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ABSTRACT OF THE THESIS 
 
 

Boundary element methods for viscous flow with applications in microcantilever array 
 
 

by 

Putian He 

 Master of Science in Bioengineering 

University of California San Diego, 2019 

Professor Ratneshwar Lal, Chair 

 
 

Fluid-structure interactions at microscale are ubiquitous in biology and engineering. 

Understanding the complex micromechanical phenomena arises from the interplay between 

inertia, elastic, and viscous forces on the microstructures are computationally formidable tasks but 

essential. At zero Reynold number asymptotic limit, fluids are dominated by viscosity, and the 

drag force changes linearly with local fluid speed, which exists analytical Green’s functions for 

the governing Stokes equations. In this thesis, the N-body hydrodynamic interactions of Euler-

Bernoulli elastic beams immersed in viscous, incompressible fluids at zero Reynold number limit 

are solved computationally. A numerical recipe and program based on the symmetric Galerkin 

boundary element method are developed in Matlab for solving the boundary integral equations. In 
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the end, up to one hundred hydrodynamically fully coupled elastic beams were able to be solved 

efficiently on a standard desktop personal computer. These microstructures simulation could serve 

as the numerical basis for understanding how the macroscopic transport and rheological property 

is modified at the vicinity of cantilever arrays, and also as viscosity and flow sensors for various 

engineering applications. 
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Chapter 1 Introduction 

Many interesting bioengineering problems involved a large number of slender elastic 

structures immersed in fluids at small scales. One example of such a system is liquid-state 

biopolymers in the cytoplasm, such as DNA, proteins, actin filament, and microtubules. Their 

hydrodynamic effect has been widely investigated, and a great deal of effort has been devoted to 

the study of protein-polymer aggregation under different flow field environments [1]. The long-

range hydrodynamic interaction is especially dominant in a highly crowded cellular environment. 

For example, beta-amyloid peptide aggregation in physiological environments is strongly linked 

to the pathogenesis of Alzheimer's disease  [2]. It is crucial to understand its formation 

mechanism under the physiological condition to develop effective drug inhibition mechanisms. 

Also, unlike the traditionally passive polymers reacting to the external flow field with 

disturbances, the biologically-active polymers have internal stress-generating mechanisms as a 

result of actively converting biochemical energy into mechanical work and electrical potential, 

therefore generating novel macroscale collective and emergent behavior. In the ocean, examples 

of such emergent macroscale systems due to active microstructures could also be found in the 

vertical migrations of zooplankton. The wakes of the individual zooplanktons coalesce to form a 

large-scale downward jet during their upward vertical migration. Recent studies [3] show that the 

collective vertical migration of zooplanktons can generate aggregation-scale eddies comparable 

to the length scales of stratification in the ocean, resulting in biologically-generated turbulent 

mixing contributing to nutrient transport. The immersed slender bodies could also be found in 

engineering applications such as the microcantilever probes immersed in the microfluidic 

devices, which has been demonstrated as novel velocimetry to measure submicron scales 

velocity profiles using silicon ‘whiskers’ [4] [5]. Also, similar microcantilevers-based systems 
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have been used as viscosity sensors  [6] and mass resonators by exploring the microscale fluid-

structure interaction phenomena. Results from these studies  [4–6] are essential for 

understanding the control and characterization of microscale and nanoscale liquid flows in 

microfluidic devices such as multiphase transport and mixing effect in the microfluidic system.  

 

1.1. Background 

In the above systems, the dynamics of the immersed microstructures had played a 

significant role in the complex interactions leading to emergent phenomena. Fluids would exert 

forces on the solid structure, and the structural deformation would alter the path of the flow. The 

two-way coupling is a result of balancing hydrodynamic traction at the boundary surface by 

satisfying the no-slip boundary condition. One method that has been employed to study the fluid-

structure interaction problems is known as the immersed boundary method [7], which was 

initially developed by Peskin to study the flow pattern around the biological heart valves. The 

method was created using two separated overlaying computational grids which one for fluids and 

one for structures. The interactions are achieved through forces and velocity interpolation 

between two computational grids, which eliminated the need for generating high-cost time-

evolving body conforming-mesh such as standard methods used in COMSOL and ANSYS 

commercial software. Nevertheless, the computation for incompressible fluid is still costly in 

three dimensions, since the pressure term is a Lagrange multiplier in incompressible NS 

equations formulation and can only be solved iteratively by satisfying the continuity equation 

constraints, and the large degree of freedom in the numerical equations due to 3D volumetric 

discretization.   
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Microscale flow phenomena dominated by viscosity, in many cases, could be modeled by 

the Stokes equations at zero Reynold number limit, which has known fundamental solutions 

satisfying the continuity equation by their construction. The solutions can then be reformulated 

as a boundary integral equation by solving the given boundary conditions at the boundary of the 

domain only rather than computing the equation throughout the volumetric space, which reduced 

the degrees of freedom in the numerical equations. Once the unknown boundary variables are 

solved, the integral equation can be used to evaluate the solutions directly at any point in the 

volumetric domain as a post-processing step. There are two general approaches to discretize and 

solve for the boundary integral equation. In the Nystrom method, one can discretize the whole 

integral directly using quadrature points, and the variables discretization are collocated at the 

same points. However, in this approach, the discretization of variables and integral are implicitly 

coupled. For example, if one wants to reduce the variables discretization in the integral equation, 

the quadrature discretization for integrals also has to be reduced. And if more quadrature points 

are desired for integrals, the variables discretization also will have to be increased, which will 

introduce unnecessary degrees of freedom in the discretized integral equation. 

 

 Boundary element method (BEM) could alleviate this issue by decoupling the variables 

discretization and numerical quadrature [8].  BEM works by decomposing the variables of 

interests into locally supported continuous basis functions, and thereby compute the integrals of 

basis function and fundamental solutions over locally-supported elements only. The integrated 

Green’s function elements connect pairs of source and field element defined by a global matrix. 

Also, it will be more effective and accurate to break down the domain into smaller subdomains 

and perform local integration on each subdomain using higher-order quadrature. 
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1.2. Outline 
 

In this thesis, we study the microscale fluid-structure interaction of multiple slender 

elastic bodies immersed in three-dimensional stokes flow bounded by a rigid wall. The beams 

are considered to be elastic and inextensible with constitutive relations modeled by the Euler-

Bernoulli equation [9]. The naturally straight cantilevers are modeled in such a way that any 

deviation from the equilibrium position will produce internal elastic forces to drive them back to 

natural shapes. Also, the aspect ratio of length to the radius of these slender structures ranges 

from ten to thousands. It is computationally more advantageous to consider only the centerline of 

the slender structures so that the boundary integral equation can be formulated as a line integral 

of fundamental solutions in three dimensions. Although the collocation method is the standard 

method used in the boundary element method to discretize the integral equation, we implemented 

a linear symmetric Galerkin method [10] to discretize the integral equation and solve for the 

hydrodynamic boundary forces to satisfy no-slip boundary conditions on the beams. Since the 

numerical equations in matrix form generated by the Galerkin method are symmetric, in the 

setup with multiple beams interaction, we only need to compute the upper triangular part of the 

global square matrix and flip it over the diagonal to retain the full matrix in the end. We also 

implemented a mixed order of quadrature to evaluate the element integrals. For the nearly 

singular integrals, when the source and field elements are collocated, we use a higher-order 

Gauss-Legendre quadrature. And low order quadrature when the source and field elements are 

far apart. The centerline of the beams is discretized and interpolated by third-order piecewise 

polynomials, and the hydrodynamic boundary force is decomposed into first-order linear B-

spline as the basis function. We will provide a complete procedure to apply this method with two 
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test cases of passive microcantilever array undergoes an externally imposed shear flow and also 

actively-driven cantilevers in stagnant fluids. 

 

The thesis is organized as follows: Chapter 2 presents the reader with a quick overview of 

the equation of motions of fluid-beam interactions and constitutive relations. It then followed 

with an overview of the spatial, temporal discretization, and non-dimensionalization of the 

coupled system. Chapter 3 focuses on a few essential microhydrodynamics theory such as the 

fundamental solutions in a free and bounded domain, which lead to the reformulation of the 

Stokes equation into boundary integral equations. The reader can skip chapter 3 first and come 

back later when necessary. In chapter 4, we discretized and solved the boundary integral 

equation using the Galerkin boundary element method with a step-by-step numerical procedure. 

In chapter 5, we provide simulation results and demonstrated numerical convergence and 

accuracy with two test examples: an array of passive microcantilever undergoes an externally 

imposed shear flow and actively-driven cantilevers in stagnant fluids. In our simulation results, 

we found a stagnant layer region formed surrounding the lower half of the actively-driven 

cantilever at the vicinity of the wall, in contrast to the increased mixing and transport properties 

at the upper half region of the cantilevers. 
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Chapter 2 Equations of motion 

The purpose of this chapter is to present a brief overview of the mathematical models of 

the immersed microstructures. First, we will introduce the system of equations to be solved in 

this thesis. We will then provide the non-dimensionalization procedure, which is crucial to 

organize physical parameters in simulations and to make efficient simulations strategy. We then 

provide a brief overview of spatial and temporal discretization in matrix form and a summary of 

the overall algorithms.  

2.1 Overview of equations of motion 
 

In this thesis, we solve the following fluid-structure interactions equations system, where 

the bold letters represent vector quantities in a three-dimensional Cartesian coordinate of x, y, z.  

 

Equation of motion (EOM):  

 𝜌
𝜕#𝑿
𝜕𝑡# = 𝑭()*+,-.(𝑿) + 𝑭23456	(𝑼),		 (1) 

Constitutive relations:  

 
𝑭()*+,-.(𝑿) = −𝐸𝐼

𝜕=𝑿
𝜕𝑠= + 	𝑏

𝜕#𝑿
𝜕𝑠# ,	 

𝐵𝐶𝑠:	𝑿,
𝜕𝑿
𝜕𝑠 ,

𝜕#𝑿
𝜕𝑠# ,

𝜕C𝑿
𝜕𝑠C  

(2) 

 

 

−𝜇∇#𝒖 + 	𝛁𝑝 = 𝟎 

𝛁 ∙ 𝒖 = 𝟎 

𝐵𝐶𝑠: 𝒖 = 𝑼 − 𝒖𝒃𝒈, 𝑭23456 	= M𝜎-O
P

𝑛O𝑑𝑆 

(3) Fluids 

Unknowns: 𝑿,𝑼, 𝒖, 𝑝 
 

Solids 
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Where	𝜌 is the density of the beam in mass per unit length, E is the young’s modulus, I is 

the second moments of areas with circular cross-sectional areas formula (𝐼 = T
=
𝑟#), 𝐸𝐼 together 

is also known as bending rigidity, b is tension coefficient due to stretching, and 𝑠 is the arch 

length representing the material points of the beam, and 𝜇 is the dynamic viscosity of the fluids 

in 𝑃𝑎 ∙ 𝑠, and 𝒖𝒃𝒈 is the externally imposed background fluids velocity. 

 

The equation of motion (1) of the beams is governed by Newton’s second law, which 

states that force equals the product of mass and acceleration. Motion, such as acceleration, is a 

kinematic variable, but forces are dynamics. To provide closure, we must represent forces from 

constitutive relation as kinematic relations to position and velocity. The fundamental difference 

between the constitutive relations of solids and liquid is that force is proportional to strain in the 

solid, and proportional to strain rate in the fluid. The internal elastic forces, 𝑭()*+,-.(𝑿),  come 

from the deformation of the beams due to bending, 𝑿++++,  and stretching term, 𝑿++,  in (2).  

 

Figure 1 Deformation of the beams due to bending and stretching  [11] [12] 

 

 The hydrodynamic drag (3) comes from the viscosity in the fluids to be computed as an 

integral of the fluid stress tensors over the beam boundary. One common approach would require 

volumetric discretization of the fluid domain to solve for the Stokes equation to satisfy no-slip 

boundary condition and integrate the fluid stress tensor over the solid boundary numerically. 
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However, such volumetric discretization methods are not efficient, and would require significant 

computational time, and introduced a substantial degree of freedom in the equations. Our focus 

in this thesis is to reformulate the Stokes equation into and solve for a boundary integral 

relationship between the boundary velocities, 𝑼, and the hydrodynamic traction force, 𝑭23456. 

