ηG · gθG
19 end

12



3.2 Improved Loss Function

Besides the change of the training process, we further modify the loss function format from

RobGAN. Overall, we use the similar loss function format as described in Eq. 2.2 and 2.3

but we change fake/real adversarial part of loss function form probability format to hinge

format [LY17, MKK18]. This hinge format loss function can be seen as a type of loss to

measure Wasserstein distance (also called Earth-Mover distance) [ACB17] bounded by hinge

margin which reduces the gradient vanishes and instability problem in the original probability

adversarial loss format.

Fast-RobGAN still inherits the auxiliary classifier for handling label information from

RobGAN because it is more suitable for adversarial training. However, one natural flaw

of using auxiliary classifier as reported in [OOS17, MK18] is that the G is very often to

unexpectedly generate samples which are easy to be classified by the auxiliary classifier.

This phenomenon can also be described as the model collapse inside each class (intra-class

model collapse) in which the G can only produce almost one similar sample inside each class.

Under this situation, the samples from G hold diversity among classes but not inside classes.

In addition, this problem has a tendency to be worse as the number of classes increases. In

term of measurement metrics (IS and FID), the model suffered from this problem tends to

generate relatively good IS score but with limited FID value. In RobGAN, this problem

is mitigated by removing the classification part in LfD as described in Eq. 2.3. To further

conquer this problem, instead of doing nothing to the generated samples during the updates

of D as in RobGAN, we try to minimize KL-divergence between class conditional probability

of generated samples Pr(yf |Dc(xf )) and a uniform distribution U(·) among all classes, which

makes the generated samples not easy to be classified by the auxiliary classifier. Moreover,

we introduce a coefficient to the classification part of the loss of G in order to control this

problem. The overall new loss format of Fast-RobGAN can be formulated as:

LG = −E[Db(xf )]− αgc · E[log Pr(yf |Dc(xf ))]

LD = LrD + LfD
(3.1)
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where LrD and LfD are:

LrD =E[max(0, 1−Db(xr + δ))]− E[log Pr(yr|Dc(xr + δ))]

LfD =E[max(0, 1 +Db(xf ))] + E[KL(Pr(yf |Dc(xf ), U(·))]
(3.2)

where αgc is the coefficient to control the classification part G, δ is the global perturbation

in free adversarial training, KL(·) is the KL-divergence, U(·) is the uniform distribution on

the classes, Db(·) and Dc(·) are the output of adversarial part and auxiliary classifier part

of D(·). In our experiments, we empirically find that the αgc is often needed to be decreased

if the number of classes of the datasets increases.

3.3 Global v.s. Local Lipschitz Continuity

In this section, we provide a new perspective of view to explain why adding adversarial train-

ing to discriminator could help the overall convergence. Generally speaking, the adversarial

training can be seen as a simulation of forcing local Lipschitz continuity which leads the

stability at the late stage of training but not restricts the convergence speed at the early

stage of training. We firstly start with global Lipschitz continuity. Then we introduce the

local Lipschitz continuity and draw its relationship to the adversarial training.

Constraining global Lipschitz continuity as spectral normalization [MKK18] should pro-

vide more stability of training but it may lead the model to converge slow and express poorly.

Let’s consider the following equations:

M{L[D(G(z)), y],L[D(x), y]}
||G(z)− x||

≈ M′(·) · L′(·) ·D′(·) ·G′(z) (3.3)

where M is a metric space (e.g. Euclidean Distance), || · || represents some types of norm

(e.g L∞), L is the loss function, D(·) here is a fixed Discriminator at some training moment,

z, x and y are the latent noise, real data samples, and labels. Here, we use a general format

of metric space M and loss function L which means different GAN methods have various

types. Eq. 3.3 actually approximates the gradient of updating G(·) using finite difference

method. If D(·) holds the global Lipschitz continuity, then the following Eq. 3.4 should hold

14



for any ||x′ − x|| where x′ 6= x within the input space:

M{L[D(x′), y],L[D(x), y]}
||x′ − x||

≤ CD (3.4)

where CD is the global Lipschitz constant. Therefore, Eq. 3.3 should be bounded by some

constant CD under the global Lipschitz continuity constraint:

