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Local Hill Search Outperforms Thagard’s Connectionist Model 
 

Michael O. Vertolli (michaelvertolli@gmail.com) 

Jim Davies (jim@jimdavies.org) 
Carleton University, Institute of Cognitive Science, 1125 Colonel By Dr. 

Ottawa, ON K1S 5B6 Canada 

 

 

Abstract 

A cognitive model of the visual imagination will produce 
“incoherent” results when it adds elements to an imagined 
scene that come from different contexts (e.g., “computer” and 
“cheese” with “mouse”). We approach this problem with a 
model that infers coherence relations from co-occurrence 
probabilities of labels in images.  We show that this 
algorithm’s serial traversal of networks of co-occurrence 
relations for a particular query produces greater coherence 
than one leading model in the field of computational 
coherence: Thagard’s connectionist model.  

Keywords: imagination; coherence; artificial intelligence  

Introduction 

The imagination is implicated in a wide range of abilities 

related to human cognition. The list of abilities includes but 

is not limited to planning, problem solving, hypothetical 

thinking, counterfactual thinking, theory of mind, and 

mental time travel (Davies, Atance, & Martin Ordas, 2011). 

Despite a plethora of research on the imagination as a 

facilitator for these abilities (see, for example, Markman, 

Klein & Suhr, 2012), the generative capacity of the 

imagination is an untapped area of research in this domain. 

This work focuses on the visual faculty as it is the most 

studied. 

When someone constructs a visual scene with the 

imagination (e.g., a mouse eating a piece of cheese) they 

might use visual memories from many different experiences 

as the components of the new scene. How these components 

are selected from the range of possible experiences is not 

obvious. If more than just the mouse and cheese are 

included in the scene, it is unclear what makes the selection 

of some elements (e.g., a cat, mousetrap, floorboards, or a 

countertop) more likely or appropriate than others (e.g., a 

rollercoaster, map of Spain, or cruise ship). 

What is known is that people do not arbitrarily select the 

components for their imaginings, even if those imaginings 

are entirely fictional (see Cockbain, Vertolli, Davies, in 

press). There is an intuitive coherence imposed on imagined 

scenes that inhibits unusual and sometimes even highly 

creative combinations. 

One way that humans might make this selection is through 

the co-occurrence of objects in visual memory (by visual 

memory we mean only the memory of visual things, and not 

a specific subsystem like the visuo-spatial sketchpad). Thus, 

when one is imagining a scene given an environmental 

query (e.g., a novel, question, or problem), mental processes 

might search visual memory for other objects that often 

occur with that query. 

Recent research in cognitive neuroscience supports this 

co-occurrence view. Under the title of “scene construction 

theory,” this research has demonstrated that the 

hippocampus plays a primary role in the construction of a 

“coherent spatial context” for the integration of the 

components of imagined experiences among other cognitive 

phenomena (Hassabis & Maguire, 2007; Maguire & 

Mullally, 2013). Parallel research on the role of the 

hippocampus in the emergence of conceptual knowledge 

and knowledge transfer (see Kumaran, Summerfield, 

Hassabis & Maguire, 2009) endorses the “memory space” 

hypothesis of hippocampal function. In this view, neurons in 

the hippocampus encode the co-occurrence of the 

components of a given experience or event through their 

spatiotemporal associations (Konkel & Cohen, 2009). This 

means that objects can co-occur as a consequence of 

associations due to spatial relationships (e.g., mice often are 

seen next to cheese) or temporal relationships (e.g., 

gunshots are often followed by death or injury). We only 

address the former in the current work. 

 

 
Figure 1. An incoherent scene generated by SOILIE for the 

query ‘mouse,’ containing elements from both the computer 

and animal senses of ‘mouse.’ 

 

In sum, when one imagines a mouse eating a piece of 

cheese, it is not surprising that mousetraps, cats, etc. are 

more likely to come to mind than unrelated elements. They 

all often occur together in the world and, thus, are 

associated in the brain. In this case, “a mouse eating a piece 

of cheese” serves as the query and the other elements are 

what are returned by some imagination process. One way to 

further explore this idea is through the use of computational 

models. 
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The Science of Imagination Laboratory Imagination 

Engine (SOILIE) is a computational model of a functional 

description of processes in the imagination that generate 

scenes from an environmental query (Vertolli, Breault, 

Ouellet, Somers, Gagné, Davies, 2014). In place of human 

‘experiences’ and ‘objects’ SOILIE uses labeled images 

from the web. When generating a novel scene, SOILIE must 

determine which labels are appropriate to select, given a 

particular query. And, in keeping with the descriptions 

given above, SOILIE currently uses co-occurrence relations 

to make this selection. In this context, co-occurrence is 

determined by the frequency with which one label is present 

in the same image with another label.  

