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Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy, 3 Doheny Eye Institute, Los Angeles, CA, USA, 
4 Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles,  
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There is increasing awareness on the role played by circadian rhythm abnormalities in 
neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease 
(PD). The characterization of the circadian dysfunction parallels the mounting evidence 
that the hallmarks of neurodegeneration also affect the retina and frequently lead to 
loss of retinal ganglion cells (RGCs) and to different degrees of optic neuropathy. In the 
RGC population, there is the subgroup of cells intrinsically photosensitive and expressing 
the photopigment melanopsin [melanopsin-containing retinal ganglion cells (mRGCs)], 
which are now well known to drive the entrainment of circadian rhythms to the light–dark 
cycles. Thus, the correlation between the pathological changes affecting the retina and 
mRGCs with the circadian imbalance in these neurodegenerative diseases is now clearly 
emerging, pointing to the possibility that these patients might be amenable to and benefit 
from light therapy. Currently, this connection is better established for AD and PD, but the 
same scenario may apply to other neurodegenerative disorders, such as Huntington’s 
disease. This review highlights similarities and differences in the retinal/circadian rhythm 
axis in these neurodegenerative diseases posing a working frame for future studies.

Keywords: optic nerve, retinal ganglion cells, melanopsin, circadian rhythms, Parkinson’s disease, Alzheimer’s 
disease, Huntington’s disease

inTRODUCTiOn

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most frequent age-related neuro-
degenerative disorders with an increasing prevalence with age (1, 2). They are both characterized 
by the frequent occurrence of sleep problems and circadian rhythm dysfunction (3–6). In the last 
decade, the role of the eye in influencing and regulating circadian rhythms has been clarified, starting 
from the discovery of the intrinsically photosensitive melanopsin-containing retinal ganglion cells 
(mRGCs) (7, 8). These cells constitute a small subset of regular retinal ganglion cells (RGCs) consist-
ing of about 1–2% of the total, and they give origin to the retinohypothalamic tract through which 
they project to the suprachiasmatic nucleus (SCN) of the hypothalamus synchronizing circadian 
rhythms to the light–dark cycle (9). Besides this predominant function, they also play an important 
role in many non-visual functions of the eye, regulating sleep through the connections with the 
ventrolateral preoptic nucleus (VLPO) and the lateral hypothalamus (LH), melatonin secretion, and 
its suppression through the connections with the pineal gland, pupillary reflex through the olivary 

http://www.frontiersin.org/Neurology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2017.00162&domain=pdf&date_stamp=2017-05-04
http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
https://doi.org/10.3389/fneur.2017.00162
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:chiara.lamorgia@unibo.it
mailto:chiaralamorgia@gmail.com
https://doi.org/10.3389/fneur.2017.00162
http://www.frontiersin.org/Journal/10.3389/fneur.2017.00162/abstract
http://www.frontiersin.org/Journal/10.3389/fneur.2017.00162/abstract
http://www.frontiersin.org/Journal/10.3389/fneur.2017.00162/abstract
http://loop.frontiersin.org/people/139149
http://loop.frontiersin.org/people/426046
http://loop.frontiersin.org/people/173864
http://loop.frontiersin.org/people/174868


2

La Morgia et al. Eye and Circadian Rhythms in Neurodegeneration

Frontiers in Neurology | www.frontiersin.org May 2017 | Volume 8 | Article 162

pretectal nucleus, and also visual functions through the projec-
tion to the lateral geniculate nucleus (10–12).

