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Abstract

In this paper we present two adaptive control formulations that explicitly include uncertainty in char-
acterizing a facility’s deterioration rate in the process of developing maintenance and repair policies. The
formulations use condition information that stems from the operation of a facility to improve the char-
acterization over a finite planning horizon. We discuss issues related to the implementation and compu-
tational complexity of the formulations. Through a computational study, we show that the economic
benefits can be achieved by implementing the adaptive control formulations. These benefits are most sig-
nificant in situations where the initial expected deterioration rate of the facility is not a good representation
of its actual deterioration rate. � 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Infrastructure management; Model and parameter uncertainty; Adaptive control

1. Introduction

Infrastructure management systems support agencies in developing efficient policies to monitor,
maintain and repair deteriorating facilities in infrastructure networks. Some examples of infra-
structure facilities include pavement segments, bridge spans and pipeline segments. The successful
implementation of infrastructure management systems has made them popular among agencies
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responsible for managing infrastructure networks and has warranted a significant amount of
research in the field of infrastructure management. For example, Arizona’s pavement manage-
ment system saved the state’s Department of Transportation $14 million in the first year it was
implemented (fiscal year 1980–1981) and over $100 million in the first four years (Golabi et al.,
1982; Kulkarni, 1984).

In this paper, we consider the problem of developing maintenance and repair policies for in-
dividual infrastructure facilities that deteriorate over time. A facility’s deterioration process de-
pends on factors such as environmental conditions, design characteristics and utilization level. As
a facility deteriorates, its condition worsens and operating costs increase. In highway pavements,
for example, the operating costs consist of the users’ vehicle operating costs. By applying main-
tenance and repair actions, planning agencies can mitigate and even reverse the effects of dete-
rioration, and, consequently decrease current and future operating expenses. These benefits may,
however, be offset by the costs associated with performing maintenance and repair actions. The
cost of applying maintenance and repair actions increases with the severity of the action, though
severe actions result in more significant improvements in a facility’s condition. As a result, when
planning agencies develop maintenance and repair policies for infrastructure facilities they must
weigh the trade-off between reduced operating costs and increased maintenance and repair costs.

The development of maintenance and repair policies requires methods for policy evaluation
and policy selection. Policy evaluation involves predicting the total discounted costs to implement
each element of a set of feasible policies. Policy selection involves choosing a policy that minimizes
total discounted costs. Evaluating a maintenance and repair policy after observing a facility’s
deterioration process under the policy is straightforward. In practice, however, planning agencies
must evaluate maintenance and repair policies before a facility’s deterioration process can be
observed. Furthermore, it is impossible to predict a facility’s deterioration process under a given
maintenance and repair policy with certainty due to the unknown variability caused by factors
such as level of utilization, the environment, and differences in design and materials among fa-
cilities.

The model-based approach to perform policy evaluation and policy selection involves modeling
a facility’s deterioration process. Policies are evaluated by computing the expected discounted
costs to implement policies to an ideal facility that deteriorates exactly like a performance model
predicts. Thus, the expected model-based costs are used to estimate the actual costs. Policy se-
lection is performed by finding policies that minimize the expected costs of managing the ideal
facility.

State-of-the-art infrastructure management systems use a model-based approach to policy
evaluation and policy selection. The problem of finding optimal maintenance and repair policies is
formulated as a finite-state, discrete-time Markov decision process (MDP). In this framework, a
facility’s condition is represented by one of a finite number of states. Generally, it is assumed that
at the end of each period the agency reviews the condition of a facility and applies a maintenance
and repair action to the facility. We use the random variable Xt with finite state-spaceS to denote
a facility’s state at the end of period t, and the variable At in the finite set of actions A to denote
the action taken at the end of period t. The underlying assumption in an MDP formulation is that
facility deterioration is a Markovian process. This implies that the state of the facility in each
period only depends on the state of the facility and the action applied to it in the preceding period.
These dynamics can be represented with transition equations ftð�Þ of the form
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Xtþ1 ¼ ftðXt;At; gtÞ; t ¼ 0; 1; 2; . . . ð1Þ

The random variables gt, t ¼ 0; 1; 2; . . ., aggregate the effect of all factors that affect a facility’s
deterioration process but that are not explicitly included in the deterioration model. Given the
probability distribution of the variables gt, t ¼ 0; 1; 2; . . ., a facility’s deterioration can alterna-
tively be represented with a set of transition probabilities of the form

PðXtþ1 ¼ j jXt ¼ i;At ¼ aÞ � pt
ijðaÞ 8a 2 A; i; j 2 S; and t ¼ 0; 1; 2; . . . ð2Þ

It is usually assumed that facility deterioration is a stationary process, i.e., a time-homogeneous
process. Under this assumption the MDP formulation can be simplified by omitting the super-
index t from pt

ij. In the transition equation representation, the sub-index t is omitted from ftð�Þ and
gt, t ¼ 0; 1; 2; . . ., and thus the dynamics are represented with a transition equation of the form
f ð�Þ and a random variable g.

