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Modelling acute myeloid leukaemia in a continuum of 
differentiation states

H. Choa, K. Ayersb, L. DePillsc, Y-H. Kuod, J. Parkc, A. Radunskayab, and R. Rocknee

aDepartment of Mathematics, University of Maryland; bDepartment of Mathematics, Pomona 
College; cDepartment of Mathematics, Harvey Mudd College; dDepartment of Hematological 
Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope; 
eDivision of Mathematical Oncology, City of Hope

Abstract

Here we present a mathematical model of movement in an abstract space representing states of 

cellular differentiation. We motivate this work with recent examples that demonstrate a continuum 

of cellular differentiation using single cell RNA sequencing data to characterize cellular states in a 

high-dimensional space, which is then mapped into ℝ2 or ℝ2 with dimension reduction techniques. 

We represent trajectories in the differentiation space as a graph, and model directed and random 

movement on the graph with partial differential equations. We hypothesize that flow in this space 

can be used to model normal and abnormal differentiation processes. We present a mathematical 

model of hematopoeisis parameterized with publicly available single cell RNA-Seq data and use it 

to simulate the pathogenesis of acute myeloid leukemia (AML). The model predicts the emergence 

of cells in novel intermediate states of differentiation consistent with immunophenotypic 

characterizations of a mouse model of AML.

Keywords
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1. Introduction

The recent advance of single cell RNA sequencing (scRNA-Seq) technologies has enabled a 

new, high-dimensional definition of cell states. In contrast to conventional gene expression 

analyses based on measuring the average levels in a tissue or given cell population, single 

cell analysis captures the cellular heterogeneity and provides resolution at the level of 

individual cells within the tissue or cell population. This level of resolution coupled with 

genome wide gene expression provides an unprecedented opportunity to quantitatively probe 

cellular behavior, cellular variation and dynamics in a wide range of biological contexts.
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There are on the order of 20,000 protein encoding genes that compose the transcriptome, 

which constitute a ℝ20, 000 dimensional space. Therefore, the configuration of the 

transcriptome at a point in time can be represented as a coordinate vector in space. When a 

cell expresses genes, it “moves” in this high-dimensional gene expression phenotype space. 

Over time, the sequence of locations in the space of a given cell creates a trajectory. 

Dimension reduction techniques are commonly used to map the larger space into a lower 

dimensional space, for instance, ℝ2 or ℝ3, at which point the cells are clustered based on a 

similarity metric and recategorized. This process has revealed a continuum of cell 

phenotypes, with intermediate states connecting canonical cell states. The most prominent 

example of this process is in hematopoietic cell differentiation.

Normal hematopoiesis is long thought to occur through stepwise differentiation of 

hematopoietic stem cells following a tree-like hierarchy of discrete multipotent, oligopo-tent 

and then unipotent lineage-restricted progenitors (Figure 1A). The classical model of 

hematopoiesis considers differentiation as a stepwise process of binary branching decisions, 

famously represented as a potential landscape by Waddington (Waddington 1957). However, 

this model is based on bulk characterization of prospectively purified immunophenotypic 

cell populations. Recent advances in scRNA-Seq technologies now allow resolution of 

single cell heterogeneity and reconstruction of differentiation trajectories which have been 

applied to a number of different cellular systems, from hematopoiesis to breast endothelial 

cell differentiation (Hamey et al. 2016; Velten et al. 2017; Bach et al. 2017; Nestorowa et al. 

2016a).

These efforts have led to the new view that hematopoietic lineage differentiation occurs as a 

continuous process, which can be mapped into a continuum of cellular and molecular 

phenotypes (Figure 1B). Hematopoietic malignancies such as acute myeloid leukemia 

(AML) arise from dysregulated differentiation and proliferation of hematopoietic stem cells 

and progenitor cells upon accumulation of oncogenic genetic mutations and/or epigenetic 

alterations. Therefore, characterizing disordered hematopoiesis based on discretely defined 

phenotypic populations can be challenging. Moreover, “discrete” phenotypic cell 

populations are in fact highly heterogeneous in terms of functional capacity and gene 

expression profiles. It is now possible to view pathologic hematopoiesis through a 

continuum of cellular and molecular phenotypes and capture the heterogeneity, 

differentiation plasticity and dysregulated gene expression associated with malignant 

transformation.

This new view of biology forces us to reconsider the mathematical approaches we use to 

model cell states and behaviors. Instead of building mathematical models which identify 

discrete cell populations and assign mathematical rules for their evolution and interactions, 

we may now consider a continuum of cellular states, and model movement between these 

states in aggregate as a flow of mass on a structured graph. Modeling differentiation in this 

manner reduces the number of parameters and thus the complexity of the mathematical 

model by representing many cell populations and states in a single variable. At the same 

time this increases biological resolution of the system by characterizing an infinite number 

of sub-states in a continuum representation. Here we consider a model of hematopoietic cell 
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differentiation and associated disorders as a flow and transport process in a continuous 

differentiation space as a test system for a more general approach of modeling the temporal 

evolution of a continuum of cell states.

This manuscript is structured as follows: first, we review the state of the art of dimension 

reduction methods that are used to construct and define hematopoietic differentiation spaces 

that can be represented as graphs, including a review of Schienbinger et al.’s method for 

modeling transport on a graph from reduced dimension gene expression data (Schiebinger et 

al. 2017). Then we introduce our partial differential equation (PDE) model of flow and 

transport on a graph, and illustrate the model on simple “Y” shaped graph with symmetric 

and asymmetric differentiation. We then calibrate our model to a graph (Figure 3) 

constructed from publicly available scRNASeq data of normal hematopoiesis. Finally, we 

use our model to simulate abnormal hematopoietic cell differentiation processes observed 

during the pathogenesis of AML, a form of aggressive hematologic malignancy. We 

conclude with a brief discussion of prior literature on modeling differentiation as a 

continuum, and the limitations and potential future applications of this modeling approach.

2. Construction of a differentiation continuum

In order to describe the entire modeling process, in this section we briefly describe methods 

for reducing the dimension of high dimensional scRNA-data, before reviewing pseudotime 

reconstruction techniques, and conclude this section by examining a technique from 

Schiebinger et al. (2017) for construction of a directed graph that represents hematopoietic 

differentiation space. While the focus of this paper is not dimension reduction techniques or 

pseudotime reconstruction, we summarize some of these techniques that are most relevant to 

our modeling approach, without advocating for one over another. We should emphasize that 

this is a review of already existing algorithms; the novel work begins in Section 3. The 

relationship between time and pseudotime within a mathematical model of cell 

differentiation is analogous to the relationship between age structured and stage structured 

models in ecology. Cell differentiation data yield information about cells at various stages of 

differentiation, but generally do not provide time-specific data. A pseudotime model is one 

that considers the differentiation stage of a cell population instead of the time in which a cell 

is in a certain state.

In Figure 2, we lay out the steps required for going from high dimensional data to 

construction of the PDE model. Section 2.1 will review various dimension reduction 

techniques, including a more thorough discussion of the technique used in our application, 

diffusion mappings. Section 2.2 summarizes techniques such as Wishbone and Wanderlust, 

that are available for pseudotime reconstruction given dimension reduced data. And finally, 

Section 2.3 will give an overview of the technique presented in Schiebinger et al. (2017) for 

construction of a directed graph that indicates how cell populations evolve in pseudotime.

2.1. Dimension reduction techniques

A broad range of techniques have been developed to provide insight into interpretation of 

high dimensional biological data. These techniques provide a first step in our approach to 

modeling the evolution of cell states in a continuum and play a critical role in characterizing 
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differentiation dynamics. We note that the application of different data reduction techniques, 

clustering methods, and pseudotime ordering on the same data set will produce different 

differentiation spaces on which to build a dynamic model. We will use one particular 

dimension reduction approach as an example, but our framework allows one to select from a 

variety of approaches. In this section we provide a brief description of a subset of such 

techniques to give the reader a sense of the field.

Several techniques have been developed to interpret the high-dimensional differentiation 

space, including principal component analysis (PCA), diffusion maps (DM) and t-distributed 

stochastic neighbor embedding (t-SNE). Each of these methods map high-dimensional data 

into a lower dimensional space. As discussed in this section, different techniques produce 

different shapes and differentiation spaces, and so some techniques are better suited to 

certain data sets than others. For instance, one commonly used dimension reduction 

technique is principal component analysis (PCA), a linear projection of the data. While PCA 

is computationally simple to implement, the limitation of this approach lies in its linearity - 

the data will always be projected onto a linear subspace of the original measurement space. 

If the data shows a trend that does not lie in a linear subspace—for instance, if the data lies 

on an embedding of a lower-dimensional manifold in Euclidean space that is not a linear 

subspace —then this trend will not be e ciently captured with PCA (Khalid, Khalil, and 

Nasreen 2014).