In this review, the likely influence of the mRGC system in 
the pathogenesis of circadian misalignment in AD and PD is 
discussed, highlighting similarities and differences, starting from 
the observation that in both diseases, loss of regular RGCs has 
been documented by both histological and optical coherence 
tomography (OCT) studies, thus suggesting that the retina is 
actively and primarily involved in the neurodegenerative process 
characterizing both disorders. In fact, many studies describe optic 
neuropathies associated with AD and PD, which, however, display 
different patterns of RGC and axonal loss, possibly reflecting dif-
ferent pathogenic mechanisms. We here explore the connection 
between the eye and circadian functions and dysfunctions in AD 
and PD with particular reference to the mRGC system and its 
contribution to circadian functions.

eviDenCe OF inneR ReTinA 
PATHOLOGY in AD AnD PD

Alzheimer’s Disease
Histological and OCT studies in AD demonstrated a significant 
loss of RGCs and consequent axonal depletion in the optic nerve. 
Hinton and colleagues in 1986 reported the first histological dem-
onstration of optic neuropathy in AD describing loss of RGCs 
and axons in the optic nerve (13). After this seminal work, other 
histological studies reported degeneration of the inner retina in 
AD, more pronounced in the superior and inferior sectors of the 
optic nerve (14–20).

These histological findings are corroborated by many recent 
OCT studies pointing to retinal nerve fiber layer (RNFL) thin-
ning in AD, as confirmed by a recent meta-analysis of 11 OCT 
studies in AD (21). RNFL thinning is more pronounced in the 
superior sector of the optic nerve (20–23) and is age related 
(20) (Figure 1). This pattern of RGC loss is consistent with the 
predominant inferior visual field defect described in AD patients 
(24). Moreover, a recent OCT study using segmentation analysis 
in a large series of AD patients showed a significantly reduced 
macular retinal ganglion cell–inner plexiform layer thickness in 
AD retinas compared to controls (25).

The pattern of axonal loss in the optic nerve, for example, the 
prominent superior quadrant involvement, is consistent with the 
histological findings that magnocellular RGCs are more vulner-
able to AD pathology (16), which also resembles the pattern of 
RGC loss described in glaucoma (26). Recently developed in vivo 
imaging methods, such as the detection of retinal cells undergo-
ing apoptosis (DARC), are extremely promising in quantifying 
and visualizing in vivo RGC loss in AD retinas (27).

The presence of the cerebral hallmarks of AD, such as amyloid 
plaques, in the retina gives strength to the specific vulnerability 
of the eye, and in particular of the inner retina to AD pathology. 
Koronyo-Hamaoui and colleagues provided the first demon-
stration of extra-cerebral Aβ deposits in postmortem human 
flat-mounted retinas of AD patients and ex vivo in APPSWE/
PS1ΔE9 transgenic mice after curcumin administration (28). 
Subsequent studies confirmed the presence of specific amyloid 

pathology, including both extracellular plaques and intracel-
lular Aβ deposits, more evident in the superior quadrant, and 
increased Aβ peptides levels in human AD retinas (20, 29, 30) 
(Figure 1). Other promising imaging techniques, recently devel-
oped for visualizing amyloid deposits in AD retinas, include 
hyperspectral imaging (31), the use of cross-polarizers (32), and 
the polarization-sensitive OCT (33). Schön and coauthors also 
demonstrated the presence of the other hallmark of AD pathol-
ogy, such as the phosphorylated tau, in human AD retinas (34).

Finally, our group recently demonstrated that a specific sub-
population of RGCs, the mRGCs, are specifically lost in AD and 
affected by the amyloid pathology. In fact, using melanopsin and 
Aβ co-staining, our group showed that Aβ deposits are evident 
within and around these cells affecting also mRGC neuritis (20). 
Remarkably, the loss of these cells is evident even with a normal 
RGC count, pointing to a specific AD pathology affecting mRGCs 
(20). The loss of these cells is particularly relevant for interpret-
ing the occurrence of sleep and circadian disturbances in AD  
(see next section).

Parkinson’s Disease
The occurrence of visual problems is a frequent finding in PD 
patients. These include blink, dry eyes, reduced visual acuity, 
contrast sensitivity, color vision abnormalities, oculomotor 
disturbances, and visual hallucinations (35, 36).

