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Abstract
The ecology of fungi lags behind that of plants and animals because most fungi are microscopic and hidden in their
substrates. Here, we address the basic ecological process of fungal succession in nature using the microscopic, arbuscular
mycorrhizal fungi (AMF) that form essential mutualisms with 70–90% of plants. We find a signal for temporal change in
AMF community similarity that is 40-fold stronger than seen in the most recent studies, likely due to weekly samplings of
roots, rhizosphere and soil throughout the 17 weeks from seedling to fruit maturity and the use of the fungal DNA barcode to
recognize species in a simple, agricultural environment. We demonstrate the patterns of nestedness and turnover and the
microbial equivalents of the processes of immigration and extinction, that is, appearance and disappearance. We also provide
the first evidence that AMF species co-exist rather than simply co-occur by demonstrating negative, density-dependent
population growth for multiple species. Our study shows the advantages of using fungi to test basic ecological hypotheses
(e.g., nestedness v. turnover, immigration v. extinction, and coexistence theory) over periods as short as one season.

Introduction

Arbuscular mycorrhizal fungi (AMF) are among the most
important fungi because they form obligate symbioses that
provide phosphorus and nitrogen to 70 to 90% of plant
species, including almost all agricultural crops [1, 2]. For
more than two decades, the role of AMF as drivers of plant
community structure, and vice versa, has been recognized

[3–9]. However, owing to the resistance of AMF to culti-
vation, studies of their ecology have been hampered by
controversies over their ability to reproduce sexually, the
homogeneity of nuclei in a single individual, and the
recognition of AMF species using rDNA regions of dif-
ferent evolutionary rate [10–16].

Detection of succession, the basic ecological process that
describes the changes in community similarity over time
[17], is one of the ecological investigations most sensitive to
species recognition. The changes in communities over time,
whether labelled succession or temporal dynamics, have
been investigated extensively with modern approaches in
plant communities [18–20], studied less extensively in
microbial communities [21–26], and are just beginning to be
examined with modern tools in AMF [reviewed by Bahram
et al [27]; Table S1]. The three most thorough of these
studies [reviewed by Bahram et al [27]; Table S1], include
two studies that recognized fungal operational taxonomic
units (OTUs) with the internal transcribed spacer (ITS) from
samples taken either once in each of the four seasons [28],
or three times in a single season [29], and a third that
recognized AMF OTUs with small subunit (SSU or 18S)
ribosomal rDNA from four sampling times from one season
[30]. Using data from these three studies to analyze tem-
poral change in fungal community composition, we found a
low, albeit significant, rate of change; 0.001–0.006 units of
Bray–Curtis dissimilarity per week (Fig. 1a–c).
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We hypothesized that the actual rate of change in AMF
community composition should be higher than could be
detected in these studies dues to two factors. First, temporal
change is difficult to detect where variation in the compo-
nents of the AMF system (plant symbionts, soil, hydration,
and season) is large compared to the level of sampling
(Table S1). Second, change in community composition is
under reported when AMF species-level OTU recognition
relies on the conserved SSU ribosomal rDNA [2, 10, 31,
32], rather than on the more variable ITS, which is the
molecular “barcode” region used for OTU recognition in
almost all other fungal studies [33–36].

Here we revisit the basic ecological process of succes-
sion by (i) using a system with low environmental hetero-
geneity comprising only one soil type, one irrigation
scheme, two cultivars of the agricultural host plant, sor-
ghum [Sorghum bicolor (L.) Moench], and weekly, tripli-
cate sampling of soil, rhizosphere, and roots throughout the
17 weeks from seedling emergence through grain matura-
tion, and (ii) using OTUs characterized with ITS2 by a
recently published approach [37, 38] (Database S1-S2). Our
data show a signal of succession in AMF communities that
is more than an order of magnitude larger than previously
reported. To understand the basis for this signal, we explore

Fig. 1 Arbuscular mycorrhizal fungal community change correlated
over time (temporal distance a–f) and space (spatial distance, g–i).
Temporal distance (in weeks between sampling times) as correlated
with Bray–Curtis community dissimilarity by Mantel testing in pub-
lished data from (a) [28] [48 samples= 4 time points * 3 vertical
layers * 4 plots (10 m2 with c. 100 m border)], b [29] (21 samples= 3
time points * 7 treatments), and c [30] [96 samples= 4 time points * 3
crops * 2 sample type * 4 plots (6 * 2 m2 plots with 6 m border)], and
from new data presented in this study for (d) root (17 time points * 6
plots), e rhizosphere (17 time points * 6 plots) and f soil (18 time
points*6 plots) with all plots having the dimensions 16 m * 8 m with at
least a 3 m boarder. Spatial distance as correlated with Bray–Curtis

community dissimilarity by Mantel testing from new data present in
this study for (g) root, h rhizosphere, and i soil. Note the much
stronger association of community dissimilarity and temporal distance
reflected by R and slope for root, rhizosphere and soil in this study than
[28, 29] and [30], and the near absence of association of community
dissimilarity and spatial distance in this study. *The [29] result is
based on a total fungal community dataset rather than AMF commu-
nity, due to the low recovery of AMF in that study. Analyses in (d–f)
treat sequence data as counts rarefied among AMF fungi and are nearly
identical to analyses treating data as counts rarefied among all fungi or
treating data as compositional (Fig. S5)
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patterns of the nestedness and turnover, the processes of
appearance and disappearance (proxies for the processes of
immigration and extinction that are appropriate for micro-
bial, HTS datasets), and ask if the processes are determi-
nistic or stochastic, and positively or negatively dependent
on initial population size.

Methods

Sampling and sequencing

This experiment was conducted at the semiarid Kearney
Agricultural Research and Extension (KARE) Center in
Parlier, CA, USA (36.6008° N, 119.5109° W). Two sor-
ghum [Sorghum bicolor (L.) Moench] cultivars with similar
flowering times, RTx430 and BTx642, were planted in
three, separate, 16×8 m2 plots (each with ten rows) with 3 m
borders between plots (Fig. S1), and were watered using
drip irrigation with 80% of calculated evapotranspiration on
a weekly basis [39]. The trial was planted on 27th May
2016 and plants emergence was recorded on 1st June.
Weekly samples of root, rhizosphere and soil were taken in
2016 on June 8, 15, 22, 29; July 6, 13, 20, 27; August 3, 10,
17, 24, 31; and September 7, 14, 21, 28. At each sampling
time, ten or more individual sorghum plants were removed
from randomly chosen locations within one of the central
eight rows in each plot and combined to generate one root
sample and one rhizosphere sample. At the same time, ten
soil cores were taken from random locations in each plot
and combined to generate one soil sample. Thus, a total of
312 samples were taken, which comprise 17 weekly sam-
ples of the two cultivars, and three compartments (root,
rhizosphere, and soil), all with three replicates, plus six soil
samples collected prior to planting. DNAs of root, rhizo-
sphere, and soil samples were extracted using the MoBio
PowerSoil DNA kit (MoBio, Carlsbad, CA, USA). The
fungal internal transcribed spacer 2 (ITS2) region was
amplified using forward and reverse primers designed to
contain a 29 (forward) or 25 (reverse) base linker, a 12 base
barcode, a 29 (forward) or 34 (reverse) base pad, a 0–8 base
heterogeneity spacer [40], and either the fungal
ITS2 specific 21 base 5.8SFun primer (forward) or 27 base
ITS4Fun primer (reverse) [38] (Table S2). We used Lee
Taylor’s ITS2 primers [38] because the 5.8SFun and
ITS4Fun matched well with all Glomeromycotina lineages
when we matched the primers with published SSU-ITS-
LSU alignments [41] (Database S1–S2). All the raw
sequences are deposited in Sequence Read Archive with the
accession codes: Bioproject PRJNA412410 Biosamples
SAMN07711256 - SAMN07711567. Detailed information
about site description, experiment design, and molecular
analysis can be found in the supplementary methods.

Bioinformatics

Overall sequencing quality was evaluated using FastQC
v0.11.5 [42]. Forward and reverse reads were merged using
the fastq_mergepairs command (-fastq_maxdiffpct 3) in
USEARCH v8.0 [43]. Primers were removed using cuta-
dapt v1.9.1 [44]. Quality control was carried out using the
fastq_filter command (-fastq_maxee 1.0 -fastq_minlen 200)
in USEARCH [43]. High quality sequences were subjected
to de-replication and de-singleton, and then clustered into
OTUs using the cluster_otus command in USEARCH [43].
The OTUs were searched against the raw reads using the
usearch_global command (-id 0.97) in USEARCH [43].
This step generated a table of 312 samples×1293 OTUs
(10,770,762 reads). The representative sequence of each
OTU was identified by a BLAST search against the curated,
fungal specific UNITE database [45] and the NCBI data-
base. Fifty-two OTUs (167,749 reads) were identified as
AMF (Table S3), whereas 1026 OTUs were non-AMF
(10,341,780 reads) and 215 were non-fungal (261,233
reads). To use phylogenetics to equate AMF OTUs with
known species, sequences representing the 52 AMF OTUs
were combined with vouchered sequences downloaded
from NCBI and UNITE and all sequences were aligned
using MAFFT v 7.310 [46] placed in a neighbor-joining
tree using MEGA v8.0 [47]. Representative sequences of
AMF OTUs were deposited in GenBank with the accession
codes: MG008508 - MG008559. Owing to the possibility of
multiple ITS2 sequences within an individual AMF [16], we
searched for OTUs with identical read abundance by ana-
lysis of variance (ANOVA). For OTUs with no difference
in abundance, a series of pairwise correlations was then
carried out and those OTUs with equal abundance and
strong positive correlation were combined to avoid the issue
of multiplicity of ITS2 sequences within individual AMF.

Statistical methods

Recent recognition that microbiome data from high-
throughput sequencing (HTS) represents a random sample
of the DNA molecules in an environment and not absolute
counts of the molecules dictates that the data be treated as
compositional [48] and not as counts, as commonly has
been done. Therefore, we use one compositional and two
traditional approaches to analyze our AMF data to both
analyze the data as compositional and to permit compar-
isons with prior studies. For the first traditional approach
(dataset 1), we rarefied the number of AMF sequences per
sample to 100 using the rrarefy command in vegan in R [49,
50], an approach designed to eliminate the effects of dif-
ferent read numbers among the samples on the deduced
AMF community composition. For the second traditional
approach (dataset 2), we rarefied all fungal reads to 2743
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and then extracted the AMF subset of this normalized
fungal data, an approach designed to eliminate the effects of
different fungal read numbers but retain the abundance
variation of AMFs among the samples. For the composi-
tional method (dataset 3), we imputed zeros in AMF com-
positional count data sets based on a Bayesian-
multiplicative replacement using the cmultRepl command
in zCompositions [51], and then converted these data to the
centered log-ratio (CLR) using the codaSeq.clr command in
CoDaSeq (https://github.com/ggloor/CoDaSeq) [48]. We
present analyses of the three datasets in figure and supple-
mental figures to invite comparison. Direct comparison is
possible with permutation tests for ANOVA (PERM
ANOVA), but not for other analyses because the statistical
methods for compositional datasets are different from those
for traditional count datasets, e.g., Bray–Curtis dissimilarity
for counts v. Aitchison distance for compositional, and
principal coordinate (PCo) analysis for counts v. principal
component (PC) analysis for compositional [48]. For some
of our analyses, methods are not yet available for compo-
sitional datasets, e.g., partition of nestedness and turnover
components of beta diversity [52].

By plotting time and AMF richness (dataset 1), we
demonstrated the temporal dynamics of AMF diversity. To
assess the phylogenetic relatedness of AMF OTUs within
every sample, the net relatedness index (NRI) was calcu-
lated based on the above-mentioned phylogenetic trees and
community composition data using the ses.mpd command
(×−1) in picante package [53]. Relationships between time
and abundance of initially dominant and initially rare OTUs
(dataset 1, 2, 3) were explored by linear mixed-effects
models, including random effects of OTU identity using the
lme command in the lme4 package [54]. The variance
explained (conditional R2) by the mixed effect models was
calculated by the r.squaredGLMM function in MuMIn
Package [55].

