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Language models work well in English, but in just about every other lan-

guage, they work much worse. In this dissertation, I use theories and methods from

linguistics and psycholinguistics to contribute to the understanding of how language

models work for different languages and how they work in multilingual settings. As

languages differ greatly in how they encode information, many researchers have asked

to what extent those crosslinguistic differences impact language model performance.

I investigate the role of training data size and tokenizers in those differences. I find
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that crosslinguistic differences which have been described in terms of typological

features can instead be attributed to differences in effective dataset size.

In multilingual settings, language models may use some of the same repre-

sentations to encode information for multiple languages. This allows for efficient

usage of the models’ parameters, while also yielding benefits for the models’ ability

to generalize across and between languages. I use a psycholinguistic experimental

paradigm, crosslinguistic structural priming, to probe these shared representations

and characterize how and when models learn these representations. These results also

contribute to our understanding of how bilingual people use shared representations

to store information about multiple languages.
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Chapter 1

Introduction

This dissertation identifies key issues in natural language processing (NLP)

as applied to a wide variety of languages. The field has long been English-centric,

therefore, it is not well understood how language processing techniques developed

for English generalize to other languages or how they work in multilingual settings.

In this dissertation, I investigate two factors which contribute to crosslingual lan-

guage model development: data and tokenizers. I use an experimental paradigm

from psycholinguistics to characterize crosslingual transfer, which is the underlying

mechanism by which language models efficiently represent multiple languages.

In the introductory chapter, I provide an overview of language models, intro-

ducing the necessary background information without assuming prior knowledge of

language models. I define two distinct areas of research: crosslingual and multilin-

gual NLP. I introduce key questions and issues within those areas. These questions

relate to the broader goal of improving language equity in NLP, such that language
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technologies can work better for more languages.

This is a staple thesis, where most chapters have been published independently

of one another. This introductory chapter and other accompanying text provides

context and necessary background for each chapter. These introductions highlight

the common themes of the chapters and discuss the impact of the works, as well as

developments that have occurred since the papers were originally published.

1.1 Introduction to Language Models

A language model is a probabilistic model of natural language (Jurafsky and

Martin, 2024). While ultra-large Transformer models like the GPT models, e.g GPT-

3, are perhaps the most well-known examples of language models know, the term

language model encompasses n-grams, RNNs and LSTMs, as well as models like

GPT-3. At their core, all of these models take as input a large body of text. They

transform the text into vast matrices of numbers. The resulting model is able to

process strings of natural language and generate text completions according to the

distributional statistics of the training data.

It is helpful to think of language models as a word calculator (Willison, 2023).

These models take a string of natural language, convert it into a series of token ids,

which each have a representation stored in the model (token embeddings). Then,

these models do a large number of matrix multiplication operations over the token

representations. This yields the probability distribution over the model’s entire vo-

cabulary. The model predicts the next token by sampling from that distribution
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utilizing various methods, such as selecting the item with the highest assigned prob-

ability.

The core principles of language models can be introduced with n-gram lan-

guage models, which have existed for nearly 80 years (Shannon, 1948). The mathe-

matical foundations have existed for much longer. Modern Large Language Models

fundamentally operate on the same principles, but are able to better handle much

longer strings and better predict novel strings. An n-gram refers to a sequence of

length n. An n-gram language model predicts a token based on its co-occurrence

frequency with other words. A 2-gram (more frequently called bigram) model uses

sequences of length two, a 3-gram (trigram) models use sequences of three, a 4-gram

uses sequences of four, and so on. There are also unigrams (sequence length of 1),

but if the sequence length is 1, then in practice it is a word frequency list. A bigram

model will predict a word based on the word before it. A trigram model will predict

a word based on the two previous words, et cetera.

N-gram frequencies are calculated using a sliding window of length n. The

number of occurrences of each sequence of length n For example, if n=2, and the

following sentence acts as an example corpus,

The woman sat on the bench by the pond on the end of the path.

The bigram frequencies are:

(The woman) - 1
(woman sat) - 1
(sat on) - 1
(on the) - 2
...
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The first two words in the corpus are (The woman). This bigram is assigned

count of 1. The next two-word sequence is (woman sat). This bigram is also assigned

a count of 1. As the window of length slides along the text, it reaches the bigram

(on the). It is initially assigned a count of 1. As the window keeps sliding, the same

bigram appears again. The count for this bigram is now 2.

To use these counts to predict the next word, we can calculate the conditional

probability of each following token given the previous token in the n-gram window.

In this example, the model is a bigram model, so it predicts the next token based

only on the previous word.

For the following context, the bigram model will predict the next token based

on the word ‘the’.

The book on the ___

There are three bigrams in our example model that begin with ‘the’:

(the bench)
(the pond)
(the path)

We can normalize the frequency of each of these bigrams by the total frequency

of all bigrams that begin with ‘the’, which is three. Each of these bigrams has a count

of 1, so each of their relative frequency is 1
3
. The relative frequency is also equivalent

to the conditional probability of the second token in each bigram given the previous

token, ‘the’. This can be expressed:

P(bench|the) = 0.33
P(pond|the) = 0.33
P(path|the) = 0.33

4



The model can now sample from this probability distribution. Note that there

are only three possible completions, because these are the only word following ‘the’

that the model has seen. The model assigns a probability of 0 to every other word

that could follow ‘the’. A greedy sampling method would mean the model chooses the

next token with the highest relative probability. For this example, the probability of

each continuation is the same. In practice, as training corpora are much larger than

one sample, it is less common that all of the possible completions will be exactly the

same. However, when this situation arises, a model may fall back on another metric

to predict the next token. One of these methods is called backoff. In this method,

the model uses lower-order n-grams to predict the next word. In a bigram model,

the only lower-order n-gram is a unigram language model. For a bigram model,

therefore, backoff may entail using the oveall word probability to predict the next

word. In this case, the model would then select whichever of the three candidates

has a higher word frequency in the training corpus. In a higher-order n-gram, like

a 5-gram, backoff might entail using 4-gram, then trigram, then bigram frequencies.

This is one method language models might use to predict tokens in various contexts.

Models predict the next word in a sequence based on the context. The longer

the context, generally the easier it is to predict the next word. Therefore, increasing

n will often improve the language model’s performance, as the context is richer and

the set of possible answers is more constrained. The basic intuition is reflected in hu-

man language processing. The cloze task (Taylor, 1953), which is extremely similar

to the next-word-prediction task that n-grams are doing, is a task in which human

participants provide sentence completions given a particular context. This experi-
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mental paradigm has been used to study various aspects of language comprehension

and production, as it is correlated with metrics of human language processing like

N400 (Kutas and Hillyard, 1984) and reading time (Smith and Levy, 2011). It has

been shown that more constrained contexts lead to higher-cloze responses. That

is, the more constrained the context, the more participants converge on the same

completion.

For example, in the two sentences below, the predictions for completions for

(1-a) are more constrained than those for (1-b). Many people would probably guess

the completion for (1-a) is ‘muscle’, but there are many plausible completions for

(1-b), e.g. ‘person studying language models is just doing it because of hype’ or ‘trip

to London isn’t complete without seeing London Bridge’.

(1) a. The athlete pulled a ___

b. Peter says that a ___

(Staub et al., 2015)

For the same reasons, higher-order n-gram models are likely to make better predic-

tions than lower-order models. As n increases, however, n-gram models are limited

by data sparsity. An n-gram model will assign a probability of 0 to an unseen n-gram.

The longer the n-grams, the lower each of their frequencies will be and the more n-

grams the model could encounter would be assigned a probability of 0. Therefore,

at a certain point, a larger n may hamper an n-gram model’s ability to predict the

next word. Contemporary language models are much better at handling this limita-

tion than n-gram models, as they better learn patterns that can generalize to new
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contexts.

1.1.1 Tokenization

Language models cannot process raw strings of natural language data. They

operate over tokens, which are discrete chunks that are contained in the language

model’s vocabulary. The vocabulary is determined by the tokenizer, which contains

a list of tokens which can be used to represent tokenized text.

Language models use tokenizers because otherwise they would have to operate

over words. Aside from being a fraught term with no accepted linguistic definition1,

there are several practical reasons why this is not possible. For a language like En-

glish, one operationalization of wordhood is as sequences separated by whitespaces.

However, English has hundreds of thousands of unique word forms. Dictionaries such

as Merriam-Webster and The Oxford English Dictionary each have approximately

half a million unique entries. This does not include inflectional variants, e.g. write,

writes, wrote. Nor does this include variation introduced by capitalization, mis-

spelling, or non-standard orthography. For a language like English, it could require

millions of vocabulary entries to capture every unique whitespace-separated string in

a language model training corpus. Whitespace-separated words are even more prob-

lematic for languages like Chinese, Japanese, and Korean. These languages do not

put spaces between orthographic words. There may not be any spaces in a paragraph

of text. Therefore, defining units of text with whitespace separation is problematic
1There is no widely accepted definition of ‘word’ as a term in Linguistics (Haspelmath, 2023).

See Hall (1999) for an overview of phonological wordhood and Haspelmath (2017) for a discussion
of criteria for defining the morphosyntactic word.
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for multiple reasons.

Tokenizers are trained on a corpus of natural language data – usually a very

small subset of the data that the language model is trained on. Different tokenizers

are trained differently, so I will take Byte-Pair Encoding (BPE) tokenization as an

example, as it is the most widely used type of tokenizer. The tokenizer functions by

breaking down text into the smallest units and then doing binary merges until the

result is a list of items in the tokenizer vocabulary.

To train the tokenizer, first, the text is broken down into each byte that

composes the text. For illustration purposes, we can think of the text as being

broken down into characters. So, if the tokenizer was being trained on the text,

"The cat in the hat.", the first step of tokenizer training would be to break down

the text:

T h e c a t i n t h e h a t .

After this step, each unique character is stored in the tokenizer vocabulary.

Next, the tokenizer identifies the most frequent bigram (sequence of two char-

acters). In this case, it is (h, e). This is the first merge stored by the tokenizer.

The resulting text is:

T he c a t i n t he h a t .

After each merge, the resulting string is stored as a vocabulary item, as merges

can only occur between two items in the tokenizer vocabulary.

The next merge is (a, t), which results in:

T he c at i n t he h at .

8



The tokenizer continues training until it either runs out of slots to fill in its

vocabulary, which is a pre-specified number, or there are no more possible merges.

The tokenizer consists of a list of vocabulary items (tokens), and the list of merges.

The tokenizer stores these merges in the order in which they were learned. Each of

these tokens is assigned a token id, which is determined by the order in which the

token was added to the tokenizer vocabulary. The vocabulary items with lower token

ids were learned earlier in tokenizer training. The number of token ids is equivalent

to the vocabulary size of the tokenizer.

During tokenizer inference, when the tokenizer is used to tokenize a text, the

tokenizer splits the text into characters and then executes the merges in the order

that they were learned. This makes the tokenizer extremely computationally efficient

and fast. In addition to converting strings of natural text into a form the language

model can process, tokenization also compresses text, which is efficient for storage

and for feeding into the language model.

The tokenizer is case sensitive. So the reason that (T, h) or (t, h) was not

the first merge in the example above is because these are not equivalent sequences.

Another important consideration is spaces. In fact, before tokenization, there

is another step called pretokenization. In this step, a string is segmented according

to a set of rules determined by the NLP practioner. The most common pretokeniza-

tion method is whitespace pretokenization, which entails splitting a text along every

whitespace2. This means that when the tokenizer learns merges, it will never learn
2Another common pretokenization step is to split along all punctuation marks. In this example,

the ‘.’ would also be separated, so it would not be possible for the tokenizer to learn a merge (t,
.).
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merges across a whitespace boundary. While some have proposed treating spaces as

their own tokens (Gow-Smith et al., 2022), the most common approach is to mark

the spaces on either the first or last character of a word. So, the text in the example

above would initially be broken down and represented as:

T h e _c a t _i n _t h e _h a t .

As a result, for the string "I like to eat apples and bananas", if the tokenizer

stores the merge (a, n), it would not affect the a and n in ‘and’, because the

characters in that word are represented as _a n d.

The reason for this is that if spaces are ignored, the sequence can be tokenized,

but if you were to decode the tokenization process, it would be impossible to restore

spaces in their original place. To illustrate this point, consider the text "London

Bridge is falling down". If the tokenizer stores each of these words as individual

tokens, the tokenized text would be [London, Bridge, is, falling, down]. Each

of these tokens is represented by a token id. So the tokenizer outputs a list of integers,

e.g. [15377, 26592, 1204, 17038, 792]. If the tokenizer did not represent spaces,

then if the tokenizer were to convert this back into a string of natural text from the

token, the resulting text would be "LondonBridgeisfallingdown".

If spaces are represented in the tokens, e.g. [London, _Bridge, _is, _falling,

_down], then when the string of token ids is decoded, the resulting text is "London

Bridge is falling down." This represents the notion of lossless compression.

The reason that London is not represented as _London is because it is the

first token in a sequence. Some tokenizers mark the beginning and end of sequence

with beginning-of-sequence (BOS) and end-of-sequence (EOS) tokens. EOS and BOS
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tokens can be anything, and are specified before training the tokenizer. As one does

not want the EOS or BOS token to be a string that occurs naturally in the training

data, usually they are strings like "[CLS]" and "[SEP]" or "<|begin_of_text|>" and

"<|end_of_text|>",

As tokenization is the first step in language modeling, it affects almost every

subsequent step; however, it is not that well understood how tokenization design

choices or behaviors affect downstream language model performance. One of the

most frequently considered features of a tokenizer is its compression rates. This

refers to how much natural language text can be represented in a sequence of tokens.

If tokenizer A used five tokens to represent the string "London Bridge is falling

down", while tokenizer B used six tokens, tokenizer A would be said to have better

compression over the given text.

Compression is important, as the more compression a tokenizer offers, the

more information is in each sequence. During training, language models see sequences

of a fixed length at every step. So if the maximum sequence length of a model is 512

tokens, each sequence that the model sees during training will be 512 tokens long.

For tokenizer A, which offers a higher compression rate, 512 tokens will represent

more text than tokenizer B.

1.1.2 Training

Language model training – which is most often called pre-training – seeks

to tune the models weights or parameters, which are the values used to compute

updated representations and ultimately predict the next word. During pre-training,
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the model is presented with a sequence. The model uses its current state to predict

each token in the text as a function of the tokens before it in that sequence. For

the sequence "London Bridge is falling down", therefore, the language model may

predict "Bridge" given "London", then "is" given "London Bridge", and so on. The

model sees several sequences (together, called a batch). The accuracy of the model’s

predictions is rated according its accuracy. After each batch, the model updates its

parameters according to the loss function, cross-entropy loss. Cross-entropy loss (Eq.

1.1) is the negative sum over the products of the true token probabilities (pi) and

the log of the predicted token probabilities (log(qi)). This captures the difference

between the true and predicted probabilities.

−
∑
i

pi log(qi) (1.1)

The cross-entropy loss is used to determine the model updates. Higher loss

means that the model is making worse predictions, and the model will make more

significant updates to its parameters. If the loss is lower, then the model is making

better predictions, therefore it does not need to make such significant updates.

During model training, perplexity is used to measure model performance.

Perplexity is defined as the exponent of cross-entropy loss (Eq. 1.2). As with loss,

lower perplexity corresponds to better predictions, and thus better performance.

During training, perplexity is calculated over a held-out test test, which is usually a

relatively small sample of text that is representative of the training data. Perplexity

of 1 corresponds to perfect prediction. In practice, it is practically impossible to

achieve perfect loss on a sufficiently large and diverse dataset, otherwise the model
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would likely be over-fit and would generalize very poorly to new data.

−b
1
N

∑N
i pi log(qi) (1.2)

Over the course of training, perplexity goes down. At some point, the model

converges, and perplexity will plateau. Training should be stopped after the model

converges and before the model becomes over-trained.

Returning to the topic of tokenization, if the model sees more information

during each sequence, and in each batch as a result, for the same number of training

updates, the model will have seen more text. This would likely lead to better per-

formance (Petrov et al., 2023), as seeing more text often leads to a better language

model. While many of the details remain unclear, it has been shown that choice of

tokenizer can have a significant impact on model performance (Bostrom and Durrett,

2020; Ali et al., 2024, inter alia).

Contemporary large language models are trained on extremely large corpora

of unlabeled data. One of the most-used datasets is the Colossal Clean Crawled

Corpus (C4; Raffel et al., 2020), which is a dataset of text scraped from the web.

These datasets tend to be very noisy, usually due to artifacts of the text being taken

from the internet. In an analysis of C4, Elazar et al. (2024) found that there is a lot

of repetition in these datasets. Some of the most frequent 10-grams in the corpus

were ‘??????????’ and ‘..........’, which occur 9 and 7.2 million times in the corpus,

respectively.

Some other popular open datasets include the Pile (Gao et al., 2020), RedPa-

jama (Together Computer, 2023), and Dolma (Soldaini et al., 2024) also use C4 or
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similar datasets, but also include data from academic articles, code, subtitles from

films or YouTube videos, and books.

This first phase of training, which is often called pre-training, creates a base

model. Base models are exclusively trained for next-word prediction based on the

training corpus as described above. However, most commercially deployed models

are not base models, but have additional training steps, called post-training. The

most common type of post-training procedure is supervised fine-tuning (SFT). "Su-

pervised" contrasts with the pre-training phase, which is considered unsupervised.

Unsupervised refers to unlabelled data, i.e. raw text data without any annota-

tions. SFT usually entails predicting specific labels, answers, or outputs given a

specific prompt or question. Many commercial LLMs are "instruction-tuned", i.e.

fine-tuned to follow instructions. This is what makes them useful for chatbot and as-

sistant applications. Sometimes this kind of tuning is done with RLHF, which stands

for reinforcement learning through human feedback3. In this procedure, model out-

puts are rated by human annotators and then the model is updated in a way that

optimizes the model to human preferences.

In this dissertation, I study pre-trained-only models. I do not test or train

any models that are fine-tuned or have any post-training. This is the case for several

reasons. First, post-training data are scarce for lower-resource languages. A multi-

lingual dataset, called the Aya dataset (Singh et al., 2024), was released recently and

contains human-annotated prompt-response pairs for 65 languages. This represents

the total breadth of post-training datasets available for lower-resource languages, but
3Also, RLAIF, reinforcement learning through AI feedback, where models receive feedback from

other models during this tuning step.
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this datasets represents many fewer languages than are represented in some of the

studies in this dissertation. Therefore, limiting these studies to the languages for

which there are post-training datasets would further limit the number of languages

represented in these studies. Second, fine-tuning is computationally expensive. The

studies in this dissertation were already constrained by academic compute budgets.

Beyond these practical limitations, using post-trained models does not allow

researchers to reach as strong of inferences as pre-trained-only models for certain

research questions. As the studies in this dissertation focus on the role of pre-training

data and tokenization, further fine-tuning models would only obscure the influence of

these factors. For many questions relating to Linguistics, Psychology, and Cognitive

Science, which are likely to relate to learning from distributional statistics, post-

trained models are inappropriate, as the models are no longer learning exclusively

from the training corpus, but are further updated using explicit feedback. This is not

to say that all questions in these fields can only be addressed with pre-trained-only

models.

1.1.3 Architectures

Thus far, I have introduced the key concepts in terms of n-gram language

models. These are very rudimentary compared to the state-of-the-art models that

dominate the field now. Architecturally, n-gram language models are essentially

look-up tables of n-gram frequencies in combination with sampling and smoothing

functions. In some sense, contemporary models can be considered to be 2048-grams

or 4096-grams, as many language models have context windows of a few thousand

15



tokens, with 2048 and 4096 being common sizes. As the n-gram lengths are very

long, and therefore most possible sequences of 2048 or 4096 tokens will never be seen

by the model or will have extremely low probabilities, contemporary models have

more complex ways of interpolating across much longer sequences.

The most popular model architecture in the field is the Transformer archi-

tecture. Here, architecture refers to the design features of a deep neural network,

including size (number of parameters), type of attention mechanisms, and other hy-

perparameters. Transformer models differ from their predecessors in a few key ways,

namely in the attention mechanism (Vaswani et al., 2017), which varies the influence

of each token on the processing of every other token. This architectural feature has

led to some of the most rapid advances in NLP. First, I will provide an overview of

the major components of the Transformer, which are also visualized in Figure 1.1.
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input

The ring was loud

w⃗1 w⃗2 w⃗3 w⃗4 word embedding
+ + + +
p⃗1 p⃗2 p⃗3 p⃗4 position embedding

z⃗1 z⃗2 z⃗3 z⃗4 updated word embedding

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

LayerNorm

attention matrix

LayerNorm

MLP

m⃗1 m⃗2 m⃗3 m⃗4 contextualized word embedding

repeat

Transformer Block

LayerNorm

softmax

p⃗1 p⃗2 p⃗3 p⃗4 logits

Figure 1.1: Simplified Transformer architecture, based on GPT-2.
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The input to a text-only transformer model is a string of language, for example

"the ring was loud". The first step, as discussed above is tokenization. For the sake of

simplicity, we can imagine the tokenizer tokenizes this string into four tokens: ‘the’,

‘ring’, ‘was’, ‘loud’. The model has a static representation of these tokens, which

are called token or word embeddings. This is a vector of numbers, which is used

to represent the distributional meaning of a token in the model’s embedding space.

Then the token embedding is updated with positional information, which encodes

the order of each token in the string. This updated representation is then passed

through the transformer blocks. Each Transformer block consists primarily of the

attention mechanism and an MLP layer. There are also some additional steps, such

as LayerNorm, which normalizes the activations. There are usually many transformer

blocks stacked on top of each other. GPT-2 has 12 layers, meaning 12 Transformer

blocks stacked on each other. This means that each updated token representation is

passed through 12 architecturally equivalent blocks, but which have different weights.

Then at the end there is a final norming layer and then the representations are

passed through a softmax function. The input to the softmax is the contextualized

token representations, and the output of the softmax is a probability distribution

over all the tokens in the model vocabulary. This then allows for the model to use

some sampling strategy to predict the next token, e.g. picking the token with the

highest probability. These probabilities can also be recorded and studied, as I do in

several of the studies in this dissertation.
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Token Embeddings

During model training, the token embeddings are part of the learned param-

eters of the models. Token embeddings can be studied in their own right. From

the embeddings, researchers have shown that similar words are represented more

closely in embedding space and less similar words are represented more distantly in

embedding space (Mikolov, 2013b, inter alia). Additionally, there are systematic

relationships between word embeddings. Mikolov (2013a) found that after dimen-

sionality reduction with PCA, there were predictable relationships between words

with similar relationships, e.g. capital cities and their respective countries (Fig.

1.2).

Figure 1.2: (Mikolov, 2013a)

This is true of static embeddings, that is embeddings for words or tokens
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irrespective of their contexts. There are also contextualized embeddings, which are

the model’s representation of a word or token in the context of a specific sentence.

Because each token has a specific number of parameters that the model must

learn, equal to the embedding dimensions, e.g. 768, there is a computational limit

on the number of vocabulary items in the tokenizer. The number of embedding

parameters, therefore scales by a factor of the embedding dimension. The more

parameters in the model, the more costly and slow both training and inference are

for the model.

Attention

The attention mechanism in a GPT-2-style Transformer model weights the in-

formation from each token according to how relevant or informative it is for processing

the other tokens. There are broadly two kinds of Transformer models: autoregressive

and bidirectional models. These models differ primarily in their attention mecha-

nism. Most contemporary language models are autoregressive, including GPT-2. In

autoregressive models, also called causal and unidirectional models, tokens can only

attend to tokens earlier in the context. So the first token in a sequence can only

attend to itself, the second token can only attend to itself and the previous token,

and so on. This is illustrated in Figure 1.3 (left), where grayed out cells in the ma-

trix represent tokens that cannot be attended to. In bidirectional models, also called

masked models, however, all tokens can attend to all other tokens in a sequence (Fig.

1.3; right).

As a result, autoregressive and bidirectional models are trained and evaluated
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a⃗4,1 a⃗4,2 a⃗4,3 a⃗4,4

a⃗3,1 a⃗3,2 a⃗3,3 a⃗3,4

a⃗2,1 a⃗2,2 a⃗2,3 a⃗2,4

a⃗1,1 a⃗1,2 a⃗1,3 a⃗1,4

a⃗4,1 a⃗4,2 a⃗4,3 a⃗4,4

a⃗3,1 a⃗3,2 a⃗3,3 a⃗3,4

a⃗2,1 a⃗2,2 a⃗2,3 a⃗2,4

a⃗1,1 a⃗1,2 a⃗1,3 a⃗1,4

Figure 1.3: Autoregressive (left) vs. Bidirectional (right) Attention. Each column
represents an input token and each row represents the tokens each input token is
appending to. Each token has an index, which represent its token position, and the
position of the token it is attending to. Grayed out tokens are not attended to.

differently. Both models are trained to predict the next token, however autoregressive

models predict the next token in a sentence, but bidirectional models are fed an entire

sequence with a target token masked out. The model then uses the whole context

– preceding and following – to predict the hidden token. These models also make

predictions differently. Autoregressive models function well for text generation, by

recursively predicting the next token. Given a prompt, the model will predict the

next token, then add that token into the context and predict the following token.

These model types can also be evaluated differently. Both models can be used

to calculate the probability of a sequence, but other tasks are specific to each types.

This point will be discussed in depth in the Section 2.1.5 below.

Open vs. Closed Models In this dissertation, I primarily use open models, with

the exception of reporting published evaluations and results. I focus on models to

which I have direct access. Some of the most popular models, such at GPT-4 and

Claude are accessed exclusively through chat interfaces or Application programming

interfaces (APIs). This means that the developer hosts the models and controls
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access to the models. As a result, researchers do not have direct access to these

models. This is important for at least two reasons. The first reason is replicability.

Developers, such as OpenAI, may deprecate a model and no longer provide access

to a model to researchers, potentially without notice. GPT-3 is no longer available.

Now all work done on GPT-3 is no longer replicable.

The second is that if researchers do not have direct access to the models, it

is impossible to verify what the models are. The chat interfaces with these models

have built-in prompts (called system prompts), code compilers and other auxiliary

tools and functions. But most of the leading developers do not share what additional

features have been added to the models. Therefore, it is impossible to say whether

users are interfacing with a language model, or with an LLM-equipped software

(Trott, 2024b).

One of the barriers between the user and the model is the system prompt. This

is an additional prompt used to give instructions to the model about how to respond

given the prompt. This can include things like "You are a helpful AI assistant...". But

it can also include instructions about tone, style, or format. According to a blog post,

OpenAI’s newest model o1 has a built-in prompting strategy called chain-of-thought

(OpenAI, 2024). Chain-of-thought is a prompting method. Simply by adding the

instructions "think step by step", Wei et al. (2022) found that models produced

much better outputs, especially for tasks involving reasoning. By simply adding four

words to the prompt, they found as much as a 39% increase in performance. The

wording of a language model prompt can drastically impact performance, e.g. Lu et

al. (2022). For o1, the model does this reasoning step, which is not visible to the
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user. Then an output is generated based on the "thinking" step. This means that

it is impossible to evaluate o1 without chain-of-thought prompting. These built-in

prompts affect model performance, but the user cannot know how much of the model

performance is attributable to the model and how much to the prompt (or the specific

combination of the two). As a result, evaluating models with system prompts should

be understood to be the evaluation of a model-prompt combination. This limits the

claims that can be made after evaluating such models.

1.1.4 Language Model Evaluation

An essential part of language model development is to evaluate them in order

to measure their performance. One of the primary ways in which language models

are evaluated is through benchmarks. Benchmarks are fixed evaluations for language

models. Many benchmarks are static datasets with prompts and desired outputs.

Models are evaluated on how often they produce the desired output. There are

also human-preference benchmarks, such as Chatbot Arena (Chiang et al., 2024), in

which human raters compare model outputs. Here I focus on static benchmarks.

I will not focus on application benchmarks, either, including chat, medicine,

and legal applications. This falls outside the scope of this dissertation. Finally, I will

not discuss benchmarking where LLMs are used to evaluate model outputs. This

approach is called LLM-as-judge. There are several limitations to this approach,

including position bias, verbosity bias, and bias towards the model’s own genera-

tions (Zheng et al., 2023). Position bias refers to the observed effect of the order of

the compared generations. Models tend to prefer the first generation that is being
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compared. Seecond, models tend to rate longer generations as higher-quality, even

if the additional material is repetitive or incorrect. Finally, models rate their own

generations higher, compared to other models. For these reasons, I will not discuss

benchmarks that rely on LLMs as judges.

I will first provide five examples of common benchmarks.

Named Entity Recognition (NER). NER is a task where models identify spe-

cific named entities, such as people, organizations, or locations:

(2) a. Mr. [Robinson]PER smiled at the teacher.

b. The [FDA]ORG announced time travel pills tomorrow.

c. I will arise and go now, and go to [Innisfree]LOC

(Mayhew et al., 2024)

In this task, each word is labelled as either PER, ORG, LOC, or none of the above.

Performance is mesured with F1 score. This task is useful for data annotation, by

extracting entities from documents. It also indicates the model’s ability to correctly

identify important text entities, which is an important component of downstream

tasks such as information retrieval.

Grammaticality Judgments with Linguistic Minimal Pairs The represen-

tations of grammatical information and the model’s ability to generate grammatical

sentences can be tested by comparing the probabilities that the model assigns to each

sentence in a minimal pair (Linzen et al., 2016). This kind of evaluation is done by

comparing the probability of two sentences which differ in only one aspect, making
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one grammatical and one ungrammatical, e.g. (3). The model is considered to make

the correct judgment if the model assigns a higher probability to the grammatical

sentence than to the ungrammatical sentence.

(3) a. The key is on the table.

b. *The key are on the table.

(Linzen et al., 2016)

This principle was used to create evaluation datasets like Corpus of Linguistic Ac-

ceptability (CoLA; Warstadt et al., 2019), Benchmark of Linguistic Minimal Pairs for

English (BLiMP; Warstadt et al., 2020), and SyntaxGym. All of these datasets exclu-

sively evaluate syntactic knowledge for English. Since their release, there have been

equivalent datasets released in other languages. There are Italian, Russian, Hungar-

ian, and Norwegian CoLA-style datasets (Trotta et al., 2021; Mikhailov et al., 2022;

Ligeti-Nagy et al., 2024; Jentoft and Samuel, 2023); Dutch, Japanese, and Chinese

BLiMP-style datasets (Suijkerbuijk et al., 2024; Someya and Oseki, 2023; Xiang et

al., 2021; Song et al., 2022; Liu et al., 2024) ; and Spanish SyntaxGym (Pérez-Mayos

et al., 2021). Additionally, there are some smaller, more targeted syntactic eval-

uation datasets for additional languages, including Basque, Hindi, Swahili, French,

German, and Hebrew (Mueller et al., 2020; Kryvosheieva and Levy, 2024). While the

language coverage of such benchmarks is growing, there are many high-resource lan-

guages that still do not have syntactic knowledge evaluations. Additionally, none of

the languages mentioned here have datasets as large or comprehensive as the English

datasets.
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Natural Language Inference (NLI). The Natural Language Inference (NLI)

task evaluates understanding of entailment and contradiction, which is an essential

part of language understanding and language processing (Bowman et al., 2015). It

is also thought to evaluate logical reasoning (MacCartney and Manning, 2008). In

this task, the model is presented with two propositions. Then the model predicts

one of three relationship labels: entailment, contraction, and neutral. Example (4),

provides examples from the Stanford Natural Language Inference (SNLI) benchmark.
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Proposition 1 Proposition 2 Relationship
a. An older and younger man

smiling.
Two men are smiling and
laughing at the cats playing
on the floor.

neutral

b. A man inspects the uniform
of a figure in some East
Asian country.

The man is sleeping. contradiction

c. A soccer game with multiple
males playing.

Some men are playing a
sport.

entailment

(4)

There is also a multilingual NLI benchmark called XNLI (Conneau et al.,

2018), which covers 15 languages.

Question Answering (QA). Question Answering (QA) benchmarks seek to eval-

uate generalized language understanding in combination with world knowledge and

commonsense reasoning. Some QA benchmarks are open-ended, meaning a language

model is evaluated by prompting it to generate the answer. One example of an

open-ended QA benchmark is the Stanford Question Answering Dataset (SQuAD;

Rajpurkar et al., 2016). Multiple choice question-answering (MCQA) tasks are more

common. Some examples include Hellaswag (Zellers et al., 2019), PIQA (Bisk et al.,

2020), and MMLU (Hendrycks et al., 2021a). Such MCQA tasks are often adopted

as part of a small set of benchmarks that are frequently used to compare general-

purpose state-of-the-art models. An example from MMLU is shown in (5) below:

(5) What is the embryological origin of the hyoid bone?

(A) The first pharyngeal arch
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(B) The first and second pharyngeal arches

(C) The second pharyngeal arch

(D) The second and third pharyngeal arches

(Answer: D)

As models improve and reach ceiling performance on these tasks, they are replaced

with harder versions. MMLU, for instance has been superceded by MMLU-Pro

(Wang et al., 2024c), MMLU-SR (Wang et al., 2024b), and GPQA (Rein et al.,

2024).

Crosslingual version of these datasets exist in some cases. There are sev-

eral translated SQuAD benchmarks for a variety of languages, including French

(d’Hoffschmidt et al., 2020), Russian (Efimov et al., 2020), Bengali (Tahsin May-

eesha et al., 2021), German (Möller et al., 2021), and Persian (Abadani et al., 2021).

Belebele is a parallel MCQA benchmark, released for 122 languages (Bandarkar et

al., 2023).

Reasoning/Math. Another type of evaluation is mathematical reasoning tasks,

such as GSM8k (Cobbe et al., 2021). This benchmark contains mathematical word

problems, that require multi-step reasoning in order to solve them. An example

of a question from GSM8k is shown below in (6). This is a task that many NLP

practitioners believe is important for characterizing general-purpose models.

(6) Problem: Tina buys 3 12-packs of soda for a party. Including Tina, 6 people

are at the party. Half of the people at the party have 3 sodas each, 2 of the

28



people have 4, and 1 person has 4. How many sodas are left over when the

party is over?

Solution: Tina buys 3 12-packs of soda, for 3*12=36 sodas

6 people attend the party, so half of them is 6/2=3 people

Each of those people drinks 3 sodas, so they drink 3*3=9 sodas

Two people drink 4 sodas, which means they drink 2*4=8 sodas

With one person drinking 5, that brings the total to 5+9+8+3=25 sodas

As Tina started off with 36 sodas, that means there are 36-25=11 sodas left

Final Answer: 11

Challenges in Language Model Evaluation

This list of five evaluation tasks is not exhaustive, but it is sufficiently rep-

resentative to discuss the challenges faced by researchers seeking to evaluate and

compare language models. Here I will introduce some of the challenges with LLM

evaluation.

The fallacy of one-size-fits-all evaluation. With the increased pursuit of "general-

purpose" AI models (Varoquaux et al., 2024), many people have adopted a one-

model-to-rule-them-all approach to LLM development. Language model evaluation

is conducted in a way that relies on a handful of tasks, which are used to determine

the "best" language model. This leaves only a very narrow view of what makes a

good language model. One popular way of comparing language models is with a small

number of benchmarks that make up leaderboards like Open LLM Leaderboard4.
4https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
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The Open LLM Leaderboard is currently comprised of Instruction-Following

Evaluation (IFEval; Zeng et al., 2024), Big Bench Hard (BBH; Suzgun et al., 2023),

Math Lvl 5 (Hendrycks et al., 2021b), Graduate-Level Google-Proof Q&A Bench-

mark (GPQA; Rein et al., 2024), Multistep Soft Reasoning (MUSR; Sprague et al.,

2024, and MMLU-Pro (Wang et al., 2024c). IFEval evaluates how well a model

follows instructions; BBHU, MathEval, and MUSR all evaluate different types of

reasoning and problem solving; and GPQA and MMLU-Pro are QA benchmarks

that evaluate commonsense and world knowledge. Therefore, the "best" language

models are determined by performance along these dimensions.

This is problematic, as this does not reflect documented uses of LLMs. In an

analysis of 1 million user interactions with ChatGPT, Longpre et al. (2024) showed

that the majority of user requests were requests for composition – either creative,

code, or academic composition. Reasoning and world-knowledge performance are

not necessarily predictive of text-generation and composition tasks, including para-

phrasing, summarization, and translation. It is important to evaluate models in the

context of the desired applications.

Construct validity. Construct validity was proposed in the context of psycholog-

ical tests (Cronbach and Meehl, 1955) to describe the extent to which an evaluation

measures what is intending to be measured. The frameworks developed for psy-

chological research are helpful in identifying challenges to validity in language model

research. Poor construct validity is widespread in language model research, which is a

result of mismatched theory of a phenomenon and the operationalization of measure-

ment of a particular behavior (Jacobs and Wallach, 2021; Saxon et al., 2024). It has
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been shown that when the evaluation metric mirrors the training objective, model

performance may be artificially inflated (Saphra et al., 2024). These benchmarks,

therefore, may not be accurately showing the potential failure modes of the models

in real-world applications. This is compounded, as practitioners seek evaluation of

general capabilities, disconnected from concrete applications.

Robustness. There is a significant amount of evidence to show that models are

extremely sensitive to context, such that minor prompt variations and formatting

can significantly change model performance (Biderman et al., 2024). Syntactic eval-

uations with benchmarks like BLiMP are sensitive to surrounding context, such that

model judgments are more variable when minimal pairs are surrounded by text con-

taining relevant content Sinha et al. (2023). Additionally, the evaluation method

significantly impacts performance, even if the evaluation data remains constant. Hu

and Levy (2023) showed that performance on minimal pair grammaticality judgments

is higher when sampling the sentence probabilities, as opposed to using prompting

methods to elicit metalinguistic judgements. This is likely due to the increased task

demands of the latter method, which are the auxiliary challenges associated with a

particular task (Hu and Frank, 2024).