1.1. Motivation and overview of the proposed framework

As stated previously, a facility’s deterioration process depends on several factors. The effect of
these factors is reflected in a set of parameters and an error term g that specify the model of a
facility’s deterioration. Any differences between actual observations of a facility’s condition and
predicted observations (based on the deterioration model) are attributed to randomness (and
collected in g). Unfortunately, this approach does not capture the uncertainty that exists in
generating the set of parameters to specify a deterioration model such as in the MDP frame-
work described earlier. The uncertainty in generating a set of parameters can be attributed to the
following:

(a) Exogenous factors such as the environment and level of utilization. The uncertainty in pre-
dicting these factors produces uncertainty in the parameters of the deterioration model.
(b) Endogenous factors such as facility design and materials. Unknown variability in these fac-
tors can make similar facilities respond differently to the same exogenous conditions.
(c) Statistical factors. Typically, the data sets used to generate deterioration models are of limi-
ted size and variability. They are often complemented by a planning agency’s experience with
similar facilities.

We address this limitation by presenting a framework that characterizes a facility’s deterioration
process with multiple deterioration models, i.e., multiple parameter sets. Each deterioration model
explains a facility’s deterioration under a given set of exogenous factors. For example, the
transition equation f 1ð�Þmight be used to represent a facility’s deterioration under high utilization
and f 2ð�Þ might be used under low utilization. A set of deterioration models can also be used to
capture the deterioration process of facilities with different values of the endogenous factors. In
the proposed framework, the differences between actual observations of a facility’s condition and
expected observations are attributed not only to randomness, but also to the uncertainty in
choosing a set of parameters to explain a facility’s deterioration process. We use the random
variable Yt, t ¼ 0; 1; 2; . . ., to capture this uncertainty. Yt is the probability that the planning
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agency assigns to the appropriateness of each parameter set in explaining the facility’s deterio-
ration process. For example, at the start of the horizon (end of year 0) a planning agency might
assign equal probabilities to the transition equations corresponding to high and low utilization. In
this example, P ðY0 ¼ highÞ ¼ P ðY0 ¼ lowÞ ¼ 0:5.

We formulate the problem of finding optimal policies to manage a facility as an adaptive
control (AC) problem. The random variable Yt is explicitly included in the information available
to planning agencies in the decision-making process at the end of period t. In addition, the
methodology allows planning agencies to use the condition information they gather while man-
aging a facility to improve the characterization of a facility’s deterioration process by updating the
probability mass function of Yt, t ¼ 1; 2; 3; . . . The methodology is attractive because it provides a
systematic approach to include the information gathered while managing a facility to develop
more efficient maintenance and repair policies.

Two AC formulations are presented a closed-loop control formulation and an open-loop-
optimal feedback control formulation. In open-loop-optimal feedback control, the maintenance
and repair action selected in each period depends on the facility’s condition and on the planning
agency’s expectations about how a facility will deteriorate in current and future periods. That is,
at the end of period t, the optimal action At depends on the facility’s condition Xt, the agency’s
expectations about Xtþ1;Xtþ2; . . . ;XT and the random variable Yt. In closed-loop control the action
selected also accounts for the fact that a planning agency’s expectations about future deterioration
can change as new condition information becomes available. That is, At also depends on the
agency’s expectations about Ytþ1; Ytþ2; . . . ; YT
1.

1.2. Outline

The remainder of the paper is organized as follows. In Section 2 we review the literature on
infrastructure management systems. In Section 3 we present AC formulations for the problem of
finding optimal maintenance and repair policies for an infrastructure facility where there is un-
certainty in the deterioration rate. In Section 4 we present a computational study where we
compare the performance of policies obtained under the AC formulations to the performance of
state-of-the-art infrastructure management systems. We conclude in Section 5.

2. Review of infrastructure management systems

In Section 3 we present a framework that explicitly addresses the uncertainty that exists in
characterizing facility deterioration. The framework is presented in the context of developing
maintenance and repair policies for individual infrastructure facilities under a finite-state, dis-
crete-time, stationary Markovian deterioration model. In spite of this, our contribution is
general as uncertainty in characterizing facility deterioration also applies to frameworks that
encompass networks of facilities and frameworks where non-MDP deterioration models are
used.

In order to provide additional background, we discuss and review relevant MDP formulations
for the problem of finding optimal maintenance and repair policies for facilities and networks.