Bray–Curtis dissimilarities were calculated for dataset 1
and 2 to construct distance matrices of the AMF community
(Hellinger transformed) using the vegdist command in
vegan [49], and Aitchison distances were calculated for
dataset 3 [48]. PERM ANOVA were carried out to assess
the effect of compartment (soil, rhizosphere or root), time
period and cultivar on the AMF community variation either
detected by Bray–Curtis dissimilarities or Aitchison dis-
tances using the adonis command in vegan [49]. Euclidean
dissimilarities were calculated to construct distance matrices
of geographic, temporal, temperature, and solar radiation
distances respectively in vegan [49]. Mantel tests were
carried out to explore the correlations between these dis-
tance matrices [49]. Partial Mantel tests were carried out to
explore the relationships between AMF community dis-
similarity and temporal distance, after excluding the influ-
ence of geographic distance. Conversely, partial Mantel

tests were carried out to explore the relationships between
AMF community dissimilarity and geographic distance,
after excluding the influence of temporal distance. Struc-
tural equation models (SEM) using Mantel R values as input
were constructed in AMOS 25.0 [56] to explore the causal
relationships among time, solar radiation, temperature, plant
biomass and AMF community composition. Based on a
priori and theoretical knowledge, we assumed a conceptual
model in which time and solar radiation affect temperature,
which in turn affects plant biomass, which further influ-
ences AMF community composition. To test the homo-
geneity of AMF community during succession [57], beta
dispersion of AMF communities was explored by the
betadisper function in vegan [49]. To graphically illustrate
the AMF community composition, AMF Bray–Curtis dis-
similarity matrices were ordinated by PCo analysis using
the pcoa command in the Ape package [58], and AMF
Aitchison distance were ordinated by PC analysis using the
prcomp command in stats package [50]. The turnover and
nestedness components of AMF community were calcu-
lated based on the presence/absence data using the beta.pair
command (index.family= ‘sorensen’) in the betapart
package [59], and were fitted with temporal distance using
the Mantel test in vegan [49]. The nestedness of AMF
community was graphically illustrated by the nestedtemp
command in vegan package [49].

To test how the AMF succession might be influenced by
the AMF OTU cutoff, the OTU delineation processes were
repeated by changing the OTU cutoff from the defaulted 97
to 80% in increments of 1%. We calculated the AMF
community Bray-Curits dissimilarity of every OTU cutoff,
and fitted it with temporal distance using Mantel test, as
mentioned above.

To compare the temporal dynamics of AMF commu-
nities in our study with those previously reported by Bai-
nard et al. [30], Han et al. [29] and Voříšková et al. [28], we
calculated, for the three previous studies, Bray–Curtis dis-
similarities of Hellinger transformed AMF community data,
and Euclidean dissimilarities of temporal distance in terms
of simulated weekly sampling. Mantel tests were carried out
to explore the correlations between AMF community dis-
similarity and the temporal distances in vegan [49].

Results and discussion

Recognition of AMF OTUs by ITS2

To recognize AMF OTUs that approximate species more
closely than SSU OTUs we use the ITS2 region of the RNA
repeat [10, 32, 37, 60]. Here, using Illumina Miseq of
fungal ITS2 amplified by dual-barcoded Lee Taylor’s fun-
gal specific primers [38], we successfully recognized 52
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AMF OTUs with 167,749 AMF reads, belonging to Glomus
(21 OTUs), Rhizophagus (13 OTUs), Claroideoglomus (8
OTUs), Funneliformis (5 OTUs), Paraglomus (4 OTUs),
and unidentified Glomeraceae (1 OTUs) (Fig. S2). The
thorough sampling (312 samples) produced a species
accumulating curve that reached its plateau for the species-
poor AMFs (52 OTUs) in a relative small (<5000 m2),
simple agricultural field (Fig. S3). In line with this result, of
the 52 AMF OTUs, only five occurred in fewer than
10 samples, suggesting a lack of rare OTUs in our study
(Fig. S4).

As described in the section on statistical methods, to both
recognize the compositional nature of HTS microbiome
data [48] and to permit comparisons of our results with
previous studies that treat HTS data as counts, we analyzed
the data both as counts and compositional. We employed
two count methods: in data set 1 we rarefied to equal AMF
reads and in dataset 2 we rarefied to equal fungal reads. For
compositional analysis, in dataset 3 we transformed the data
by the CLR method [48]. The largest difference is the
detected effect of time, R2= 0.438 for dataset 1, R2= 0.339
for dataset 2 and R2= 0.232 for dataset 3 as explored by
PERM ANOVA (all P < 0.001) (Fig. S6). Despite these
differences, analyses of the three different datasets gener-
ated remarkably consistent results in all applicable analyses
that similarly supported the main conclusions of our study
(Fig. S5–S7).

In light of recent reports of ITS2 variation as high as 6 to
12% in AMF species-level clades [16, 61, 62], we also
investigated the effect on ecological analyses of reducing, in
1% increments, the threshold of OTU recognition by ITS2.
We found that the rate of AMF succession was not sub-
stantially changed until the cutoff was reduced from 97 to
85% (15% intra-OTU variation, Fig. S8), therefore, our
findings are not affected by the potential intraspecific var-
iation reported for AMF species.

The use of ITS has been questioned due to reports
showing that one AMF individual can contain more than
one, independently evolving rDNA repeat [10, 16, 32].
Mindful of the possibility of amplifying and sequencing
more than one rDNA repeat in a single species of Glo-
meromycotina, we searched for possible intra-individual
rDNA polymorphism by correlating read abundance for the
different ITS2-OTUs over the 17 weeks of sampling.
Strongly correlated ITS2 read abundance (Fig. S9) was seen
for three Rhizophagus OTUs (118, 161, 132). Therefore,
due to the possibility that they might represent a single
AMF species, we treated these three Rhizophagus OTUs as
a single species in our analysis, reducing the number of
ITS2-OTUs from 52 to 50. Two other Rhizophagus OTUs
showed similar read-abundance patterns (Fig. S9A) but the
unequal abundance of reads (Fig. S9B) indicated that they
represented distinct OTUs and we retained them in our

analyses. To assess the effect of reducing the number of
OTUs from 52 to 50, we repeated the following ecological
analyses with all 52 ITS2-OTUs, finding no differences in
ecological results, their significance or our subsequent
conclusions (Figs. S10–S15).

Succession of AMF community

Our analyses showed a strong, positive, Mantel correlation
(R= 0.617–0.753, P < 0.001) between temporal distance
(graphed on the x-axis as weeks between sampling times)
and AMF community Bray–Curtis (dataset 1, 2) or Aitch-
ison (dataset 3) dissimilarity in root, rhizosphere, and soil
samples (Fig. 1d–f; Fig. S5). The slope of the change in
dissimilarity per week found here (0.034–0.041 units of
Bray–Curtis dissimilarity per week, dataset 1), is 34–41
times greater than the first previously mentioned study
(0.001 units of Bray–Curtis dissimilarity per week, Fig. 1a)
[28], 8.5–10.25 times greater than the second (0.004 units
of Bray–Curtis dissimilarity per week, Fig. 1b) [29], and
5.6–6.8 times greater than the third (0.006 units of Bray–
Curtis dissimilarity per week, Fig. 1c) [30]. This change in
AMF community composition can also be visualized by
ordination (PCo for dataset 1, 2; PC for dataset 3) analysis
(Fig. 2a; Fig. S6), by a proportional bar plot of AMF
relative abundance (dataset 1, Fig. 2b), or by a bar plot of
percentage of AMFs in total fungal reads (dataset 2,
Fig. 2c), in addition to the graph of community dissimilarity
and temporal distance (Fig. 1d–f; Fig. S5; Fig. S8; Fig.
S10). This strong AMF succession was also seen using
PERM ANOVA (R2= 0.232–0.438; P < 0.001, Fig. 2a; Fig.
S6). This succession is not confounded by beta dispersion in
root, rhizosphere, and soil (Fig. S16). We recognize that the
concept of succession, which was developed for plant
communities, is controversial when applied to microbial
communities. Here, we adopt a recent definition of suc-
cession as, “… somewhat orderly and predictable manner
by which communities change over time following the
colonization of a new environment…” [22], by treating a
newly emerged plant root, as well its associated rhizosphere
and soil, as new environments for AMFs to colonize and
initiate succession.

Geographic distance is a factor known to have a major
effect on AMF community composition [12, 27, 63]. In
contrast to temporal distance, our analysis of the effect of
geographic distance using Mantel and partial Mantel tests
showed a small effect (slope of the change in dissimilarity
over distance= 0 to 0.001 per meter, R never greater than
0.15) on the variation of AMF community dissimilarity in
root, rhizosphere, and soil (Fig. 1g–i). Thus, we can infer
that agricultural cultivation of a single plant species (S.
bicolor) homogenizes AMF communities over at a range of
from 10 to 60 m, but we cannot rule out environmental
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heterogeneity that might occur at finer scales and that could
affect AMF community composition.

AMF community ecology follows approaches developed
for plants with a major difference being the immediate
source of energy, insolation for plants and symbiotic part-
ners for AMF [1], sorghum in our case. Of course, temporal
variation in insolation that directly affects the plant sym-
biont should have an indirect effect on AMF. Our SEM
results showed that AMF community was directly affected
by time and plant biomass, and also indirectly by tem-
perature and solar radiation (Fig. 3). Surprisingly, solar
radiation negatively affected plant biomass. It might be that
at 36˚N latitude in Central California, energy from insola-
tion is not a limiting resource for sorghum growth, but UV
radiation and drought stress associated with high insolation
might detrimentally affect accumulation of sorghum
biomass.

Nestedness and turnover during AMF community
succession

There are two, divergent patterns describing the change in
community composition: turnover (where some species
are replaced by others over time) and nestedness (where
the earlier community is a subset of the latter community,
or vice versa) [52]. Our demonstration of AMF commu-
nity succession (Figs. 1d–f, 2) was accompanied by an
increase in richness (Fig. 4a–c) over the 17 weeks from
emergence of seedlings to maturation of grain in sorghum,
so we expected nestedness to predominate but
questioned if replacement (turnover) also was involved.

Mantel tests showed that temporal distance was sig-
nificantly correlated with both the components of
turnover (R= 0.193, P < 0.001) and nestedness (R=
0.214, P < 0.001) of AMF community composition var-
iation (Fig. 5; Figs. S17–S19). The co-occurrence of these
two divergent patterns of change in community compo-
sition suggested that there also would be more than a
single, ecological process underlying succession in the
AMF community.

Fig. 2 Change in composition of arbuscular mycorrhizal fungal com-
munities in three compartments (root, rhizosphere, and soil) over
17 weekly time period (TP) samplings. a Principal coordinate (PCo)
analysis by PERM ANOVA showing significant association of com-
munity composition with time period (TP) and compartment but not
cultivar (***P < 0.001; ns: not significant). Note that TP accounts for
nearly half the variance, which is far more than is accounted for by
compartment (root, rhizosphere or soil) or plant genotype (sorghum

cultivar RTx430 or BTx642). b Bar graph of AMF operational taxo-
nomic unit (OTU) relative abundance at each TP and c Bar graph of
AMF OTUs percentage in total fungal reads at each TP for the three
compartments, root, rhizosphere and soil. Note the strong change in
AMF community composition over time. Analysis in a treats
sequence data as counts rarefied among AMF fungi and is nearly
identical to analyses treating data as counts rarefied among all fungi or
treating data as compositional (Fig. S6)

Fig. 3 Structural equation model (SEM) demonstrates that the suc-
cession of arbuscular mycorrhizal fungal (AMF) communities was
directly affected by time and aboveground biomass of sorghum, in
addition to indirect (via plant biomass) effects of solar radiation and
temperature. The numbers above the arrows indicate the magnitude of
path coefficients (λ), and this magnitude is also depicted by the width
of the lines. R2 values represent the proportion of variance explained
for each variable

C. Gao et al.



Immigration and extinction in AMF community
succession

Immigration and extinction are the two fundamental pro-
cesses responsible for the patterns of succession [18].
Although immigration and extinction are far more easily
observed for plants than microscopic fungi, our comparison
of the first week (Time Period 1, TP01) and the last week
(Time Period 17, TP17) provide evidence for both pro-
cesses. Two initially dominant TP01 OTUs with indicator
values (indval) strong enough to make them significant
indicators of the initial time period (OTU51_Rhizophagus,
indval= 0.894, P < 0.001; OTU70_Claroideoglomus,
indval= 0.809, P < 0.001) were subsequently lost and 13
initially rare OTUs (five Rhizophagus, indval= 0.667–
0.811, P < 0.001; eight Glomus, indval= 0.311–0.816, P <
0.05) became significant indicators by the final sampling at
TP17 (Table S4; Fig. 2b). This result was seen with abun-
dance of AMF alone or abundance of AMF relative to all
fungal, although in the later analysis, the initial dominance

was delayed from TP01 to the 2nd week in root and rhi-
zosphere and the 4th week in soil (Fig. 2c).