In contrast, diffusion mapping (DM) and t-stochastic neighbor embedding (t-SNE), as well 

as a variant of t-SNE known as hierarchical stochastic neighbor embedding (HSNE), are 

non-linear dimension reduction techniques. t-SNE, introduced by Maaten and Hinton (2008) 

is a machine learning dimension reduction technique that is particularly good at mapping 

high dimensional data into a two or three dimensional space, allowing for the data to be 

visualized in a scatter plot.

Given a data set in ℝn: X = x1, x2, ...xn , we can transform the Euclidean distances between 

two points into a probability distribution. Intuitively, this distribution gives the probability 

that data point xj is a neighbor of point xi, where the probability of being a neighbor of xi 

has a Guassian distribution (Maaten and Hinton (2008)):

p j i = e
− xi − x j

2 /2σ2

∑k ≠ ie
− xi − xk

2 /2σ2 (1)

The t-SNE algorithm aims to find a map from the data set to two or three dimensional 

Euclidean space that minimizes the Kullback-Leibler divergence between the probability 

distributions in the original and reduced space. This optimization problem is often solved 

using gradient descent methods.

In van Unen et al. (2017), a new technique for examining high dimensional mass cytometry 

data, known as hierarchical stochastic neighbor embedding (HSNE) is presented. Mass 
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cytometry allows for the examination of several cellular markers on samples made up of vast 

quantities of cells. These data sets are truly “big” in the sense that they are very large (a 

sample for each cell) as well has high-dimensional. Therefore, pre-existing dimension 

reduction techniques are not optimal for mass cytometry data. HSNE, as suggested by its 

name, is hierarchical by nature, allowing for refinement in the level of detail. HSNE 

ultimately constructs a hierarchy of subsets of the dataset X:

X = ℒ1 ⊃ ℒ2 ⊃ ⋯ ⊃ ℒn .

The hierarchy begins with the data set itself X = ℒ1 . A weighted k-nearest neighbor (kNN) 

graph is constructed on the data set, and individual points, or “landmarks” are selected from 

each node on the graph to represent the data set at the next, coarser, level, ℒ2. This process 

is repeated as desired. These subsets can each be embedded in lower dimensional space. 

This hierarchical embedding scheme allows the user to view the data at different resolutions, 

from a broad overview (level ℒn) to a more refined understanding of cell types associated 

with markers (intermediate levels). Starting with a certain subset 𝒪 ⊂ ℒs, the user is able to 

“drill in” to the data by selecting a subset 𝒪 ⊂ ℒs − 1. Thus, HSNE is an approach that is 

useful for data that requires different levels of detail at different scales. An illuminating 

graphical representation of the HSNE process can be found in van Unen et al. (2017), Figure 

1.

Diffusion maps work by taking advantage of the relationship between heat diffusion and 

random walk Markov chains. Let X be a data set of size n. The diffusion map algorithm 

begins by considering a kernel function on pairs of data points; this function must be 

symmetric and nonnegative. The Gaussian kernel

k x, y = e
− x − y 2

∈

is one popular choice. Similar to the conditional probability defined in (1), the kernel k(x, y) 

is used to specify the probability of going from x to y in one step of a random walk on the 

data, found by normalizing the kernel to ensure the random walk probabilities integrate to 1:

p x, y = k x, y
Σy ≠ x k x, y

By letting the number of steps in this random walk go to infinity, we can consider the 

stationary distribution pt of the Markov chain. This stationary distribution is used to 

formulate a new metric on the data space, known as the diffusion distance:

d xi, x j = ∑
u ∈ X

pt xi, u − pt x j, u
2
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Intuitively speaking, the diffusion distance between two points will be low if there are many 

paths in the random walk that connect them, and high if there are few. Because it is 

computationally expensive to repeatedly compute the diffusion distance between each pair 

of points, it is easier to map data points to a new Euclidean space using the function 

ϕ: X ℝn defined as:

ϕ xi =

pt xi, x1
pt xi, x2 ,

⋮
pt xi, xn

The Euclidean distance in this space, known as the Diffusion Space, is then equivalent to the 

Diffusion Distance in the data space. It can be demonstrated that the linearly independent 

eigenvectors of the diffusion matrix (the transition matrix associated with the 

aforementioned Markov Chain) form a basis for the diffusion space. Therefore, by opting to 

keep the k-eigenvectors corresponding to the k largest eigenvalues, we obtain a map from 

the original data to a k-dimensional subspace of the diffusion space that most e ciently 

captures the structure of the data; this map is called the diffusion map. A more in depth 

explanation can be found in Coifman et al. (2005).

Each of these dimension reduction methods has strengths and weaknesses depending on the 

question(s) being asked of the data. Moreover, each method will produce a distinctly 

different shape in the lower dimensional representation. Therefore, the choice of dimension 

reduction technique is a critical step in analyzing any high-dimensional data set. For the 

purpose of analyzing cell transition probabilities and inferring trajectories within the reduced 

space, Nestorowa et al. (2016a) and others have chosen to use diffusion mapping to analyze 

cell differentiation.

2.2. Pseudotime ordering of differentiation states

For data without temporal information, pseudotime methods are available to infer a sequence 

of biological states from single time point data. Diffusion mapping can be used to infer a 

“diffusion pseudotime” (Haghverdi et al. 2016; Nestorowa et al. 2016a). In particular, 

Haghverdi et al. (2016) develops an e cient diffusion pseudotime approach by rescaling the 

diffusion components by a weighted distance in terms of the eigenvalues, derived by 

considering a random walk according to a transition matrix that specifies the probability of 

transitioning from any single cell to another in an infinitesimal amount of time. Alternative 

pseudotime approaches include Wishbone (Setty et al. 2016) that uses shortest paths in a k-

nearest neighbor (kNN) graph constructed in diffusion component space to construct an 

initial ordering of cells, TASIC (Rashid, Kotton, and Bar-Joseph 2017) that is able to 

incorporate time information and identify branches and incorporate time information in 

single cell expression data by considering it as developmental processes emitting expression 

profiles from a finite number of states, and Monocle (Qiu et al. 2017b,a) that fits a principal 

graph (Mao et al. 2015) and uses a reversed graph embedding technique which 
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simultaneously learns a low dimensional embedding of the data and a graphical structure 

spanning the dataset.

Finally, when the data are collected at multiple time points, the transition rates between the 

nodes can be obtained after partitioning the cell data. For instance, Schiebinger et al. (2017) 

employs graph clustering (Levine et al. 2015; Shekhar et al. 2016) and optimal transport 

methods to understand the dynamics in the reduced space of cell data. We describe the 

optimal transport (OT) method in an effort to provide a clear distinction between the OT 

algorithm and our modeling approach.

2.3. Optimal transport

Schiebinger et al. (2017) have proposed a model and algorithm for constructing a directed 

graph oriented in pseudotime given temporal data. The optimal transport algorithm itself is a 

classical problem studied in the mathematical area of Transportation Theory, which aims to 

optimally transport and allocated resources given certain cost functions. Schiebinger et al. 

(2017) apply this theory to a time series of reduced dimension single cell gene expression 

profiles. The time series is made up of a sequence of samples {S1, …, Sn}, at different times 

ti for i ∈ {1, …, n}. Suppose that each sample consists of points in ℝm. A distribution ℙti
 is 

defined by each sample Si. For each set A ⊂ ℝm:

ℙti
A = 1

Si
∑

x ∈ Si

δx A ,

Where δx represents a Delta Distribution centered at x:

δx A = 1 x ∈ A
0 x ∉ A

Together, as a sequence, these inferred distributions ℙti
 form what is known as an 

“empirical developmental process.” The goal is then to determine, as closely as possible, 

what the true underlying Markov developmental process ℙt is by examining what are known 

as transport maps between pairs ℙti − 1
 and ℙti

. A transport map for a pair ℙti − 1
, ℙti

 is a 

distribution π defined on ℝm × ℝm such that ℙti − 1
 and ℙti

 are the two marginal distributions 

of π. Thus, given a function c(x, y) that represents the cost to transport some unit mass from 

x to y, the goal is to minimize

∬ℝm × ℝmc x, y π x, y dxdy

subject to
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∫ℝmπ x , ⋅ dx = ℙti − 1

∫ℝmπ ⋅ , y dy = ℙti

Schienbinger et al. further refine this algorithm by including a growth term in their transport 

plan to allow for cellular proliferation between time points. This differs from the classical 

optimal transport algorithm in that the classical optimal transport algorithm is formulated 

with conservation of mass in mind. Optimal transport can thus be used to estimate the 

ancestors and descendants of a set of cells. Cells are clustered using the Louvain-Jaccard 

community detection algorithm on the reduced dimension gene expression data in 20 

dimensional space. Schienbinger et al. thus identified 33 cell nodes, which were then used as 

starting populations from which developmental trajectories could be analyzed. These can be 

thought of as nodes on a graph visualized with force-directed layout embedding, and edges 

represent the motion in pseudotime.