In particular, contrast sensitivity abnormalities are related 
to dopamine depletion at the retina levels (37–39) and can be 
partially reversed by the administration of l-DOPA therapy in PD 
patients (40). In fact, dopaminergic amacrine cells in the retina 
regulate the center-surround organization of RGC receptive fields 
and their dysfunction leads the retina to be in an inappropriately 
dark-adapted state (35). Color vision in PD patients is an early 
sign involving, at difference with the color defects observed with 
aging, the protan–deutan axis (red–green) (41). Interestingly, 
color vision abnormalities have good discriminative power in  
distinguishing PD patients from controls in the early stage of disease 
and may predict the conversion of idiopathic REM behavior disorder 
patients to PD (42, 43). However, the Farnsworth–Munsell 100 Hue 
test, commonly used for testing color abilities in PD, is influenced 
also by cognitive functions such as executive functions, and this must 
be taken into account in the interpretation of these results.

Besides the retinal dopaminergic depletion, which explains 
the occurrence of contrast sensitivity abnormalities in PD, there 
are multiple evidences pointing to RGC loss in PD (44, 45) 
(Figure 1). The presence of optic neuropathy has been reported 
by many OCT studies and, interestingly, the pattern of axonal 
loss resembles that typically seen in mitochondrial optic neu-
ropathies, affecting the temporal sector of the optic nerve, i.e., the 
papillomacular bundle (RGC) (44, 46, 47). This pattern of RGC 
loss, which affects predominantly the parvocellular component, 
is clearly distinguishable from that described in AD, for which 
more frequently the magnocellular RGCs are affected (16, 20, 21)  
and other Parkinsonian syndromes, such as multiple system 
atrophy (Figure 1) (48).

Moreover, the optic neuropathy in PD is more pronounced in 
the eye contralateral to the most affected body side (46), suggesting 
a congruent asymmetry of the neurodegenerative process affecting 
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FiGURe 1 | (Upper panel) The connection between the eye and the suprachiasmatic nucleus (SCN) of the hypothalamus through the retinohypothalamic tract, 
originating in the retina from melanopsin-containing retinal ganglion cells (mRGCs) (in blue), is shown. (Lower panel) At the retina level, where are located also the 
mRGCs, the distinct pattern of axonal loss [retinal nerve fiber layer (RNFL) thinning] demonstrated by optical coherence tomography studies is reported for 
Alzheimer’s disease (AD) (21) with a more pronounced loss in the superior quadrant (left) and Parkinson’s disease (PD) with a more evident loss in the infero-temporal 
quadrants of the optic nerve (44, 46, 49) (right). Moreover, the figure depicts the pattern of β-amyloid deposition in AD, more evident in the superior quadrant and 
ganglion cell layer (GCL) [for a review, see Ref. (30)], and α-synuclein in PD in the inner retina and in particular at the inner plexiform layer (IPL)–inner nuclear layer 
(INL) interface (51, 52).
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also the retina. This asymmetry has been also documented for  
the foveal remodeling demonstrated in PD patients, as a hallmark 
of retinal pathology in PD (49, 50).

Finally, recent studies reported the presence of α-synuclein 
deposition in the retina of PD patients and in particular in the 
inner retina, pointing to a specific PD pathology affecting the eye 
(51, 52) (Figure 1). Interestingly, the staining of phosphorylated 
synuclein (p-syn) shown by Beach and colleagues (52) affected 
a large cell with an extensive dendritic tree, which resembles 
an mRGC. The possible occurrence of α-synuclein pathology 
affecting the mRGCs in PD may contribute to the occurrence of 
circadian dysfunction in PD that remains to be tested.

CiRCADiAn RHYTHM DYSFUnCTiOn in 
AD AnD PD

Alzheimer’s Disease
Sleep and circadian disturbances are a frequent complaint of AD 
patients, appearing in the majority of cases early in the disease 
course and including daytime somnolence, increased sleep latency, 
and frequent night-time awakenings with sleep fragmentation (3). 
Some of the sleep changes described in AD are the same reported 
with aging, such as the reduction of slow wave sleep and the dif-
ficulty in sleep maintenance (53). Other sleep abnormalities, such as 
the reduction of REM sleep, are more specifically related to AD (54).