There must exist such a linear relation between 𝑼 and 𝑭23456 since the Stokes equations (3) are 

linear. Let’s just first assumed that the relation exits and can be encapsulated into a linear 

operator 𝓛 which is only a function of the time-evolving geometry of the microstructural 

boundaries.  

 𝑭23456 = −𝜇𝓛𝑼	 (4) 

 
Many famous analytical solutions exist for such direct relation when the boundaries are 

rigid, and geometries are simple. For example, the famous “Stokes law” states that a single 

sphere of radius, r, traveling with a velocity U immersed in fluids with viscosity, 𝜇, would 

experience a drag force 𝑭23456:  

 𝑭23456 = −6𝜋𝜇𝑟𝑼 (5) 

 

The boundary integral reformulation of Stokes equations is at heart of this linear 

relationship between fluids drag forces exerted due to body motions and vice versa. We will 

introduce in chapter 3 for the formulation of such relation, and discuss its detailed numerical 

discretization procedure in chapter 4 using the boundary element method.   
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2.2 Nondimensionalization 
We can rewrite EOM (1) explicitly with the constitutive relations of Euler-Bernoulli 

beams and the Stokes flow boundary integral operator 𝓛: 

 𝜌
𝜕#𝑿
𝜕𝑡# =

(−𝐸𝐼𝑿++++ + 	𝑏𝑿++) − 𝜇𝓛(𝑼 − 𝒖𝒃𝒈),		 (6) 

 

Each variable can be non-dimensionalised as the following:  

 𝑿∗ =
𝑿
𝐿 	, 𝑠∗ =

𝑠
𝐿 , 𝑡∗ =

𝑡
𝑇 , 𝑼∗ =

𝑼
𝐿/𝑇 , 𝒖𝒃𝒈∗ =

𝒖𝒃𝒈
𝐿/𝑇#

 (7) 

 

After substituting the characteristic scales into equation (6), and assume 𝑏 ≅ 	𝐸𝐼, we 

have:   

 
𝜌𝐿
𝑇 #

𝜕#𝑿∗

𝜕𝑡∗#
=
𝐸𝐼
𝐿C
(−𝑿∗++++∗ + 𝑿∗++∗) − 𝜇𝐿 a

1
𝑇 𝓛𝑼∗ −

1
𝑇#
𝓛𝒖𝒃𝒈∗	c,		 (8) 

 

The coefficients in each term of the above have the following unit, and we can see that 

the units and dimensions in the equation matchup:  

 d
𝜌𝐿
𝑇#
e =

𝑘𝑔
𝑚 𝑚
𝑠#

=
𝑘𝑔
𝑠#
, d

𝐸𝐼
𝐿C
e =

𝑁
𝑚#𝑚=

𝑚C =
𝑘𝑔
𝑠#
, d

𝜇𝐿
𝑇
e = 𝑃𝑎 ∙ 𝑠

𝑚
𝑠
=
𝑘𝑔
𝑠#

 (9) 

 

In our applications, we assume that the beam inertia is significant in the EOM and is on 

the order of 1. Divide both sides of (8) by jk
lmn

, and we have the following dimensionless 

equation :  

 
𝜕#𝑿∗

𝜕𝑡∗#
=
𝐸𝐼𝑇 #

𝜌𝐿=
(−𝑿∗++++∗ + 𝑿∗++∗) −

𝜇
𝜌 o𝑇 𝓛𝑼

∗ −
𝑇 #

𝑇#
𝓛𝒖𝒃𝒈∗p		 (10) 
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The characteristic time scale depends on the applications of the problems. We can set the 

time scale, 𝑇 , to match up by the elasticity term with an order of 1, and time scale, 𝑇#, was a 

given quantity of the externally imposed flow strength, 𝜆.  

 
𝑇 = r𝜌𝐿

=

𝐸𝐼 , 𝑇# =
1
𝜆 

(11) 

 

After substituting the characteristic time scales from the elastic relaxation and imposed 

flow into (10), we obtained the final dimensionless equation parameterized by two parameters of 

𝐶^ and 𝐶#, which are ready for numerical discretization.  

 

𝜕#𝑿∗

𝜕𝑡∗#
= (−𝑿∗++++∗ + 𝑿∗++∗) − 𝐶^𝓛𝑼∗ + 𝐶#𝓛𝒖𝒃𝒈∗		 

𝐶^ = r
𝜇#𝐿=

𝜌𝐸𝐼 , 𝐶# =
𝜆𝜇𝐿=

𝐸𝐼  

(12) 

 
 

In the case of no external flow where 𝜆 = 0, we have the following equation 

characterized by a single parameter 𝐶^.  

 

𝜕#𝑿∗

𝜕𝑡∗#
= (−𝑿∗++++∗ + 𝑿∗++∗) − 𝐶^𝓛𝑼∗	 

𝐶^ = r
𝜇#𝐿=

𝜌𝐸𝐼  

(13) 

 

2.3 Spatial discretization  

For the fluids, suppose that we have discretized the boundary integral operator in (4) 

into the matrix form of 𝑹 which also absorbs the dimensionless parameters and the negative 

signs. We have the following discretized relation for fluid mechanics  
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 𝒇v
23456 = 𝑹𝒖v (14) 

 

The Euler-Bernoulli beam equation (2) can be solved by a variety of spatial discretization 

methods such as finite element (FE), finite-volume (FV), finite-difference (FD). For simplicity of 

implementations, it is discretized here using standard finite difference method with boundary 

conditions applied at both ends. Once we discretized them in the FD matrix form, they could 

then be easily solved using linear algebra routine.  

 𝒇v
()*+,-. = 𝑨𝒙v + 𝒃v (15) 

 

where 𝑨 is the matrix form of the FD stencil for the fourth and second-order derivative 

operators, and 𝒃v	is the boundary conditions applied at both ends of the beam. In our case, we set 

one end to be fixed and the other to be stress-free. It was worth commenting that,  𝑨 , the elastic 

matrix from the finite-difference discretization, has a tightly-banded sparsity diagonal structure, 

but,  𝑹, the hydrodynamic matrix developed in chapter 4, is a full dense matrix.  

 

2.4 Temporal discretization  

We can then substitute the spatially discretized elastic and hydrodynamic functions into the 

EOM (1) leading to a system of ordinary differential equations:  

 𝑑#𝒙v
𝑑𝑡# = (𝑨𝒙v + 𝒃v) + 𝑹𝒖v	 (16) 

 

The temporal discretization is implemented by a semi-implicit Euler method, where the elastic 

matrix is solved implicitly in time at (𝑡 + 1) and hydrodynamic matrix explicitly at (t):  
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𝒙v(,y^) = 𝒙v(,) + 𝒖v(,y^)𝑑𝑡 

𝒖v(,y^) = 𝒖v(,) + z𝑨𝒙v(,y^) + 𝒃v + 𝑹(,)𝒖v(,){𝑑t	
(17) 

 

The above equation can be rewritten as:  

 𝒙v(,y^) = (𝑰 − 𝑨𝑑𝑡#)~^	z𝒙v(,) + 𝒖v(,)𝑑𝑡 + z𝒃v + 𝑹(,)𝒖v(,){𝑑𝑡#{ (18) 

 𝒖v(,y^) = 𝒖v(,) + z𝑨𝒙v(,y^) + 𝒃v + 𝑹(,)𝒖v(,)	{𝑑𝑡 (19) 

We also provide the formulation for beams with negligible inertia in matrix form, and 

please refer to Appendix A for more details. 

 

 

2.5 Algorithms Overview 
Algorithm overview 

1. Require: initial position and velocity of beams, and interpolations 

2. While simulating do   

3.           compute hydrodynamic forces on beam through Boundary element method 

4.           compute elastic forces on beam through Finite difference method 

5.           Integrating equations of motion in time semi-explicitly (18) and (19) 

6.           compute new interpolation of beam  

7. end while   
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Chapter 3 Microhydrodynamics   

In chapter 3, we summarised the necessary theoretical foundations [13–16] for slow, 

inertialess, and very viscous flow leading to the boundary integral reformulation of Stokes 

equation around slender bodies. We first provide a brief overview of the principle of mass and 

momentum conservation in continuum media and constitutive relation of the general Newtonian 

fluid. The Stokes equations are then introduced as a result of the momentum equation 

approaching zero Reynold number asymptotic limit. After establishing the governing equations, 

we proceed with presenting their Green’s function in free space and introduced the modified 

solution bounded by a wall. The flow field created by a surface distribution of forces on a 

continuum body can then be represented by boundary integral equations. In addition, due to the 

small aspect ratio of the slender body, the surface integrals can be approximated as a line 

integral of fundamental solutions along the centerline. We end this chapter with a brief 

discussion on the regularized Stokeslet method to provide a simple numerical fix on the 

singularity of Stokeslet when the field point is evaluated at the source.  

 

3.1.  Principles of mass and momentum conservation 
 
The conservation equations of mass and momentum of any continuum can be written as the 

following in an inertial frame of references (ignore Coriolis and centrifugal accelerations) where 

𝜌 is the density, 𝑢- the velocity, 𝜎-O the stress tensors due to surface forces and 𝑔- the body forces.  

Rate of change of mass = 0 

 
𝜕𝜌
𝜕𝑡 +

𝜕𝜌𝑢-
𝜕𝑥-	

= 0		 (20) 
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Rate of change of momentum = sum of applied forces (surface forces+ body forces) 

 o
𝜕𝜌𝑢-
𝜕𝑡 +

𝜕𝜌𝑢-𝑢O
𝜕𝑥O	

p =
𝜕𝜎-O
𝜕𝑥-	

+ 𝜌𝑔- (21) 

 
A Newtonian fluid is a phenomenological model with a constant dissipation rate (i.e., 

viscosity), and a fixed tensorial structure, where 𝜇 is the dynamic viscosity [Pa s], 𝜇� is the bulk 

viscosity, and p is the pressure.  

 𝜎-O = 	−𝑝	𝛿-O + 𝜇 o
𝜕𝑢-
𝜕𝑥O

+
𝜕𝑢O
𝜕𝑥-

	p + a𝜇� −
2
3𝜇c 𝛿-O a

𝜕𝑢�
𝜕𝑥�

c (22) 

 

In the case of constant density and incompressible fluids ����
���

= 0�, the generalized 

constitutive relation above can be simplified into the following:  

 𝜎-O = −𝛿-O𝑝 + 𝜇 o
𝜕𝑢-	
𝜕𝑥O	

+	
𝜕𝑢O	
𝜕𝑥-	

p (23) 

 

And the general mass (20) and momentum (21) conservation equation could be reduced 

into the famous incompressible Naiver-Stokes equations in the following dimensionless form 

parametrized by Reynold number (𝑅𝑒 = j�k
�
	):  

 
𝜕𝑢-∗

𝜕𝑥-∗	
= 0		 (24) 

 𝑅𝑒 o
𝜕𝑢-∗

𝜕𝑡 + 𝑢O∗
𝜕𝑢-∗

𝜕𝑥O∗	
p = −

𝜕𝑃∗

𝜕𝑥-∗	
+
𝜕#𝑢-∗

𝜕𝑥O∗#	
 (25) 

 

When Reynold number is approaching zero asymptotic limits (𝑅𝑒 ≪ 1), we can ignore 

the momentum on the LHS of (25) and obtained the linearized Stokes equation. On the contrary 
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to Navier-Stokes equations, Stokes flow is linear, time-symmetric, unique in its solutions, and it 

also leads to minimum energy dissipation compared to the solution from the full Navier-Stokes 

under the same boundary conditions. For further information on these unique properties, please 

refer to excellent materials  [13–16] for details. However, it is essential to keep in mind that 

physically Re could never be zero, even at the microscale. When significant acceleration 

happens, the fluids can “jump” out of zero Reynold number regime, where the inertia becomes 

essential, such as microscale acoustic streaming phenomenon. Nevertheless, the Stokes equation 

is an accurate fluids mechanics model when the Reynold number is well below unity. 