In the following section, we assume that the first two steps in Figure 2 have been completed 

by one of the methods described above. In other words, we start with samples in high-

dimensional space, we map the data to a lower dimensional space, and then we produce 

pseudotime trajectories in this lower dimensional space. In the final step, we model the 

differentiation process in continuous (pseudo)-time and (reduced-dimensional) space using 

partial differential equations.

3. Modeling on the differentiation continuum

To illustrate our modeling technique, we assume that we have constructed a simple branched 

manifold or graph situated in the differentiation space. This graph is not a set of discrete 

nodes, rather, the graph and its edges represent a continuum of canonical states and 

intermediate states of differentiation. Assuming that the graph and the temporal evolution on 

the graph is obtained by any one of the various data analysis techniques summarized in 

Section 2 including optimal transport (Schiebinger et al. 2017), diffusion pseudotime 

methods (Haghverdi et al. 2016; Nestorowa et al. 2016a; Haghverdi et al. 2016), Wishbone 

(Setty et al. 2016), TASIC (Rashid, Kotton, and Bar-Joseph 2017), and Monocle (Qiu et al. 

2017b,a), we develop a PDE model that describes the dynamics in this differentiation 

continuum. Cell differentiation models in the continuous space have been developed in 

(Gwiazda, Grzegorz, and Marciniakczochra 2012; Doumic et al. 2011) that extends the 

discrete multi-compartment models (Lander et al. 2009; Lo et al. 2008; Marciniak-Czochra 

et al. 2009; Stiehl and Marciniak-Czochra 2011).

3.1. PDE model on a graph

Let us define the graph G obtained in the differentiation continuum space. We comment that 

although we can consider a cell distribution on the actual reduced space, we further reduce 

our model on a graph that makes it convenient to employ the biological insights from the 

classical discrete models. The node set of G is denoted as vk k = 1
nv  where nv is the total 
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number of nodes, and the edge of the graph connecting in the direction from the i-th to the j-
th node as eij. We also introduce an alternate description of the graph with respect to the 

edge, that is more convenient for describing the PDE model. If the total number of nontrivial 

edges is ne, we take ek k = 1
ne  with the index mapping I :𝒥 1, ..., ne  on the set of nontrivial 

edges i, j ∈ 𝒥, and the end points in the direction of cell transition as ak k = 1
ne and 

bk k = 1
ne ,respectively. We remark that ∪k = 1

ne ak, bk = vk k = 1
nv .

We denote u(x, t) as the cell distribution on the graph G at the differentiation continuum 

space location x ∈ G and time (or pseudotime) t. Thus, we follow the dynamics of the cell 

density at x ∈ G. We annotate the cell distribution on each edge ek as uk(x, t) such that 

u x, t = uk x, t
k = 1
ne  and model the cell density by an advection-diffusion-reaction equation 

(Evans 2010) as

∂uk
∂t = − ∂

∂x Vk x uk + Rk x uk +
Dk x

2wk x
∂

∂x wk x
∂uk
∂x , x ∈ ek = akbk, (2)

where x is a one dimensional variable parameterized on each edge ek from ak to bk. The 

advection coeffcient Vk(x) models the cell differentiation and the transition between the 

different cell types, that is, the nodes. The transition rate per unit time (e.g., day−1) or 

pseudotime can be taken as Vk(x) computed using the periods of cell differentiation. For 

instance, Vk(x) can be computed by smoothly interpolating the speed of cell differentiation 

from the multi-compartment discrete models as Vk(x) = V I i, j x = ϕ ci, c j , where cn is the 

differentiation rate of cell type vn and ϕ is an interpolation function1

Cell proliferation and apoptosis can be modeled by the reaction coeffcient Rk(x). Similar to 

Vk, if only the proliferation at the discrete cell types are available, we interpolate as 

Rk x = RI i, j x = ϕ ri, r j , where rn is the growth rate at node vn. In addition to natural 

proliferation and apoptosis, this term can also model abnormal tumorous cell growth or the 

effect of targeted therapy by localized Gaussian or Dirac-delta functions centered at the 

location of the corresponding cell type on the graph.

The diffusion term represents the instability on the phenotypic landscape of the cells that 

should be taken account into when modeling the macroscopic cell density. In particular, we 

consider the diffusion term in Eq. (2) in such form that is appropriate to model the dynamics 

on a graph that is reduced from a higher-dimensional narrow domain. It involves two 

1The interpolation function can be taken, for instance, as a linear function as ϕ ci, c j = c j − ci x − ak bk − ak + ci, where k = 

I(i, j). This assumes that the cell property changes linearly in terms of thedistance in the diffusion component space (Doumic et al. 
2011; Gwiazda, Grzegorz, and Marciniak-czochra 2012). In addition, the values of VI(n,j)(x) near x = vn will take into account of the 
ratio of cells that branch out to different cell types vj, while the values of VI(i,n)(x) consider the ratio of cells that are flowing in from 
different cell types vi.
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parameters Dk(x) and wk(x) describing the magnitude of cell fluctuation and the width of the 

narrow domain around the edge, respectively. Considering the phenotypic fluctuation of the 

cell density as a random process subject to Brownian motion with magnitude σ, the diffusion 

term becomes Dk = σ2 and wk = 1 (Evans 2010). In addition, the width or the area of the 

cross section of the narrow domain that is vertical to the projecting edge can be taken as 

wk(x), which is called Fick-Jacobs equation considering deterministic PDEs (Zwanzig 1992; 

Valero Valdes and Herrera Guzman 2014) and can be similarly derived for stochastic PDEs 

(Cerrai and Freidlin 2017; Freidlin and Hu 2013). wk(x) can be measured as the length of 

maximal fluctuation in the vertical direction along the graph.

In addition to the governing equation on the edges, the boundary condition at the nodes are 

critical when describing the dynamics on the graph. The boundary condition on the cell fate 

PDE model can be classified into three types, the initial nodes that do not have inflow 

NI ≐ vk ∉ ∪ j = 1
ne b j , k = 1, …, nv ,e.g., stem cells, the final nodes without outflow 

NF ≐ vk ∉ ∪ j = 1
ne a j , k = 1, …, nv ,e.g., most differentiated cells, and the intermediate 

nodes,

NT ≐ ∪
j = 1

ne
a j ∩ ∪

j = 1

ne
b j .

On the intermediate nodes vn ∈ NT , mixed boundary conditions can be imposed to balance 

the cell inflow and outflow as

∑
i, n ∈ 𝒥

ℬI i, n u, bI i, n = ∑
n, j ∈ 𝒥

ℬI n, j u, aI n, j , (3)

where ℬI i, n u, x ≐ V I i, j x u x − DI i, j x ∂
∂x wI i, j u x

xI i, j
 and bI i, n  is the right end 

point of the edge between nodes i and n. Similarly, aI n, j  is the left end point of the edge 

between nodes n and j. In addition, continuity conditions are taken as Dirichlet boundary 

conditions as

u bI i, n = u aI n, j ,      for all i, n ∈ 𝒥, n, j ∈ 𝒥,

for a fixed n. The cell outflow boundary conditions on the final nodes vn ∈ NF are imposed 

as reflecting boundary conditions

∑
(i, n) ∈ 𝒥

ℬI i, n ≤ u, bI i, n = 0,

and u(bI[i,n]) = u(bI[j,n]) for all (i, n) and (j, n) in 𝒥. Similarly this can be imposed on the 

initial nodes vn ∈ NI as ∂
∂x u aI n, j = αn, n, j ∈ 𝒥 or u aI n, j = αn, n, j ∈ 𝒥 depending on 
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whether the model describes the cell inflow flux or a prescribed density.In particular, the 

prescribed value when v(aI[n,j]) represents the density of stem cell, one can model the 

discrete stem cell state as a separate ODE and impose its solution as the boundary condition 

at aI[n,j] (Doumic et al. 2011; Gwiazda, Grzegorz, and Marciniak-czochra 2012). This 

approach makes it possible to distinguish the stem cell proliferation into the division that 

remains as stem cell and the one that differentiates to a matured cell.