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


TABLe 1 | Summary of circadian rhythm abnormalities in AD, PD, and HD.

Circadian rhythm abnormalities Reference

AD •	 Daytime somnolence, increased sleep latency, and night-
time awakenings

•	 Delayed phase of temperature circadian rhythm
•	 Sundowning
•	 Reduction of night-time melatonin levels
•	 Abnormal circadian expression profile of clock genes
•	 Increased IV, reduced IS, and reduced RA of rest–activity 

circadian rhythm

(3) 

(55)
(56)
(57)

(57, 58)
(20, 59,  
60, 67)

PD •	 Abnormal melatonin circadian rhythm (phase advance and 
decreased amplitude)

•	 Increased IV, reduced IS, and reduced RA of rest–activity 
circadian rhythm

•	 Reversal of circadian BP rhythm and loss of HR variability
•	 Abnormal temperature and cortisol circadian rhythm
•	 Abnormal peripheral clock genes circadian rhythm

(70–73) 

(74–76) 

(77, 78)
(73, 80)
(73, 81)

HD •	 Delayed phase of the rest–activity rhythm
•	 Abnormal melatonin circadian rhythm
•	 Sleep fragmentation with night-time awakenings and 

reduced sleep efficiency

(88)
(89)

(90, 91)

AD, Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington’s disease; IV, intra-
daily variability; IS, inter-daily stability; RA, relative amplitude; BP, blood pressure; HR, 
heart rate.
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Circadian rhythm abnormalities are reported in AD patients 
even in the early stage of the disease including a delayed phase of 
the temperature rhythm (55), sundowning, i.e., the appearance of 
behavioral agitation in the evening (56), the reduction of mela-
tonin levels during the night (57), and the circadian expression 
profile of clock genes (57, 58). Moreover, abnormalities of the 
rest–activity circadian rhythm, including increased intra-daily 
variability (IV) and reduced inter-daily stability (IS) and rela-
tive amplitude of the rest–activity rhythm are described in AD  
(59, 60), and the presence of circadian dysfunction may predict a 
poor outcome in terms of cognitive functions (59).

We recently demonstrated the presence of variable degrees 
of rest–activity circadian dysfunction in mild–moderate AD 
patients and a specific loss of mRGCs in AD retinas (20). A 
specific AD pathology affecting these cells may contribute to 
circadian dysfunction in AD patients. Moreover, these cells have 
a direct effect on sleep through direct and indirect projections to 
brain nuclei relevant for sleep regulation such as the LH and the 
VLPO (61, 62). The role of mRGC loss in contributing to sleep 
and circadian misalignment in AD is particularly relevant for 
its potential therapeutic options. In fact, the use of bright light 
therapy has been proven to be effective in counteracting sleep and 
circadian dysfunction in AD (63, 64).

Other possible components of the circadian imbalance 
demonstrated in AD is the presence of SCN neuronal loss and 
amyloid pathology documented in neuropathological studies of 
AD postmortem brain (65, 66), which correlates with the degree 
of rest–activity disruption (67) and can contribute secondarily to 
the mRGC loss demonstrated in AD retinas.

The strict relationship between cognition, sleep, and circadian 
rhythms is highlighted also by the demonstration that the pres-
ence of circadian dysfunction may predict the onset of dementia 
(68), as well as that sleep loss may promote the accumulation 
of amyloid and predispose to AD (53, 69). Many recent studies 
point to direct and indirect effects of circadian derangement in 
cognitive disturbances and hence dementia. Counteracting the 
circadian imbalance may have important clinical implications. A 
summary of circadian abnormalities in AD is reported in Table 1.