Again acknowledging the difficulty of asserting the
absence of a microscopic fungus, the loss of the initially
dominant OTUs is consistent with the action of forces
causing extinction and the rise of the initially rare OTUs is
consistent with the action of forces causing immigration.
These two processes can be deterministic or stochastic and,
in light of the expected, dramatic effect on AMF community
composition of the emergence and growth of the sorghum
monoculture, determinism would seem the more likely
explanation. Similarly, other factors argue against chance as
the dominant force, including the paucity of rare OTUs in
our communities (Fig. S3–S4), which minimizes the num-
ber of OTUs most susceptible to stochastic extinction [64],
and the similarity in AMF community composition
throughout the sorghum field (Fig. 1g–i), which limits the
local pool of potential, stochastic immigrants.

The emergence of 13 significant indicator OTUs
(Table S4) by the final time period, TP17, raises the

Fig. 4 Temporal dynamics of (a–c) richness and (d–f) phylogenetic
relatedness of AMF communities on two sorghum cultivars. Richness
shows a consistent increase over time for all three compartments (root,
rhizosphere, and soil). Phylogenetic relatedness (net relatedness index,
NRI) also increases over time, eventually showing significant

underdispersion as it rises above the threshold of significance (hor-
izontal, purple line). Note that the threshold is reached earlier inside
roots than outside them in the rhizosphere and soil and that both
cultivars (RTx430 and BTx642) behave similarly in terms of richness
and NRI, consistent with the analyses in Fig. 2a
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question of coexistence of multiple species during succes-
sion. The creation of distinct niches by a developing host
plant would favor coexistence of dissimilar species that
could avoid competition by exploiting divergent niches (i.e.,
stabilizing niche differentiation, a process consistent with
phylogenetic overdispersion) [65]. Conversely, the expan-
sion of the same niche, as expected of a growing sorghum
crop, would facilitate the immigration and coexistence of
species adapted to the same environment. Successful
immigrant taxa would be expected to show equal fitness in
this expanding niche and, assuming that fitness traits are
phylogenetically conserved, exhibit a phylogenetic under-
dispersion due to evolutionary relatedness [65]. We find a
phylogenetic underdispersion of indicator AMF in the
genera Rhizophagus and Glomus at TP17 (Table S4) in
roots, rhizosphere, and soil (Fig. 4d–f) based calculation of
the net relatedness index (NRI) from an ITS2 phylogeny
(Fig. S2). The lack of significant phylogenetic under-
dispersion early in the season (Fig. 4d–f), indicative of
stochastic community assembly, is consistent with our
having planted sorghum in a fallowed field that was pre-
viously planted to oats and having no previous exposure to
sorghum. Development of underdispersion, indicative of
phylogenetic similarity of AMF community members, later
in the season supports coexistence by equalizing fitness,
likely due to the expanding niche, rather than avoiding
competition by exploiting niche differences. A similar shift
from initially random to significant phylogenetic relatedness
has been reported for AMF communities of crop plants
characterized by SSU OTUs in four soil samples taken over
9 weeks, but not for root samples, where the pattern was
nonlinear over time [30]. The interpretation of phylogenetic

underdisperson with equalizing fitness similarity relies on
the phylogenetic conservation of traits [66], but evidence of
specific, adaptive traits in AMF remains rare [67, 68].

Initial density-dependent AMF population
demography

A role for population density in the decline of initially
dominant OTUs and the rise of initially rare OTUs is sug-
gested from our data, which document a decrease in relative
abundance of the two OTUs dominant at TP01 (Rhizopha-
gus_51, Claroideoglomus_70), and an increase in relative
abundance of 13 OTUs rare at the same initial time period
(Fig. 2b, c). In line with these observation, time is sig-
nificantly negatively correlated with initial dominant OTUs
and positively correlated with initial rare OTUs, as detected
by linear mixed-effect modeling of all three datasets, whe-
ther rarefied for AMF reads, for all fungal reads, or not
rarified and transformed by the CLR method (Fig. 6; Fig.
S7). In the case of the two initially dominant OTUs whose
relative abundance declined, they may have experienced a
fitness disadvantage associated with high population density
and their decline would be the result of competitive exclu-
sion of species due to a disadvantage in fitness as compared
to the rest of the community. Conversely, the population
increases seen in the 13 initially rare OTUs may have been
due to a fitness advantage at low population density, the
magnitude of which would decrease as their populations
grew [64]. Our results echo the only other studies to report
replacement over time of dominant AMF OTUs [69, 70], in
which the authors used SSU OTUs and five years of annual
sampling to show that AMF OTUs dominant in newly

Fig. 5 Role of two patterns, (a) turnover and (b) nestedness in the
change in AMF community composition over time. The compositional
variance of AMF community measured by Sorenson pair-wise dis-
similarity was partitioned into a turnover component (Simpson pair-
wise dissimilarity) and a nestedness component (Sorenson pair-wise
dissimilarity minus Simpson pair-wise dissimilarity) following Base-
lga [52]. Subsequently, Mantel tests were carried out to explore the

correlation of temporal distance and either the turnover or nestedness
components of AMF compositional variance. Both AMF turnover and
nestedness showed significant and biologically meaningful associa-
tions with temporal distance. Visualization of the superimposed points
was enhanced by rendering them semi-transparent and adding a small
amount of noise to the temporal distances
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germinated seedlings were almost entirely replaced by pre-
viously rare types; however, with few samples and broad
OTU recognition, they were unable to correlate the repla-
cement with population density [69, 70].

The negative density-dependent population growth
observed here is explained in plant communities by two
mechanisms, resource partitioning and escape from natural
enemies [65]. Resource partitioning posits that different
species either use different resources or partition the use of
shared, limited resources [71]. As a result, species with
large populations should experience limited population
growth due to strong intraspecific competition, whereas
species with small populations should experience high
population growth due to the lack of intraspecific compe-
tition. However, support for the partitioning mechanism is
not seen in the case of the six, closely related Rhizophagus
OTUs (Table S4) that were shown, above, to be similar
enough in fitness to avoid competitive exclusion and,
therefore, too similar to occupy different niche spaces.
Neither does partition theory appear to explain the inability
of Rhizophagus OTU 51 to maintain population size in the
final time period, likely due to competitive exclusion,
because this process would not be expected to occur with
effective partitioning [71]. Under the mechanism of natural
enemy escape, species with large populations experience
limited population growth rate due to the attraction and
accumulation of more specific predators and pathogens,
whereas species with small population experience high
population growth rates due to the escape from host-specific
natural enemies [65]. Alas, we do not have any data on
predators and pathogens of AMF from our study, although
these organisms must exist [72, 73].

The negative, density-dependent population growth seen
for at least 13, initially rare, OTUs, indicates that popula-
tions of these AMF are able to increase in size while co-
occurring with stable populations of other species. This
invasibilty, together with the facts that these fungi live at the

same trophic level and inhabit the same roots (Figs. 2 and 6;
Table S4), suggests that these representatives of two AMF
genera, Rhizophagus and Glomus, not only co-occur, but
also co-exist [74]. These 13 AMF OTUs represent the first
microbes where negative density-population growth in
support of co-existence has been demonstrated over a long
period [74], but further research will be needed to determine
which phenotypic trade-offs may be associated with co-
existence, such as, aspects of colonization and life-history
strategy, differential interaction with host plants, peers and
antagonists, and variation in adaptation to features of the
abiotic environmental.

Different AMF in root, rhizosphere, and soil

AMF are obligately dependent upon carbon from the roots
of plants, so we expected that the AMF communities of the
rhizosphere and soil would follow those seen in the root.
This pattern was evidenced by similar trends for AMF in
roots, soil, and rhizosphere in terms of temporal distance
and succession, geographic distance, richness, and phylo-
genetic relatedness, as mentioned above. For example, the
lag in response to nutrients provided by sorghum from roots
to soil could be seen in the percentage of total fungal reads
attributable to AMF, which peaked at TP02 in root, but
peaked at TP04 in soil (Fig. 2c). Our data also suggest that
different AMF species display different proportions of their
thalli across the compartments of root, rhizosphere, and soil.
In roots, six Rhizophagus OTUs were more commonly
detected than in other compartments and, when detected,
were more abundant (indval= 0.054 –0.399, P < 0.05;
Table S5; Fig. 7). In rhizosphere, one Claroideoglomus
OTU (indval= 0.419, P < 0.001) was more common and
abundant than in other compartments (Table S5; Fig. 7). In
soil, five Funneliformis OTUs (indval= 0.103–0.520, P <
0.01), three Claroideoglomus (indval= 0.051–0.167, P <
0.01), two Paraglomus (indval= 0.047–0.144, P < 0.05)

Fig. 6 Steep (a) decline of initially dominant OTUs and (b) rise of at
least 13 initially rare OTUs. Relationships between time and AMF
OTU abundances were explored by linear mixed-effects models,
including random effects of AMF identity. The conditional R2 cal-
culated here can be interpreted as the variance explained by the

mixed-effects models. Analyses in (a, b) treat sequence data as
counts rarefied among AMF fungi and are nearly identical to ana-
lyses treating data as counts rarefied among all fungi or treating data
as compositional (Fig. S7)
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and 11 Glomus (indval= 0.062–0.566, P < 0.01) were more
common and abundant (Table S5; Fig. 7) than in other
compartments. These results are consistent with observa-
tions that Rhizophagus species form abundant spores in the
roots of vascular plants, whereas Funneliformis species
form spores in the soil [75]. This variation in AMF mor-
phology in nature also raises the possibility that AMF
morphology could change over time, thereby adding var-
iation associated with function [1] to studies of community
composition.

Conclusion

Our ability to demonstrate a strong signal of succession in
AMF community composition over the sorghum growing
season almost certainly rests on our choice of an experi-
mental system with fewer variables than other studies
(Table S1) as well as characterization of OTUs by ITS2,
which recognizes species-level taxa [2, 10, 11, 31, 32].
Treating DNA sequence data as counts or as compositional
showed no loss of statistical significance of results. Our
approach also found that succession in AMF communities
of sorghum showed the pattern of turnover in addition to
strong patterns of nestedness, as has been reported in other
studies of AMF (Table S6). Unlike previous studies of
AMF that reported stochastic assembly of AMF commu-
nities [76–78], we provide analyses that both immigration
and extinction are deterministic in this relatively homo-
genous environment, based on the disappearance of initial
dominant OTUs rather than rare OTUs and the homogeneity
of AMF communities throughout the sorghum field, which
fails to provide a pool of potential immigrants that might
enter communities by chance. The increase in phylogenetic
similarity (underdispersion) of the many OTUs that

immigrated is consistent with equalized fitness rather than
niche differentiation, as might be expected with one soil
type and one host plant, although phylogenetic under-
dispersion of AMF has been reported for more complex
systems (Table S7).

