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spaceAbstract  With  the  massive  data  generated  by  the
Human Microbiome Project, how to transform such data
into useful  information and knowledge remains
challenging. Here, with  currently  available  sequencing
information (reference ge- nomes and  metagenomes),  we
have  developed  a  comprehen-  sive  microarray,
HuMiChip2, for strain-level identification  and functional
characterization of human microbiomes. HuMiChip2 was
composed of 29,467 strain-specific probes targeting 2063
microbial  strains/species  and  133,924  sequence- and
group-specific probes targeting 157 key func- tional gene
families involved in various metabolic pathways and host-
microbiome interaction processes. Computational
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spaceevaluation of strain-specific probes suggested that
they were  not only specific to mock communities of
sequenced micro-  organisms and metagenomes from
different human body sites  but  also  to  non-sequenced
microbial  strains.  Experimental  evaluation  of  strain-
specific  probes  using  single  strains/  species  and  mock
communities suggested a high specificity of these probes
with their corresponding targets. Application  of
HuMiChip2 to human gut microbiome samples showed the
patient microbiomes of alcoholic liver cirrhosis
significantly (p  < 0.05)  shifted  their  functional  structure
from the healthy individuals, and the relative abundance of
21 gene families significantly (p < 0.1) differed between
the liver cirrhosis pa-  tients  and  healthy individuals.  At
the strain level, five Bacteroides strains were significantly
(p < 0.1) and more fre- quently detected in liver cirrhosis
patients. These results sug-  gest that the developed
HuMiChip2 is a useful microbial eco- logical microarray
for both strain-level identification and functional profiling
of human microbiomes.

Keywords HuMiChip2 . Microbial ecological microarray . 

Strain-level identification . Functional profiling . Human 
microbiome

Introduction

The human microbiome plays extremely important roles in
human health, disease, nutrition, and antibiotic resistance,
as  revealed  by extensive  recent  studies  (Cho and Blaser
2012; Kau et al. 2011; Ley 2010; Peterson et al. 2009; Qin
et  al.  2012,  2014; Sommer et  al.  2009; Turnbaugh et al.
2009).  For example, studies have shown that several
common human  disorders and disease such as obesity
(Turnbaugh et al. 2009), type 2 diabetes (Qin et al. 2012),
and liver cirrhosis (Chen et al. 2011;  Qin et al. 2014) are
closely related with changed

space

spacegut microbiomes. In healthy individuals, metagenomic
analy-  sis suggests highly varied microbial taxa but
relatively stable  metabolic  pathways  and  gene  content
among different  indi-  viduals, as revealed by the Human
Microbiome Project (The  HMP Consortium 2012) and
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2012  ; Turnbaugh et al. 2009  ).  However, current efforts are
mainly focusing on the taxonom- ic and functional levels
as  well  as  linkages  between  human  microbiomes  and
various  human  disorders,  and  shotgun  metagenome
sequencing  and  16S  ribosomal  RNA (rRNA)  amplicon
sequencing are mainly used in human microbiome studies.
The accumulation of such sequencing data challenges us to
translate them into useful information and knowledge.

Microarrays are one of metagenomic tools that utilize
se-  quence data in research, clinic diagnosis, and
environmental  monitoring and detection (He 2014). For
example, microbial ecological microarrays have been used
to analyze various mi-  crobial communities at both
functional and taxonomic levels,  including  human
microbiomes (He et  al.  2012a,  b;  Tu  et al.  2014c). Until
now,  several types of microbial ecological mi- croarrays,
including HuMiChip  (Tu  et al.  2014a), HITChip (Rajilić-
Stojanović et al. 2009), and HuGChip (Tottey et al. 2013),
have  been  specifically  developed  to  profile  human
microbiomes.  Among  these,  HuMiChip  is  a  functional
gene  array targeting 139 key functional gene families
involved in various metabolic pathways and can be used
for  functional  profiling  of  human  microbiomes  from
different  body  sites  (Tu  et  al.  2014a).  HITChip  and
HuGChip  are  two microbial  ecological  microarrays
composed of probes targeting 16S rRNA genes and can be
used for taxonomic profiling of hu- man gut microbiomes
(Rajilić-Stojanović et al. 2009; Tottey  et  al.  2013).
Notably,  owing  to  the  innovative  explorative  probes
included on HuGChip, this microarray can also be used to
detect microorganisms without reference 16S rRNA genes.
However, due to the high conservative nature of 16S rRNA
genes, none of these microbial ecological microarrays are
able to  identify and detect  microorganisms at  the strain/
species level. This is an especially important issue because
microbial strains and species are usually directly
responsible  for many human disorders and disease. One
such well-known  example  is  the  microbial  species
Escherichia  coli  that  the  majority of E. coli strains are
commensal and even beneficial to the human body, while a
few of them are extremely patho-  genic, such as the
O157:H7 series (Kaper et al. 2004).

In order to analyze complex microbial communities at
high  resolutions such as strain level, we previously
developed a k-  mer-based algorithm to design strain-
specific probes that can  be used to construct microbial
identification microarrays (Tu  et al. 2013). These strain-
specific probes/markers can also be  used to identify
microorganisms at the strain/species level in  shotgun
metagenomes, and an application of these markers to
published metagenome datasets identified a series of
microbi-  al strains associated with type 2 diabetes and
human obesity

space(Tu  et  al.  2014b).  With  the  rapid  accumulation  of
reference genomes of microorganisms isolated from human
body,  espe-  cially  those  generated  by  the  Human
Microbiome Project (Peterson et al. 2009), this algorithm
provided an opportunity to construct a microbial ecological
microarray for strain-level  identification  of  human
microbiomes.