 0 = −
𝜕𝑃
𝜕𝑥-	

+ 𝜇
𝜕#𝑢-
𝜕𝑥O#	

= 	
𝜕𝜎-O
𝜕𝑥-	

 (26) 

 
𝜕𝑢-
𝜕𝑥-	

= 0		 (27) 

 

3.2. Fundamental solutions of Stokes equation  

In this section, we present the famous fundamental solutions of the Stokes flow. 

Considering a particular flow configuration at 𝑥- as a result of a point force 𝑓- applied at 𝑥-�, the 

singularly forced Stokes equation reads: 

 0 = −
𝜕𝑃
𝜕𝑥-	

+ 𝜇
𝜕#𝑢-
𝜕𝑥O#	

+	𝑓-𝛿(𝑟) = 	
𝜕𝜎-O
𝜕𝑥O	

+	𝑓-𝛿(𝑟) (28) 

 
𝜕𝑢-
𝜕𝑥-	

= 0		 (29) 

where 𝑥�- = 𝑥- − 𝑥-�,						𝑟 = 	�𝑥�-𝑥�-	,   and 𝛿(𝑟) is a three-dimensional Dirac function 

and the volume integral took place on arbitrary domain enclosed 𝑥-�:  
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 � 𝛿
(𝑟) = 0	, 𝑓𝑜𝑟		𝑥- ≠ 𝑥-�

𝛿(𝑟) = ∞	, 𝑓𝑜𝑟		𝑥- = 𝑥-�
	 (30) 

 �𝛿(𝑥- − 𝑥-�)𝑓-𝑑𝑉(𝑥-) = 𝑓-	 (31) 

 

The fundamental solutions are basically spatial impulse response of the Stokesian fluid. 

We can express the free-space solutions due to a point forces in terms of each of their well-

known Green’s functions: Stokeslet	𝑆-O, Stresslet	𝑇-O�, and Pressurelet 𝑃O. (See appendix B for 

their derivation). 

 𝑢-(𝑥-) =
1
8𝜋𝜇 𝑆-O

(𝑥- − 𝑥-�)	𝑓O, 𝑆-O(𝑥- − 𝑥-�) =
𝛿-O
𝑟 +

𝑥�-𝑥�O
𝑟C  (32) 

 𝜎-�(𝑥-) =
1
8𝜋 𝑇-O�

(𝑥- − 𝑥-�)𝑓O	, 𝑇-O�(𝑥- − 𝑥-�) = 	−6
𝑥�-𝑥�O𝑥��
𝑟£  (33) 

 𝑝(𝑥-) =
1
8𝜋 𝑃O

(𝑥- − 𝑥-�)	𝑓O, 𝑃O(𝑥- − 𝑥-�) = 	2
𝑥�O
𝑟C (34) 

 

The Stokeslet (32), a second-order tensor in 3D, encapsulate a linear mobility relation 

between an applied point force and velocity field in the fluids, which could be written explicitly 

as the following:    

 ¤
𝑢�
𝑢3
𝑢¥
¦ = 	

1
8𝜋𝜇 §

𝑆�� 𝑆�3 𝑆�¥
𝑆3� 𝑆33 𝑆3¥
𝑆¥� 𝑆¥3 𝑆¥¥

¨§
𝑓�
𝑓3
𝑓¥
¨	 (35) 

 

 

¤
𝑢�
𝑢3
𝑢¥
¦ =

1
8𝜋𝜇	

⎝

⎜⎜
⎜
⎛

1
𝑟 +

(𝑥 − 𝑥�)(𝑥 − 𝑥�)
𝑟C

(𝑥 − 𝑥�)(𝑦 − 𝑦�)
𝑟C

(𝑥 − 𝑥�)(𝑧 − 𝑧�)
𝑟C

(𝑦 − 𝑦�)(𝑥 − 𝑥�)
𝑟C

1
𝑟 +

(𝑦 − 𝑦�)(𝑦 − 𝑦�)
𝑟C

(𝑦 − 𝑦�)(𝑧 − 𝑧�)
𝑟C

(𝑧 − 𝑧�)(𝑥 − 𝑥�)
𝑟C

(𝑧 − 𝑧�)(𝑦 − 𝑦�)
𝑟C

1
𝑟 +

(𝑧 − 𝑧�)(𝑧 − 𝑧�)
𝑟C ⎠

⎟⎟
⎟
⎞
§
𝑓�
𝑓3
𝑓¥
¨	 

(36) 
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When the flow is bounded, the presence of the wall can be incorporated analytically into 

the Green’s function using the method of images. In the case of satisfying no penetration 

condition, one can simply place a Stokeslet of equal strength at the mirrored side of the plane due 

to symmetry. 

 𝐺-O²*)) = 𝑆-O(𝑥-, 𝑥-�) +	∆𝑆-Oz𝑥-, 𝑥´�µ 	{ (37) 

 

where ∆= 1 − 2𝛿OC is a reflection operator in the direction that’s normal to the wall, z-

axis in our case. ∆ has a minus sign for j = 3 (z-direction), and a plus sign for j = 1,2 (x, y 

directions). However, to satisfy no-slip boundary condition, the construction of modified Green’s 

function is a bit more complicated, and we will not be re-deriving it in here. Blake [17] (1971) 

initially showed through Fourier transform method that the velocity green’s function bounded by 

a plane wall can be constructed as a finite set of singularities solutions: Stokeslet, mirrored 

Stokeslet, a point-source dipole and Stokeslet dipole, where 𝑥´�µ  is the imaged location of 𝑥-�, 

and ℎ = 𝑥C� − 𝑤 is the normal distance to the wall.  

 𝐺-O²*))(𝑥-, 	𝑥-�) = 𝑆-O(𝑥-, 𝑥-�) − 𝑆-Oz𝑥-, 𝑥´�µ 	{ + 2ℎ#∆
𝜕	
𝜕𝑥O	

o
𝑥- −	𝑥´�µ

|𝑥- −	𝑥´�µ |C
p − 2ℎΔ

𝜕𝑆-C	z𝑥-, 𝑥´�µ 	{
𝜕𝑥O	

 (38) 

 
 

Although the Green’s function is modified, the outer structure of the velocity-force 

relation does not change, 𝑢-(𝑥-) =
^

ºT�
𝐺-O²*))	𝑓O. This encapsulation of modified Green’s 

function can be a very powerful one in numerical implementation. Please see appendix C for the 

definition of source dipole, Stokeslet dipole, and higher multipole generalization of the green’s 

function. 
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3.3 Boundary integral equation 

Up to this point, the velocity green’s function establishes a mobility relation between a 

point force and the velocity field in the fluid. This could be generalized into a continuum body 

where the surface distribution of forces would create a superposition of flow field due to 

individual forces density 𝑓-(𝒙). The boundary integral equation generalized such a relation by 

exploring the linearity and reciprocal relation in Stokes equation: (See its derivation from 

reciprocal relation in appendix D)  

 𝑢O(𝒙�) = −
1
8𝜋𝜇»𝑆𝑗𝑖(𝒙�, 𝒙)𝑓-(𝒙)𝑑𝑆(𝒙)

+
 (39) 

 

Also, the surface integrals of a long slender object could be approximated using non-

local slender body theory (SBT), an asymptotic method. The core idea in SBT is that the 

surface integral around the loop of the centerline can be shrunk into a line integral along the 

centerline using multipoles expansion technique. Consider a tube, its surface location, 𝑥-, can be 

parametrized by the following, where “𝒓” is the centerline location, “b” is binormal and “n” is 

normal direction, and “a” is the radius of the tube:   

 𝑥- = 𝒓(𝑠, 𝑡) 	+ 𝑎𝜽À, 𝜽À = 𝑎(cos 𝜃 𝒏 + sin 𝜃 𝒃) (40) 

 

The surface integral of the tube is the following:  

 𝑢O(𝒙�) = −
1
8𝜋𝜇MM𝑆-Oz𝒙

�, 𝒓 + 𝑎𝜽À{𝑓-z𝒓 + 𝑎𝜽À{𝑑𝜃
Æ

𝑑𝑙(𝒓)
)

 (41) 

 

We can first non-dimensionalise the surface position 𝑥- by the length of the tube, L:  
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 𝑥-
𝐿 =

𝒓(𝑠, 𝑡)
𝐿 	+

𝑎
𝐿 𝜽
À (42) 

 𝑥-∗ = 𝒓∗ + 𝜖𝜽À (43) 

And do a Taylor series expansions of the Stokeslet around centerline location	𝒓∗,  

 𝑆-Oz𝑥-�	, 𝒓∗ + 𝜖𝜽À{ = 𝑆-O(𝑥-�, 𝒓∗) − 𝜖𝜽À
𝜕𝑆-O(𝑥-�, 𝒓∗)

𝜕𝑥�
−
1
2 𝜖

#𝜽À𝜽À
𝜕#𝑆-O(𝑥-�, 𝒓∗)
𝜕𝑥É𝜕𝑥�

+ 𝐻.𝑂. 𝑇 (44) 

 

When the aspect ratio 𝜖 is a very small number, we can retain the zeroth-order term and 

discard the rest in (44). Therefore, the dependence of the integral on cross-sectional surface 

areas of the tube is eliminated, since 𝑆-O(𝑥-�, 𝒓∗) depend only on the centerline position of the 

body, 𝒓∗. Substitute it back to the surface integrals equation (41), we get:  

 𝑢-(𝒙�) = −
1
8𝜋𝜇M𝑆-O

(𝒙�, 𝒓	)M𝑓-z𝒓 + 𝑎𝜽À{𝑑𝜃
Æ

𝑑𝑙(𝒓)
)

 (45) 

Which can then be rewritten into a form in terms of the integrated forces along the 

cross-sectional loop of the body, 𝑓O
∗(𝒓) = 	∫ 𝑓-z𝒓 + 𝑎𝜽À{𝑑𝜃Æ   

 𝑢-(𝒙�) ≅ −
1
8𝜋𝜇M𝑆-O

(𝒙�, 𝒓	)𝑓O
∗(𝒓)𝑑𝑙(𝒓)

)
	 (46) 

 

Where 𝑑𝑙(𝒓) represent the differential of the line integral as a function of centerline 

position, 𝒓. The velocity field can, therefore, be approximated as driven by a line integral of 

Stokeslet rather than taking consideration of the surface of the tube. The key idea is that flow 

disturbance created by a slender body surface is equivalent to applied point forces distributed 

over the centerline of the body.  
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3.4 Singularity regularization 

The Green’s functions presented so far are singular when evaluating velocity (field) and 

force (source) at the same point. The regularized Stokeslet method developed by Cortez [18] can 

be used to regularize the singularity of the solutions. The main advantage of such an approach is 

that the regularized solutions remain regular at the point of applied forces, and collocation can be 

performed at such point with standard quadrature without advanced adaptive numerical 

quadrature or semi-analytical quadrature rules. The reader can refer to their paper for more 

details, and we provide a very brief summary of the method here. The essential idea in the 

regularized Stokeslet method is to rederive the regularized Green’s function through forcing the 

Stokes equation with a regularized delta function, 𝜙Ï, with finite parameter  𝜖, in place of 

singular Dirac delta, 𝛿(𝑟). It was also proven by Cortez to also satisfy the reciprocal relation of 

the Stokes equations. Therefore, it can be formulated into the boundary integral equations.  In the 

limit of 𝜖 approaching zero, both the delta function and the Stokeslet can be recovered.  