SOILIE derives these co-occurrence relations from the 

Peekaboom database of labelled images. With over fifty 

thousand images and ten thousand labels, the Peekaboom 

database is one of the largest of its kind. The dataset is the 

combined result of two online games: the ESP Game and 

Peekaboom (Von Ahn, Liu, & Blum, 2006). In the ESP 

Game, pairs of players are shown the same image and 

without communicating try to enter the same words (Von 

Ahn & Dabbish, 2004). Words that both players enter are 

associated with the image and, consequently, common 

labels are applied to images collected from the internet. To 

prevent a narrow set of the most common words, labels 

would become unusable after repeated use. This increased 

the diversity and size of the resulting label set for each 

image.  

SOILIE’s dataset comes from a related game, Peekaboom, 

which uses ESP game data and results in images with 

labelled selections of pixels. Both games are designed to 

produce data that can be used in vision research. Thus, they 

are particularly relevant for SOILIE’s task. 

SOILIE uses co-occurrence probabilities extracted from 

the Peekaboom database described above. Co-occurrence 

probabilities are calculated by dividing the total number of 

images (I) in the Peekaboom database that contain the co-

occurring label (l) and a particular query (q) by the total 

number of images with just the query. Using set theory 

notation, this yields: 

 

𝑃(𝑙 | 𝑞) =  
|𝐼𝑞  ∩  𝐼𝑙|

|𝐼𝑞|
 

 

where ∩ indicates set intersection and || indicates cardinality 

(i.e., the total number of elements in the set). One important 

feature of this formalization is that it is non-commutative 

(i.e., P yields a different value for mouse-cheese than it does 

for cheese-mouse). Parallel research on co-occurrence in the 

machine learning literature suggests that this is both more 

realistic (e.g., most weddings have flowers but most flowers 

are not in weddings) but most models do not account for it 

(see Huang, Yu & Zhou, 2012; Zhang & Zhou, 2013). 

Research in neuroscience suggests that visual working 

memory can hold approximately three to five objects of 

average complexity (i.e., they leave open the possibility that 

very simple objects and very complex objects might be 

affected differently; Cowan, 2001; Edin, et al., 2009). Thus, 

it is assumed that on average an imagined scene has 

approximately three to five elements in it at any given time; 

though aggregates (i.e., combining two or more elements 

into a single element) are entirely possible. Similarly, four 

labels, excluding the query, are retrieved by SOILIE from 

the co-occurrence data and five labels in total are selected 

for every imagined scene. We decided that this number, 

despite being in the upper part of the range, was the most 

useful: preliminary research suggested that larger sets of 

labels increased the divergence in the success of the 

underlying subsystems, five is still in the accepted range, 

and the query does not really need to be maintained in 

working memory to the same degree (an individual could 

always re-query) nor does it need to be retrieved. 

However, after working with earlier instantiations of 

SOILIE (see Breault, Ouellet, Somers, & Davies, 2013), a 

problem became apparent. When images are selected purely 

on the basis of their co-occurrence with the initial query, 

that is, selecting the labels with the highest co-occurrence or 

“top-n,” the scenes produced are often contextually 

incoherent in an intuitive sense.  

For example, SOILIE was queried with the word ‘mouse,’ 

which is polysemous (i.e., it has multiple, related meanings; 

e.g., a computer mouse and the animal mouse). Each 

meaning of a polysemous word is represented by different 

images in the database—assuming that a single image 

would be highly unlikely to contain both meanings of a 

given label (e.g., have the animal on a desk with a 

computer). Each of these different images is similarly 

associated with a different collection of labels and each set 

of labels has a different set of co-occurrence relations. 

Problematically, by being reduced to a collection of co-

occurrence probabilities in visual memory, the sets of 

images, labels, and co-occurrence relations that separate the 

two polysemous meanings of the word “mouse” are no 

longer directly detectable. They are collapsed into a single 

dimension associating pairs of labels (see Table 1).  