Goodhart’s Law. This law states "when a measure becomes a target, it ceases

to be a good measure5". Some model evaluations have a very short lifespan (Saxon

et al., 2024). If a large industrial developer targets a benchmark, the developer may

optimize language model training in order to "beat" a task. Many consider this
5Original quote: "Any observed statistical regularity will tend to collapse once pressure is placed

upon it for control purposes." (Goodhart, 1975)
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to render the task useless. I argue that benchmarks are not useless in this case,

because they still may be used to characterize classes of models. Only state-of-the-

art or near-state-of-the-art models may beat a certain benchmark, therefore, it may

still be used to identify near-state-of-the-art models. One example of this type of

benchmark is GPQA (Rein et al., 2024). When the dataset was initially released, the

best model the authors tested achieved only somewhat above chance performance

(GPT-4; 36%), but a few days before the dataset was presented at a conference

for the first time, OpenAI announced that their o1 model achieved 78% accuracy,

where domain-expert human accuracy was between 65-80%6. It is not the case that

language model technologies advanced that significantly between the release and

presentation of the dataset (approximately one year), but instead this is evidence

that OpenAI targeted the kinds of capabilities being evaluated by GPQA, resulting

in drastic improvements in performance. This is a clear example of the dangers in

placing too much value in any individual static benchmark.

Reproducibility As in other scientific fields, the threat of a replication crisis looms

over NLP. Because the pace of research is very fast in NLP and reviewers prioritize

novelty7, most researchers are not incentivized to replicate prior work. As a result,

the vast majority of studies and experimental procedures have never been replicated.

This is also due to the lack of reproducibility and transparency (e.g. not releasing

experimental code) due to high financial risk, competition, and high cost of exper-
6See:https://www.youtube.com/watch?v=ZANbujPTvOY&t=29s&ab_channel=

ConferenceonLanguageModeling
7See reviewing guidelines from ACL and NeurIPS: https://2023.aclweb.org/

blog/review-acl23/ and https://neurips.cc/Conferences/2020/PaperInformation/
ReviewerGuidelines.
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imentation (both computational and monetary). Potential future replication crises

may be driven by the fragility of benchmarks as discussed above. This is compounded

by the prevalence of the use of closed, proprietary models in academic research. Es-

pecially for models, which are available only through APIs, research may become

suddenly unreplicable if a model is deprecated. The most notable case of this is

the recent deprecation of GPT-3, meaning that thousands of studies are no longer

replicable (Biderman et al., 2024).

Other methodological concerns. Finally, there are methodological practices

that threaten the reliability of language model evaluations.

Many benchmarks – even widely adopted ones – are of dubious quality, upon

close inspection. Reference summaries for standard summarization benchmarks, e.g.

XSUM, are of very poor quality (Bommasani et al., 2022). An analysis of MMLU,

showed that many questions contained errors or were unclear. In the Virology subset,

Gema et al. (2024) found that 57% of the questions had errors. Both the Virology

and College Chemistry subsets had very high rates of ground truth errors, and the

Professional Law and Formal Logic subsets each had high numbers of questions with

multiple correct answers8.

Another concerning methodological practice in model evaluation is the lack of

statistical testing. Despite the fact that common evaluation tools like the LM Eval-

uation Harness provide standard error (Biderman et al., 2024) and robust evidence

that statistical testing is important (Ulmer et al., 2022), many researchers still do
8Additionally, some exploration of the datasets have revealed very high proportions of low-quality

and incorrect examples in datasets like Hellaswag. One blog post reports as much as 36% of the
Hellaswag validation set contains errors (Chen, 2024).
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not use statistical testing (Miller, 2024).

Contamination is also a big problem. Contamination refers to the case when

the evaluation benchmark is contained within the model training data. It is im-

possible for researchers to directly test contamination for closed models, because the

developers do not release information about the data they train on. There is growing

indirect evidence for the severity of benchmark contamination in LLM training data.

First Deng et al. (2024) showed that OpenAI and Anthropic models show high accu-

racy on word-for-word completion of common benchmark tasks. GPT-3.5-turbo, for

instance, could predict the exact wording of masked answer choices for an MMLU

test set with 57% accuracy.

Models also showed sensitivity to the order in which multiple choice question

answers were provided. Gupta et al. (2024) showed that by shuffling the answer

choices in MMLU, performance for some models dropped as much as 42.9%. This ef-

fect is consistent with answer memorization as a result of contamination. Using these

contamination-proof modifications to popular benchmarks, the rankings on popular

leaderboards change significantly (Alzahrani et al., 2024), showing how fragile these

evaluations are and how great the impact of these minor changes can be.

Many open-data models have taken extensive decontamination measures, e.g.

the Pile (Gao et al., 2020), Soldaini et al. (2024). Most of the common evaluation

datasets were not found in commonly used pre-training corpora (Elazar et al., 2024).
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Discussion

I have discussed many of the challenges that arise from using benchmarks to

evaluate language model performance. In addition to these and the scarcity of high-

quality evaluations (particularly for medium- and low-resource languages-), not all

benchmarks can be used to evaluate all models. One of the primary distinctions that

must be considered is architecture, particularly the difference between bidirectional

and autoregressive models. Many of the recently developed benchmark formats, such

as QA and problem-solving tasks are unsuitable for evaluating bidirectional models.

At the same time, tasks that were developed for bidirectional models, such as text

classification, named entity recognition (NER), dependency parsing, and part-of-

speech tagging are not suitable for evaluating autoregressive models.

Additionally, there is a divide between evaluations for small and large models.

Most recent efforts in benchmark development have focused on evaluating state-of-

the-art models. These benchmarks often use specialized formats (e.g. multiple-choice

questions) and require reasoning capabilities, which only very large models will be

able to perform. For example, in the MMLU paper (Hendrycks et al., 2021a), the

authors find that 13B parameter models achieve chance performance.

In this dissertation, I often use perplexity as an evaluation even though it is

considered a sub-optimal evaluation metric.. This is largely due to practical consid-

erations. Many of the languages I study do not have any evaluations, or have not

evaluations for autoregressive models. Perplexity is very useful, as it does not require

labeled datasets (Chang et al., 2023a). As discussed above, metrics that mirror the

training objective may overestimate model performance; however, I argue that this
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is better than having no evaluations at all or excluding languages from NLP research

altogether. It has been shown that perplexity is predictive of downstream perfor-

mance on natural language tasks (Xia et al., 2023); however, it does not necessarily

predict performance on higher-order, reasoning-heavy tasks.

One concern about using perplexity as an evaluation metric is that perplexity

is not predictive of human-like language processing (Kuribayashi et al., 2021), which

is consistent with recent findings that larger models tend to perform worse for pre-

dicting some metrics of human language processing, such as reading time (Oh and

Schuler, 2023), but not other metrics like N400 (Michaelov and Bergen, 2022a, 2023).

In the experiments where I use perplexity, however, I do so to measure language

model performance. Perplexity is a metric of accuracy at the next-word prediction

tasks, which is the training objective of language models. Therefore, I argue that

it is useful as a model evaluation metric, especially where there are otherwise no

available evaluations.

1.1.5 Language Models as Model Organisms

In the previous section, I have provided the fundamental background knowl-

edge about language models needed to engage with the empirical work presented

in this dissertation. I now discuss the role of language models in linguistic and

psycholinguistic research.

Language Models as Models of Language. Language models are the first

model organism available to study the structure and usage of natural language, and

36



their potential contribution to theoretical linguistics has yet to be fully explored.

Language models offer a new way to adjudicate between long-standing theoretical

disputes, between nativist and usage-based views of language.

The underlying premise behind language models is the distributional hypoth-

esis, which states that words occurring in similar context are likely to have similar

meanings (Harris, 1954)9. As discussed in Section 1.1.3, language models learn to

represent words (actually, tokens) in embedding space, such that similar words are

represented more closely together. Furthermore, token representations have system-

atic relationships in line with systematic meaning correspondences.

Some representatives of the nativist account reject language models as be-

ing relevant to the study of language altogether, for at least three primary reasons.

First, language models cannot distinguish between possible and impossible languages

(Chomsky et al., 2023), that is language models can learn languages that would be

impossible for a human to learn in addition to possible and attested human lan-

guages. Recent evidence suggests this not to be the case. Kallini et al. (2024) showed

that language models learn impossible languages less well that possible languages.

This of course depends on having actually identified what distinguishes possible and

impossible languages, which is not currently agreed upon.

The second reason is that language models are trained on orders of magnitude

more data than humans are exposed to (Piantadosi, 2023). The argument, then, is

that language models are not developmentally plausible. The nativist view of lan-

guage is that humans are able to learn language through relatively little exposure
9Also commonly referred to by the quote, "You shall know a word by the company it keeps"

(Firth, 1957).
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due to innately specified knowledge of the essential properties of language, and be-

cause language models depart so much from the "training data" of humans, they

cannot be useful for the study of language. There have been recent efforts, however,

that show that language models trained on more developmentally plausible training

corpora were able to achieve promising results (Mueller and Linzen, 2023; Warstadt

et al., 2023), showing that language models do not need that much more data than

humans to learn fundamental grammatical structures10.

Third and finally, is the argument that statistical approaches to language

modeling are limited by the reliance on linear string order, which cannot account for

hierarchical syntactic structure (Everaert et al., 2015 in Millière, forthcoming). There

has been mounting evidence, however, that language models can recover hierarchical

syntactic representations for linear inputs (Wilcox et al., 2019). Further evidence

has shown that language models are capable of processing and producing text that

contains bounded hierarchical phrase structure and recursion (Dąbkowski and Beguš,

2023; Mueller et al., 2022a).

While there has not been widespread adoption of language models in theoret-

ical linguistic research (Millière, forthcoming), there has been a significant amount

of empirical work on language acquisition and LLMs. Language models have the

capacity to empirically test learnability claims (Elman, 1996 in Millière, forthcom-

ing). Language models have strong implications on acquisition research, as they

undermine "virtually every strong claim about innateness of language proposed by

generative linguistics" (Piantadosi, 2023), by providing evidence that learning to pro-
10See Millière (forthcoming), pp. 30-32 for review and further discussion on this point.
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duce grammatical language is possible through statistical learning (Contreras Kallens

et al., 2023).

One way in which language models can be very useful as model organisms in

acquisition research is in running experiments that manipulate language exposure.

Misra and Mahowald (2024) iteratively trained language models, by increasingly

removing examples of a particular grammatical structure from the training data

to show how language models learn statistically infrequent grammatical structures.

Similarly, Patil et al. (2024) removed all examples of target grammatical structures

to test whether language models could learn those structures from indirect evidence.

Both of these studies show the value of using manipulations on language exposure

that are not possible with human subjects.

Language models are not theories of language, but models of language (Müller,

2024). Müller (2024) argues that the place of language models in linguistics is as

"subjects that one can feed arbitrary training material and that one can interrogate

without them getting tired and without the need of an ethics vote" rather than

intrinsic evaluations of language models and their capabilities. Müller (2024) argues

the latter is irrelevant for linguistics. It seems unlikely that evaluation of language

models will directly lead to progress in linguistic theory. However, through the

manipulation and evaluation of language models, linguists can refine hypotheses

about language, which may indirectly contribute to linguistics.

There is also a view that the evaluation of language models is "mere exercise

in studying engineering artifacts" (Millière, forthcoming; Chomsky et al., 2023). The

continual involvement of linguists in the development of language models is also crit-
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ical for developing models that better serve the goals of linguists. The separation of

linguistics and NLP is mutually harmful to linguistics and NLP, as it means language

models that are less linguistically-informed and linguists who benefit less from com-

putational tools and methods. There is a lot for each linguistics and computational

sciences to contribute to one another.

Much of the linguistically informed work in NLP involves fundamental con-

cepts from linguistics, for example administering the Wug Test (Weissweiler et al.,

2023a) and morphologically aligned tokenization (Hofmann et al., 2021; Jabbar, 2024;

Toraman et al., 2023; Batsuren et al., 2024). This research area is promising, however

a barrier to the development of linguistically informed work that takes into account

more nuance, such as individual variation, is the availability of models which per-

form well for more than a handful of languages. This is critical for providing the

broad linguistic coverage necessary to engage with key questions in linguistics. I will

provide discussion of this point in the following section (§1.2).

Language Models as Models of Language Users. Language models may also

serve as models of language use, i.e. language comprehension and production. The

adoption of language models in psychology and cognitive science research has been

more widespread than in linguistics. Given the rich literature on using language

models to model human language processing, there is a clear contribution that lan-

guage models can make (and have already made) to research in those areas. The

most pressing concern may be about the limitations of those contributions. There

are promising results for using language models to model metrics of human language

comprehension like the N400 Michaelov et al., 2022; Michaelov and Bergen, 2022b,
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inter alia, which inform our understanding of inform our understanding of human

language processing.

Language model surprisal can also be used in conjunction with behavioral

experiments to tease apart theoretical alternatives in psycholinguistic experiments.

Quinn et al. (2024) used language model surprisal to disentangle the role of pre-

dictability from the role of syntactic processing on the influence on inhibitory control

in bilingual language production.

One potential limitation of this work is whether language models are cogni-

tively plausible, that is whether they mechanistically resemble the mechanisms of

human language processing. In recent work, we compare language models of the

dominant Transformer architecture with a newly proposed recurrent architectures

(Michaelov et al., 2024). This contributes to an ongoing debate about whether lan-

guage models can be considered cognitive models (Piantadosi, 2023; Mahowald et

al., 2024), as opposed to just computational models. We find that there is no differ-

ence in the ability for language model surprisal to predict metrics of human reading

comprehension (both reaction time and N400 amplitude). As both the recurrent ar-

chitectures we evaluated, RWKV (Peng et al., 2023) and Mamba (Gu and Dao, 2024),

are relatively new. I hope that as recurrent architectures are further developed, this

empirical question can be revisited.

In addition to their role in modeling language processing, language models

are also promising tools for augmenting psycholinguistic and neurolinguistic exper-

imentation. Jain et al. (2024) proposed in silico testing for neurolinguistic exper-

imentation for hypothesis and evaluating construct validity. This is particularly
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valuable in a domain like neuroscience, where experimentation is extremely costly.

Some examples of work in this vein include using language models to supplement

psycholinguistic norms, in order to help develop balanced psycholinguistic stimuli

(Trott, 2024a) and to refine hypotheses for child language acquisition (Misra and

Kim, 2024).

1.2 Crosslingual and Multilingual NLP

The architectures and training procedures described in the previous section

can in principle be applied for any language or combination of languages. It seems as

simple as finding a large enough corpus of raw text data. It is not so simple, however.

First, there is not that much data available for some languages. As a result, there

have not been attempts to train language models for the vast majority of the world’s

languages. So there is still not enough crosslingual work to have a comprehensive

picture of how language models work differently for different languages. It is also the

case that there have not been language models trained on every possible combination

of languages. So there is much that is unknown about how languages interact within

a single language model. Both of these are exciting research areas, as knowledge of

crosslinguistic variation, typology, language acquisition, and more can help develop

an understanding of these issues.

I make a distinction between crosslingual and multilingual NLP. By crosslin-

gual NLP, I refer to the role of individual language differences, language-specific

data, etc. In this dissertation, I primarily investigate crosslingual NLP questions in
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monolingual settings, i.e. using models that are only trained on data from one lan-

guage, in order to maximally control for confounding factors. I use multilingual NLP

to refer to research involving language models trained on data from more than one

language. This work must be done in multilingual settings. While it is possible to

study crosslinguistic differences in a multilingual setting, I would like to disentangle

these points. The first part of the dissertation will focus on crosslingual NLP and

the second part will focus on multilingual NLP. Therefore, I do not use the term

"multilingual" to refer to non-English, monolingual NLP questions, as is sometimes

done.

1.2.1 Crosslingual NLP

It has been argued that true success in NLP means developing language tech-

nologies that work equally well for all languages (Choudhury, 2023), which is some-

times referred to as language-independent NLP (Bender, 2011; Khanuja et al., 2023).

Most of the developments in NLP focus on improving English performance, but many

people operate under the assumption mentioned above, that as long as there is suf-

ficient data and all else being equal11, that developments for English language tech-

nologies can be easily translated to language technologies for other languages. But

languages differ in the way they form words; in their writing systems; in the way they

encode grammatical information; and in terms of lexicalization, i.e. how languages

partition up the meaning space into words. How do these differences interact with
11Other factors may include data quality, which should not be assumed to equal at all. Kreutzer et

al. (2022) showed that in large, widely-used multilingual datasets, data for lower-resource languages
is often low-quality and sometimes is largely unusable.
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language technologies like language models?

There has not yet been any empirical evidence that there exist natural lan-

guages which language models are incapable of learning; however, neither has there

been positive evidence of language models learning all natural languages equally well.

Therefore, there is a concern, that the English-centric nature of the field will lead

to inherent assumptions and design choices that implicitly benefit English at the

expense of other languages (Bender, 2011; Joshi et al., 2020).

This question not just important from the perspective of ideological opposi-

tion to inequality, but it also has practical significance. Language models that are

language-independent12 are incredibly valuable for scientists and industrial devel-

opers (Bender, 2011). From a commercial perspective, the more languages that are

represented in NLP, the larger the AI market. From a more human-centered perspec-

tive, if language technologies continue to only work for a small number of languages,

speakers of other languages will be left behind in terms of the social and economic

benefits of these technologies. The current trajectory of language inequity in NLP

will only exacerbate existing social and economic inequalities around the globe.

From the perspective of research and development, there is also the possibil-

ity that designing language-inclusive technologies will lead to general technological

improvements that will benefit language model performance for all languages.

It remains an open question how these crosslinguistic differences interact with

different components of language model architectures and training procedures. This

is one of the key questions addressed in this dissertation.
12I do not mean as single language model that works equally well for all languages, but an

architecture/training recipe that leads to equitable outcomes for all languages.
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1.2.2 Multilingual NLP

Researchers have shown that it is possible to train language models on data

from more than one language, and with appropriate model and dataset sizes, a single

model can process text in many languages, e.g. multilingual BERT (Devlin et al.,

2018), XLM-R (Conneau et al., 2020a), and XGLM (Lin et al., 2022). It has also

been shown that language models can process languages they have barely seen during

training. This phenomenon is called crosslingual transfer.

Crosslingual transfer is a type of transfer learning. Transfer learning is the

ability for neural networks to generalize representations learned for one task in order

to perform a different task. Crosslingual transfer, therefore, refers to the observed

ability for many language models to perform well with very little data in the sec-

ondary language. Many researchers have sought to leverage crosslingual transfer to

improve performance for languages, especially languages with very little available

training data.

The main limitation of crosslingual transfer is the curse of multilinguality,

which is when a model reaches its capacity limitations and is not able to accurately

represent its knowledge of all the languages it has been trained on (Conneau et al.,

2020a; Chang et al., 2023a). So, while crosslingual transfer is a powerful tool for

improving performance for low-resource languages, it does not work equally well.

To illustrate the intuition behind this phenomenon, I return to n-grams, as

described above. An n-gram language model is much more accurate in contexts sim-

ilar to the training data. In the toy example above, containing data about books and

ponds and benches, the resulting n-gram would perform better for contexts relating
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to those concepts, as opposed to novel contexts relating to shops and computers and

cities. The probabilities of n-grams containing those out-of-distribution words will

be very low, or even zero. By the same logic, language models will will variably

generalize to new languages.

In the case of n-grams, the model would assign a probability of 0 to all strings

in a language different to the one the model was trained on. In the case of contempo-

rary models, which use sub-word tokenization, models can sometimes rely on shared

sub-word strings to work for languages that the models did not see during training.

For example, consider the following sentences. They are translation equivalents in

English and Spanish.

I like to eat apples and bananas.

Me gusta comer manzanas y plátanos.

While there are no obvious cognates or shared words between the two sen-

tences, there are shared sequences of characters like ‘an’, which occurs in both ba-

nanas and plátanos. If a language model has a shared sequence like ‘an’ as one of

the tokens in its vocabulary, this can help the language model make predictions in

Spanish, even if it has only been trained on English data, because it has been trained

to make predictions for that subword token.

This kind of transfer works best when the languages are more similar. For

instance, consider the same sentence pair in English and Mandarin Chinese.

I like to eat apples and bananas.

我喜欢吃苹果和香蕉。
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For this language pair, there are no overlapping sequences. As a result, a

language model would be much less likely to easily generalize its training from English

to Chinese, or vice versa.

In previous work, my collaborators and I conducted the first controlled study

to provide empirical evidence for the factors that influence crosslingual transfer

(Chang et al., 2023a). We found that low-resource languages did often show benefits

of added multilingual, that is they benefited from crosslingual transfer. But language

similarity was the main variable we analyzed that determined the efficacy of trans-

fer. This is consistent with previous work (Conneau et al., 2020b; Gerz et al., 2018a;

Winata et al., 2022; Ahuja et al., 2022; Oladipo et al., 2022; Eronen et al., 2023).

This means that crosslingual transfer is limited by data from related lan-

guages. For a low-resource language, the most related languages may also be low-

resource languages. Therefore, the most similar languages for which there exists

large amounts of pre-training data may not be very similar to the target language,

limiting the utility of transfer learning. A common approach is to just combine large

quantities of English data with the target language data, but we argue that this may

have unintended detrimental effects on language model performance in the target

language. In a follow-up study, we compared small monolingual models with large,

massively multilingual models (i.e. models trained on tens of or even a hundred lan-

guages). We found that models over an order of magnitude smaller may outperform

larger models due to the curse of multilinguality (Chang et al., 2024).

In the n-gram example above, I illustrate the role of vocabulary overlap. There

has been evidence that vocabulary overlap drives successful crosslingual transfer
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(Artetxe et al., 2020a; Conneau et al., 2020b; Ahuja et al., 2022). In Chang et al.

(2023a), we show that vocabulary overlap was not the most significant explanatory

variable, but instead typological similarity was. It seems that shared grammatical

encoding strategies are important for successful transfer.

Language models have representations used to store information about a lan-

guage, which are used for processing and generating text data. Some of those rep-

resentations are for language-specific information, but others represent information

that is shared for different languages (Chang et al., 2022). The shared representations

are thought to drive crosslingual transfer. In this dissertation, I seek to characterize

those representations and understand how and when they are learned by language

models.

1.2.3 The State of NLP Beyond English

One of the greatest challenges to research on crosslingual and multilingual

NLP questions is the lack of resources for the vast majority of the world’s languages.

The vast majority of work is done on English (Joshi et al., 2020; Søgaard, 2022; Blasi

et al., 2022). And only a small number of languages, relative to the approximate

7000 languages in the world, are represented at all by language technologies and their

applications (Joshi et al., 2020). For the languages that are represented, performance

for most languages other than English is very poor (Choudhury, 2023).

Because the problem is so pervasive, it is hard to describe the extent to

which NLP for languages other than English lags behind. This is in part due to the

tendency for researchers in NLP to not specify the language that they are working
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on, especially if that language is English. As a response to this, the #benderrule was

proposed, which states "always name the language(s) you’re working on" (Bender,

2019). Despite this, at least half of ACL papers do not mention what language

or languages the paper is studying, according to an analysis in Ducel et al. (2022).

Under the assumption that papers that do not mention any language are likely only

working on English, I collected the abstracts of all papers from top ACL venues

in the past several years13. The number of paper abstracts that mention English

is constant at between 15-20% of papers. The number of abstracts that do not

mention any language by name or the term ‘multilingual’, is also constant at around

50-60%. Therefore, I estimate that approximately 80% of work published in the most

well-regarded ACL venues is on English.

Work on English is seen as the default (Bender, 2019) and as contributing

to the whole field, while work on languages other than English are seen as only

contributing to the body of work on those specific languages. This has the side-effect

of implicitly devaluing work on other languages, as work on non-English languages

is seen as having less impact. This is a negative feedback loop, which will result

in the vast majority of NLP work being done English and a small number of other

languages.

High-resource languages are generally well-served (Blasi et al., 2022), but even

for a high-resource language14, such as French, which has several dedicated (mono-

lingual) models, e.g. CamemBERT (Martin et al., 2020), and hundreds of millions
13Due to changes in the formatting of the ACL anthology, abstracts are not easily available for

all venues before 2015. Therefore, I begin my analysis in 2016.
14I will use the categorization from (Chang et al., 2023a; Appendix A.7), which lists 28 languages

as high-resource languages.
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of tokens of training data (Ali and Pyysalo, 2024), performance lags behind English.

Many large models, such as the Llama models, are trained on a very high propor-

tion of English data, with relatively small proportions of data from other high- and

medium-resource languages like French. While information about the training data

is not released, an analysis of the tokenizer has revealed the training data proportions

for each language (Hayase et al., 2024). Table 1.1 reports the multilingual MMLU

scores for the different sizes of Llama 3.1 models: 8B, 70B, and 405B parameters.

In the right-hand column, I report the proportion of training data dedicated to that

language, according to (Hayase et al., 2024).

Despite the fact that French only makes up 1.8% of the training data, the

model still achieves relatively high accuracy on the French task relative to the English

performance (Meta AI, 2024). Still performance is worse for these other high-resource

languages relative to English for most model sizes.

Table 1.1: Llama 3.1 multilingual MMLU results and training data proportions by
language, as reported in the model card on HuggingFace (Meta AI, 2024).

MMLU Llama 3.1 Llama 3.1 Llama 3.1 % Training
(5-shot) 8B 70B 405B Data
English 66.7 79.3 85.2 51.5
French 62.34 79.82 84.66 1.8
Spanish 62.45 80.05 85.08 2.0
German 60.59 79.27 84.36 2.2
Italian 61.63 80.4 85.04 1.0

Portuguese 62.12 80.13 84.95 1.4

For medium-resource languages, like Estonian, the situation is somewhat

worse. For large proprietary models, Estonian likely makes up between 0.1-0.6%

of the training data from GPT-4, Llama, Mistral, Claude, Gemma (Hayase et al.,
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2024). There is at least one existing dedicated Estonian model (Tanvir et al., 2021)

according to a survey (Ali and Pyysalo, 2024). However, this is a relatively small

(100M parameter) BERT model. Most benchmarks do not cover Estonian, but there

are a small number of benchmarks that do evaluate Estonian performance, namely

XCOPA (Ponti et al., 2020) and Belebele (Bandarkar et al., 2023). As can be seen

in Table 1.2, for the Belebele benchmark, several large models all perform above

chance for Estonian, where chance is 25%. Even for GPT 3.5 Turbo, which scores

the highest of the models shown here, performance for Estonian is significantly worse

than performance for English.

Table 1.2: Results from Bandarkar et al. (2023)

Zero-Shot 5-Shot
GPT 3.5 Llama 2 Llama 2 Llama 1 Falcon
Turbo 70b Chat 70B 65B 40B

English 87.7 78.8 90.9 82.5 77.2
Estonian 73.1 36.6 53.0 36.3 34.9
Bambara 31.7 29.4 30.3 28.4 29.7

For a low-resource language like Bambara, there are even fewer models and

benchmarks. There are no existing monolingual Bambara language models. It is

not intentionally seen by models such as Llama, Claude, and GPT-4, meaning that

Bambara data may be seen in the pre-training data only by accident. Bambara data

is used during pre-training for massively multilingual models like BLOOM (Scao et

al., 2022), MADLAD-400 (Kudugunta et al., 2024), Glot-500c (Imani et al., 2023),

and XGLM (Lin et al., 2022). There is at least one multilingual model that focuses on

African Languages, called Cheetah (Adebara et al., 2024). Bambara has at least one

benchmark: Belebele. Table 1.2 shows Belebele performance for a small number of
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models. In contrast with English and Estonian, the models are all barely performing

above chance.

The vast majority of languages are in an even worse position than Bambara.

One of these is Isoko. To the best of my knowledge, there are only about 8MB of data

publicly available online for the language, which is equivalent to about 2M tokens.

For ultra-low-resource languages like this, there are no dedicated language models.

Isoko is one of the languages represented in Madlad-400 (Kudugunta et al., 2024),

however there are no existing benchmarks for the language so there are no reported

performance metrics.

To put into perspective the extent to which the majority of languages have

been left behind, I show a timeline of developments in NLP over the last 60 years (Fig.

1.4). I show the timeline of major model and dataset releases in number of words

or tokens. All of the models and datasets are in English. The last time English had

only about 2 million tokens collected for NLP research was in the 1960s. The Brown

Corpus, which was released in 1964, was the first corpus of English text data with

one million words. The data resources for Isoko for NLP are comparable to those for

English in the 1960s. While the technologies have improves, such that models can

do much more with that amount of data than they could in the 1960s, data is still

one of the biggest limiting factors to the development of powerful language models.

So, while progress for English resources has led to the development of corpora

in the tens of trillions of tokens, many languages have less than one millionth the

amount of data.

I have been able to find about 16MB of Bambara data, which is equivalent
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Figure 1.4: Timeline of NLP developments

to about 4.5M tokens. This puts Bambara around the late 1960s in the timeline of

English dataset sizes. HPLT is a resource for pre-training data for language models

for many languages. Their Estonian corpus is about 20GB, which is equivalent to

approximately 3.7B tokens. This makes Estonian a medium-resource language, and

this amount of data is equivalent to the late 2000s on the English timeline. This

rough comparison begins to illustrate the degree to which different languages are

lagging behind English.

Language model performance shows the same kind of patterns. For many

medium-resource languages, performance on popular reasoning tasks is still quite

low (Table 1.3). In many cases, the language models are performing at or only just

above chance, which here is 50%. GPT-3 (Brown et al., 2020), which is now quite far

below state-of-the-art performance, achieves 91% zero-shot accuracy on the English

53



version of this benchmark, COPA (Roemmele et al., 2011). More recently, PaLM

(Chowdhery et al., 2023) is reported as achieving 100% on this benchmark.

The Goldfish models (Chang et al., 2024) are small (124M parameter) models,

trained on monolingual datasets for 350 target languages. We trained dedicated

tokenizers using the same procedure for each language. Both the tokenizer training

data and the model training data are scaled according to their byte premium (Arnett

et al., 2024a), which will be discussed in Section 2.1. Despite being trained on

order of magnitudes less data and being at least one order of magnitude smaller in

terms of parameters, the Goldfish models achieve comparable performance on several

languages (Table 1.3).

Table 1.3: XCOPA (Ponti et al., 2020) evaluation scores for a selection of models.
Higher scores are better and chance performance is 50%.

Goldfish XGLM XGLM BLOOM MaLa-500
124M 4.5B 7.5B 7.1B 10B

Estonian 0.52 0.552 0.614 0.482 0.53
Haitian Creole 0.554 0.514 0.574 0.508 0.506

Indonesian 0.584 0.668 0.694 0.698 0.61
Italian 0.538 0.614 0.636 0.528 0.606

Quechua 0.512 0.5 0.488 0.508 0.506
Swahili 0.55 0.562 0.6 0.518 0.536
Tamil 0.554 0.554 0.544 0.592 0.562
Thai 0.55 0.554 0.594 0.554 0.55

Turkish 0.562 0.572 0.584 0.512 0.53
Vietnamese 0.574 0.66 0.702 0.708 0.562

Chinese 0.542 0.616 0.638 0.652 0.622

In Chang et al. (2024), we implemented bigram models using the same to-

kenizers and text data as the Goldfish language models. For XGLM 4.5B, bigram

models beat performance in 24 out of the 102 languages it is intentionally trained
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on with our bigram models. For BLOOM 7.1B, bigrams beat the model on 20 of 46

languages and bigrams beat MaLa-500 on 11 of the 175 languages overlapping with

our language sample and the languages MaLa is trained on.

Both the comparisons to Goldfish and to bigrams show that existing models

perform very poorly on many of the languages they are trained on. To give a more

qualitative sense of what this means, here is some text generated by an English model

trained on only 5MB of text15, which exhibits similar performance to an ultra-low

resource like Isoko:

This is a new way you are some of some of the same time. If you to start
to be good person. No, Thesese are available in the only will not be able
took the best time to the best.

So while the best-performing language models, such as GPT-4 and Claude,

can handle complex reasoning and problem-solving tasks, deal with data and complex

formatting, and follow instructions, for many languages the best language models still

are not be able to generate grammatical text without unnatural repetition or typos.

One of the biggest obstacles to language equity in NLP – apart from a lack

of resources, both in terms of data and models – is the focus on generalist models.

Generalist models are those trained not for a particular task, but to be an assistant or

chat bot that can provide generations in many languages, perform well on reasoning-

intensive problem solving tasks, and be applicable to a wide range of domains. This

one-model-to-rule-them-all approach focuses on developing extremely large models

like GPT-4 or Llama 405B. This approach relies on a very large model capacity to

allow for crosslingual transfer, despite training on proportionally very little data for
15https://huggingface.co/goldfish-models/eng_latn_5mb
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most languages other than English. In this scenario, preference will always be given

to languages with larger populations (Blasi et al., 2022), more economic influence

(Bender, 2011), or both. Medium- and low-resource languages will never be served

with these models.

It is hard to characterize how poorly models perform for many languages due

to the lack of evaluations. Progress in any field is tightly linked with its evaluation

paradigm, because metrics of individual success is linked to progress on popular

benchmarks (Khanuja et al., 2023). In the absence of benchmarks, researchers are

disincentivized from working on technologies for low-resource languages.

1.3 Overview of the Dissertation

Having provided essential assumptions, constructs, and methodologies, as well

as the ways that language models can be used as model organisms, I now turn to

how these are used in the dissertation.

Part I relates to questions about crosslingual NLP. In this part, I discuss

language-specific factors that impact performance and contribute towards linguistic

inequities in NLP. I primarily focus on the role of data and tokenization, which are

some of the earliest stages of the language model training pipeline. As such, these

two factors have a great impact on the downstream components of model training,

but they are difficult to study, because of the intervening steps between data and

tokenization and the final model performance.

In Chapter 2, I investigate how writing system and word length across lan-

56



guages affect how dataset sizes are measure in language models and discuss how that

impacts language model performance.

In Chapter 3, I investigate how tokenization and morphology interact. I look

at whether different tokenization schemes impact performance, specifically whether

tokenization which is aligned with the morphological composition of a word, leads

to better performance.

In Chapter 4, I compare various factors, namely these two factors (dataset

size measurement and how aligned tokenizers are with morphological boundaries),

and their effects on crosslinguistic differences in language performance.

In Part II, I use crosslingual structural priming, an experimental paradigm

from psycholinguistics to probe shared multilingual representations in language mod-

els.

In Chapter 5, I conduct the first experiment showing crosslingual structural

priming effects in languages models, showing evidence for the shared representations,

which drive crosslingual transfer.

In Chapter 6, I conduct a more controlled follow-up experiment, in which

I train bilingual language models to control for data size. I replicate the findings

from Chapter 5 and expend on the results, by investigating the training dynamics

of language models. I characterize how and when language models acquire shared

multilingual representations.

At the end of each Part, I provide discussion. In Chapter 7, I provide conclu-

sions about the work across the whole dissertation.
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Part I

Crosslinguistic Differences and

Language Models
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Chapter 2

Crosslinguistic Data Measurement

Inequities in Language Modeling

As was discussed in Chapter 1, the role of data in NLP cannot be overstated.

The solution to language inequities – or at least to low performance for low-resource

languages is more data. Having equal amounts of data for all languages would be

incredibly difficult to achieve, but even if it were achieved, it is unclear how to

measure comparable dataset sizes for different languages.

This is an important consideration for at least two stages of language mod-

eling: tokenizer training dataset and model training dataset selection. Datasets are

frequently measured in terms of the number of tokens. But before a tokenizer has

been trained, data may be measured in terms of words, lines, or in terms of file

size (e.g bytes). Word boundaries are often operationalized as whitespaces in NLP.

Though there is no consensus on the definition of word in Linguistics, whitespace-
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separation is widely agreed to be a problematic implementation. Practically, this

is also impossible to implement for languages like Chinese, Japanese, and Korean,

which do not use whitespaces. Datasets can be measured by number of lines, but

this introduces a high degree of randomness, as the amount of text in each line can

vary significantly. Depending on the datasets, lines may be empty or only contain a

few characters, whereas for other datasets, a line may contain the text from an entire

document. For these reasons, file size in bytes is the most obvious choice.

After a tokenizer has been trained, datasets can selected for model training.

At this stage, there are two common choices for dataset measurement: tokens and

bytes. The number of tokens is an intuitive choice, as it is linked to important fea-

tures of the model such as sequence length, i.e. the maximum number of tokens that

can be passed into the model at a time and also the number of tokens the model sees

at a time during training. Petrov et al. (2023) observed, however that tokenizers in-

troduce disparities between languages, because they offer different compression rates

for different languages and domains. This is critical, as Petrov et al. (2023) argue this

leads to worse model performance, because the models see less information over the

course of training. Higher tokenization costs, especially for large commercial models,

also leads to increase cost on top of worse performance (Ahia et al., 2023). Most

model providers charge by the token, for both input and output, therefore variable

token premiums between languages means variable costs. This most disadvantages

users that prompt the model in low-resource languages or languages written with

non-Latin script.

For a given string, the number of tokens needed to represent that string de-
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pends on the tokenizer. If the tokenizer uses fewer tokens to represent the string, the

string will be more compressed. When passed through the model, a sequence with

more compression will allow the model to see more text in a fixed sequence. Con-

versely, if a tokenizer compresses a string less, the model will see less information per

sequence. For the same dataset, its size in number of tokens, therefore is dependent

on the tokenizer.