 𝜙Ï(𝒙 − 𝒙𝟎) =
15𝜖=

8𝜋(𝑟# + 𝜖=)Ñ/# (47) 

 
−𝜇∇#𝒖 + 	𝛁𝑝 = 𝒇𝜙Ï(𝒙 − 𝒙𝟎)		 

𝛁 ∙ 𝒖 = 0 
(48) 

Repeat the solution procedure in appendix B with a regularized delta function, 𝜙Ï, in 

place of 𝛿, and the expression for the regularized Stokselet could be obtained:  

 𝑆-OÏ =
𝛿-O(𝑟# + 2𝜖#)

𝑟ÏC
+
𝑥�-𝑥�O
𝑟ÏC

	 , 𝑟Ï = �𝑟# + 𝜖#	 (49) 

They also developed the numerically regularized solution [19] for the flow bounded by a 

wall based on the analytical solutions developed by Blake [17] (1971), which have been later 

used to study flagella driven flow by Smith [8]. 
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Chapter 4 Boundary Element method  

Our main task in this chapter is to find an efficient and accurate way to discretize and 

solve for the following boundary integral reformulation of the 3D Stokes flow around slender 

bodies:   

 𝑢-(𝒙) = −
1
8𝜋𝜇M𝑆-O

(𝒙, 𝒓	)𝑓O(𝒓)𝑑𝑙(𝒓)
)

 (50) 

If either 𝑢-(𝒙) or 𝑓O(𝒓) is given, the above equation can be solved for the other unknown. 

In our case, we are given the boundary velocities, 𝑢-(𝒓𝟎), and solve for the unknown 

hydrodynamic traction forces, 𝑓O(𝒓), where 𝒓 and 𝒓𝟎 are the position of the centerlines of the 

slender body. 

 𝑢-(𝒓𝟎) = −
1
8𝜋𝜇M𝑆-O

(𝒓𝟎, 𝒓)𝑓O(𝒓)𝑑𝑙(𝒓)
)

 (51) 

 

Once the boundary forces, 𝑓O(𝒓), are calculated from (51), the boundary integral equation 

(50) can be used again to compute the velocities, 𝑢-(𝒙), directly at any desired location, 𝒙, in the 

surrounding 3D fluids domain at the post-processing stages.  

 

In this chapter, we will first give an overview of two different approaches to numerically 

discretizing the integral equation (51). One straightforward approach is the Nystrom method 

through directly approximating the integral equation using numerical quadrature at the 

collocation points. Then we will present issues of such an approach. After that, we will introduce 

the alternative boundary element discretization approach through the method of weighted 

residuals with emphasis mainly on the Galerkin method. After that, we provide implementation 



22  

details on how to interpolate the domain by using piecewise polynomials and perform numerical 

integration over each piecewise polynomials subdomains. This chapter will end with a summary 

of the three-level discretization of the hydrodynamic mobility matrix due to a point force, due to 

a continuous body, and due to N body interaction. (Note that 𝑖, 𝑗 are the indexes in Einstein 

notation	(	𝑖 = 𝑗 = [𝑥, 𝑦, 𝑧]). 𝑚, 𝑛 are the discretisation indexes. ) 

 

4.1 Nystrom method 

One typical approach for solving the integral equation is to directly discretize the whole 

integral using numerical quadrature such as Nystrom method where quadrature point is equal to 

the collocation point of the variables, and 𝑤v is some quadrature weights: 

 𝑢-(𝒓𝟎É) = Ô𝑆-O(𝒓𝟎É, 𝒓v	)𝑓O(𝒓v), 𝑓O(𝒓v) = −
𝑤v
8𝜋𝜇 𝑓Ov

Õ

vÖ^

 (52) 

 
 

𝑆-O(𝒓𝟎É, 𝒓v	) has the following matrix form where each submatrix, such as 𝑆�×�Ø, is 

indexed by 𝒎⊗𝒏, the dyadic product of the discretization indexes m and n:   

 

 ¤
𝑢�×
𝑢3×
𝑢¥×

¦ = §
𝑆�×�Ø 𝑆�×3Ø 𝑆�×¥Ø
𝑆3×�Ø 𝑆3×3Ø 𝑆3×¥Ø
𝑆¥×�Ø 𝑆¥×3Ø 𝑆¥×¥Ø

¨§
𝑓�Ø
𝑓3Ø
𝑓¥Ø
¨ (53) 

 

We can solve for 𝑓O(𝒓v) given by 𝑢-(𝒓𝟎É), or vice versa. However, in this approach, the 

discretization of variables and integral is implicitly coupled. For example, if one wants to reduce 

the variables discretization in the integral equation, the quadrature discretization for integrals 

also has to be reduced. And if more quadrature points are desired for the integral, the variables 

discretization will also have to be increased, which will introduce unnecessary degrees of 
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freedom in the discretized integral equation. Boundary element method (BEM) could alleviate 

this issue by decoupling the variables discretization and numerical quadrature.   

 

4.2 Weighted residual method   

Boundary element methods (BEM) works by first decomposing the variables, 

hydrodynamic boundary forces, and boundary velocities, into locally supported basis functions 

(ansatz), 𝝓𝒏(𝑠), where s and 𝑠� are the arch length parametrization of the domain, and 𝒇𝒏 and 

𝒖𝒏 are the coefficients of the basis function:  

 
𝑓O(𝒓) = 	Ô𝒇𝒏𝝓𝒏(𝑠)

Õ

vÖ^

, 𝑢-(𝒓𝟎) = 	Ô𝒖𝒏𝝓𝒏(𝑠�)
Õ

vÖ^

 
(54) 

 𝝓𝒏(𝑠) = Ü𝜙v�(𝑠), 𝜙v
3(𝑠), 𝜙v¥(𝑠)Ý (55) 

 𝒇𝒏 = Ü𝑓v�, 𝑓v
3, 𝑓v¥Ý (56) 

 𝒖𝒏 = Ü𝑢v�, 𝑢v
3, 𝑢v¥Ý (57) 

 

The first order B-splines are used as the basis functions for both forces and velocities, 

which are locally supported over two elements and defined as the following:  

 𝜙v(𝑠) = 	 Þ
𝑠, 𝑠v~^ ≤ 𝑠 ≤ 𝑠v		
−𝑠, 𝑠v ≤ 𝑠 ≤ 𝑠vy^
0,														𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

 

(58) 

 

The residual function can be obtained by rearranging terms in boundary integral equation 

(51) into the following: 

 𝑅(𝒓𝟎) = 	𝑢-(𝒓𝟎) +
1
8𝜋𝜇M𝑆-O

(𝒓𝟎, 𝒓)𝑓O(𝒓)𝑑𝑙(𝒓)
)

 (59) 
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The weighted average of the residual functions are enforced to be zero, where 𝝋É(𝑠) is 

the weighting function:    

 M𝝋𝒎(𝑠�)𝑅(𝒓𝟎)𝑑𝑙(𝒓𝟎)
)

	= 0 (60) 

 

The essential idea in the method of weighted residual is that by varying the coefficients 

of the basis functions,  𝒖𝒏 and 𝒇𝒏, we can satisfy the constraints posed by the weighted residual 

equations above in (60). In our case, we were given coefficients of boundary velocity, 𝒖𝒏 , to 

determine the unknown coefficients of, 𝒇𝒏. And we can rewrite the method of weighted residual 

(MWR) explicitly as:  

 MÔ𝒖𝒏

Õ

vÖ^

𝝓𝒏(𝑠�)𝝋𝒎(𝑠�)𝑑𝑙(𝒓𝟎)
)

= −
1
8𝜋𝜇Ô𝒇𝒏

Õ

vÖ^

MM𝑆-O(𝒓𝟎, 𝒓)𝝓v(𝑠)𝝋É(𝑠�)𝑑𝑙(𝒓)𝑑𝑙(𝒓�)
))

 (61) 

 

There are a variety of choices in weighting functions resulting in different types of 

equation constraints. The notable ones are collocation, Galerkin, and spectral method. 

Collocation method: 

 𝝋É(𝑠) = 	𝛅(𝑠. − 𝑠) (62) 

 

Galerkin method:  

 𝝋É(𝑠) = 	𝝓𝑚(𝑠) (63) 

 

In the Galerkin method, the weighting function, 𝝋𝒎(𝑠), is the same as the basis function 

𝝓É(𝑠), and therefore the equation is enforced at elements spanned by the locally supported 
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basis functions. The following is the discretized equation from Galerkin method by projecting 

the boundary integral equation onto the mth basis function 𝝓É: 

 Ô𝒖vM𝝓𝒏(𝑠�)𝝓𝒎(𝑠�)𝑑𝑙(𝒓𝟎)
Õ

vÖ^

= −
1
8𝜋𝜇Ô𝒇𝒏

Õ

vÖ^

MM𝑆-O(𝒓𝟎, 𝒓)𝝓v(𝑠)𝝓É(𝑠�)𝑑𝑙(𝒓)𝑑𝑙(𝒓�)	 (64) 

 

We can rewrite the Galerkin equation (64) explicitly in terms of coefficients of the basis 

function, 𝒇𝒏 and 𝒖v, where m and n are discretization indexes of the matrix due to mth or nth 

basis function 

 Ô𝑬Év𝒖v

Õ

vÖ^

= −
1
8𝜋𝜇Ô𝒇𝒏

Õ

vÖ^

𝑺Év	 (65) 

 𝑬Év = M𝝓v(𝑠�)𝝓É(𝑠�)𝑑𝑙(𝒓𝟎) , 𝑺Év = MM𝑆-O(𝒓𝟎, 𝒓)𝝓v(𝑠)𝝓É(𝑠�)𝑑𝑙(𝒓)𝑑𝑙(𝒓�)		 
(66) 

 
The above equation can be reorganized into the matrix format and solved by standard 

linear algebra routines as the following:  

 𝑬𝒖 = −
1
8𝜋𝜇 𝑺𝒇	 (67) 

 
4.3 Geometric interpolations  

From our discretized equation of motion, we only have discrete nodal values of the 

domains. But the boundary element method would require local integration over the subdomain 

between nodal values. Therefore, we require interpolation to provide a continuous subdomain for 

evaluating the integral in 𝑬Év and 𝑺Év.  For this section, I implemented the 3rd order piecewise 

polynomials interpolation method [10]. Please see Appendix E for the formulation and 

implementation details. In the end, the following analytical expressions of the 3rd order piecewise 

polynomials can be obtained from the interpolations process:  
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 𝒓𝒌(𝑠) = [𝑥�(𝑠), 𝑦�(𝑠), 𝑧�(𝑠)	] (68) 

 
𝑥�(𝑠) = 	𝑎�(𝑠 − 𝑠v)C + 𝑏�(𝑠 − 𝑠v)# + 𝑐�(𝑠 − 𝑠v) + 𝑥væ

𝑦�(𝑠) = 𝑎�ç (𝑠 − 𝑠v)C + 𝑏�ç (𝑠 − 𝑠v)# + 𝑐�ç (𝑠 − 𝑠v) + 𝑦væ

𝑧�(𝑠) = 	𝑎�çç(𝑠 − 𝑠v)C + 𝑏�çç(𝑠 − 𝑠v)# + 𝑐�çç(𝑠 − 𝑠v) + 𝑧væ
 (69) 

where a,b,c are coefficients obtained from the interpolation. The differentials of the line 

integrals have the following parametrized form of the piecewise polynomials:   

 
𝑑𝑙(𝒓𝒌) = �𝑑𝑥# +	𝑑𝑦# + 𝑑𝑧# = ℎ�(𝑠)𝑑𝑠 

(70) 

 
ℎ�(𝑠) = ([3𝑎�(𝑠 − 𝑠v)# + 2𝑏�(𝑠 − 𝑠v) + 𝑐�]#

+ [3𝑎�ç (𝑠 − 𝑠v)# + 2𝑏�ç (𝑠 − 𝑠v) + 𝑐vç ]#

+	[3𝑎�çç(𝑠 − 𝑠v)# + 2𝑏�çç(𝑠 − 𝑠v) + 𝑐vçç]#)	
^
# 

(71) 

 

Also, the arc length, 𝑠, can be normalized into 𝜉 for each element so that we can use 

standard numerical quadrature weight from tabulations. The following formulae provide 

normalization procedure for converting piecewise arch length from 𝑠v ≤ 𝑠 ≤ 𝑠vy^ into −1 ≤ 𝜉 ≤

1.  