766 P.L. Durango, S.M. Madanat / Transportation Research Part A 36 (2002) 763–778



2.1. MDP formulations for facilities

The problem of developing maintenance and repair policies for individual infrastructure fa-
cilities has been modeled as a finite-state, discrete-time, stationary MDP. For each period, an
optimal policy specifies a maintenance and repair action for every possible condition-state of a
facility. For example, Madanat and Ben-Akiva (1994) present a finite-horizon, dynamic pro-
gramming formulation in the context of pavement management, where the true condition state of
a facility is revealed at the end of each period. In the model, the criterion used to evaluate a policy
is the expected discounted cost of implementing the policy given the initial condition of the fa-
cility. Costs in this model include a component due to the application of actions to the facility and
a component that reflects the costs incurred by the users of the facility which is directly related to
its condition state. This formulation is the foundation of the models we present in Section 3.

As stated earlier, MDP deterioration models are specified with a single set of transition
probabilities and therefore, do not capture the uncertainty in characterizing a facility’s deterio-
ration process. Deterioration models represent the expected deterioration rate of an arbitrary
facility in an infrastructure network. These probabilities are not updated to account for condition
information collected while managing the facility over the planning horizon. The policies that are
implemented are referred to as open-loop control policies because they ignore the feedback, i.e.,
the state-to-state transitions, that results from applying actions to a facility. This feedback is
referred to as inter-temporal feedback.

Carnahan (1988) recognizes that a single set of transition probabilities may not provide an
adequate deterioration model. He presents empirical evidence that shows that similar facilities
may respond differently to a given set of conditions. He proposes a framework that explicitly
accounts for these differences in the process of developing maintenance and repair policies. He
uses multiple models of a facility’s deterioration process (each specified with a set of transition
probabilities) but assumes that the planning agency knows which model is appropriate for each
facility. Carnahan et al. (1987) present a linear programming model where the condition state of
the system is characterized by the pavement condition index (PCI).

2.2. MDP formulations for networks

The problem of finding optimalmaintenance and repair policies for networks of facilities has also
been formulated as a finite-state, discrete-time, stationaryMDP.Network-level frameworks assume
centralized planning for a network of infrastructure facilities and account for administrative re-
strictions that link together the facilities in the network.At the endof each period, the condition state
of the system is represented as the fraction of the infrastructure network which is in each of a finite
number of possible states. The implication of theMarkov assumption described in Section 1 extends
to each of the facilities in the infrastructure network. Therefore, the dynamics of the deterioration
process for the network are described by the Chapman–Kolmogorov difference equation:X

b2A
wtþ1

jb ¼
X
i2S

X
a2A

wt
ia � pijðaÞ; j 2 S; t ¼ 0; 1; 2; . . . ; ð3Þ

where wt
ia fraction of infrastructure network in condition state i that receives action a at the end of

period t.
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Usually, the criterion used to evaluate policies in network-level formulations is the sum of
expected discounted costs incurred when the policy is implemented. The costs include action and
operating costs. Operating costs include a portion of the costs incurred by the network’s users.
Network-level administrative restrictions include constraints that reflect the availability of re-
sources and constraints that reflect short-term and long-term strategic objectives. Budget con-
straints are a typical example of the first type of constraints. Requiring the network to meet a
particular service level is an example of the second type of constraints.

Network-level formulations specify the deterioration for all facilities that comprise the network
with a single set of transition probabilities. Typically, the policies that are implemented ignore
inter-temporal feedback and are therefore open-loop control policies. Even the most sophisticated
systems do not explicitly model the uncertainty in characterizing facility deterioration. However, a
few infrastructure management systems, such as Arizona’s pavement management system (Golabi
et al., 1982; Kulkarni, 1984; Cambridge Systematics, 1991; Golabi et al., 1991), periodically up-
date the deterioration model to account for inter-temporal feedback. This is done in part to
compensate for the omission of the uncertainty in characterizing facility deterioration from the
deterioration model. In these systems, the problem of obtaining the optimal policy for the re-
maining periods is solved when the deterioration model is updated. The policy that is imple-
mented depends on the sequence of observations of the network’s condition but it does not
account for future updates. This type of policy is referred to as an open-loop-optimal feedback
control policy and is similar in spirit to the policy that results from the formulation presented in
Section 3.2.