The energies supporting succession or, more broadly,
temporal change in community composition, are different
for the two partners of the arbuscular mycorrhizal symbio-
sis; the autotrophic plant community is supported by solar
radiation and the heterotrophic AMF fungal community is
supported by carbon fixed by the plant. For plants, the
insolation inputs can be relatively consistent over the scale
of plant community succession, but the energy provided to
the AMF by the growing crop is clearly expanding with
time. Therefore, when the abundance of specific AMF
species declines during the season, the reduction can be a
combination of both absolute reduction and, owing to the
expanding resource provided by the plant, reduction relative
to increasing abundance of other AMF species. Keeping this
caveat about population density in mind, the disappearance
of two initially dominant taxa suggests activity promoted by
high population density, whereas the population growth of
13 immigrant OTUs suggests the opposite, activity pro-
moted by low population density. For most of our ecolo-
gical analyses, soil and rhizosphere showed the same results
as our primary focus, sorghum roots. However, a difference
in OTU abundance between roots on one hand and soil plus
rhizosphere on the other correlates with the behavior of
AMF genera, some of which live and sporulate pre-
dominately in the root and others that are known to spor-
ulate prolifically outside the root, as has been reported in
other studies of AMF (Table S8). Our study provides a
foundation for more ambitious studies of AMF community
ecology, where our simple experimental system would be
enlarged to include diversity in hosts, soil, hydration and

Fig. 7 Ternary plot
demonstrating the distribution of
arbuscular mycorrhizal fungal
(AMF) operational taxonomic
units (OTUs) recovered from
root, rhizosphere and soil. Note
a bias toward roots for
Rhizophagus OTUs, toward
rhizosphere for a
Clariodeoglomus OTU, and
toward soil for Glomus,
Claroideglomus, Funneliformis
and Paraglomus OTUs
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fertilization, with the eventual goal of effectively studying
natural systems.

Due to our inability to cultivate AMF apart from plants,
many ghosts have haunted our understanding of these fungi.
Just as genomics is showing that the AMF life cycle is
typical of other fungi in terms of sex [79] and nuclear
variation within an individual [14, 15], mycobiome ecology
is showing that AMF community assembly is not a matter
of chance, but a process determined by biotic and abiotic
factors [80]. The several studies noted above that also found
patterns of nestedness (Table S6) and genetic similarity
inferred from phylogenetic underdispersion (Table S7)
suggest that there may be general rules for assembly of
AMF communities that await discovery. The succession of
AMF fungi seen here suggests that some AMF species
could be more beneficial to sorghum production than others
and that these species might be added to agricultural fields
along with seeds or applied later in the season. Our
approach would also be useful in monitoring the persistence
and effects of such additions on the AMF communities of
crop plants.
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Supplementary methods 1 

Experiment site 2 

This experiment was conducted at the Kearney Agricultural Research and Extension (KARE) 3 

Center in Parlier, CA, USA (36.6008° N, 119.5109° W). KARE is located in the Central Valley, a 4 

semiarid zone with a mean annual temperature of 17.8°C and mean annual precipitation of 325 5 

mm, almost all of which falls between November and April. During the course of our experiment 6 

(27th May to 28th September, 2016), no precipitation occurred; the daily minimum temperature 7 

ranged from 7.8 to 22.8°C, and the daily maximum temperature ranged from 22.8 to 40.5°C 8 

(http://ipm.ucanr.edu/WEATHER/index.html). Soils at KARE were plowed before seeding and 9 

are characterized as Hanford sandy loam with a silky substratum and pH 7.37. 10 

Experiment design and sampling 11 

Two sorghum [Sorghum bicolor (L.) Moench] cultivars with similar flowering times, RTx430 and 12 

BTx642, were planted in three, separate, 16 ´ 8 m2 plots (each with ten rows) with 3 m borders 13 

between plots (Fig. S1). The seeds were sown into pre-watered fields and left unirrigated for two 14 

weeks, which is standard agricultural management practice for sorghum in the Central Valley. 15 

From the 3rd week until the final harvest, the plants were watered using drip irrigation with 80% 16 

of calculated evapotranspiration on a weekly basis. 17 

The trial was planted on 27th May, 2016 and plants emergence was recorded on 1st June. 18 

Weekly samples of root, rhizosphere and soil were taken in 2016 on June 8, 15, 22, 29; July 6, 13, 19 

20, 27; August 3, 10, 17, 24, 31; and September 7, 14, 21, 28. Between 10:00 and 14:00 of every 20 

sampling date, ten or more individual sorghum plants were removed from randomly chosen 21 

locations within one of the central eight rows in each plot. Both rhizosphere and root samples were 22 

taken from the pool of these ten individuals. Roots were removed from the ten plants, mixed 23 



together, transferred to 50 ml tubes with detergent-phosphate buffer (6.33 NaH2PO4•H2O and 8.5 24 

g Na2HPO4•anhydrous in 1 L water, autoclaved; cooled, 200µl Silwet-77 added; pre-cooled in ice-25 

water mixture), and vortexed at full speed for 2 min. The roots were removed from the tube, the 26 

liquid-filled tube was saved, and the roots were transferred to a 200-ml plastic cup with phosphate 27 

buffer without detergent (6.33 NaH2PO4•H2O and 8.5 g Na2HPO4•anhydrous in 1 L water, 28 

autoclaved; pre-cooled in ice-water mixture), vortexed at full speed for 1 min twice, dried by clean 29 

paper towels, put into aluminum packet and frozen in liquid nitrogen. The saved, liquid-filled tube 30 

containing the rhizosphere was centrifuged at full speed for 3 min, the buffer discarded and the 31 

rhizosphere pellet frozen in liquid nitrogen. Simultaneously, soil at 6” depth was collected adjacent 32 

to the ten sampled plants using 6” soil collection tubes. Ten samples were mixed, transferred to a 33 

50-ml centrifuge tube, and frozen in liquid nitrogen. Thus, a total of 312 samples were taken, which 34 

comprise 17 weekly samples of the two cultivars, and three compartments (root, rhizosphere and 35 

soil), all with three replicates, plus six soil samples collected prior to planting. The frozen root, 36 

rhizosphere and soil samples were transferred to dry ice and transported by 18:00 on the day of 37 

collection to laboratories at the University of California, Berkeley where they were stored at -80°C 38 

until grinding. 39 

Molecular analysis 40 

Root samples were ground, separately, with liquid nitrogen in a cryogenic grinder (6875D 41 

Freezer/Mill, SpexSamplePrep, Stanmore, UK), and root DNA was extracted from 0.2 g ground 42 

sample using the MoBio PowerSoil DNA kit (MoBio, Carlsbad, CA, USA) with all centrifugation 43 

conducted at 4°C. Rhizosphere and soil DNA was extracted from 0.2 g samples using the MoBio 44 

PowerSoil DNA kit (MoBio, Carlsbad, CA, USA) following the manufacture’s protocol. DNA 45 

concentration was measured with a Qubit dsDNA HS kit (Life Technologies Inc., Gaithersburg, 46 



MD, USA) and DNAs were adjusted to 5 ng/µl with ddH2O. In preparation for Illumina Miseq 47 

sequencing of amplicons of the fungal internal transcribed spacer 2 (ITS2) region, PCR was 48 

performed on all samples using forward and reverse primers designed to contain a 29 (forward) or 49 

25 (reverse) base linker, a 12 base barcode, a 29 (forward) or 34 (reverse) base pad, a 0-8 base 50 

heterogeneity spacer (Fadrosh et al 2014), and either the fungal ITS2 specific 5.8SFun primer or 51 

ITS4Fun primer (Taylor et al 2016) (Table S2). We used Lee Taylor’s ITS2 primers(Taylor et al 52 

2016) because the 5.8SFun and ITS4Fun matched well with all Glomeromycotina lineages when 53 

we matched the primers with the SSU-ITS-LSU alignment (Krüger et al 2012) (Database S1-S2). 54 

The 5.8Fun primer starts at the 2078th base of the SSU-ITS-LSU alignment (Database S1); and the 55 

ITS4Fun primer starts at the 3508th base of the reverse complementary of SSU-ITS-LSU 56 

alignment (Database S2). PCR amplification employed the one-step PCR method in the Gene 57 

Amplification PCR System (BioRad Laboratories Inc.) with initial denaturation at 96°C for 2 min, 58 

followed by 35 cycles of 94°C for 30 s, 58°C for 40 s and 72°C for 2 min, and a final extension at 59 

72°C for 10 min. Each amplification was carried out in a 25 µl reaction mixture containing 10 µl 60 

5PRIME HotMaster Mix (Eppendorf-5Prime, Gaithersburg, MD, USA), 2.5 µl forward primer, 61 

2.5 µl reverse primer, 2 µl template DNA, and 8 µl nuclease-free water. Amplicon libraries were 62 

produced from a pool of three different PCRs. The yields of PCR products were measured using a 63 

Qubit dsDNA HS kit (Life Technologies Inc., Gaithersburg, MD, USA) and 200 ng of DNA from 64 

each of the 312 samples were randomly assigned to four different pools. The pooled products were 65 

purified using AMPure magnetic beads (Beckman Coulter Inc., Brea, CA, USA) following the 66 

manufacturer’s instructions. Libraries were quality checked for concentration and amplicon size 67 

using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) at the Vincent 68 

J. Coates Genomics Sequencing Laboratory (GSL, University of California, Berkeley, CA, USA). 69 



Pyrosequencing was performed on the Illumina Miseq PE300 sequencing platform (Illumina, Inc., 70 

CA, USA) at the GSL. All the raw sequences are deposited in Sequence Read Archive (raw data) 71 

with the accession codes: Bioproject PRJNA412410 Biosamples SAMN07711256 - 72 

SAMN07711567.  73 



 74 

 75 

Fig. S1 Field layout of the six plots (16 x 8 m2) of two sorghum cultivars (RTx430 and BTx642) 76 

in a field (76 x 59 m2). Each plot consisted of ten rows of sorghum, each containing approximately 77 

200 plants spaced 10cm apart. At each sampling time, plants were removed from randomly chosen 78 

locations within one of the central eight rows in each plot. 79 
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Fig. S2 Phylogenetic analysis of AMF ITS2 sequences of operational taxonomic units (OTUs) 81 

obtained in this study combined with named sequences from UNITE and NCBI. Generic names 82 

are applied to clades and the OTUs they contain based on named sequences that share the clade. 83 

Representative sequences of AMF OTUs were deposited in GenBank with the accession codes: 84 

MG008508 - MG008559. The phylogram is rooted with Archaeospora based on (BŁaszkowski et 85 

al 2006). 86 

 87 



 88 

 89 

Fig. S3 The AMF species accumulation curve reaching a plateau of 48.86 ± 1.57 of 52 taxa after 90 

50 samples. 91 
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 93 

 94 

Fig. S4 The frequency of AMF OTUs found in as few as 2 to as many as 296 of all 312 95 

communities sampled. Of the 52 AMF OTUs, only five were found in fewer than 10 samples and 96 

six were found in at least 250 samples. 97 
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 99 

Fig. S5 Comparison of the correlation between AMF community change and temporal distance 100 

when treating the DNA sequence data as counts (A-F) or compositional (G-I) (Gloor et al 2017).  101 

Note that the result of strong succession is seen regardless of the analytical treatment. AMF 102 

datasets (A-C; See Figure 1) rarefied to equal AMF reads (dataset 1), (D-F) rarefied to equal 103 

fungal reads (dataset 2), and (G-I) transformed by the centered log-ratio method (dataset 3). 104 
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Fig. S6 Comparison of change in 17 weekly samples of composition of arbuscular mycorrhizal 106 

fungal communities of soil, rhizosphere and root when treating the DNA sequence data as counts 107 

(A, B) or as compositional (C). AMF datasets (A) rarefied to equal AMF reads (dataset 1) (see 108 

Figure 2A), (B) rarefied to equal fungal reads (dataset 2), and (C) transformed by the centered log-109 

ratio method (dataset 3). As seen in Figure 2A, the strongest correlation is between community 110 

composition and time period, a result returned by all three methods of analysis. PCo: principal 111 

coordinate; PC: principal component. 112 



 113 

 114 

Fig. S7 Comparison of temporal change in initial dominant and initial rare arbuscular mycorrhizal 115 

fungal OTUs when treating the DNA sequence data as counts (A-D) or as compositional (E-F). 116 

AMF datasets (A-B, See Fig. 6) rarefied to equal AMF reads (dataset 1), (C-D) rarefied to equal 117 

fungal reads (dataset 2), and (E-F) transformed by the centered log-ratio method (dataset 3). Note 118 
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that the results are almost identical whether the data are treated as counts or considered to be 119 

compositional.120 



 121 

 122 

Fig. S8 Mantel correlation between temporal distance and Bray-Curtis dissimilarity of arbuscular 123 

mycorrhizal fungal (AMF) communities determined by reducing the sequence similarity used to 124 

delineate OTUs. Sequence similarities: (A) 97%, (B) 96%, (C) 95%, (D) 94%, (E) 93%, (F) 92%, (G) 125 