3.1.1. Example on a Y shaped graph—To illustrate our approach, we apply the PDE 

model given in (Eq. 2) to a simple Y shaped graph. This example is motivated by cell 

differentiation data that reveals multiple branching procedures in the continuous space 

(Haghverdi, Buettner, and Theis 2015; Velten et al. 2017; Moris, Pina, and Arias 2016; Rizvi 

et al. 2017), therefore we assume the simplest case that the differentiated cells have two 

different cell fates with one branching. For instance, assume that the cell data projected onto 

the first two diffusion components, DC1 and DC2, are as in Figure 4A and the temporal 

direction of cell differentiation is from left to right, as indicated by the arrows in the figure. 

We define the Y shaped graph with four nodes v1 = (–1, 0), v2 = (0, 0), v3 = (1, 1), and v4 

=(1, –1), and three edges e1 = eI 1, 2 = v1v2,e2 = eI 2, 3 = v2v3 and e3 = eI 2, 4 = v2v4. This 

corresponds to the set of nontrivial edges 𝒥 = 1, 2 , 2, 3 , 2, 4  and index mapping I on 𝒥
as I(1, 2) = 1, I(2, 3) = 2, and I(2, 4) = 3, that yields the end points of the edges ak and bk as 

v1 = a1, v2 = b1 = a2 = a3, v3 = b2, and v4 = b3. For simplicity, we assume that the edges are 

straight lines and parametrize the variables on each edge as e1(x) = (x 1, 0), e2(x) = (x, x), 

and e3(x) = (x, −x), so that x ∈ [0, 1]. When there is possibility for confusion, we use 

subscripts on the x-variables to specify which edge is parametrized. So, for example, x2 

parametrizes e2. Then, the PDE model on each parametrized edge ek can be written as

∂uk x
∂t = − Vk x

∂uk x
∂x +

Dk
2wk

∂
∂x wk

∂uk x
∂x x ∈ ek, k = 1, 2, 3 ⋅ (4)

We consider the case that the cells transfer from v1 to v2 in nT = 5 unit time, differentiate 

into each cell type with proportion p and 1–p, and accumulate at DC1 = 1, where the cells 

are fully differentiated2. Here, we simplify the differentiation rate to be constants assuming 

that the single branching Y graph lies locally and close enough in the differentiation space 

that the differentiation rate does not change. Then,

V1 x = 1
nT

,   V2 x = 1 − p
nT

1 − x2 ,   V3 x = p
nT

1 − x2 , (5)

where V2 and V3 reflect the accumulation at cell types v3 and v4 (x = 1). Also, we assume 

that the differentiation process is subject to fluctuations such as trans-differentiation (cross-

lineage) and de-differentiation (stem state reversion) that is modeled as Brownian motion 

with a constant variance σ so that Dk = σ2 = 0.02. Also, the maximal fluctuation in the 

2Using the notation in Appendix A, γ3 = p and γ4 = 1 − p.
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vertical direction of the edge is assumed to be a constant that is independent to x and w1 = 

2w2 = 2w3 so that the fluctuation in the vertical direction reduces by half in e2 and e3. wk 

cancels out in the diffusion term in (Eq. 4). Figure 4 plots the two examples of symmetric 

differentiation p = 0.5 and asymmetric differentiation p = 0.25.

In this example, to demonstrate our model focusing on the cell differentiation and branching, 

we assume that the proliferation is zero as Rk = 0 (see Appendix A for the detail of modeling 

Rk). The boundary type of the nodes are classified, according to our description above, as NI 

= {v1}, NI = {v2} and NI = {v3, v4} Thus, we impose the gluing condition as in Eq. (3) at v2, 

as

−V1 b1 u b1 + Dw1
∂
∂x

u1 b1 = ∑
k = 1

2
−Vk ak uk ak + Dwk

∂
∂x

uk ak

with continuity conditions u1(b1) = u2(a2) = u3(a3). In addition, an inflow boundary 

condition is imposed at v1, and reflecting boundary conditions at the end nodes v3 and v4 as 

u1 a1, t = 1
0.08π exp − − 1

nT
t

2
/0.08 ,

∂u2 b2
∂x2

= 0,and 
∂u3 b3

∂x3
= 0 The Dirichlet condition of 

u1(a1, t) is given to resemble the transition of a certain cell state to fully differentiated cells 

from the initial distribution

u1 x, t = 0 = 1
0.08π

exp − x2
0.08 , ui x, t = 0 = 1

0.08π
exp − x + 1 2

0.08 , i = 2, 3 ⋅

Simulations of this simple model are shown in Figure 4, where densities on edges e2 and e3 

are plotted in different colors. We see that an initial cell distribution concentrated near the 

cell state v1 moves to the right as the cells differentiate, branches at v2, and becomes 

absorbed at the fully differentiated cell states v3 and v4. In the symmetric case, when p = 0.5, 

the density is the same on each of the two branches to the right of v2, so that the two curves 

are plotted on top of each other. When p = 0.25, the density profile is not symmetric: more 

cells move along the upper branch than on the lower branch. This provides a simple 

illustration of the mathematical details of our modeling framework, which we apply on more 

complicated graph structured derived from data as follows.

4. Simulation results

In this section, we employ the framework developed in section 3.1 to the mouse 

hematopoietic stem and progenitor cell data in Nestorowa et al. (2016a). See Appendix A for 

details, including the model parameters and simulation codes.

4.1. Model of normal adult hematopoiesis

To calibrate our model, we first apply it to normal hematopoietic cell differentiation 

trajectories identified in Nestorowa et al. (2016a). Nestorowa et al. characterize early stages 

in hematopoiesis with twelve cell types, shown in Table 1 and Figure 3, including E-SLAM 

(CD48-CD150+CD45+EPCR+), long-term HSCs (LT-HSCs), short-term HSCs (ST-HSCs), 
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lymphoid-primed multipotent progenitors (LMPPs), multipo-tent progenitors (MPPs), and 

megakaryocyte-erythroid progenitors (MEPs), common myeloid progenitors (CMPs), and 

granulocyte-macrophage progenitors (GMPs). We consider these twelve cell types as the 

twelve nodes, vk, in our graph, and add 51 edges to model the hematopoietic cell hierarchy 

(see Figure 1A) and pseudotime computed in Nestorowa et al. (2016a) (see Figure 5A). This 

graph represents a continuum of canonical and intermediate states of hematopoietic 

differentiation with nodes and edges, respectively. The spatial variable in our PDE model 

represents the differentiation state of the cell.

The colored and labeled clustered cell data and the corresponding graph are shown in Figure 

3. The location of the nodes on the graph is not chosen to be identical to the data, but for an 

illustrative purpose to represent DC2 and DC1/DC3. The edges are chosen according to the 

pseudotime progression from the E-SLAM and HSCs (nodes 1–3) to the progenitor cells 

(nodes 9–12).

The parameters of the PDE model of cell differentiation under normal conditions are chosen 

to reproduce the distribution of cell types from Nestorowa et al. (2016a) at the initial and 

final pseudotime (Figure 5C). Considering the data in Nestorowa et al. (2016a) grouped by 

sorting gate of LT-HSC, hematopoietic stem and progenitor cell (HSPC), and progenitor 

cells, we denote the subsets of nodes that are representative of each group as ℐ1 = 1, 2, 3

for HSC, ℐ2 = 4, ..., 8  for HSPC, and, ℐ3 = 9, ..., 12  for progenitor cell, where we also 

take NI = ℐ1,NT = ℐ2 and NF = ℐ3 The reference distribution is computed by counting the 

relative number of cells in each cluster at the initial and final pseudotime. The initial and 

final cell distribution is concentrated on nodes 1–3 of ℐ1 and 9–12 of ℐ2, respectively.

The distribution of cells in the remaining states, represented by nodes 4–8 of ℐ2, goes from 

0 at time t = 0 to positive at time t = 2, and reduces at t = 4. We remark that the ratios of the 

number of cells in each node are used to compute the advection coeffcients Vk in (Eq. A3), 

where we take the drift VI[i,j] from cell type i to another other cell types j to be proportional 

to the ratio plotted in Figure 5C. For instance, the outflow from v5 to nodes 9–12 is taken to 

be proportional to the reference distribution at pseudotime t = 4. With the ratios fixed, we 

assume a constant parameter that represents the differentiation rate on each node, and find 

the values that reproduce the given cell data by simple root finding algorithms such as secant 

method. The range of the values are 0 ≤ Vk ≤ 3. The detailed procedure is explained in 

Appendix A.