In this study,  we aimed to construct a more
comprehensive  microbial ecological microarray-termed
HuMiChip2 for both strain/species-level identification and
functional profiling of human microbiomes. Strain/species-
specific probes were de-  signed  from  more  than  2000
reference genomes for strain/ species-level identification of
human  microbiomes.  Also,  compared with HuMiChip
which only included 322 bacterial genomes and 31 human
gut  shotgun metagenomes,  we  targeted more  reference
genomes  (2063)  and  shotgun  metagenomes  (2.5  Gb
assembled contigs from 14 different human body sites) in
HuMiChip2 for functional gene families.  In addition,
HuMiChip2 is expected to provide an alternative
metagenomic approach to shotgun  metagenome  and 16S
rRNA gene amplicon sequencing for  human microbiome
studies with the ability to detect known microorganisms at
the strain/species level.

Materials and methods

Data resources, probe design, and microarray 
fabrication

A total of 2063 sequenced microbial genomes and ~2.5 Gb
assembled  shotgun  metagenome  sequences  from  14
different  body  sites  were  retrieved  from  the  Human
Microbiome  Project  Data  Analysis  and  Coordination
Center  (http://hmpdacc.org).  The  sequenced  microbial
genomes were  used for  probe  design of both functional
gene families and strain-specific  probes. The metagenome
datasets  were  used  for  probe  design  of  functional  gene
families. To insure the specificity of strain- specific probes
against  non-human  microorganisms  and  the  hu-  man
genome, another 3327 sequenced microbial genomes and
the human genome sequences were downloaded from the
National Center for Biotechnology Information (NCBI) ftp
site  for  specificity  checking.  A  full  list  of  targeted
microbial ge-  nomes  and  assembled metagenomes could
be found in Supplementary Tables S1 and S2, respectively.

Probe design for functional gene families was carried
out using the same pipeline as described previously (Tu et
al.  2014a).  Briefly,  hidden  Markov  models  (HMM)  for
each  functional  gene  family  were  built  by  HMMER
program  (Eddy 1998) using curated reference sequences
retrieved from the KEGG database (Kanehisa et al. 2016).
Protein and coding  sequences  for  sequenced  microbial
genomes were extracted from downloaded GenBank files

http://hmpdacc.org/
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using an in-house developed  PERL  script.  Gene
prediction  for  assembled  shotgun  metagenomes  was
carried out by FragGeneScan (Rho et al.

space

space2010).  Protein  sequences  were  searched  against  the
HMM models with an e value cutoff of 1e−5. Probe design
for coding sequences was carried out by the CommOligo
program  (Li  et  al.  2005).  Candidate  probes  were  then
searched against the whole database for specificity using
the  NCBI  BLAST  program.  The  best  probes  were
selected for microarray fabrication.

Strain-specific probe design was carried out using a k-
mer based algorithm published previously (Tu et al. 2013,
2014b). In this approach, non-redundant strain level k-mers
were first  extracted for all 5390 microbial strains. Non-
redundant k-mers  were  also  extracted  for  the  human
genome.  Second,  k-mers  showing up in more than two
microbial strains as well as all human genome k-mers were
kept to build a non-specific k-mer database. Third, all 50-
mers were then extracted from targeted  human
microorganisms and searched against the non-specific  k-
mer  database.  All  mapped 50-mers  were  then  discarded
from further analysis. Fourth, the remaining candidate 50-
mers  were  then  BLAST  searched  against  all  5390
microbial  genomes and human genome with 85 %
sequence identity and  self-annealing  (≤8  bp)  properties.
Remaining probes were then ranked according to sequence
identity with non-targets, melting temperature, free energy,
and GC content as described previously (Li et al.  2005).
For each strain, up to 15 probes from locations as distant as
possible  in  the  genome  were se-  lected for microarray
fabrication. For strains with less than 15  probes, all of
qualified probes were selected. Selected probes were then
uploaded to the Agilent eArray system. Fabrication  of
HuMiChip2  was  carried  out  by  Agilent  Technologies
(Santa Clara, CA, USA). The 4 × 180 K format microarray
was used for fabrication in this study.

Specificity evaluation using individual 
strains/species and mock communities

To  evaluate the specificity of strain-specific probes, we
used single individual strains/species and also constructed
a series  of  mock  communities  from  15  sequenced
microbial  strains,  including   Acinetobacter
baumannii ATCC  17978,
A. baumannii  ATCC  19606,  A. baumannii  AYE,  Bacillus
cereus ATCC 10876, B. cereus ATCC 4342, Lactobacillus
rhamnosus ATCC  21052, L.  rhamnosus ATCC   8530,
L.  rhamnosus  GG,  Lactobacillus  ruminis  ATCC  25644,
Bifidobacterium  adolescentis  ATCC  15703,
Bifidobacterium  dentium  ATCC 27678,  Bifidobacterium
longum  subsp.  infantis  ATCC 15697,  Prevotella  buccae
ATCC  33574,  Prevotella  buccalis  ATCC  35310,  and

Prevotella oralis ATCC 33269. For each microbial strain, 5
ng DNA was used for mock community construction. For
each mock communi- ty, three replications were carried out.
The procedure for la- beling and HuMiChip2 hybridization
was the same as de- scribed below.

spaceSampling, DNA extraction, 
purification, and quantification

Human fecal samples were collected at the First Affiliated
Hospital of Zhejiang University.  A total of 18 individuals
were  recruited  for  the  study,  among  whom  9  were
diagnosed  with  alcoholic cirrhosis and 9 were healthy
individuals with alcohol abuse. All patients were provided
with written informed con-  sent,  and  research  was
approved  by  the  First  Affiliated  Hospital  of  Zhejiang
University  ethics  committee  and  Institutional Review
Broad (IRB). More details for the recruit- ed individuals
were previously described (Chen et al. 2014).