Therefore, measuring dataset size in number of tokens means that the metric

is variable and depends on the specific tokenizer. Additionally, there will be dis-

parities, such that languages with higher token premiums will be disproportionately

underrepresented.

If dataset size is not measured in tokens, then it needs to be measured in

bytes. This is the unit of measurement I discuss in the paper below. We show

that some languages need more bytes to represent content-matched text. To better

contextualize this result, I will first provide some background information about

bytes and encoding standards.

Bytes are the unit of measurement of digital information. A byte is comprised

of eight bits (1s and 0s). The encoding of text determines how it is stored, and

therefore how text file sizes are determined. The most common encoding standard

is UTF-8 (Unicode Transformation Format – 8). This encoding standard is designed

to be able to render text in any writing system. UTF-8 represents all characters

with one- to four-byte code units. Therefore, some characters take more bytes than

others. Each byte represents the amount of storage space it takes to represent that

character.
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In UTF-8 encoding, there are four types of characters: one-byte, two-byte,

three-byte, and four-byte characters. There are 256 one-byte characters, because

there are 256 unique 8-bit strings, where each bit is either 0 or 1 (28 = 256). There

are 2048 two-byte characters. The first byte is always in a subset of 32 one-byte

strings and the second byte is in a subset of 64 possible one-byte strings. 2048 rep-

resents every possible combination of those bytes. By the same principle, there are

65,536 possible three-byte characters, and 2,097,152 possible four-byte characters,

but not all of them are used. It is worth noting that there are more possible char-

acters represented by the higher-number byte strings. Only a very small number of

characters are represented by a single byte.

As a result, different writing systems are not represented equitably by UTF-8.

Languages that use Latin script are more likely to have one-byte characters. This

is likely primarily due to the fact that when it was introduced, it was made to be

backwards compatible with ASCII (American Standard Code for Information Inter-

change). This system was developed primarily to represent English characters and

other frequently used symbols, e.g. punctuation. There are only 1281 ASCII char-

acters, and all Latin characters without diacritics are among them. When UTF-8

was created, ASCII characters were adopted into the 1-byte group. Initially, not so

many writing systems were represented in UTF-8. As more writing systems get rep-

resented, they are added to the higher-byte groups. The writing systems that were

added earlier tend to be represented with fewer bytes. For instance, many Cyrillic

characters are represented with two bytes. Many Chinese characters are represented
1ASCII uses 7-bit strings, so there are only 128 unit 7-bit strings.
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with two bytes, but some of the less frequent ones are represented with three bytes.

Arabic, Devanagari, Thai, Tibetan, and Georgian all have characters primarily repre-

sented with three bytes. These characters may not represent diacritics, which might

separately be represented as three-byte characters.

Based on this observation, we hypothesized that this could be exacerbating the

relative lack of data for non-English – and especially low-resource – languages. We

introduce the term byte premium, to refer to this difference in the number of bytes

needed to encode a given amount of information across languages. Low-resource

languages are more likely to use writing systems that are represented with two-

and three-byte characters. So languages which might already not have a lot of text

data available might have effectively less data due to these disparities in dataset size

measurement.

Byte Premiums and Performance

In this chapter (Section 2.1.7), we analyze whether the byte premiums help

explain differences in performance between language for existing massively multilin-

gual models. The results showed a numerical, but not significant, difference in the

predictive power of byte-premium-scaled data proportions on language model per-

formance when compared to raw data proportions. These results are inconclusive,

because of the lack of statistical power. The analysis is also limited, because we did

not control the amount of data from each language in each model. There is likely

a confound between the amount of data each model is trained on for each language

and the byte premium, as lower-resource languages are more likely to have higher
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byte premiums.

To follow up on these results, I compare the relationship between byte pre-

mium and performance for two sets of models. In this analysis, I compare monolin-

gual model performance, where each model is trained on the same amount of data.

In the first set of models, the training data is not scaled according to byte premium,

but in the second set of models the data is byte-premium scaled.

The first set of models were introduced in Chang et al. (2023a). In this paper,

we trained up to 12 models per language, for 252 languages. We varied two factors:

model size and dataset size. There were three model sizes: 8.7M (tiny), 19.8M (mini),

and 45.8M (small) parameters. There were four dataset sizes: 1M, 10M, 100M, and

1B tokens. We measure model performance as perplexity over a held out portion of

data. I use the byte coefficients from the paper below.

I fit two linear mixed effects models. The full model predicts perplexity using

the byte premium as a fixed effect with random intercepts for model size and dataset

size. I fit a reduced model, which is the same, but without the fixed effect of byte

premium. I compare the two models with an ANOVA and find that the full model

explains significantly more variance than the reduced model (χ2(1) = 25.149, p <

0.001). This suggests that byte premiums explain model performance above and

beyond model size and dataset size. The full model shows a positive correlation

between byte premium and perplexity (see Fig. 2.1), where a larger byte premium

is associated with higher (i.e. worse) perplexity.

These results support our hypothesis that byte premiums may lead to lan-

guage models being trained on effectively less data for languages with higher byte
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Figure 2.1: The relationship between byte premium and perplexity for the models
from Chang et al. (2023a). Each dot represents a monolingual model. There are
different models according to dataset size and model size. The blue line represents
the line of best fit between the two variables.

premiums.

We also trained a set of models where the training data was byte-premium-

scaled, the Goldfish models (Chang et al., 2024). Each model is trained on the

byte-premium-scaled equivalent dataset sizes, e.g. 1GB of text. For English, the

training dataset size is 1GB because we are using English as the reference point for

the byte premiums. For a language with a byte premium of 1.4 relative to English,

its training dataset size would be 1.4GB.

In this set, we cover 350 languages. Each language has up to 5 models,

according to how much training data was available for that language. The dataset

sizes were 5mb, 10mb, 100mb, 1000mb (1GB). So if a language had 100mb of text

available, we trained a model each on 5mb, 10mb, and 100mb of text.
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In the same way, I analyze perplexity on a held-out dataset and its relationship

to byte premiums. I fit a full and reduced linear mixed effects model and found that

for the Goldfish models, byte premium did not explain additional variance beyond

dataset size (χ2(1) = 0.521, p = 0.470). The data are plotted in Figure 2.2.

Figure 2.2: The relationship between byte premium and perplexity for the models
from Chang et al. (2024). Each dot represents a monolingual model. There are
different models according to dataset size and model size. The blue line represents
the line of best fit between the two variables.

The results from the Goldfish models suggest that after controlling for byte

premium, there is no longer a difference in performance according to a language’s

byte premium.

Together, the analyses of performance of these two sets of language models

suggests that byte premiums explain some of the variance in performance between

language models and suggests that taking byte premiums into account can help

reduce language inequities in language model performance.
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Byte Premiums and Tokenizer-Free Language Modeling

There is another area where byte premiums have serious implications. There

is a line of research in NLP which investigates whether language models can use

characters or bytes as the unit of language modeling, as opposed to words and sub-

words. This is usually referred to as "tokenizer-free" language modeling (Choe et al.,

2019)2.

This method is not very popular, because it creates sequences which are very

long. This makes the models extremely expensive to train and run inference on

(Deiseroth et al., 2024). This area has not been very active until recently, when a

new architecture was proposed, called Mamba (Gu and Dao, 2024). When it was

released, this architecture was reported to handle long sequence lengths very well.

Some researchers have shown that it could be promising for tokenizer-free language

modeling (Wang et al., 2024a). One concern is that this method could lead to some

of the same inequalities observed by Petrov et al. (2023) for subwords. If NLP

practitioners develop a way to make byte-based tokenization work well for English,

it may not transfer well to languages with high byte premiums, because the sequences

will contain less information than they do for languages like English.

Since the release of our paper, Limisiewicz et al. (2024) proposed a method for

addressing variable byte premiums for byte-based tokenization. They propose a new

tokenization method called MYTE, which re-maps unused single-byte characters into

language-specific morpheme representations. They do this using supervised morpho-
2This approach is not really tokenizer-free, as it still involves a text-segmenting step with a fixed

vocabulary (either the set of all bytes or a pre-defined list of characters).
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logical parsers and determining the highest-frequency morphemes for each language.

They show that this method significantly reduces inequities in token premiums while

also improving performance for every language they evaluated. While this method is

limited to languages for which there exist morphological parsers, this demonstrates

the impact of taking into account byte premiums.

2.1 A Bit of a Problem: Measurement Disparities

in Dataset Sizes Across Languages

Abstract

How should text dataset sizes be compared across languages? Even for

content-matched (parallel) corpora, UTF-8 encoded text can require a dramatically

different number of bytes for different languages. In our work, we define the byte pre-

mium between two languages as the ratio of bytes used to encode content-matched

text in those languages. We compute byte premiums for 1155 languages, and we

use linear regressions to estimate byte premiums for other languages. We release a

tool to obtain byte premiums for any two languages, enabling comparisons of dataset

sizes across languages for more equitable multilingual model development and data

practices.
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2.1.1 Introduction

Large language datasets serve as the foundation for modern natural lan-

guage technologies. However, an often ignored question is how to compare dataset

sizes across languages. For standard multilingual language models such as XLM-R,

BLOOM, and XGLM, dataset sizes are reported in bytes (Conneau et al., 2020a;

Scao et al., 2022; Lin et al., 2022).3 However, content-matched (i.e. parallel) text in

two languages does not generally have the same size in bytes, with some languages

taking over 5× as many bytes as others (§2.1.3).

Here, we compute byte premiums (cf. tokenization premiums in Petrov et

al., 2023), the ratios of bytes taken to encode text in 1155 different languages. We

find that these byte premiums are highly correlated across datasets. We fit linear

regressions to estimate byte premiums for languages not included in our parallel

datasets, and we release a simple Python tool to retrieve or predict the byte pre-

mium between any two languages.4 Our work enables comparisons of dataset sizes

across languages, with implications for equitable multilingual model development

and resource distribution.

2.1.2 Related Work

Using UTF-8 encoding, which is by far the most widespread text encoding

(Davis, 2012), characters take between one and four bytes to encode (Unicode Con-

sortium, 2022). Numbers and Latin characters without diacritics are one byte, and
3Dataset sizes are also often reported in tokens, which depend on model-specific tokenizers and

which exhibit similar cross-language disparities to bytes (Petrov et al., 2023).
4https://github.com/catherinearnett/byte-premium-tool
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all non-Latin scripts use two or more bytes per character. This alone introduces a

disparity in measured dataset sizes in bytes (Costa-jussà et al., 2017), but it must

be balanced with the fact that different scripts encode different amounts of "infor-

mation" per character. For example, Mandarin has high UTF-8 bytes-per-character,

but it generally requires fewer characters than Latin-script languages to encode the

same content. To account for this trade-off, previous work has used parallel text,

finding that byte-level tokenizers encode parallel text in some languages using more

"tokens" (bytes) than others ("tokenization premiums"; Petrov et al., 2023). We tie

these results to dataset storage and training dataset size measurement, we compute

the byte premium for 1155 languages, and we present a method to predict the byte

premium for novel languages. All our results use UTF-8 encoded text.

2.1.3 Computing Byte Premiums

In this section, we calculate the byte premium BPA/B for different language

pairs, which we define as the ratio of bytes taken to encode a comparable amount

of information in language A relative to language B. For example, if A on average

takes twice as many UTF-8 bytes to encode the same information (parallel text) as

B, then BPA/B would be 2.0. These byte premiums are useful when measuring "how

much" content is in each language in a corpus. In multi-parallel corpora, we note

that the byte premiums must satisfy:

BPA/B =
BytesA
BytesC

∗ BytesC
BytesB

=
BPA/C

BPB/C

(2.1)
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This implies that if the byte premium is known for every language relative to some

language C, then all pairwise byte premiums are determined. Thus, we only cal-

culate a single byte premium BPA = BPA/C per language, all relative to reference

language C. We use C = English as our reference language, but using any other

reference language C0 would simply multiply all our byte premiums by a constant

BPC/C0 . In later sections, we refer to byte premiums relative to English unless oth-

erwise noted. In contrast to Petrov et al. (2023), calculating a single byte premium

per language allows byte premiums to be used for multilingual corpora beyond just

pairwise corpora.5

NLLB

Computing byte premiums requires parallel corpora in the desired languages.

We first use NLLB (Costa-jussà et al., 2022), a dataset of pairwise parallel text

segments in 188 languages. We sample the first 100K parallel text segments for each

language pair (A,B), and we compute BPA/B as the mean ratio of bytes used in

language A versus B, averaged over all segments. This produces a byte premium

value for every language pair.

To fit a single byte premium BPA = BPA/C for each language relative to a

reference language C (in our case English), we minimize the mean squared error of

BPA/BPB relative to the ground truth BPA/B (Equation 2.1) over all language pairs

(A,B). In other words, we fit 188 byte premium values (one per language) based on
5For example, if Equation 2.1 does not hold, then English-Mandarin and Arabic-Mandarin byte

premiums could produce conflicting comparable dataset sizes when adding Mandarin data to an
English+Arabic corpus.
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all 2656 pairwise byte premium values. Fitting these single byte premiums ensures

that Equation 2.1 holds for all pairs.

Byte premiums computed from NLLB are reported in Appendix Table A.1.

For example, Burmese has byte premium 5.10, so on average it takes 5.10× as many

UTF-8 bytes to encode text in Burmese versus English. These byte premiums are

consistent when computed from different subsets of the NLLB corpus, with Pearson’s

r > 0.999 for byte premiums computed from ten disjoint subsets of 10% of the NLLB

corpus. Notably, byte premiums computed from only 100 lines of text per language

pair correlate with the byte premiums computed from the full NLLB dataset with

Pearson’s r = 0.955, indicating that byte premiums can be computed from fairly

small parallel corpora.

Other Parallel Corpora

For comparison, we also compute byte premiums from three multi-parallel

corpora: FLORES-200 (Costa-jussà et al., 2022; 204 languages), the Bible (eBible,

2023; 1027 languages), and the Universal Declaration of Human Rights (Vatanen et

al., 2010; UDHR; 241 languages). For each language A in each dataset, we com-

pute BPA = BytesA/BytesC relative to reference language C = English. Because

each dataset is comprised of parallel text across all included languages, these byte

premiums already satisfy Equation 2.1.

Computed byte premiums are highly correlated between NLLB, FLORES,

and the Bible (Table 2.1; Pearson’s r > 0.90), suggesting that byte premiums are

fairly consistent across datasets. We posit that lower correlations with UDHR byte
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Table 2.1: Pearson correlations between byte premiums calculated from different
datasets. Correlations are high between NLLB, FLORES, and the Bible.

N
LL

B

F
LO

R
E

S

B
ib

le

U
D

H
R

FLORES 0.919 0.938 0.737
Bible 0.921 0.938 0.177
UDHR 0.592 0.737 0.177

premiums may be because the UDHR corpora are much shorter (roughly twenty total

lines of text) and potentially more domain-specific than the other corpora. For this

reason, we do not use UDHR in later sections.

Byte Premiums After Compression

Interestingly, we find that byte premiums persist after compression with the

common compression algorithm gzip (at maximum compression level 9). Byte pre-

miums after compression by gzip, compared to those before compression, are plotted

in Figure 2.3. When byte premiums are computed from the compressed FLORES

corpora, they correlate strongly with the uncompressed byte premiums (Pearson’s

r = 0.890).

However, the scale of variation across languages reduces substantially after

compression; for example, uncompressed byte premiums of 4.0 are roughly analogous

to compressed byte premiums of 1.7 (i.e. compressed data in that language takes

only 1.7× as many bytes as the reference language rather than 4.0× as many bytes).

This suggests that standard compression algorithms reduce but do not fully alleviate

disparities in dataset storage sizes across languages.
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Figure 2.3: Byte premiums before and after compression by gzip. Each point is a
language’s byte premium relative to English.

2.1.4 Predicting Novel Byte Premiums

In many cases, we may want to compute the byte premium for a language A

outside of our existing datasets. If a single parallel text is available from A to any

language B in our datasets, then the byte premium can easily be calculated as (using

reference language C as before):

BPA =
BytesA
BytesC

=
BytesA
BytesB

∗ BPB (2.2)

However, there may be cases where no parallel text is available for language A. In

this scenario, we can break the byte premium into (1) the mean bytes-per-character

in A and C, and (2) the ratio of characters needed to express the same information

in A and C (the "length ratio"):

BPA =
BytesA
BytesC

=
BytesA
CharsA

∗ CharsA
CharsC

∗ CharsC
BytesC

(2.3)
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The bytes-per-character ratio for A can be calculated with only monolingual text

in A. We find that this ratio is highly consistent regardless of the dataset used. The

computed bytes-per-character ratios correlate strongly (Pearson’s r > 0.99) when

calculated from any of NLLB, the Bible, or FLORES with 20, 200, or 2000 lines of

text. Given the consistency of these bytes-per-character ratios, we find it efficient to

break byte premiums down as in Equation 2.3 such that we only need to predict the

length ratio between languages.

Predicting Length Ratios

We use linear regressions including language family, script (writing system),

script type (e.g. alphabet vs. logography), and entropy over characters to predict

the length ratio CharsA/CharsC for a language A relative to the reference language

C = English. From the predicted length ratio, we can use Equation 2.3 to calculate

the predicted byte premium for language A. Our results use length ratios, bytes-

per-character ratios, and character entropies computed from NLLB, FLORES, or the

Bible when available, in order of decreasing priority.6

Language Family We predict that typological features (e.g. inflection patterns

or morpho-syntactic distinctions) may drive differences in length ratios. Languages

that are in the same language family are more likely to share typological features

due to their shared historical origin (Moravcsik, 2012).
6As with byte premiums, the choice of reference language C only multiplies all length ratios by a

constant. NLLB length ratios are computed in the same way as byte premiums, but using characters
instead of bytes. We obtain similar regression results using length ratios, bytes-per-character ratios,
and character entropies computed from NLLB, FLORES, or the Bible (Appendix ??).
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Script and Script Type Some writing systems may encode higher information

content per character than others (e.g. Chinese characters; Perfetti and Liu, 2005),

which leads to low length ratios, because the same content takes fewer characters

to write. We separate scripts into four script types (alphabet, abjad, abugida, and

logography), and we use script type as a predictor for length ratio.

• Alphabets are writing systems where each segment (either consonant or vowel)

is represented by a symbol (Daniels, 1990). Latin script is one of the most

widely used alphabets. Other alphabets include Greek, Cyrillic, and Mkhedruli

(Georgian).

• Abjads are writing systems which represent each consonant with a symbol

(Daniels, 1990), but vowels are often not represented. Arabic and Hebrew are

written with abjads, for example.

• Abugidas, also sometimes referred to as neosyllabaries, represent consonant-

vowel sequences, often with vowel notation secondary to consonant notation

(Daniels, 1990). Examples of abugidas include Devanagari (e.g. Hindi), Ge’ez

(e.g. Amharic), and Canadian syllabics (e.g. Ojibwe).

• Logographies are different from alphabets, abjads, and abugidas in that they

represent semantic information as well as phonetic information. Chinese char-

acters are the only logography that remains in use. The majority of Chinese

characters are composed of one semantic component and one phonetic compo-

nent (Williams and Bever, 2010). A relatively small number of characters are
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also pictographs or ideographs, representing only semantic information (Ding

et al., 2004).

In addition to script type, we also consider the specific script as a nested

predictor (e.g. Latin vs. Cyrillic).

Character Entropy It has been proposed that languages with fewer phonemes

(contrastive sounds) in their inventories have longer words, because it requires more

sounds per word to generate the number of contrastive sound sequences necessary

to communicate (Nettle, 1995).7 Using the same logic, we predict that a language

that tends to use fewer unique characters will require longer character sequences to

express information (a high length ratio). We operationalize the number of unique

characters in a language as the entropy over the character probability distribution

in that language. A higher entropy indicates either a more even distribution over

characters or a distribution over more characters. Similar to bytes-per-character

ratios (§2.1.4), the entropy over characters is highly stable across datasets, even

computed from as few as 20 lines of text (Pearson’s r > 0.90 for the same datasets

as §2.1.4).

We fit linear regressions to predict length ratios from three different subsets

of our predictors. This allows us to predict novel byte premiums depending on the

available information about the novel language. We consider the following three

subsets: (I) character entropy, language family, script, and script type, (II) character
7We also measure the number of phonemes per language (PHOIBLE; Moran et al., 2014), but

it does not help predict length ratios (R2 = 0.002). Therefore we do not include it in our linear
regressions.
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Table 2.2: RMSEs when predicting byte premiums using different regressions, for
languages with common and uncommon scripts.

Regression
I II III

Scripts with count ≥ 5 0.261 0.288 0.290

Scripts with count < 5 0.770 0.739 0.589

entropy, script, and script type, and (III) character entropy and script type. The

predicted length ratios can be used to predict byte premiums using Equation 2.3.

2.1.5 Evaluating Byte Premium Predictions

We validate the byte premium predictions from our linear regressions by loop-

ing through languages with known byte premiums (from NLLB, FLORES, or the

Bible, in that order of priority), evaluating the byte premium prediction for that lan-

guage when holding it out from regression fitting.8 We report the root mean squared

error (RMSE) for the three linear regressions described in the previous section (I, II,

and III). We compute separate RMSEs for (1) languages whose script is shared by less

than five languages in our datasets, and (2) languages whose script is shared by five

or more languages in our datasets. Languages whose script is uncommon may have

more poorly fitted script coefficients (and potentially language family coefficients),

so we might expect them to exhibit larger byte premium prediction errors.

Results are reported in Table 2.2. For languages with common scripts (scripts

with count ≥ 5), the regressions improve as predictors are added (III, II, then I). For
8To prevent skew of regression coefficients, we clip byte premiums to a maximum of 4.0 (three

languages; Appendix A.1).
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these languages, RMSEs reach 0.261, indicating that the predicted byte premiums

are on average approximately 0.261 away from the true byte premiums.

In Table 2.3, we report validation RMSEs for each regression when computing

character entropies and bytes-per-character ratios from different datasets. Within

each dataset, we separate the languages for which there are less than five other

languages with the same script in the dataset from those which have five or more

languages with the same script in the dataset. RMSE results are similar regardless

of the dataset used to compute character entropies and bytes-per-character ratios.

Table 2.3: RMSEs when predicting byte premiums using different datasets to com-
pute character entropies and bytes-per-character ratios. Results are separated into
common and uncommon scripts.

Regression
I II III

NLLB Script ct. ≥ 5 0.201 0.244 0.240
Script ct. < 5 0.700 0.744 0.637

Flores Script ct. ≥ 5 0.203 0.246 0.250
(20 lines) Script ct. < 5 0.682 0.557 0.538
Flores Script ct. ≥ 5 0.204 0.252 0.254
(200) Script ct. < 5 0.702 0.615 0.544
Flores Script ct. ≥ 5 0.206 0.266 0.271
(2000) Script ct. < 5 0.703 0.647 0.558
Bible Script ct. ≥ 5 0.272 0.294 0.298
(4 books) Script ct. < 5 0.766 0.680 0.577
Bible Script ct. ≥ 5 0.271 0.293 0.297
(1 book) Script ct. < 5 0.760 0.672 0.566

As expected, we also find that languages with uncommon scripts (scripts with

count < 5) have higher errors in their predicted byte premiums, indicating that their

script and family coefficients are poorly fitted. Likely due to these poorly fitted

coefficients, for those languages, the regression with the lowest validation error is
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regression III, which only includes character entropy and script type as predictors.

The validation RMSE is 0.589, indicating that predicted byte premiums for languages

with uncommon scripts are on average approximately 0.589 away from the true byte

premiums. Given that byte premiums can range from below 0.75 to over 5.00, even

this simple regression is a substantial improvement over a naive assumption that

languages take equal bytes to encode information (i.e. byte premium 1.0).

2.1.6 Introducing the Tool

Finally, we introduce a Python tool that returns pre-computed or predicted

byte premiums for any language pair. The tool is available at https://github.

com/catherinearnett/byte-premium-tool. If both input languages are in our set

of 1155 languages, the pairwise byte premium is computed from Equation 2.1 using

our pre-computed byte premiums. Otherwise, the byte premium is computed from

a user-provided parallel text (if available). If no parallel text is available, the tool

asks for a small monolingual corpus in the novel language(s), from which it can

compute the character entropy and bytes-per-character ratio per language, to use in

the regressions from §2.1.4. Following the validation results in §2.1.5, the tool uses

regression I, II, or III (in order of decreasing priority) for languages with common

scripts. For languages with uncommon scripts, regression III is always used. Aside

from character entropy (which is computed from the user-provided monolingual text),

regression III requires only the script type for the novel language(s), which can easily

be found on sites such as Wikipedia. Thus, our tool provides a simple interface from

which to obtain the pairwise byte premium between any two languages, enabling
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easy dataset size conversions.

2.1.7 Discussion and Conclusion

Measuring Dataset Sizes One implication of our work is that researchers cur-

rently may overestimate the amount of data that multilingual NLP models are trained

on for non-Latin script languages (languages with high byte premiums). These lan-

guages are often already underrepresented in NLP (van Esch et al., 2022). For ex-

ample, if it is reported that a model is trained on 1GB of Georgian data, then based

on its byte premium of 4.34 relative to English, we should consider the model to be

effectively trained on the Georgian equivalent of about 230MB of English data.

As a preliminary investigation into whether scaling training data quantities by

byte premiums per language is indeed a "better" measure of training data quantity,

we use this scaled measure to predict multilingual language model performance on

various per-language benchmarks. We compile reported training data proportions

(measured based on bytes) per language for existing massively multilingual models.

We adjust each training data proportion by dividing the reported proportion by the

byte premium for that language. After re-scaling to sum to 1.0, this provides the

estimated effective proportion of data for each language. If adjusted data proportions

are indeed "better" estimates of effective data quantities, then we expect them to

predict downstream task performance better than the original reported training data

proportions.

We evaluate ten models from three model families: XGLM (Lin et al., 2022),

BLOOM (Scao et al., 2022), and mT0 (Muennighoff et al., 2023). We compile results
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from XGLM 7.5B, four sizes of BLOOM (560M, 1.1B, 3B, 7.1B), and five sizes of mT0

(small, base, large, xl, xxl). We use benchmark scores from five multilingual bench-

marks: XStoryCloze (Lin et al., 2022), XCOPA (Ponti et al., 2020), XNLI (Conneau

et al., 2018), Wikipedia next word prediction (Guo et al., 2020), and XWinograd

(Muennighoff et al., 2023). These benchmarks cover 22 languages: Arabic, Bulgar-

ian, German, Greek, English, Estonian, French, Haitian Creole, Hindi, Indonesian,

Italian, Japanese, Burmese, Portuguese, Russian, Spanish, Swahili, Telugu, Turkish,

Urdu, Vietnamese, and Chinese (simplified and traditional). Benchmark scores are

compiled from the Big Science evaluation results on Hugging Face.9

We fit two linear mixed effects models. Each predicts the benchmark score for

each language (all scores between 0.0 and 1.0) from the training data proportion for

that language (either the original proportion or those scaled according to our byte

premiums) as well as language family, with random intercepts for model and task.

We calculate the AICs of the two non-nested models, along with their relative log

likelihoods (Wagenmakers and Farrell, 2004). While the the data proportions scaled

by byte premiums better predict benchmark performance (lower AIC and higher log

likelihood), it is not a significant difference (p = 0.13), using significance testing as

in Wagenmakers and Farrell (2004).

Byte-Level Tokenization Our results also have implications for dataset tokeniza-

tion. Previous work has argued that byte-level tokenizers enable more uniform treat-

ment of different languages in a model (Zhang and Xu, 2022; Xue et al., 2022), but

our byte premiums demonstrate that some languages may still be at a disadvantage
9https://huggingface.co/datasets/bigscience/evaluation-results
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with byte-level tokenizers. Tokenization length inequalities can lead to higher costs,

longer latencies, and restricted effective context lengths for some languages (Ahia et

al., 2023; Petrov et al., 2023), in this case languages with high byte premiums.

Equitable Resource Costs Finally, languages with high byte premiums require

more storage space than other languages to store comparable content, and they are

likely to require higher bandwidth connections to transmit text content. In cases

where storage is charged per (giga)byte or Internet connections are charged based

on bandwidth and usage, uniform pricing rates across languages may lead to higher

technology costs for low-resource language communities. While only a marginal step

towards solving such issues, our work makes it possible to take byte premiums into

account when measuring text data sizes across languages.
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Chapter 3

Morphological Alignment of

Tokenization

The current chapter investigates the role of tokenization on downstream tasks

that require representations of linguistic information, in this case subject-verb agree-

ment. The specific aspect of tokenization I discuss is morphological alignment, that

is whether the token boundaries align with morphological boundaries.

As a preface to this chapter, I introduce the ongoing discussion on optimal

tokenizer design and evaluation, with an emphasis on morphological alignment. I

discuss theories from linguistics and psycholinguistics, which I argue shed light on

the desiderata of tokenizers for language models.

Tokenizers are generally designed for efficient segmentation, to be flexible

enough to minimize the number of ‘unknown’ tokens, and to offer some compression.

They are not designed to have linguistically interpretable or cognitively plausible
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vocabularies. However, some researchers argue that morphologically aligned tok-

enization, i.e. tokenization that segments along morphological boundaries, is the

gold standard for tokenization (Hofmann et al., 2022; Bauwens and Delobelle, 2024;

Libovickỳ and Helcl, 2024, inter alia). But there are reasons to believe this is not

the case, independent from empirical evidence in NLP. I will first discuss evidence

from linguistics, then evidence from psycholinguistics.

Linguistic Evidence Against Decomposition Hypothesis

Designing a tool to segment text into discrete morphemes using linear se-

quences is likely impossible. After decades of work focusing on English, even segmen-

tation for English has not been solved. English, in fact, is far from the ideal language

to apply this approach to be applied to. English is a fusional language, meaning that

morphemes often encode more than one grammatical or semantic feature. Therefore,

it is not trivial to segment words into discrete morphemes. Attempting to do so will

lead to multiple possible segmentations, none of which will be obviously more correct

than the others1 (Lounsbury, 1953; Blevins, 2016).

For example, the regular nominal pluralization morpheme ‘-s’ is often easily

segmented (e.g. (1-a)), however, in the case of ‘flies’, it is ambiguous whether the best

segmentation should be as in (1-b) or as in (1-c). While these forms are regular, the

orthography introduces ambiguity for segmentation. In the case of irregular forms,
1"In a fusional language, if one seeks to arrive at constant segments... conflicts arise in the

placing of the cuts. One comparison of forms suggests one placement, while another comparison
suggests another. Often, in fact, no constant segment can be isolated at all which corresponds to a
given constant meaning. Situations of this kind often permit of more than one solution according
to different manners of selecting and grouping environments." (Lounsbury, 1953, p. 172 in Blevins,
2016)
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e.g. ‘better’, there is no clear split between the lemma ‘good’ and comparative

morpheme ‘-er’. This kind of approach to the segmentation of complex words, only

words for languages with perfectly symmetrical morphological systems (Stevens and

Plaut, 2022), of which there is no documented example.

(1) a. dog + s

b. flie + s

c. fli + es

(Nouri and Yangarber, 2016)

In order to fully implement this approach, one has to assume that "words

can be fully decomposed for all languages" as if "[...] every language is ‘really’

agglutinative" (Hockett, 1987 in Blevins, 2016). Beyond English, non-concatenative

morphology, periphrasis, and other morphological phenomena further challenge this

approach.

Therefore, the decomposition hypothesis is practically difficult to implement

and makes strong assumptions about the underlying structure of words, which does

not completely reflect what is known about word formation crosslinguistically.

Psycholinguistic Evidence against morphological segmentation (decompo-

sition hypothesis

Psycholinguistic evidence also challenges the usefulness of the decomposition

hypothesis. Research on human visual language processing has grappled with some

of the same issues which now related to tokenization. Subword tokenization was
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developed in part because is too inefficient to store every possible token, and a

language model must learn a token embedding for each token in its vocabulary. So

each token takes up computationally expensive trainable parameters. For humans,

the hypothesis that humans store every word form in their mental lexicon is called

the full listing hypothesis (Butterworth, 1983; Bybee, 1995). Similar to tokenization,

this is viewed to be inefficient for humans due to the memory demands.

The converse hypothesis is the parsing hypothesis or the decomposition hy-

pothesis (Taft and Forster, 1976). Under this hypothesis, the mental lexicon stores

lemmas, and complete word forms are computed during production. During com-

prehension, words are decomposed into their lemmas and morphemes.

Empirical psycholinguistics supports a hybrid model, the dual-route model

(Baayen, 1995). Under this model, people store some high-frequency or non-compositional

word forms whole in the mental lexicon, but lower-frequency items may be composed

and decomposed from their morphemes during production and comprehension2.

This dual-route hypothesis has been proposed as being relevant to tokeniza-

tion (Hofmann et al., 2021), as many subword tokenizers store some high-frequency

word forms whole as tokens, while less frequent forms are generally decomposed into

multiple tokens. Accepting the dual-route hypothesis as a hypothesis for optimal

tokenization challenges the strong decomposition approach to tokenization, as even

when words are decomposable, it may be more efficient to store them as whole words.

One reason for this is compression. It is twice as computationally expensive to pro-

cess a word represented by two tokens as a word represented by a single token. The
2See Arcara et al. (2014) for an overview.
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work in this chapter contributes to the literature on this issue.

3.1 Different Tokenization Schemes Lead to Com-

parable Performance in Spanish Number Agree-

ment

Abstract

The relationship between language model tokenization and performance is

an open area of research. Here, we investigate how different tokenization schemes

impact number agreement in Spanish plurals. We find that morphologically-aligned

tokenization performs similarly to other tokenization schemes, even when induced

artificially for words that would not be tokenized that way during training. We then

present exploratory analyses demonstrating that language model embeddings for dif-

ferent plural tokenizations have similar distributions along the embedding space axis

that maximally distinguishes singular and plural nouns. Our results suggest that

morphologically-aligned tokenization is a viable tokenization approach, and existing

models already generalize some morphological patterns to new items. However, our

results indicate that morphological tokenization is not strictly required for perfor-

mance.
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3.1.1 Introduction

In natural language processing (NLP) pipelines, tokenizers segment unstruc-

tured text into smaller, discrete constituents ("tokens") for further processing. Im-

portantly, different tokenizers can incur performance and efficiency trade-offs. As-

signing a unique token to each word in a corpus may lead to high-precision semantic

representations, but the resulting models might be less robust to unseen words and

require more computational resources.

Most existing tokenizers allow words to be decomposed into subword tokens

(Sennrich et al., 2016; Kudo and Richardson, 2018). They can do so along morpholog-

ical boundaries (e.g. books to [‘book’, ‘##s’]), but this behavior is not guaranteed.

Segmenting words into their lemmas and morphemes might simultaneously allow

models to more robustly learn morphosyntactic patterns, more efficiently represent

such patterns, and better generalize to novel words. (An analogous question concern-

ing the storage of whole words vs. learning generalizable rules exists within human

psycholinguistics research, e.g., Ullman, 2016).

In the current work, we ask whether and how the tokenization strategy

employed facilitates successful language model predictions. We evaluate the ef-

fect of three types of plural noun tokenization in Spanish—single-token plurals,

morphemically-tokenized plurals, and non-morphemically-tokenized plurals—in the

context of a masked article prediction task (§3.1.4).3 We focus on tokenization

schemes for plural forms in Spanish, as it offers relatively simple and frequent ex-
3Note that this categorization scheme mirrors an approach taken in contemporaneous work,

using the labels "vocab", "morph", and "alien", respectively.
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amples of morphologically complex words. Spanish leverages two primary plural

marking strategies, which are highly predictable for any given lemma. We specifi-

cally focus on cases where the plural form is composed of the singular form with the

addition of ‘-s’ or ‘-es’.

We find that tokenization schemes are differentially successful, although the

effect is small, and article agreement accuracy is high across all tokenization types.

Artificial tokenization schemes, where we coerce an initially single-token or non-

morphemically-tokenized plural into a morphemic representation, leads to successful

task performance, but does not improve performance beyond the original tokeniza-

tion scheme. In an exploratory analysis, we compare singular and plural form em-

beddings across all tokenization schemes. We find axes with high overlap between all

plural forms (regardless of tokenization scheme) and high discriminability between

plural and singular forms, but other axes can still separate different plural tokeniza-

tion schemes. This work contributes to a growing literature examining the impact

of tokenization on the language modeling objective. Code and data are available:

https://github.com/catherinearnett/spanish-plural-agreement.

3.1.2 Related Work

Several studies have investigated morpho-syntactic agreement in BERT-style

models across multiple languages (Linzen et al., 2016; Mueller et al., 2020; Edmiston,

2020; Pérez-Mayos et al., 2021, inter alia), finding generally high agreement accuracy.

In a subject-verb agreement task, however, BETO incurs a relatively high rate of

agreement errors for certain Spanish nouns (despite the ability to extend number
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agreement to novel words; Haley, 2020). It is unclear to what extent degraded

performance is attributable to tokenization scheme, but the word "comanas"—listed

as an example of a frequently mis-numbered word—is tokenized non-morphemically

into [‘coman’, ‘##as’].

Indeed, recent work has demonstrated that morphologically-aware tokeniza-

tion improves NLP model performance on a variety of downstream benchmarks (Park

et al., 2020; Hofmann et al., 2021; Toraman et al., 2023; Jabbar, 2024; Uzan et al.,

2024). Most relevantly, Batsuren et al. (2024) devise a tool to classify English words

in terms of whether they are stored as single tokens ("vocab"), as multiple morphemic

tokens ("morph"), or as multiple non-morphemic tokens ("alien"). The authors find

that how multi-morphemic English words are tokenized is correlated with the lan-

guage model’s downstream performance on several tasks.