M{L[D(G(z)), y],L[D(x), y]}
||G(z)− x||

≈ M′(·) · L′(·) ·D′(·) ·G′(z) / CD (3.5)

This property will lead stability but also bound the gradient for updating G(·) during the

whole training process which may lead the convergence slow. It will be better if we could

produce this constraint when the G(·) is only close to the real training samples, which could

be formulated as local Lipschitz continuity as following:

M{L[D(x+ ∆), y],L[D(x), y]}
||∆||

≤
∼
CD (3.6)

where ∆ is a small difference, x is the training samples (instead of all points within the

input space), and
∼
CD is the local Lipschitz constant. Under this situation, Eq. 3.3 can only

be bounded by some constant
∼
CD when ||G(z) − x|| ≤ ∆. When ||G(z) − x|| > ∆, there is

no limitation of the gradient for updating G(·). However, this smarter constraint is hard to

be applied in real practice but we can simulate this local Lipschitz continuity constraint by

using the adversarial training which can be described as:

min
D
L[D(x+ σ), y] (3.7)

where σ is a small perturbation generated from PGD-attack [MMS17] which is usually

bounded by some predefined value (i.e. ||σ|| ≤ σmax) , y is the label information, and

L the loss function. If we have an good D(·) which means the L[D(x), y] ≈ 0, then Eq. 3.7

can be seen as:

min
D
M{L[D(x+ σ), y],L[D(x), y]} ≈ min

D
|L[D(x+ σ), y]− 0| = min

D
L[D(x+ σ), y] (3.8)

where M are specifically selected as the 1-D Euclidean Distance here. And since σ is a

constant for the update of D during adversarial training, though not common, Eq. 3.8 can
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also be proportionally described as following:

min
D

M{L[D(x+ σ), y],L[D(x), y]}
||σ|| (3.9)

which can be seen as a simulation of building local Lipschitz continuity described in Eq. 3.6

which makes D more robust around training data points. However, this format only considers

the situation in which σ can only lead the L(·) increase (i.e ∀σ : ||σ|| ≤ σmax,L[D(x), y] ≤

L[D(x + σ), y]). Strictly speaking, if there is no extra condition, σ should be possible to

lead the L(·) decrease as well and this unbounded decrease may also cause an unwanted

gradient during the training which leads the training unstable. However, since the major

objective of the training process is trying to minimize the objective: L[D(x), y], a good

trained D(·) should have a relatively low loss value on the training samples, which means

there should only be a little σ which may only lead a marginally decrease around the training

points. Therefore, if there is a good D(·) at the late stage of training, G(·) can still enjoy

the stability benefited from this method.

In another point of view, if we can get a perfect D(·) and perform a perfect Adversarial

Defense :

∀σ : ||σ|| ≤ σmax,M{L[D(x+ σ), y],L[D(x), y]} = 0,L[D(x), y] ≤ L[D(x+ σ), y] (3.10)

which means there is no difference between L[D(x+ σ), y] and L[D(x), y] under metric M.

Under this situation, G(·) cannot real force G(z) to approach x when ||G(z) − x|| ≤ σmax

because G(·) is unable to receive the information of difference between G(z) and x via D(·),

which means the gradient for updating G(·) is zero (i.e.
∼
CD = 0).

In real practice, adversarial training can not guarantee a strict local Lipschitz continuity

constraint and it is almost impossible to perform perfect Adversarial Defense. Its perfor-

mances are various on different datasets but it can make sure that the gradient for updating

G(·) can progressively decrease as the G(z) reaches x. This will lead the training stable at

the late stage and make the model easier to converge to an optimal solution.
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CHAPTER 4

Experiments

4.1 Datasets

We test our methods on 3 datasets: CIFAR10, CIFAR100 [Kri09], and IMAGENET-143.