Fecal samples were immediately frozen on collection
and stored at −80 °C before analysis. A frozen aliquot (200
mg) of each fecal sample was added to a 2.0-ml screwcap
vial con- taining 300 mg glass beads of 0.1 mm diameter
(Sigma,  St.  Louis, MO, USA) and kept on ice until the
addition of 1.4-ml  ASL buffer  from the QIAamp DNA
Stool Mini Kit (Qiagen,  Valencia,  CA, USA). Samples
were immediately subjected to  beadbeating (45 s, speed
6.5) using a FastPrep machine (Bio 101, Morgan Irvine,
CA, USA), prior to the initial incubation  for  heat  and
chemical  lysis  at  95  °C for  5  min.  Subsequent  steps of
DNA extraction followed the QIAamp kit protocol for
pathogen detection.

We used the absorbance ratios at A260/A280 and A260/
A230 using spectrophotometry (NanoDrop 1000, Thermo
Fisher Scientific, Wilmington, DE, USA) to evaluate DNA
quality. Final DNA concentrations were quantified with the
Pico-Green kit (Invitrogen, Carlsbad, CA, USA). Only
DNA samples with A260/A280 >1.7 and A260/A230 >1.8
were used. The extracted whole community DNA for each
sample  was  shipped  to  the  University  of  Oklahoma
(OU) for HuMiChip2 analysis.

Target labeling, hybridization, imaging, and data 
preprocessing

For each sample, 1 μg of DNA was labeled with the
fluores-  cent  dye  Cy-3  (GE  Healthcare,  Vacaville,  CA,
USA) using random primers and the Klenow fragment of
DNA polymer- ase I (Wu  et al. 2006). Labeled DNAwas
then purified using a QIAquick Purification kit (Qiagen,
Valencia,  CA, USA), dried in a SpeedVac at 45 °C for 45
min (Thermo Savant, Holbrook,  NY,  USA).  Dried DNA
was  then  rehydrated  with  13  μl  of  DNase/RNase-free
distilled water,  mixed completely,  and cen-  trifuged to
collect all liquid at the bottom of the tube. A total of 42 μl
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435of buffer,  including 1× HI-RPM hybridization buffer,  1×

aCGH blocking agent, 0.05 μg μl−1 Cot-1 DNA, 10 pM
uni-  versal standard, and 10 % formamide (final
concentrations), was added to each sample. After mixing
completely  by  vortexing,  the  solution  was spun down
and incubated at  95 °C for 3 min, then incubated at 37 °C
for 30 min.

space

spaceThe samples were then hybridized with HuMiChip2
at 67 °C for 24 h with a rotation at 20 rpm in an Agilent
hybrid-  ization  oven  (Agilent  Technologies,  Inc.,  Santa
Clara,  CA,  USA).  The  scanned  images  of  hybridized
HuMiChip2  were  converted and extracted using the
Agilent Feature Extraction
11.5  software  (Agilent  Technologies,  Inc.,  Santa  Clara,
CA,  USA) for further data analysis. Probe spots with
coefficient of  variance  (CV)  greater  than  0.8  were
removed. Probes with signal-to-noise ratio (SNR) less than
2 and signal intensities less than 500 were also removed.
Microarray data  was then normalized based  on the  total
signal  intensity  of  common  oligonucleotide  reference
standard (CORS) probes (Liang et al. 2010).

Statistical analysis

We  used three different non-parametric multivariate anal-
ysis methods, adonis (permutational  multivariate analysis
of  variance  using  distance  matrices)  (Anderson  2001  ),
anosim  (analysis  of  similarities)  (Clarke  1993  ),  and
multi-response  permutation  procedure  (MRPP)  (McCune
et  al.  2002  ),  as  well  as  principle  coordinate  analysis
(PCoA)  (Gower  1966  ),  to  measure  and  visualize  the
overall  differences  of  the  community  functional  gene
structure  between  treatment  and  control  samples.  The
significance  of  relative  abundance  differences  between
patients  and  healthy  individuals  for  functional  gene  cat-
egories was evaluated by the response ratio analysis (Luo
et al.  2006). For strain-specific probes, a threshold of 10
out  of  15  probes  being  positively  detected  was  set  for
positive  calls  of  detected  strains.  Signal  intensities  of
positive  probes  were  then  averaged  and  log-transformed
to  reflect  the  abundance  of  detected  strains.  Heat  map
analysis  was  used  to  visualize  strain-specific  probes
across multiple samples.  The  Student’s  t  test  was  used
to  estimate  significance  p  values  between  healthy  indi-
viduals and liver cirrhosis patients.

Availability HuMiChip2 is available through Glomics Inc.
(Norman, OK, USA). Microarray data generated in this
study  are available under NCBI accession number
GSE86162.

Results

An overall description of the HuMiChip2 architecture

HuMiChip2 was composed of two different types of probes,
including strain/species-specific probes and functional gene
probes, for the purposes of strain/species-level identification
and  functional  profiling  of  human  microbiomes,
respectively. For strain/species-specific detection of human
microbiomes, a total of 2063 sequenced microbial genomes
from human body

spacewere  recruited,  including  3  archaeal  strains,  28
eukaryotic  strains,  and  2032  bacterial  strains  (Table  1).
Briefly,  these  strains  covered  15  microbial  phyla,  28
classes, 47 orders, 105 families, and 226 genera. For strains
with  more  than  15  quali-  fied  probes,  15  probes  more
evenly distributed in the genome were selected according
to their location on the genome. For strains with fewer than
15 qualified probes, all probes were selected. This resulted
in a total  of 29,467 strain-specific probes  on HuMiChip2.
At the phylum level,  Proteobacteria  and  Firmicutes  were
the  phyla  with  the  most  probes  (11,560  and  11,077,
respectively)  and  targeted  strains  (812  and  782,  respec-
tively), followed by  Actinobacteria  (225 strains and 3286
probes) and  Bacteroidetes  (155 strains and 2290 probes).
At the class level, major taxonomic groups included Bacilli
(556 strains and 7749 probes), Gammaproteobacteria (513
strains and 7432 probes),  Actinobacteria  (225 strains  and
3286  probes),  Clostridia  (177  strains  and  2595
probes),  Epsilonproteobacteria  (141 strains  and  1874
probes), Betaproteobacteria  (124  strains  and  1775
probes), and Bacteroidia (110 strains and 1642 probes).