Golabi et al. (1982) and Kulkarni (1984) describe the framework used in Arizona’s pavement
management system. In the framework, the objective is to minimize the cost of performing
maintenance actions. The decision variables correspond to the fraction of facilities in each pos-
sible condition state that will receive a particular action at the end of each period. The resulting
policy ensures that at the end of every period the fraction of the network’s facilities in ‘‘unac-
ceptable’’ condition states does not exceed a prespecified threshold and that the fraction of the
network’s facilities in ‘‘acceptable’’ condition states exceeds a prespecified threshold. The frame-
work consists of two sub-problems that are formulated as linear programs. The infinite-horizon
sub-problem seeks to find a policy that minimizes the average annual cost for a network that has
reached its steady state. The finite-horizon sub-problem seeks to find a policy that minimizes the
cost of operating the network over a prespecified planning horizon. At the end of the planning
horizon the condition state of the network is constrained to reach the optimal condition for
steady-state operation.

Gendreau and Duclos (1989) present a linear programming formulation where the state of each
facility is extended to include information about the district where the facility is located. Madanat
et al. (1999) develop a latent MDP approach to account for uncertainty in measuring the con-
dition state of the facilities that comprise the network.

3. Adaptive control formulations

In this section we present two finite-horizon AC formulations for the problem of finding op-
timal maintenance and repair policies where there is uncertainty in choosing a set of parameters to

768 P.L. Durango, S.M. Madanat / Transportation Research Part A 36 (2002) 763–778



represent a facility’s deterioration process. We present an optimal closed-loop control formulation
and a sub-optimal open-loop-optimal feedback control formulation. The AC methodology was
selected because it allows for the explicit inclusion of the uncertainty in choosing a deterioration
model in the decision-making process. In addition, the methodology uses inter-temporal feedback
to improve the characterization of a facility’s deterioration process over the planning horizon.

We consider a planning agency that manages a facility over a finite horizon T. The planning
agency characterizes the facility’s deterioration process with R Markovian models. Each model,
referred to as a deterioration rate, is determined by a single set of parameters. Equivalently, each
deterioration rate, r ¼ 1; . . . ;R, is determined by a single set of transition probabilities, pr

ijðaÞ
8a 2 A, i; j 2 S. The planning agency in charge of managing the facility is uncertain about which
deterioration rate is appropriate in explaining the facility’s deterioration process. The uncertainty
is captured by the random variable Yt, t ¼ 0; 1; . . . ; T , with probability mass function ~QQt,
t ¼ 0; 1; . . . ; T . The rth component of the vector ~QQt, denoted Qt

r, is the probability that at the end
of period t, the agency believes the facility deteriorates according to rate r, i.e., Qt

r � PðYt ¼ rÞ. In
the AC formulations the state of the system at the end of period t is given by the condition of the
facility, Xt 2 S, and by the probability mass function ~QQt 2 f½0; 1
R :

PR
r¼1 Qr ¼ 1g. The probability

mass function ~QQt is determined by the sequence of state-to-state transitions observed from 0 to
t 
 1. An optimal maintenance and repair policy specifies an action for every possible state of the
system at the end of every period. This implies that the action taken at the end of a period depends
on the prior sequence of transitions. The objective is to minimize the sum of expected discounted
costs over the planning horizon. The discount factor is denoted d. The sum of the costs to apply
action a 2 A to a facility in condition i 2 S and to operate a facility in state i for one period is
denoted gði; aÞ. The salvage value of a facility in condition i at the end of the horizon is sðiÞ. We
assume that the deterioration process is stationary. The formulations are presented below.

3.1. Closed-loop control formulation

Under the closed-loop control scheme the optimal value function, denoted vclt ðXt; ~QQtÞ, represents
the minimum expected sum of discounted costs until the end of T, given that the state of the
system at the end of t is (Xt; ~QQt). The optimal value function is given by

8i 2 S; ~QQ 2 ½0; 1
R :
XR
r¼1

Qr

(
¼ 1

)
; t ¼ 0; . . . ; T 
 1;

vclt ði; ~QQÞ ¼ min
a2A

gði; aÞ
(

þ d
XR
r¼1

Qr

X
j2S

pr
ijðaÞ � vcltþ1 j;Q

0!
ði; j; a; ~QQÞ

� �" #)
;

ð4Þ

where

Q0
rði; j; a; ~QQÞ ¼ P Ytþ1

	
¼ r jXt ¼ i; Xtþ1 ¼ j; At ¼ a; ~QQt ¼ ~QQ



;

which is given by the Bayesian updating formula

Q0
rði; j; a; ~QQÞ ¼

pr
ijðaÞ � QrPR

k¼1 pk
ijðaÞ � Qk

; r ¼ 1; . . . ;R: ð5Þ
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The boundary conditions are as follows:

vclT ði; ~QQÞ ¼ 
sðiÞ 8i; ~QQ: ð6Þ

The expected discounted cost-to-go at the start of the horizon for a facility in condition, X0, and
probability mass function over the set of possible deterioration rates, ~QQ0, is denoted vcl0 ðX0; ~QQ0Þ. In
the optimal value function (Equation set (4)) the first term is for the costs incurred in the current
period and the second term is for the expected discounted sum of costs in the remaining periods.
The minimum is taken over all actions in the set of actions A. Equation set (5) is used to update
the agency’s beliefs about the deterioration rate of the facility in accordance with Bayes’ law and
based on the last observed state-to-state transition (from i at the end of t to j at the end of t þ 1),
the action taken at the end of t, At, and the a priori probability mass function, ~QQt ¼ ~QQ. The
updating process allows agencies to use inter-temporal feedback to improve the characterization
of facility deterioration. Equation set (6) assigns salvage values to a facility for each possible,
terminal state of the facility.

The optimal policy is computed by evaluating Equation set (4) recursively from period T 
 1 to
period 0 (by using dynamic programming). For each period the recurrence relation is evaluated
for every possible state of the system. The computational complexity to determine the optimal
policy is OðGR
1jAjjSj2ðRþ T ÞÞ, where G is the number of points used to discretize the [0,1]
probability space. This improvement over the brute-force implementation, whose complexity is
OðGRjAjjSj2RT Þ, is obtained by precomputing the expected state-to-state transition probabilities
for each action under every possible probability mass function ðOðGR
1jAjjSj2RÞÞ and by taking
advantage of the fact that the probability mass functions have R
 1 degrees of freedom. The
remaining operations are necessary to evaluate the recurrence relation (Equation set (4)) from
period T 
 1 to 0.

The closed-loop control formulation is optimal under the assumption of a ‘‘correct deterio-
ration model’’. A deterioration model is ‘‘correct’’ when the actual deterioration rate of a facility
is drawn (from the set of deterioration rates f1; . . . ;Rg) according to the probability mass function
~QQ0. This implies that for all r ¼ 1; . . . ;R, the probability that the agency initially assigns to the
deterioration rate r is equal to the probability that a facility’s actual deterioration rate is r.

3.2. Open-loop-optimal feedback control formulation

The open-loop-optimal feedback control scheme is sub-optimal (under the assumption of a
correct model) because the recurrence relation does not account for the fact that the probability
mass functions of Y1; Y2; . . . ; YT
1 are updated at the end of each period. The recurrence relation
used to obtain the policy is given by

voloft ði; ~QQÞ ¼ min
a2A

gði; aÞ
(

þ d
XR
r¼1

Qt
r

X
j2S

pr
ijðaÞ � voloftþ1 j; ~QQ

	 
" #)
8i; ~QQ: ð7Þ

Under the open-loop-optimal feedback control scheme the probability mass functions are still
updated according to Equation set (5) and the boundary conditions are still given by Equation set
(6). At the end of period t, the action specified by the open-loop-optimal feedback control for-
mulation is obtained by solving an open-loop control problem over the remaining T 
 t periods. In
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solving each of the open-loop control problems the agency assumes that the probability mass
function will remain unchanged until the end of the horizon. voloft ði; ~QQÞ represents the expected
discounted cost of managing the facility until the end of the horizon given the initial state of the
system (i; ~QQ) and that an open-loop control policy will be followed. This implies that the actual costs
of implementing an open-loop-optimal feedback control policy from t to T 
 1 are bounded above
by voloft ði; ~QQÞ. The mathematical proof is presented in Bertsekas (1995). The difference between
voloft ði; ~QQÞ and vclt ði; ~QQÞ is that in the latter, the sum of expected, discounted costs in the remaining
periods is computed while accounting for subsequent updates in the probability mass functions.

Instead of evaluating the recurrence relation for every state and for every period ðcom-
plexityOðGR
1jAjjSj2ðRþ T ÞÞÞ, this control scheme can be implemented on-line with a compu-
tational complexity of OðjAjjSj2T ðRþ T ÞÞ. The complexity is a polynomial function of the
number of deterioration rates R. In the on-line implementation, the total number of operations to
find the expected state-to-state transition probabilities for the given mass function in all periods is
OðjAjjSj2RT Þ. The remaining operations are for solving T 
 1 open-loop control problems to
find the actions to be applied at the end of each period. The computational complexity to compute
the optimal policy for an open-loop control problem with T 
 t periods remaining until the end of
the planning horizon is OðjAjjSj2ðT 
 tÞÞ.

4. Computational study

In Section 3 we presented two AC formulations for the problem of finding optimal maintenance
and repair policies where there is uncertainty in the deterioration rate of a facility. In this section,
we present a computational study to compare the AC formulations presented in Sections 3.1 and
3.2 with the current state-of-the-art in infrastructure management systems which are based on
open-loop control formulations. In Section 4.2 we compare the performance of maintenance and
repair policies obtained under the three control schemes and under perfect information in situ-
ations where the deterioration model is correct. In Section 4.3 we compare the performance of
policies obtained under incorrect deterioration models.