CIFAR10 and CIFAR100 both contain 50,000 32×32 (32px) resolution RGB images evenly

distributed in 10 and 100 classes respectively. Moreover, we use the IMAGENET-143 dataset,

which is a subset of IMAGENET [RDS15], used in SNGAN [MKK18] and RobGAN [LH19]

for relatively larger scale experiments. IMAGENET-143 contains 180,373 images in 143

classes and the experiments focus on both 64×64 (64px) and 128×128 (128px) resolutions

in order to compare with previous works.

4.2 GAN Architectures in Experiments

In order to perform a better comparison, we use the ResNet based architectures used in the

previous works [GAA17, MKK18, LH19] to perform the experiments. However, we replace

any other label handling methods (e.g. projection embedding in SNGAN architecture) with

auxiliary classifier for all Fast-RobGAN experiments. For CIFAR10 and CIFAR100, we

use the same architecture for both two datasets which is used in WGAN-GP [GAA17],

SNGAN [MKK18], and Projection-cGAN [MK18]. We do not perform the experiments

which increase the number of feature maps in G or D as SNGAN but we keep the number of

feature maps equal to 128 in both G and D for all CIFAR experiments for comparison. For

IMAGENET-143, we use the same network architecture used in SNGAN and RobGAN

on this dataset to perform the experiments on both 64px and 128px resolutions.
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Table 4.1: Hyperparameters settings of Fast-RobGAN training

iter. B.S. stepD B, I M ε/τ αg
c

CIFAR10 240k 64 1 0.5, 80k 2 2e-2 1.0

CIFAR100 240k 64 1 0.5, 80k 2 2e-2 0.2

IMAGENET-143 (64px) 120k 64 1 0.5, 30k 2 3e-2 1.0

IMAGENET-143 (128px) 120k 64 1 0.5, 30k 2 3e-2 1.0

note: iter. is the total iterations, B.S. is the batch size

Besides using the conditional batch normalization [DSM17] in G as prior works [MKK18,

ZGM18, LH19, BDS18], we do not use any other reparametrization or regularization methods

(e.g. spectrum normalization or gradient penalty) in either G or D for all Fast-RobGAN

experiments.

4.3 Hyperparameters and Empirical Settings

We use Adam Optimizer [KB14] with initial learning rate 0.0002 for bothD andG (ηinitD /ηinitG =

0.0002) in all experiments. We set Adam Optimizer β1 = 0.0 and β1 = 0.9 for all experiments.

For learning rate schedule, unlike previous works, we empirically find using exponential learn-

ing rate anneal to progressively decrease the learning rate during training can improve the

stability and generation quality. This learning rate schedule can be described as:

η = ηinit ·B
i
I (4.1)

where η is the current learning rate, ηinit is the initial learning rate, i is the number of

iterations, B is the exponential base, and I is the denominator of the exponential index. B

and I are two hyperparameters which can be changed in different experiments. We find the

advantage of this annealing method on CIFAR10 and IMAGENET-143 datasets. However,

since this method has two hyperparameters to tune and one of the drawbacks of this method

is that it is hard to find a good setting on large scale experiments. The hyperparameters

settings of Fast-RobGAN training are summarized in Tab. 4.3.
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CHAPTER 5

Results

5.1 CIFAR10

We report the generation quality measurement in IS and FID of CIFAR10 in Tab. 5.1.

Our Fast-RobGAN is able to achieve better results compare with spectral normalization

GAN (SNGAN) and RobGAN. We reproduce the SNGAN experiments according to the

paper [MKK18, MK18] and official code1. Since the stepD in original SNGAN setting is 5

which is computational heavy, we also try the experiments which set the stepD = 1 and

use the SAGAN setting [ZGM18] (stepD = 1, spectrum normalization in both D and G,

ηD/ηG = 4e − 4/1e − 4). However, two settings collapse at the early training stage, thus,

we report the N/A in Tab. 5.1. The original SNGAN setting uses the Projection Embed-

ding (denoted as SNGAN(Projection)) to handle the label information. For comparison,

we also try the experiments of using auxiliary classifier (denoted as SNGAN(AC)) as done

in [GAA17, MK18, MK18]. For RobGAN, there is no experiments on CIFAR10 from the

original work [LH19]. We try to perform CIFAR10 experiments on RobGAN setting but we

are unable to achieve a comparable result with SNGAN and Fast-RobGAN. We still report

the best RobGAN result we can achieve within 25k seconds training time in Tab. 5.1.