For  microbial  functional  gene  probes,  a  total  of  157
gene families were selected as they play important roles in
the hu- man body. These 157 gene families were involved
in at least  11  microbial functional processes (Table  2),
including antibi- otic resistance (18 gene families, 13,567
probes), amino acid metabolism (36 gene families, 30,037
probes), carbohydrate  metabolism (27 gene families,
19,764 probes), energy metab-  olism (5 gene families,
8993 probes), glycan biosynthesis and  metabolism (10
gene families, 8570 probes), lipid metabolism  (5 gene
families, 4435 probes), metabolism of non-essential amino
acids (20 gene families, 18,460 probes), metabolism of
cofactors and vitamins (16 gene families, 12,305 probes),
me-  tabolism of terpenoids and polyketides (5 gene
families, 4505  probes),  nucleotide  metabolism  (13  gene
families, 10,584 probes), and translation (2 gene families,
2704 probes).  These resulted in a total of 133,924 probes,
including 94,387  sequence-specific  probes  and  39,537
group-specific probes,  and  covered  276,240  coding
sequences.

Computational specificity evaluation

Computational evaluation of the specificity of
strain/species- specific probes was performed as previously
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described  (Tu  et al. 2014b). Briefly,  the specificity of
strain-specific probes  was  reflected  in  the  following
aspects  (Table  3).  First,  these  probes  were  unique  to
currently sequenced microbial ge- nomes included in the
currently available database (~5400 microbial genomes).
Second, all probes were searched against  four
metagenome  datasets  from  mock  communities  of  21
strains, of which 16 were included in the genome list. As
a  result, 100 % true positives were found for evenly
distributed  mock communities and 75~87.5 % true
positives were found for  staggered  mock communities.
Third, the strain/species-

space

Table 1 Summary of strain-specific probes organized by taxonomic 
groups

Domain Phylum Class

Bacteria Firmicutes Bacilli

Clostridia

Negativicutes

Erysipelotrichia

Sum

Proteobacteria Gammaproteobacteria

Epsilonproteobacteria

Betaproteobacteria

Alphaproteobacteria

Deltaproteobacteria

Sum

Actinobacteria Actinobacteria

Bacteroidetes Bacteroidia

Fusobacteria

Flavobacteria

Sphingobacteria

Unclassified

Sum

Spirochaetes Spirochaetia

Tenericutes Mollicutes

Chlamydia Chlamydia

Synergistetes Synergistia

Cyanobacteria Unclassified

Lentisphaerae Lentisphaeria

Verrucomicrobia Verrucomicrobiae

Archaea Euryarchaeota Methanobacteria

Eukaryota Ascomycota Eurotiomycetes

Dothideomycetes

Saccharomycetes

Sum

Apicomplexa Aconoidasida

Coccidia

Sum

Basidiomycota Exobasidiomycetes

Tremellomycetes

Sum

Unclassified Unclassified

Sum 15 28 47

spacespecific probes were also specific to newly sequenced
micro-  bial  genomes.  A  total  of  302  newly  sequenced
microbial  strains were collected for the evaluation. The
results suggested  that ~67 % new genomes could not be
targeted by these strain- specific probes, and that the ~25 %
targeted  genomes  were  identified by probes belonging to
strains in the same species. Fourth, the strain-specific probes
were also specific to the body sites where they were isolated
as they were evaluated

spaceby nine shotgun metagenome datasets from different
body sites. Probes targeting microbial strains isolated from
a partic- ular body sites were rarely found in metagenomes
of  other  body  sites.  All  these  results  suggested  that  all
designed strain-specific probes in this  study  were  highly
specific to their targets and could be confidently applied to
per-  form  the  microbial  strain-level  identification  of
human microbiomes.

space
Table 2 Summary of functional
gene probes organized by
functional processes

Microbial 
functional process

No. of 
gene 
families

No.
sequence-specific 
probes

Antibiotic 18 0

Amino acid metabolism 36 24,314

Carbohydrate metabolism 27 15,322

Energy metabolism 5 7115

Glycan biosynthesis and 10 6010
metabolism

Lipid metabolism 5 3262

Metabolism of non-essential 20 14,420
amino acids

Metabolism of cofactors and 16 9700
vitamins

Metabolism of terpenoids and 5 3644
polyketides

Nucleotide metabolism 13 8523

Translation 2 2077

Suma 157 94,387

a The total number of probes and 
covered coding sequences is based 
on non-redundant genes included 
in all pathways. Overlap of 
functional genes may occur among
different functional processes

spaceExperimental specificity evaluation using 
mock communities

In order to validate their performance in real case
application, the specificity of strain-specific probes was also
evaluated  experimentally.  The evaluation included an
incremental com-  plexity of microorganisms or mock
communities using DNAs from (i) one single strain (three
cases) and (ii) mock commu- nities, including (a) two to
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(b) multiple strains from two different

spacespecies/genera (ten cases). A total of 15 microbial
strains from Acinetobacter (3 strains), Bacillus (2 strains),
Lactobacillus (4 strains), Bifidobacterium (3 strains), and
Prevotella  (3 strains)  genera were selected for the
evaluation. As a result, high spec- ificity was observed
for all combinations of genomes we test-  ed (Fig. 1).
Specifically,  the following results were observed for the
evaluation below.