 𝑠(𝜉) = 0.5(𝑠v + 𝑠vy^) + 0.5(𝑠vy^ − 𝑠v)𝜉 (72) 

 𝑑𝑠 = 0.5(𝑠vy^ − 𝑠v)𝑑𝜉 (73) 

 
Now we have a set of relations to map the discrete nodal values into continuous smoothly 

connected subdomains that are ready for computing the subdomain integrals.  

 

4.4 Numerical integration: 
 

In this section, we provide an example on the procedures of computing the integral 

numerically over each basis function 𝝓v(𝑠): 

n 

k 
n+1 

k+1 
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M𝑆-O(𝒓𝟎, 𝒓)𝝓v(𝑠)𝑑𝑙(𝒓)
)

 

Since the first order B spline, 𝜙v, is locally supported by two elements, 𝐸�~^ 𝐸�, and 

elsewhere are zero. Therefore, each element has contributions from two non-zero basis functions. 

The following figure shows the normalized non-zero basis function over one single element, 

which 𝜉 is the normalized piecewise arch length for each element, ranging [-1 1], and also the 

non-normalized higher-order B-spline functions.   

 
Figure 2 a) two nonzero first-order basis functions over one element. b) Different order of B-spline basis functions 

 

Due to the local supportedness of the basis function, we can simplify the global line 

integral over nth basis function as following:  

 M𝑆-O(𝒓𝟎, 𝒓)𝝓v(𝑠)𝑑𝑙(𝒓)
)

= 		M 𝑆-O(𝒓𝟎, 𝒓)𝝓v(𝑠)𝑑𝑙(𝒓)
é�êm

+ M 𝑆-O(𝒓𝟎, 𝒓)𝝓v(𝑠)𝑑𝑙(𝒓)
é�

 (74) 

 

Substituting the piecewise polynomials interpolation for the subdomain of  𝐸�~^ and 𝐸�:  

 M 𝑆-O(𝒓𝟎, 𝒓𝒌~𝟏(𝑠))𝝓v(𝑠)𝑑𝑙(𝒓𝒌~𝟏(𝑠))
é�êm

+ M 𝑆-O(𝒓𝟎, 𝒓𝒌(𝑠))𝝓v(𝑠)𝑑𝑙(𝒓𝒌(𝑠))
é�

 (75) 

 
And normalizing 𝑠 with 𝜉, we obtain the following relation:  

 	 M[𝐼�~^(𝒓𝟎, 𝜉)+𝐼�(𝒓𝟎, 𝜉)]𝑑𝜉
^

~^

= 	 M 𝐼v(𝒓𝟎, 𝜉)	𝑑𝜉
^

~^

 (76) 

𝜉 

𝜙v 
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Where  
 

 
𝐼�(𝒓𝟎, 𝜉)𝑑𝜉 = 	

1
2
(𝑠vy^ − 𝑠v)𝑆-O �𝒓𝟎, 𝒓𝒌z𝑠(𝜉){�𝝓vz𝑠(𝜉){ℎ�(𝑠(𝜉))𝑑𝜉 

(77) 

 
𝐼�~^(𝒓𝟎, 𝜉)𝑑𝜉 = 	

1
2
(𝑠v − 𝑠v~^)𝑆-O �𝒓𝟎, 𝒓𝒌~𝟏z𝑠(𝜉){�𝝓vz𝑠(𝜉){ℎ�~^(𝑠(𝜉))𝑑𝜉 

(78) 

 

We can now compute the integral over the supported two-element using various 

numerical quadratures weights from standard tabulations such as Gauss-Lendgre or Lobatto, 

where q is the index of the numerical quadrature point for the integral:  

 M𝐼v(𝒓𝟎, 𝜉)	𝑑𝜉
^

~^

≈ 		Ô 	𝐼vz𝒓𝟎, 𝜉í{𝑤í

î

íÖ^

 (79) 

 

We can follow the same procedure as above for numerically compute the outer integral of 

the double integral in Galerkin equation (64), also the integral for the LHS of the equation due to 

the local-supportedness of the basis function. For example, the integral for the LHS of Galerkin 

equation (64) can also be reduced into the following element integrals:   

 
M𝜙v(𝒙)𝜙É(𝒙)𝑑𝑙(𝒙)

= M 𝜙v(𝒙�~^)	𝜙v(𝒙�~^) + 𝜙v(𝒙�~^)	𝜙v~^(𝒙�~^)𝑑𝑠
é�êm

+ M 𝜙v(𝒙�)	𝜙v(𝒙�) + 𝜙v(𝒙�)	𝜙vy^(𝒙�)𝑑𝑠
é�

 

(80) 

 
The principal cost in Galerkin methods is to evaluate the double integral in 𝑺Év by 

double-looping over elements. Matlab (matrix library) is a programming language initially 

developed for matrix operations. The double looping for double integrals can be effectively 

implemented in Matlab through multiplication between three matrixes ABC. Stokeslet is first 

evaluated at all the quadrature points on the body, and populated into the middle matrix B. The 

quadrature weights and basis function from each integral in the double integral of 𝑺Év can be 

populated into the two outer matrixes A and C, respectively.  
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4.5 Matrix form 

The matrix form of the Galerkin equation (67) can be rewritten into a more condensed 

standard linear algebra form, where 𝑨ï is a 3m-by-3n matrix populated by 𝑺Év, 𝑿 is a 3n-by-1 

vector populated by 𝒇𝒏, and 𝑩 is a 3m-by-1 vector populated by ∑ 𝑬Év𝒖vÕ
vÖ^ :  

 𝑨ï𝑋 = 𝑩, 𝑿 = 𝑨ï~𝟏𝑩 (81) 

 

We then can use linear algebra routine to solve for X given B or vice versa, depending on 

the availability of the type of boundary conditions. If 𝑨ï is a square matrix, it is then symmetric 

due to the symmetric definition of the Green’s function. We can rewrite 𝑨ï = 𝑼ï𝑻𝑼ï  through 

Cholesky decomposition [20] into the upper triangular matrix 𝑼ï , which is much more efficient to 

compute the inverse of a triangular matrix when multiple evaluations of the inverse of 𝑨ï are 

required. We recast the linear algebra relation (81) using a more efficient form as the following 

in our implementations: 

 𝑼ï𝑻𝑼ï𝑿 = 𝑩, 𝑿 = z𝑼ï~𝟏{z𝑼ï~𝟏{
𝑻
𝑩 (82) 

 
Up to this point, we provided the numerical scheme for the discretized boundary integral 

equation in Galerkin form for a single elastic beam, in which each element of the body exerted 

hydrodynamic forces on itself and other elements through the relation defined by the matrix. 
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4.6 N-body interaction 

Consider now we have a square array of total M elastic beams, and they are interacting 

with each other hydrodynamically.  We also can discretize and solve the following new 

boundary integral equations using BEM, where a and b both ranging from 1 to M:  

 𝑢-(𝒓�) = −
1
8𝜋𝜇ÔM𝑆-O(𝒓�, 𝒓*)𝑓O(𝒓*)𝑑𝑙(𝒓*)

ô

*Ö^

 (83) 

 

The hydrodynamic matrix of a single beam was formulated as 𝑨ï in the previous section. 

Since the Stokes equations are linear, we can compute the interactions between beams by 

assembling 𝑨ï as submatrixes into a larger global matrix 𝑨ï�,*. In our implementation, we first 

assemble the block-diagonal components of the global matrix when there are no hydrodynamic 

interactions between each elastic beams:  

 𝑨ï�,*
𝑫
=

⎝

⎜
⎜
⎛
𝑨ï^,^ 𝟎 … 𝟎 𝟎
𝟎 𝑨ï#,# … 𝟎 𝟎
… … … … …
𝟎 𝟎 … 𝑨ïô~^,ô~^	 𝟎
𝟎 𝟎 … 𝟎 𝑨ïô,ô⎠

⎟
⎟
⎞

 (84) 

 

We can then populate the off-block-diagonal block by introducing the coupling submatrix 

𝑨ï𝒃,𝒂.  For example, 𝑨ï^,# represents the hydrodynamic mobility relation exerted by beam 2 on 

beam 1, and  𝑨ï#,Õ represents the hydrodynamic mobility relation exerted by beam N on beam 2, 

etc.  Each row of 𝑨ï𝒃,𝒂 represents the hydrodynamic coupling from all other beams to the beam 

indexed by that row. We then have the following global hydrodynamic matrix among M beams:  
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𝑨ï�,* =

⎝

⎜
⎜
⎛

𝑨ï^,^ 𝑨ï^,# … 𝑨ï^,ô~^ 𝑨ï^,ô
𝑨ï#,^ 𝑨ï#,# … 𝑨ï#,ô~^ 𝑨ï#,ô
… … … … …

𝑨ïô~^,^ 𝑨ïô~^,# … 𝑨ïô~^,ô~^ 𝑨ïô~^,ô
𝑨ïô,^ 𝑨ïô,# … 𝑨ïô,ô~^ 𝑨ïô,ô ⎠

⎟
⎟
⎞
, 𝑿* =

⎝

⎜
⎛

𝑿^
𝑿#
…

𝑿ô~^
𝑿ô ⎠

⎟
⎞
,

𝑩� = 	

⎝

⎜
⎛

𝑩^
𝑩#
…

𝑩ô~^
𝑩ô ⎠

⎟
⎞

 

(85) 

Which also satisfy the following relations and we can solve them accordingly:  
 

 𝑩� = 𝑨ï�,*𝑿* (86) 

 

4.7 Summary of the mobility matrix 

We end the chapter with a summary of the three-level of Hydrodynamic mobility 

matrixes that we used so far.  

4.7.1 Hydrodynamic mobility matrix due to a point force: 𝑺 is 3-by-3 

 𝑺 = §
𝑆�� 𝑆�3 𝑆�¥
𝑆3� 𝑆33 𝑆3¥
𝑆¥� 𝑆¥3 𝑆¥¥

¨	 (87) 

 

4.7.2 Hydrodynamic mobility matrix due to a continuum body discretized by N 
basis function using BEM. 

 𝑺Év = §
𝑆�×�Ø 𝑆�×3Ø 𝑆�×¥Ø
𝑆3×�Ø 𝑆3×3Ø 𝑆3×¥Ø
𝑆¥×�Ø 𝑆¥×3Ø 𝑆¥×¥Ø

¨ (88) 

 
 
where 𝑺Év is 3N-by-3N, and m, n are discretization index by the basis function, which 
both are ranged from 1 to N. 
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Algorithm overview 

1. compute the diagonal entry of the 𝑺Év with high order quadrature, where 

source and field element are collocated 

2. compute the off-diagonal entry of the 𝑺Év with low order quadrature, where 

source and field elements are far apart. 

3. Assemble diagonal and off-diagonal component into the matrix 𝑺Év 

 
 

4.7.3 Hydrodynamic mobility matrix due to M body:	𝑺𝒎,𝒏
𝒃,𝒂  is 3MN-by-3MN 

 

 𝑺É,v
�,* =

⎝

⎜⎜
⎛
𝑺É,v
^,^ 𝑺É,v

^,# … 𝑺É,v
^,ô~^ 𝑺É,v

^,ô

𝑺É,v
#,^ 𝑺É,v

#,# … 𝑺É,v
#,ô~^ 𝑺É,v

#,ô

… … … … …
𝑺É,v
ô~^,^ 𝑺É,v

ô~^,# … 𝑺É,v
ô~^,ô~^ 𝑺É,v

ô~^,ô

𝑺É,v
ô,^ 𝑺É,v

ô,# … 𝑺É,v
ô,ô~^ 𝑺É,v

ô,ô ⎠

⎟⎟
⎞

 (89) 

 
 
where m, n are discretization index by the basis function which both are ranged from 1 to 
N. 
 