91%, (H) 90%, (I) 89%, (J) 88%, (K) 87%, (L) 86%, (M) 85%, (N) 84%, (O) 83%, (P) 82%, (Q) 81% and 126 

(R) 80%. To improve visualization, we added a small amount of noise to the temporal distance 127 

and rendered the points transparent. The P value was adjusted by the Bonferroni method, to 128 

avoid the type-I error of multiple testing. Note the sharp drop of association between 129 

community dissimilarity and temporal distance that occurred between the 86% cutoff (L) (slope 130 

= 0.036) and the 85% cutoff (M) (slope = 0.024). The slopes were stable prior to this point, 97% 131 

(A) to 86% (L), (slope = 0.034 -0.036) and after it, 85% (M) to 80% (R) (slope = 0.023 – 0.024). 132 
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 134 

Fig. S9 Using the pattern and abundance of internal transcribed spacer 2 (ITS2) reads to identify possible cases of more than one ITS2 135 

sequence in a single arbuscular mycorrhizal fungal (AMF) operational taxonomic unit (OTU). (A) Strong correlation (all P < 0.001) 136 

among abundance of five Rhizophagus OTUs. (B) Differences in the abundance among five Rhizophagus OTUs. Bars without shared 137 

letters indicate significant differences as determined by Tukey HSD. Based on their strongly correlated (A) and equalized abundance 138 
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(B), three OTUs (118, 161 and 132) were treated as a single species. Other two OTUs (166 and 150) were treated as different species 139 

because their abundances were unequal, despite their similar behavior. 140 

 141 



 142 

Fig. S10 Comparison of succession analyses with 50 or 52 arbuscular mycorrhizal fungal (AMF) 143 

operational taxonomic units (OTUs). No substantial difference in the succession pattern of AMF 144 

communities with three OTUs, i.e., 118, 161, 132 possibly belonging to one species, were (A) 145 

combined (50 OTUs dataset) or (B) not (52 OTUs dataset), as demonstrated by Mantel test between 146 

temporal distance and AMF Bray-Curtis dissimilarity. To improve visualization, we added a small 147 

amount of noise to the temporal distance and rendered the points transparent. 148 
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 149 

Fig. S11 Comparison of principal coordinate (PC) analyses with 50 or 52 arbuscular mycorrhizal 150 

fungal (AMF) operational taxonomic units (OTUs). No substantial difference in the temporal 151 

dynamic of AMF communities with three OTUs, i.e., 118, 161, 132 possibly belonging to one 152 

species, were (A) combined (50 OTUs dataset) or (B) not (52 OTUs dataset), as demonstrated by 153 

correlation between time and the first axis of PC analysis of AMF community  154 
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 155 

Fig. S12 Comparison of richness with 50 or 52 arbuscular mycorrhizal fungal (AMF) operational 156 

taxonomic units (OTUs). No substantial difference in the temporal dynamic of AMF richness 157 

with three OTUs, i.e., 118, 161, 132 possibly belonging to one species, were (A) combined (50 158 

OTUs dataset) or (B) not (52 OTUs dataset), as demonstrated by correlation between time and 159 

the AMF richness. 160 
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 161 

Fig. S13 Comparison of phylogenetic relatedness analyses with 50 or 52 arbuscular mycorrhizal 162 

fungal (AMF) operational taxonomic units (OTUs). No substantial difference in the temporal 163 

dynamic of net relatedness index (NRI) of AMF with three OTUs, i.e., 118, 161, 132 possibly 164 

belonging to one species, were (A) combined (50 OTUs dataset) or (B) not (52 OTUs dataset), as 165 

demonstrated by correlation between time and the AMF NRI. Note both datasets showed 166 

increases of NRI over time resulting in eventual, significant (above the upper purple horizontal 167 

line) underdispersion. 168 
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 169 

Fig. S14 Comparison of temporal distance and turnover and nestedness with 50 (Fig. 5) or 52 170 

arbuscular mycorrhizal fungal (AMF) operational taxonomic units (OTUs). Both patterns of (A) 171 

turnover and (B) nestedness of AMF community over time are detected by Mantel test of the 172 

correlation between temporal distance and turnover and nestedness. To improve visualization, we 173 

added a small amount of noise to the temporal distance and rendered the points transparent. Note 174 

three OTUs, i.e., 118, 161, 132 possibly belonging to one species, were not combined in this 175 

analysis, and the results are not substantially different from those that were combined (Fig. 5). 176 
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 177 

Fig. S15 Comparison of time and abundance analyses with 50 (Fig. 6) or 52 arbuscular mycorrhizal 178 

fungal (AMF) operational taxonomic units (OTUs). Relationships between time and abundance of 179 

initial dominant AMF OTUs, and initial rare AMF OTUs, as explored by linear mixed-effects 180 

models, including random effects of AMF identity. The conditional R2 that can be interpreted as 181 

the variance explained by the mixed effect model was calculated. Note three OTUs, i.e. 118, 161, 182 

132 possibly belonging to one species, were not combined in this analysis, and the results are not 183 

substantially different from those that were combined (Fig. 6) 184 
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 185 

Fig. S16 Permuted beta-dispersion to test the community homogeneity of the arbuscular 186 

mycorrhizal fungal (AMF) communities within every sampling time period (TP) in (A) root, (B) 187 

rhizosphere, and (C) soil. Note the homogeneity of AMF community variances across all TPs in 188 

root, rhizosphere and soil, due to the lack of significant differences among TPs. 189 
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 190 

Fig. S17 Root samples showing a nested pattern of arbuscular mycorrhizal fungal (AMF) 191 

operational taxonomic units (OTUs) occurrence (in red) with time period (TP). Matrix of time × 192 

AMF is sorted to maximize nestedness by nestedtemp function in vegan package in R. The curved 193 

line shows isoclines of prefect nestedness. 194 



 195 

Fig. S18 Rhizosphere samples showing a nested pattern of arbuscular mycorrhizal fungal (AMF) 196 

operational taxonomic units (OTUs) occurrence (in red) with time period (TP). Matrix of time × 197 

AMF is sorted to maximize nestedness by nestedtemp function in vegan package in R. The curved 198 

line shows isoclines of prefect nestedness. 199 



 200 

Fig. S19 Soil samples showing a nested pattern of arbuscular mycorrhizal fungal (AMF) 201 

operational taxonomic units (OTUs) occurrence (in red) with time period (TP). Matrix of time × 202 

AMF is sorted to maximize nestedness by nestedtemp function in vegan package in R. The curved 203 

line shows isoclines of prefect nestedness. 204 

 205 



 206 
Table S1 A list of studies investigating the temporal dynamics of arbuscular mycorrhizal fungal (AMF) communities. Note succession of AMF 

communities often cannot be fully acknowledged due to (i) the lack of intensity sampling, (ii) poor AMF recognition resolution, and (iii) 

confounding influences by history, geography, climate and environments 

Study Ecosystem AMF recognition Sampling time Sample 
type 

Temporal change 

(Bainard 
et al 
2014)** 

Farmed pea, lentil 
and wheat in 
temperate semiarid 
prairie 

454 sequencing of 
AMF SSU 

Four, tri-week 
samples 

Root, 
soil 

AMF richness, community composition, and net 
relatedness index changed by time. 

(Yu et al 
2012) 

Pea grown in 
climate chamber 

454 sequencing of 
fungal ITS 

Vegetative growth, 
flowering, 
senescence 

Root Abundance of a Glomus AMF decreased, a 
Paraglomus AMF increased, and two Glomus 
AMF not changed with time 

(Zeng et 
al 2014) 

Maize farmed in 
subtropical China 

tRFLP Seedling, large ball, 
matured 

Root, 
soil 

AMF diversity and community composition were 
not influenced by sampling time 

(Liu et al 
2016) 

Maize planted in 
temperate China 

tRFLP 6-leaf, 13-leaf, 
kernel dough 

Root AMF community richness and composition 
changed by plant develop stage 

(Bainard 
et al 2012) 

Maize monocropped 
or intercropped by 
tree 

tRFLP Four, monthly 
samples (May-
August) 

Root AMF community composition changed by time 

(Turrini et 
al 2016) 

Crop-maize 
succession 

Sanger sequencing 
of AMF SSU 

April and June Root AMF community composition differed between 
these two seasons 

(Higo et al 
2014, 
Higo et al 
2015) 

Soybean field with 
different winter 
rotation type in 
Japan 

Sanger sequencing 
of AMF LSU 

Five years (the 
flowering time of 
every year) 

Root AMF community composition differed by year 

(Davison 
et al 
2012)* 

Temperate mixed 
forest 

454 sequencing of 
AMF SSU 

Four, monthly 
samples 

Soil AMF was not changed by time in ref. ; AMF 
community composition changed by time weakly, 
as demonstrated by reanalysis of ref. . 



(Voříškov
á et al 
2014)** 

Temperate oak 
woodland 

454 sequencing of 
fungal ITS  

Four, seasonal 
samples 

Soil AMF community composition changed by time, as 
demonstrated by reanalysis of ref. . 

(Helgason 
et al 
2014)* 

Maples (eight spp.) 
in England garden 

tRFLP April, June, October Root Both AMF richness and composition affected by 
the three seasons 

(López-
García et 
al 2014) 

Rosemary seedlings, 
in a mesocosm 
system 

tRFLP Every three months 
in two years 

Root AMF community composition was affected by 
season 

(Varela-
Cervero et 
al 2016) 

Temperate forest, 5 
tree species  

tRFLP Autumn, spring Root 
Soil 

AMF community composition was reported to be 
influenced by season in root, but not in soil.  

(Dumbrell 
et al 2011) 

Temperate 
grassland 

454 sequencing of 
AMF SSU 

11 samplings in 8 
months 

Root AMF community composition differed between 
summer and winter; AMF beta diversity declined 
from Nov. to July. 

(Montero 
Sommerfe
ld et al 
2013)* 

Grasslands in Chile tRFLP August, January Root AMF richness and composition significantly 
different between winter and summer 

(Hazard et 
al 2014) 

Pasture and arable 
field in Ireland 

tRFLP Six samplings in two 
years (Mar, June, 
Oct, Jan, Mar, Oct) 

Root AMF richness and composition changed by season 

(Barnes et 
al 2016b) 

Short rotation 
coppice willow 
plantation in UK 

tRFLP  Four times a year 
(Oct, June, Aug, 
Oct) 

Root The spatial distance-decay pattern of AMF 
community changed by time 

(Barnes et 
al 2016a) 

Miscanthus 
giganteus plantation 
in UK 

tRFLP Four times a year 
(Oct, June, Aug, 
Oct) 

Root AMF richness and community composition 
changed over time  

(Bouffaud 
et al 2017) 

Four long-term 
observatories in 
Europe 

454 sequencing of 
AMF ITS2 

Spring, autumn Soil AMF community composition is weakly affected 
by season 



(Husband 
et al 
2002a) 

Tropical forest 
(seedlings of two 
spp. in two sites) 

Sanger sequencing 
of AMF SSU 

Two years Root AMF community composition changed between 
years 

(Taylor et 
al 2014)* 

Boreal forest Sanger sequencing 
of ITS 

Two years Soil AMF community composition not changed by 
time, as reanalyzed by  

(Husband 
et al 
2002b) 

Tropical forest 
(seedling) 

Sanger sequencing 
of AMF SSU 

Four samplings (3 
month, 1, 2 and 5 yr) 

Root AMF community composition changed by time 

(Helgason 
et al 1999) 

Woodland in UK RFLP July vs Dec. Root AMF community composition show difference 
between seasons 

(Kabir et 
al 1997) 

Corn grown in 
Canada 

Hyphae  Apr, Jun, Aug and 
Oct of two years 

Root 
Soil 

The levels of intra- and extraradical fungal 
colonization always increased from spring to 
silking and decreased thereafter. 