In both parts of the computational study, the open-loop control policy is obtained with respect
to the initial, expected deterioration process. This amounts to using all of the information that is
available at the start of the planning horizon. Under the initial expected deterioration process, the
transition probability from state i to state j when action a is applied is equal to the initial expected
probability that the transition occurs. Henceforth, this probability is denoted pijðaÞ and is given as
follows:

pijðaÞ ¼
XR
r¼1

Q0
r � pr

ijðaÞ; 8a 2 A; i; j 2 S: ð8Þ

4.1. Problem specification

The purpose of the study is to illustrate the performance of each of the control schemes to an
application in the context of pavement management. The data that we use are taken from em-
pirical studies presented in the literature on pavement management. We consider a discount rate
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ðð1=dÞ 
 1Þ of 5% and a planning horizon (T) of 25 years. As in (Carnahan et al., 1987), the
condition of the pavement segment is given by a PCI rating which is discretized into eight states
(state 1 being a failed pavement and state 8 being a new pavement). The planning agency has
seven maintenance and repair actions available in every period, and for every possible condition
of the pavement segment. The actions considered are: (1) do nothing, (2) routine maintenance,
(3) 1-in overlay, (4) 2-in overlay, (5) 4-in overlay, (6) 6-in overlay, and (7) reconstruction. The
costs of performing actions are taken from Carnahan et al. (1987). The operating costs con-
sidered in the study are meant to represent the users’ vehicle operating costs that are associated
with the condition of the pavement segment. We restrict the terminal state of the pavement
segment to any one of the four best states to ensure that the pavement provides high level-
of-service until the end of the planning horizon. We use the salvage values for each state of the
pavement segment to enforce this restriction. The costs are presented in Table 1 and are ex-
pressed in $ per lane-yard.

We assume that the deterioration process of the pavement segment is governed by one of the
three rates ((1) slow, (2) medium, or (3) fast). In this instance, a deterioration rate, r, is charac-
terized by a set of seven (one for each action) transition probability matrices, PrðaÞ, a 2 A, where
the (i; j) entry of the matrix PrðaÞ is the transition probability pr

ijðaÞ. The transition probability
matrices were generated using truncated normal distributions as in (Madanat and Ben-Akiva,
1994). We assume that:

(a) each maintenance and repair action has an associated mean effect on the state-to-state tran-
sition from the current state to the state that is observed in the year after the action is applied;
(b) for faster deterioration rates of the pavement segment, the same action is less effective in
improving the state of the pavement segment;
(c) faster deterioration processes are characterized by higher variances in prediction than slower
ones.

The mean effects of applying maintenance and repair actions and the standard deviations as-
sociated with each deterioration rate are presented in Table 2.

The steady-state optimal policies obtained with this data set are presented in Table 3. The
policies specify the actions to be taken for a pavement segment in a given condition and assuming

Table 1

Costs ($/lane-yard)

Pav. state Maintenance and repair actions User costs Salvage value

1 2 3 4 5 6 7

1 0.00 6.90 19.90 21.81 25.61 29.42 25.97 1 
1
2 0.00 2.00 10.40 12.31 16.11 19.92 25.97 25.00 
1
3 0.00 1.40 8.78 10.69 14.49 18.30 25.97 22.00 
1
4 0.00 0.83 7.15 9.06 12.86 16.67 25.97 14.00 
1
5 0.00 0.65 4.73 6.64 10.43 14.25 25.97 8.00 0.00

6 0.00 0.31 2.20 4.11 7.91 11.72 25.97 4.00 0.00

7 0.00 0.15 2.00 3.91 7.71 11.52 25.97 2.00 0.00

8 0.00 0.04 1.90 3.81 7.61 11.42 25.97 0.00 0.00
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that the deterioration rate is known. For example, we note that for a pavement segment in
condition 3, the optimal steady-state policies specify that a 4-inch overlay (action 5) be applied if
the deterioration rate is known to be slow, that a 6-inch overlay (action 6) be applied if the de-
terioration rate is known to be medium and that reconstruction (action 7) be applied if the de-
terioration rate is known to be fast. We note that the optimal steady-state actions to be taken for a
pavement segment in a given condition depend on the agency’s beliefs about which deterioration
rate is appropriate. This is a necessary condition for the AC schemes to strictly outperform the
open-loop control scheme.

The code for the computational study was written in C. In the implementation of the AC
schemes the [0,1] probability space was discretized with a grid of 0.02, i.e., G ¼ 50.