The result is that models, like SOILIE’s original “top-n” 

model, which act on this single dimension, will be unable to 

infer the appropriate contextual distinctions from the 

differences in the underlying images. Thus, they will often 

produce incoherent images (see Figure 1). 

The problem of ‘coherence’ is not exclusive to SOILIE. 

Generally, models that address context need to be able to 

select coherent combinations (Hullett & Mateas, 2009). 

Most models, due to memory limitations, will also need to 

reduce the original input (e.g., images) into some form of 

compressed data (e.g., co-occurrence probabilities). In this 

compression, some of the information will be lost. Thus, 

there will almost always be the dual task of 1) finding 

compression techniques that are better able to capture 

greater quantities of salient information and 2) build 

decompression procedures that can re-derive information 

that was lost through higher-order patterns of the remaining 

data. 
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Table 1: Label co-occurrence probability of two images 

alone and in SOILIE’s complete database 

 

Image 1 labels:  

mouse, eye, rodent, rat, animal, ear, ears 

 

Image 2 labels:  

mouse, wires, monitor, screen, headphones, computer 

 

Co-occurrence of each label with query “mouse” given only 

those two images: 0.5 

 

Co-occurrence of label with query “mouse” using all images 

in the database: 

rat 0.29 rodent 0.08 

ear 0.19 ears 0.07 

computer 0.17 eye 0.06 

animal 0.13 headphones 0.01 

monitor 0.12 wires 0.01 

screen 0.10   
 

 

Top-4 labels from the two images using co-occurrence from 

database:  

rat, ear, computer, animal 

 

SOILIE’s coherence subsystem, Coherencer (Vertolli & 

Davies, 2013), falls into the second category. Thus, it is not 

a memory system, per se, but rather defines a form of 

contextual optimization of a given type of memory system, 

mainly, one that uses co-occurrence as per SOILIE and the 

hippocampus. This characterization is consistent with both 

the cognitive neuroscience literature on the hippocampus, 

which sees the hippocampus as a system of constructive 

integration of memory components and with Paul Thagard’s 

(2000) research on coherence. 

Thagard (2000) describes the problem of coherence as an 

optimization problem. That is, given a particular structure 

(e.g., co-occurrence), coherence is the dynamic construction 

of the best combination of components to maximize or 

minimize a particular set of criteria. Thagard takes these 

criteria to be a set of positive constraints (i.e., inclusion of 

one component increases the likelihood of inclusion of 

another component) and negative constraints (i.e., inclusion 

of one component decreases the likelihood of inclusion of 

another component). These constraints are optimized by 

maximizing the number of positive constraints in a 

collection and minimizing the negative constraints. 

After formalizing coherence in this way, Thagard 

proceeds to outline a number of general classes of 

computational models that can resolve this type of problem. 

He then dismisses all of them in favour of one: a 

connectionist algorithm. His argument, roughly, is that the 

parallel approach inherent in these algorithms is both better 

at finding the global optimum (i.e., the best coherence for a 

given set of constraints) and, for those algorithms that are 

comparable, it is more cognitively plausible. Thagard has 

implemented a number of such networks in related domains 

with success (e.g., Thagard, 1989, 1992, 2000; Eliasmith & 

Thagard, 1997). However, before continuing his exploration 

of his preferred algorithm, Thagard makes one caveat; 

mainly, that incremental algorithms, or what are commonly 

referred to as local hill searchers in the machine learning 

and optimization literature, might offer valuable insights 

into human cognition as both are known to perform sub-

optimally in many domains, including coherence. 

In what follows, SOILIE’s Coherencer system will be 

compared to one instantiation of Thagard’s connectionist 

algorithm in the current domain (i.e., visual coherence in the 

human imagination). In previous research, Coherencer was 

shown to better capture coherence than SOILIE’s original, 

top-n model and a random search (Vertolli & Davies, 2013). 

It was also shown that Coherencer falls under Thagard’s 

incremental class of algorithms. Thus, this comparison 

provides both a more robust test of Coherencer’s efficacy, 

and insight into the cognitive implications that Thagard 

pointed to in his caveat. 