For the experiments of Fast-RobGAN, besides the optimal setting (row 7 in Tab. 5.1), we

also report some additional settings which remove one part of our proposed new modification

from our optimal setting to perform comparisons. We firstly try the to use the original

RobGAN loss format as decribed in Eq. 2.2, 2.3, denoted as Fast-RobGAN (Eq. 2.2, 2.3)

in Tab. 5.1 but the training collapses at the early stage. We also try the settings which

1https://github.com/pfnet-research/sngan_projection
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Table 5.1: Experimental results of CIFAR10

IS FID Time(sec.)

real data 11.24±.10 5.30 N/A

SNGAN(Projection) 7.47±.13 14.59 24.5k

SNGAN(AC) 7.48±.22 15.38 24.5k

SNGAN(stepD = 1) N/A N/A N/A

SNGAN(SAGAN setting) N/A N/A N/A

RobGAN 6.95±.06 25.75 25k

Fast-RobGAN 7.82±0.09 12.77 22.8k

Fast-RobGAN(Eq. 2.2, 2.3) N/A N/A N/A

Fast-RobGAN(ε = 0) 7.79±0.12 14.43 22.8k

Fast-RobGAN(w/o anneal) 8.09±0.11 14.67 22.8k

Fast-RobGAN(w/o KL-term) 7.37±0.17 16.26 22.8k

note: IS and FID are measured by 50k and 5k generated samples respectively.

N/A denotes the experiment collapses at the early training stage or is unable

to achieve a comparable result.

remove the adversarial training, denoted as Fast-RobGAN(ε = 0) in Tab. 5.1, without using

exponential learning rate anneal, denoted as Fast-RobGAN(w/o anneal) in Tab. 5.1, and

without using the new proposed KL-divergence term, denoted as Fast-RobGAN(w/o KL-

term) in Tab. 5.1. All of these settings receive a obvious deterioration on FID scores which

show the effectiveness of our new proposed methods.

To compare the convergence speed, our Fast-RobGAN is faster than SNGAN and Rob-

GAN with a better performance. As shown in Fig. 5.1, Fast-RobGAN demonstrates the

acceleration compare with SNGAN especially at the early stage of the training which gives

the experimental supports to our assumption proposed in Chapter 3.3.
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Figure 5.1: Convergence speed of CIFAR10

5.2 CIFAR100

For CIFAR100, we try the experiments with similar settings as used in CIFAR10. We directly

use the CIFAR10 hyperparameters for SNGAN and RobGAN experiments. We report the

generation quality in term of IS and FID scores in Tab. 5.2. In the experiments of CIFAR100

which has a relatively more number of classes, the disadvantage of using auxiliary classifier

exposes. SNGAN with auxiliary classifier, SNGAN(AC), collapses at the early stage of the

training. We sample the images from SNGAN(AC) (row 4 in Fig. A.2) and find it suffers

from the serious intra-class models collapse. RobGAN is able to continue training but the

inconsistency between IS and FID scores also indicates the occurrence of model collapse inside

each class. The image samples of RobGAN (row 5 in Fig. A.2) also supports the occurrence

of this problem. Therefore, we tune down the αgc to 0.2 in the Fast-RobGAN and our method

is able to considerably outperform the SNGAN and RobGAN in both IS and FID metrics.

We also try the experiments of removing one part from the optimal settings (row 8, 9, 10, 11

in Tab. 5.2) to perform the comparison. Similar to the result from CIFAR10 experiments,

model collapses if using the original RobGAN loss (Eq. 2.2, 2.3). Also, removing any parts

from the optimal setting may lead the performance slightly increase on IS score but gives

much worse FID. Moreover, if we remove the KL-divergence term (row 11 in Tab. 5.2), the
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Table 5.2: Experimental results of CIFAR100

IS FID Time(sec.)