(Kivlin 
and 
Hawkes 
2016) 

Monoculture stands 
of four tree species 
in Costa Rica 

454 sequencing of 
fungal LSU 

Dry and wet season, 
two years 

Soil AMF richness and PD affected by time 

(Daniell et 
al 2001) 

Arable fields around 
North Yorkshire, 
UK 

Sanger sequencing 
of SSU 

Nine sample times 
in 14 months 

Root AMF composition changed by time 

(Bencherif 
et al 2016) 

Algerian steppic 
area 

Spore Four seasons Soil 
Root 

Season affect AMF spore abundance and root 
colonization rate, but not diversity 

(Herrman
n et al 
2016) 

Tropical rubber tree 
plantation 

454 sequencing of 
AMF SSU 

Chronosequence (3, 
6, 16 yr) 

Root AMF community composition differed between 3 
and 16 yr trees in ordination constrained by soil 
variables, but not in unconstrained ordination 

(Krüger et 
al 2017) 

Temperate 
woodland recovered 
from brown-coal 
mining 

454 sequencing of 
AMF LSU 

Spring autumn, 
Chronosequence 
(12, 20, 30, 50 yr) 

Root  AMF richness and community composition not 
affected by the chronosequences, but community 
variation increased along the chronosequences 



(Yu et al 
2017) 

Semiarid grassland 
and woodland in 
China  

Spore Chronosequence (12 
yr v.s. 30yr planted 
Caragana 
microphylla) 

Soil No significant differences in community 
composition and diversity of AM fungi were 
recorded at the dunes with different revegetation 
duration. 

(Liu et al 
2009) 

Temperate tree 
plantation in China 

DGGE Three seasons 
Chronosequence (5, 
13, 20, 42 yrs) 

Root AMF richness was not influenced by the 
chronosequences, but AMF community 
composition was affected by season 

(Sheng et 
al 2017) 

Temperate black 
locust plantations in 
China 

454 sequencing of 
SSU 

Chronosequence 
(11, 23, 35, 46 yr) 

Root 
Soil 

AMF community composition changed by plant 
age. AMF spore density increased with plant age. 
AMF richness not linearly related to plant age 

(Hart et al 
2014) 

Tropical long-lived 
perennial breadfruit 
trees 

454 sequencing of 
AMF SSU 

Chronosequence (5-
6, 20-21, 42-40 yr) 

Root 
Soil 

AMF richness increased with age in root, but not in 
soil; AMF community composition differ between 
young and old trees 

(Guadarra
ma et al 
2014) 

Mexican seasonal 
dry forests 

Spore Chronosequence (<5 
yr, 11-23 yr, >30 yr) 
Wet vs dry season 

Soil AMF diversity was affected by season and age 

(García de 
León et al 
2016b) 

Temperate alvar 
grasslands 

454 sequencing of 
AMF SSU 

Chronosequence 
(young (20 yr), 
intermediate (50 yr), 
mature) 

Soil 
Root 

AMF community composition differed between 
young and mature grasslands, but not between 
intermediate and mature grasslands. 

(Honnay 
et al 2017) 

Grassland of 
Belgium 

454 sequencing of 
SSU 

Chronosequence 
(Forested, 8-11yr, 
12-20yr, ancient) 

Root 
Soil 

AMF richness and community composition were 
affected by successional stages 

(Roy et al 
2017) 

Recultivation after 
open-cast mining in 
Germany 

Illumina 
sequencing of 
AMF LSU 

Chronosequence 
(2013-2015, 2011-
2012, 1964-2006) 

Soil AMF community composition differed among the 
three phases 

(Johnson 
et al 1991) 

Abandoned fields in 
Minnesota 

Spore Chronosequence (12 
samples of 1-60 
years) 

Soil AMF richness was not influenced by the 
chronosequence, but AMF Shannon’s diversity 
index increased 



(Kowalch
uk et al 
2002) 

Dunes in 
Netherlands 

DGGE Chronosequence 
(Vigorous vs 
degenerating stand) 

Root 
Soil 

AMF diversity is lower in the later, degraded 
stages 

(Oba et al 
2004) 

Recovery from 
volcanic deposits in 
Philippines 

Spore Chronosequence 
(Sites with sparse or 
dense vegetation) 

Soil AMF diversity and composition were not 
significantly differed between two sites  

(Pezzani 
et al 2006) 

Two-phase mosaics 
in Mexican 
Chihuahuan Desert 

Spore Chronosequence 
(Pioneer vs late-
successional 
grasses) 

Soil Spore density was higher in late than in early 
successional stages 

(Wu et al 
2007) 

Primary 
successional 
volcanic desert in 
Japan 

Spore Chronosequence 
(Different altitudes) 

Root 
Soil 

AMF spore abundance, richness of morphtypes 
increased with decreasing altitue 

(Oehl et al 
2011) 

Retreat of Glacier in 
Alps 

Trap culture Chronosequence 
(1875–1900, 1940–
1950, 1970–1980 
and 1990–2000) 

Soil AMF diversity increased with succession 

(Sikes et 
al 2012) 

Sand dune in 
Michigan, USA 

Sanger sequencing Chronosequence 
(10- 35 yr, 
235- 295 yr, 450- 
845 yr) 

Soil AMF isolated from early succession were more 
phylogenetically diverse relative to intermediate 
and late succession while late successional fungi 
consistently produced more soil hyphae and 
arbuscules. 

(Gorzelak 
et al 2017) 

Temperate 
rainforests of British 
Columbia 

454 sequencing of 
LSU 

Chronosequence 
Young, mature and 
old) 

Root 
Soil 

No differences in richness along the host 
chronosequence. AMF community composition 
was affected by age weakly. All host age classes 
harboured AMF communities that were 
overdispersed 

(Bennett 
et al 2013) 

Re-analysis of and   Chronosequence 
(Young, old) 
June, July, October 

 Succession affect connectance and H2, sampling 
time affect link/specie of plant-AMF symbiotic 
network 



(Krüger et 
al 2015) 

Dunes in Australia  454 sequencing of 
LSU 

Chronosequence 
(1000 yr, 120 000 
yr, > 2 000 000 yr 
soil) 

Root 
Soil 

AMF richness peaked in the middle age. AMF 
community composition differed among the three 
stages 

(Martínez-
García et 
al 2015) 

New Zealand tRFLP, Sanger 
sequencing and 
454 sequencing of 
SSU 

Chronosequence (15 
yr, 5000 yr, 12 000 
yr, 60 000 – 120 000 
yr) 

Root AMF community composition changed by 
successional stage 

(Koziol 
and Bever 
2016) 

12 plant spp. 
forming a 
successional 
gradient 

   Mycorrhizal responsiveness change with plant 
successional status 

(Senés-
Guerrero 
and 
Schüßler 
2016) 

Potato 
Bolivia, Ecuador and 
Peru 

454 sequencing of 
LSU 

emergence, 
flowering and 
senescence 
105 samples = 3 
sites * 3 stages * 3 
replicates * 4 
altitudes 

Root a surprisingly conserved AMF core-species 
community structure in Andean potatoes, 
regardless of different plant stages and 
environmental factors 

*Re-analyzed by Bahram et al (2015); **Also re-analyzed by this study in Fig. 2. SSU: small subunit; LSU, large subunit; ITS: internal 207 
transcribed spacer; DGGE: Denaturing Gradient Gel Electrophoresis; tRFLP, terminal restriction fragment length polymorphism. 208 
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Table S2 The forward and reverse primers that we constructed to be used for Illumina Miseq PE300 in this study. Note we 
constructed 24 forward and 24 reverse primers that, via a dual-indexing approach, enable us to sequence up to 576 samples in a 
Miseq PE 300 lane. 
Prime
r 
Name LINKER 

BARC
ODE PAD 

SP
AC
ER PRIMER COMPLETE 

5.8SF
un_S_
24_01 

AATGATACGG
CGACCACCGA
GATCTACAC 

CCTA
AACT
ACGG 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT   

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACCCTAAAC
TACGGTCTTTCCCTACACGACGCTCTTCCGATCTAAC
TTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_02 

AATGATACGG
CGACCACCGA
GATCTACAC 

GTGG
TATG
GGAG 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT T 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACGTGGTAT
GGGAGTCTTTCCCTACACGACGCTCTTCCGATCTTA
ACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_03 

AATGATACGG
CGACCACCGA
GATCTACAC 

TGTT
GCGT
TTCT 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT GT 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACTGTTGCG
TTTCTTCTTTCCCTACACGACGCTCTTCCGATCTGTA
ACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_04 

AATGATACGG
CGACCACCGA
GATCTACAC 

ACAG
CCAC
CCAT 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

CG
A 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACACAGCCA
CCCATTCTTTCCCTACACGACGCTCTTCCGATCTCGA
AACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_05 

AATGATACGG
CGACCACCGA
GATCTACAC 

GTTA
CGTG
GTTG 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

AT
GA 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACGTTACGT
GGTTGTCTTTCCCTACACGACGCTCTTCCGATCTATG
AAACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_06 

AATGATACGG
CGACCACCGA
GATCTACAC 

TACC
GGCT
TGCA 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

TG
CG
A 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACTACCGGC
TTGCATCTTTCCCTACACGACGCTCTTCCGATCTTGC
GAAACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_07 

AATGATACGG
CGACCACCGA
GATCTACAC 

TGCA
GATC
CAAC 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

GA
GT
GG 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACTGCAGAT
CCAACTCTTTCCCTACACGACGCTCTTCCGATCTGAG
TGGAACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_08 

AATGATACGG
CGACCACCGA
GATCTACAC 

TTAA
CTGG
AAGC 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

CC
TG
GA
G 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACTTAACTG
GAAGCTCTTTCCCTACACGACGCTCTTCCGATCTCCT
GGAGAACTTTYRRCAAYGGATCWCT 



5.8SF
un_S_
24_09 

AATGATACGG
CGACCACCGA
GATCTACAC 

TACC
GCCT
CGGA 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT   

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACTACCGCC
TCGGATCTTTCCCTACACGACGCTCTTCCGATCTAAC
TTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_10 

AATGATACGG
CGACCACCGA
GATCTACAC 

ACTT
TAAG
GGTG 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT T 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACACTTTAA
GGGTGTCTTTCCCTACACGACGCTCTTCCGATCTTAA
CTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_11 

AATGATACGG
CGACCACCGA
GATCTACAC 

CCAT
CACA
TAGG 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT GT 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACCCATCAC
ATAGGTCTTTCCCTACACGACGCTCTTCCGATCTGTA
ACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_12 

AATGATACGG
CGACCACCGA
GATCTACAC 

GAGC
AACA
TCCT 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

CG
A 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACGAGCAAC
ATCCTTCTTTCCCTACACGACGCTCTTCCGATCTCGA
AACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_13 

AATGATACGG
CGACCACCGA
GATCTACAC 

ATGT
CCGA
CCAA 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

AT
GA 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACATGTCCG
ACCAATCTTTCCCTACACGACGCTCTTCCGATCTATG
AAACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_14 

AATGATACGG
CGACCACCGA
GATCTACAC 

TGTC
TCGC
AAGC 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

TG
CG
A 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACTGTCTCG
CAAGCTCTTTCCCTACACGACGCTCTTCCGATCTTGC
GAAACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_15 

AATGATACGG
CGACCACCGA
GATCTACAC 

CGCG
GTTA
CTAA 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

GA
GT
GG 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACCGCGGTT
ACTAATCTTTCCCTACACGACGCTCTTCCGATCTGAG
TGGAACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_16 

AATGATACGG
CGACCACCGA
GATCTACAC 

GAGA
CTAT
ATGC 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

CC
TG
GA
G 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACGAGACTA
TATGCTCTTTCCCTACACGACGCTCTTCCGATCTCCT
GGAGAACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_17 

AATGATACGG
CGACCACCGA
GATCTACAC 

AGGT
ACGC
AATT 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT   

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACAGGTACG
CAATTTCTTTCCCTACACGACGCTCTTCCGATCTAAC
TTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_18 

AATGATACGG
CGACCACCGA
GATCTACAC 

GAGG
AGTA
AAGC 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT T 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACGAGGAGT
AAAGCTCTTTCCCTACACGACGCTCTTCCGATCTTAA
CTTTYRRCAAYGGATCWCT 