It is worth noting that both Coherencer and Thagard’s 

model, in as much as they exist in the brain, are both 

necessarily instantiated in neural processes. One should not 

confuse the semantic convenience of calling connectionist 

models “neural networks” with a literal network of neurons 

and Coherencer with “something else.” What is being 

tested, then, is whether the higher-order functionality of 

hippocampal or similar processes is better replicated with a 

serial process or a parallel process, with the corresponding 

implications for optimality in the system (in as much as 

those implications are in fact accurate). A serial virtual 

machine can be implemented on a parallel computational 

architecture, neurological or otherwise. Thus, both types of 

processes are cognitively plausible when considering only 

this aspect. 

Implementation 

We will proceed by giving a very brief description of 

Coherencer (for a more detailed description, see Vertolli & 

Davies, 2013) and a detailed description of the current 

implementation of Thagard’s connectionist algorithm. 

Coherencer operates as follows. First, Coherencer creates 

a pool of all labels that co-occur with the query. From this 

pool, it initially puts the top-4 labels with the highest co-

occurrence in its memory buffer. Then, a square matrix of 

all the labels is created where each cell holds the co-

occurrence probability for the row-column pair or P(row(n), 

column(m)). The average of the entire matrix is calculated 

and, if it passes a threshold (λ)1, the collection is accepted 

(i.e., if 
1

20
∑ ∑ 𝑃(𝑙𝑚| 𝑙𝑛) >  𝜆5

𝑚=1
5
𝑛=1 ). We ignore the 

diagonals, where n = m, in this calculation. If it fails to pass 

the threshold, the label with the lowest co-occurrence with 

all other labels (i.e., for the ith label, the sum of all row(i) 

                                                           
1 We take the threshold to be a coarse representation of a learned 

sense of coherence in the world. This means that the number would 

vary depending on one’s experiences (i.e., given a different 

database) or in different contexts (e.g., when trying to be creative). 
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values and column(i) values) is discarded and cannot be 

reselected. A new label is then swapped in from the pool 

and the process repeats until either the pool is empty or a set 

passing the threshold is found. If the pool is empty, 

Coherencer fails to create an imagined scene.  

The construction of the connectionist model will proceed 

as described by Thagard (2000). A node is constructed for 

the query and every label co-occurring with the query. For 

every positive constraint between two labels, an excitatory 

link is constructed between the corresponding nodes with a 

weight equal to the co-occurrence probability. For every 

negative constraint (i.e., when two labels have a co-

occurrence of 0), an inhibitory connection is constructed 

between corresponding nodes with a weight set to the 

average co-occurrence of all non-zero values (φ).2 An initial 

activation (0.01) is assigned to each node with a special 

locked activation (1.0) on the query node. All nodes then 

have their activation updated in parallel3 using the following 

formula4:  

 

𝑎⃗𝑡+1 =  𝑎⃗𝑡(1 − 𝑑) + 𝑓(𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗⃗) 
 

where 𝑎⃗ is a vector of all the node activations at time t with 

each label as a cell in that vector, d is a scalar decay 

parameter (0.05) that decrements each node at every cycle. 

The vector 𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗⃗ is computed by matrix multiplication as per: 

 

𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗⃗ =  𝑎⃗𝑡𝑊 
 

where W is the weight matrix for the network with its rows 

corresponding to the node being updated and the columns 

corresponding to the linked nodes (i.e., neighbours of node 

i). The values at 𝑊𝑖,𝑖 (i.e., the diagonal of the matrix) are set 

to 0 so the activation passed from a node to itself is 0. 𝑊 

also corresponds to Coherencer’s co-occurrence matrix with 

all co-occurrence values of 0 set to φ. Finally, f from the 

original equation is a function that performs element-wise 

multiplication with a different number depending on the 

elements direction from zero as per this equation: 

 

𝑓(𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗⃗) = 𝑛𝑒𝑡𝑖𝑥 {
𝑥 =  𝑎𝑚𝑎𝑥 −  𝑎𝑖  if 𝑛𝑒𝑡𝑖 > 0
𝑥 =  𝑎𝑖  − 𝑎𝑚𝑖𝑛  if 𝑛𝑒𝑡𝑖  ≤ 0

 