The diffusion coeffcient is taken as Dk = DI(i,j) = 10−2 within the either subsets of nodes 

i, j ∈ ℐ1 or i, j ∈ ℐ3, and Dk = 10−3 on the other edges. The magnitude Dk = 10−2 

corresponds to the phenotypic fluctuation of 2.5456 × 10−2 in the diffusion space and Dk = 

10−3 takes into account of the increased average distance between the nodes that yields 

smaller diffusion coeffcient due to relatively smaller fluctuation. We assume that the 

proliferation of the progenitor cell nodes are a constant as rn = 1.3648 at t ≤ 2 and rn = 0.4 at 

t > 2 for n ∈ ℐ2 ∪ ℐ3, where the proliferation rate reflects the increment of cell number from 

HSC to progenitor cells in the data. Also, the proliferation at the HSC nodes are assumed to 

Cho et al. Page 13

Lett Biomath. Author manuscript; available in PMC 2018 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be negligible compared to progenitor cells as rn = rn ∈ ℐ2 ∪ ℐ3
⋅ 10−2 for n ∈ ℐ1 (Passegué et 

al. 2005). See Appendix A for the model parameters and detailed discussion.

For the implementation, we discretize the system using a fourth-order finite difference 

method and 100 grid points on each edge, and a third-order Runge-Kutta method in time 

with time step 10−4. Figure 5C compares the solution to the PDE in the normal condition to 

the reference distribution. The initial condition of the PDE is taken as the initial reference 

distribution, and we compute the solution up to time t = 5. The solution at t = 4 is similar to 

the reference distribution at final pseudotime. Also, the solution at t = 2 is close to the 

distribution of the remaining cells excluding the initial and final cells. Figure 5B shows the 

cell distribution on the graph from time t = 0 to t = 5. We observe that the support of the cell 

density shifts from the initial nodes 1–3 representing HSCs, to nodes 9–12 representing 

progenitor cells.

4.2. Acute myeloid leukemia (AML)

AML results from aberrant differentiation and proliferation of transformed leukemia-

initiating cells and abnormal progenitor cells. Parallel to the hierarchy of normal 

hematopoiesis, malignant hematopoiesis has also been considered to follow a hierarchy of 

cells at various differentiation states although with certain levels of plasticity (see Figure 6). 

Given the aberrant differentiation and plasticity associated with the pathology of AML, 

modeling in a continuous differentiation space o ers the advantage over discrete models that 

all pathological and intermediate cell states can be captured. With our model calibrated to 

data obtained from normal hematopoietic differentiation trajectories, we now model the 

progression of AML using a genetic knock-in mouse model that recapitulates somatic 

acquisition of a chromosomal rearrangement, inv(16)(p13q22)(Liu et al. 1993, 1996), 

commonly found in approximately 12 percent of AML cases. Inv(16) rearrangement results 

in expression of a leukemogenic fusion protein CBFβ-SMMHC, which impairs 

differentiation of multiple hematopoietic lineages at various stages (Castilla et al. 1999; Kuo 

et al. 2006; Kuo, Gerstein, and Castilla 2008).

Our previous studies using the inv(16) AML mouse model demonstrate that expression of 

CBFβ-SMMHC leukemogenic fusion protein results in expansion of preleukemic 

hematopoietic stem and progenitor populations susceptible to transformation into leukemia-

initiating cells which can initiate and propagate AML. Most notable was the increased in 

abnormal myeloid progenitors, which had an MEP-like immunopheno-type and a CMP-like 

differentiation potential (Kuo et al. 2006). Further separation of myeloid-erythroid 

progenitors with additional phenotypic markers (Pronk et al. 2007) show a predominant 

increase in pre-megakaryocyte/erythroid (Pre-Meg/E) population (ranging from 5 to 12 fold) 

accompanied by impaired erythroid lineage differentiation (Figure 6A)(Cai et al. 2016). This 

refined phenotypic Pre-Meg/E population consists partly of the CMP and MEP populations 

using conventional markers (Akashi et al. 2000)(Nestorowa et al. 2016a).

The simulation of inv(16) initiated AML pathogenesis is motivated by our previous 

observations that AML is preceded by expansion of preleukemic myeloid progenitor cells, 

particularly the Pre-Meg/E and MEP-like populations with impaired differentiation. These 
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abnormal progenitors are predisposed to subsequent cooperating events necessary to 

transform to overt AML (Kuo et al. 2006; Cai et al. 2016; Castilla et al. 1999). To simulate 

AML pathogenesis, we increase the proliferation rate of MEP (node 11) by 10 times, that is, 

rI[i,11] = 10rnormal, to reflect the abnormal expansion of MEP-like cells (ranging from 5 to 12 

fold based on previous data) (Kuo et al. 2006; Cai et al. 2016). Here, rnormal is the value that 

is used in the normal condition in section 3.1. Thus, the proliferation is assumed to be 

maximal at the MEP node, Rk(v11) and the proliferation of intermediate cells that are 

phenotypically close to MEP, that is, RI[i,11](x) near x = v11, also increase. Also, the flow to 

the MEP is blocked by taking zero advection coeffcient on the edge that is connected to v11, 

i.e., VI(i,11)(x) = 0. We also lower diffusion by ten as DI(i,11)(x) = Dnormal/10 to model the 

phenotypic fluctuations and imperfect differentiation block involved in AML pathogenesis. 

The differentiation block is imperfect because there is a continuum of leukemic cell pheno-

types (states).

In addition, the proliferation rate of LT-HSC and ST-HSC (nodes 3 and 5), that is, r3 and r5, 

is increased by 2.5 times as 2.5rnormal (Figure 6B). We model the induction of the 

leukemogenic fusion protein CBFβ-SMMHC resulting from the chromosome inversion 

inv(16) (p13q22) as the “start of AML.” In this murine model of AML, inv(16) is the initial 

founder event that results in differentiation block and expansion of abnormal progenitors, 

which are predisposed to subsequent cooperating events necessary to transform to overt 

AML (Kuo et al. 2006; Cai et al. 2016; Castilla et al. 1999). The approach used here directly 

models the sequence of events observed during leukemia initiation. Finally, we denote tAML 

as the effective time that the aforementioned tenfold proliferation change in MEP and other 

abnormal differentiation and proliferations due to AML are observed. The other parameters 

except the ones described in this section follows the ones from section 4.1.

Figure 7 shows the total number of cells in each cell type in normal condition and AML 

condition starting at t = 4. In normal condition, the CMP, MEP, and LMPP cells dominates 

the population after t ≥ 4. However, in the AML case, the MEP cells increases up to 100 

times of the normal condition after a single psuedotime and dominates the population. 

Figure 7C plots the number of cells in each cell type separately, where we can observe the 

increasing number of cells not only in MEP, but also the intermediate cell types, 4–8. Figure 

8 compares the cell distribution on the graph between the normal and AML case at time t = 

7. In the AML case, the peak is shown on the edges near MEP cells.

The continuum of intermediate cell types, represented as numbers of cells along the edges of 

the graph are plotted in Figure 9. The cell distribution in the normal case at t = 1 and t = 3 

shows the cell population moving on the edges from HSCs to progenitors states. Under 

normal hematopoeisis, we observe the flow of cells along the continuum from a stem cell 

like state to a progenitor state, with an even distribution of all types of progenitor cells. 

However in the AML case, we predict the emergence of novel intermediate cell types, 

including a mixed CMP-MPP3 and CMP-MEP cell type. These indeterminate cells may 

exhibit phenotypic and/or functional properties of both cell types on either side of the edge 

(node i and/or node j). This cell state may be unstable, phenotypically plastic, may be in an 

abnormal state or process of differentiation, or perhaps even undergoing a selection pressure 

to induce transformation. Of note, this prediction of a mixed CMP-MEP cell type echoes the 
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biological observation that abnormal myeloid progenitors seen during AML progression 

exhibit an MEP-like immunophenotype with a CMP-like functional readout (Kuo et al. 

2006). This mixed identity/functionality coincides with a strong differentiation block 

towards erythrocyte and megakaryocytes (Cai et al. 2016).

This highlights the advantage of modeling pathologic conditions in a continuum of cell 

states as the phenotypic properties and the differentiation processes are often abnormal 

during pathogenesis. This approach also circumvents the limitations of varying phenotypic 

definitions used in different studies in the literature (e.g., MEP vs. Pre-Meg/E) and the 

varying degree of heterogeneity within phenotypically defined cell populations in health and 

in disease.

We also simulated AML starting at different time points from t = 1 to t = 6. Since our initial 

condition assumes that the cells have not yet developed to MEP, the total number of cells is 

maximized when the AML occurs after a critical amount of cells have differentiated into an 

MEP state. Figure 10 shows the results of model simulations, where we observe that the 

number of cells are maximal at later times when AML is started at t = 3. From these 

simulations, we infer that the short and long term evolution of AML may depend on the state 

and composition of the hematopoietic landscape at the time of AML initiation.

5. Discussion

We present a mathematical model of movement in an abstract space representing states of 

cellular differentiation. We represent trajectories in the differentiation space as a graph and 

model the directed and random movement on the graph with partial differential equations. 