(i) Single-strain test. We  selected three strains of the
species
A. baumannii for this evaluation. DNA of each of the

space

Table 3 Summary of computational evaluation for strain-specific 
probes

Dataset Dataset size
Methodology in brief False-

positives/negatives

spaceSequenced microbial genomes 5390 genomes
BLAST searching strain-specific

pro
bes
aga
inst
all 
non
-
targ
et 
gen
om
es 
and
hu
ma
n 
gen
om
e

spaceNot applicable, all selected strain-specific probes are highly
specific to target genomes

spaceMock community metagenome

Newly sequenced microbial genomes

Metagenomes from different human body sites

space4 dataset (2 by Illumina
and 2 by 454)

302 recently sequenced microbial genomes

Nine shotgun metagenomes from different body sites

spaceBLAST searching strain-specific probes against shotgun 
metagenomes

BLAST searching strain-specific probes against all 302 genomes

BLAST searching strain-specific probes against all metagenomes

spaceNo false positives for even mock communities, 2~4 false 
negatives and 3 false positives (1 probe only) for staggered mock 
communities

67.2 % strains cannot be targeted by current probes, 24.8 % were 
assigned to the same species, 4.6 % to the same genus

Probes targeting microbial strains from the gut, skin, and urogenital 
tract mainly (>95 %) hit metagenomes from corresponding body 
sites. Probes targeting microbial strains from oral and airways 
share hits with metagenomes from subgingival plaque, tongue 
dorsum, throat, and palatine tonsils

space
space
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spacethree strains (each with three technical replicates)
was  hybridized  with  HuMiChip2  to  evaluate  the
specific-  ity.  A total  of  20  A. baumannii  strains  were
targeted   by  HuMiChip2,  thus  the  evaluation  could
exactly tell  whether false positives  or  false negatives
occurred among those closely related microbial strains.
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It  was  expected  only  the  target  strain  had
positive 

spacehybridization  signals  if  those  probes  were
strain-spe- cific.  Our results did show that no false
positives or false negatives were observed. All three
strains  were  well  hybridized  with  all  44  probes
targeting  these  three  strains  (15  probes  for  A.
baumannii  ATCC 17978 and 19606, and 14 probes
for A. baumannii  AYE) on HuMiChip2.

space

space(iia) Multi-strain in the same species/genus mock 
community test. We also performed a multi-
strain test encompassing DNAs from several 
strains in the same species/genus. A total of  87  
strains  belong- ing to these 5 genus were targeted 
by HuMiChip2, including 20 for A. baumannii, 39 
for B. cereus, 6  for  L.   rhamnosus,  1   for  L.  
ruminis ,  2  for
B.   adolescentis ,   3   for  B.   dentium,  12 for
B. longum, 3 for  P. buccae, and 1 for P.   oralis.
This test was expected  to  address  the  specificity
of  HuMiChip2 when multiple  strains  in  the  same
species  were  present  in  the  DNA.  Our  results
showed no false-positive detection for four groups
although  it  appeared  to  be  more  false  negatives
(with  signal  intensities  <1000)  detected  for  the
three-strain  group  comparing  with  one-  or  two-
strain  group.  For  example,  the  number  of  false
negatives  detected  for  A.  baumannii  strains  were
respectively  four  (ATCC  17978),  four  (ATCC
17978),  and  one  (AYE).  We  also  found  a  false-
positive detection for  L. rhamnosus  R0011, which
could be potentially caused by incomplete  genome
sequences  of  some  strains  in  L.  rhamnosus
(Fig. 1).

(iib) Multi-species mock community test. We finally mixed
multiple  strains  from two species/genera  as  more
complex  mock  communities  to  evaluate  the
specific-  ity  of  HuMiChip2.  A total  of  ten  mock
communities were generated by mixing strains from
two  species/  genera,  including  A.  baumannii/B.
cereus ,
A. baumannii /Lactobacil lus  ,  A.
baumannii/  Bif idobacterium , A.
baumannii/  Prevotella  ,
B. cereus/Lactobacillus, B. cereus/Bifidobacterium,
B. c e r  e u s  / Pr e v o t e l l a  , L a c t o b a c i l l u s /
Bifidobacterium,  Lactobacillus/Prevotella,  and
Bifidobacterium/Prevotella. Similarly, a total of 87
strains belonging to these five genera were targeted
by  HuMiChip2. Again,  no  false positive  was  ob-
served  for all  mock communities  we tested except
those  with  Lactobacillus strains,  for which
L. rhamnosus  R0011 was  detected  even it was not
added. Also, false negatives were detected for

several strains, such as A. baumannii ATCC 17978 (6
out of  15),   A.  baumannii  ATCC  19606  (5 out
of 15),
B.  cereus  ATCC  4342  (9  out  of  15),  L.  ruminis
ATCC  25644 (6 out of 15),  and  P.  buccalis  ATCC
35310 (6 out of 15).  This indicated some potential
competition of some probes on the HuMiChip2 by
highly similar genome sequences from other strains.
All the above experimental evaluations suggested the
strain-specific probes on the HuMiChip2 were highly
specific,  as  revealed  by  single  genomes  and  mock
communities.

spaceApplication of HuMiChip2 to characterize human 
gut microbiomes

To  evaluate the performance of newly developed
HuMiChip2  with  real  human  microbiome  samples,  we
used  it  to analyze  the strain-level identification and
functional profiling of hu- man gut microbiomes (a total of
18 samples) with nine for each group—alcoholic cirrhosis
patients and healthy individ-  uals with alcohol abuse. In
this analysis, we aimed to address  the  following  two
questions: (i) Do alcoholic abuse individ- uals and cirrhosis
patients harbor specific microbial strains?
(2) Do alcoholic abuse individuals and cirrhosis patients
show different functional profiles as a result of alcoholic
liver cirrhosis?