Algorithm overview 

1. Repeat the process for single beam calculations for N beams,  and assemble 

them to the block diagonal of the global matrix using “parfor” (Matlab), 𝑺É,v
�,*  

2. Compute the off-block diagonal submatrix only in the upper triangular part of 

the global matrix, 𝑺É,v
�,*  

3. Taking the transpose of the upper triangular matrix to get the lower triangular 

part of the matrix due to the symmetric properties from Galerkin method 
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Chapter 5 Results and Discussions 

In this chapter, we apply the mathematical model presented in previous chapters to two 

physical setups to demonstrate the capability of the proposed numerical method for solving the 

flow field created by the evolving boundaries of the microcantilevers. In section 5.1, we inspect 

the behaviors of the array under an externally imposed shear flows. In section 5.2, we exam the 

flow field generated by an actively driven array in stagnant fluids. Finally, in section 5.3, we 

discuss the effect of the wall presence on the cantilever arrays, which exhibit very different flow 

fields than when they are far from the wall leading to implication on the formation of the distinct 

mixing region along the length of cantilevers. Our numerical methods achieved fourth-order 

spatial accuracy for passive array undergoes external flow and second-order accuracy for 

actively-driven array in stagnant fluids. 

 

5.1 Passive cantilevers under a Couette Flow 

A straight 9-by-9 cantilevers array is placed vertically in the x-z plane with an externally 

imposed unidirectional Couette flow, 𝑢(𝑧), in the x-direction, and the array is fixed to a rigid 

wall at the bottom, and its top-end is stress-free and free to move in the fluids. h is the height of 

the channel, and U0 is the maximum velocity of the external flow.       

 𝑢(𝑧) = 𝑈�
𝑧
ℎ		 

(90) 

 

The spatially discretized EOM of the elastic beam is parametrized by two effective drag 

coefficients. C1 relates to the strength of hydrodynamic coupling between each beam, and C2 to 

the effect of the externally imposed flow on all beams. 
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 𝑑#𝒙v
𝑑𝑡# = (𝑨𝒙v + 𝒃v) − 𝐶^𝑹𝒖v + 𝐶#𝑹𝒖𝒏ù, 𝐶^ = r

𝜇#𝐿=

𝜌𝐸𝐼 , 𝐶# =
𝜇𝐿=𝜆
𝐸𝐼 	 

(91) 

In our simulation examples, the cantilevers are made of silicon nitride, which has a length 

of 1mm and radius of 1um, Young E modulus of 160 GPa, and a density of 15kg/m.  We set the 

external Couette flow velocity 𝑈� = 1	𝑚𝑚/𝑠, 𝜇 = 3𝑐𝑃, and Re = 0.3. When we simulated the 

array with very stiff materials such as silicon nitride, the array reaches steady-state quickly with 

a minimal deflection from its equilibrium position and behave almost like a rigid body to divert 

the flow field. Since the Stokes flow is linear, we can decompose it into an externally applied 

flow and disturbance flow. The disturbance field is a result of fluid-structure interaction of the 

array when they respond to the external flow fields to satisfy no-slip boundary condition on the 

beams. The superposition of the external and disturbance field is the actual flow field in the fluid. 

a) External Velocity 

 

b)Velocity disturbance 

 

c)Actual velocity 

 

   

 
Figure 3 The first row is the 3D view, and the second row is the side view of the cantilever array. The color map is 
the velocity magnitude of the flow in m/s.  a) external Couette flow with U0 = 1mm/s;  b) the fluid disturbance 
generated by the array; c) superposition of a and b equal to the actual flow field  



35  

Under the same setup in figure 3 with silicon nitride, we immersed the array in fluids 

with different viscosities ranging from 3 × 10~= to 3 × 10~C𝑃𝑎 ∙ 𝑠 corresponding to the 

physiological fluids at 37 C0. The effective drag coefficient exerted by the external flow, 𝐶# =

�kûü
éý

, is linearly proportional to the viscosity, 𝜇. When the viscosity increase, the beam tip has a 

larger deflection from its natural position since the external flow exerted a more significant drag 

on them. When the viscosity decrease, the tip has a smaller deflection since a smaller drag is 

experienced by the beam. Figure 4 a) demonstrated the evolution of one beam tip immersed in 

fluids with different viscosity. Figure 4b) shows the relationship between the steady-state beam 

tip deflections against different viscosity values.  

  
Figure 4 Cantilever immersed in fluids with different viscosities. a) Time evolution of a single beam tip defections. 
b) The steady-state beam deflection immersed in fluids with different viscosities 

 
When we reduce the stiffness, E, of the cantilever beams by 2 order of magnitude to 1.6 

GPa, we obtain bent beams array with visible oscillation in x directions before reaching steady 

states, and also we observed small emergent oscillatory motion in the x-y plane of the array due 

to the hydrodynamic interactions. The following figure shows the simulation snapshot at the 
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steady-state, where the final flow field adjusted accordingly to the evolving cantilevers boundary 

by shifting the flow field symmetry to the right.  

a) External Velocity 

 

b)Velocity disturbance 

 

c)Actual velocity 

  

   

 
Figure 5 The first row is the 3D view, and the second row is the side view of the cantilever array. The color map is 
the velocity magnitude of the flow in m/s.  a) external Couette flow with U0 = 1mm/s;  b) the fluid disturbance 
generated by the array; c) superposition of a and b equal to the actual flow field  

 
 

5.1.1 Convergence and accuracy 
 

To evaluate the order of accuracy of the proposed numerical method, we compute the 

same runs of simulations with refining parameters of spatial resolutions of the elastic beams with 

N = 10, 20, and 40.  

 𝑙𝑜𝑔# o
𝑋þ2 − 𝑋þ2/#	
𝑋þ2/# − 𝑋þ2/=

p = 𝑝 + 𝑂(ℎ) (92) 
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We compare solutions when ‘h’ is halved successively, where h is the spatial 

discretization resolution, and 𝑋þ2 is the tip of each elastic beams in the array. From figure 6a), we 

can see that when we increased the number of discretization points for the cantilevers, the 

solution of the cantilever tip converged. The figure 6b) shows the order of accuracy of the 

cantilever beams with setup in figure 1 calculated from (92), with an average of fourth-order 

accuracy over time.  

 

  
Figure 6 Comparison between solutions from run with cantilevers with the same physical setups but the different 
number of spatial discretization points N = 10, N = 20 and N = 40. a) Tip displacement in x-direction over time for 
one of the cantilevers beam in the array. B) The order of accuracy approximation calculated for the cantilever array 
using formula (92). 

 
 
 
 
 
5.2 Actively-driven cantilever array in stagnant fluids 

 
In this section, we will exam the behavior of an actively-driven microcantilevers array 

inside a stagnant fluid with one end of the cantilevers fixed to the wall and the other stress-free 
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and free to move. In the absence of external flow, we have the following equation characterized 

by a single dimensionless parameter 𝐶^: 

 𝑑#𝒙v
𝑑𝑡# = (𝑨𝒙v + 𝒃v + 𝑭𝒅𝒓𝒊𝒗𝒆) − 𝐶^𝑹𝒖v	, 𝐶^ = r

𝜇#𝐿=

𝜌𝐸𝐼 	 
(93) 

In this simulation, we keep all the parameters as previous sections but only introduced an 

external driving force,	𝑭𝒅𝒓𝒊𝒗𝒆. It is a square wave toggle between positive and negative x-

direction in time with the magnitude on the order of characteristic elastic force 𝑭𝒅𝒓𝒊𝒗𝒆	~
𝐸𝐼
𝐿3

. The 

results in figure 7 show a three-dimensional flow field of one complete driving cycle of the 

array. An increase in horizontal transport due to the array motion is found where the fluids are 

being drawn in from one side and push out to the other. Also, we notice the rapid decay of the 

flow field in the vertical directions due to the presence of the wall forming a stagnant layer 

region surrounding the lower bottom half of the cantilevers. The mass transport process in these 

is dominated by molecular diffusion rather than convective transport compared to the top half 

region. 
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Figure 7 the complete one cycles of the beat pattern of the array driven by a square wave with a period of 21 seconds 

 

5.2.1 Convergence and accuracy 
 

Figures 8 and 9 below show the spatial convergence and the order of accuracy of the 

numerical method when the array is driven by an external square wave with different periods. 
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For example, we obtain a time-averaged order of accuracy of 2.1851 with a period of 21 seconds, 

and 2.1579 with a period of 1 min.  

  

Figure 8 Cantilever array driven by a square wave with 21 second period.  Comparison between solutions from run 
with cantilevers with a different number of spatial discretization points N = 10, N = 20 and N = 40. a) Tip 
displacement in x-direction over time for one of the cantilevers beam in the array. B) The order of accuracy 
approximation calculated for the entire array using formula (92).  

                                                      
Figure 9: Cantilever array driven by a square wave with 1 min period 

 
5.3 The effect of the wall 
 In the final example, we compare the simulation of flow fields with and without the presence of 

the wall, and we also increase the size of the cantilever array into 100. Figure 10 shows a 

simulation snapshot of the array with different viewing angles at the same instance of time. The 
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first-row simulation included the effect of the wall and the second row without. In the presence 

of the wall, a distinct stagnant fluid region can be found surrounding the lower half regions of the 

beams in contrast to the intense mixing effect at the upper half region. The wall effectively acts 

as a momentum sink to dissipate the kinetic energy of the flow to satisfy no-slip boundary 

conditions. In the absence of the wall, a higher overall velocity can be observed, and the fluids 

can pass freely through the bottom leading to a strong vertically suction and pumping effect, and 

the mixing effect along the beams is nearly homogenous in contrast to the formation of the 

distinct mixing region for the array bounded by the wall.  

45-degree view Top view Side view 

  

 

 

  
 

 
 

 

 

Figure 10, the first row: the flow field generated by the array bounded by the wall; the second row: the flow field 
generated by the array anchored far from the wall. The color map represents the magnitude of the velocity. The 
snapshots are taken at the same instance of time 
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The final figure demonstrates simulation snapshots of the 100-cantilever array bounded by a 

wall undergoes one cycle. The simulation was done on a standard desktop computer. 

   

   

   

  

 
 

 

Figure 11 One complete beat pattern of 100 actively-driven microcantilevers bounded by a wall. Colormap 
represents velocity magnitude 
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Chapter 6 Conclusions 
  

In this thesis, we presented the boundary integral formulation of multiple elastic beams 

immersed in Stokes flow bounded by a wall, and its numerical solution by the boundary element 

method. The accuracy and convergence properties of the method were examined in chapter 5 

along with two different example applications of the array passively reacting to external shear 

flow and the array actively-driving in stagnant fluids. Our numerical methods demonstrated 4th 

order spatial accuracy for the passive array and 2nd order accuracy for the active array. We also 

investigated the effect of a range of viscosity on the passive arrays that undergo external shear 

flow and the effect of the wall in the actively-driven array. Finally, we demonstrate the capability 

of the current numerical methods for resolving a large number of elastic beams interactions up to 

100 on a desktop computer, which would require supercomputer resources if standard 

commercial software was used. The motivation of using the Boundary integral formulation to 

model zero Reynolds applications is because the volumetric discretization of the fluid domain is 

avoided by taking advantage of the known Green’s function. The motivation of using the 

Boundary element method for discretizing the integral equation compared to the standard 

Nystrom method is to decouple the dependency between force and quadrature discretization. The 

method can be easily adapted for various applications. The test cases of the array with external 

flow and force in this thesis are examples of such. Through several numerical examples and 

applications, this method has been derived, implemented, and verified. However, many 

biological applications are interesting to be investigated and explored, which required further 

validation and experimental data, for example, using the atomic force microscope. The focus of 

the thesis is to build up a numerical platform which would enable future studies in interesting 

applications combined with experimental studies.  
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Appendixes 
 

A.  Equation of motion without beam inertia 
 

The inertia does not affect the constitutive relations here. If the beams have negligible 

inertias, we can have the forces-free EOM:   

 0 = 𝑭()*+,-.(𝑿) + 𝑭23456	(𝑼)		 (94) 

 
 0 = (−𝐸𝐼𝑿𝒔𝒔𝒔𝒔 + 	𝑏𝑿𝒔𝒔) − 𝜇𝓛(𝑼 − 𝒖𝒃𝒈) (95) 

  
The equation can be scaled as follows:  

 0 =
𝐸𝐼
𝐿C
(−𝑿∗𝒔𝒔𝒔𝒔∗ + 	𝑿∗𝒔𝒔∗) −

𝜇𝐿
𝑇 𝓛𝑼∗ +

𝜇𝐿
𝑇#
	𝓛𝒖𝒃𝒈∗ (96) 

 

We can rearrange the above equation to obtain:  

 
𝜇𝐿
𝑇 𝓛𝑼∗ =

𝐸𝐼
𝐿C
(−𝑿∗𝒔𝒔𝒔𝒔∗ + 	𝑿∗𝒔𝒔∗) +

𝜇𝐿
𝑇#
	𝓛𝒖𝒃𝒈∗ (97) 

 

Divide both sides by �k
lm

 and multiply both sides with 𝓛~𝟏, we obtain the dimensionless 

equation:  

 𝑼∗ =
𝑇 𝐸𝐼
𝜇𝐿= 𝓛

~𝟏(−𝑿∗𝒔𝒔𝒔𝒔∗ + 	𝑿∗𝒔𝒔∗) +
𝑇
𝑇#
	𝒖𝒃𝒈∗ (98) 

Assume that the drag forces due to the beam motions (𝑼) and the internal elastic forces 

are on the same order of magnitude, we can set the time scale 𝑇  to the relaxation time of the 

elastic beams, and keep 𝑇# as the characteristic time scale of the imposed flow.  