We demonstrate our modeling approach on a simple graph, and then apply our model to 

hematopoiesis with publicly available scRNA-seq data. We calibrate the PDE model to 

pseudotime trajectories in the diffusion map space and use the model to predict the early 

stages of pathogenesis of acute myeloid leukemia.

A more traditional approach for modeling the process of cell differentiation is to use a 

discrete collection of ordinary differential equations (ODEs) that describe dynamics of cells 

at n different maturation stages and the transition between those stages, c.f.,Lander et al. 

(2009); Lo et al. (2008); Marciniak-Czochra et al. (2009); Stiehl and Marciniak-Czochra 

(2011). These discrete models are also referred to as “multicompartmental models,” and are 

based on the biological assumption that in each lineage of cell precursors there are discrete 

steps in the maturation process that are followed sequentially, c.f., Lord (1997); Uchida et al. 

(1993).

This view of the differentiation process being discrete does not capture biological 

observations that indicate that cell differentiation is more likely a continuous process, and 

that maturation may, in fact, even be decoupled from cell division, c.f., Doumic et al. (2011); 

Dontu et al. (2003). A number of mathematical models have been created that aim to capture 

the continuous process of cell differentiation (Adimy, Crauste, and Ruan 2005; Pujo-

Menjouet, Crauste, and Adimy 2004; Alarcon et al. 2011; Bélair, Mackey, and Maha y 1995; 
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Colijn and Mackey 2005; Doumic-Jau ret, Kim, and Perthame 2010; Doumic et al. 2011; 

Gwiazda, Grzegorz, and Marciniak-czochra 2012).

For example, in Doumic et al. (2011), the authors present a model of cell differentiation that 

assumes that the dynamics of differentiated precursors can be approximated by a continuous 

maturation model. The model is created by extending the multicompartment discrete system 

of Marciniak-Czochra et al. (2009). The authors provide a careful comparison that shows 

that the continuous structured population model is not a mathematical limit of the discrete 

multicompartment model. In particular, the dynamics of the continuous model allow 

commitment and maturation of cell progenitors to be a continuous process that can take 

place between cell divisions. They do show, however, that there is overlap in model 

dynamics with a particular choice of maturation rate. In Gwiazda, Grzegorz, and Marciniak-

czochra (2012), the authors subsequently developed a continuous model that can be viewed 

as a generalization that admits both the continuous model of Doumic et al. (2011) and the 

discrete model of Marciniak-Czochra et al. (2009) as special cases. In Prokharau, Vermolen, 

and Garca-Aznar (2014), the authors develop a PDE-based continuous model of cell 

differentiation that allows cells to differentiate into an arbitrary number of cell types. A 

particular differentiation trajectory can be determined by any number of parameters, such as 

biochemical factors, the current differentiation state, or just by a random variable, so their 

approach allows differentiation to be either a deterministic or a stochastic process.

The modeling approach we present differs from previous cell differentiation models in that it 

is centered on capturing cell differentiation dynamics that take place within a space that has 

been created via a dimension reduction transformation of high dimensional data. Within that 

reduced space, our model assumes that maturation and differentiation take place along a 

continuous trajectory. (The dimension reduction outcomes on the data sets we tested indicate 

that the trajectory will, in fact, be continuous.) Cells can differentiate along an arbitrary 

number of paths with an arbitrary number of end states, all of which are determined by the 

data set and dimension reduction technique employed. Thus, the reduced differentiation 

space is not predetermined, but is generated as a function of the dimension reduction 

technique and the data set of interest.

Although methods exist to characterize differentiation trajectories, such as optimal transport 

(Schiebinger et al. 2017) and diffusion pseudotime methods (Haghverdi et al. 2016), an 

advantage of our approach is the ability to use a mathematical model to predict the outcomes 

of abnormal trajectories and to perturb the system mathematically with the model. We use 

this advantage of the mathematical model to simulate and explore AML pathogenesis based 

on immunophenotypic characterization of a mouse model for inv(16) AML. Our simulation 

results are consistent with the evolution of inv(16) driven AML, and predicts dynamics in 

canonical cell populations as well as cells in novel, intermediate states of differentiation. The 

intermediate cell states such as CMP-MEP seen in our simulation is consistent with previous 

observations that CBFβ-SMMHC expressing phenotypic MEP cells confer CMP-like 

progenitor cell activity (Kuo et al. 2006). Given the phenotypic plasticity and aberrant 

differentiation occurring during leukemia evolution, it is particularly informative to model 

cell dynamics in a continuum of differentiation space.
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The novelty and power of this modeling approach is the ability to capture and predict 

dynamics of many interconnected cell types. We now consider a continuum of cellular 

states, and model movement between these states in aggregate by representing many cell 

populations and states in a single variable. This approach increases biological resolution of 

the system by characterizing an infinite number of sub-states in a continuum representation 

and allows us to make predictions with one equation and very few model parameters, which 

can be directly calibrated to experimental data, for example with time-series cell 

differentiation experiments. These data could be used in place of the inferred pseudotime 

methods to construct more realistic differentiation trajectories, as well as estimate 

parameters such as the transport rates between locations in the differentiation space. We note 

that this is not equivalent to rates of cellular differentiation, since this allows inference of 

transition between intermediate states of differentiation which may not be directly calculated 

from differentiation assays which rely on specific lineage markers.

A limitation of our approach is that it does not include physical properties of the living 

biological system, such as the cellular microenvironment, which is known to play a critical 

role in the transformation of cell state and function. Furthermore, we recognize and 

acknowledge that cellular state transition dynamics as represented as a projection in a low 

dimensional space is an approximation of the dynamics in the original high dimensional 

space. Moreover, the dynamics observed and predicted in the lower dimensional space 

critically depend on the method of dimension reduction. This logic motivates our use of 

diffusion maps as the method to construct the differentiation space.

In addition, our current model assumes that the cell properties of the intermediate cell types 

change linearly between the node cell types. Although it is reasonable to assume that the 

overall cell properties in the macro scale changes linearly depending on the distance in the 

phenotypic space when no other information in between is given, our future work involves 

using the expression levels of the intermediate cells that are related to cell dynamics, e.g., 

cell cycle, differentiation, and proliferation, to develop more appropriate models for the 

intermediate cells. A limitation of the Nestorowa et al. (2016a) data set is that it includes 

only stem and committed progenitor cells, and lacks a population of fully differentiated cells 

(e.g. erythrocytes, platelets, B-cells, T-cells, etc.), which yields an incomplete differentiation 

trajectory. Although we note that the stem and progenitor cell populations are the leukemia-

initiating cell populations most immediately relevant to the pathogenesis of inv(16) driven 

AML Cai et al. (2016). Data sets covering the full spectrum of differentiation trajectory 

during normal and abnormal (AML) hematopoeisis will enable modeling of differentiation 

blocks occurring at later stages of differentiation.

However, despite these limitations, we contend that this kind of analysis is a critical and 

valuable first step towards understanding the evolution of the higher dimensional system, 

and that low dimensional approximations have value, particularly when predictions in the 

lower dimensional space can be experimentally validated. We postulate that when dynamics 

in low dimensional representations are su ciently characterized, they may eventually be used 

as a surrogate for high dimensional data, thus reverting the trend of “big data” back down to 

more informative “small data.”
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We note that our modeling approach can be applied to any data set or manifold shape. As 

more normal and abnormal cellular state transitions are characterized at single cell 

resolution, we may apply similar computational and modeling methods to those systems. We 

emphasize our modeling approach is general and is not tailored or adapted to hematopoiesis 

in particular. Future applications of this approach may be useful to model the effects of 

therapies which target specific states of differentiation or the differentiation process itself, 

including other hematologic malignancies.
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Appendix A: Model and parameters

Here we present the PDE model and parameter calculations used to produce the results 

presented in Section 4. MATLAB files used to generate the figures and results are included 

as supplemental files and can be downloaded from the journal website. The cell distribution 

u(x, t) is computed on the graph G as

∂uk
∂t = − ∂

∂x Vk x uk + Rk x uk +
Dk x

2
∂2uk

∂x2 , x ∈ ek, k = 1, ..., 51, (A1)

where uk is the solution projected on the edge ek as uk x, t ≐ u x, t x ∈ ek
 and ek k = 1

51  are the 

51 edges connecting the twelve nodes vn n = 1
12  as in Figure 3B. We assume that the edges 

are unit length as ek = ak, bk = 0, 1  and find the coeffcients in (Eq. A1) that are scaled to 

the unit length edge.

The total number of cells can be computed as ρ t ≐ ∑k = 1
51 ∫ ekuk x, t dx, and we compute 

the number of cells in the n-th cluster as

ρn t ≐ ∑
k = I(n, j)

∫
ak

ak + bk
2 uk x, t dx + ∑

k = I(i, n)
∫ak + bk

2

bk
uk x dx . (A2)

Alternatively, since the boundary of the cell types are not distinctive, one can compute it as a 

weighted sum along the edges adjacent to the node n with linear weight functions such as 

ω x = − x + 1 and 1 − ω x  along the entire edge.