In line with Batsuren et al. (2024), our work investigates how the tokenization

of Spanish nouns affects language model predictions involving a specific morphosyn-

tactic rule, providing insight into how morphologically-aware tokenization affects

NLP model performance.

3.1.3 Model and Data

All experiments use BETO, a Spanish pre-trained BERT model (Cañete et

al., 2020) with 110M parameters trained on approximately 3B words. BETO uses a

SentencePiece tokenizer (Kudo and Richardson, 2018) with a 32K vocab size.
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Data

All plural nouns and their singular form lemmas were extracted from the

AnCora Treebanks (Alonso and Zeman, 2016). Plurals were categorized according

to their affix. Nouns ending in vowels use the plural suffix -s, while nouns ending

in consonants use the suffix -es. Plurals were also annotated for their grammatical

gender by a native Spanish speaker. Irregular nouns, misspellings, and words not

listed in the Real Academia Española (RAE) online dictionary were excluded.

Identifying Tokenization Type

We created three lists of plurals: one-token (n=1247), multi-token morphemic

(n=508), and multi-token non-morphemic (n=627). One-token plurals are stored as

single tokens in the tokenizer’s vocabulary. We then categorized multi-token plurals

as morphemic or non-morphemic. If tokenization followed morpheme boundaries

(e.g., naranjas as [’naranja’, ‘##s’]), the noun was categorized as morphemic; if

not, it was categorized as non-morphemic (e.g., neuronas is tokenized as [’neuro’,

‘##nas’]).

Relationship of Tokenization to Frequency

Using oral frequency measures for 2071 target plural wordforms available in a

corpus of over 3M spoken words (Alonso et al., 2011), we examined the relationship

between a wordform’s frequency and how it was tokenized. A linear model predicting

Log Frequency from Tokenization Scheme explained significant variance [R2 = 0.33].

With morphemic level as a reference class (i.e., intercept), the non-morphemic
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plural nouns were significantly less frequent [β = −0.18, SE = 0.03, p < .001], while

the single-token plural nouns were significantly more frequent [β = 0.59, SE =

0.03, p < .001]. As expected, the frequency of a wordform was likely a major factor

in how it was tokenized.

Due to the relationship between tokenization scheme and wordform frequency,

we carried out several supplementary analyses to determine the extent to which fre-

quency was a confound in the results presented in Section 3.1.4. We found two key

results: first, BETO’s predictions were indeed more accurate for more frequent word-

forms; second, however, BETO’s predictions were still more accurate for some of the

original tokenization schemes than others, even controlling for wordform frequency.

We ran a follow-up analysis asking whether the Log Frequency of a wordform

was predictive of agreement success. This analysis had two key goals. First, because

Log Frequency was correlated with Tokenization Scheme, we aimed to determine

whether the effect of Tokenization Scheme on agreement success was in fact due to

effects of token frequency. Second, we were independently interested in whether the

language model made better predictions for more frequent wordforms.

We fitted a linear mixed-effects model including fixed effects of Tokenization

Scheme, Word Number, and Log Frequency, as well as interactions between Word

Number and Tokenization Scheme and between Word Number and Log Frequency.

We also included random intercepts for word lemma and sentence. This model

explained significantly more variance than a model omitting only the interaction

between Log Frequency and Word Number [χ2(1) = 17.89, p < .001]. The interaction

was negative [β = −0.35, SE = 0.08, p < .001], i.e., the plural article log-odds were
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Figure 3.1: Single-token plurals were significantly more frequent than those tokenized
according to morphemic boundaries, which were more frequent than those tokenized
according to non-morphemic substrings.

more negative for more frequent singular nouns. In other words, the language model

made better predictions for more frequent nouns than less frequent nouns.

The full model also explained more variance than a model omitting the in-

teraction between Word Number and Tokenization Scheme [χ2(2) = 11.24, p = .004].

This indicates that even controlling for wordform frequency, there was an indepen-

dent effect of how the wordform was initially tokenized on the success of the language

model’s article predictions.
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Artificial Tokenization Procedure

To investigate the effect of tokenizing a wordform at the morpheme boundary,

we artificially tokenized single-token and multi-token non-morphemic plural nouns

by concatenating the token for the appropriate affix (e.g., "##es") onto the token(s)

for the singular noun (Table 3.1).

Table 3.1: Artificial tokenizations for the words mujeres ‘women’ (mujer), and pa-
tronos ‘employers’ (patrono).

Morpheme Original Artificial
Boundary Tokenization Tokenization
mujer+es [’mujeres’] [’mujer’, ‘##es’]
patrono+s [’patr, ‘##onos’] [’patr, ‘##ono’, ‘##s’]

3.1.4 Study: Article-Noun Agreement

Our primary research question concerned the impact of the original tokeniza-

tion (Tokenization Scheme) on an article agreement task, similar to that imple-

mented by Linzen et al. (2016). In Spanish, articles must agree with the number of

the noun (e.g., la mujer vs. las mujeres); learned representations for the target noun

should thus be conducive to predicting article number. We asked:

1. How does the initial tokenization scheme of a plural noun impact the language

model’s ability to predict the correct article?

2. Does our artificial tokenization scheme provide sufficient information to facili-

tate successful agreement?
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3. How does the success of our artificial tokenization scheme compare to the orig-

inal tokenization scheme for those nouns?

Method

Agreement was assessed by taking the logarithm of the relative probability

of a plural vs. singular article as predicted by a given noun. For a given wordform

(e.g., mujeres), a positive log-odds indicated a higher probability was assigned to the

plural article, while a negative log-odds indicated a higher probability was assigned

to the singular article. A singular noun should be associated with a more negative

log-odds, while a plural noun should be associated with a more positive log-odds.

We considered both definite and indefinite articles (Article Type) for each

wordform; the log-odds calculation was performed separately for each type.

Within the sequence of model inputs, only the article token was masked, and

special tokens ([CLS], [SEP]) were included, as in the examples below:

• Example model inputs for original single-tokenizations: "[CLS] [MASK] mu-

jeres [SEP]"

• Example model inputs for artificial (morphemic) tokenizations: "[CLS] [MASK]

mujer ##es [SEP]"

• Example model inputs for original non-morphemic multi-tokenizations: "[CLS]

[MASK] patr ##onos [SEP]"

• Example model inputs for artificial (morphemic) tokenizations: "[CLS] [MASK]

patr ##ono ##s [SEP]"
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For each sequence of inputs independently, we obtain BETO’s output logits

over the target token corresponding to the (1) definite singular, (2) indefinite sin-

gular, (3) definite plural, and (4) indefinite plural articles. We subsequently apply

softmax normalization to each token’s logits to obtain the log probabilities of filling

the masked item with a particular article.

Accounting for the different presentations of each wordform (i.e., definite vs.

indefinite article; original vs. artificial tokenization), our final dataset had 13,276

observations in total, each with an accompanying log-odds ratio. All data and visu-

alizations were analyzed in R; mixed effects models were fit using the lme4 package

(Douglas Bates et al., 2015). Maximal random effects structures were fit where pos-

sible, and reduced as needed for model convergence.

Results

Impact of Initial Tokenization We first asked whether the original tokeniza-

tion scheme used for plural nouns affected successful agreement. We fit a mixed

model with Log Odds as a dependent variable, fixed effects of Tokenization Scheme

and Word Number (and an interaction between the two), fixed effects of Arti-

cle Type, and random intercepts for each word lemma and sentence. This model

explained significantly more variance than a model omitting only the interaction

[χ2(2) = 6.54, p = .04], suggesting that different tokenization schemes were differen-

tially successful in predicting the appropriate article.

However, as depicted in Figure 3.2, this effect was quite small. Accuracy was

near ceiling for all tokenization types, i.e., the Log Odds was larger than 0 for plural

97



nouns and smaller than 0 for singular nouns (see also Table 3.2). Thus, our results do

not suggest that morphologically-aligned tokenization is required for good agreement

performance.

Table 3.2: Accuracy scores for plural nouns only, using either the original tokenization
scheme for that class of nouns or the artificially-induced morphemic scheme.

Original Tokenization Original Artificial
Morphemic 0.97 —

Non-morphemic 0.98 0.96
Single-Token 0.98 0.97

Figure 3.2: Log-odds varied significantly as a function of noun number (singular vs.
plural). The extent of this variance interacted (weakly) with initial tokenization
(morphemic vs. non-morphemic vs. single-token) and with whether the original or
artificial tokenization procedure was used. Larger log-odds indicate higher probabil-
ities of the plural article.
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Success of Artificial Tokenization Next, we artificially tokenized plural nouns

that would otherwise be tokenized non-morphemically or as a single-token. To quan-

tify the success of this procedure, we fitted a linear mixed-effects model predicting

Log Odds with fixed effects of Article Type, Word Number, Tokenization Scheme,

and Affix ("##s" or "##es"), as well as random intercepts for word lemma and

sentence.

This model explained significantly more variance than a model omitting only

Word Number [χ2(1) = 11988, p < .001], indicating that the artificial tokenization

procedure still led to good article number agreement performance: Log Odds were

significantly different for singular nouns and artificially-tokenized plural nouns (see

also Figure 3.2 and Table 3.2).

Comparing Default vs. Artificial Tokenization Schemes Finally, restrict-

ing our analysis to plural forms, we asked whether a higher Log Odds was assigned

to artificially tokenized plural nouns than ones using the default scheme. We fit-

ted a linear mixed-effects model with fixed effects of Tokenization Scheme (artificial

or original), Affix, and Original Tokenization Scheme (as well as random intercepts

for word lemma, sentence, and wordform, and by-lemma random slopes for Tok-

enization Scheme). This model did explain more variance than a model omitting

only Tokenization Scheme [χ2(1) = 141.81, p < .001]. Critically, however, the Log

Odds for the artificially tokenized plural nouns was lower (M = 3.38, SD = 2) than

when using the default tokenization (M = 3.95, SD = 2.15). In other words, the

artificially-induced morphemic tokenization was successful, but less so than relying

on the original scheme for those nouns.
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3.1.5 Linear Discriminant Analysis (LDA)

Singular-plural
LDA axis

LDA
Axis 2

LDA
Axis 3 LDA

Axis 1

D
en
si
ty

singular one-token morph non-morph artificial

Figure 3.3: LDA for singular and plural embeddings reveals axes of overlap (left)
and discriminability (right) for differentially tokenized plural forms.

To identify potential causes for the observed agreement patterns across noun

types (singular vs. different plural tokenizations), we considered the embeddings of

those nouns in the language model representation space. We took each noun’s mean

embedding across the last four (out of twelve) BETO Transformer layers, averaging

over all tokens in the noun. To minimize confounds from averaging embeddings over

different numbers of tokens, we considered only two-token plurals in all multi-token

scenarios for embedding analyses.

We first identified the linear axis that maximally separated single-token sin-

gular from plural nouns. To do this, we ran linear discriminant analysis (LDA) with

two classes of embeddings: singular nouns (all single-token) and single-token plural
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nouns.4 We then projected all noun representations linearly onto this axis, essentially

projecting each embedding into a single value. As expected, we found that singular

nouns clustered separately from plural nouns (Figure 3.3, left). Notably, all types

of plurals (single-token, artificially tokenized, two-token morphemic, and two-token

non-morphemic) patterned together and were not linearly discriminable along this

axis. This suggests that the model could rely on similar number agreement mech-

anisms for different types of plurals, but future work would need to demonstrate

causal impacts of this singular-plural axis on number agreement predictions (e.g. as

in Mueller et al., 2022b).

While the singular-plural LDA axis mapped different plural types to similar

values, other axes could separate embeddings for the different plural types. We used

LDA to identify the three linear axes that maximally separated the four types of

plurals. As shown in Figure 3.3 (right), single-token plurals and two-token non-

morphemic plurals were separable from one another and from all other plural types.

The artificial and default morphemic plurals had distinct clusters, but they were not

entirely separable from one another. This indicates that even though the artificial

tokenization was never seen by the model during training, the representations were

still quite similar (e.g. due to the presence of the ‘##s’ or ‘##es’ token). The slight

separation between these clusters may be driven either by frequency effects or by

veridical differences in how the models represent number in the two plural types.
4Given n sets of representations, LDA computes n − 1 directions in the language model repre-

sentation space that maximize separation between the sets.
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3.1.6 Discussion and Conclusion

We assessed whether distinct tokenization schemes impacted the ability of

BETO (a Spanish language model) to predict appropriate articles for Spanish plu-

ral nouns. Single-token representations facilitated slightly better predictions over-

all. However, the model did show evidence of generalization consistent with having

learned morpheme-like "rules": artificially re-tokenizing plural nouns along mor-

pheme boundaries produced representations amenable to article prediction—despite

the language model never having previously observed that sequence of tokens (see

Figure 3.2)—though this approach was slightly less accurate than relying on the

original tokenization scheme. This provides further insight into work on language

models generalizing morphological patterns (Haley, 2020); however, this does not

work equally well for all languages or models (Weissweiler et al., 2023a).

Notably, the similar agreement performance across single-token, morphologi-

cal, non-morphological, and artificially-tokenized plurals could indicate multiple dif-

ferent agreement mechanisms in the model. At least on this task, tokenization along

morpheme boundaries was not correlated with improved agreement performance; this

is in contrast to other work suggesting that morphologically aware tokenization im-

proves performance, e.g., in machine translation (Macháček et al., 2018) or similarity

judgments (Batsuren et al., 2024). Future work might apply causal interventions on

different embedding axes (as found in §3.1.5), to determine the extent to which the

same model subnetworks are involved in number agreement for different types of plu-

ral tokenizations, shedding light on the impacts of tokenization on language model

processing.
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3.1.7 Limitations

A key limitation of the current work is scope. Future work could consider

additional morphological phenomena, additional languages, and a larger range of

language models or tokenization schemes. A second limitation is that the language

model’s performance was near-ceiling for each category considered. It is possible

that different tokenization strategies do in fact impact agreement performance under

more challenging conditions, but that the near-ceiling performance on this task made

it difficult to detect those differences. Future work could work to develop more

challenging tasks for which the model is not at ceiling (as in Linzen et al., 2016),

or for which variance in how multi-morphemic words are parsed might be expected

to contribute more to downstream performance (Batsuren et al., 2024). Finally, our

work does not demonstrate the extent to which different tokenizations rely on the

same internal mechanisms for agreement in the model (§3.1.6), which is a valuable

direction for future work.
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Chapter 4

Do Crosslinguistic Typological

Differences Drive Inequities in NLP

Performance?

There is a pervasive assumption that language technologies developed for En-

glish can be applied to other languages, as long as there is sufficient pre-training data

(Bender, 2011). In this chapter, I ask whether there is empirical evidence to contra-

dict this assumption. There are observed differences in performance (as discussed in

Section 1.2). Language model performance varies greatly between languages, often

such that language model performance for languages more dissimilar to English is

worse than that for languages more similar to English. Therefore, it has been pro-

posed that there are structural properties of a language that might lead to better

or worse language model performance. But is this because of inherent language dif-
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ferences or is it simply due to a lack of data? In this chapter, I investigate whether

there are particular features of a language that are correlated with lower performance,

specifically morphological typology.

This questions is of broad interest for crosslingual and multilingual NLP, as it

is important to know whether there are deep, architectural design choices in NLP that

systematically benefit English over other languages. The results from this chapter

bear on the discussion of morphologically aligned tokenization, which was discussed

in Chapter 3.

4.1 Why do language models perform worse for mor-

phologically complex languages?

4.1.1 Abstract

Language models perform differently across languages. It has been previously

suggested that morphological typology may explain some of this variability (Cot-

terell et al., 2018). We replicate previous analyses and find additional new evidence

for a performance gap between agglutinative and fusional languages, where fusional

languages, such as English, tend to have better language modeling performance than

morphologically more complex languages like Turkish. We then propose and test

three possible causes for this performance gap: morphological alignment of tokeniz-

ers, tokenization quality, and disparities in dataset sizes and measurement. To test

the morphological alignment hypothesis, we present MorphScore, a tokenizer eval-
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uation metric, and supporting datasets for 22 languages. We find some evidence

that tokenization quality explains the performance gap, but none for the role of

morphological alignment. Instead we find that the performance gap is most reduced

when training datasets are of equivalent size across language types, but only when

scaled according to the so-called ‘’byte-premium"—the different encoding efficien-

cies of different languages and orthographies. These results suggest that languages

of particular morphological types are not intrinsically advantaged or disadvantaged

in language modeling. Differences in performance can be attributed to disparities

in dataset size. These findings bear on ongoing efforts to improve performance for

low-performing and under-resourced languages.

4.1.2 Introduction

An enduring goal in NLP is to develop language-general systems that achieve

equal performance on all languages (Bender, 2011). Yet to date performance on lan-

guages other than English and a small number of high-resource languages remains

extremely poor (Joshi et al., 2020; Ranathunga and de Silva, 2022; Søgaard, 2022;

Atari et al., 2023; Ramesh et al., 2023). This has been attributed to a lack of re-

search on non-English languages (Blasi et al., 2022), a lack of training data, and the

possibility that evaluations are skewed towards high-resource languages (Choudhury,

2023).

Beyond these systemic biases, it’s also possible that certain linguistic features

lead to higher or lower language modeling performance. Specifically, it has been

All code and data for this paper available below.
https://osf.io/jukzd/?view_only=3d0d491d24074215a0ab81f72a693c16
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proposed that languages with more complex morphology are harder to model (Cot-

terell et al., 2018; Park et al., 2021b). Languages with more inflectional classes are

morphologically more complex, and thus harder to predict. This can be described in

terms of enumerative complexity (Ackerman and Malouf, 2013).

Greater morphological complexity may lead to worse language model per-

formance, as morphologically rich languages tend to have a large number of very

infrequent word forms produced by combinations of morphemes, which leads to data

sparsity (Shin and You, 2009; Bender, 2011; Botev et al., 2022). This claim finds

empirical support in Gerz et al. (2018a), who demonstrated over a sample of 50 lan-

guages that morphologically rich (agglutinative) languages performed worse than less

morphologically rich (fusional) languages. In the current work (§4.1.4), we replicate

this analysis and extend it to much larger transformer models, both in monolingual

and multilingual settings. We, too, find a robust performance gap between aggluti-

native and fusional languages.

This effect is surprising, as there are reasons to think that agglutinating lan-

guages should be easier for language models to learn. In studies on first language

acquisition, children are observed to acquire more complex morphological systems

earlier, especially systems that are uniform and transparent (Dressler, 2010). This

may be due to the fact that the form-meaning correspondences in these systems are

more transparent, and thus more informative (Slobin, 1973, 2013, 2001; Dressler,

2010). By adulthood, there are no observed cross-linguistic differences in the level

of acquisition of different languages according to morphological typology. Therefore,

there is no linguistic evidence that would predict that any language should be harder
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to learn than any other language.

Identifying the causes for this performance gap could permit improved perfor-

mance for morphologically rich languages (which are often low-resource) and reduce

the performance inequity, potentially enabling users and researchers to be better

able to use and do research on language models (Khanuja et al., 2023) in their own

languages. We evaluate three possible explanations.

Hypothesis 1: Tokenization is not Morphologically Aligned

When the token boundaries for a given word line up with its morpheme bound-

aries, that tokenization is morphologically aligned. For example, the word ‘books’ in

English is composed of the root ‘book’ and the plural morpheme ‘-s’. A morpholog-

ically aligned tokenization would be [‘book’, ‘s’]. By contrast, [‘boo’, ‘ks’] and [‘b’,

ooks’] would be morphologically misaligned tokenizations.

Morphological alignment of the tokenizer – or lack thereof – could impact

language modeling performance, especially for morphologically rich languages. For

these languages, relatively frequent morphemes are combined to create a large num-

ber of unique word forms, which may be rare or completely novel. If the tokenizer

does not segment words along morphological boundaries, it may be difficult for the

language model to efficiently learn and represent the structure of the language. Ad-

ditionally, this may be further exaggerated for morphologically complex languages,

which tend to have longer words.

This hypothesis would predict that agglutinative languages have less morpho-

logically aligned tokenizers than fusional languages and that morphological alignment
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negatively correlates with metrics of language model performance. To test this hy-

pothesis, Section 4.1.5 introduces MorphScore, tokenizer evaluation for morpholog-

ical alignment in 22 languages. To our knowledge, this is the first such multilingual

evaluation for morphological alignment of tokenizers.

Hypothesis 2: Tokenization is Worse

Second, morphologically rich languages might tend to engender lower quality

tokenizations. There is no current consensus on how to evaluate intrinsic tokenization

quality (Zouhar et al., 2023; Chizhov et al., 2024). But compression is one of the most

widely used metrics (Gallé, 2019; Rust et al., 2021, inter alia). It is usually measured

as sequence length – the number of tokens needed to encode a sequence – or corpus

token count (CTC; Schmidt et al., 2024). Better compression has been linked to

better language modeling performance because it allows for more language data to

fit into a fixed sequence length (Gallé, 2019; Liang et al., 2023; Dagan et al., 2024;

Goldman et al., 2024); however, there is some evidence to suggest that compression

is not directly linked to performance (Deletang et al., 2024; Schmidt et al., 2024).

Agglutinative languages might have worse compression on average because

words tend to be longer (Fenk-Oczlon and Fenk, 1999; Berg et al., 2022) and there

are more unique word forms (Sandra, 1994). In Turkish, for example, a single root

may have millions of unique word forms (Hakkani-Tür et al., 2002). It is therefore less

likely that the tokenizer will store whole words in its vocabulary, instead representing

words using multiple tokens. This in turn may lead to worse compression and thus

worse performance. If we find worse compression for agglutinative languages than
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for fusional languages, this may indicate that suboptimal compression is related to

the performance gap.

Another proposed metric of tokenization quality is Rényi entropy (Zouhar

et al., 2023), which measures how evenly distributed token frequencies are over the

whole vocabulary, penalizing very high- and very low-frequency tokens. Rényi en-

tropy has been shown to be predictive of downstream task performance (ibid). Be-

cause of their larger number of low-frequency word forms, it is possible that agglu-

tinative languages have higher numbers of low-frequency tokens (specific inflectional

forms) or higher numbers of high-frequency tokens (very high frequency morphemes

used in many different word forms) than fusional languages. Therefore if aggluti-

native languages display worse (higher) Rényi entropy than fusional languages, this

could indicate that inefficient token frequency distribution contributes to the perfor-

mance gap.

In Section 4.1.6, we collect both compression and Rényi entropy and test

whether agglutinating languages have worse compression and Rényi entropy, which

would suggest that aspects of tokenization quality are driving the performance gap.

Hypothesis 3: Less Training Data

The role of data quantity for pre-trained language models is uncontroversial:

the more, the better. In some cases, increasing data can improve performance more

than increasing model size (Hoffmann et al., 2022). Western European high-resource

languages tend to be less morphologically rich, and correspondingly, many morpho-

logically rich languages are low-resource. Morphologically rich languages have less
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annotated data (Botev et al., 2022) and are less well researched. According to a

survey by Blasi et al., despite having more speakers than most European languages,

morphologically complex languages like Bengali, Swahili, and Korean have only a

small number of studies. German, Romanian, French, and Italian have been better

studied, despite having many fewer speakers (Blasi et al., 2022, Table 2). Therefore,

data scarcity may be driving the observed performance gap between agglutinative

languages and fusional languages.

Furthermore, recent work has shown that there are disparities in the number

of bytes needed to convey the same amount of information in different languages

(byte premium; Arnett et al., 2024a), due to orthographic encoding and linguis-

tic reasons. Morphologically rich languages are more often written with non-Latin

scripts, which require more bytes to be represented in common encoding standards

like UTF-8. Morphologically rich languages also have longer words, which may am-

plify the effect. Byte premiums may thus exacerbate the data scarcity problem, and

agglutinative languages may be trained on effectively less data even than it cur-

rently seems. Section 4.1.7 asks whether monolingual language models trained on

byte-premium-scaled text demonstrate the previously observed performance gap.

4.1.3 Background

Morphological Typology

The field of morphological typology seeks to categorize languages according

to their word formation strategies (Brown, 2010). Some languages primarily use

words composed of a single morpheme or a small number of morphemes. Other lan-
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guages incorporate many morphemes into a single word. This paper focuses on two

types of languages: fusional and agglutinative languages. Fusional languages tend

to encode multiple morpho-syntactic features into a single morpheme, where agglu-

tinative languages tend to use different morphemes to represent each feature (Plank,

1999; Haspelmath, 2009; Dressler, 2010). As a result, agglutinative languages also

tend to be polysynthetic (having words composed of many individual morphemes;

Baker, 1996). For example, Turkish has separate plural and accusative morphemes,

but in English, the root, tense, number, and person may all be loaded onto a single

morpheme (Exs. (1) and (2)).

(1) tarla-lar-ı (Turkish)

field-PL-ACC

(Plank, 1999)

(2) are

be-PRES.2PL (English)

Typological categorization is much more complex than this binary categorical dis-

tinction. In order to connect this work with previous studies, it is helpful to use

a very coarse view of morphological type; however, these properties are gradient.

Languages may have both fusional and agglutinative properties (and properties of

other morphological types, too). See Plank (1991; pp. 11-16) for discussion on this

point.
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Morphologically Aligned Tokenization

There is an area of active research on the relationship between morphological

alignment of tokenizers and how it relates to language model performance. Work in

this area often stems from the assumption that morphologically aligned tokenization

is the gold standard for tokenization (Hofmann et al., 2022; Bauwens and Delobelle,

2024; Libovickỳ and Helcl, 2024, inter alia). Morphologically-aware or aligned tok-

enization has been argued to lead to more meaningful tokens, which in turn leads to

better performance (Banerjee and Bhattacharyya, 2018; Klein and Tsarfaty, 2020;

Tan et al., 2020; Hofmann et al., 2021, 2022; Minixhofer et al., 2023; Bauwens and

Delobelle, 2024). There is empirical evidence from several languages to support this

claim, e.g. English (Jabbar, 2024), Korean (Lee et al., 2024) , Latvian (Pinnis et al.,

2017), Arabic (Tawfik et al., 2019), Japanese (Bostrom and Durrett, 2020), Hebrew

(Gueta et al., 2023), Kinyarwanda (Nzeyimana and Niyongabo Rubungo, 2022), and

Uyghur (Abulimiti and Schultz, 2020). However, these efforts are limited by the

availability of morphologically annotated datasets (Minixhofer et al., 2023), which

are often only available for a small number of relatively high-resource languages.

Some evidence also exists to the contrary (Zhou, 2018; Minixhofer et al.,

2023; Gutierrez-Vasques et al., 2023), even for some of the same languages. Work on

German and Czech (Macháček et al., 2018), Nepali, Sinhala, and Kazakh (Saleva and

Lignos, 2021), Korean (Choo and Kim, 2023), Turkish (Kaya and Tantuğ, 2024), and

Spanish (Arnett et al., 2024b) did not show any benefit of morphologically aligned

tokenization. This is consistent with other work, e.g. Uzan et al. (2024), showing

that BPE, which generally performs best on metrics such as compression, has the
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least morphologically meaningful tokens compared to other tokenization algorithms.

4.1.4 Evidence for a Performance Gap

This section describes three analyses that show lower performance for agglu-

tinative languages. Previous analyses, which demonstrated evidence for the perfor-

mance gap between fusional and agglutinative languages, all had significant con-

founds. We extend previous work by additionally controlling for amount of training

data and extending to models which–as they are much larger and use the transformer

architecture–better represent the state of the field.

Reanalysis of Gerz et al. (2018a)

Gerz et al. (2018b) analyzed a multilingual LSTM trained on 50 languages and

found that fusional languages categorically outperformed agglutinative languages.

This seminal finding is nevertheless limited in ways. It did not control for the number

of training tokens, which was different for each language. We addressed this in

a replication of the analysis on the original data, fitting a full linear model in R

with morphological type and number of training tokens as fixed effects, predicting

perplexity. We fit a reduced model with only number of training tokens as a fixed

effect. An ANOVA showed that the full model explained more variance in the data

than the reduced model (F(3, 45)=5.221, p=0.004)). After controlling for number

of training tokens, there is still a significant effect of morphological type, where

agglutinative languages had higher perplexities than fusional languages.
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Multilingual Models

Evidence from Gerz et al. (2018a) comes from just one model. To extend

this work, we test a number of more contemporary multilingual language models,

including XGLM (Lin et al., 2022), BLOOM (Scao et al., 2022), mT0 (Muennighoff

et al., 2023), MaLA (Lin et al., 2024), and LLaMA2 (Touvron et al., 2023b).

We test these models across a variety of benchmarks: commonsense reasoning

benchmark scores from XStoryCloze (Lin et al., 2022), XCOPA (Ponti et al., 2020),

XNLI (Conneau et al., 2018), Wikipedia (Guo et al., 2020), and XWinograd (Muen-

nighoff et al., 2023) reported in the BigScience BLOOM evaluation results1 and the

SIB-200 benchmark (Adelani et al., 2024), as reported in the release paper.

We combine all of the benchmark scores into one dataset. All scores are on a

scale between 0 and 1. We use language family information from the WALS database

(Dryer and Haspelmath, 2013) and annotate the morphological type according to

grammars and linguistic articles about each language. For each language model, we

calculate the proportion of training data for each language according to reported

data quantities in tokens or bytes. If languages were upsampled for model training,

we include upsampled proportions.

We fit a full linear mixed effects model in R (Bates, 2010) predicting bench-

mark score with morphological type and language family as fixed effects and model

and task as random effects. We fit a reduced model that is the same as the full model,

except without morphological type as a predictor. We run an ANOVA to compare

model fit. We find that the full model (with morphological type as a fixed effect)
1https://huggingface.co/datasets/bigscience/evaluation-results
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explains more variance than the reduced model (χ2(3) = 149.16, p<0.001). Even af-

ter controlling for amount of training data, language family, model, and benchmark

task, there is still a significant effect of morphological type, where fusional languages

show better performance than agglutinative languages.

Monolingual Models

Both of the previous analyses measure performance of multilingual models.

None of these models had controlled or balanced amounts of training data for the

languages they were trained on. This introduces a confound, because European lan-

guages are typically both higher resource and fusional. The lower-resource languages

in this sample were more likely to be agglutinative. In this final analysis of the

performance gap, we compare performance of a suite of 1,989 monolingual models

from Chang et al. (2023a), covering 252 languages, which were trained on matching

numbers of tokens. For each language, there are up to 12 models, with up to three

different model sizes and four different training corpus sizes. The three model sizes

were tiny (4.6M parameters), mini (11.6M parameters), and small (29.5M parame-

ters). The four dataset sizes were low-resource (1M tokens), medlow-resource (10M

tokens), medhigh-resource (100M tokens), and high-resource (1B tokens). Perplex-

ities were calculated using 500k held-out tokens. We use the same language family

and morphological type data as in §4.1.4.

We use perplexity as a metric of performance. This is the only existing eval-

uation metric for all the languages represented by these models.

We fit a full linear regression with morphological type, model size, and dataset
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size as predictors. We also fit a reduced model with only model size and dataset size

as predictors. We use an ANOVA to compare the fit of these two models. We find

that morphological type explains variance above and beyond the other two predictors

(χ2(3) = 28.809, p<0.001). We also fit full and reduced models with language family

as an additional predictor. Even after accounting for language family, morphological

type still explains additional variance (χ2(3) = 3.3324, p=0.02).

Morphological type is predictive of performance after controlling for model

size and data amounts, which supports the other analyses.

Interim Discussion

Using both perplexities and benchmark scores as evaluation metrics, and eval-

uations from monolingual and multilingual models, we found a robust performance

gap between agglutinative languages and fusional languages. This evidence amplifies

prior work by using more evaluation metrics for more languages, with more contem-

porary multilingual and monolingual models trained with balanced training data.

The following sections test three factors that may be driving this gap, corre-

sponding to the three hypotheses above: morphological alignment of the tokenizers

(§4.1.5), tokenization quality (§4.1.6), and disparities in data measurement (§4.1.7).

4.1.5 H1: Morphological Alignment

Does differential morphological alignment of tokenizers in languages with

more or less complex morphology explain their performance gap? We present a

new evaluation framework, called MorphScore, which permits a comparison of mor-
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phological alignment across tokenizers and languages. We evaluate monolingual to-

kenizers for 22 languages and analyze the relationship between MorphScore and

morphological type. Code and datasets for MorphScore are available on GitHub:

https://github.com/catherinearnett/morphscore.

MorphScore: Evaluating Morphological Alignment of Tokenizers

Calculating MorphScore. To evaluate a tokenizer’s MorphScore for each word

in a test set, we assign a value of 1 if the tokenizer places a token boundary at the

morpheme boundary of interest, regardless of other token boundaries. We assign a

value of 0 if there is not a token boundary at the morpheme boundary of interest.

We exclude items which contain no token boundaries (i.e. the entire word form is in

the tokenizer’s vocabulary), so as not to penalize the tokenizer for not segmenting

the word. MorphScore is the mean of the assigned values across the dataset for a

given language. See Table 4.1 for examples.

Languages. MorphScore uses datasets of morphologically annotated words. We

created datasets for 22 languages, which are listed in Appendix B.1. Half are ag-

glutinative languages and half are fusional, according to grammars and descriptions

of the languages. Language selection was also balanced for resource level, where

about half of the languages of each morphological type are higher-resource, and half

lower-resource. The sample was designed to be as diverse as possible in terms of

language family and writing system, given the other constraints. Note that all fu-

sional languages in the sample are Indo-European, which reflects the distribution of

fusional languages in the world’s languages, but not all Indo-European languages are
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fusional (e.g. Armenian). Among the Indo-European languages, two are from the

Indic branch (Gujarati, Urdu) and a variety of subgroups are represented: Slavic

(Bulgarian, Slovenian, Croatian), Baltic (Lithuanian), Hellenic (Greek), Armenian,

Germanic (Swiss German, Icelandic), and Celtic (Irish). The other language families

represented in the sample are Japonic, Koreanic, Dravidian, Kartvelian, Austrone-

sian, Turkic, Niger-Congo, and Uralic, as well as an isolate (Basque).

Datasets. Each dataset is composed of words with their morpheme boundary an-

notations from Universal Dependencies2 (UD) or UniMorph3. Words in MorphScore

do not contain any umlaut or suppletion and the whole word form can be composed

of the lemma and the morpheme (or the two morphemic units annotated). Most

of the datasets only had one morpheme boundary annotation per word, with the

exception of the Korean datasets. For Korean, when multiple morpheme boundaries

were annotated, we chose the left-most boundary. We deduplicated items, and chose

a random sample of 2000 for sets where there were more than 2000 items. We only

included languages with at least 100 items.

Tokenizers

We use the monolingual tokenizers from Chang et al. (2023a), which are from

the same models used for perplexities in §4.1.4. Each tokenizer is a SentencePiece

(Kudo and Richardson, 2018) tokenizer with a vocabulary size of up to 32k. Each

tokenizer is trained on 10k lines of text randomly sampled from the model training
2https://universaldependencies.org/
3https://unimorph.github.io/
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Table 4.1: Example items with morphemic segmentations and tokenizations with
MorphScores according to their morphological alignment.

Language Word Source Segmentation Score
Basque aldiz morphemic aldi + z

Tokenizer 1 [’al’, ‘diz’] 0
Tokenizer 2 [’aldi’, ‘z’] 1

Croatian suučesnika morphemic suučesnik + a
Tokenizer 1 [’su’, ‘uče’, ‘s’, ‘nika’] 0
Tokenizer 2 [’su’, ‘u’, ‘če’, ‘s’, ‘nika’] 0

Icelandic samráðs morphemic samráð + s
Tokenizer 1 [’samráð’, ‘s’] 1
Tokenizer 2 [’samráðs’] exclude

Greek Αδριανής morphemic Αδριανή + ς
Tokenizer 1 [‘Α’, ‘δ’, ‘ριανής’] 0
Tokenizer 2 [‘Α’, ‘δρ’, ‘ιανή’, ‘ς’] 1

data.

Results

We evaluate the tokenizers on their corresponding MorphScore dataset.

MorphScores are reported in full in Table 4.2. In order to address Hypothesis 1,

we first conduct a two sample t-test to evaluate whether agglutinative languages

have lower MorphScores than fusional languages. This would be consistent with the

explanation that tokenizers are more likely to fail to align token boundaries with

morpheme boundaries in agglutinative languages. To the contrary, we find that ag-

glutinative languages have higher MorphScores (M=66.3%) than fusional languages

(M=53.3%), a significant difference (t(20.874)=2.950, p=.008).

We also tested for a negative correlation between MorphScore and perplexity,

such that better MorphScores were correlated with better performance. We fit a
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Table 4.2: MorphScore results from Section 4.1.5.

Lang Lang. Name MorphScore Morph. Type
hye_armn Armenian 0.634 agg
eus_latn Basque 0.724 agg
bul_cyrl Bulgarian 0.584 fus
ceb_latn Cebuano 0.806 agg
eng_latn English 0.781 fus
kat_geor Georgian 0.660 agg
ell_grek Greek 0.586 fus
guj_gujr Gujarati 0.347 fus
hun_latn Hungarian 0.739 agg
isl_latn Icelandic 0.574 fus
ind_latn Indonesian 0.708 agg
gle_latn Irish 0.468 fus
jpn_jpan Japanese 0.691 agg
kor_hang Korean 0.692 agg
kmr_latn Kurdish 0.202 fus
pes_arab Persian 0.345 fus
slv_latn Slovenian 0.650 fus
spa_latn Spanish 0.592 fus
tam_taml Tamil 0.435 agg
tur_latn Turkish 0.591 agg
urd_arab Urdu 0.747 fus
zul_latn Zulu 0.541 agg
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linear regression between the variables, but found no significant correlation (F(1,

13)=0.323, p=0.580).