 
𝑇 =

𝜇𝐿=

𝐸𝐼 , 𝑇# =
1
𝜆 

(99) 



45  

 
We obtain the final dimensionless equation with no inertia beam characterized by a single 

parameter 𝐶^:  

 

𝑼 = 𝓛~𝟏(−𝑿∗𝒔𝒔𝒔𝒔∗ + 	𝑿∗𝒔𝒔∗) + 𝐶^	𝒖𝒃𝒈 

𝐶^ =
𝜇𝐿=𝜆
𝐸𝐼 		 

 

(100) 

We can have the following spatially discretized equation of motions:  

 0 = 𝑹𝒖v + 𝑨𝒙v + 𝒃v	 (101) 

 𝒖v = −𝑹~𝟏(𝑨𝒙v + 𝒃v)	 (102) 

We can also discretize this in time as:  

 𝒙v,y^ = 𝒙v, − 𝑹(,)
~𝟏(𝑨𝒙v,y^ + 𝒃v)𝑑𝑡 (103) 

And solve the solid mechanics implicitly in time, and fluid explicitly:  

 𝒙v,y^ = �𝐼 + 𝑹(,)
~𝟏
𝑨𝑑𝑡�

~^
�𝒙v, − 𝑹(,)

~𝟏
𝒃v𝑑𝑡� (104) 
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B. Fundamental solutions of Stokes equation in free space 

In this section, we derive the Green’s function of Stokes flow in free space. Considering a 

particular flow configuration at 𝑥- as a result of a point force 𝑓- applied at 𝑥-� to Stokesian fluids, 

the singularly forced momentum equation reads:   

 0 = −
𝜕𝑃
𝜕𝑥-	

+ 𝜇
𝜕#𝑢-
𝜕𝑥O#	

+	𝑓-𝛿(𝑟) = 	
𝜕𝜎-O
𝜕𝑥O	

+	𝑓-𝛿(𝑟) (105) 

where 𝑥�- = 𝑥- − 𝑥-�,						𝑟 = 	�𝑥�-𝑥�-	,   and 𝛿(𝑟) is a three-dimensional Dirac function such that 

 � 𝛿
(𝑟) = 0	, 𝑓𝑜𝑟		𝑥- ≠ 𝑥-�

𝛿(𝑟) = ∞	, 𝑓𝑜𝑟		𝑥- = 𝑥-�
 (106) 

 �𝛿(𝑥- − 𝑥-�)𝑓-𝑑𝑉(𝑥-) = 𝑓- (107) 

where the volume integral took place on arbitrary domain enclosed 𝑥-�. Laplace’s equation has a 

well-known fundamental solution of the following: 

 
𝜕#𝐺(𝑟)
𝜕𝑥-#	

= 𝛿(𝑟), 𝐺(𝑟) = 	−
1
4𝜋𝑟 (108) 

We can substitute the expression for Dirac delta into the Stokes momentum equation, and get:  

 0 = −
𝜕𝑃
𝜕𝑥-	

+ 𝜇
𝜕#𝑢-
𝜕𝑥O#	

+	𝑓-
𝜕#𝐺
𝜕𝑥-#	

 (109) 

Taking the divergence of the above equation and apply the continuity equation, we get:  

 
𝜕#𝑃	
𝜕𝑥-#	

=
𝜕#

𝜕𝑥-#	
a𝑓-

𝜕𝐺
𝜕𝑥-	

c (110) 

The pressure is then:  

 𝑃 = 𝑓-
𝜕𝐺
𝜕𝑥-	

 (111) 

Substitute the pressure back to the Stokes’s momentum, and we obtain the following:   
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𝜕#𝑢-
𝜕𝑥O#	

=
𝑓O
𝜇 o	

𝜕#

𝜕𝑥-𝜕𝑥O	
− 𝛿-O

𝜕#

𝜕𝑥-#	
p𝐺	 (112) 

Let’s simplify the expression the above equation a little by defining a new linear differential 

operator, 𝓛':  

 𝓛' ∶=	
𝑓O
𝜇 o	

𝜕#

𝜕𝑥-𝜕𝑥O	
− 𝛿-O

𝜕#

𝜕𝑥-#	
p (113) 

The singularly forced Stokes momentum equation: 

 
𝜕#𝑢-
𝜕𝑥O#	

= 𝓛'	𝐺 (114) 

We can presume a velocity ansatz of similar form that match the RHS:  

 𝑢- = 	𝓛'𝐻 (115) 

Substitute velocity ansatz into Stokes momentum and interchange the order of the 

differentiation, rearrange equations, and we get:  

 𝓛' 	o	
𝜕#𝐻
𝜕𝑥O#	

− 	𝐺p = 0 (116) 

To satisfy the above equation, we can solve for the Poisson equation: 

 
𝜕#𝐻	
𝜕𝑥O#	

= 𝐺 (117) 

Taking Laplacian of the above equation, we get a singularly forced Biharmonics equation:  

 

𝜕#

𝜕𝑥O#	
𝜕#𝐻
𝜕𝑥O#	

=
𝜕#𝐺
𝜕𝑥O#	

 

𝜕=𝐻(𝑟)	
𝜕𝑥O=	

= 𝛿(𝑟) 

(118) 

The biharmonic equation has a well-known Green’s function as:   

 𝐻(𝑟) = −
𝑟
8𝜋	 (119) 
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Substitute biharmonic Green’s function back to into velocity ansatz, and we then obtain the 

Green’s function for the velocity field, 𝑆-O,	for the Stokes equation:    

 

																						𝑢- = 	
𝑓O
𝜇 o	

𝜕#𝐻	
𝜕𝑥-	𝜕𝑥O

− 𝛿-O
𝜕#𝐻
𝜕𝑥-#	

p = 	
𝑓O
8𝜋𝜇 o	𝛿-O

𝜕#𝑟
𝜕𝑥-#	

−
𝜕#	𝑟
𝜕𝑥-	𝜕𝑥O

p

= 	
𝑓O
8𝜋𝜇 o	

𝑥)*𝑥*́
𝑟C +

1
𝑟 𝛿-Op = 	

𝑓O
8𝜋𝜇 𝑆-O 

(120) 

Upon checking, Stokselet satisfies the continuity equation by their construction:  

 
𝜕𝑆-O
𝜕𝑥-	

=
−𝛿-O𝑥�-
𝑟C +

𝛿--𝑥�O + 𝛿-O𝑥�-
𝑟C −

3𝑥�-𝑥�O𝑥��
𝑟£ 	= 0	 (121) 

The free space pressure green’s function is proportional to Laplacian dipole:  

 𝑃 = 𝑓-
𝜕𝐺
𝜕𝑥-	

=
𝑓-
8𝜋

2𝑥-
𝑟C = 	

𝑓-
8𝜋 𝑃-	 (122) 

 	𝑃- = 	
2𝑥-
𝑟C  (123) 

Substituting velocity and pressure in terms of their respective Green’s function into the 

incompressible Newtonian constitutive relation, we established the relation between stress 

tensor’s green function to velocity and pressure green’s functions: 

 𝑇-O� 	= −𝛿-�
2𝑥O
𝑟C +

𝜕𝑆-O	
𝜕𝑥�	

+	
𝜕𝑆�O	
𝜕𝑥-	

 (124) 

 𝑇-O� 	= −6
𝑥𝑗𝑥𝑘𝑥𝑖
𝑟5

 (125) 
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C. source dipole, force dipole, and multipole 

In this section, we will briefly introduce the idea of dipoles and higher-order multipoles 

generalization in the singularity methods. We first show how the mass conservation equations 

respond to an applied singular point source. Its physical analogy would be injecting fluids with a 

needle into a large domain [14], whereas Stokeslet represents the response from hitting the fluids 

with a hammer at a point. The singularly forced continuity equation reads:  

 
𝜕𝑢-
𝜕𝑥-

= 𝑞𝛿(𝑟) (126) 

The potential flow solution satisfies the mass conservation equation above:  
 

 𝑢- =
𝜕𝜙
𝜕𝑥-

 (127) 

Substitute (127) into (126), we have the Laplace equation:  

 
𝜕#𝜙
𝜕𝑥-#

= 𝑞𝛿(𝑟) (128) 

𝜙 is proportional to the Laplacian’s green’s function:  

 𝜙 = 𝑞𝐺(𝑟) (129) 

The velocity due to point source injection, q, is, therefore:  
 

 𝑢- =
𝜕𝜙
𝜕𝑥-

= 𝑞
𝜕𝐺(𝑟)
𝜕𝑥-

=
1
4𝜋

𝑥*́
𝑟C =

1
4𝜋𝑀-𝑞 (130) 

 
𝑀- is the Green’s function due to a point source: 

 𝑀- =
𝑥*́
𝑟C				 

(131) 

Let us now consider that the point source injection point is at 𝑥𝑖çwhich is at some small distance 

away from 𝑥𝑖0. We can represent response at a distance away in terms of injection at 𝑥𝑖0 by 

using Taylor series expansions of the Green’s function.  
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𝑀-(𝑥-, 𝑥-ç) = 𝑀-(𝑥-, 𝑥-�) + z𝑥O� − 𝑥Oç{
𝜕𝑀-(𝑥-, 𝑥-�)

𝜕𝑥O

+
1
2
(𝑥�� − 𝑥�ç)z𝑥O� − 𝑥Oç{

𝜕#𝑀-(𝑥-, 𝑥-�)
𝜕𝑥�𝜕𝑥O

+ 𝐻. 𝑂. 𝑇. 