To obtain the transfer rate between the cell nodes, we assume three discrete psuedotimes at 

those three sorted groups starting from LT-HSC to HSPC, and finally to progenitor cells. As 

remarked in section 4.1, we consider subsets of nodes I1 = {1, 2, 3} as HSC, I2 = {4, …, 8} 
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as HSPC, I3= {9, …, 12} as progenitor cell group. This follows the cell data in Nestorowa et 

al. (2016b) that is classified with ComBat from the SVA package using the sorting gate of 

LT-HSC, HSPC, and progenitor, and then processed with diffusion mapping initialized from 

a subpopulation of LT-HSC to the progenitor cells of different lineage of Erythroid, 

Granulocyte-macrophage, and Lymphoid. Accordingly, we consider three discrete 

psuedotimes considering LT-HSC (t0), HSPC (t1), and progenitor (t2) and compute the 

number of cells in each node that is summarized in Table A1. We comment that diffusion 

pseudotime is not a physical time unit (i.e. days) and that the differentiation process is 

modeled based on the inferred pseudotime trajectories. with the following mapping of 

pseudotimes t0 = 0, t1 = 2, and t2 = 4. The time mapping procedure can be refined with time 

series differentiation assay data. The transfer rates between the nodes are taken from the 

ratios at each psuedotime.
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We compute ratio as time independent within the subsets as

γn ≐ ρn/ ∑
n ∈ ℐl

ρn, n ∈ ℐl,

that is, γ1 = 24/245, γ2 = 66/245, γ3 = 155/245 for I1, γ 4 = 236/370, γ 5 = 36/370, γ 6 = 

27/370, γ 7 = 11/370, γ 8 = 60/370 for I2, and γ9 = 192/696, γ10 = 223/696, γ11 = 227/696, 

γ12 = 54/696 for I3. We remark that the transfer rates can be time dependent as γn(t) if the 

data is collected at sequential timepoints, which is one way that the model could be 

parameterized.

We take these values as the in and out transfer rate imposed in the advection coeffcient. For 

each node, we assume a constant parameter cn ≠ 0 that determines the magnitude of the 

advection coeffcient, that is, the speed of the cell differentiation.We take the transfer in rate 

at the node vn, n ∈ ℐ1, as V I i, n bI i, n = γicn, for i ∈ ℐl − 1 and transfer out rate as 

V I n, j aI n, j = γ jcn, for   j ∈ ℐl + 1. Using the fixed transfer rates at the nodes, the advection 

coeffcient is linearly interpolated as 

V I i, j x = V I i, j aI i, j + V I i, j bI i, j − V I i, j aI i, j x, that is,

V I i, j x = γ j ci + γi c j − γ j ci x,   i ∈ ℐ1, j ∈ ℐ2 (A3)

In addition, we apply the weight (1 − x2) to model the accumulation of cells at the 

progenitor nodes j ∈ ℐ3,

VI i, j x = γ j ci + γi c j − γ j ci x 1 − x2 ,  i ∈ ℐ2, j ∈ ℐ3,

and take V I i, j x = 0, for other pairs of nodes. For instance, V I i, j x = 0,for i, j ∈ ℐl within 

the same hierarchy of cells, and the transition between these nodes are only governed by 

diffusion. The constant parameter at each node cn are taken to reproduce the cell distribution 

as in Figure 5 as following,

c1 = c2 = c3 = 1.0, c4 = 1.2898, c5 = 0.9535, c6 = 0.9488,

c7 = 0.8060, c8 = 0.8263, c9 = c10 = c11 = c12 = 1.0,   for t < t1,

c1 = c2 = c3 = 1.0, c4 = 1.7898, c5 = 1.4535, c6 = 1.4488, c7 = 1.3060,

c8 = 1.3263, c9 = 1.7992, c10 = 1.4380, c11 = 1.5070, c12 = 2.6347,  for t ≥ t1 .

The values are computed by a simple root finding algorithm such as secant method.

The diffusion coeffcients on the edges are taken as Dk(x) = DI(i,j)(x) = 10−2 between the 

nodes that are within i, j ∈ ℐ1 and i, j ∈ ℐ2, assuming that the perturbation of the cells are in 

unit psuedotime in the rescaled edges is in the order of 2L2 × 10−2 ≈ 2.5456 × 10−2, where L 
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is the average length of the edges within i, j ∈ ℐ1 and i, j ∈ ℐ2. Considering that the average 

length of the other combinations of (i, j) are increased by threefold, therefore we take DI(i,j)

(x) = 10−3.

The proliferation rate is also obtained by the secant method to match the given data in Table 

A1 at t1 and t2. The computed values are rn = 1.3648, t < t1 and rn = 0.4, t ≥ t1 for the HSPC 

and progenitor cells n ∈ ℐ2 ∪ ℐ3. In addition, the fact that LT-HSC cells proliferate 

relatively less than the progenitor cells (Passegué et al. 2005) are imposed as 

rn = rn ∈ ℐ1 ∪ ℐ3 × 10−2 for n ∈ ℐ1. The intermediate level of proliferation is linearly 

interpolated as

Rk x = RI i, j x = ri + r j − ri x, (A4)

assuming that the overall proliferation of intermediate cell states change gradually. If the 

time variable is taken as the actual time, the rate in each node can be computed considering 

the proportion of proliferating stem cells (5–10%) and cell cycle (36–145 days) (Hao, Chen, 

and Cheng 2016; Pietras, Warr, and Passegué 2011). Moreover, the abnormal proliferation of 

cancerous cells with cell cycle λ and apoptosis of the differentiated cells with rate d at 

expression level x* can be modeled with a localized Gaussian function with variance ∈ as 

Rk x = ln 2
λ exp − x − x* 2/ ϵ , and Rk x = − dexp − x − x* 2/ ϵ , respectively. The choice of 

localized Gaussian function assumes that the center x* is location in the diffusion space that 

most closely resembles the “prototypical,” or “ideal” cell type identity.

The described parameters are summarized in Table A2.

Table A2.

Summary of the required data and corresponding parameters. In our simulation, Vk and Rk 

are estimated from ρk in Table A1.

biological meaning and parameters

Vk (x) cell differentiation rate ck, branching ratio γk

Rk (x) growth rate rk

Dk (x) phenotypic fluctuation σk, wk

The initial condition is taken by considering the cell data at pseudotime t0 with ratios 

γ1
0 = 25/296, γ2

0 = 78/296, γ3
0 = 193/296, γk

0 = 0 for k = 4,…, 12. We remark that this is shown 

in Figure 5C. Accordingly, the initial distribution is taken as

uk x, t0 = uI i, j x, t0 = γi
0 e−x2/0.08 + γ j

0 e− x − 1 2/0.08, x ∈ ek .
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With this choice, the total number of cells in each node ρn(t0) computed as in Eq. (A2) is 

similar to the given ratios γn
0. The boundary condition defined as in Eq. (3) around the node 

vn, that is, at x = bI(i,n) and x = aI(n,j) becomes

∑
i, n ∈ 𝒥

γi cnuI i, n − DI i, n
∂
∂x

uI i, n = ∑
n, j ∈ 𝒥

γi cnuI n, j − DI n, j
∂
∂x

uI n, j , (A5)

with continuity boundary conditions uI n, j aI n, j = uI i, n bI i, n  for fixed n. The condition 

(A5) reduces to ∑(i, n) ∈ 𝒥 DI i, n
∂

∂x uI i, n x = ∑(n, j) ∈ 𝒥 DI n, j
∂

∂x uI n, j x  in our model 

since ∑ i, n ∈ 𝒥 γi cn = ∑ n, j ∈ 𝒥 γ j cn = cn .