 

where x is the variable multiplier, 𝑎𝑖 is the ith value of 𝑎⃗, 

𝑎𝑚𝑎𝑥 is the maximum activation of a node (1.0), and 𝑎𝑚𝑖𝑛 is 

the minimum activation (-1.0). After the update, each node 

                                                           
2 This was found to be 0.14878295850321488. The rounding 

occurred where it naturally does in the Python computer language 

(double precision float). As a consequence, different languages 

may get slightly different results unless this is controlled. 
3 The nodes are updated serially but the results of those updates 

are not used until the next serial update of all nodes. Thus, the end 

product is a parallel process implemented on a serial machine. 
4 All formulas are vectorized implementations of those described 

by Thagard (2000). I chose to use row vectors instead of column 

vectors as this more closely mirrors Coherencer’s implementation. 

is reduced to the maximum and minimum activation values 

if it exceeds them. 

In the larger process, activations update until the average 

change in the sum of all differences is less than a threshold 

(𝜃) or until 500 iterations occur. The following equation 

illustrates the former: 

 

∆𝑎⃗𝑡 =  
1

10𝑛
∑ ∑ (|𝑎𝑡,𝑖 − 𝑎𝑡−1,𝑖|) <  𝜃

𝑛

𝑖=0

𝑡

𝑡−10
 

 

where Δa is the change in activation over the past 10 

iterations, 𝑎𝑡,𝑖  means activation at time t and node i, || here 

indicates absolute value, and 𝜃 is the threshold. The 4 labels 

with the highest activation are selected providing a sort of 

top-4 filter. 

In what follows, we will describe an outline of the 

comparison of these two models. 

The Comparison 

The comparison followed the basic structure of a memory 

task, where a participant is given a collection of data; this 

data is compressed in memory, and then it is recalled. In our 

abstraction of this structure, each model is given a collection 

of images, which are compressed into co-occurrence 

probabilities in memory. The models are then tasked with 

recalling this information.  

Unlike a memory task, the goal is not to test the bounds of 

human or animal functionality. Instead, it is to assess the 

efficacy of the decompression step that re-generates the 

coherence information that was lost during compression in 

memory. Thus, the quantity of images remembered is not 

what is of interest. It is a certain quality in the generated 

images, namely coherence. This quality can be tested 

quantitatively by determining if the elements (in this case, 

labels) selected by the model when given a particular label 

or query do in fact occur in one of the original images. If 

they do, then the original coherence information has been 

successfully re-generated from the compressed data. 

It is worth noting that, outside of the methodological 

advantages just outlined, this conceptual method is also 

theoretically more plausible than approaches that do not 

account for memory. The research in cognitive neuroscience 

previously outlined suggests that the imagination, spatial 

navigation, and memory are all associated through the 

underlying functionality of the hippocampus. Thus, by 

testing the models through this sort of generative recall (an 

integrated imagination-memory process), one might better 

approach the mechanism that underlies all of these 

processes: cognitive generation proper. 

In either case, we hypothesize that Coherencer will 

outperform Thagard’s model in the current comparison. We 

anticipate that serial processes better capture the contextual 

transitions necessary to appropriately frame a given scene. 

And, the advantages of using a parallel, non-linear 

optimization process are lost when dealing with a single 

feature.  
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Method 

There are two models that were compared: Coherencer and 

Thagard’s model. The entire Peekaboom database was 

initially filtered to remove all images with fewer than five 

labels and any labels that only occurred on those images. A 

total of 8,372 labels and 23,115 images remained after this 

filtration. All of the remaining images were compressed to 

their corresponding co-occurrence probabilities.  

Each of the 8,372 labels was run through both of the 

algorithms 100 times and the results were averaged. Each 

query plus four returned labels are the elements of a new 

generated scene. The results for each of the algorithms were 

assessed with regard to the original images. If at least one 

image in the test set contained the five labels that were 

selected by a particular algorithm, including the query, the 

algorithm scored one point. If there were no images 

containing the five labels, they did not score a point. The 

results on each of the labels were paired for comparison. 

The total number of points scored by a model where the 

other model failed to score a point (i.e., excluding labels 

where both models failed or both models succeeded) were 

used to compare Coherencer to Thagard’s algorithm. 

Results 

As hypothesized, Coherencer had more successful matches 

than the connectionist algorithm. The statistical details are 

as follows. 