Parkinson’s Disease
Sleep disturbances are reported in about 80% of PD patients 
(5). Furthermore, circadian dysfunction has been extensively 
described in PD patients, in terms of the following:

(1) Abnormal melatonin rhythm, i.e., abnormal phase angle of 
melatonin rhythm (70, 71) and decreased amplitude (72, 73). 
However, the phase advance of the melatonin rhythm docu-
mented by these studies was evident only in l-DOPA-treated 
PD patients, suggesting a possible influence of medications 
on these findings.

(2) Abnormal rest–activity rhythm, and in particular increased IV, 
reduced IS, and flattening of daily activity (74–76). However, 
a relevant influence of medications, motor, and non-motor 
symptoms (in particular cognitive disturbances and hallucina-
tions) has been postulated also for these findings (6).

(3) Abnormal blood pressure (BP) and heart rate (HR) rhythm 
abnormalities such as reversal of circadian BP rhythm and loss 

of circadian HR variability (77, 78). However, these abnormali-
ties can be influenced also by neurodegenerative changes of the 
autonomic nervous system documented in PD (79).

(4) Abnormal temperature (80) and cortisol rhythm (73).
(5) Abnormal clock gene rhythmicity in peripheral blood cells 

(73, 81).
(6) Circadian fluctuations of motor symptoms (82) with a wors-

ening of motor functions possibly related to the dopamine 
level variations over the day.

Interestingly, at difference with AD, where neuropathological 
hallmarks of pathology such as amyloid plaques and neurofi-
brillary tangles are described in the SCN of the hypothalamus, 
the neurodegenerative changes characteristics of PD, such as 
synuclein deposition and Lewy bodies, are not reported in 
the SCN. This suggests that in PD, the circadian imbalance, at 
least in the early phase, is not primarily due to a master clock 
pathology (6). This is consistent with the finding that PD patients 
in the early stage of the disease do not exhibit frank circadian 
rhythm abnormalities, such as for melatonin and other hormones  
(6, 83). It is not clear, based on the currently available evidences, 
if circadian misalignment occurs as an independent hallmark of 
PD pathology or can be interpreted as a consequence of many 
other non-motor manifestations of PD, such as sleep, cognitive, 
and behavioral problems. Moreover, the investigation of circadian 
dysfunction in PD is hampered by the possible influence of many 
confounding factors, such as the motor fluctuations intrinsic 
to the disease and the influence of l-DOPA therapy. However, 
the presence of circadian imbalance in PD is well supported by 
circadian abnormalities described in many animal models of PD 
[for a review, see Ref. (79)].

In this complex scenario, a possible role in the pathogenesis 
of circadian problems described in PD patients can also involve 
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the eye, and in particular the mRGC system. At this regard, there 
is documentation of a strict interaction between the mRGCs and 
the dopaminergic amacrine cells (84), a depletion of dopamine 
levels, and a specific synuclein deposition, particularly in the inner 
retina (39, 51, 52). Furthermore, a possible direct link between 
the eye, through the regulation of the melatonin synthesis, and 
the motor symptoms of PD has been postulated by Willis (85), 
as supported by the amelioration of motor symptoms after light 
exposure in PD patients (86). A summary of the main circadian 
abnormalities in PD is reported in Table 1.

In this wide scenario, it is possible that many factors, including 
the influence of mRGCs on modulating circadian rhythms and 
sleep, may play a role in the pathogenesis of circadian and sleep 
problems in PD. A more detailed investigation of this system 
is warranted, especially in de novo PD cases to elucidating the 
mechanisms behind.

BeYOnD AD AnD PD: HUnTinGTOn’S 
DiSeASe

Sleep and circadian dysfunction occur early in the disease course 
of Huntington’s disease (HD) representing relevant non-motor 
symptoms of the disease [for a review, see Ref. (87)]. In particu-
lar, a delayed phase of rest–activity rhythm (88), an abnormal 
day–night ratio and melatonin rhythm (89), and consistent sleep 
fragmentation (90, 91) with increasing awakenings and reduced 
sleep efficiency have all been reported in HD.