Discussion

One possible explanation for this result is that words in agglutinative lan-

guages are on average being segmented into more tokens, making it more likely that

a token boundary will fall on a morpheme boundary. This in turn could be driven

by word length, as agglutinative languages tend to have longer words. It could also

be due to a higher number of token boundaries per word (fertility), as higher fertility

means that as there are more token boundaries, it becomes more likely that one of the

token boundaries would fall on a morpheme boundary due to chance. Upon analysis,

we found that agglutinative languages indeed had longer words (t(29,923)=18.222,

p<0.001) and more tokens per word (t(37,375)=34.27, p<0.001). We fit a linear re-

gression with number of tokens per word, word length in characters, and morpholog-

ical types as predictors for MorphScore. We found that fertility and word length are

both negatively correlated with MorphScore (χ2(1)=61.457, p<0.001; χ2(1)=364.03,

p<0.001; respectively); however, the effect sizes were extremely small with an ad-

justed R2 = 0.021. Given these small effects, longer words or higher fertility cannot

explain the greater than 20% higher MorphScores for agglutinative languages.

In order to mitigate concern about the choice to exclude one-token words from

the calculation of MorphScore, we also calculate MorphScore such that a one-token

word is counted as correct. Agglutinative languages still had higher MorphScores

than fusional languages (t(18.874) = 2.393, p = 0.027). Furthermore, we found no
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difference in the absolute number of one-token words (t(19.867) = -0.768, p = 0.452)

nor in the proportion of one-token words (t(17.014) = -0.577, p =0.572) between

agglutinative and fusional languages.

These results are inconsistent with Hypothesis 1; morphological tokenizer

alignment (as measured by MorphScore) is higher for agglutinative languages rather

than lower, and this effect cannot be explained by higher fertility or longer word

length.

4.1.6 H2: Tokenization Quality

We next evaluate whether tokenization quality can explain the performance

gap between agglutinative and fusional languages. We use two metrics of tokenization

quality: compression and Rényi entropy. To achieve sufficient statistical power, we

use the same tokenizers as the previous section, but add all the languages from

Chang et al. (2023a) with FLORES datasets and for which we have morphological

type labels, for a total of 63 languages. Perplexities for each tokenizer come from

Chang et al. (2023a).

Compression

We use corpus token count (CTC; also known as sequence length) as our

measure of compression. CTC (Schmidt et al., 2024) is the number of tokens it takes

to encode a text. Lower CTC indicates better compression, which is thought to have

various effects on performance, cost, and inference time. If a tokenizer encodes a

given text with more tokens, this will mean more sequences in order to pass the text
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through a language model. Each sequence, thus, will contain less information. This

leads to higher training cost and slower inference (Song et al., 2021; Petrov et al.,

2023; Yamaguchi et al., 2024) and worse model performance (Gallé, 2019; Liang et

al., 2023; Goldman et al., 2024).

We calculate CTC based on FLORES-200 (NLLB Team et al., 2022) by encod-

ing the text for each language with its respective tokenizer and counting the sequence

length, not including beginning- and end-of-sequence tokens. FLORES offers paral-

lel texts for each language, meaning that each text contains the same content, and

sequence lengths should be comparable between languages.

Rényi entropy

Rényi entropy has been proposed as a metric of tokenization quality, as it mea-

sures the distribution of token frequencies over the tokenizer vocabulary, penalizing

low- and high-frequency tokens. It has been shown to correlate with downstream

performance (Zouhar et al., 2023).

Rényi entropy might also capture undesirable tokenizer properties that could

be causing the performance gap. Agglutinative languages have longer words (Fenk-

Oczlon and Fenk, 1999; Berg et al., 2022) and more unique word forms (Sandra,

1994). This means that a tokenizer with a fixed vocabulary size will necessarily use

shorter tokens on average for an agglutinative language than for a fusional language4.
4As there has not been previous empirical evidence to support this point, we test this. We use

the same tokenizers as in the previous section and tokenize all the FLORES datasets for which we
have corresponding monolingual tokenizers. We then calculate mean token length for the FLORES
dataset. The mean token length for fusional languages was 2.92 characters and the mean token
length for agglutinative languages was 3.25. This difference is statistically significant (t(68.36) =
3.236, p = 0.002).
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Shorter tokens will have higher frequencies on average (Berg et al., 2022), and these

tokens will carry less information, as the meaning of a word is distributed over more

tokens.

We calculate Rényi entropy from the FLORES dataset for each language using

tokenization-scorer5 (Zouhar et al., 2023) with the recommended setting (α=2.5).

Results

Agglutinative languages have higher CTC (worse compression) than fusional

languages (t(85.944)=2.507, p=0.014). On average, their sequences are 3.5% longer.

However, there is no correlation between CTC and perplexity (linear regression; F(1,

190)=2.05, p=0.154). This indicates that compression, at least measured in this way,

does not explain the performance gap.

There is also a difference in Rényi entropy between agglutinative and fusional

languages. Agglutinative languages have worse (higher) Rényi entropy (M=0.547)

than fusional languages (M=0.488; t(150.53)=5.168, p<0.001).

In order to test whether Rényi entropy can help explain the performance gap,

conduct a Likelihood Ratio Test comparing two linear mixed effects models. The

full model predicts perplexity from morphological type, Rényi entropy, and CTC as

fixed effects, with model size as a random intercept. We then fit a reduced model,

removing morphological type as a fixed effect. We compare the models with an

ANOVA and find that morphological type explains additional variance above and

beyond the other predictors (χ2(3)=29.464, p<0.001). This indicates that Rényi
5https://github.com/zouharvi/tokenization-scorer
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entropy does not explain all of the variance significantly explained by morphological

type. A variance partitioning analysis using the partR2 package in R (?) produces

an R2 for morphological type of 0.100 and for Rényi entropy of 0.030, while the full

model R2 is 0.144. Therefore the vast majority of the variance is still explained by

morphological type. This suggests that Rényi entropy could explain only a small

part of the performance gap.

Discussion

These results are inconsistent with the hypothesis that tokenizer compression

explains poorer language modeling performance for agglutinative languages. Other

results, e.g. Deletang et al. (2024); Schmidt et al. (2024), also show a lack of rela-

tionship between compression and language model performance. While compression

indicates how much information can be represented in a fixed sequence length, the

effect of compression may be outweighed by other features of a particular tokenizer,

or language models may be able to overcome suboptimal tokenization. This is an

area for further research, as it remains unclear what the best criteria are for intrinsic

evaluation of tokenizers (Zouhar et al., 2023; Chizhov et al., 2024).

4.1.7 H3: Data Measurement Disparities

The final hypothesis for the performance gap is disparities in training data.

The monolingual models used in §4.1.4 and §4.1.6 were designed to be trained

on comparable amounts of training data with comparable tokenizers (Chang et al.,

2023a). Nevertheless, there are differences in performance between languages. Chang
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et al. (2024) trained a similar suite of models (the Goldfish models), taking into

account the byte premiums for each language.

Byte premiums (Arnett et al., 2024a) are the ratio of the number of bytes

it takes to represent a content-matched text in different languages. For example,

a text in a language with a byte premium of 3 relative to English will be three

times larger in bytes than the content-matched English text file. One of the major

contributors to byte premiums is the writing system used by a language. Latin

characters are represented with a single byte in UTF-8 encoding. In the most extreme

cases, characters for scripts like Khmer take three bytes per character, not including

diacritics. As a result, some languages have byte premiums of up to 5 relative to

English.

This has implications for many things, including how much text tokenizers are

trained on. Most training data can be measured in number of tokens, but this is not

the case for tokenizer training data, as the tokenizer has not been trained yet. The

Goldfish tokenizers and models are trained on byte-premium-scaled text quantities,

which was designed to reduce the effects of the data measurement disparities between

languages.

In this section, we test whether taking byte premiums into account can reduce

or completely eliminate the performance gap. We annotate 154 languages for mor-

phological type and use the same procedure as in §4.1.4 to test for the performance

gap with the Goldfish models.
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Results

The Goldfish models exhibit numerically higher perplexity for agglutinative

(M=143.62) than fusional languages (M=132.63), but this difference is not statisti-

cally significant (t(137.36)=1.180, p=0.077). Therefore, after taking byte premiums

into effect, the Goldfish models do not exhibit the same performance gap that was

demonstrated in previous research and in Section 4.1.4 above.

We tested whether there was a relationship between byte premium and mor-

phological type, and found that there was a marginally significant difference be-

tween byte premiums for agglutinative and fusional languages (t-test; t(157.9)=1.960,

p=0.0518).

Discussion

The results show that after taking into account byte premiums, there is no

difference in performance according to morphological typology. Thus, accounting

for byte premiums by scaling training data reduces most of the variance previously

accounted for by morphological type. This suggests, therefore, that differences that

seemed to be driven by morphological typology are actually being driven by dispar-

ities in dataset size measurement.

4.2 Discussion

We find that byte premiums explain the largest portion of the performance

gap, which means that cross-lingual differences in text encoding size can explain
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these particular, previously documented performance differences. The results do not

support the idea that some languages are harder to model than others, but it does

seem that languages need to be treated differently, e.g. by scaling data quantities.

This result can be used to inform how much data should be used to train tokenizers

and language models, especially in low-resource or multilingual settings. By not

taking byte premiums into account, we may be disadvantaging languages which are

historically under-represented in the field, even when resources for them do exist.

While these results may be surprising based on the NLP literature, these

results are consistent with evidence from language acquisition work, which has not

shown any cross-linguistic differences in learnability of languages. These results are

unsurprising from an empirical perspective, as work in Linguistics and NLP has

consistently shown that more data will always facilitate better learning, irrespective

of the complexity of the language.

There do seem to be limits to the learnability of linguistic systems. There are

some language systems that linguistic theory predicts are impossible for humans to

learn. Recent work has shown that language models are less successful at learning

those languages, compared to existing and possible linguistic systems (Kallini et al.,

2024). Therefore, we do not predict that these results hold for systems that are more

complex than any attested natural language.

The results relating to Rényi entropy do suggest that there may be differences

in tokenization which could be affecting performance, however more work is needed

on this topic.
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4.3 Conclusion

This paper first presented new evidence consistent with a performance gap

between languages of different morphological types. We presented and tested three

hypotheses as to the cause(s) for this performance gap: morphological alignment

of the tokenizer, tokenization quality, and measurement disparities of dataset size.

We found that while there was evidence that tokenization quality (as measured by

Rényi entropy) plays a small role, dataset size seems to explain a large portion of

the performance gap. After scaling training data according to byte premiums – a

measure of how many bytes it takes to represent text in different languages – the

performance gap goes away.

To do this work, we also created MorphScore, which is an evaluation method

that can be used to evaluate the morphological alignment of tokenizers. We release

the datasets needed to evaluate MorphScore in 22 languages: https://github.com/

catherinearnett/morphscore.

These results raise questions about other unintended differences in the way

languages are treated that could lead to differences in performance between lan-

guages. This is a critical issue for achieving language-general NLP systems and

making language models perform equitably. While it does not seem that morpho-

logical typology is the primary reason for the observed performance gap, the initial

observation led to greater understanding of crosslinguistic NLP. It is important to

keep evaluating the dimensions along which languages vary and considering whether

language technologies, such as LLMs, introduce inequalities between languages. We

have yet to fully understand all the ways in which English-centric practices in NLP
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may have impeded progress for language models in other languages.

Limitations

For all of the analyses, we were limited by the number of languages for which

we had morphological type annotations. These annotations are time-consuming and

are themselves limited by the resources available, namely grammars and linguistic

descriptions. The number of languages in the MorphScore analysis is even more

limited. Having more annotations and datasets included in this work would make

the analyses more reliable. This is an important place for expansion in future work.

In the MorphScore datasets, we were also limited by the type of existing

data. There were differences in domain and breadth in the Universal Dependen-

cies and UniMorph datasets for each language. There are also different numbers

of items in each dataset for each language. This means some languages will have

more diversity among the items and there will be more statistical power than others,

therefore the treatment of each language was not the same, which could introduce un-

controlled variance. Additionally, the morpheme boundaries that are annotated for

different languages was not consistent. Some boundaries were inflectional and some

were derivational. If there existed large datasets of both inflectional and deriva-

tional morphologically annotated words in a wide range of languages, this would

have improved the robustness of the MorphScore results.

Finally, because the annotations in UD and UniMorph chose only one bound-

ary (or, if there were multiple boundaries, we chose one), we can only evaluate
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whether the token boundaries align with the morpheme boundary we chose. We

did this to limit confounds, as all but one dataset had one annotated boundary per

word. Additionally, agglutinative languages would have more morpheme boundaries

per word, which could skew results. However, there was no controlled selection pro-

cess for which morpheme boundary was used for the MorphScore analysis, therefore

this could have also affected results.

In the analysis of the Goldfish models, the evidence that byte premiums ac-

count for the performance gap is supported by a marginally significant difference

between byte premiums according to their morphological type. It is possible that

with an even larger sample of languages, the effect would instead meet the standard

threshold for significance. We argue that in conjunction with the other results, it

still demonstrates that taking byte premiums into account significantly reduces the

performance gap.

Acknowledgments

This chapter is a pre-print of a paper published in the proceedings of The

31st International Conference on Computational Linguistics (COLING 2025).

132



Part I Discussion

Part I of the dissertation discusses two areas where crosslinguistic differences

should be considered in NLP: training data and tokenizers.

With respect to training data, in Chapter 2, I show that encoding standards

introduce crosslinguistic disparities in dataset size measurement due to differences

in word length and writing systems. In Chapter 4, I show that these differences are

driving crosslinguistic differences in language model performance. Accounting for

these differences accounts for most of the variance that was previously attributed to

typological differences.

Relating to tokenizers, in Chapter 3, I show some evidence that morpho-

logically aligned tokenization may not be necessary for accurate performance on a

linguistic task, subject-verb agreement. In Chapter 4, I show that morphologically

aligned tokenization does not seem to be linked to language model performance. To-

gether, these results challenge the view that morphological segmentation represents

the ideal tokenization of a given language.

Here, I discuss some overarching questions and discussions that these results

contribute to.
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Language Bias in Deep Learning In Chapter 4, I show that crosslinguistic

differences in performance can be explained by byte premiums and the dataset size

measurement disparities they introduce. This substantiates the criticisms brought

forth by Bender (2011); however, it is not necessarily the neural architectures or

tokenization algorithms that are responsible for these biases. Instead, I show that

the most widely used encoding standard, UTF-8, is responsible for introducing a

significant amount of bias.

In some ways this is bodes well for improving language equity in NLP. It does

seem that the models that have been developed for English can generally be applied

to other languages. This is not particularly surprising, given that the largest and

most commercially successful models are massively multilingual, i.e. being trained on

data from many languages, and therefore has some pressure to work well for multiple

languages. However, UTF-8 encoding is deeply embedded in nearly all digital appli-

cations and products, so overcoming inequities introduced by this encoding standard

will likely have to operate within this encoding standard.

There are existing alternatives to UTF-8. UTF-16 is a similar encoding stan-

dard, in which characters are represented with either 2 or 4 bytes. Most characters

are represented with 2 bytes, but rarer characters are represented by 4 bytes. There-

fore, there would be more equity among the most frequent writing systems, but

there would still be some writing systems largely represented with four-byte charac-

ters. UTF-32 is even more equitable. Using this encoding standard, all characters

are represented with 4 bytes. This would be far more equitable, however it means

that most languages would use many more bytes to represent a given text relative to
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UTF-8 encoding. Additionally, this would not eliminate differences in the number

of characters needed to represent a given amount of information across languages.

Therefore, there would still be byte premium effects.

MYTE (Limisiewicz et al., 2024), which was described above in Chapter 2,

is a possible solution to byte premium effects. The authors show that it reduces

byte premiums across languages; however, as I discuss above, it requires supervised

morphological segmentation datasets, which are not available for a lot of languages.

Byte Latent Transformer (BLT) is a novel byte-level language model architecture,

which dynamically groups bytes according to the entropy of the next byte (Pagnoni

et al., 2024). Under this approach, the amount of compression changes based on the

complexity of the text. The architecture was primarily trained and evaluated on

English data, therefore it is unclear whether this could address byte premiums.

The main takeaway from these experiments is that differences in performance

can be attributed to a lack of data, which is then exacerbated by byte premiums.

Dataset creation, however needs to be with the consent and participation of the

language community, especially in the case of low-resource languages. And not all

data is the same. Low-resource languages often have less and lower-quality data,

which is often full of errors and is culturally irrelevant (Kreutzer et al., 2022; Nigatu

et al., 2023). All these factors must be considered to fully address the problem of

data scarcity.

Does Tokenization Even Matter? In Chapter 3, I showed that for agreement

tasks, morphologically aligned tokenization did not significantly impact performance.

In Chapter 4, I show that tokenization does not seem to explain any crosslinguistic
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variance in performance. So, does tokenization matter at all in terms of language

model performance?

There have been multiple studies in which researchers have shown that models

which differ only in tokenizer can have different performance levels (Ali et al., 2024;

Schmidt et al., 2024). The differences are not that big, so it seems that language

models are generally robust to apparently sub-optimal tokenization. Sub-optimal to-

kenization has even been intentionally added into model training, via BPE Dropout

(Provilkov et al., 2020), which introduces slight variations in the tokenization algo-

rithm during model training. This trains the model to handle segmentation errors

better and also leads to better downstream performance.

To the extent that tokenizers impact model performance, it is unclear what

features of a tokenizer affect performance. Compression has long thought to be one

of the primary metrics of tokenizer quality linked to downstream performance, but

recent results show that this is not the case. Schmidt et al. (2024) trained identical

models, while manipulating only the tokenizer. They found that compression was

not correlation with downstream performance. In that study, the authors did not

find any feature that was predictive of better performance.

Apart from compression, proposed tokenizer evaluation metrics include pro-

portion of word-initial tokens (Yehezkel and Pinter, 2023), Rényi efficiency (Zouhar

et al., 2023), and proportion of continued words (i.e. non-word-initial tokens; Oc-

ciglot, 2024). But there has been no consensus about which features of a tokenizer

are m (Zouhar et al., 2023; Chizhov et al., 2024).

Other features of tokenizers also seem important to consider. Land and Bar-
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tolo (2024) show that many tokenizers contain tokens, which the model does not

see very often during training. As a result, the embeddings for those tokens are

not updated much and remain very close to their initialized embeddings, making

them under-trained tokens. These tokens usually cause the model to hallucinate,

which makes them generate text off-topic. These tokens can also cause models to

circumvent safety guardrails and generate harmful text (Geiping et al., 2024).

It is unclear how tokenizers should be evaluated. This is a key area for future

work in order to better determine the role of tokenization in language models and

how best to optimize tokenizers.

Alternatives to the Dual-Route Hypothesis The two approaches that have

been primarily discussed in the tokenization literature are the decomposition hy-

pothesis and the dual-route encoding hypothesis. However, the results from these

chapters also support a connectionist account (Rumelhart and McClelland, 1986),

wherein a set of parameters may be tuned through exposure to represent a system in

a distributed way. Language models are embody the connectionist account (Joanisse

and McClelland, 2015) and show that it is possible to generate linguistically correct

text through distributional information alone.

Unlike the dual-route account, the connectionist account treats all forms uni-

formly, without the need to determine regular and irregular forms, or frequent and

infrequent tokens. This provides some advantage to the connectionist approach, as

the delineations between those categories can be difficult to determine. The connec-

tionist account not only captures observed statistical effects, but also the context-

sensitive and usage-based phenomena, for which there is increasing empirical evidence
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(Stevens and Plaut, 2022).

A connectionist approach to tokenization would not assume that tokenizers

should generate linguistically meaningful or interpretable tokens. Instead, this ap-

proach would assume that there may be another optimal tokenization scheme that

can be learned by the neural network, even if the tokenization scheme does not ap-

pear to be optimal. Adopting this view of tokenization could be helpful in shaping

the approach to tokenization, in particular to the evaluation of tokenization, espe-

cially in light of the empirical evidence that challenges the rule-based, decomposition

approach to tokenization.

This is consistent with other work in NLP, which finds that adding explicit

linguistic information does not improve language model performance (Toraman et al.,

2023; Jeon et al., 2023), as evidenced by the lack of widespread adoption of explicitly

encoding linguistic knowledge.
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Part II

Understanding Crosslingual Transfer

through Structural Priming
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In Part II, I seek to provide evidence that crosslingual transfer occurs because

of shared multilingual representations. I seem to characterize when the models learn

these representations, how they change over the course of training, and what the

representations are actually representing. This is important for better understanding

crosslingual transfer. In particular, it is important to identify the limitations of

crosslingual transfer in order to improve the utility of this phenomenon.

As mentioned in Chapter 1, crosslingual transfer is the most widely used

strategy for improving low-resource language performance. But training a language

model in a multilingual model may lead to the curse of multilinguality (Conneau

et al., 2020a; Chang et al., 2023a). Therefore, crosslingual transfer does not always

lead to better performance. Without sufficient data or model capacity, a model may

represent the high-resource "priority" languages quite well and the lower-resource

languages quite poorly. The degree to which the lower-resource languages are harmed

by these practices are difficult to assess first because even these practices may lead

to the best model performance for a language, despite the language model not being

able to reliably produce grammatical sentences in the target language; and second,

because there is a severe lack of meaningful evaluations for many lower-resource

languages.

Because the limitations of crosslingual transfer are not well understood, it

remains the default approach to developing language models for languages other

than English. As a result, crosslingual transfer is the justification for many NLP

practitioners to continue to pursue an English-centric NLP, because many people

believe that representations learned from English data can simply be transformed
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into representations for another (often, lower-resource) language with very little in-

put data from the target low-resource language. As a result, the vast majority of

models are trained on English data, under the assumption that all natural language

expressions can be perfectly represented in a language-neutral latent space and that

these representations can be losslessly transformed between any two languages. But

fine-grained social and cultural meaning, including culturally-specific connotations

and context-dependent interpretations, is translatable.

And as English is often the source language for crosslingual transfer, the

implicit assumption is that English can be used to build language-neutral represen-

tations. But English is not language-neutral, nor is any language. The task text

cannot be generated in a language-neutral way. It is impossible – and, I argue, unde-

sirable – to seek a text generation model that operates in a language-neutral space.

This would result in text which is devoid of any real social or cultural significance.

But given the current practices, practitioners are implicitly choosing instead

to operate in an English-centric linguistic and cultural space. One of the ways this

can be seen is through cultural bias exhibited by language models. A recent study

found that major commercial models, e.g. GPT-4, generate responses consistent with

the social and cultural values of the US and Protestant Europe (Tao et al., 2024).

Data remains a primary obstacle to changes to these practices. Especially

for particular domains and applications, it may be difficult or impossible to find

training data from a desired domain in the target language. Academic articles are a

concrete example of this. The vast majority of academic publishing occurs in English,

therefore there is domain knowledge that is largely only available from English text
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data.

The work in Part II of this dissertation contributes to the relatively small

number of studies on crosslingual transfer and how it works. A better understanding

of crosslingual transfer can help inform NLP practitioners on when and how to use

multilingual settings to improve language model performance from lower-resource

languages.
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Chapter 5

Structural Priming Demonstrates

Abstract Grammatical

Representations in Multilingual

Language Models

Abstract

Abstract grammatical knowledge—of parts of speech and grammatical patterns—

is key to the capacity for linguistic generalization in humans. But how abstract is

grammatical knowledge in large language models? In the human literature, com-

pelling evidence for grammatical abstraction comes from structural priming. A sen-

tence that shares the same grammatical structure as a preceding sentence is processed
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and produced more readily. Because confounds exist when using stimuli in a single

language, evidence of abstraction is even more compelling from crosslingual struc-

tural priming, where use of a syntactic structure in one language primes an analogous

structure in another language. We measure crosslingual structural priming in large

language models, comparing model behavior to human experimental results from

eight crosslingual experiments covering six languages, and four monolingual struc-

tural priming experiments in three non-English languages. We find evidence for ab-

stract monolingual and crosslingual grammatical representations in the models that

function similarly to those found in humans. These results demonstrate that gram-

matical representations in multilingual language models are not only similar across

languages, but they can causally influence text produced in different languages.

5.1 Introduction

What do language models learn about the structure of the languages they

are trained on? Under both more traditional generative (Chomsky, 1965) and

cognitively-inspired usage-based theories of language (Tomasello, 2003; Goldberg,

2006; Bybee, 2010), the key to generalizable natural language comprehension and

production is the acquisition of grammatical structures that are sufficiently abstract

to account for the full range of possible sentences in a language. In fact, both

theoretical and experimental accounts of language suggest that grammatical repre-

sentations are abstract enough to be shared across languages in both humans (Heydel

and Murray, 2000; Hartsuiker et al., 2004; Schoonbaert et al., 2007) and language
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models (Conneau et al., 2020b,a; Jones et al., 2021).

The strongest evidence for grammatical abstraction in humans comes from

structural priming, a widely used and robust experimental paradigm. Structural

priming is based on the hypothesis that grammatical structures may be activated

during language processing. Priming then increases the likelihood of production or

increased ease of processing of future sentences sharing the same grammatical struc-

tures (Bock, 1986; Ferreira and Bock, 2006; Pickering and Ferreira, 2008; Dell and

Ferreira, 2016; Mahowald et al., 2016; Branigan and Pickering, 2017). For example,

Bock (1986) finds that people are more likely to produce an active sentence (e.g.

one of the fans punched the referee) than a passive sentence (e.g. the referee was

punched by one of the fans) after another active sentence. This has been argued

(Bock, 1986; Heydel and Murray, 2000; Pickering and Ferreira, 2008; Reitter et al.,

2011; Mahowald et al., 2016; Branigan and Pickering, 2017) to demonstrate common

abstractions generalized across all sentences with the same structure, regardless of

content.

Researchers have found evidence that structural priming for sentences with

the same structure occurs even when the two sentences are in different languages

(Loebell and Bock, 2003; Hartsuiker et al., 2004; Schoonbaert et al., 2007; Shin and

Christianson, 2009; Bernolet et al., 2013; van Gompel and Arai, 2018; Kotzochampou

and Chondrogianni, 2022). This crosslingual structural priming takes abstraction one

step further. First, it avoids any possible confounding effects of lexical repetition

and lexical priming of individual words—within a given language, sentences with the

same structure often share function words (for discussion, see Sinclair et al., 2022).
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More fundamentally, crosslingual structural priming represents an extra degree of

grammatical abstraction not just within a language, but across languages.

We apply this same logic to language models in the present study. While

several previous studies have explored structural priming in language models (Prasad

et al., 2019; Sinclair et al., 2022; Frank, 2021; Li et al., 2022; Choi and Park, 2022), to

the best of our knowledge, this is the first to look at crosslingual structural priming

in Transformer language models. We replicate eight human psycholinguistic studies,

investigating structural priming in English, Dutch (Schoonbaert et al., 2007; Bernolet

et al., 2013), Spanish (Hartsuiker et al., 2004), German (Loebell and Bock, 2003),

Greek (Kotzochampou and Chondrogianni, 2022), Polish (Fleischer et al., 2012), and

Mandarin (Cai et al., 2012). We find priming effects in the majority of the crosslingual

studies and all of the monolingual studies, which we argue supports the claim that

multilingual models have shared grammatical representations across languages that

play a functional role in language generation.

5.2 Background

Structural priming effects have been observed in humans both within a given

language (Bock, 1986; Ferreira and Bock, 2006; Pickering and Ferreira, 2008; Dell and

Ferreira, 2016; Mahowald et al., 2016; Branigan and Pickering, 2017) and crosslin-

gually (Loebell and Bock, 2003; Hartsuiker et al., 2004; Schoonbaert et al., 2007;

Shin and Christianson, 2009; Bernolet et al., 2013; van Gompel and Arai, 2018;

Kotzochampou and Chondrogianni, 2022). In language models, previous work has
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demonstrated structural priming effects in English (Prasad et al., 2019; Sinclair et

al., 2022; Choi and Park, 2022), and initial results have found priming effects be-

tween English and Dutch in LSTM language models (Frank, 2021). As these studies

argue, the structural priming approach avoids several possible assumptions and con-

founds found in previous work investigating abstraction in grammatical learning.

For example, differences in language model probabilities for individual grammatical

vs. ungrammatical sentences may not imply that the models have formed abstract

grammatical representations that generalize across sentences (Sinclair et al., 2022);

other approaches involving probing (e.g. Hewitt and Manning, 2019; Chi et al., 2020)

often do not test whether the internal model states are causally involved in the text

predicted or generated by the model (Voita and Titov, 2020; Sinclair et al., 2022).

The structural priming paradigm allows researchers to evaluate whether grammatical

representations generalize across sentences in language models, and whether these

representations causally influence model-generated text. Furthermore, structural

priming is agnostic to the specific language model architecture and does not rely on

direct access to internal model states.

However, the structural priming paradigm has not been applied to modern

multilingual language models. Previous work has demonstrated that multilingual

language models encode grammatical features in shared subspaces across languages

(Chi et al., 2020; Chang et al., 2022; de Varda and Marelli, 2023), largely rely-

ing on probing methods that do not establish causal effects on model predictions.

Crosslingual structural priming would provide evidence that the abstract grammat-

ical representations shared across languages in the models have causal effects on
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model-generated text. It would also afford a comparison between grammatical rep-

resentations in multilingual language models and human bilinguals. These shared

grammatical representations may help explain crosslingual transfer abilities in mul-

tilingual models, where tasks learned in one language can be transferred to another

(Artetxe et al., 2020b; Conneau et al., 2020a,b; K et al., 2020; Goyal et al., 2021;

Ogueji et al., 2021; Armengol-Estapé et al., 2021, 2022; Blevins and Zettlemoyer,

2022; Chai et al., 2022; Muennighoff et al., 2023; Wu et al., 2022; Guarasci et al.,

2022; Eronen et al., 2023).

Thus, this study presents what is to our knowledge the first experiment test-

ing for crosslingual structural priming in Transformer language models. The findings

broadly replicate human structural priming results: higher probabilities for sentences

that share grammatical structure with prime sentences both within and across lan-

guages.

5.3 Method

We test multilingual language models for structural priming using the stimuli

from eight crosslingual and four monolingual priming studies in humans. Individual

studies are described in §5.4.

5.3.1 Materials

All replicated studies have open access stimuli with prime sentences for dif-

ferent constructions (§5.3.3). Where target sentences are not provided (because
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participant responses were manually coded by the experimenters), we reconstruct

target sentences and verify them with native speakers.

5.3.2 Language Models

We test structural priming in XGLM 4.5B (Lin et al., 2022), a multilingual

autoregressive Transformer trained on data from all languages we study in this paper,

namely, English, Dutch, Spanish, German, Greek, Polish, and Mandarin. To the

best of our knowledge, this is the only available pre-trained (and not fine-tuned)

autoregressive language model trained on all the aforementioned languages. To avoid

drawing any conclusions based on the idiosyncrasies of a single language model, we

also test a number of other multilingual language models trained on most of these

languages, namely the other XGLM models, i.e., 564M, 1.7B, 2.9B, and 7.5B, which

are trained on all the languages except for Dutch and Polish; and PolyLM 1.7B and

13B (Wei et al., 2023), which are trained on all the languages except for Greek.

5.3.3 Grammatical Alternations Tested

We focus on structural priming for the three alternations primarily used in

existing human studies.

Dative Alternation (DO/PO) Some languages permit multiple orders of the

direct and indirect objects in sentences. In PO (prepositional object) constructions,

e.g., the chef gives a hat to the swimmer (Schoonbaert et al., 2007), the direct object

a hat immediately follows the verb and the indirect object is introduced with the
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prepositional phrase to the swimmer. In DO (double object) constructions, e.g., the

chef gives the swimmer a hat, the indirect object the swimmer appears before the

direct object a hat and neither is introduced by a preposition. Researchers com-

pare the proportion of DO or PO sentences produced by experimental participants

following a DO or PO prime.

Active/Passive In active sentences the syntactic subject is the agent of the action,

while in passive sentences the syntactic subject is the patient or theme of the action.

E.g., the taxi chases the truck is active, and the truck is chased by the taxi is passive

(Hartsuiker et al., 2004). Researchers compare the proportion of active or passive

sentences produced by experimental participants following an active or passive prime.

Of-/S-Genitive Of - and S -Genitives represent two different ways of expressing

possessive meaning. In an of -genitive, the possessed thing is followed by a preposition

such as of and then the possessor, e.g., the scarf of the boy is yellow. In s-genitives in

the languages we analyze (English and Dutch), the possessor is followed by a word or

an attached morpheme such as ’s which is then followed by the possessed thing, e.g.,

the boy’s scarf is yellow (Bernolet et al., 2013). Researchers compare the proportion

of of -genitive or s-genitive sentences produced by experimental participants following

an of -genitive or s-genitive prime.

5.3.4 Testing Structural Priming in Models

In human studies, researchers test for structural priming by comparing the

proportion of sentences (targets) of given types produced following primes of different
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types. Analogously, for each experimental item, we prompt the language model with

the prime sentence and compute the normalized probabilities of each of the two target

sentences. We illustrate our approach to computing these normalized probabilities

below.

First, consider the example dative alternation stimulus sentences from Schoonbaert

et al. (2007):

(1) a. DO prime: The cowboy shows the pirate an apple.

b. PO prime: The cowboy shows an apple to the pirate.

c. DO target: The chef gives the swimmer a hat.

d. PO target: The chef gives a hat to the swimmer.

We can use language models to calculate the probability of each target following each

prime by taking the product of the conditional probabilities of all tokens in the target

sentence given the prime sentence and all preceding tokens in the target sentence.

In practice, these probabilities are very small, but for illustrative purposes, we can

imagine these have the following probabilities:

P(PO Target | DO Prime) = 0.03

P(DO Target | DO Prime) = 0.02

P(PO Target | PO Prime) = 0.04

P(DO Target | PO Prime) = 0.01

We then normalize these probabilities by calculating the conditional proba-

bility of each target sentence given that the model response is one of the two target
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sentences, as shown below.

PN(PO | DO) = 0.03/(0.03+0.02) = 0.60

PN(DO | DO) = 0.02/(0.03+0.02) = 0.40

PN(PO | PO) = 0.04/(0.04+0.01) = 0.80

PN(DO | PO) = 0.01/(0.04+0.01) = 0.20

Because the normalized probabilities of the two targets following a given prime

sum to one, we only consider the probabilities for one target type in our analyses

(comparing over the two different prime types). For example, to test for a priming

effect, we could either compare the difference between PN(PO | PO) and PN(PO

| DO) or the difference between PN(DO | PO) and PN(DO | DO). We follow the

original human studies in the choice of which target construction to plot and test.

We run statistical analyses, testing whether effects are significant for each lan-

guage model on each set of stimuli. To do this, we construct a linear mixed-effects

model predicting the target sentence probability (e.g. probability of a PO sentence)

for each item. We include a random intercept for experimental item, and we test

whether prime type (e.g. DO vs. PO) significantly predicts target structure prob-

ability. All reported p-values are corrected for multiple comparisons by controlling

for false discovery rate (Benjamini and Hochberg, 1995). All stimuli, data, code, and

statistical analyses are provided at https://osf.io/2vjw6/.

152

https://osf.io/2vjw6/


5.4 Results

In reporting whether the structural priming effects from human experiments

replicate in XGLM language models, we primarily consider the direction of each ef-

fect in the language models (e.g. whether PO constructions are more likely after

PO vs. DO primes) rather than effect sizes or raw probabilities. The mean of the

relative probabilities assigned by language models to the different constructions in

each condition may not be directly comparable to human probabilities of produc-

tion. Humans are sensitive to contextual cues that may not be available to language

models; notably, in these tasks, humans are presented with pictures corresponding to

events in the structural priming paradigm. Furthermore, construction probabilities

in language models may be biased by the frequency of related constructions in any

of the many languages on which the models are trained. Thus, we focus only on

whether the language models replicate the direction of the principal effect in each

human study.