McNemar’s repeated measures chi-square test 

demonstrates that Coherencer performed significantly better 

than Thagard’s algorithm, χ2(1, N=8372) = 7.80, p = .006,  

φ = 0.44. The average scores in each of the categories are 

listed in Table 2. In this test, model runs where Coherencer 

and Thagard’s algorithm both fail or both succeed on a 

given query (i.e., the models perform identically) are 

ignored; thus, the comparison occurs between the runs 

where one model failed and the other succeeded and vice 

versa. All values are reported for completion and evaluation 

purposes. As is standard with chi-square tests, both the 

actual number of runs and the statistically expected number 

of runs for a given category are reported. Figure 2 shows the 

standard deviation for the 100 model runs for the values that 

are used in the comparison (i.e., when the models are not 

performing identically). Even when the difference between 

the two categories is the smallest, the result is still 

statistically significant, p = .031. 

Discussion 

The results support the idea that Coherencer generates 

elements that create a more coherent scene than Thagard’s 

model. However, the intent is not to falsify Thagard’s claim 

to the formal optimality of connectionist algorithms over 

incremental algorithms in the domains he considers, which 

are largely about higher-order epistemological relations and 

constraints. Co-occurrence probabilities are part of a much 

lower system. The fact that Thagard’s theory could 

anticipate both categories of systems we believe lends 

credence to it. 

The purpose of this comparison is to extend the theory in 

order to better comprehend the subtle nuances implicated 

within it. For example, under what conditions are 

incremental algorithms present? Here, the evidence suggests 

that low level (i.e., co-occurrence), low dimensionality (i.e., 

just co-occurrence probabilities), with high combinatoric 

load (approximately 3.42x1017 possible 5-label 

combinations) requires incremental, heuristic approaches. 

Assuming the connectionist, parallel approach is optimal, 

how might that incremental approach switch into a 

functionally parallel one? Or, does it only approximate a 

parallel approach, which forces sub-optimal solutions in 

higher-order domains? Thagard (2000) explicitly mentions 

the tendency for humans to make sub-optimal decisions and 

the potential association between incremental approaches 

and bounded rationality (Simon, 1991). This project 

supports this association. 

 

Table 2: McNemar χ2 calculation between Coherencer and 

Thagard’s model. 

 

 
 Coherencer Coherencer 

Total 
 failure success 

Thagard’s 

algorithm 

failure 

Actual 2099.0 1166.0 3265.0 

 Expected 1222.2 2042.8  

Thagard’s 

algorithm 

success 

Actual 1035.0 4072.0 5107.0 

 Expected 1911.8 3195.2  

Total Count 3134.0 5238.0 8372.0 

 

 
Figure 2: Failure-Success and Success-Failure average 

scores with standard deviation bars for 100 model runs 

 

Research in working memory has also described a 

limited, serial system—the episodic buffer—that roughly 

matches what Thagard is describing (Baddeley, 2000). The 

episodic buffer is believed to be the means of integration for 

the different sense modalities as well as the retrieval 

mechanism for long-term memories. That is, it is mapped to 

a roughly identical, functional domain as the hippocampus. 

The limitations of these systems might result in downstream 
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limitations, and this suggests a rather simple explanation for 

bounded rationality. 

In the current research, these observations suggest 

interesting implications for Coherencer. With respect to 

human cognition, Coherencer might better model the 

bounds of human rationality than the alternatives, including 

Thagard’s connectionist models. Local hill searchers (i.e., 

incremental algorithms) might be optimal if the compression 

in memory reduces the feature space to a low dimensionality 

where non-linear techniques like Thagard’s model give too 

little advantage for their increased cost in time and 

resources. The parallels with both the hippocampus and the 

episodic buffer suggest that Coherencer might also provide 

a functional model and computational implementation that 

better describes contemporary research in these domains 

than the competitors. Additionally, it can provide a means 

for cross-pollination and integration across the domains of 

cognitive neuroscience, working memory, computational 

modelling, and artificial intelligence (or at least heuristic 

optimization, for the latter). Both of these parallels give 

credence to Coherencer as a useful model of certain 

processes in human cognition. Future research will focus on 

more advanced thresholds and feature spaces (e.g., spatial 

relations in addition to co-occurrence), comparisons with 

other heuristic optimization models, and decreasing the 

divide between the formalization and research in cognitive 

neuroscience. 
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