At the strain level, a total of 58 microbial strains were
detected in at least one of 18 human fecal samples. Among
these, 33 were found to be present in less than three sam-
ples. Of the 25 microbial strains detected in more than 3
samples, 18 were identified as  Bacteroides  strains, two as
Alistipes  strains,  one  as  Clostridium  strain,  one  as
Eubacterium  strain,  one  as  Fusobacterium  strain,  one  as
Parabacteroides  strain, and one as  Roseburia  strain (Fig.
2).  Of  them,  five  strains  of  Bacteroides  including
Bacteroides  sp.  D1,  Bacteroides  sp.  2_2_4,  Bacteroides
ovatus SD CMC 3f, Bacteroides xylanisolvens XB1A, and
Bacteroides sp. 1_1_30 were significantly (p < 0.1) higher
in liver cirrhosis patients. Another five strains, in- cluding
Fusobacterium  mortiferum  ATCC  9817  ,  Eubacterium
eligens  ATCC  27  75  0,  Roseburia  inulinivorans  DSM
16841,  Clostridium  difficile  R20291,  and  Bacteroides
stercoris ATCC 43183, though not signif- icant, were more
frequently detected in healthy individ- uals. This indicated
a  potential  link  between  these  micro-  bial  strains  and
human health, thus these strains can be potentially used as
indicators for healthy status. The re- sults also suggested
that core microorganisms did not exist at the strain level
among the 18 samples and Bacteroides strains seemed to be
more commonly detected across dif- ferent individuals, at
least based on strain-specific probes targeting 2063 strains
in this study.

At the functional  gene level,  a  total  of  15,318 probes
were detected in at least one of 18 samples. The number of
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435probes detected in each sample varied from 3262 to 8009,

with  an  average  of  5137  probes  in  alcoholic  liver
cirrhosis patients and 4233 probes in healthy individuals
with alco- holic abuse. No significant difference (p > 0.1)
was  ob-  served  between  healthy  individuals  and  liver
cirrhosis  pa-  tients  regarding  the  number  of  detected
probes.  Notably,  the  functional  gene  profiles  between
healthy  individuals  and  liver  cirrhosis  patients  were
markedly  different.  PCoA analysis  suggested  a  clear
separation of healthy in- dividuals with alcoholic abuse
from  alcoholic  liver  cirrho-  sis patients, except two
samples (AB5 and CD15) being
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spaceclustered to the other group (Fig.  3). The significantly
different  functional  profiles  between  healthy  individuals
with alcoholic  abuse  and alcoholic  liver  cirrhosis  patients
was also verified by three non-parametric statistical

Fig. 3 Principle coordinate analysis of functional gene profiles between
alcoholic cirrhosis patients and healthy individuals with alcohol abuse.
A clear separation of liver cirrhosis patients from healthy individuals
could be observed. Red represents healthy individuals with alcoholic
abuse,  and  black represents  alcoholic liver cirrhosis patients. Ellipses
were added to better visualize the separation of liver cirrhosis patients
from healthy  individuals,  as  also  suggested  by three non-parametric
statistical  methods.  AB healthy individuals with alcoholic abuse, CD
liver cirrhosis patients

spacemethods, including MRPP (δ = 0.334, p = 0.002), 
ADONIS (F = 0.127, p = 0.002), and ANOSIM (R = 0.166,
p = 0.009).

Further analysis showed that relative abundances of  21
func-  tional  gene  families  were  significantly  changed
between  healthy  individuals  with  alcoholic  abuse  and
alcoholic  liver  cirrhosis  patients  at  the  90  %  confidence
interval  as  revealed  by response  ratio  analysis  (Fig.  4).
Among these, four antibiotic resistance genes (van,  fosX,
ABC multidrug fungal gene, and MATE antibiotic gene)
increased  in  the liver cirrhosis patients group.  Of  the five
gene families related with amino acids me-  tabolism, four
of  them  (L-alanine  dehydrogenase,  PRAMP-
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435cyclohydrolase,  ATP  phosphoribosyltransferase,  and  D-

cystein  desulfhydrase)  increased  and  one  (aspartate
kinase) decreased in the liver cirrhosis patients group. For
the  three  changed  car-  bohydrate  metabolism  gene
families,  L-lactate  dehydrogenase  decreased  and
extracellular  exopectate  hydrolase  and  transaldolase
increased in the liver cirrhosis patients group.  Four gene
families  involved  in glycan  biosynthesis  and  metab-
olism changed  in  the liver cirrhosis patients group with
three  gene  families  (α-  and  β-mannosidase,  and  β-D-
glucuronidase)  increased  and  one  gene  family  (N-
acetylglucosamine  acyltrans-  ferase)  decreased.  In
addition,  two  gene  families  involved  in  energy
metabolism, one in lipid metabolism, one in cofactor and
vitamin metabolism,  and one  in  nucleotide  metabolism
changed in the liver cirrhosis patients group. Of these, the
β-  ketoacyl-ACP  synthase  III  related  with  lipid
metabolism  de-  creased  in  the  liver  cirrhosis  patients
group (Fig. 4).
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spaceDiscussion

Identifying microorganisms at the strain/species level and
functionally characterizing human microbiomes are
challeng-  ing due to the high diversity and complex
microbial commu- nity composition and structure. In this
study, by taking advan- tage of the mature functional gene
array technology (He et al.  2012a, b; Tu  et al. 2014a, c)
and a k-mer-based algorithm for  strain-specific probe
design (Tu  et al. 2013, 2014b), we devel-  oped the
HuMiChip2 for both strain-level identification and
functional profiling of human microbiomes.