Interestingly, the occurrence of sleep fragmentation and cir-
cadian misalignment in HD patients is relevant for aggravating 
the motor and cognitive problems of HD patients and bright light 
therapy improves motor and cognitive deficits in HD (90, 92).  
Moreover, even if there are evidences of neurodegenerative 
changes affecting the SCN in HD postmortem brain, the intact 
function of isolated SCN cells does not point to a primary central 
clock problem in the pathogenesis of circadian problems in HD, 
but more probably to a dysfunctional circuitry (87). Circadian 
abnormalities are also reported as early and prominent signs in 
the HD mouse models, the transgenic R6/2 and “knock-in” Q175 
mice (93, 94). A summary of circadian abnormalities in HD is 
reported in Table 1.

Results on the possible occurrence of retinal degeneration in 
HD are contrasting, with some papers reporting the absence of 
retinal degeneration such as in the R6/2 mouse model (95) and 
others showing the presence of optic nerve degeneration (96, 97). 
In particular, a recent OCT study demonstrated the presence of 
temporal thinning in HD patients, which correlated with disease 
duration (97), with a pattern similar to PD and mitochondrial 
disorders (46, 47).

Interestingly, a recent study reported the occurrence of pupil-
lary light response (PLR) dysfunction in R6/2 and Q175 mouse 
models, with a prevalent contribution of cone dysfunction in 
young–middle-aged mice and of mRGCs in old mice (98). In 
fact, a reduced PLR response is documented at low and moderate 
light intensity in young–middle-aged mice, whereas it is visible 
also at bright light in old mice, pointing to mRGC dysfunction. 
However, even if a significant reduction of melanopsin expres-
sion is evident in both mouse models also at early stages of the 

disease, the mRGCs are morphologically intact and do not show 
any signs of neurodegeneration. In particular, the aggregation of 
huntingtin protein is evident in a significant amount in the retina 
and in particular in the RGCs, but it is not recognized in the 
mRGCs except for the old animals, suggesting that mRGCs are 
relatively spared by neurodegeneration (98). These findings are 
in line with the findings in mitochondrial optic neuropathies, i.e., 
Leber’s hereditary optic neuropathy and dominant optic atrophy 
(DOA), where we demonstrated a relative resistance of mRGCs 
to mitochondrial dysfunction (99) and relative sparing of the PLR 
(100). This similarity can be explained by the significant contribu-
tion of mitochondrial dysfunction in HD pathogenesis (101, 102),  
including the mitochondrial dynamics alterations seen in HD, in 
particular increased mitochondrial fission (103), similar to DOA 
due to OPA1 mutations where fusion is affected (104).

However, even if the mRGCs are more resistant to neuro-
degenerative changes occurring in HD, the evidence of retinal 
pathology and, in particular, of reduced melanopsin expression 
in the retina of these mice can be relevant to the pathogenesis of 
circadian dysfunction in HD. These findings in HD are further 
examples that link the eye to the brain in a continuous dialog.

COnCLUDinG ReMARKS

In this review, we summarized the recent findings of optic nerve 
pathology and its possible link with circadian dysfunction in AD 
(4, 20, 105, 106), PD (5, 44), and HD (87, 96–98) focusing in 
particular on the possible role of mRGCs in the pathogenesis of 
circadian dysfunction in these neurodegenerative disorders.

We also underscore the differences in the patterns of optic 
nerve degeneration described in these disorders, which predomi-
nantly affect the magnocellular RGCs of the retina in AD (16, 
21) and the parvocellular RGCs in PD (44, 46, 49) and HD (97), 
possibly explained by the predominant mitochondrial dysfunc-
tion documented in PD and HD. Similarities and differences 
are also discussed in regards to the circadian rhythm imbalance 
documented in AD and PD.

The presence of neuropathological hallmarks, i.e., β-amyloid 
plaques (30, 107, 108), α-synuclein (51, 52), and huntingtin (98) 
in the retina of these neurodegenerative disorders demonstrates 
that the retina is specifically affected by neurodegeneration and 
affords access to potential biomarkers of the disease.
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