real data 14.79±0.15 5.91 N/A

SNGAN(Projection) 7.86±0.21 18.29 25.6k

SNGAN(AC) N/A N/A N/A

SNGAN(stepD = 1) N/A N/A N/A

SNGAN(SAGAN setting) N/A N/A N/A

RobGAN 7.24±0.21 36.27 26k

Fast-RobGAN 8.87±0.06 17.27 23.1k

Fast-RobGAN(Eq. 2.2, 2.3) N/A N/A N/A

Fast-RobGAN(ε = 0) 8.38±0.21 19.43 23.1k

Fast-RobGAN(w/o anneal) 8.95±0.31 19.53 23.1k

Fast-RobGAN(w/o KL-term) 7.42±0.18 24.02 23.1k

note: IS and FID are measured by 50k and 5k generated samples respectively.

N/A denotes the experiment collapses at the early training stage or is unable

to achieve a comparable result.

Fast-RobGAN will receive an obvious performance drop which indicates the effectiveness of

adding the KL-divergence term. In term of computational time, the Fast-RobGAN is still

able to use slightly less training time to achieve a better generation quality compare with

SNGAN and RobGAN which can be directly observed in Fig. 5.2.

To further study the effectiveness of our method on intra-class model collapse problem, we

trained the Fast-RobGAN with different αgc and perform the random conditional sampling

at the same iterations (120k). We present the samples in Fig. 5.3. The αgc control the

conditioning capacity of the G during the training, thus, a larger αgc may lead the auxiliary

classifier of G over-fitting which causes the intra-class model collapse and a smaller αgc may

cause the G loss the ability of conditioning. As shown in the Fig. 5.3, when the αgc is very big

(αgc = 2.0) the model can only generate almost one similar sample with limited variety (in

term of shapes, colors, etc.) inside each class. As the αgc decreases, G is able to produce more
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Figure 5.2: Convergence speed of CIFAR100

Figure 5.3: Random image samples of 5 classes from CIFAR100. From top to down, each

row is a class from CIFAR100. From left to right, each column are sampled from Real Data,

and Fast-RobGAN trained with αgc = 2.0, 1.0, 0.8, 0.6, 0.4, 0.2, 0.1 at 120k iterations.
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various samples insides classes. However, when the αgc is relatively small (αgc = 0.1), the G

starts to lose the ability to produce the correct samples corresponding to class information.

The effectiveness of the αgc seems not linear and various for different classes. Therefore, a

suitable αgc is necessary for the good training of Fast-RobGAN.

5.3 IMAGENET-143

We perform experiments on both 64px and 128px resolutions. We also reproduce experi-

ments of SNGAN and RobGAN according to the official released codes and hyperparameters

settings12. For those reproduction experiments, we can achieve a similar metric results as

reported in the original papers [MKK18, LH19].

Table 5.3: Experimental results of IMAGENET-143 (64px)

IS FID Times(sec.)

real data 27.9±0.419 0.48 N/A

SNGAN 10.7±0.17(11.5‡) 29.7 220k

RobGAN 24.62±0.31(∼22.5?) 14.64 180k

Fast-RobGAN 22.23±0.35 12.04 36k

Fast-RobGAN(Eq. 2.2, 2.3) 25.49±0.29 14.03 36k

Fast-RobGAN(w/o KL-term) 25.61±0.47 13.94 36k

note: ‡, ? reported in 1, [LH19]. IS and FID are measured by 50k generated samples.

For 64px resolution, we present our result in Tab. 5.3. Fast-RobGAN can easily beat

SNGAN under both IS and FID metrics and achieve similar performance as RobGAN. In

term of computational time, as shown in Fig. 5.4, Fast-RobGAN is very cheap which only

spends about 17% and 20% overall time of SNGAN and RobGAN respectively to achieve a

substantially better generation quality. In term of IS score, Fast-RobGAN achieves a slightly

lower performance than the RobGAN but the FID value better than RobGAN.

2https://github.com/xuanqing94/RobGAN
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Figure 5.4: Convergence speed of IMAGENET-143 (64px)

On 128px resolution of IMAGENET-143, the results are listed in Tab. 5.4. Fast-RobGAN

is able to considerably outperform SNGAN and RobGAN on both IS and FID metrics. In

term of training time shown in Fig. 5.5, Fast-RobGAN greatly improves the generation qual-

ity by only spending about 20% and 40% overall time of SNGAN and RobGAN respectively.