4.2. Results for policies obtained with correct deterioration models

In this section we present numerical results that illustrate the effect of uncertainty on the total
expected discounted costs of managing a facility. We assume that the facility’s actual deterioration

Table 2

Mean and standard deviation of action effects on the state of a pavement segment

Action Deterioration rate

Slow Medium Fast

Mean effects

1 )0.25 )0.75 )1.75
2 0.50 0.00 )0.50
3 1.75 1.00 0.25

4 3.00 2.00 1.00

5 4.25 3.00 1.75

6 5.50 4.00 2.50

7 8.00 6.00 4.00

Standard deviation

0.30 0.50 0.70

Table 3

Steady-state optimal policies for known deterioration rates

Condition state Deterioration rate

Slow Medium Fast

1 7 7 7

2 6 7 7

3 5 6 7

4 4 5 6

5 4 4 5

6 3 4 4

7 2 3 4

8 2 2 3
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rate is drawn from the initial probability mass function, ~QQ0, i.e., the deterioration model is correct.
We consider an instance of the problem specified in Section 4.1 and compare the expected dis-
counted costs under the optimal closed-loop control scheme, clc, under the sub-optimal open-
loop-optimal feedback control scheme, olofc, and under the open-loop control scheme, olc. The
results of the study are presented in Tables 4 and 5.

Table 4 presents the expected discounted costs of managing the facility under perfect infor-
mation for initial conditions (2)–(8) of a facility. For example, ~QQ0 ¼ ð1; 0; 0Þ means that the de-
terioration rate is slow with probability 1. Under perfect information, there is no difference in the
policies dictated by the three control schemes and therefore the expected discounted costs under
the three control schemes are equal. These cases are presented to illustrate the effect of uncertainty
in the deterioration rates and to benchmark the performance of the three control schemes.

Table 5 presents the expected discounted costs under the three control schemes for every
possible initial condition of the facility, in situations where there is uncertainty about the dete-
rioration rates. We consider deterioration rates that are drawn according to the three probability
mass functions: ð0:10; 0:80; 0:10Þ, ð0:33; 0:34; 0:33Þ, ð0:40; 0:20; 0:40Þ. For example, ~QQ0 ¼ ð0:10;
0:80; 0:10Þ means that the probability that the deterioration rate is slow is 0:10; the probability

Table 4

Expected discounted costs ($/lane-yard)

Initial state Initial probability mass function ~QQ0

(1,0,0) (0,1,0) (0,0,1)

2 47.05 55.50 81.66

3 39.76 48.02 71.92

4 27.01 34.58 57.52

5 15.09 22.36 43.80

6 7.21 12.64 32.06

7 4.23 8.53 26.15

8 0.30 4.57 21.64

Table 5

Expected discounted costs ($/lane-yard)

Initial

state

Initial probability mass function ~QQ0

(0.10,0.80,0.10) (0.33,0.34,0.33) (0.40,0.20,0.40)

clc olofc olc Gap

(%)

clc olofc olc Gap

(%)

clc olofc olc Gap

(%)

2 57.94 57.94 58.15 0 62.63 62.63 63.32 1 64.48 64.48 65.32 1

3 50.29 50.29 50.53 0 54.52 54.52 55.33 1 56.32 56.32 57.29 2

4 36.63 36.63 36.84 1 40.37 40.37 41.08 2 41.99 42.00 42.83 2

5 24.22 24.22 24.39 1 27.53 27.53 28.14 2 28.99 29.00 29.70 2

6 14.46 14.46 14.58 1 17.72 17.72 18.18 3 19.12 19.14 19.62 3

7 10.24 10.24 10.35 1 13.27 13.27 13.69 3 14.58 14.60 15.03 3

8 6.18 6.18 6.27 1 9.00 9.00 9.36 4 10.23 10.23 10.61 4
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that it is medium is 0:80; and the probability that it is fast is 0:10. The gap refers to the percentage
difference between the expected discounted costs of managing the given facility under an open-
loop control policy and the costs under a closed-loop control policy.

The main observations are that:

(a) As the variance in the probability mass function from which the deterioration rates are
drawn increases, that is, as the uncertainty about the deterioration rate increases, the expected
discounted costs increase.
(b) As the uncertainty increases, the gap increases.
(c) For the data presented in Section 4.1, the sub-optimal open-loop-optimal feedback control
scheme consistently performs as well as the optimal closed-loop control scheme. However,
there are small differences as the uncertainty increases.

4.3. Results for policies obtained with incorrect deterioration models

In this section of the computational study we present results for situations where the deteri-
oration rate is not drawn from the initial probability mass function ~QQ0. Specifically, we illustrate
how the three control schemes perform in cases where initially, the deterioration rate is either
underestimated or overestimated.