5.8SF
un_S_
24_19 

AATGATACGG
CGACCACCGA
GATCTACAC 

CGTA
AGAT
GCCT 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT GT 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACCGTAAGA
TGCCTTCTTTCCCTACACGACGCTCTTCCGATCTGTA
ACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_20 

AATGATACGG
CGACCACCGA
GATCTACAC 

ATCT
AGTG
GCAA 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

CG
A 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACATCTAGT
GGCAATCTTTCCCTACACGACGCTCTTCCGATCTCG
AAACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_21 

AATGATACGG
CGACCACCGA
GATCTACAC 

CCAG
GGAC
TTCT 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

AT
GA 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACCCAGGGA
CTTCTTCTTTCCCTACACGACGCTCTTCCGATCTATG
AAACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_22 

AATGATACGG
CGACCACCGA
GATCTACAC 

CACC
TTAC
CTTA 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

TG
CG
A 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACCACCTTA
CCTTATCTTTCCCTACACGACGCTCTTCCGATCTTGC
GAAACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_23 

AATGATACGG
CGACCACCGA
GATCTACAC 

ATAG
TTAG
GGCT 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

GA
GT
GG 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACATAGTTA
GGGCTTCTTTCCCTACACGACGCTCTTCCGATCTGA
GTGGAACTTTYRRCAAYGGATCWCT 

5.8SF
un_S_
24_24 

AATGATACGG
CGACCACCGA
GATCTACAC 

GCAC
TTCA
TTTC 

TCTTTCCCTACA
CGACGCTCTTCC
GATCT 

CC
TG
GA
G 

AACTTTYRR
CAAYGGATC
WCT 

AATGATACGGCGACCACCGAGATCTACACGCACTTC
ATTTCTCTTTCCCTACACGACGCTCTTCCGATCTCCT
GGAGAACTTTYRRCAAYGGATCWCT 

ITS4F
un_S_
24_01 

CAAGCAGAAG
ACGGCATACG
AGAT 

CCTA
AACT
ACGG 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT   

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATCCTAAACTACGG
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAG
CCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_02 

CAAGCAGAAG
ACGGCATACG
AGAT 

GTGG
TATG
GGAG 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT G 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATGTGGTATGGGA
GGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTG
AGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_03 

CAAGCAGAAG
ACGGCATACG
AGAT 

TGTT
GCGT
TTCT 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT TC 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATTGTTGCGTTTCT
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTC
AGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_04 

CAAGCAGAAG
ACGGCATACG
AGAT 

ACAG
CCAC
CCAT 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

CT
A 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATACAGCCACCCAT
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCT
AAGCCTCCGCTTATTGATATGCTTAART 



ITS4F
un_S_
24_05 

CAAGCAGAAG
ACGGCATACG
AGAT 

GTTA
CGTG
GTTG 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

GA
TA 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATGTTACGTGGTTG
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGA
TAAGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_06 

CAAGCAGAAG
ACGGCATACG
AGAT 

TACC
GGCT
TGCA 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

AC
TC
A 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATTACCGGCTTGCA
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAC
TCAAGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_07 

CAAGCAGAAG
ACGGCATACG
AGAT 

CACC
TTAC
CTTA 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

TT
CT
CT 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATCACCTTACCTTA
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTT
CTCTAGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_08 

CAAGCAGAAG
ACGGCATACG
AGAT 

TTAA
CTGG
AAGC 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

CA
CT
TC
T 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATTTAACTGGAAGC
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCA
CTTCTAGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_09 

CAAGCAGAAG
ACGGCATACG
AGAT 

TACC
GCCT
CGGA 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT   

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATTACCGCCTCGGA
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAG
CCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_10 

CAAGCAGAAG
ACGGCATACG
AGAT 

ACTT
TAAG
GGTG 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT G 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATACTTTAAGGGTG
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGA
GCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_11 

CAAGCAGAAG
ACGGCATACG
AGAT 

CCAT
CACA
TAGG 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT TC 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATCCATCACATAGG
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTC
AGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_12 

CAAGCAGAAG
ACGGCATACG
AGAT 

GAGC
AACA
TCCT 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

CT
A 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATGAGCAACATCCT
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCT
AAGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_13 

CAAGCAGAAG
ACGGCATACG
AGAT 

ATGT
CCGA
CCAA 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

GA
TA 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATATGTCCGACCAA
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGA
TAAGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_14 

CAAGCAGAAG
ACGGCATACG
AGAT 

TGTC
TCGC
AAGC 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

AC
TC
A 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATTGTCTCGCAAGC
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAC
TCAAGCCTCCGCTTATTGATATGCTTAART 



ITS4F
un_S_
24_15 

CAAGCAGAAG
ACGGCATACG
AGAT 

CGCG
GTTA
CTAA 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

TT
CT
CT 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATCGCGGTTACTAA
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTT
CTCTAGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_16 

CAAGCAGAAG
ACGGCATACG
AGAT 

GAGA
CTAT
ATGC 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

CA
CT
TC
T 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATGAGACTATATGC
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCA
CTTCTAGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_17 

CAAGCAGAAG
ACGGCATACG
AGAT 

AGGT
ACGC
AATT 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT   

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATAGGTACGCAATT
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAG
CCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_18 

CAAGCAGAAG
ACGGCATACG
AGAT 

GAGG
AGTA
AAGC 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT G 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATGAGGAGTAAAG
CGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTG
AGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_19 

CAAGCAGAAG
ACGGCATACG
AGAT 

CGTA
AGAT
GCCT 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT TC 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATCGTAAGATGCCT
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTC
AGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_20 

CAAGCAGAAG
ACGGCATACG
AGAT 

ATCT
AGTG
GCAA 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

CT
A 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATATCTAGTGGCAA
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCT
AAGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_21 

CAAGCAGAAG
ACGGCATACG
AGAT 

CCAG
GGAC
TTCT 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

GA
TA 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATCCAGGGACTTCT
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGA
TAAGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_22 

CAAGCAGAAG
ACGGCATACG
AGAT 

TGCA
GATC
CAAC 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

AC
TC
A 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATTGCAGATCCAAC
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAC
TCAAGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_23 

CAAGCAGAAG
ACGGCATACG
AGAT 

ATAG
TTAG
GGCT 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

TT
CT
CT 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATATAGTTAGGGCT
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTT
CTCTAGCCTCCGCTTATTGATATGCTTAART 

ITS4F
un_S_
24_24 

CAAGCAGAAG
ACGGCATACG
AGAT 

GCAC
TTCA
TTTC 

GTGACTGGAGT
TCAGACGTGTG
CTCTTCCGATCT 

CA
CT
TC
T 

AGCCTCCGC
TTATTGATA
TGCTTAART 

CAAGCAGAAGACGGCATACGAGATGCACTTCATTTC
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCA
CTTCTAGCCTCCGCTTATTGATATGCTTAART 
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Table S3 Molecular identification of arbuscular mycorrhizal fungi in this study  
OTU Coverage E-value Similarity Best NCBI hit 
OTU51_Rhizophagus 99% 2.00E-159 93% JN195441.1 Uncultured_Glomus 
OTU70_Claroideoglomus 99% 0 99% JF439206.1 Glomus_hoi 
OTU166_Rhizophagus 98% 0 98% JN936299.1 Rhizophagus_sp. 
OTU150_Rhizophagus 98% 0 97% JN936299.1 Rhizophagus_sp. 
OTU253_Funneliformis 98% 0 99% AJ919274.1 Glomus_mosseae 
OTU118_Rhizophagus* 98% 4.00E-180 98% KM041773.1 Uncultured_Rhizophagus 
OTU161_Rhizophagus* 98% 1.00E-173 97% KM041753.1 Uncultured_Rhizophagus 
OTU132_Rhizophagus* 98% 0 98% JX999965.1 Glomeromycota_sp. 
OTU133_Glomus 98% 2.00E-172 96% KM208159.1 Uncultured_Glomeromycota 
OTU206_Glomus 99% 2.00E-178 97% GQ388297.1 Uncultured_Glomus 
OTU213_Rhizophagus 98% 0 98% JX999971.1 Glomeromycota_sp. 
OTU935_Rhizophagus 98% 1.00E-156 92% JN195441.1 Uncultured_Glomus 
OTU126_Glomus 98% 5.00E-173 97% KM208171.1 Uncultured_Glomeromycota 
OTU251_Rhizophagus 98% 0 98% GQ205073.1 Glomus_custos 
OTU558_Funneliformis 99% 0 98% HG425925.1 Uncultured_Funneliformis 
OTU323_Glomus 98% 1.00E-174 97% KM208159.1 Uncultured_Glomeromycota 
OTU224_Glomus 99% 7.00E-178 98% GQ388314.1 Uncultured_Glomus 
OTU229_Glomus 98% 2.00E-179 98% KM208159.1 Uncultured_Glomeromycota 
OTU355_Funneliformis 99% 0 98% HF970318.1 Uncultured_Funneliformis 
OTU347_Rhizophagus 98% 0 98% KJ701452.1 Uncultured_Glomus 
OTU476_Glomus 99% 4.00E-180 97% HG425896.1 Uncultured_Glomeraceae 
OTU277_Glomus 99% 7.00E-178 98% GQ388297.1 Uncultured_Glomus 
OTU565_Funneliformis 99% 0 98% U49264.1 Glomus_moessae 
OTU491_Claroideoglomus 99% 0 99% KY927389.1 Claroideoglomus_etunicatum 
OTU400_Glomus 99% 7.00E-178 97% JX276899.1 Uncultured_Glomeromycota 
OTU333_Glomus 99% 0 98% FR693682.1 Uncultured_Glomus 



OTU435_Glomus 99% 0 98% HG425982.1 Uncultured_Glomeraceae 
OTU534_Glomus 98% 0 99% KF836947.1 Glomus_sp. 
OTU944_Rhizophagus 99% 1.00E-154 91% JN195441.1 Uncultured_Glomus 
OTU536_Claroideoglomus 98% 0 97% JQ218217.1 Uncultured_Glomus 
OTU989_Funneliformis 99% 0 98% EF989113.1 Funneliformis_mosseae 
OTU498_Glomus 99% 3.00E-176 98% JX096590.1 Uncultured_Glomeromycota 
OTU579_Glomus 99% 6.00E-166 96% JX096590.1 Uncultured_Glomeromycota 
OTU987_Paraglomus 99% 7.00E-159 88% AB520480.1 Uncultured_fungus 
OTU734_Rhizophagus 97% 0 98% AF185651.1 Glomus_intraradices 
OTU715_Glomus 99% 1.00E-173 97% JX096590.1 Uncultured_Glomeromycota 
OTU574_Glomus 98% 1.00E-174 97% JX096590.1 Uncultured_Glomeromycota 
OTU659_Glomus 98% 5.00E-179 98% JX096614.1 Uncultured_Glomeromycota 
OTU1068_Glomus 98% 1.00E-173 97% HM162343.1 Uncultured_Glomeromycota 
OTU564_Glomus 99% 2.00E-160 95% GU059545.1 Glomus_indicum 
OTU735_Claroideoglomus 99% 0 96% AF004682.1 Glomus_etunicatum 
OTU597_Paraglomus 98% 6.00E-166 91% AB520480.1 Uncultured_fungus 
OTU998_Glomus 99% 8.00E-177 97% GQ388297.1 Uncultured_Glomus 
OTU1184_Rhizophagus 98% 0 99% AF185650.1 Glomus_intraradices 
OTU1065_Claroideoglomus 99% 0 96% KP191488.1 Claroideoglomus_drummondii 
OTU936_Claroideoglomus 100% 0 99% JN685281.1 Uncultured_Glomeromycota 
OTU1197_Claroideoglomus 99% 0 97% KP191486.1 Claroideoglomus_drummondii 
OTU1274_Paraglomus 98% 9.00E-151 85% AB520480.1 Uncultured_fungus 
OTU969_Claroideoglomus 98% 0 97% JX096582.1 Uncultured_Glomeromycota 
OTU1013_Glomeraceae 98% 4.00E-180 96% JN195694.1 Uncultured_Glomus 
OTU975_Paraglomus 99% 0 99% KF849701.1 Uncultured_Paraglomus 
OTU945_Glomus 99% 0 99% KF849595.1 Uncultured_Glomus 