5.4.1 Crosslingual Structural Priming

We test whether eight human crosslingual structural priming studies replicate

in language models. These studies cover structural priming between English and

Dutch (Schoonbaert et al., 2007; Bernolet et al., 2013), Spanish (Hartsuiker et al.,

2004), German (Loebell and Bock, 2003), Greek (Kotzochampou and Chondrogianni,

2022), and Polish (Fleischer et al., 2012). For each experiment, we show the original

human probabilities and the normalized probabilities calculated using each language
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(A) Schoonbaert et al. (2007): Dutch→English
Normalized Probability PO Targets

(B) Schoonbaert et al. (2007): English→Dutch
Normalized Probability PO Targets

(C) Bernolet et al. (2013): Dutch→English
Normalized Probability S-Genitive Targets

(D) Hartsuiker et al. (2004): Spanish→English
Normalized Probability Passive Targets

(E) Loebell et al. (2003): German→English
Normalized Probability PO Targets

(F) Loebell et al. (2003): English→German
Normalized Probability PO Targets

(G) Kotzochampou et al. (2022): Greek→English Targets
Normalized Probability Passive Targets

(H) Fleischer et al. (2012): Polish→English
Normalized Probability Passive Targets

Human XGLM 564M XGLM 1.7B XGLM 2.9B XGLM 4.5B XGLM 7.5B PolyLM 1.7B PolyLM 13B Human XGLM 564M XGLM 1.7B XGLM 2.9B XGLM 4.5B XGLM 7.5B PolyLM 1.7B PolyLM 13B

Human XGLM 564M XGLM 1.7B XGLM 2.9B XGLM 4.5B XGLM 7.5B PolyLM 1.7B PolyLM 13B Human XGLM 564M XGLM 1.7B XGLM 2.9B XGLM 4.5B XGLM 7.5B PolyLM 1.7B PolyLM 13B

Human XGLM 564M XGLM 1.7B XGLM 2.9B XGLM 4.5B XGLM 7.5B PolyLM 1.7B PolyLM 13B Human XGLM 564M XGLM 1.7B XGLM 2.9B XGLM 4.5B XGLM 7.5B PolyLM 1.7B PolyLM 13B

Human XGLM 564M XGLM 1.7B XGLM 2.9B XGLM 4.5B XGLM 7.5B PolyLM 1.7B PolyLM 13B Human XGLM 564M XGLM 1.7B XGLM 2.9B XGLM 4.5B XGLM 7.5B PolyLM 1.7B PolyLM 13B

Active Passive Active Passive Active Passive Active Passive Active Passive Active Passive Active Passive Active Passive Active Passive Active Passive Active Passive Active Passive Active Passive Active Passive Active Passive Active Passive

DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO

of-Gen s-Gen of-Gen s-Gen of-Gen s-Gen of-Gen s-Gen of-Gen s-Gen of-Gen s-Gen of-Gen s-Gen of-Gen s-Gen Active Passive Active Passive Active Passive Active Passive Active Passive Active Passive Active Passive Active Passive

DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO DO PO

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Prime Type

N
o

rm
a

liz
e

d
 P

ro
b

a
b

ili
ty

Figure 5.1: Human and language model results for crosslingual structural priming
experiments.

model, as well as whether there is a significant priming effect (Figure 5.1). The full

statistical results are reported in section C.2.

Schoonbaert et al. (2007): Dutch→English

Schoonbaert et al. (2007) prime 32 Dutch-English bilinguals with 192 Dutch

sentences with either prepositional (PO) or dative object (DO) constructions. Schoonbaert

et al. (2007) find that experimental participants produce more PO sentences when

primed with a PO sentence than when primed with a DO sentence (see Figure 5.1A).

We see the same pattern with nearly all the language models (Figure 5.1A). With

the exception of XGLM 1.7B, where the effect is only marginally significant after
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(A) Schoonbaert et al. (2007): Dutch→Dutch
Normalized Probability PO Targets

(B) Kotzochampou et al. (2022): Greek→Greek Targets
Normalized Probability Passive Targets

(C) Cai et al. (2012) Experiment 1/2: Mandarin→Mandarin
Normalized Probability DO Targets

(D) Cai et al. (2012) Experiment 3: Mandarin→Mandarin
Normalized Probability DO Passive Targets
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Figure 5.2: Human and language model results for within-language structural prim-
ing experiments.

correction for multiple comparisons, all language models predict English PO targets

to be significantly more likely when they follow Dutch PO primes than when they

follow Dutch DO primes.

Schoonbaert et al. (2007): English→Dutch

Schoonbaert et al. (2007) also observe DO/PO structural priming from En-

glish to Dutch (32 participants; 192 primes). As seen in Figure 5.1B, all language

models show a significant priming effect.

Bernolet et al. (2013): Dutch→English

Bernolet et al. (2013) conduct a Dutch→English structural priming experi-

ment with 24 Dutch-English bilinguals on 192 prime sentences, and they find that

the production of s-genitives is significantly more likely after an s-genitive prime

than after an of -genitive prime. We also observe this in all of the language models,

as seen in Figure 5.1C.
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Hartsuiker et al. (2004): Spanish→English

Hartsuiker et al. (2004) investigate Spanish→English structural priming with

24 Spanish-English bilinguals on 128 prime sentences, finding a significantly higher

proportion of passive responses after passive primes than active primes. As shown

in Figure 5.1D, this effect is replicated by XGLM 564M, 2.9B, and 7.5B as well as

PolyLM 13B, with XGLM 4.5B showing a marginal effect (p = 0.0565).

Loebell and Bock (2003): German→English

Loebell and Bock (2003) find a small but significant priming effect of dative

alternation (DO/PO) from German to English with 48 German-English bilinguals on

32 prime sentences. As can be seen in Figure 5.1E, while all language models show

a numerical effect in the correct direction, the effect is only significant for XGLM

7.5B.

Loebell and Bock (2003): English→German

Loebell and Bock (2003) also test 48 German-English bilinguals for a dative

alternation (DO/PO) priming effect from English primes to German targets (32

prime sentences), finding a small but significant priming effect. As we show in Figure

5.1F, the models are relatively varied in direction of numerical difference. However,

only XGLM 2.9B and PolyLM 13B display a significant effect, and in both cases the

effect is in the same direction as that found with human participants.
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Kotzochampou and Chondrogianni (2022): Greek→English

Kotzochampou and Chondrogianni (2022) find active/passive priming from

Greek to English in 25 Greek-English bilinguals. Participants are more likely to

produce passive responses after passive primes (48 prime sentences). As shown in

Figure 5.1G), all XGLMs display this effect, while the PolyLMs, which are not trained

on Greek, do not.

Fleischer et al. (2012): Polish→English

Similarly, Fleischer et al. (2012) find active/passive priming from Polish to

English in 24 Polish-English bilinguals on 64 prime sentences. As we see in Figure

5.1H, while all models show a numerical difference in the correct direction, the effect

is only significant for XGLM 564M, 2.9B, and 7.5B, and for PolyLM 1.7B.

5.4.2 Monolingual Structural Priming

In the previous section, we found crosslingual priming effects in language

models for the majority of crosslingual priming studies in humans. However, six of

the eight studies have English target sentences. Our results up to this point primarily

show an effect of structural priming on English targets. While both previous work

(Sinclair et al., 2022) and our results in §5.4.1 may indeed demonstrate the effects

of abstract grammatical representations on generated text in English, we should

not assume that such effects can reliably be observed for other languages. Thus,

we test whether multilingual language models exhibit within-language structural

priming effects comparable to those found in human studies for Dutch (Schoonbaert
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et al., 2007), Greek (Kotzochampou and Chondrogianni, 2022), and two studies in

Mandarin (Cai et al., 2012).

Schoonbaert et al. (2007): Dutch→Dutch

Using Dutch prime and target sentences (192 primes), Schoonbaert et al.

(2007) find that Dutch-English bilinguals (N=32) produce PO sentences at a higher

rate when primed by a PO sentence compared to a DO sentence. As we see in Figure

5.2A, all language models display this effect.

Kotzochampou and Chondrogianni (2022): Greek→Greek

In their Greek→Greek priming experiment, Kotzochampou and Chondro-

gianni (2022) find an active/passive priming effect in native Greek speakers (N=25)

using 48 primes. As shown in Figure 5.2B, this effect is replicated by all language

models.

Cai et al. (2012): Mandarin→Mandarin

Using two separate sets of stimuli, Cai et al. (2012) find within-language

DO/PO priming effects in native Mandarin speakers (N=28, N=24).1 As seen in

Figure 5.2C and 5.2D, all language models show significant effects for both sets of

stimuli (48 prime sentences in their Experiments 1 and 2, and 68 prime sentences in

their Experiment 3).
1The original study tests the effect of variants of DO/PO primes (topicalized DO/PO and Ba-

DO; see Cai et al., 2012). To unify our analyses across studies, we only look at structural priming
following the canonical DO and PO primes used in both Experiments 1 and 2 of the original study,
as well as those used in Experiment 3.
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5.4.3 Further Tests of Structural Priming

We have now observed within-language structural priming in multilingual lan-

guage models for languages other than English. In §5.4.1, we found robust English→

Dutch structural priming (Schoonbaert et al., 2007) but only limited priming effects

for targets in German. Although there are no human results for the non-English

targets in the other studies in §5.4.1, we can still evaluate crosslingual structural

priming with non-English targets in the language models by switching the prime and

target sentences in the stimuli. Specifically, we test structural priming from English

to Dutch (Bernolet et al., 2013), Spanish (Hartsuiker et al., 2004), Polish (Fleischer

et al., 2012), and Greek (Kotzochampou and Chondrogianni, 2022).

🞶🞶 🞶🞶 🞶🞶 🞶🞶 🞶🞶 🞶🞶 🞶🞶 n.s.n.s. 🞶🞶 🞶🞶 🞶🞶 🞶🞶 n.s.n.s. 🞶🞶

n.s.n.s. n.s.n.s. n.s.n.s. n.s.n.s. n.s.n.s. 🞶🞶 n.s.n.s. 🞶🞶 n.s.n.s. n.s.n.s. 🞶🞶 n.s.n.s. n.s.n.s. n.s.n.s.
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Figure 5.3: Language model results for structural priming experiments with no hu-
man baseline.

All models show a significant effect on the reversed Bernolet et al. (2013) stim-

uli (Figure 5.3A; English→Dutch), and all models but PolyLM 1.7B show the same

for the reversed Hartsuiker et al. (2004) stimuli (Figure 5.3B; English→Spanish).

The other results are less clear-cut. While XGLM 564M, 2.9B, and 4.5B and the
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PolyLMs show a numerical effect in the correct direction for the reversed Fleischer

et al. (2012) stimuli (English→Polish; Figure 5.3C), only PolyLM 1.7B shows a sig-

nificant effect. For the reversed Kotzochampou and Chondrogianni (2022) stimuli

(English→Greek; Figure 5.3D), all the XGLMs and PolyLM 13B show a numerical

tendency in the correct direction, but only XGLM 564M and 4.5B show a significant

effect.

5.5 Discussion

We find structural priming effects in at least one language model on each set

of stimuli (correcting for multiple comparisons). Moreover, we observe a significant

effect in all models with the monolingual stimuli, and in the majority of the models

for 8 of the 12 crosslingual stimuli. In line with previous work (Hewitt and Manning,

2019; Chi et al., 2020), this supports the claim that language models learn generalized,

abstract, and multilingual representations of grammatical structure. Our results

further suggest that these shared grammatical representations are causally linked to

model output.

5.5.1 Differences between models

In some ways, we see expected patterns across models. For example, for the

XGLMs trained on 30 languages (XGLM 564M, 1.7B, 2.9B, and 7.5B), the larger

models tend to display larger effect sizes than the smaller models, in line with the idea

that model performance can scale with number of parameters (Brown et al., 2020;
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Kaplan et al., 2020; Rae et al., 2022; Hoffmann et al., 2022; Touvron et al., 2023a).

Additionally, the PolyLMs, which are not trained on Greek, do not show crosslingual

structural priming for Greek (neither Greek→English nor English→Greek).

On the other hand, one surprising finding is that despite not being trained on

Greek, the PolyLMs are able to successfully model monolingual structural priming

in Greek. The most likely explanation for this is what Sinclair et al. (2022) refer

to as ‘lexical overlap’—the overlap of function words between primes and targets

substantially boosts structural priming effects. In the same way that humans find

it easier to process words that have recently been mentioned (Rugg, 1985, 1990;

Van Petten et al., 1991; Besson et al., 1992; Mitchell et al., 1993; Rommers and

Federmeier, 2018), language models may predict that previously-mentioned words

are more likely to occur again (a familiar phenomenon in the case of repeated text

loops; see Holtzman et al., 2020; See et al., 2019; Xu et al., 2022a) even if they are not

trained on the words explicitly. This would explain the results for the Kotzochampou

and Chondrogianni (2022) stimuli, as the Greek passive stimuli always include the

preposition από.

Such an explanation could also account for the performance of XGLM 564M,

1.7B, 2.9B, and 7.5B on the Dutch and Polish stimuli. Despite not being inten-

tionally trained on Dutch or Polish, we see robust crosslingual Dutch→English and

English→Dutch structural priming, as well as Polish→English structural priming,

in three of these models. However, as discussed previously, crosslingual structural

priming avoids the possible confound of lexical overlap. For these results, therefore,

a more likely explanation is language contamination. In contemporaneous work, we
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find that training on fewer than 1M tokens in a second language is sufficient for struc-

tural priming effects to emerge (Arnett et al., 2023); our estimates of the amount

of language contamination in XGLM 564M, 1.7B, 2.9B, and 7.5B range from 1.77M

tokens of Dutch and 1.46M tokens of Polish at the most conservative to 152.5M and

33.4M tokens respectively at the most lenient (see section C.1).

The smaller amount of Polish contamination, as well as the fact that Polish

is less closely related to English, may explain the less consistent Polish→English

structural priming effects and the virtually non-existent English→Polish effects in

these models, but as will be discussed in §5.5.2, there may be other reasons for this

latter pattern.

5.5.2 Null Effects and Asymmetries

More theoretically interesting is the question of why some language models fail

to display crosslingual structural priming on some sets of stimuli, even when trained

on both languages. For example, in the Loebell and Bock (2003) replications, only

XGLM 7.5B shows a significant effect of German→English structural priming, and

only XGLM 2.9B and PolyLM 13B show a significant effect of English→German

structural priming. This may be due to the grammatical structures used in the

stimuli (DO/PO). While the original study does find crosslingual structural priming

effects, the effect sizes are small; the authors suggest that this may partly be because

"the prepositional form is used more restrictively in German" (Loebell and Bock,

2003, p. 807).

We also see an asymmetry in the crosslingual structural priming effects be-
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tween some languages. While the effects in the Dutch→English (Bernolet et al., 2013)

and Spanish→English (Hartsuiker et al., 2004) studies mostly remain when the direc-

tion of the languages is reversed, this is not the case for the Polish→English (Fleischer

et al., 2012) and Greek→English (Kotzochampou and Chondrogianni, 2022) results.

This may be due to the smaller quantity of training data for Polish and Greek com-

pared to Spanish in XGLM. While XGLM is only trained on slightly more Dutch

than Polish, Dutch is also more similar to English in terms of its lexicon and mor-

phosyntax, so it may benefit from more effective crosslingual transfer (Conneau et

al., 2020b; Gerz et al., 2018a; Guarasci et al., 2022; Winata et al., 2022; Ahuja et al.,

2022; Oladipo et al., 2022; Eronen et al., 2023).

If it is indeed the case that structural priming effects in language models are

weaker when the target language is less trained on, this would contrast with human

studies, where crosslingual structural priming appears most reliable when the prime

is in participants’ native or primary language (L1) and the target is in their second

language (L2). The reverse case often results in smaller effect sizes (Schoonbaert et

al., 2007) or effects that are not significant at all (Shin, 2010). Under this account,

language models’ dependence on target language training and humans’ dependence

on prime language experience for structural priming would suggest that there are

key differences between the models and humans in how grammatical representations

function in comprehension and production.

An alternative reason for the absence of crosslingual structural priming ef-

fects for the English→Polish and English→Greek stimuli is a combination of model

features and features of the languages themselves. For example, structural priming
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effects at the syntactic level may overall be stronger for English targets. English is a

language with relatively fixed word order, and thus, competence in English may re-

quire a more explicit representation of word order than other languages. In contrast

to English, Polish and Greek are morphologically rich languages, where important

information is conveyed through morphology (e.g. word inflections), and word orders

are less fixed (Tzanidaki, 1995; Siewierska, 1993). Thus, structural priming effects

with Polish and Greek targets would manifest as differences in target sentence mor-

phology. However, contemporary language models such as XGLM have a limited

ability to deal with morphology. Most state-of-the-art models use WordPiece (Wu et

al., 2016) or SentencePiece (Kudo and Richardson, 2018) tokenizers, but other ap-

proaches may be necessary for morphologically rich languages (Klein and Tsarfaty,

2020; Park et al., 2021a; Soulos et al., 2021; Nzeyimana and Niyongabo Rubungo,

2022; Seker et al., 2022).

Thus, while humans are able to exhibit crosslingual structural priming effects

between languages when the equivalent structures do not share the same word orders

(Muylle et al., 2020; Ziegler et al., 2019; Hsieh, 2017; Chen et al., 2013), this may not

hold for contemporary language models. Specifically, given the aforementioned lim-

itations of contemporary language models, it would be unsurprising that structural

priming effects are weaker for morphologically-rich target languages with relatively

free word order such as Polish and Greek.
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5.5.3 Implications for Multilingual Models

The results reported here seem to bode well for the crosslingual capacities of

multilingual language models. They indicate shared representations of grammatical

structure across languages (in line with Chi et al., 2020; Chang et al., 2022; de Varda

and Marelli, 2023), and they show that these representations have a causal role in

language generation. The results also demonstrate that crosslinguistic transfer can

take place at the level of grammatical structures, not just specific phrases, concepts,

and individual examples. Crosslinguistic generalizations can extend at least to gram-

matical abstractions, and thus learning a grammatical structure in one language may

aid in the acquisition of its homologue in a second language.

How do language models acquire these abstractions? As Contreras Kallens et

al. (2023) point out, language models learn grammatical knowledge through expo-

sure. To the degree that similar outcomes for models and humans indicate shared

mechanisms, this serves to reinforce claims of usage-based (i.e. functional) accounts

of language acquisition (Tomasello, 2003; Goldberg, 2006; Bybee, 2010), which argue

that statistical, bottom-up learning may be sufficient to account for abstract gram-

matical knowledge. Specifically, the results of our study demonstrate the in-principle

viability of learning the kinds of linguistic structures that are sensitive to structural

priming using the statistics of language alone. Indeed, under certain accounts of lan-

guage (e.g. Branigan and Pickering, 2017), it is precisely the kinds of grammatical

structures that can be primed that are the abstract linguistic representations that we

learn when we acquire language. Our results are thus in line with Contreras Kallens

et al.’s (2023) argument that it may be possible to use language models as tests for
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necessity in theories of grammar learning. Taking this further, future work might

use different kinds of language models to test what types of priors or biases, if any,

are required for any learner to acquire abstract linguistic knowledge.

In practical terms, the structural priming paradigm is an innovative way to

probe whether a language model has formed an abstract representation of a given

structure (Sinclair et al., 2022), both within and across languages. By testing whether

a structure primes a homologous structure in another language, we can assess whether

the model’s representation for that structure is abstract enough to generalize beyond

individual sentences and has a functional role in text generation. As language models

are increasingly used in text generation scenarios (Lin et al., 2022) rather than fine-

tuning representations (Conneau et al., 2020a), understanding the effects of such

representations on text generation is increasingly important. Previous work has

compared language models to human studies of language comprehension (e.g. Oh

and Schuler, 2023; Michaelov et al., 2022; Wilcox et al., 2021; Hollenstein et al., 2021;

Kuribayashi et al., 2021; Goodkind and Bicknell, 2018), and while the degree to which

the the mechanisms involved in comprehension and production differ in humans is a

matter of current debate (Pickering and Garrod, 2007, 2013; Hendriks, 2014; Meyer

et al., 2016; Martin et al., 2018), our results show that human studies of language

production can also be reproduced in language models used for text generation.

5.5.4 Limitations

To ensure that the stimuli used for the language models indeed elicit struc-

tural priming effects in people, we only use stimuli made available by the authors
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of previously-published studies on structural priming in humans. Thus, our study

analyzes only a subset of possible grammatical alternations and languages. All of our

crosslingual structural priming stimuli involve English as one of the languages, and

all other languages included are, with the exception of Mandarin, Indo-European

languages spoken in Europe. All are also moderately or highly-resourced in the NLP

literature (Joshi et al., 2020). Thus, our study is not able to account for the full

diversity of human language.

Additionally, while psycholinguistic studies often take crosslingual structural

priming to indicate shared representations, there are alternate interpretations. Most

notably, because structurally similar sentences are more likely to occur in succes-

sion than chance, it is possible that increased probability for same-structure target

sentences reflects likely co-occurrence of distinct, associated representations, rather

than a single, common, abstract representation (Ahn and Ferreira, 2023). While this

is a much more viable explanation for monolingual than crosslingual priming, the

presence of even limited code-switching in training data could in principle lead to

similar effects across languages.

5.6 Conclusion

Using structural priming, we measure changes in probability for target sen-

tences that do or do not share structure with a prime sentence. Analogously to

humans, models predict that a similar target structure is generally more likely than

a different one, whether within or across languages. We observe several exceptions,
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which may reveal features of the languages in question, limitations of the models

themselves, or interactions between the two. Based on our results, we argue that

multilingual autoregressive Transformer language models display evidence of abstract

grammatical knowledge both within and across languages. Our results provide evi-

dence that these shared representations are not only latent in multilingual models’

representation spaces, but also causally impact their outputs.
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Chapter 6

Crosslingual Structural Priming and

the Pre-Training Dynamics of

Bilingual Language Models

6.1 Introduction

This chapter follows up on the results of Chapter 5. In this chapter, we train

bilingual models in order to remove the confounds encountered above with respect

to training data quantities. By training our own models, we are also able to save the

model at various points during training in order to understand when and how the

shared abstract grammatical representations come about.

In contrast with the previous chapter, this chapter it not published or sub-

mitted for publication. It is a set of experiments, which explores questions that arose
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from the previous chapters and related topics.

In this Section 6.3, I replicate the structural priming effects in Chapter 5. In

Section 6.4, I demonstrate the time course of the emergence of structural priming

effects over the course of training. In Section 6.5, I use a probing method to identify

the shared representations that drive structural priming effects. In Section 6.6, I use

a causal intervention method to try to establish a causal relationship between the

representations I identified with a probe; however, there was no causal relationship.

In Section 6.7, I test several potential causes for the lack of causal relationship

between the probing results and the causal analysis.

6.2 Training Bilingual Language Models

We pre-train bilingual language models1 to simulate the language experience

of the bilingual participants in the human structural priming experiments we use

here. We have two bilingual conditions. In the simultaneous bilingual setting,

the models are exposed to one language (L1) during the first half of training and in

the second half they are exposed to a mix of half L1 and half second language (L2)

data. During the second half of training, batches were constructed with alternating

sequences of L1 and L2 text, therefore at any given checkpoint it is possible to count

precisely the number of tokens from each language that the model has seen. In the

sequential bilingual setting, models are exposed only to L1 during the first half of

training and then only to L2 in the second half of training.

We manipulate three factors: language pair (English-Dutch, English-Spanish,
1https://huggingface.co/collections/catherinearnett/b-gpt-66f4b80e8fa8e95491948556
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English-Polish, English-Greek), language order (e.g. English L1, Dutch L2 and Dutch

L1, English L2), and bilingual condition (simultaneous or sequential). As a result,

we train a total of 16 language models. For example, for Dutch we train four models:

Dutch-English simultaneous, Dutch-English sequential, English-Dutch simultaneous,

and English-Dutch sequential.

We train a separate SentencePiece tokenizer (Kudo and Richardson, 2018) for

each model. The tokenizer has the same language proportions as the model training

data. For the simultaneous bilingual condition, the overall proportion of training data

the model sees is 75% L1 and 25% L2 data. For the sequential bilingual condition,

the overall proportion is 50% L1 and 50% L2 data.

The models are autoregressive GPT-2 Transformer language models with

124M parameters (Radford et al., 2018, 2019). Following Chang et al. (2023b), for

each language, we take the first 128M lines of the deduplicated OSCAR corpus

(Abadji et al., 2021). We tokenize the dataset with the tokenizer for each model.

We create sequences of 128 tokens, shuffle sequences, and sample 2B tokens for the

training set. We also create an evaluation set of 8k sequences (1M tokens). In total,

the model trained for 128,000 steps. Starting at step 64,000, the model was then

trained on either a mix of L1 and L2 (simultaneous) or just L2 data (sequential). We

save the model at regular checkpoints over the course of training, and increase the

number of checkpoints just after the introduction of L2 halfway through training.

All model training details are reported in D.2.
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6.2.1 Model Training

We report the mean surprisal2 at each checkpoint for both languages each

model is trained on. We calculate loss using the PsychFormers package3 (Michaelov

and Bergen, 2022c) to calculate the mean surprisal over the held out evaluation data.

Figure 6.1 shows the loss curves for the English-Dutch models.
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Figure 6.1: Mean surprisal is plotted for all checkpoints for the English-Dutch simul-
taneous (top left), Dutch-English simultaneous (top right), English-Dutch sequential
(bottom left) and Dutch-English sequential (bottom right) models. Mean surprisal
is plotted for both L1 and L2. Orange always indicates Dutch and purple always
indicates English, irrespective of their L1/L2 status.

For both simultaneous bilingual models, we observe similar patterns: L1 mean
2Mean surprisal is equivalent to cross-entropy loss as defined in 1.1, normalized by the number

of tokens. It is a measure closely related to perplexity, where perplexity is exponentiation of mean
surprisal.

3Available at https://github.com/jmichaelov/PsychFormers
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surprisal goes down quickly in the first half of training, while L2 mean surprisal stays

relatively high. After the introduction of L2 at the halfway point, L2 loss drops

quickly. Loss for both languages continues to slowly fall for the rest of training.

There is an asymmetry between the English-Dutch and Dutch-English simultaneous

models, where the English L2 loss drops much more quickly in the first half of training

than does the loss for Dutch as L2. When Dutch is the L1 (top right, Fig. 6.1), the

model is supposedly not being trained on English. We hypothesize that this is due to

English contamination in the Dutch data. The reason we see an asymmetry is likely

because there is not as as much Dutch contamination in the English data. This could

be due to language use as many Dutch people speak English, but proportionally not

as many English speakers also speak Dutch. It could also be due to differences in

accuracy of language identification (LID) methods for English and Dutch, as English

and Dutch are very similar languages. The loss curves are very different for the

sequential condition models in the second half of training. After the model switches

from being trained on L1 to L2 data, we see a sharp rise in the loss for the L1. The

loss stays high for the rest of training. This is consistent with catastrophic forgetting

(McCloskey and Cohen, 1989). This reflects the drastic shift in the distribution of

training text from L1 to L2. As in the simultaneous condition, there is an asymmetry

between the language order conditions. When English is the L1, there is a much less

extreme rise in the L1 mean surprisal in the second half of training. This is also

likely due to contamination. If the Dutch dataset contains English data, then the

model is being exposed to small amounts of English data, which could be reducing

the amount of catastrophic forgetting.
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Comparing the English-Dutch loss curves with those of the other language

pairs (Fig. 6.2), we see similar patterns. For the simultaneous models, especially

when English is the L2, there seems to be a language similarity effect. Comparing

the models in the second column from the left in Fig. 6.2, by the end of training,

there is a much smaller difference between mean surprisal for English and Dutch and

English and Spanish, relative to the differences in mean surprisal between English

and Polish and English and Greek. The lower the mean surprisal for English, the

greater the transfer benefit is from the L1. In the case of Dutch, which is the most

similar to English of the four languages, the English performance benefits the most.

Whereas for the Greek-English model, which is typologically and orthographically

distinct from English, the English performance gets less of a boost. This is consistent

with other work, which shows that linguistic similarity is one of the best predictors

of successful crosslingual transfer (Chang et al., 2023a).

In the sequential condition, especially when English is the L1 (Fig. 6.2, second

column from the right), there are differences in the magnitude of the catastrophic

forgetting effect. For Dutch the increase in English mean surprisal is less than the

increase for the Spanish and Polish, which in turn is less than that for Greek. This

is also likely due to differences in linguistic similarity.

6.3 Structural Priming Effects

We detect structural priming effects by comparing the relative likelihood of a

target sentence after different prime sentences. e
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English−Greek simultaneous Greek−English simultaneous English−Greek sequential Greek−English sequential

English−Polish simultaneous Polish−English simultaneous English−Polish sequential Polish−English sequential

English−Spanish simultaneous Spanish−English simultaneous English−Spanish sequential Spanish−English sequential

English−Dutch simultaneous Dutch−English simultaneous English−Dutch sequential Dutch−English sequential
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Figure 6.2: L1 and L2 mean surprisal for all models and all checkpoints. The color
of each line indicates the evaluation language. Each facet represents one model.

We report crosslingual structural priming results, unless otherwise stated.

This means that the prime sentence is in one language and the target language is in

another language. In all of our language pairs, we compare comparable grammatical

constructions, which both languages in each language pair share.

Comparing the probability of a prime sentence given two different contexts,

structural priming demonstrates causal effects of shared abstract grammatical rep-

resentations on model outputs without relying on access to internal model states.

If a sentence with one grammatical construction in one language makes a sentence
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with the same grammatical construction in another language more likely, then both

sentences must be represented in the language model – at least in part – with a

shared representation.

6.3.1 Calculating Structural Priming Effects

In human studies, structural priming effects are computed as the difference

in normalized probability of a target sentence following each prime. Following Ar-

nett et al. (2023), we measure the effect in language models by first calculating the

surprisal of a target sentence given a prime sentence using the PsychFormers pack-

age (Michaelov and Bergen, 2022c). We then compute the normalized probability of

each target sentence following each prime. For example, we compute the normalized

probability PN of a PO target TPO following a PO prime PPO as shown below, where

TDO is the DO target and PDO would be a DO prime; see Eq. 6.1.

PN(TPO|PPO) =
P (TPO|PPO)

P (TPO|PPO) + P (TDO|PPO)
(6.1)

To test for a structural priming effect, we compare PN(TPO|PPO) and PN(TPO|PDO).

If the former is significantly higher, this would indicate structural priming, because

PO targets are more likely after PO primes than after DO primes. For each model

and language combination, we fit a linear mixed effects model predicting the normal-

ized probability of the target with prime type as a fixed effect and experimental item

as a random intercept. Here, we only report results for the final model checkpoint,

but we conduct the same tests for each model checkpoint. We report the results

for the other checkpoints in Section 6.4 below. After fitting each linear mixed effect
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model, we do a correction for multiple comparisons by controlling for false discovery

rate (Benjamini and Hochberg, 1995).

6.3.2 Experimental Materials

We use the experimental stimuli from five studies across the four language

pairs, covering three grammatical alternations: DO/PO, s-genitive/of-genitive, and

Active/Passive.

DO/PO We use the Dutch and English stimuli from Schoonbaert et al. (2007),

which contain pairs that contrast the Prepositional Object (PO) and Double Object

(DO) dative constructions.

In some languages, for ditransitive sentences, when there are two objects,

there are two possible ways to express the same event. One of these is the Prepo-

sitional Object (PO) construction (see example (1-a)). In this construction, the

direct object ‘hat’ directly follows the verb and the indirect object is introduced

with a prepositional phrase ‘to the boxer’. The other is the Double Object (DO)

construction (1-b). In this construction, the indirect object ‘boxer’ follows the verb,

followed immediately by the direct object ‘hat’.

(1) a. The cook shows a hat to the boxer. (PO)

b. The cook shows the boxer a hat. (DO)

(Schoonbaert et al., 2007)

Dutch has an equivalent alternation, with the same word order as English for PO
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(Ex. (2-a)) and DO (Ex. (2-b)) sentences

(2) a. De
The

kok
cook

toont
shows

een
a

hoed
hat

aan
to

de
the

bokser.
boxer.

b. De
The

kok
cook

toont
shows

de
the

bokser
boxer

een
a

hoed.
hat.

(Schoonbaert et al., 2007)

s-genitive/of-genitive We use the Dutch and English stimuli from Bernolet et

al. (2013), which contrast the two genitive constructions, which are semantically

equivalent ways to express possession. In English, one of these is the s-genitive

construction (Ex. (3-a)), where the possessor ‘nun’ is marked with ‘’s’. In this con-

struction, the possessor ‘nun’ precedes the possessed thing ‘egg’. In the of-genitive

construction (Ex. (3-b)), the order is reversed and the possessed thing precedes

the possessor. In this case, the preposition ‘of’ is used to express the possessive

relationship.

(3) a. The nun’s egg is yellow. (s-gen)

b. The egg of the nun is yellow. (of-gen)

(Bernolet et al., 2013)

Dutch has a similar alternation. For proper names, s-genitive possession can be

marked with ‘’s’, but for common nouns, possession is marked with the possessive

pronoun that corresponds in gender to the possessor noun. In the example below

(Ex. (4-a)), non ‘nun’ is feminine, so haar ‘her’ marks possession. Masculine nouns

use zijn ‘his’ (Bernolet et al., 2013). The dutch of-genitive construction is more
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similar to English, where the preposition van ‘of’ is used to show possession, and the

order of the possessor and possessee is flipped, relative to the s-genitive order.

(4) a. De
The

non
nun

haar
POSS

ei
egg

is
is

geel.
yellow.

b. Het
The

ei
egg

van
of

de
the

non
nun

is
is

geel.
yellow.

(Bernolet et al., 2013)

Active/Passive For Spanish-English, Polish-English, and Greek-English experi-

ments, we use stimuli that contrast active and passive constructions. For Spanish-

English, we use stimuli from (Hartsuiker et al., 2004); for Greek-English, the stimuli

come from (Kotzochampou and Chondrogianni, 2022); and for Polish-English, we

use stimuli from (Fleischer et al., 2012).

Many languages allow events to be expressed as either active or passive. In

active sentences, e.g. Ex. (5-a), the agent, or do-er of the action, ‘the taxi’ is

the syntactic subject of the sentence, which in English, is marked by being the first

argument in the sentence. The theme or patient, i.e. the thing having an action

done to it, ‘truck’ is the syntactic object of the sentence and follows the noun. In

passive sentences, the syntactic subject of the sentence is the theme. The agent is

introduced in a prepositional phrase, ‘by the taxi’ (Ex. (5-b)).

(5) a. The taxi chases the truck. (Active)

b. The truck is chased by the taxi. (Passive)

(Hartsuiker et al., 2004)
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Spanish expresses active and passive sentences very similar to English, following the

same word order (Ex. (6-a) and (6-b), respectively).

(6) a. El
The

taxi
taxi

persigue
chases

el
the

camión.
truck.

b. El
The

camión
truck

es
is

perseguido
chased

por
by

el
the

taxi.
taxi.

(Hartsuiker et al., 2004)

Typologically, Polish and Greek are more different from English than either Dutch

or Spanish is. Both of these languages mark the syntactic subjects and objects

using case marking, unlike English, Dutch, and Spanish, which do this only with

word order. In Polish, for example, in the active, sportowiec ‘sportsman’ is in the

nominative case and is the syntactic subject of the sentence. The patient ‘ballet

dancer’ takes the accusative and is the grammatical object of the sentence. In the

passive, it is in the accusative case (sportowca) and is introduced with a prepositional

phrase. The patient ‘ballet dancer’), in this case, is in the nominative case.

(7) a. Sportowiec
sportsman.NOM.SG

przygniata
squash.PRES.3SG

baletnicę.
ballet-dancer.ACC.SG

"The sportsman squashes the ballet dancer."

b. Baletnica
ballet-dancer.NOM.SG

jest
be.3SG.PRES

przygniatana
squash.PST.PART

przez
by

sportowca.
sportsman.ACC.SG
"The ballet dancer is squashed by the sportsman."

(Fleischer et al., 2012)

Similarly, Greek marks subject and object roles with case marking. When it is
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the subject, αθλητής (athlitis) ‘athlete’ is nominative, but as an object, it takes

the accusative case (αθλητή, athliti). Greek, unlike Polish or the other languages

described here, has a specific verbal morphology to encode active or passive voice

(cf. (8-a) and (8-b)), therefore the verb form is also specific to passive voice, unlike

the other languages shown here, which use a combination of the present copula and

the past participle to mark passive voice.

(8) a. Ο

O
αθλητής

athlitis
κλωτσάει

klotsaei
τον

ton
κλέφτη.

klefti.
The athlete.NOM kicks-ACTIVE the thief.ACC.

"The athlete kicks the thief."

b. Ο

O
κλέφτης

kleftis
κλωτσιέται

klotsiete
από

apo
τον

ton
αθλητή.
athliti.

The thief.NOM kicks-PASSIVE by the athlete.ACC.

"The thief is kicked by the athlete."

(Kotzochampou and Chondrogianni, 2022)

The Spanish, Greek, and Polish experiments have many fewer stimuli pairs than the

Dutch experiments. Because we do not primarily aim to replicate human experi-

mental results, we create new prime-target pairs by combining sentences into every

possible order. Then we randomly sample pairs so that we have 144 sets for each the

Spanish, Greek, and Polish stimuli, otherwise the experiment is over-powered. For

each set, we have 16 possible conditions, for a total of 2304 observations per stim-

uli set. This matches the amount of statistical power for the Dutch experimental

materials.
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6.3.3 Results

Overall, we replicate the crosslinguistic structural priming effects4 in Arnett

et al. (2023) (Fig. 6.3). In all cases, when English is the target language, we find that

a target is more likely if the prime sentence matches its grammatical structure. We

also find that for the experiments with Schoonbaert et al. (2007) and Kotzochampou

and Chondrogianni (2022) stimuli, when English is the prime language, we also find

structural priming effects. There is still a numerical effect in the expected direction

for the experiments with Bernolet et al. (2013) and Hartsuiker et al. (2004) stimuli

where English is the prime language.
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Figure 6.3: Priming results for the simultaneous bilingual conditions. For all ex-
periments, prime language corresponds to L1 and target language corresponds to
L1. Significance is indicated with *. Color indicates prime condition. Orange indi-
cates congruent or matching prime and target types and purple indicates mismatched
prime and target types.

Arnett et al. (2023) failed to demonstrate robust structural priming effects

in language models for English-Polish and English-Greek. In that paper, we hy-
4Following results from the human structural priming literature, where it has been found that

structural priming effects are strongest when the prime language is the participant’s L1, and the
target language is the L2, we only report results from the L1→L2 priming conditions. We report
L2-L1 priming results in D.3.
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pothesized that this was due to the much lower amount of training data that the

models had seen from these languages. After controlling for this by training custom

language models, we find significant structural priming effects for these languages in

the simultaneous condition.