Sensitivity of model parameters

We test the sensitivity of the results with respect to the parameters in the diffusion, 

advection, and reaction coeffcient. The values of Dk, Vk, and Rk are varied by −10%, −1%, 

1%, and 10%, and Figure A1 presents the difference in the total number of cells ρ(t) in 

percentage. While it is expected that the total number of cells are sensitive to the reaction 

coeffcient, since it governs the proliferation rate, it also strongly depends on the advection 

coeffcient as well, particularly in AML condition. On the other hand, the results are less 

dependent on the diffusion coeffcient. The number of intermediate cells while varying the 

coeffcients are plotted in Figure A2. In particular, we present the dynamics of LT-HSC(3)-

STHSC(5), ST-HSC(5)-MPP1(6), MPP(4)-LMPP(9), and CMP(10)-MEP(11) cells in 

normal and AML condition. We observe similar results as in the total number of cells, 

however, the overall trend of the dynamics is independent to the variation in the coeffcients.
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Figure A1. 
Change in the total number of cells ρ(t) in percentage with respect to the model parameters, 

diffusion Dk, advection Vk, and reaction Rk. We test the cases where the coeffcients change 

their values by − 10%, −1%, 1%, and 10%. The results are sensitive to the reaction and 

advection coeffcients particularly in AML condition. On the other hand, the results are less 

dependent on the di usion coeffcient.
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Figure A2. 
Number of intermediate cells with respect to the model parameters, diffusion Dk, advection 

Vk, and reaction Rk. The results are computed by varying the coeffcients by −10%, −1%, 

1%, and 10%. Although the result varies from the reference case (0%), the overall trend of 

the cell−dynamics are observed to be similar.
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Appendix B.: Supplementary figures

Figure B1. 
Solutions of the PDE model on the Y shaped graph from the initial condition centered at the 

left end DC1 = –1 (black line in (a-b)) with diffusion D = 10−2 and drift c = –0:2 for the 

symmetric (top row) and asymmetric cases (bottom row).

Figure B2. 
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The cell data from (Nestorowa et al. 2016a) is grouped into 12 cell nodes according to 12 

commonly sorted HSPC phenotypes including LT-HSC, ST-HSC, and MEP. The center of 

mass of each cluster is marked as a red cross and used to establish nodes and edges on the 

graph which is then used as a computational domain for our simulations.
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Figure 1. 
A) Classic representation of a linear hierarchy of discrete cell states, from long-term 

hematopoietic stem cell (LT-HSC), short-term (ST)-HSC, multipotent progenitor (MPP) to 

committed common myeloid progenitor (CMP), pre-megakaryocyte/erythrocyte (Pre-

Meg/E) and megakaryocyte-erythroid progenitor (MEP),pre-granulocyte/macrophage (Pre-

GM), granulocyte-macrophage progenitor (GMP), and lymphoid primed-MPP (LMPP), 

common lymphoid progenitor (CLP) cells, on down to terminally differentiated cells such as 

erythrocytes (E) platelets (Plt), granulocytes (G) macrophages (M), B and T cells. B) The 

classical view is contrasted with a nonlinear continuum representation of hematopoietic cell 

differentiation states using diffusion map dimension reduction of scRNA-Seq data (figure 

recreated from data available in Nestorowa et al. (2016a)). Colors representing cell identities 

in A) and B) are coordinated. Cell types in B) are a subset of cells represented in A).
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Figure 2. 
Flow chart of our modeling process: This chart organizes the steps taken toward constructing 

the PDE model. First, high-dimensional data such as single cell RNA-Sequencing (scRNA-

Seq) are represented in 2- or 3-dimensional space through one of many dimension reduction 

techniques. Then, temporal events (pseudotime trajectories) are inferred from the dimension 

reduced reduced data. We then use the reduced dimension representation and pseudotime 

trajectories to model flow and transport in the reduced space. In Section 2, we summarize 

dimension reduction techniques and reconstructing pseudotime trajectories. In Section 4 we 

show the results of our modeling. Data is from Nestorowa et al. (2016a).
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Figure 3. 
A) For the 12 cell types idenfied in Nestorowa et al. (2016a), the center of mass of each cell 

type is used to define a node on an abstracted graph B). Edges between nodes are 

constructed based on inferred trajectories on the graph based on diffusion pseudotimes 

starting from nodes 1, 2, and 3, to nodes 4–8, then to the progenitor nodes 9–12. The graph 

represents a continuum of cell states (edges) that includes identification of canonical cell 

states along the continuum (nodes 1–12) (Table 1).
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Figure 4. 
We use a simple “Y” shaped graph to illustrate our model. A) The graph is defined by four 

nodes vk k = 1
4  and three edges e1 = eI(1,2), e2 = eI(2,3), and e3 = eI(2,4) within two 

components of a diffusion map (DC1, DC2). The transfer rate from v2 to v3 and v4 is taken 

to be proportional to 1 − p and p, respectively. B) The evolution of the cell density solution 

from the initial condition (t = 0) concentrated at the left end, DC1 = −1, to a density 

concentrated at the right ends, DC1 = 1, at t = 15. In the symmetric case, p = 0.5, the two 

branches evolve in the same way; C) in the asymmetric case, p = 0.25, the cell density is 

larger at t = 15 on the upper branch, shown in blue, compared to the lower branch, shown in 

red.
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Figure 5. 
A) The cell data colored by pseudotime analysis produced by the Wanderlust algorithm 

applied to data mapped to diffusion space in Nestorowa et al. (2016a). The initial point in 

pseudotime is taken from the HSC cells and the final pseudotime from the progenitor cells. 

B) Cell distribution computed by the PDE model describing normal conditions on the graph 

from t = 0 to t = 5. The cells flow from E-SLAM and LT-HSC nodes on the right to the 

LMPP, CMP, MEP, and GMP nodes on the other three ends (bottom, top, and left), following 

the pseudotime trajectories identified in A). C) Comparison of the cell type distribution 

computed by the PDE model described in Eq. (2) and the reference data from Nestorowa et 

al. (2016a). The reference distribution (Nestorowa et al.) is computed by clustering the 

initial, middle and final pseudotime cells from A) into 12 cell nodes. By considering t = 4 as 

the final pseudotime in the PDE model, the values of the solution at the nodes agree well 

with the reference data.
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Figure 6. 
A) Acute myeloid leukemia (AML) is a cancer of aberrant differentiation and proliferation 

of hematopoietic progenitor cells. Previous studies demonstrated that expression of inv(16) 

leukemogenic fusion protein CBFβ-SMMHC results differentiation block at multiple 

hematopoetic stages along with expansion of preleukemic stem/progenitor cells and 

abnormal myeloid progenitors, including CMP, Pre-Meg/E and MEP. These preleukemic 

stem/progenitor cells and abnormal myeloid progenitors are susceptible to malignant 

transformation into leukemia-initiating cells that drive and sustain AML pathogenesis. B) 

Schematic illustration of AML pathogenesis in the differentiation continuum. To simulate 

inv(16) driven AML, the proliferation Rk(x) connecting the nodes 3, 5, and 11 is increased 

and the flow toward the node 11, Vk(x) and Dk(x) for k = I(i, 11) is blocked.
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Figure 7. 
Total number of cells in each node up to t = 7 in A) normal condition and B) AML 

pathogenesis. The AML simulation is started at t = 4. Compared to the normal case, cells in 

MEP, LT-HSC, and ST-HSC increase as well as other cell types. Figure C) compares the 

number of cells between the normal and AML case for each cell type individually.
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Figure 8. 
The cell distribution on the graph in a log10 scale, comparing the normal and AML 

conditions at t = 7. The AML condition shows increased density on the edges near the MEP 

state (node 11) at t = 7.
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Figure 9. 
The continuum of cell states can be visualized as the density of cells along the 51 edges of 

the graph (rows) connecting node i (left) to node j (right) for all nodes i, j. Cell distribution 

(log10 scale) on the edge comparing the normal condition and AML. In addition to an 

accumulation of MEP cells, novel intermediate cell states emerge resulting from the 

differentiation block and increased proliferation rate resulting from AML. These novel cell 

states are indicated with white arrows and generally fall between the CMP, MPP, and MEP 

canonical cell states. The presented edges in the first row (t < 4) are lexicographically 

ordered with respect to the left end (an) to visualize which nodes are the differentiating cells 

departing from and with respect to the right end (bn) in the second row (t > 4) to visualize 

which nodes are the arriving cells differentiated into.
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Figure 10. 
A) Cell distribution on the graph at t = 7 for AML occurring at different times, tAML = 1, 2, 

4, and 6. MEP (11) blows up when AML occurs after t ≥ 2. The dominating intermediate 

cells are also distinct. B) Relative total number of cells when AML occurs at tAML = 1 to 

tAML = 6 compared to the normal case (dashed line) up to time t = 7. The total number of 

cells is maximized when AML occurs at tAML = 3.
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Table 1.

Index of cell identities and labels. Long- and short-term hematopoietic stem cells (LT-HSC, ST-HSC); 

multipoent potent progenitors (MPP), lymphoid-primed multipotent progenitors; common myeloid progenitors 

(CMP); megakaryocyte-erythroid progenitors (MEP); granulocyte-macrophage progenitors (GMP).

Cell identities and labels

ID Cell type ID Cell type

1 E-SLAM 7 MPP2

2 L-S+K+ CD34-
Flk2+ CD48-CD150+

8 MPP3

3 LT-HSC 9 LMPP

4 MPP 10 CMP

5 ST-HSC 11 MEP

6 MPP1 12 GMP
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