On both resolutions, we also try the experiments on using the original RobGAN loss

format(Eq. 2.2, 2.3) and removing the KL-divergence term. Since the αgc is 1.0 on the

IMAGENET-143 experiments, thus, these two experiments are only different at the adver-

sarial part in which the previous one uses the probability format and the other one uses the

hinge format respectively. Overall, the experiments using the original RobGAN loss format

achieves the bad FID score but with a very good IS score. To some degree, this type of intra-

class model collapse is not very obvious in 64-px experiments but becomes worse in 128-px

experiments. Moreover, the experiments without using the KL-divergence term also show

similar results with slightly better degrees as using the original RobGAN loss format which

gives the better IS score but with a worse FID score than the optimal setting. These results

give the experimental supports to the effectiveness of using the hinge format adversarial part

and KL-divergence term.

In term of αgc , though IMAGENET-143 has a relatively larger number of classes (143),
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Table 5.4: Experimental results of IMAGENET-143-128px

IS FID Times(sec.)

real data 53.01±0.56 0.42 N/A

SNGAN 26.12±0.29(28.2‡) 30.83 585k

RobGAN 33.81±0.47(∼30?) 33.98 180k

Fast-RobGAN 40.41±0.49 14.48 71k

Fast-RobGAN(Eq. 2.2, 2.3) 45.94±0.52 25.38 71k

Fast-RobGAN(w/o KL-term) 42.54±0.40 17.51 71k

note: ‡, ? reported in 1, [LH19]. IS and FID are measured by 50k generated samples.

we are able to achieve a good result without tuning αgc , which is unlike the experiments

in CIFAR100. We think this result is led by the natural property of the dataset. In CI-

FAR100, each class is very distinguishable from other classes. However, IMAGENET-143 is

not randomly sub-sampled from IMAGENET and all 143 classes are different types of dogs

and cats which are similar between each other. Performing conditioning is generally harder.

Therefore, a larger αgc works for the IMAGENET-143 even the number of classes is not small.
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Figure 5.5: Convergence speed of IMAGENET-143 (128px)
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CHAPTER 6

Conclusions

In this thesis, we study the computational limitation of using adversarial training and the

generation disadvantage of the auxiliary classifier in RobGAN. Based on these problems, we

propose two new improvements in order to improve the overall performance of the model:

1. A novel training algorithm which is able to efficiently perform adversarial training

during the training of GAN.

2. A new improved loss objective which can effectively reduce the intra-model collapse

problem in GAN framework with auxiliary classifier.

We perform experiments on 3 datasets to verify the effectiveness of our method and perform

detail analysis in the results. Our new method is able to outperform previous works in all

datasets in term of both generation quality and convergence speed. Moreover, we provide a

new perspective to understand why adversarial training is able to help the convergence of

GAN.

Due to hardware and time limitations, we are unable to perform the experiments on

very large scale datasets (e.g IMAGENET with 128-px resolution) which can be seen as

an important future work. Also, though our proposed method is able to achieve a good

performance in experiments, the results rely on the tuning of hyperparameters which is

inefficient and empirical. This leads the transferability of the settings between datasets

very limited. Our proposed new method can be roughly seen as a trade-off between the

conditioning and diversity of the overall system. Therefore, an automatic or dynamic balance

strategy for the conditioning and diversity during the GAN training could be a good future

research direction.
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APPENDIX A

Supplementary Generated Samples from Models

A.1 CIFAR10

Figure A.1: Class conditional image samples for all 10 classes of CIFAR10. Each column is a

class in CIFAR10. From top to down, each row is sampled from Real Data, Fast-RobGAN,

SNGAN(Projection), SNGAN(AC), RobGAN
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A.2 CIFAR100

Figure A.2: Class conditional image samples for all 10 classes of CIFAR100. Each column is a

class in CIFAR100. From top to down, each row is sampled from Real Data, Fast-RobGAN,

SNGAN(Projection), SNGAN(AC), RobGAN
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