There is an asymmetry in the results, where we see more robust structural

priming effects when English is the target language, as opposed to when English is

the prime language. One possible explanation is that English is more sensitive to

word order than other languages. We further discuss this in Section 6.3.4. This

has not been observed in the human psycholinguistics literature, because English is

almost always the L2 for human experiments (and thus the target language). The

only exception from this set of experiments is Schoonbaert et al. (2007). This is due

to the populations which are usually sampled from for these experiments, namely

university students in countries like the Netherlands, where it is easiest to find L1

Dutch and L2 English speakers, as opposed to L1 English and L2 Dutch speakers.

This is a major confound in the literature. Therefore, this asymmetry has never been

observed in human experiments. Using language models to develop and test these

hypotheses can help overcome some of the experimental confounds that are difficult

to control for in human experiments. This approach, called in silico experimentation,

has also been proposed in neuroscience research, where traditional experiments are

costly and time-intensive (Jain et al., 2024).

Another possible explanation for this asymmetry is data contamination. We

hypothesize that it is more likely that English data contaminates datasets for other

languages than vice versa. Therefore, in the cases where English is the target lan-
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guage (and therefore the L2), English has actually been seen more than intended

because of contamination. This could be boosting the structural priming effects,

especially when English is the target language.

We find similar patterns from the sequential bilingual models (Fig. 6.4). De-

spite evidence that the sequential models experienced catastrophic forgetting of the

L1 (Section 6.2.1), the Dutch and Spanish models still exhibit structural priming ef-

fects in the final checkpoints, and we see significant structural priming in the English-

Polish condition. However, there is a reduced effect size, which is likely caused by

the catastrophic forgetting, which may cause the models to represent knowledge of

L1 less well by the end of training. There are stronger effects for Dutch and Spanish,

and less strong effects for Greek and Polish. This is likely another language similarity

effect.

There are several key ways in which these languages differ, including writing

system, case morphology, and how the grammatical alternations are encoded. For

instance, English, Dutch, Spanish, and Polish all use periphrastic constructions to

encode the passive voice, whereas Greek uses verbal morphology to do so. Greek

is also the only language that uses a non-Latin writing system. Therefore, we are

not able to disentangle these factors. We can only hypothesize that whether these

languages share these features has an impact on crosslingual transfer.

6.3.4 Word Order Analysis

As mentioned above, one explanation for the stronger structural priming ef-

fects is the increased importance of word order in English relative to other languages
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Figure 6.4: Priming results for the sequential bilingual conditions. For all experi-
ments, prime language corresponds to L1 and target language corresponds to L1.
Significance is indicated with *. Color indicates prime condition. Orange indicates
congruent or matching prime and target types and purple indicates mismatched
prime and target types.

(Arnett et al., 2023). We see much weaker structural priming effects when either Pol-

ish or Greek are prime or target languages. Both of these languages have more flexible

word order because of overt morphological marking like case marking (Siewierska,

1993; Tzanidaki, 1995). Because of a syntactic feature, we can begin to test whether

the weaker structural priming effects in Polish are due to more flexible word order.

In addition to an Active-Passive alternation, Polish has a third alternative:

OVS (Fleischer et al., 2012). The default word order for Polish is SVO. In active

sentences (Ex. (9-a)), the order of the arguments is the syntactic subject and agent

‘sportsman’), followed by the verb, followed by the syntactic object and theme ‘ballet

dancer’). In passive sentences (Ex. (9-b)), the order of the argument is first and the

syntactic subject, marked by the nominative case, is the theme. The syntactic object,

marked by accusative case and part of a prepositional phrase, is the agent. In OVS

sentences, the grammatical construction is active, as the syntactic subject is the

agent and then syntactic object is the theme; however, the order of the arguments is
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the same as the passive (ballet dancer, then verb, then sportsman; Ex. (9-c)).

(9) a. Sportowiec
sportsman.NOM.SG

przygniata
squash.PRES.3SG

baletnicę.
ballet-dancer.ACC.SG

"The sportsman squashes the ballet dancer."

b. Baletnica
ballet-dancer.NOM.SG

jest
be.3SG.PRES

przygniatana
squash.PST.PART

przez
by

sportowca.
sportsman.ACC.SG
"The ballet dancer is squashed by the sportsman."

c. Baletnicę
ballet-dancer.ACC.SG

przygniata
squash.PRES.3SG

sportowiec.
sportsman.NOM.SG

"The sportsman squashes the ballet dancer."

If structural priming effects are driven by constructions alone, independent of word

order, then we would expect to see that OVS primes Active sentences and vice versa.

If structural priming effects can be explained by word order, then we would expect

OVS to prime Passive and vice versa, as the two sentence types share the same

argument order.

We created a new set of stimuli. For Polish-English priming, we use the same

procedure, but add the OVS as a prime, so there are three total prime conditions:

Active, OVS, and Prime. In English-Polish priming, there are still only two prime

conditions (Active and Passive), as English does not have an OVS structure. We

evaluated the structural priming effects of both Active and OVS as targets. We used

the English-Polish and Polish-English simultaneous models and evaluated only on

the final model checkpoint. We evaluate each model on both priming directions, i.e.

on both L1-L2 and L2-L1 priming. In Figure 6.5, we show the results of Polish as
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a prime language and English as a target language. There are three primes because

Polish has all three constructions. By contrast, Figure 6.6 shows the results with

English as a prime language and Polish as a target language. As a result, there are

only two prime types.

In Polish-English priming, Active targets are less likely after a Passive prime

than after either an Active or OVS prime. OVS primes Active to a similar degree

as Active primes Active. Fleischer et al. (2012) only tested Polish-English priming,

but we also test English-Polish priming. There is no human baseline to compare the

results to, however, was test whether Active or Passive primes lead to higher OVS

target probability. We find that Active primes OVS more than Passive does (Fig.

6.6. Therefore, in both priming language directions, Active primes OVS.
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Figure 6.5: Polish-English priming.
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Figure 6.6: English-Polish priming.

Figure 6.7: Each facet represents a different simultaneous bilingual model accord to
the order of language exposure, either English-Polish or Polish-English both model
language orders.

These results diverge from the human experimental results in Fleischer et al.

(2012), in which the authors found that OVS primed Passive sentences in Polish-

English priming. The results support the former hypothesis, that structural priming
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is about the construction itself, as opposed to word order, at least in language mod-

els. These results do not suggest word order is the reason for asymmetrical structural

priming effects. It is possible the effect asymmetry is due to training data contami-

nation, or another reason that has not yet been considered.

As the results diverge from the human experimental results, it seems the

mechanism behind structural priming may be different for humans and language

models. This does not necessarily mean that language models cannot be used for in

silico experimentation, but it is important to recognize where the limitations are for

language models as computational models of human language processing.

6.4 Training Dynamics of Structural Priming

Here we report the structural priming effects over the course of training, which

were calculated in the same way as the previous section, but for each model check-

point. For each checkpoint, we plot the relative probability of the target depending

on the two primes. Prime condition is indicated by color, where congruent prime is

orange, and incongruent prime is purple. The structural priming effect size is the

magnitude of the difference between the two relative probabilities at a given check-

point. Figure 6.8 shows the structural priming effects at each checkpoint. We report

the results for all models, language directions, etc. in D.4.

Simultaneous bilingual condition Across all models, we find that structural

priming effects do not emerge until after exposure to L2, even when we test the

L1 as the target language. This means that structural priming shows evidence of
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Figure 6.8: The figure on the left shows structural priming effects for English-Dutch
priming for the simultaneous bilingual model, evaluated on Schoonbaert et al. (2007)
stimuli. Significant structural priming effects are marked with triangles, effects that
are not significant are marked with circles. In the figure on the right, we plot the
structural priming effects for the first 900 steps after L2 exposure, where we saved
more fine-grained checkpoints.

shared representations, not of zero-shot transfer, as we only observe structural prim-

ing effects once the models have updated their representations based on L2 training

data. This also shows that these effects are not driven entirely by data contamina-

tion. While we hypothesize that some of the asymmetries in language direction are

caused by contamination, the amount of contamination alone is not enough to lead

to structural priming effects.

After exposure to L2, structural priming effects emerge quickly. In Figure

6.8, the effect emerges 600 steps5 after first exposure to L2, at which point the lan-
5At earlier steps, there are significant structural priming effects, but they are not stable across
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guage model has seen approximately 5M L2 tokens. For most models where we find

structural priming effects, the effects emerge within the first 1000 steps after L2 ex-

posure. These results contribute to our understanding of crosslingual transfer and

multilingual representations. Ongoing research has demonstrated that contamina-

tion with other languages can impact multilingual model performance (Blevins and

Zettlemoyer, 2022; Muennighoff et al., 2023). For example, Muennighoff et al. (2023)

find zero-shot crosslingual transfer on XNLI for models that are not intentionally

trained on some of the XNLI languages. However, in an analysis of the pre-training

dataset, they find small amounts of data in non-included languages (e.g. approx-

imately 0.006% of the data is in Thai, corresponding to roughly 20M tokens). So

we cannot attribute these results to crosslingual transfer, but instead they are likely

driven by contamination. The results presented here show that with even as few as

5M tokens – albeit in a much smaller model – can lead to behaviors we attribute

to multilingual representations. This suggests a reconsideration of other "zero-shot"

crosslingual capabilities in multilingual language models.

Sequential bilingual condition We see slightly different patterns for the sequen-

tial bilingual condition. In the simultaneous condition, it was more common for the

structural priming effect size to continue to increase over the course of training (Fig.

6.9, left). In the sequential bilingual condition, where we observed increased mean

surprisal for L1 consistent with catastrophic forgetting, we observe in some cases a

larger structural priming effect size earlier on in the second half of training. Then,

in the later stages of training, the effect size starts to shrink (Fig. 6.9, right).

checkpoints until this checkpoint.
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Figure 6.9: Structural priming effects over the course of training for Dutch-English
models evaluated on Bernolet et al. (2013) stimuli, for the simultaneous (left) and
sequential (right) bilingual conditions.

In other cases, we see that the structural priming effect is significant, but

then disappears completely (Fig. 6.10). In the plots in the left column, which show

structural priming effects over the whole course of training, that there are structural

priming effects between step 64000 and approximately steps 70000 in the case of

Spanish and 80000 in the case of Polish. The plots on the right show results for the

same models, but only for the first 1000 steps after exposure to L2. The structural

priming effects grow in this window, but ultimately disappear at a later stage in

training.

6.4.1 Mean Surprisal and Structural Priming Effects

If structural priming is conditioned on the model having some knowledge of

L2, as opposed to being driven by zero-shot crosslingual transfer, then we should

expect the emergence of structural priming effects to be temporally linked to L2

proficiency. We measure L2 proficiency with two metrics: mean surprisal (Section
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Figure 6.10: Structural priming effects over the course of training for Spanish-English
(top) and Polish-English (bottom) sequential bilingual models evaluated on Hart-
suiker et al. (2004) and Fleischer et al. (2012) stimuli, respectively. For each model,
we show both the structural priming effects for all checkpoints (left) and the first
900 checkpoints after L2 exposure (right).

6.4.1) and BLiMP (Section 6.4.2).

Here we plot mean surprisal and structural priming effect size. In these plots,

instead of plotting each prime condition separately, the black line represents the

difference between the two conditions. Higher values represent larger effect sizes. In

pink, we plot the mean surprisal. The axes scales are rescaled for easier comparison.

In Figure 6.11 (top left, bottom left), we show two examples from the simultaneous

bilingual condition. We plot the L2 mean surprisal. In the first half of training,
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we see high L2 mean surprisal, which indicates that the model does not have very

good representations of L2. Correspondingly, structural priming effects are very

small or non-existent. At the halfway point of training, there is a sudden drop in

the mean surprisal. At the same time, the structural priming effect size increases

rapidly. This supports our claim that structural priming effects correspond with the

models learning representations for both languages, as opposed to zero-shot using L1

representations to process L2 text.

In Figure 6.11 (top right and bottom right), we plot structural priming ef-

fect and mean surprisal for the sequential bilingual condition. In the second half of

training, there is a rapid rise in L1 mean surprisal, consistent with catastrophic for-

getting. During this period, structural priming effect size increases, rapidly. Then,

as the L1 mean surprisal plateaus, structural priming effect sizes decrease and re-

main small (top right) or disappear altogether (bottom right). We argue that the

structural priming effects are consistent with the model transferring shared abstract

grammatical representations learned from L1 to represent L2. In the initial period,

the representations of L1 and L2 are the most similar, which explains the larger struc-

tural priming effects. Then, as training continues, the representations drift such that

they represent L2 much better than L1. As a result, the structural priming effect

size shrinks.

6.4.2 BLiMP analysis

Some argue that measures like perplexity do not accurately measure language

model performance (Kuribayashi et al., 2021), therefore we also evaluate each model
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Figure 6.11: Structural priming effect (black) and L2 mean surprisal (pink) plotted
over the course of training. Top left: Dutch-English simultaneous condition. Top
right: Dutch-English sequential condition. Bottom left: Polish-English simultaneous
condition. Bottom right: Polish-English sequential condition.

checkpoint on the BLiMP benchmark (Warstadt et al., 2020). BLiMP demonstrates

the grammatical knowledge of the model, which is predictive of a model’s ability to

generate grammatical text. We evaluate each model checkpoint on BLiMP using the

LM Evaluation Harness (Gao et al., 2024), and we report the average score over all

sub-tasks. While there are BLiMP benchmarks for other languages, BLiMP does

not exist for all other languages in our sample. Therefore, we limit our analysis to

English BLiMP. We report results for all models in D.6.
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Figure 6.12: English L1 models in both the sequential (solid lines) and simultaneous
(dotted lines) conditions. BLiMP accuracy is plotted over the course of training.

For models where English is the L1, we see differences in BLiMP scores over

the course of training according to the bilingual conditions (Fig. 6.12. In the simul-

taneous bilingual condition, there is a small dip in BLiMP score after exposure to

L2, but then the scores rise again and stay at ceiling. In the sequential bilingual

condition, BLiMP scores fall rapidly after exposure to L2. At about step 80000,

performance plateaus. The performance never returns to the level of the model at

checkpoint 0, but BLiMP score at the final checkpoint is worse than at checkpoint

10000 for all models. This further supports the observation that the models in the

sequential bilingual condition experience catastrophic forgetting. It is even more

noteworthy, therefore that the models exhibit structural priming effects during the

period where L1 mean surprisal rises and BLiMP scores fall.

Comparing BLiMP performance for the models in the simultaneous condition,
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we observe a difference in final checkpoint performance. Dutch models have the

best performance, followed by Spanish. Greek and Polish again show the worst

performance. These results demonstrate differential crosslingual transfer benefits.

The language that is the most similar to English (Dutch) leads to the highest BLiMP

scores, followed by Spanish, which is also very similar to English. Polish and Greek

are the most different from English and show the least benefit from crosslingual

transfer. This is also consistent with previously demonstrated effects of linguistic

similarity (Chang et al., 2023a).

Comparing BLiMP scores to structural priming effect size (Fig. 6.13), we

see the same patterns as those from mean surprisal. Again, we plot both structural

priming and BLiMP accuracy and scale the axes for easier comparison. In the simul-

taneous condition, when English is L2, structural priming effects only emerge when

BLiMP scores rise suddenly. Structural priming effect size patterns with BLiMP

accuracy. They both rise very quickly after exposure to L2 and then plateau.

In the sequential condition, BLiMP accuracies also show evidence of catas-

trophic forgetting (Fig. 6.14, right), such that BLiMP accuracy rises in the first half

of training, but falls dramatically after the model stops being exposed to L1. BLiMP,

therefore, reflects the same patterns we see in the perplexity results. However, as with

the perplexity results, when BLiMP scores fall as a result of catastrophic forgetting,

structural priming effects do not always necessarily disappear.

We plot the relationship between mean surprisal and BLiMP accuracy (Fig.

6.15. There is a clear relationship, thus we argue that mean surprisal is a good

indicator of early model learning and of the model’s ability to do next word prediction
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Figure 6.13: Dutch-English structural priming effects and English BLiMP accuracy
plotted over the course of training.
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Figure 6.14: English-Dutch structural priming effects and English BLiMP accuracy
plotted over the course of training.

and generate grammatical text. Some work has shown that perplexity is predictive

of model performance (Xia et al., 2023), but it is not predictive of all metrics of
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model performance (Kuribayashi et al., 2021), especially higher-order capabilities like

reasoning. We argue for small models or for the early stages of model training (or in

the case of wanting only to evaluate the model’s next word prediction capabilities),

perplexity is a good performance metric. This is important, as many languages –

especially low-resource languages – do not have many, if any, benchmarks. Evaluating

models trained on these languages is very difficult. But evaluating perplexity is

possible as long as there is held-out text data for a language.
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Figure 6.15: Relationship between log mean surprisal and BLiMP accuracy.

6.4.3 Interim Discussion

In this section, we have demonstrated when structural priming effects emerge

over the course of model training. L2 performance, as measured by both mean sur-

prisal and BLiMP accuracy, seems to be a necessary condition for structural priming

effects. In all cases where models exhibit crosslingual structural priming effects, per-
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formance for L2 is high. For L1, if the model exhibits catastrophic forgetting, this

does not necessarily entail structural priming effects.

Now that the time course has been established, we ask about the nature of the

shared representations underlying structural priming. Given that the model must

have some knowledge of L2 in order to exhibit structural priming effects, is it the

case that the models are developing new representations that can be used for both

L1 and L2, or is the model adapting the existing L1 representation for L2? In the

following section, we analyze the internal model activations to address this question.

6.5 Locating Shared Abstract Grammatical Repre-

sentations

The linear representation hypothesis states that high-level concepts are rep-

resented linearly in the embedding space of language models (Park et al., 2024; inter

alia). Several studies have shown that syntactic information is among the type of

conceptual information that can be identified with linear probes (Lin et al., 2019;

Hewitt and Manning, 2019; Arps et al., 2022). Therefore, we predict that the shared

abstract grammatical representations driving structural priming effects in language

models should be identifiable as linear representations.

Most of the mechanistic interpretability studies on grammatical structures

have focused on grammatical relations, as defined by the Universal Dependency

framework (Chi et al., 2020; Maudslay and Cotterell, 2021; Arps et al., 2022, in-

ter alia). In this set of experiments, we seek to identify higher-order grammatical
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representations, which involve multiple arguments and can comprise entire sentences.

To identify the representations, we save the intermediate model states at every

layer. We use a linear classifier to find the linear axis along which the model hidden

states can be linearly classified. This linear classifier is referred to as a probe.

We identify a linear probe at each layer. We do this because it has been shown

that syntactic information is best identified in middle layers of the model (Peters et

al., 2018; Tenney et al., 2019; Chi et al., 2020; Xu et al., 2022b; Weissweiler et al.,

2023b). We expect that we will have the highest classification accuracy in the middle

layers.

As the model processes the stimuli token-by-token, we create sentence em-

beddings for each layer of the model. We do this using SGPT (Muennighoff, 2022),

which creates sentence embeddings, s⃗, by weighting the activations for each token

according to its position. The first token has a weight of 1, the second token has

a weight of 2, and so on. Therefore the activations for token at position i (with

indexing starting at 1), will have a weight of i. The weighted activations are then

summed to create the sentence embedding. See Equation 6.2.

s⃗ =
n∑

i=1

i · t⃗i (6.2)

We modified SGPT to generate weighted mean embeddings individually for

each layer.

In order to create the training data for our linear probe, we take minimal pairs

from the stimuli used in each of the experiments above. For example, a sentence

which is identical except in whether it is a DO or PO double object sentence (Ex.
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(1-a) and (1-b), reprinted below for ease of reading).

a. The cook shows a hat to the boxer. (PO)

b. The cook shows the boxer a hat. (DO)

We then fit our linear probe using Linear Discriminant Analysis (LDA), which iden-

tifies a linear classifier that best discriminates the activations from the two types of

sentences. We fit separate LDA axes for each language and grammatical alternation.

We then measure the classification accuracy of the probe.

In Figure 6.16, we plot the LDA score for each layer. In the early layers,

there is low classification accuracy, but in middle and later layers, accuracy is much

higher, sometimes reaching ceiling accuracy. In most cases, accuracy begins to rise

from layer 3, and peaks between layers 7 and 10. In some cases, accuracy drops

in the final layers. This is consistent with previous findings about the middle layers

containing the most syntactic information. We report the layer-by-layer classification

results for other datasets in Figure D.7.2.
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Figure 6.16: Classification accuracy for English-Dutch simultaneous (top left),
English-Dutch sequential (top right), Dutch-English simultaneous (bottom left), and
Dutch-English sequential (bottom right) models for both Dutch→English (orange)
and English→Dutch priming (purple).

6.5.1 LDA and Training Dynamics

Next, we conduct the same analysis, but for every model checkpoint. We

train a classifier on for every model checkpoint and evaluate each of the classifiers on

every checkpoint. We analyze the results with the aim to understand, first, whether

the representations emerge at the same point in training as when the structural

priming effects emerge. If the representations are only identifiable at the checkpoints

when we see structural priming effects, this helps confirm that the representations

we identified are linked to the relevant grammatical structures.

Second, we evaluate whether the linear representations are stable across check-
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points. Is it the case that the representations from L1 are mapped onto L2, or does

the model develop new language-neutral representations?

Figure 6.17 shows the classification accuracy of the LDA fit to the activation

patterns of each checkpoint and each layer for L1 at classifying the activation patterns

for L2 at every other checkpoint. In these plots, each facet represents a different layer

of the model. Across the different models, the highest classification accuracy is seen in

the middle layers. Classification accuracy, as measured by LDA score, is represented

by the color of each cell. Higher LDA scores are represented by blue cells, where

orange cells are at or around chance at classification.

For the Dutch-English simultaneous model and the Schoonbaert et al. (2007)

stimuli, classification accuracy is at about chance in the evaluation checkpoints in

the first half of training. When evaluated on the checkpoints in the second half of

training, the accuracy is high. In the middle and late-middle layers, accuracy is at

or near ceiling in many cases.

The classifiers trained on the early checkpoints show low accuracy across all

evaluation checkpoints, likely because the model has not learned any representations

for L1 in the early checkpoints. Therefore, the activations do not show patterns

according to grammatical structure. By checkpoint 30000, the classifier is able to

achieve high accuracy. This suggests that it is within the first 10000 to 20000 steps

that the representations of these grammatical constructions are learned for L1.

There is also high classification accuracy for linear probe trained on earlier

checkpoints on the activations of later checkpoints. For example, in layers 7 through

10, the probe trained on the early-middle checkpoints for L1 achieves high accuracy
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Figure 6.17: Classification accuracy for classifier trained on English activations and
evaluated on Dutch activations for Schoonbaert et al. (2007) stimuli for English-
Dutch simultaneous model. Each facet represents a layer of the model. Each cell in
the figure represents the classification accuracy for a probe trained on a given model
checkpoint (x-axis) and evaluated on a given checkpoint (y-axis).

classifying most checkpoints for L2 activations. The representations that the probe

identifies in the earlier checkpoints are used to represent L2 through the later stages

of training, which suggests that the model uses the same representations from L1

for L2, rather that changing the representation to adapt to L2. This is consistent

with the account of transfer learning, where models generalize representations from

one context for use in another context. Note, these result are not consistent with

zero-shot crosslingual transfer. We only see high accuracy for L2 for the checkpoints

after L2 exposure.
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For the same model, the LDA scores for the probe trained on L2 activations

evaluated on L1 activations show a different pattern (Fig. 6.18. The probes fit on

the checkpoints from the first half of training perform at chance for all evaluation

checkpoints. This is likely for the same reason as for the L1-L2 results above. The

activation patterns for the L2 stimuli do not show any patterns that the probe can

use to classify the sentence types before the model has been exposed to L2.

Figure 6.18: Classification accuracy for classifier trained on Dutch activations and
evaluated on English activations for Schoonbaert et al. (2007) stimuli for English-
Dutch simultaneous model. Each facet represents a layer of the model. Each cell in
the figure represents the classification accuracy for a probe trained on a given model
checkpoint (x-axis) and evaluated on a given checkpoint (y-axis).

These results also show that the representations identified by the probe are

stable over the course of training. The probes trained on on the later checkpoints for
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L2 achieve similar accuracy over the evaluation checkpoints, especially for layers 7 to

10. Therefore, the representations for L1 do not change significantly after checkpoint

10000.

For L1-L2 accuracy, the results from models in the sequential bilingual con-

dition show similar results (Fig 6.19). Despite evidence of catastrophic forgetting,

there is above-chance classification accuracy from most L1 checkpoints to the L2

checkpoints in the second half. Accuracy overall is lower, especially in the later

checkpoints, which is indicated by the color of each cell.

Figure 6.19: Classification accuracy for classifier trained on Dutch activations and
evaluated on English activations for Schoonbaert et al. (2007) stimuli for Dutch-
English sequential model. Each facet represents a layer of the model. Each cell in
the figure represents the classification accuracy for a probe trained on a given model
checkpoint (x-axis) and evaluated on a given checkpoint (y-axis).
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The L2-L1 plots show a very different pattern in the sequential condition (Fig

6.20). The probe achieves above-chance classification accuracy only for when trained

on the later checkpoints on L2 activations and evaluated on the earlier checkpoints

on L1 activations. There are similarities between the early L1 representations and

the late L2 representations, but not between the representations of the two languages

at any other stage.

Figure 6.20: Classification accuracy for classifier trained on English activations and
evaluated on Dutch activations for Schoonbaert et al. (2007) stimuli for Dutch-
English sequential model. Each facet represents a layer of the model. Each cell
in the figure represents the classification accuracy for a probe trained on a given
model checkpoint (x-axis) and evaluated on a given checkpoint (y-axis).
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Together the L1-L2 and L2-L1 results from the sequential bilingual condition

show that the catastrophic forgetting involves the transposition L1 and L2 repre-

sentations, meaning the representations for L1 are used to represent L2 and then

representations for L1 drift such that the model no longer is able to represent L1

reliably, but this does not affect the original L1 representations, which are now the

L2 representations.
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6.6 Causal Analysis

The results from the linear probes are correlational. A causal intervention on

the models using the linear probes would demonstrate that the probes have identified

the shared abstract grammatical representations we intended to identify. To do this,

we used the linear representation to project the activations of each token at each

layer. We can shift the activations in the direction of each grammatical alternation

along the linear probe. If the probe identified the grammatical representation, the

projection should change the relative probability of the grammatical structures.

To do the shifts, we update the activations for each input token according to

the mean for one of the grammatical alternations and the linear probe. Given the

mean activation μPO and μDO for PO and DO sentences respectively, we project the

activation to the mean along the LDA axis (vLDA). Specifically, for each input token

representation x at layer ℓ, we update6:

xprojected,PO ← x+ μPOvLDA (6.3)

where:

μPO = ⟨vLDA, μPO − x⟩ (6.4)

We plot the relative probability of one of the grammatical alternations, PO,

in five conditions (Fig. 6.21). The ‘no shift’ condition is the condition where we

do not intervene on the model. In each of the shift conditions, we shift towards

either PO or DO. In the conditions where we shifted towards DO, we expect to see
6how to indicate einstein summation?
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a lower relative probability for PO and in the conditions where we shift towards

PO, we expect a higher PO probability. Instead, we see across conditions, there is

no significant difference in PO probability. We also test shifts on the probes which

were trained using English ‘eng’) and Dutch ‘nld’) activations. These results use the

stimuli from Schoonbaert et al. (2007) and each of the four Dutch models.

If any of the causal interventions had an effect, the models should assign

significantly different probability of PO sentences, relative to the ‘no shift’ condition;

however, there are no significant differences in any conditions.

Figure 6.21: Each facet represents the results for each model. From left to right:
English-Dutch sequential, English-Dutch simultaneous, Dutch-English sequential,
Dutch-English simultaneous. Each bar represents a different shift condition. Stimuli
come from Schoonbaert et al. (2007).

We also test the causal intervention with the same method and same set of

models, but using the stimuli from Bernolet et al. (2013) (Fig. 6.22). Similarly, we
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see no differences between the ‘no shift’ condition and the conditions where there

was a causal intervention.

Figure 6.22: Each facet represents the results for each model. From left to right:
English-Dutch sequential, English-Dutch simultaneous, Dutch-English sequential,
Dutch-English simultaneous. Each bar represents a different shift condition. Stimuli
come from Bernolet et al. (2013).

These results are consistent with the linear probe having identified a spurious

feature, which is not causally related to the abstract grammatical representations in

question.
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6.7 What is the linear probe identifying?

The results from the behavioral and probing experiments show that structural

priming is driven by shared multilingual abstract representations, which can be iden-

tified through a linear probe. However, the causal results show that the linear probe

does not have a causal relationship with the abstract grammatical representations.

To determine whether this result is due to the causal intervention or the linear

probe itself, we evaluate the selectivity of the linear probe. As the activations are

high-dimensional data, it is possible for a linear probe to identify features which may

correlate with a surface feature, but not identify the abstract grammatical represen-

tation. Under this alternative, we expect to see poor generalization of the probe,

which would explain the causal results. If this is the case, we expect to see high

classification accuracy, but low selectivity (Hewitt and Liang, 2019). Low selectivity

of the linear probe would mean the probes trained on one counterfactual pairs for

one grammatical alternation should not be able to reliably classify counterfactual

pairs for another alternation.

Figure 6.23 shows LDA classification accuracy across constructions. Each of

the plots shows the LDA axis fit to Dutch activations for the DO-PO alternation

based on the Schoonbaert et al. (2007) stimuli. Each figure shows the classification

accuracy for the English stimuli for the other datasets. In all cases, the two gram-

matical alternations are linearly separable. We report further results in D.8. There

are exceptions for some models and some layers, but these results show that the

linear probe lacks selectivity.

Along the LDA axis fit to distinguish DO and PO sentences, of-gen and pas-
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Figure 6.23: English-Dutch simultaneous model trained on Dutch, evaluated on
Eng stimuli; Layer 9. From left to right: s-gen/of-gen (Bernolet et al., 2013),
active/passive (Hartsuiker et al., 2004), active/passive (Fleischer et al., 2012), ac-
tive/passive (Kotzochampou and Chondrogianni, 2022)

sive sentences pattern with PO (on the right; e.g. (10)), while s-gen and active

sentences pattern with DO (e.g. (11)). There are some similarities between these

constructions, which could explain why they pattern together. Understanding the

similarities between these constructions could help to understand what representa-

tions the probe is identifying.

(10) a. I gave my friend the book (DO)

b. My friend’s book (s-gen)

c. I read the book (active)

(11) a. I gave the book to my friend (PO)

b. The book of my friend (of-gen)

c. The book was read by me (passive)
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All of the sentences in (10) share argument order. In all three sentences, the agent of

the sentence (I or My friend) precede the theme, book. These sentences also all have

the animate arguments (I, my friend) first, followed by the inanimate argument, book.

All the sentences in (11) generally have reversed argument order and animacy order,

relative to (10). The only exception is the DO-PO, as there are three arguments and

the order of the subject and agent I does not change. All of the sentences in (11)

also all contain a preposition (to, of, by).

Based on this, we predict that the sentences in (11) are more likely to prime

sentences of different constructions in this same group than their counterparts in (10).

We call these groups with-prep and without-prep, respectively. We test for cross-

construction structural priming effects. We test both Dutch→English (Fig. 6.24)

and English→Dutch (Fig. 6.25) priming. We use the Dutch-English simultaneous

and English-Dutch simultaneous models, respectively. We find that in about half of

cases, we find cross-construction priming effects. In Dutch→English priming, we see

significant priming effects in the expected direction in DO-PO→active-passive and

genitive→DO-PO priming. In English→Dutch priming, we see DO-PO→genitive

priming. This is indicated by the higher relative probability of the with-prep struc-

ture after with with-prep prime (purple) compared to after the without-prep prime

(orange).

The causal results suggest that the linear probe learned a spurious represen-

tation in the model activations; however, if the probe was identifying a completely

meaningless representation, we would not expect to see the probe classify other

constructions along linguistically motivated categories. Based on these results, we
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Figure 6.24: Dutch-English simultaneous model, L1-L2

Figure 6.25: English-Dutch simultaneous model, L1-L2

hypothesize that the linear probe is identifying a more general representation that

encompasses the three construction pairs.
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6.7.1 Alternative Explanations for LDA Results

We discuss three possible types of representations that might be learned by

the probe: argument order, presence of a preposition, and sentence length.

Argument order It is unlikely that argument order is driving this effect. In

Section 6.3.4, we tested whether word order was driving structural priming effects

in Polish. We found that the structural priming effects seemed to be driven by the

active-passive distinction, rather than the order of the arguments.

Presence of a preposition To evaluate whether the probes were identifying the

presence of a preposition, we created modified stimuli and evaluated the LDA classifi-

cation. We tested whether adding an additional preposition phrase to both sentences

in each pair would affect classification accuracy. We took each of the sentences from

Schoonbaert et al. (2007) and added a prepositional phrase modifying the subject

of the sentence. In each of the alternations (DO and PO), the added prepositional

phrase was in the same place in the sentence. For example, we added the prepo-

sitional phrase ‘on the boat’ to both DO and PO sentences, as shown in (12). We

predict that if the linear probe were simply identifying the presence of a preposition,

the linear probe should not be able to classify the DO and PO sentences after we

added the prepositional phrases.

(12) a. The monk throws the sailor a hat (original DO)

b. The monk on the boat throws the the sailor a hat (modified DO)

c. The monk throws a hat to the sailor (original PO)
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d. The monk on the boat throws a hat to the sailor (modified PO)

Fig. 6.26, we show the LDA accuracy for the original sentences (left) and the sen-

tences with the added prepositional phrases (right). In both cases, when the acti-

vations are projected onto the LDA axis, the activations are linearly separable even

after adding prepositional phrases. This suggests that the linear probe is not simply

identifying the presence of a preposition.

Figure 6.26 shows the classification accuracy for the English-Dutch simultane-

ous model at layer 7. Additional layer and model results are reported in D.9. Across

the models tested and across layers 6 through 10 we find high classification accuracy

for both the original and modified stimuli.
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Figure 6.26: Layer 7

Sentence length As the sentences for each alternations are of different lengths –

both in terms of orthographic words and tokens – we also test whether the linear

probe is classifying the sentences based on the number of tokens. Using the same
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logic, we add a modifier to each sentence. Each modifier was added to the direct

object, e.g. hat in (13). If the sentence length were being used to classify the

sentences, we predict that increasing the length of the shorter sentence (in this case

DO) should decrease the classification accuracy.

(13) a. The monk throws the sailor a hat (original DO)

b. The monk throws the the sailor a red hat (modified DO)

Figure 6.26 shows the classification of the original stimuli (left) compared to the

stimuli where all DO sentences have an added modifier (middle). There is no signif-

icant change in the classification accuracy of the linear probe. Therefore, it does not

seem that the probe is detecting sentence length.
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Part II Discussion

In Chapter 5, I provide behavioral evidence for multilingual shared repre-

sentations through the structural priming experimental paradigm. In Chapter 6, I

replicated the structural priming effects from the previous chapter with controlled

bilingual language models. Then I describe the training dynamics of structural prim-

ing effects, which I showed only emerge after the model has been exposed to both

languages. I used a linear probe to classify the activations of the grammatical alter-

nations, and found that the probes are highly accurate at classification; however, I

failed to find causal evidence that the representations I identified are linked to struc-

tural priming effects. I tested three possible alternative features that the classifier

could have been identifying: argument order, presence of a preposition, and sentence

length. None of these explains the failure of the causal intervention.

Limitations of Crosslingual Transfer These experiments shed light on both

the underlying mechanisms behind and the limitations of crosslingual transfer. There

was a marked difference between the robustness and magnitude of structural priming

effects for Polish and Greek, relative to Dutch and Spanish. I posit that these are

linguistic similarity effects. This not only explains the results from the experiments
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in the last two chapters, but is indicative of the general limitations of crosslingual

transfer. Even for languages in the same language family (Indo-European), there

is still limited ability for models to create successful shared abstract grammatical

representations for language pairs such as Greek and English, compared to for a

closely related language pair like Dutch and English. Though these experiments are

limited only to representations of grammatical structures, and therefore do not bear

on shared lexical or conceptual representations, or other kinds of representations

such as world knowledge, this suggests the reconsideration of the current practices

for leveraging crosslingual transfer.

In Chang et al. (2023a), we show that language relatedness – especially syn-

tactic typological similarity – is predictive of how much benefit there is to adding

multilingual data for the improvement performance for a target language, relative

to a monolingual setting. Adding data from dissimilar languages always led to less

improvement than when added data was from more similar languages. In some set-

tings, dissimilar language data harmed performance, while the similar language data

improved or did not change performance, relative to a monolingual baseline.

It is currently common practice to seek to improve performance through

adding large quantities of English data, even when the target language is quite differ-

ent from and unrelated to English. One example of how this approach is applied for

a specific language and language model is the representation of Akan in the BLOOM

model (Scao et al., 2022). Akan is a language from the Kwa group in the Atlantic-

Congo language family. It is the most widely spoken language in Ghana and has at

least 9 million native speakers. BLOOM is a language model trained on data from
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46 natural languages at several coding languages. There is approximately 0.07MB of

Akan data in the training data for BLOOM, which is equivalent to 0.00007% of the

training data. Additionally, BLOOM is trained on data from 19 other Niger-Congo

languages, making up a total of 0.03378% of the training data (approximately 500MB

of data). The vast majority of that data comes from Swahili, which is quite distantly

related to Akan within the language family. None of the other Niger-Congo languages

represented in BLOOM come from the same language group as Akan, Kwa.