Current human microbiome studies are mainly carried
out  by shotgun metagenome and 16S rRNA amplicon
sequencing approaches, and have gained new insights into
our  under-  standing of the linkage between human
microbiomes and hu-  man disorders, such as obesity
(Turnbaugh et al. 2009), type 2 diabetes (Qin et al. 2012),
liver  cirrhosis  (Chen  et  al.  2011;  Qin  et  al.  2014),
kwashiorkor (Smith et al.  2013), and peri- odontitis (Li et
al.  2014).  These  efforts,  together  with  the  Human
Microbiome Project (Peterson et al. 2009), generated
valuable sequence datasets for human microbiome studies.
However,  transforming such large datasets into useful
infor- mation and knowledge requires bioinformatics tools
and  metagenomics technologies like microarrays.
Microbial eco- logical microarray is such a technology that
can extract useful information from sequence data, quickly
identify  microbial  taxa, and/or functionally profile
microbial communities (He et al. 2012a, b).

Several types of microbial ecological microarrays
suitable  for  human  microbiome  studies  have  been
developed  in  the  past  years  (Table  4).  These  include
PhyloChip  (DeSantis   et al. 2007  ), HITChip (Rajilić-
Stojanović et al. 2009  ),

spaceHuGChip (Tottey et al.  2013  ),  and  HuMiChip  (Tu
et  al.  2014a  ).  Among  these,  PhyloChip  and
HuMiChip/ HuMiChip2 are more generic than HITChip
and HuGChip that PhyloChip and HuMiChip/HuMiChip2
can be used to profile human microbiome from various
body  sites,  while  the  latter  two  are  specifically

designed  for  human  gut  microbiomes.  Compared  with
other  available  microarrays  for  the  human  microbiome,
HuMiChip and HuMiChip2 are designed to profile selected
functional  gene  families  in  the  human microbiome.
Although HuMiChip2 is equipped with  strain-specific
probes  for  more  than  2300  strains,  microbial  ecological
microarrays based  on 16S  rRNA genes (e.g.,  PhyloChip,
HuGChip, and HITChip) hold the advantage for  more
comprehensive taxonomic profiling capability.

Strain-level  identification  of microorganisms  in the
environ-  ment  is  challenging.  Current  approaches  in
microbial ecology studies, e.g., 16S rRNA gene amplicon
sequencing, can only confidently detect microbial  taxa at
the  genus  or  sub-family  level  due  to  short  and  highly
conserved  regions,  thus  strain-  level  identification  of
microorganisms  requires  moving  beyond  single  marker
gene  (e.g.,  16S  rRNA gene)  to  genome-wide  analyses
(Faith  et  al.  2015).  In  this  study,  we  showed  that
HuMiChip2 could achieve  a  strain-level  identification  of
mi-  croorganisms  in  human  microbiomes  owing  to  the
advantage of strain-specific probes designed using a k-mer-
based algo- rithm (Tu et al.  2013,  2014b), which can also
be used  for  shotgun  metagenome  analysis.  Similar  to
many  other  metagenomic  approaches  such  as  canSNPs
(Karlsson et al. 2014), PathoScope (Hong et al. 2014), and
Sigma (Ahn et al. 2015), such detection relies on reference
genomes.  Among  various  metagenomic  samples  such  as
human, soil, and water, the human microbiome has most
reference genomes available,

space

Table 4 Comparison of microbial ecological microarrays suitable for 
human microbiome studies

Targeted gene families No. of probes No. of targeted taxonomy

PhyloChip 16S rRNA genes 297,851 842 subfamilies

HuGChip 16S rRNA genes 4441 66 families

HITChip 16S rRNA genes 4809 1140 phylotypes

HuMiChip 139 functional gene families 36,802 322 strains + metagenomes

HuMiChip2 157 functional gene families
+ strain-specific probes

133,924 2063 strains + metagenomes

spacethus  is  especially suitable for strain-level identification
using microarray technologies. Notably, with more reference
ge- nomes being generated by the scientific community, this
tech-  nology  can  also  be  applied  to  analyze  more
complex  metagenomes,  such  as  soil  and  water  microbial
communities.  Compared  with  shotgun  metagenome
sequencing  for  microbial  identification,  microarray
technologies are expected  to be more  sensitive in detecting
low abundant microorganisms (Zhou et al. 2015) as genes of
interest  and  specific  regions  may  only  comprise  a  tiny
portion  of  the  genome and may not  be  well  captured  by
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potentially solved by increasing the sequencing depth, the
high cost  to  capture enough sequences for analysis would
pre- vent many scientists from doing so.

Specificity is the most critical issue in microbial
ecological  microarrays,  especially  for  strain-level
identification  of  micro-  organisms.  In  this  study,  such
specificity is first realized by strain-specific probe design
and  associated  algorithms  and  criteria. This includes
comparative genomic search for specif- ic probes using k-
mer-based (k ≤ 20) algorithms against more  than 5000
genomes with a sequence similarity cutoff of 80 %  in
addition to GC content, free energy, and annealing temper-
ature.  Second, we use multiple probes (up to 15 probes)
per  strain, which allows us to statistically analyze the
strain-level detection, such as the number of probes (10 out
of 15) required  for  reliable  detection  of  certain  strains.
With  such  criteria,  potential false positives from close
relatives in the same spe- cies or genus could be effectively
excluded. Third, when >15 probes are available, probes are
selected from multiple loca-  tions in the genome to
maximize even distribution. All those strategies guaranteed
specific detection of microorganisms at the whole genome
level, instead of a few specific fragments. Furthermore, to
insure  the  high  specificity  of strain-specific  probes, we
performed both computational (Tu  et al. 2013) and
experimental evaluation for all and randomly selected
probe sets,  respectively.  In general,  very high specificity
could be observed for strain-specific probes. For example,
about 70 % of the 302 newly sequenced genomes could not
be targeted by current strain-specific probes, and about 25
% could be assigned to the same species (Tu et al. 2013).
Such specificity  could also be observed against shotgun
metagenome datasets