*Note: These three OTUs are combined to avoid the potential more than one rDNA repeat in a single species. 
However, the ecological results and conclusion are not affected (Fig. S10-S15). Representative sequences of AMF 
OTUs were deposited in GenBank with the accession codes: MG008508 - MG008559.  
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Table S4 Arbuscular mycorrhizal fungal (AMF) operational taxonomic units (OTUs) bias occurred in the 213 

first week (TP01) and the last week (TP17), as detected by indicator species analysis. Note the steep 214 

decline of two initially dominant species and the rise of 13 initially rare Rhizophagus and Glomus species 215 

AMF OTUs Preferred Indicator value P 

OTU51_Rhizophagus TP01 0.894 0.001 
OTU70_Claroideoglomus TP01 0.809 0.001 
OTU166_Rhizophagus TP17 0.855 0.001 
OTU118.161.132_Rhizophagus TP17 0.811 0.001 
OTU150_Rhizophagus TP17 0.797 0.001 
OTU213_Rhizophagus TP17 0.75 0.001 
OTU251_Rhizophagus TP17 0.667 0.001 
OTU126_Glomus TP17 0.816 0.001 
OTU133_Glomus TP17 0.788 0.001 
OTU229_Glomus TP17 0.762 0.001 
OTU323_Glomus TP17 0.711 0.001 
OTU476_Glomus TP17 0.474 0.007 
OTU333_Glomus TP17 0.415 0.01 
OTU534_Glomus TP17 0.318 0.05 
OTU400_Glomus TP17 0.311 0.035 
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Table S5 Arbuscular mycorrhizal fungal (AMF) operational taxonomic units (OTUs) bias occurred in the 217 

root, rhizosphere and soil, as detected by indicator species analysis. Note a number of Rhizophagus were 218 

more common and abundant in root, whereas Funneliformis, Claroideoglomus, Paraglomus and Glomus 219 

were more common and abundant in rhizosphere and soil 220 

AMF OTUs Indicator Indicator value P 

OTU118.161.132_Rhizophagus Root 0.399 0.001 
OTU166_Rhizophagus Root 0.391 0.001 
OTU213_Rhizophagus Root 0.37 0.001 
OTU150_Rhizophagus Root 0.363 0.002 
OTU251_Rhizophagus Root 0.236 0.009 
OTU734_Rhizophagus Root 0.054 0.011 
OTU70_Claroideoglomus Rhizosphere 0.419 0.001 
OTU206_Glomus Soil 0.566 0.001 
OTU224_Glomus Soil 0.529 0.001 
OTU277_Glomus Soil 0.434 0.001 
OTU498_Glomus Soil 0.118 0.001 
OTU659_Glomus Soil 0.104 0.001 
OTU998_Glomus Soil 0.104 0.001 
OTU579_Glomus Soil 0.1 0.001 
OTU574_Glomus Soil 0.089 0.001 
OTU564_Glomus Soil 0.085 0.001 
OTU1068_Glomus Soil 0.068 0.001 
OTU715_Glomus Soil 0.062 0.005 
OTU253_Funneliformis Soil 0.52 0.001 
OTU558_Funneliformis Soil 0.277 0.001 
OTU355_Funneliformis Soil 0.261 0.001 
OTU565_Funneliformis Soil 0.222 0.001 
OTU989_Funneliformis Soil 0.103 0.006 
OTU491_Claroideoglomus Soil 0.167 0.001 
OTU536_Claroideoglomus Soil 0.088 0.007 
OTU1065_Claroideoglomus Soil 0.051 0.005 
OTU987_Paraglomus Soil 0.144 0.001 
OTU597_Paraglomus Soil 0.047 0.021 
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Table S6 A list of studies demonstrating the nestedness of arbuscular mycorrhizal fungal (AMF) community. Note nestedness is prevailing in 222 

AMF community, but not seen in some other studies 223 

Study Ecosystem AMF recognition Conclusion 

(Kawahara et 
al 2016) 

Six locations along a pH 
gradient in Japan 

Trap culture, Sanger 
sequencing of LSU 

AMF communities in lower pH soils were subsets of (nested in) 
those in higher pH soil 

(van Geel et 
al 2015) 

Apple trees in 24 orchards in 
Belgium 

454 sequencing of AMF 
SSU 

Degree of nestedness of the AMF communities was related to plant-
available P and N content of the soil, pointing to a progressive loss 
of AMF taxa with increasing fertilization. 

(Vályi et al 
2015) 

Land use intensity gradient 
in Germany 

454 sequencing of AMF 
SSU 

Communities in medium and low land-use sites were subsets of 
high land-use communities 

(Camenzind 
et al 2014) 

Tropical montane forest in 
Ecuador 

454 sequencing of AMF 
LSU 

AMF community is highly nested 

(Verbruggen 
et al 2012) 

40 agricultural soils in the 
Netherlands 

tRFLP of LSU Communities from species-poor fields were found to be subsets of 
those in richer fields 

(Chen et al 
2017a) 

Subtropical forest in China 454 sequencing of AMF 
SSU 

Plant-AMF symbiotic network is highly nested 

(Chagnon et 
al 2012) 

Reanalysis of study in 
hemiboreal forest 

454 sequencing of AMF 
SSU 

Plant-AMF symbiotic network is highly nested 

(Montesinos-
Navarro et al 
2012) 

Semiarid valley Sanger sequencing of 
AMF ITS 

Plant-AMF symbiotic network is highly nested 

(Toju et al 
2014) 

Temperate forest Sequencing of fungal ITS No significant nestedness in plant-AMF symbiotic network 

(Van Geel et 
al 2017a) 

European grasslands 454 sequencing of AMF 
SSU 

Plant-AMF symbiotic network is highly nested 

(Van Geel et 
al 2017b) 

European vineyards 454 sequencing of AMF 
SSU 

AMF community is highly nested 

SSU: small subunit; LSU, large subunit; ITS: internal transcribed spacer; tRFLP, terminal restriction fragment length polymorphism.224 



Table S7 List of studies investigating the phylogenetic relatedness of arbuscular mycorrhizal fungal (AMF) community. Note phylogenetic 225 

underdispersion, overdisperion and stochastic are all seen, with the underdisperion most prevalent 226 

Study Ecosystem AMF 
recognition 

Conclusion 

(Bainard et 
al 2014) 

Farmed pea, lentil and wheat in 
temperate semiarid prairie 

454 sequencing 
of AMF SSU 

AMF communities in general are phylogenetically underdispered, with 
exception of the first soil and second root samplings.  

(Horn et al 
2014) 

Temperate grassland in Germany 454 sequencing 
of AMF LSU 

AMF communities are phylogenetically underdispersed 

(Chen et al 
2017b) 

Temperate semiarid steppe in 
China 

454 sequencing 
of AMF SSU 

AMF communities are phylogenetically underdispered, regardless of 
precipitation and nitrogen 

(Liu et al 
2015a) 

Alpine meadow in China Sanger 
sequencing of 
SSU 

AMF shifted from phylogenetic underdispersion to overdisersion with 
increasing nitrogen fertilization 

(García de 
León et al 
2016a) 

Abandoned quarry in Estonia 454 sequencing 
of AMF SSU 

Phylogenetic community composition of AMF was 
more clustered than global, and European taxon pools 

(Davison et 
al 2016) 

Re-analysis of global dataset of  454 sequencing 
of AMF SSU 

Coexisting fungi were more phylogenetically clustered than the random 
communities defined by a variety of null models.  

(Maherali 
and 
Klironomos 
2012) 

Meadow (50 x 50 m2 with 2601 
samples) in Canada 

Spores AMF communities are generally phylogenetically overdispersed, but a 
subset of AMF communities are phylogenetically underdispersed 

(Maherali 
and 
Klironomos 
2007) 

Greenhouse controlling initial 
AMF phylogenetic diversity  

tRFLP Initial phylogenetic overdispersion of AMF community result in high 
richness 

(Roger et al 
2013) 

Pot cultures inoculated with 
Rhizophafus irregularis isolate 
combinations with different 
phylogenetic relatedness 

qPCR When fungi were closely related, they were able to coexist in almost equal 
proportions  



(Liu et al 
2015b) 

Alpine meadow in China Sanger 
sequencing of 
SSU 

AMF communities were phylogenetically clustered and random in 
unfertilized and fertilized plots, respectively. 

(Mueller 
and 
Bohannan 
2015) 

Grassland in California, USA Sanger 
sequencing of 
SSU 

AMF communities were generally phylogenetically underdispered, but not 
significant in the nitrogen treatment 

(Egan et al 
2017) 

Subalpine grassland, treeline and 
alpine tundra along an elevational 
gradient in Montana, USA 

454 sequencing 
of AMF SSU 

AMF communities being phylogenetically clustered at all elevations 
sampled 

(Saks et al 
2013) 

Mature mixed boreonemoral 
forest in Estonia 

454 sequencing 
of AMF SSU 

AMF communities being frequently phylogenetically clustered compared 
with local and global taxon pools 

(Kivlin et 
al 2011) 

Meta-analysis of 111 published 
studies 

14,961 public 
DNA sequences 

AMF communities being phylogenetically clustered in the majority of 
sites, and only two sites had communities that were phylogenetically 
dispersed 

(Shi et al 
2017) 

Alpine meadow in China  454 sequencing 
of AMF SSU 

AMF community was phylogenetically clustered under warming, but not 
in control, or plots experienced clip 

SSU: small subunit; LSU, large subunit; RFLP: restriction fragment length polymorphism. 227 



Table S8 List of studies comparing arbuscular mycorrhizal fungal (AMF) communities between root and 228 

soil. Note different root and soil AMF are often seen, but not in some studies 229 

Study Ecosystem AMF 
recognition 

Conclusion 

(Hempel et 
al 2007) 

Farmed 
meadow in 
Germany 

Sanger 
sequencing of 
ITS 

Root is abundant in Rhizophagus (Glomus group Ab); 
soil is abundant in Paraglomeraceae and 
Archaeosporaceae 

(Bainard et 
al 2014) 

Farmed pea, 
lentil and 
wheat in 
temperate 
semiarid 
prairie 

454 
sequencing of 
AMF SSU 

Root is abundant in Rhizopahgus and Funneliformis, 
soil is abundant in Paraglomus 

(Wilde et al 
2009) 

Two salt 
marshes in 
Germany 

Both 
morphological 
and molecular 
criteria 

Rhizophagus (Glomus) intraradices is more abundant 
in root, 
Funneliformis (Glomus) geosporum is more abundant 
in soil 

(Yang et al 
2013) 

Alpine 
meadow 
subjected to 
warming and 
grazing in 
China 

Sanger 
sequencing of 
SSU-ITS-
LSU 

One Diversisporales was more abundant in soil, two 
Glomerales were more abundant in root 

(Beauregard 
et al 2013) 

Crop fields in 
Canada 

DGGE Six out of seven ribotypes show difference between 
root and soil 

(Liu et al 
2012) 

Alpine 
Meadow 
subjected to 
fertilization in 
China 

Soil spore 
isolation; 
Root, sanger 
sequencing of 
SSU 

Rhizophagus was the most abundant AMF in root; 
Diverspora was the most abundant AMF in soil spores 

(Hart and 
Reader 
2002) 

Pot 
experiment to 
test the 
colonization 
potential of 
21 AMF 
isolates from 
three families 

Percent of 
colonization 
and fungal 
biomass in 
root; Hyphal 
length in soil 

Glomaceae isolates had high root colonization but low 
soil colonization, Gigasporaceae isolates showed the 
opposite trend whereas Acaulosporaceae isolates had 
low root and soil colonization. 

(Verbruggen 
et al 2012) 

40 
agricultural 
soils in the 
Netherlands 

tRFLP No obvious different between root and soil AMF 
communities 



(Wu et al 
2007) 

Primary 
successional 
volcanic 
desert in 
Japan 

tRFLP AMF community structures detected by spore 
sampling were inconsistent with those from plant 
roots. 

SSU: small subunit; LSU, large subunit; ITS: internal transcribed spacer; tRFLP, terminal restriction 230 

fragment length polymorphism; DGGE: Denaturing Gradient Gel Electrophoresis. 231 
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