The work in this dissertation, along with previous work, suggests that this

may not be an effective method. It is unlikely that a model trained on so little

data from related languages could leverage the representations from the majority

languages such as English to represent Akan or other Niger-Congo languages. We

trained a series of monolingual n-gram language models (Chang et al., 2024) for

many low-resource languages like Akan. Using perplexity as an evaluation metric,

we found that a small bigram model outperformed BLOOM 7B. This suggests that

the level of the Akan performance for BLOOM is worse than that of a bigram model

trained on a very small amount of text. Therefore, it seems unlikely that BLOOM

effectively leverages crosslingual transfer to boost Akan performance.

Language Asymmetries In human structural priming experiments, it has been

shown that structural priming effects are stronger in L1→L2 priming (e.g. Schoonbaert

et al., 2007). But the vast majority of these experiments have been conducted with

participants for whom the L2 is English. By comparison, very few structural prim-

ing experiments have been conducted where English is the L1. Therefore, it is not

possible to disentangle whether asymmetries were due to English being the source
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versus the target language or due to differences in L1→L2 and L2→L1 priming.

In Chapter 5, we replicated the original L1→L2 human structural priming

effects, for which English was the L2, from the original studies. We also tested the

reversed language orders, such that English was the prime language. For Schoonbaert

et al. (2007) we had human results to compare to, but not for the other language pairs.

We also found asymmetrical results, where structural priming effects were stronger

when English was the target language. However, there was another confound, which

was that all the models were trained on far more English data than data from the

other language in the pair. In Chapter 6, I addressed this confound by training

controlled models with comparable amounts of language data from each language

in a given pair. I tested for structural priming effects with English as the source

and target and we also tested for structural priming effects with reversed language

orders. The controlled bilingual models still exhibit the asymmetry, where structural

priming effects were consistently present for all language pairs when English was the

target language, but not always present when English was the prime language. This

suggests that there may be an element about structural priming which is stronger in

English than in other languages.

This is not easy detect through experimentation with human participants

alone, because it is so much easier to find participants for whom English is an L2

than English L1 speakers who speak another language to a very high degree. There-

fore, these experiments demonstrate the value of language model experiments in

psycholinguistics.
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Limitations of Computational Experiments in Psycholinguistics It is not

the case that all human experiments can be replace with language model experiments,

however. In Chapter 6, I test whether the English asymmetry is due to the higher

importance of word order in English, especially compared to languages with case,

such as Greek and Polish.

I found that humans and language models demonstrated different effects.

Where human structural priming effects seemed sensitive to word order, language

model structural priming effects seemed to be driven more by the nature of the

grammatical alternation, which was the active-passive alternation in this case. This

supports the view that humans and language models use very different mechanisms

in language processing. This highlights the limitations of language models as model

organisms. While language models may be able simulate some human language be-

haviors, they may not be well suited to modeling the mechanisms of human language

processing. This should constrain, therefore, the types of questions that language

models can help address and the types of conclusions that can be drawn from lan-

guage model experiences. Despite these limitations, the results from language model

experiments can be helpful for refining hypotheses, as with the asymmetrical results

discussed above.

What Did the Linear Probe Identify? The causal analysis in Chapter 6 did

not successfully demonstrate a causal representation between the linear probe and

the model outputs. I showed that the linear probe lacked specificity, and was able

to classify activation patterns for grammatical alternations other than the ones it

was trained to categorize. However, the axis which was tested (DO-PO) classified
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the other alternations in a non-random way. The LDA axis classified the sentences

consistently in terms of their argument order, although because of the results from

the Polish OVS alternation of the passive construction in Section 6.3.4, it seems

unlikely that argument order is driving structural priming in language models.

The linear probe also identified that time course of the high classification

accuracy was correlated with the model’s learning of the L2, as measured by mean

surprisal and BLiMP scores. Structural priming effects only emerged as the model

learned L2, therefore the shared representations I identified only emerged after suf-

ficient exposure to L2. The linear probe, therefore, had some of the expected traits

of the targeted shared representations.

One reason the causal intervention may have failed to affect the model outputs

in the expected way is the model activations on which the linear probe was trained.

Perhaps the method used to create the sentence representations, SGPT, is not the

optimal way of aggregating the contextualized token representations. Perhaps the

weighting method obscured information that was needed for the probe to identify

the causally linked representations.

It is also possible that fitting the probe to the entire model activations was

too coarse of a method. It is possible that fitting a classifier to a more specific part

of the activations could lead to a more effective causal intervention. Based on the

results, it seems that the probe identified a representation that was too abstract

or too general. The probe exhibited a lack of specificity and also did not causally

affect the output. In fact, the causal intervention had very little effect on the model

outputs. For these reasons, the probe seems too general.
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Some work has shown that attention heads track dependencies such as objects

of verbs or coreference (Raganato and Tiedemann, 2018; Clark et al., 2019; Mareček

and Rosa, 2019; Htut et al., 2019). Perhaps restricting the probe to attention head

activations would lead to successful causal intervention.
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Chapter 7

Conclusion

In this dissertation, I seek to better understand how language models work

differently for different languages and how they work in multilingual settings.

In Part I, I address is to what extent can language model architectures and

training recipes be extended from English to new languages. There have been strong

claims in the literature that languages cannot be simply applied to any new language

(Bender, 2011). Previous work had hypothesized that certain languages, according

to certain typological features, would be easier or harder for language models to

represent. In Chapter 2, I introduce byte premiums, which indicate differences in

dataset size requirements between languages required to convey the same amount

of information. In Chapter 4, I replicated the effects and showed that the effects

can be accounted for by byte premiums. Difficulties in applying language model

architectures to new languages, therefore, may not lie in the architectures themselves

but in other parts of the language model ecosystem, such as text encoding. This is
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only true, however, after making sure each target language had a custom language-

specific tokenizer and each language had a comparable amount of training data. The

current language model architectures are very flexible and seem capable of learning

every language equally well, but there are other factors that need to be accounted

for.

Chapters 3 and 4 provide that morphologically aligned tokenization does not

seem necessary for linguistic tasks or explain crosslinguistic differences in language

model performance. This challenges a widely held assumption that tokenizers should

segment along morpheme boundaries. However, tokenization still remains an under-

studied aspect of language models, and more work needs to be done to determine

what features of tokenizers are most critical for enabling efficient language model

performance.

This dissertation also seeks to characterize key aspects of crosslingual transfer,

which is the process by which language models generalize across languages. This is

a key model feature for improving low-resource language performance, but little

is known about how language models learn the shared representations that drive

crosslingual transfer. This is the topic of Part II.

In Chapter 5, I use crosslingual structural priming, a paradigm from psy-

cholinguistics, to provide evidence that language models have shared representations

for grammatical structures for multiple languages. I argue that these representations

are the kind of representations that enable crosslingual transfer, especially for lan-

guages that share many syntactic structures. In Chapter 6, I study how language

models develop these representations over the course of training. It seems that lan-
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guage models can generalize representations to new languages with very little added

data, but generalization is most successful when the two languages are similar. This

supports other findings, which show that crosslingual transfer is limited to languages

that share key features, such as typological similarity.

These studies can help NLP practitioners train multilingual models which

more effectively leverage crosslingual transfer to benefit languages for which there is

not very much training data available.

Together, the work in this dissertation contributes to ongoing efforts to im-

prove linguistic equity in NLP and work towards more equal language model perfor-

mance across languages.
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Appendix A

Chapter 2

A.1 NLLB Byte Premiums

Byte premiums calculated from NLLB are reported in Table A.1.
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Table A.1: NLLB byte premiums. The byte premium for eng_latn is 1.0. Each
language code is comprised of the ISO 639-3 (language) and ISO 15924 (script)
codes separated by an underscore.

Language Byte premium
ace_latn 1.2419926
afr_latn 1.0373004
aka_latn 1.5750612
als_latn 1.1673181
amh_ethi 1.7210862
arb_arab 1.4651134
asm_beng 2.5264323
ast_latn 1.7490516
awa_deva 2.7014324
ayr_latn 1.0976628
azb_arab 1.4901878
azj_latn 1.0761036
bak_cyrl 2.2716371
bam_latn 1.2569819
ban_latn 1.2695671
bem_latn 1.1553301
ben_beng 2.4308225
bho_deva 2.5153669
bod_tibt 2.6040539
bug_latn 1.2279017
bul_cyrl 1.8123562
cat_latn 1.0926706
ceb_latn 1.1134194
ces_latn 1.0358867
ckb_arab 1.6521034
ckb_arab 1.6521034
cym_latn 1.0265667
dan_latn 1.0211031
deu_latn 1.0537171
dik_latn 1.1239299
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Table A.1: NLLB byte premiums. The byte premium for eng_latn is 1.0. Each
language code is comprised of the ISO 639-3 (language) and ISO 15924 (script)
codes separated by an underscore. (Continued)

Language Byte premium
diq_latn 0.9590188
dyu_latn 1.1545521
dzo_tibt 3.2736977
ell_grek 1.9673049
ewe_latn 1.0783440
fao_latn 1.1557437
fij_latn 1.2107666
fin_latn 1.0589051
fon_latn 1.5413204
fra_latn 1.1742064
fur_latn 1.0672371
fuv_latn 1.1109194
gla_latn 0.9934613
gle_latn 1.9749562
glg_latn 1.0590246
guj_gujr 2.1627759
hau_latn 1.1766293
heb_hebr 1.3555346
hin_deva 2.3701629
hrv_latn 0.9897218
hun_latn 1.0199851
hye_armn 1.7241548
ibo_latn 1.3451287
ilo_latn 1.0765437
ind_latn 1.1788023
isl_latn 1.1543925
ita_latn 1.0669230
jav_latn 1.1468920
jpn_jpan 1.3220250
kab_latn 1.0287174
kac_latn 1.3451812
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Table A.1: NLLB byte premiums. The byte premium for eng_latn is 1.0. Each
language code is comprised of the ISO 639-3 (language) and ISO 15924 (script)
codes separated by an underscore. (Continued)

Language Byte premium
kam_latn 1.2177037
kan_knda 2.6420061
kas_arab 1.7762307
kas_deva 2.5259810
kat_geor 4.3381046
kbp_latn 1.4408085
kea_latn 0.7821679
khk_cyrl 1.8046135
khm_khmr 3.9051643
kik_latn 1.2930516
kin_latn 1.1340740
kir_cyrl 1.9635570
kmr_latn 1.0351712
knc_arab 2.5022926
knc_latn 1.1769876
kor_hang 1.2933602
lao_laoo 2.7071355
lij_latn 1.1438412
lin_latn 1.1393024
lit_latn 1.0300780
ltg_latn 1.0028570
ltz_latn 1.2253827
lug_latn 1.2175185
luo_latn 1.0358323
lus_latn 1.1689564
lvs_latn 1.2070388
mag_deva 2.5555142
mai_deva 2.3896953
mal_mlym 2.8852389
mar_deva 2.4793638
min_latn 0.9497956
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Table A.1: NLLB byte premiums. The byte premium for eng_latn is 1.0. Each
language code is comprised of the ISO 639-3 (language) and ISO 15924 (script)
codes separated by an underscore. (Continued)

Language Byte premium
mkd_cyrl 1.8349890
mlt_latn 1.0884567
mni_beng 3.0027416
mos_latn 1.1413713
mri_latn 1.1826053
mya_mymr 5.1034592
nld_latn 1.0516739
nob_latn 0.9977426
npi_deva 2.4202344
nus_latn 1.2935254
oci_latn 1.0146652
ory_orya 2.5109372
pag_latn 1.0439418
pan_guru 2.2208951
pbt_arab 1.7366557
pes_arab 1.5973940
plt_latn 1.1512264
pol_latn 1.0774161
por_latn 1.0979270
quy_latn 1.1639224
ron_latn 1.1151666
run_latn 1.1193204
rus_cyrl 1.8228284
sag_latn 1.1632489
san_deva 2.5428913
sat_beng 2.1131754
shn_mymr 2.8224643
sin_sinh 2.4463506
slk_latn 1.0415468
slv_latn 0.9722273
sna_latn 1.1192729
snd_arab 1.5880165
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Table A.1: NLLB byte premiums. The byte premium for eng_latn is 1.0. Each
language code is comprised of the ISO 639-3 (language) and ISO 15924 (script)
codes separated by an underscore. (Continued)

Language Byte premium
som_latn 1.4224149
sot_latn 1.1661078
spa_latn 1.0838621
srp_cyrl 1.4249495
sun_latn 1.0970417
swe_latn 1.0210256
swh_latn 1.0696621
tam_taml 2.7292892
taq_latn 1.2093634
tat_cyrl 1.8543562
tel_telu 2.6198705
tgk_cyrl 1.7469201
tgl_latn 1.1176348
tir_ethi 1.7631466
tuk_latn 1.7850561
tur_latn 1.0444815
tzm_tfng 1.9259158
uig_arab 2.3082357
ukr_cyrl 1.7514786
umb_latn 1.1673612
urd_arab 1.7079714
uzn_latn 1.6455453
vie_latn 1.3493725
wol_latn 1.0787309
xho_latn 1.1988860
ydd_hebr 1.8074376
yor_latn 1.3750599
zsm_latn 1.1438457
zul_latn 1.1639372
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Appendix B

Chapter 4

B.1 MorphScore

The sources used for each language are:

• Bulgarian: UD_Bulgarian-BTB train split (Simov et al., 2005)

• English: UD_English-GUM train split (Zeldes, 2017)

• Spanish: UD_Spanish-AnCora train split (Taulé et al., 2008)

• Greek: UD_Greek-GUD train split (Prokopidis and Papageorgiou, 2014)

• Persian: UD_Persian-PerDT train split (Rasooli et al., 2013)

• Japanese: (Matsuzaki et al., 2024)

• Korean: UD_Korean-Kaist train split (Chun et al., 2018)

• Turkish: UniMorph (Pimentel et al., 2021)
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• Indonesian: UD_Indonesian-GSD (Larasati et al., 2011)

• Hungarian: UD_Hungarian-Szeged train split (Vincze et al., 2010)

• Urdu: UD_Urdu-UDTB train split (Palmer et al., 2009; Bhat et al., 2017)

• Slovenian: UD_Slovenian-SSJ train split (Dobrovoljc et al., 2017; Dobrovoljc

and Ljubešić, 2022)

• Tamil: UD_Tamil-TTB train split (Ramasamy and Žabokrtský, 2012)

• Georgian: UD_Georgian-GLC test split (Lobzhanidze)

• Armenian: UD_Armenian-BSUT train split (Yavrumyan and Danielyan, 2020)

• Irish: UD_Irish-IDT train split (Lynn and Foster, 2016)

• Icelandic: UD_Icelandic-Modern train split (Rögnvaldsson et al., 2012)

• Gujarati: UniMorph (Baxi and Bhatt, 2021)

• Kurdish: UniMorph (Kirov et al., 2018)

• Cebuano: UD_Cebuano-GJA test split (Aranes, Glyd Jun and Zeman, Dan ,

2021)

• Basque: UD_Basque-BDT train split (Aranzabe et al., 2015)

• Zulu: UniMorph (Vylomova et al., 2020)
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Appendix C

Chapter 5

C.1 Language Contamination in Multilingual Lan-

guage Models

In this section, we estimate language contamination in CC-100-XL, the dataset

used to train the XGLM models. While the dataset itself is not made available by

Lin et al. (2022), the procedure used for language identification is similar to CC-100

(Conneau et al., 2020a; Wenzek et al., 2020).

While there are some differences in the approaches used for filtering languages

to ensure high-quality data, both corpora are based on CommonCrawl snapshots and

are divided into languages using the fastText language identification model (Joulin et

al., 2017). Both CC-100 and CC-100-XL also involve a further language identification

step. For CC-100, an unnamed internal tool is also used for language identification;

for CC-100-XL, an additional step of language identification takes place where text
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language is also identified at the paragraph level.

To test for Dutch and Polish contamination, we sample roughly 100M to-

kens (based on the XGLM 7.5B tokenizer) of all languages in the replicated CC-100

dataset1 that XLGM 564M, 1.7B, 2.9B, and 7.5B are trained on. We only consider

languages that have 100M or more tokens in CC-100 and that either use the Latin

alphabet (Spanish, French, Italian, Portuguese, Finnish, Indonesian, Turkish, Viet-

namese, Catalan, Estonian, Swahili, Basque), are Slavic (Russian, Bulgarian), or

both (English, German). Specifically, we sample from each of these languages until

we have enough documents that the number of tokens in each language is at least

100M. Thus, our sample of CC-100 includes roughly 1.6B tokens.

To replicate the additional filtering of CC-100-XL, we split all documents by

paragraph and run language identification on them using the latest version of the

fastText language identification model released as part of the "No Language Left

Behind" project (Costa-jussà et al., 2022). We set the identification threshold to 0.5,

which the authors find to be effective for lower-resource languages (which some of

our sampled languages are among). We note that this is a newer and likely more

accurate version of the language identification model than that used to create CC-

100-XL, and thus it is even less likely to include data from languages other than

those intended. We only analyze the data from paragraphs identified to be the same

language as the document label.

To identify Dutch and Polish in these paragraphs, we divide paragraphs into

sentences by splitting at each period character, and we run each sentence through
1https://data.statmt.org/cc-100/
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both the aforementioned latest version of the fastText language identification model

(Costa-jussà et al., 2022; Joulin et al., 2017) and the cld3 language identifier (Xue et

al., 2021) as provided in the gcld3 python package (Al-Rfou et al., 2020). We use

a stricter threshold of 0.9 (as recommended for high-resource languages; Costa-jussà

et al., 2022) for the former and use the default threshold of 0.7 for the latter.2

To estimate the total amount of contamination in each of these languages,

we calculate the proportion of each language sample that includes Dutch or Polish.

We then multiply this by the number of tokens in each language, which we estimate

by multiplying the proportions given in Figure 1 of Lin et al. (2022) by 500B, the

total number of tokens. We first provide two estimates of contamination for Dutch

and Polish in Table C.1: the amount of contamination as identified by the fastText

language identification model, and the amount identified by cld3. We also provide a

third, more conservative estimate, that only includes the tokens that both language

identification models identify as either Dutch or Polish. We note that because we

only look at data from 16 of the 30 training languages, these numbers are likely to

substantially underestimate the amount of language contamination in the XGLM

pre-training data.

C.2 Statistical Tests

We provide the full results of the statistical tests for XGLM 4.5B (Table C.2),

the PolyLMs (Table C.3), and the remaining XGLMs (Table C.4).

2See https://github.com/google/cld3/blob/master/src/nnet_language_identifier.h
and https://github.com/google/cld3/blob/master/src/nnet_language_identifier.cc.
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Table C.1: Estimated Dutch and Polish contamination in the training data of XGLM
564M, 1.7B, 2.9B, and 7.5B, based on language identification using cld3 and fastText,
only considering tokens that both language identification models predict to be Dutch
or Polish.

Dutch Polish
Language ID Proportion Estimated Proportion Estimated
Tool Tokens Tokens
cld3 0.03051% 152,528,079 0.00668% 33,418,112
fastText 0.00212% 10,595,403 0.00157% 7,841,824
Consensus 0.00035% 1,774,765 0.00029% 1,456,856
(cld3 + fastText)

Table C.2: Statistical tests of structural priming for XGLM 4.5B.

Language Model Language Pair F df1 df2 p
XGLM 4.5B Dutch→English 151.98 1 144 <0.0001

English→Dutch 24.00 1 141 <0.0001
Mandarin→Mandarin 192.37 1 24 <0.0001
Mandarin→Mandarin 419.66 1 32 <0.0001
English→Polish 1.35 1 31 0.2955
Polish→English 0.96 1 32 0.3704
English→Spanish 9.17 1 112 0.0056
Spanish→English 4.33 1 112 0.0558
English→Greek 7.28 1 24 0.0201
Greek→English 5.05 1 24 0.0485
Greek→Greek 8.40 1 24 0.0132
English→German 0.13 1 16 0.7462
German→English 0.10 1 16 0.7647
Dutch→Dutch 385.71 1 144 <0.0001
Dutch→English 57.28 1 144 <0.0001
English→Dutch 134.53 1 137 <0.0001
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Table C.3: Statistical tests of structural priming for PolyLM 1.7B and 13B.

Language Model Language Pair F df1 df2 p
PolyLM 1.7B Dutch→English 116.87 1 144 <0.0001

English→Dutch 18.80 1 144 <0.0001
Mandarin→Mandarin 164.45 1 24 <0.0001
Mandarin→Mandarin 228.25 1 32 <0.0001
English→Polish 7.50 1 32 0.0165
Polish→English 7.34 1 32 0.0174
English→Spanish 2.47 1 112 0.1498
Spanish→English 1.76 1 112 0.2280
English→Greek 0.13 1 24 0.7462
Greek→English 0.13 1 24 0.7462
Greek→Greek 8.50 1 24 0.0128
English→German 1.39 1 16 0.2955
German→English 2.66 1 16 0.1525
Dutch→Dutch 105.51 1 144 <0.0001
Dutch→English 55.84 1 144 <0.0001
English→Dutch 140.97 1 144 <0.0001

PolyLM 13B Dutch→English 193.43 1 144 <0.0001
English→Dutch 16.73 1 144 0.0002
Mandarin→Mandarin 141.67 1 24 <0.0001
Mandarin→Mandarin 257.28 1 32 <0.0001
English→Polish 2.45 1 32 0.1570
Polish→English 0.29 1 32 0.6275
English→Spanish 21.87 1 112 <0.0001
Spanish→English 41.60 1 112 <0.0001
English→Greek 0.70 1 24 0.4481
Greek→English 0.54 1 24 0.5062
Greek→Greek 9.03 1 24 0.0106
English→German 5.36 1 16 0.0485
German→English 1.51 1 16 0.2794
Dutch→Dutch 260.25 1 144 <0.0001
Dutch→English 129.76 1 144 <0.0001
English→Dutch 58.52 1 144 <0.0001
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Table C.4: Statistical tests of structural priming for XGLM 564M, 1.7B, 2.9B, and
7.5B.

Language Model Study Language Pair F df1 df2 p
XGLM 564M Dutch→English 12.89 1 144 0.0010

English→Dutch 16.59 1 144 0.0002
Mandarin→Mandarin 301.39 1 24 <0.0001
Mandarin→Mandarin 1006.36 1 32 <0.0001
English→Polish 1.05 1 32 0.3497
Polish→English 10.30 1 32 0.0056
English→Spanish 0.51 1 112 0.5076
Spanish→English 4.72 1 112 0.0471
English→Greek 5.90 1 24 0.0352
Greek→English 11.25 1 24 0.0051
Greek→Greek 10.80 1 24 0.0056
English→German 3.65 1 16 0.1001
German→English 2.76 1 16 0.1494
Dutch→Dutch 545.14 1 144 <0.0001
Dutch→English 5.66 1 144 0.0291
English→Dutch 55.69 1 144 <0.0001

XGLM 1.7B Dutch→English 17.64 1 144 0.0001
English→Dutch 32.57 1 144 <0.0001
Mandarin→Mandarin 751.15 1 24 <0.0001
Mandarin→Mandarin 1519.71 1 32 <0.0001
English→Polish 0.08 1 32 0.7761
Polish→English 0.69 1 32 0.4481
English→Spanish 4.76 1 112 0.0467
Spanish→English 3.19 1 112 0.1026
English→Greek 2.62 1 24 0.1502
Greek→English 11.20 1 24 0.0051
Greek→Greek 18.49 1 24 0.0005
English→German 1.80 1 16 0.2358
German→English 3.13 1 16 0.1247
Dutch→Dutch 312.38 1 144 <0.0001
Dutch→English 3.72 1 144 0.0770
English→Dutch 55.88 1 134 <0.0001
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Table C.4: Statistical tests of structural priming for XGLM 564M, 1.7B, 2.9B, and
7.5B. (Continued)

Language Model Study Language Pair F df1 df2 p
XGLM 2.9B Dutch→English 47.12 1 144 <0.0001

English→Dutch 27.25 1 144 <0.0001
Mandarin→Mandarin 427.12 1 24 <0.0001
Mandarin→Mandarin 1363.62 1 32 <0.0001
English→Polish 1.31 1 32 0.2988
Polish→English 12.11 1 32 0.0031
English→Spanish 4.61 1 112 0.0489
Spanish→English 10.42 1 112 0.0033
English→Greek 3.58 1 24 0.0966
Greek→English 12.26 1 24 0.0036
Greek→Greek 16.05 1 24 0.0011
English→German 6.22 1 16 0.0362
German→English 1.11 1 16 0.3485
Dutch→Dutch 327.66 1 144 <0.0001
Dutch→English 21.01 1 144 <0.0001
English→Dutch 90.89 1 144 <0.0001

XGLM 7.5B Dutch→English 37.88 1 144 <0.0001
English→Dutch 21.46 1 144 <0.0001
Mandarin→Mandarin 402.46 1 24 <0.0001
Mandarin→Mandarin 1193.10 1 32 <0.0001
English→Polish 0.08 1 32 0.7761
Polish→English 8.96 1 32 0.0093
English→Spanish 16.41 1 112 0.0002
Spanish→English 17.28 1 112 0.0002
English→Greek 3.10 1 24 0.1202
Greek→English 12.33 1 24 0.0036
Greek→Greek 9.47 1 24 0.0092
English→German 1.86 1 16 0.2310
German→English 6.84 1 16 0.0291
Dutch→Dutch 402.81 1 144 <0.0001
Dutch→English 43.84 1 144 <0.0001
English→Dutch 83.09 1 144 <0.0001
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Appendix D

Chapter 6

D.1 Introduction

D.2 Model Training Details

Model training code is based on that from Chang and Bergen (2022)1. In

total, model training took approximately 512 GPU hours on one NVIDIA RTX

A6000. The estimated carbon emission for training all models was 66 kg CO2 eq.2.

Model Hyperparameters

1Available at https://github.com/tylerachang/word-acquisition-language-models
2Carbon emissions were calculated via https://mlco2.github.io/impact/#compute
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Table D.1: Language model hyperparameters

Hyperparameter Value
Layers 12
Embedding size 768
Hidden size 768
Intermediate hidden size 3072
Attention heads 12
Attention head size 64
Activation function GELU
Vocab size 50004
Max sequence length 128
Position embedding Absolute
Batch size 256
Train steps 1M
Learning rate decay Linear
Warmup steps 10000
Learning rate 1e-4
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.999
Dropout 0.1
Attention dropout 0.1

Checkpoints We take checkpoints at the first and last steps (128k). Additionally

we take checkpoints every 10k steps. After the introduction of the L2 at the halfway

point (64k), we save checkpoints every 10 steps, because we expect that structural

priming effects may emerge within the first few hundred training steps after the

introduction of L2. After 200 steps after the introduction of L2, we gradually increase

the checkpoint intervals. This way, we have increased resolution during the period

of training where we expect to see the emergence of structural priming effects, while
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minimizing the number of checkpoints needed.

We save model checkpoints at the following training steps: 0, 10000, 20000,

30000, 40000, 50000, 64000, 64010, 64020, 64030, 64040, 64050, 64060, 64070, 64080,

64090, 64100, 64110, 64120, 64130, 64140, 64150, 64160, 64170, 64180, 64190, 64200,

64300, 64400, 64500, 64600, 64700, 64800, 64900, 65000, 66000, 67000, 68000, 69000,

70000, 80000, 90000, 100000, 110000, 120000, 128000.
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D.3 L2-L1 Priming

Figures D.1 and D.2 show the L2→L1 for all models for both the simultaneous

and sequential bilingual conditions, respectively. Each facet represents a model. The

labels, e.g. English-Dutch and Dutch-English correspond to the L1 and L2 of each

model.
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Figure D.1: Simultaneous bilingual condition. Prime language corresponds to L2.
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Figure D.2: Sequential bilingual condition. Prime language corresponds to L2.

303



D.4 All Training Dynamics Results
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D.4.1 Schoonbaert (2007)
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Figure D.3: L1-L2 structural priming effects over the course of training for Dutch
and English models with the Schoonbaert et al. (2007) stimuli.
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Figure D.4: L2-L1 structural priming effects over the course of training for Dutch
and English models with the Schoonbaert et al. (2007) stimuli.
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D.4.2 Bernolet (2013)
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Figure D.5: L1-L2 structural priming effects over the course of training for Dutch
and English models with the Bernolet et al. (2013) stimuli.
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Figure D.6: L2-L1 structural priming effects over the course of training for Dutch
and English models with the Bernolet et al. (2013) stimuli.
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D.4.3 Hartsuiker (2004)
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Figure D.7: L1-L2 structural priming effects over the course of training for Spanish
and English models with the Hartsuiker et al. (2004) stimuli.
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Figure D.8: L2-L1 structural priming effects over the course of training for Spanish
and English models with the Hartsuiker et al. (2004) stimuli.
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D.4.4 Fleischer (2012)
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Figure D.9: L1-L2 structural priming effects over the course of training for Polish
and English models with the Fleischer et al. (2012) stimuli.
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Figure D.10: L2-L1 structural priming effects over the course of training for Polish
and English models with the Fleischer et al. (2012) stimuli.
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D.4.5 Kotzochampou (2022)
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Figure D.11: L1-L2 structural priming effects over the course of training for Greek
and English models with the Kotzochampou and Chondrogianni (2022) stimuli.
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Figure D.12: L2-L1 structural priming effects over the course of training for Greek
and English models with the Kotzochampou and Chondrogianni (2022) stimuli.
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D.5 Structural Priming and Loss

D.5.1 Schoonbaert (2007)
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Figure D.13: Structural priming effect (black), plotted as the difference between
match and mismatch conditions, and mean surprisal (pink) over the course of model
training. Y-axes have been re-scaled for easier comparison.
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D.5.2 Bernolet (2013)
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Figure D.14: Structural priming effect (black), plotted as the difference between
match and mismatch conditions, and mean surprisal (pink) over the course of model
training. Y-axes have been re-scaled for easier comparison.
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D.5.3 Hartsuiker (2004)
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Figure D.15: Structural priming effect (black), plotted as the difference between
match and mismatch conditions, and mean surprisal (pink) over the course of model
training. Y-axes have been re-scaled for easier comparison.
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D.5.4 Fleischer (2012)
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Figure D.16: Structural priming effect (black), plotted as the difference between
match and mismatch conditions, and mean surprisal (pink) over the course of model
training. Y-axes have been re-scaled for easier comparison.
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D.5.5 Kotzochampou (2022)
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Figure D.17: Structural priming effect (black), plotted as the difference between
match and mismatch conditions, and mean surprisal (pink) over the course of model
training. Y-axes have been re-scaled for easier comparison.
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D.6 BLiMP and SP Training Dynamics

D.6.1 Schoonbaert (2007)
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Figure D.18: Structural priming effect (black), plotted as the difference between
match and mismatch conditions, and English BLiMP accuracy (pink) over the course
of model training. Y-axes have been re-scaled for easier comparison.
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D.6.2 Bernolet (2013)
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Figure D.19: Structural priming effect (black), plotted as the difference between
match and mismatch conditions, and English BLiMP accuracy (pink) over the course
of model training. Y-axes have been re-scaled for easier comparison.

321



D.6.3 Hartsuiker (2004)
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Figure D.20: Structural priming effect (black), plotted as the difference between
match and mismatch conditions, and English BLiMP accuracy (pink) over the course
of model training. Y-axes have been re-scaled for easier comparison.
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D.6.4 Fleischer (2012)
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Figure D.21: Structural priming effect (black), plotted as the difference between
match and mismatch conditions, and English BLiMP accuracy (pink) over the course
of model training. Y-axes have been re-scaled for easier comparison.
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D.6.5 Kotzochampou (2022)
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Figure D.22: Structural priming effect (black), plotted as the difference between
match and mismatch conditions, and English BLiMP accuracy (pink) over the course
of model training. Y-axes have been re-scaled for easier comparison.
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D.7 Crosslingual LDA Classification Accuracy by Layer

D.7.1 Density Plots, Schoonbaert (2007)
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Figure D.23: Dutch DO (orange) and Dutch PO (purple) activations projected onto
the LDA axis trained on English DO-PO activations. Each fact represents a different
model layer.
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Figure D.24: English DO (orange) and English PO (purple) activations projected
onto the LDA axis trained on Dutch DO-PO activations. Each fact represents a
different model layer.
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D.7.2 By Layer Accuracy
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Figure D.25: Classification accuracy (y-axis) of the probe for each layer (x-axis).
Orange represents the accuracy of the probe trained on Dutch at classification of
English activations. Purple represents accuracy of probe trained on English for Dutch
activations. Each facet represents a different model: en_nl_7525 is the English-
Dutch simultaneous model. en_nl_5050 is the English-Dutch sequential model.
nl_en_7525 is the Dutch-English simultaneous model. nl_en_5050 is the Dutch-
English sequential model.
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Figure D.26: Classification accuracy (y-axis) of the probe for each layer (x-axis).
Orange represents the accuracy of the probe trained on Dutch at classification of
English activations. Purple represents accuracy of probe trained on English for Dutch
activations. Each facet represents a different model: en_nl_7525 is the English-
Dutch simultaneous model. en_nl_5050 is the English-Dutch sequential model.
nl_en_7525 is the Dutch-English simultaneous model. nl_en_5050 is the Dutch-
English sequential model.
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Figure D.27: Classification accuracy (y-axis) of the probe for each layer (x-axis).
Orange represents the accuracy of the probe trained on Spanish at classification
of English activations. Purple represents accuracy of probe trained on English for
Spanish activations. Each facet represents a different model: en_es_7525 is the
English-Spanish simultaneous model. en_es_5050 is the English-Spanish sequential
model. es_en_7525 is the Spanish-English simultaneous model. es_en_5050 is the
Spanish-English sequential model.
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Figure D.28: Classification accuracy (y-axis) of the probe for each layer (x-axis).
Orange represents the accuracy of the probe trained on Polish at classification of
English activations. Purple represents accuracy of probe trained on English for Polish
activations. Each facet represents a different model: en_pl_7525 is the English-
Polish simultaneous model. en_pl_5050 is the English-Polish sequential model.
pl_en_7525 is the Polish-English simultaneous model. pl_en_5050 is the Polish-
English sequential model.
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Figure D.29: Classification accuracy (y-axis) of the probe for each layer (x-axis).
Orange represents the accuracy of the probe trained on Greek at classification of
English activations. Purple represents accuracy of probe trained on English for Greek
activations. Each facet represents a different model: en_es_7525 is the English-
Spanish simultaneous model. en_es_5050 is the English-Spanish sequential model.
es_en_7525 is the Spanish-English simultaneous model. es_en_5050 is the Spanish-
English sequential model.
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D.8 Cross-Constructional LDA Accuracy
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Figure D.30: English-Dutch simultaneous model; Layer 6
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Figure D.31: English-Dutch simultaneous model; Layer 7

332



LDA Axis 1

De
ns

ity
 (B

er
no

le
t)

of-gen
s-gen

LDA Axis 1

De
ns

ity
 (H

ar
ts

ui
ke

r)

Active
Passive

LDA Axis 1

De
ns

ity
 (F

le
isc

he
r)

Active
Passive

LDA Axis 1

De
ns

ity
 (K

ot
zo

ch
am

po
u)

Active
Passive

Figure D.32: English-Dutch simultaneous model; Layer 8
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Figure D.33: English-Dutch simultaneous model; Layer 9

LDA Axis 1

De
ns

ity
 (B

er
no

le
t)

of-gen
s-gen

LDA Axis 1

De
ns

ity
 (H

ar
ts

ui
ke

r)

Active
Passive

LDA Axis 1

De
ns

ity
 (F

le
isc

he
r)

Active
Passive

LDA Axis 1

De
ns

ity
 (K

ot
zo

ch
am

po
u)

Active
Passive

Figure D.34: English-Dutch simultaneous model; Layer 10
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Figure D.35: English-Dutch simultaneous model; Layer 6
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Figure D.36: Dutch-English simultaneous model; Layer 7
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Figure D.37: Dutch-English simultaneous model; Layer 8
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Figure D.38: Dutch-English simultaneous model; Layer 9
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Figure D.39: Dutch-English simultaneous model; Layer 10
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D.9 Modified Stimuli LDA Classification
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Figure D.40: LDA axis trained on Dutch DO-PO classification for English-Dutch
simultaneous model; Layer 6
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Figure D.41: LDA axis trained on Dutch DO-PO classification for English-Dutch
simultaneous model; Layer 7
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Figure D.42: LDA axis trained on Dutch DO-PO classification for English-Dutch
simultaneous model; Layer 8
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Figure D.43: LDA axis trained on Dutch DO-PO classification for English-Dutch
simultaneous model; Layer 9

337



20 10 0 10 20 30
0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns

ity

Original DO-PO
DO
PO

20 10 0 10 20 30
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

De
ns

ity

Equal Length (added adj)
PO
DO with modifier

LDA Axis 1 (Dutch DO-PO)

De
ns

ity

Both add loc PP
DO with loc PP
PO with loc PP

Figure D.44: LDA axis trained on Dutch DO-PO classification for English-Dutch
simultaneous model; Layer 10
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Figure D.45: LDA axis trained on Dutch DO-PO classification for English-Dutch
simultaneous model; Layer 6
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Figure D.46: LDA axis trained on Dutch DO-PO classification for English-Dutch
simultaneous model; Layer 7
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Figure D.47: LDA axis trained on Dutch DO-PO classification for English-Dutch
simultaneous model; Layer 8
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Figure D.48: LDA axis trained on Dutch DO-PO classification for English-Dutch
simultaneous model; Layer 9
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Figure D.49: LDA axis trained on Dutch DO-PO classification for English-Dutch
simultaneous model; Layer 10
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