spacethat microbial strains isolated from a particular
human body sites were mainly found in metagenomes of
that body site, with a ratio of as high as >99 % in body
sites such as human gut, skin, and urogenital tract (Tu et
al. 2013). Experimental evaluation using single genome
and mock communities showed no false positives for the
majority randomly selected  species,  except  for   the
species L.  rhamnosus that  the
L.  rhamnosus  R0011  strain  was  detected  as  a  false
positive when other  L.  rhamnosus  strains were included
in  the  mock  community.  This issue may be hardly
avoided as 9~11  out of 15 probes were detected for L.
rhamnosus R0011  in the test.  This is largely due to
incomplete genome sequencing of some
L.  rhamnosus  strains,  and/or  potential  lateral  gene
transfer events among them (Soucy et al. 2015; Vos et al.
2015). Notably, no other false positives were detected in
the  test,  suggesting  an  overall  high  specificity  of
HuMiChip2.  False  negatives, however,  were also
detected despite at a very low rate when multiple strains
were mixed in the mock communi-  ty.  This may be

largely due to potential competition in hybrid- ization from
those close relatives in the same species. This effect, to our
best knowledge, is difficult to avoid although an increase
of  strain-specific  probe  number  for  each  strain/  species
may be one of strategies. However, this issue could also be
an exaggerated effect with mock communities, which are
much less diverse than real samples.

Liver cirrhosis is the pathologic end stage of chronic
liver disease as a result of several causes, such as obesity,
hepatitis  virus  infection,  and  alcohol  abuse  (Qin  et  al.
2014).  About 30 % alcoholics develop liver disease, and
the reasons why certain individuals are more susceptible
are not  known  (Bunout 1999; Diehl  1989). Many recent
studies suggested a clear linkage between gut microbiome
community changes and liver cirrhosis (Bajaj et al.  2014;
Chen and Schnabl  2014  ; Chen  et  al.  2011  ,  2014  ; Qin  et
al. 2014  ). Here, HuMiChip2 was applied to perform both
strain-level identifi- cation and the functional profiling of
human gut microbiomes from alcoholic cirrhosis patients
and healthy individuals with alcohol abuse. A significant
shift of gut microbiomes in terms  of functional
composition and structure was observed between alcoholic
liver cirrhosis patients and healthy individuals with alcohol
abuse. Further analysis suggested that the changed

space

spacegene families mainly belonged to functional categories
such as  antibiotic,  amino  acids  metabolism,  carbohydrate
metabolism, glycan biosynthesis and metabolism, and energy
metabolism.  The increased relative abundances of these
gene families are in agreement with the clinical observation
that the metabolism of nutrition, carbohydrate, protein, and
lipids are suppressed  in liver cirrhosis patients (Bunout
1999). The gut microbiome,  which habitat the internal
human body in a symbiotic manner (Peterson et al. 2009),
may help to restore the ability in these metabolic processes
in human gut by increasing correspond- ing gene families.
The results are also generally consistent with recent shotgun
metagenomic studies, which suggested a  series  of  marker
genes to discriminate patients and healthy individuals (Qin
et al.  2014).  Interestingly,  gene families in-  volved in these
categories were also regarded as marker genes in patients of
type 2 diabetes (Qin et al. 2012). At the strain level, notably,
we did not see a core set of microbial strains among patients
or healthy individuals that could be linked with the disease,
except  that  five  Bacteroides  strains  were  more frequently
detected in the cirrhosis patients group. The low detection
number of microbial strains could be due to the reason that a
core microbiome may not exist at the organismal  lineage
level (Turnbaugh et al. 2009) as well as the high spec- ificity
of these strain-specific probes (Tu et al. 2013, 2014b). The
results may provide better insights into the linkages be-
tween gut microbiome and human disorders like liver
cirrhosis (Bajaj et al. 2014; Chen and Schnabl 2014; Chen et
al. 2011, 2014; Qin et al. 2014; Smith et al. 2013).
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In conclusion, we present a comprehensive microbial

eco- logical microarray—HuMiChip2, for both strain-level
identi-  fication  and  functional  profiling  of  human
microbiomes.  HuMiChip2 targets more than 2000
sequenced microbial ge-  nomes,  and 2.5  Gb  assembled
high-quality  shotgun metagenomes  from  14  different
body  sites.  HuMiChip2  carries  the  ability  of  strain-level
identification  of  human  microbiomes. This makes
HuMiChip2 a unique high through-  put technology for
quickly detecting known human microbial  strains,
especially pathogens in various human samples as well as
environmental samples, providing novel insights into the
epidemiology of human pathogens at the strain level. To
our best knowledge, this is the first microbial ecological
mi-  croarray  equipped  with  strain-level  detection
ability.  However,  owing to the high variation of human
microbiomes at the organismal lineage level (Turnbaugh et
al. 2009), group- specific probes at sub-species level may
need to be designed in the future to increase the number of
detected strains, as well  as for detecting novel microbial
strains in human microbiome  samples. In addition,
HuMiChip2 can be used for functional  profiling of key
gene families in various pathways. Therefore,  the newly
developed HuMiChip2 presents a useful example in
converting large volume of sequence data generated by the
Human Microbiome Project (Peterson et al. 2009) into
useful  tools  and  knowledge,  and can be  widely used  in
human

spacemicrobiomes studies. The same strategy may be
used in other  environmental  microbiome  studies  when
enough  reference  genomes  are  available  for  those
ecosystems (soil, waters, and sediments).
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