To consider cases where the deterioration rate is overestimated, we consider the initial prob-
ability mass functions: ð0:05; 0:05; 0:90Þ, ð0:33; 0:34; 0:33Þ. We compare the expected discounted
costs for initial conditions of a facility that range from 2 to 8. We consider a facility that dete-
riorates according to the slow rate (r ¼ 1). To consider cases where the deterioration rate is
underestimated we consider the probability mass functions ð0:9; 0:05; 0:05Þ, ð0:33; 0:34; 0:33Þ and
a facility that deteriorates according to the fast rate (r ¼ 3). We also present the expected dis-
counted costs under perfect information in order to benchmark the performance of the control
schemes. The results are presented in Fig. 1.

The main observations are that:

(a) The AC schemes always perform better than the open-loop control scheme.
(b) As the initial error in estimation of the actual deterioration rate increases, the penalty for
not employing an AC scheme increases. This is more critical in cases where the actual deteri-
oration rate is overestimated.

In the next part of the computational study we address the following questions: (i) When do the
AC schemes produce substantial benefits over the open-loop control scheme? and (ii) When does
the closed-loop control scheme perform substantially better than the open-loop-optimal feedback
control scheme?

In order to address these questions we conducted a simulation study where we consider a fa-
cility initially in condition-state 5 that deteriorates according to rate 2 (medium). We consider
probability mass functions ~QQ0 that span the possible state space (by letting Q0

1 and Q0
2 vary be-

tween 0 and 0:90 in increments of 0:05). For each realization of ~QQ0 we generate 30 random in-
stances of the problem specified in Section 4.1. We present the number of times that the policy
computed under the closed-loop control scheme results in at least a 10% reduction in expected
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discounted costs over the policy computed under the open-loop control scheme and over the
policy computed under the open-loop-optimal feedback control scheme. The results are presented
in Fig. 2. Each entry in the tables corresponds to the number of times (out of 30) that the im-
plementation of the closed-loop control policy resulted in at least 10% reduction in costs over the
implementation of either the open-loop or the open-loop-optimal feedback control policy.

The main observation is that the optimal, closed-loop control scheme is preferred when the
initial error in the estimation of the actual deterioration rate is large. This is particularly true when
the deterioration rate is overestimated. These cases are those for which PðY0 ¼ 1Þ þ PðY0 ¼ 2Þ is
a small number, and lie close to the origin in Fig. 2.

4.4. An example

We present an example that illustrates why the closed-loop control policy performs better than
the open-loop and open-loop-optimal feedback control policies, even in cases when the deterio-
ration model is incorrect. We consider a random instance of the problem specified in Section 4.1
where a pavement segment that is in condition-state 7 at the start of the horizon will deteriorate
slowly (r ¼ 1) over the planning horizon. The planning agency in charge of managing the pave-

Fig. 1. Expected discounted costs ($/lane-yard).
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ment initially believes that the deterioration rate for the pavement is drawn from ð~QQ0 ¼
ð0:05; 0:05; 0:90ÞÞ. That is, initially the agency has overestimated the pavement’s deterioration
rate. Fig. 3 illustrates how the planning agency’s beliefs are updated over time under the two AC

Fig. 2. Performance of control schemes.

Fig. 3. Operation of control schemes.
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schemes and how the costs-to-go under the three control schemes converge to the costs-to-go in
the perfect information case. As expected, the convergence in the beliefs is faster for the closed-
loop control than the open-loop-optimal feedback control. Furthermore, the convergence in the
cost-to-go is fastest for the closed-loop control and slowest for the open-loop control.

5. Conclusion

An important class of infrastructure management systems uses an MDP-based framework to
characterize facility deterioration. The underlying deterioration process of a facility is represented
with a single set of transition probabilities. This framework cannot explicitly account for the
uncertainty in characterizing a facility’s deterioration rate. We address this limitation by pre-
senting a framework that characterizes a facility’s deterioration under multiple deterioration rates.
Each rate is represented with a set of transition probabilities. We present two AC formulations
that use this deterioration model and that explicitly account for the uncertainty in characterizing a
facility’s deterioration rate. The formulations use infrastructure-condition-related information
that stems from the actual operation of an infrastructure facility (inter-temporal feedback) to
improve the characterization of a facility’s deterioration over time. We present two AC formu-
lations, a closed-loop control formulation and an open-loop-optimal feedback control formula-
tion, and discuss their implementation and computational complexity. Through a computational
study in the context of pavement management we show that economic benefits can be achieved by
explicitly accounting for the uncertainty in characterizing a facility’s deterioration rate. In the
future, we plan to extend our AC formulations to network-level problems.
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