(132) 

The first term contributes to point source monopole, second term to dipole and third term 

quadrupole, etc. The dipole and higher-order poles can be easily found through some simple 

differentiation operations:  

 
𝜕𝑀-	
𝜕𝑥O

= 	
𝜕	
𝜕𝑥O	

a
𝑥*́
𝑟Cc =

1
𝑟C
𝜕𝑥*́ 	
𝜕𝑥O	

−
3𝑥*́
𝑟=

𝜕𝑟	
𝜕𝑥O	

=
𝛿-O
𝑟C −

3𝑥*́𝑥)*
𝑟£  (133) 

 
𝜕𝑀-	
𝜕𝑥�𝜕𝑥O

= 	
𝜕	

𝜕𝑥�𝜕𝑥O	
a
𝑥*́
𝑟Cc = 15o

𝑥*́𝑥)*𝑥�-
𝑟Ñ −

𝑥*́𝛿O� +	𝑥)*𝛿�- + 𝑥�-𝛿-O
5𝑟£ 	p (134) 

 

The same idea of Taylor series expansions can also be applied to the Stokeslet. We can 

approximate the fluid velocity response, 𝑆-O(𝑥𝑖, 𝑥𝑖ç), at 𝑥𝑖ç due to a point force applied some 

distance way at 𝑥-� by using Taylor series expansions as following: 

 

𝑆-O(𝑥-, 𝑥-ç) 	≈ 𝑆-O(𝑥-, 𝑥-�) + (𝑥�� − 𝑥�ç)
𝜕𝑆-O(𝑥-, 𝑥-�)

𝜕𝑥�

+
1
2
(𝑥É� − 𝑥Éç)(𝑥�� − 𝑥�ç)

𝜕#𝑆-O(𝑥-, 𝑥-�)
𝜕𝑥É𝜕𝑥�

+ 𝐻.𝑂. 𝑇. 

(135) 

The Stokeslet dipole can be easily found as the following:  
 

 𝜕𝑆-�
𝜕𝑥O

= −
1
8𝜋𝜇 o	

𝑥O𝛿-� −	𝑥�𝛿-O − 𝑥-𝛿�O
𝑟C + 3

𝑥O𝑥-𝑥�
𝑟£ p (136) 
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D. Boundary integral equations 

 

Reciprocal relations 
The reciprocal theorem [10] is the most useful tool for the study of stokes flow, and it 

provides the theoretical foundation for formulating the boundary integral equations. It gives a 

relationship between two different Stokes flows under the same domain. Typically, one flow 

has the known fundamental solutions, and the other is an unknown complex flow as the solution 

to a particular problem. Consider two independent Stokesian flows 𝑢O* and 𝑢O� with respective 

stress tensors 𝜎-O* and 𝜎-O�, we compute the projection of Stokes equations of flow “a” onto the 

velocity of flow “b” and substitute the constitutive relation of the Newtonian stress tensor 𝜎-O:  

 

𝑢O�
𝜕𝜎-O*

𝜕𝑥-
=
𝜕𝑢O�𝜎-O*

𝜕𝑥-
− 𝜎-O*

𝜕𝑢O�

𝜕𝑥-

=
𝜕𝑢O�𝜎-O*

𝜕𝑥-
− ¤−𝑝*𝛿-O + 	𝜇 o

𝜕𝑢-*

𝜕𝑥O
+
𝜕𝑢O*

𝜕𝑥-
p¦

𝜕𝑢O�

𝜕𝑥-

= 	
𝜕𝑢O�𝜎-O*

𝜕𝑥-
+ 𝑝*

𝜕𝑢-�

𝜕𝑥-
	− 𝜇 o

𝜕𝑢-*

𝜕𝑥O
+
𝜕𝑢O*

𝜕𝑥-
p
𝜕𝑢O�

𝜕𝑥-
 

(137) 

Applied the continuity constraints,	��.
/

��.
= 0, we obtain the Green’s first identity for 

Stokes equations:  

 𝑢O�
𝜕𝜎-O*

𝜕𝑥-
= 	
𝜕𝑢O�𝜎-O*

𝜕𝑥-
− 𝜇(

𝜕𝑢-*

𝜕𝑥O
+
𝜕𝑢O*

𝜕𝑥-
)
𝜕𝑢O�

𝜕𝑥-
	 (138) 

Switching the order of the flow, we can obtain a second relation:  

 𝑢O*
𝜕𝜎-O�

𝜕𝑥-
=
𝜕𝑢O*𝜎-O�

𝜕𝑥-
− 𝜇(

𝜕𝑢-�

𝜕𝑥O
+
𝜕𝑢O�

𝜕𝑥-
)
𝜕𝑢O*

𝜕𝑥-
	 (139) 
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The generalized reciprocal relations for stokes flow can be obtained through subtracting 

equation (139) from (138) as the following:  

 𝑢O�
𝜕𝜎-O*

𝜕𝑥-
− 𝑢O*

𝜕𝜎-O�

𝜕𝑥-
=
𝜕𝑢O�𝜎-O* − 𝑢O*𝜎-O�	

𝜕𝑥-
	 (140) 

If two flows both satisfy the Stokes equation in the absence of external forces, the LHS 

of the equations would be zeros as �0.1
2

��.
= �0.1/

��.
= 0 for stokes momentum, yielding the special 

reciprocal relation (Lorentz’s relations):  

 
𝜕	
𝜕𝑥-

z𝑢O�𝜎-O* − 𝑢O*𝜎-O�{ = 0	 (141) 

 
Boundary integral equations 

Considering we have two independent Stokes flow on the same domain where flow “a” 

does not have any external force, while flow “b” has an external point force as 𝛿(𝑥-, 𝑥-�)	𝑓O.  

Stokes flow a: 

 
𝜕𝜎-O*

𝜕𝑥-
= 0 (142) 

Stokes flow b:  

 
𝜕𝜎-O�

𝜕𝑥-
= −𝛿(𝑥-, 𝑥-�)	𝑓O (143) 

We then substitute two flows into the generalized reciprocal relations (140) together 

with Stokes flow Green’s functions to obtain the following relations:  

 𝛿(𝒙, 𝒙�)	𝑢�* =
𝜕	
𝜕𝑥-

a
1
8𝜋𝜇 𝑆O�

(𝒙, 𝒙�)	𝜎-O* − 𝑢O*
1
8𝜋 𝑇-�O

(𝒙, 𝒙�)	c		 (144) 

Integrate the differential equations above over a close control volume:  

 �𝛿z𝒙, 𝒙0{	𝑢�*	𝑑𝑉 =�
𝜕	
𝜕𝑥-

a
1
8𝜋𝜇

𝑆O�z𝒙, 𝒙0{	𝜎-O* − 𝑢O*
1
8𝜋

𝑇-�Oz𝒙, 𝒙0{	c 	𝑑𝑉		 (145) 



53  

 

Applied divergence theorem to convert the RHS volume integral into a surface integral, 

and the LHS integral vanishes to a point due to the property of 3D Dirac delta function, and we 

then obtain the boundary integral equation for Stokes flow:  

 

𝑢�(𝒙�) = −
1
8𝜋𝜇»𝑆O�(𝒙, 𝒙�)𝜎-O(𝒙)𝑛-(𝒙)𝑑𝑆(𝒙)

+
1
8𝜋	»𝑢O(𝒙)𝑇-�O(𝒙, 𝒙�)𝑛-(𝒙)𝑑𝑆(𝒙) 

(146) 

Rearrange the index notation, and we can get the final boundary integral equation of 

three-dimensional stokes flow:  

 

𝑢O(𝒙�) = −
1
8𝜋𝜇»𝑆𝑗𝑖(𝒙�, 𝒙)𝑓-(𝒙)𝑑𝑆(𝒙)

+
1
8𝜋	»𝑢-(𝒙)𝑇𝑖𝑗𝑘(𝒙, 𝒙�)𝑛�(𝒙)𝑑𝑆(𝒙) 

(147) 

 

The velocity can be expressed in terms of a combination of single and double-layer 

potential. However, it is common to ignore the effect of double-layer potential when the 

structures are stiff, and the single-layer potential dominates in the boundary integral, and 

stresslet decays very rapidly over distance.  We will only consider the single-layer potential, 

Stokeslet, in the boundary integral equation.  

 𝑢O(𝒙�) ≅ −
1
8𝜋𝜇»𝑆𝑗𝑖(𝒙�, 𝒙)𝑓-(𝒙)𝑑𝑆(𝒙)

+
 (148) 
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E. Geometric interpolations  [10] 
 

In our equation of motion, we only have discrete nodal values. But the boundary element 

method requires integration over the domains between nodal values. We, therefore, require 

interpolation to provide a continuous domain for evaluating the integral. In the following, we use 

index k to represent variables associated with the kth elements, and index n represents values 

associated with the nodes. The whole domain can be interpolated through the following 

parametrized piecewise polynomials [10]:  

 

 
 

 

𝒓𝒌(𝑠) = [𝑥�(𝑠), 𝑦�(𝑠), 𝑧�(𝑠)	] 

𝑥�(𝑠) = 	𝑎�(𝑠 − 𝑠v)C + 𝑏�(𝑠 − 𝑠v)# + 𝑐�(𝑠 − 𝑠v) + 𝑥væ

𝑦�(𝑠) = 𝑎�ç (𝑠 − 𝑠v)C + 𝑏�ç (𝑠 − 𝑠v)# + 𝑐�ç (𝑠 − 𝑠v) + 𝑦væ

𝑧�(𝑠) = 	𝑎�çç(𝑠 − 𝑠v)C + 𝑏�çç(𝑠 − 𝑠v)# + 𝑐�çç(𝑠 − 𝑠v) + 𝑧væ
	 

(149) 

Where ‘s’ is the arch length of the line integrals. 𝑠� denotes a continuous variable 

associated with the kth element. 𝑠v denotes a discrete nodal value. We use 𝑥�(𝑠) as an example for 

illustrative purposes, and the same applies to 𝑦�(𝑠), 𝑧�(𝑠) . We have three unknown coefficients, 

𝑎�, 𝑏�, 𝑐�, for each of the piecewise polynomials 𝑥�(𝑠). We use the following three conditions to 

form constraints on solving the unknown coefficients to ensure the domain is smoothly-

connected. 

 
1. Continuous function:  

 	
𝑥�(𝑠vy^) = 𝑥vy^æ 	 

 
2. Continuous slope: 

𝑑𝑥�(𝑠)
𝑑𝑠 3

+Ø4m

=
𝑑𝑥�y^(𝑠)

𝑑𝑠 3
+Ø4m

	 

n 

k 
n+1 

k+1 
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3. Continuous curvature:  

𝑑#𝑥�(𝑠)
𝑑𝑠# 3

+Ø4m

=
𝑑#𝑥�y^(𝑠)

𝑑𝑠# 3
+Ø4m

	 

 
 

The relation for 𝑏� after satisfying the above constraints for 𝑘 = 	1, … , 𝑁 − 1 can be 

established as:   

 ℎ�
3 𝑏� + 2

ℎ� + ℎ�y^	
3 𝑏�y^ +

ℎ�y^
3 𝑏�y# =

𝑥�y#æ − 𝑥�y^æ

ℎ�y^
−	
𝑥�y^æ − 𝑥�æ

ℎ�
, ℎ� = 𝑠�y^ − 𝑠� (150) 

 
The stencil in equation (150) is a tridiagonal matrix and can be easily solved using linear 

algebra routine with boundary conditions:   

 𝑐𝑙𝑎𝑚𝑝𝑒𝑑	𝑒𝑛𝑑:				𝑏^ = 	−
1
2𝑏# +

3
2ℎ^

o
𝑥#æ − 𝑥^æ

ℎ^
p (151) 

 𝑓𝑟𝑒𝑒	𝑒𝑛𝑑:				𝑏Õy^ = 	0 (152) 

After we solve for the values of 𝑏- , the values of 𝑎- and 𝑐- can found through 
substitution:  
 

 𝑎� =
𝑏�y^ − 𝑏�	

3ℎ�
 (153) 

 𝑐� =
𝑥�y^æ − 𝑥�æ

ℎ�
−
1	
3 ℎ�

(𝑏�y^ + 2𝑏�) (154) 

Once we obtain these coefficients, we can obtain the centerline position of the curves, 

and also the differentials of the line integrals which can be rewritten in the following 

parametrized form:  

 
𝑑𝑙(𝒓𝒌) = �𝑑𝑥# +	𝑑𝑦# + 𝑑𝑧# = ℎ�(𝑠)𝑑𝑠� 

(155) 

 ℎ�(𝑠) = ([3𝑎�(𝑠 − 𝑠v)# + 2𝑏�(𝑠 − 𝑠v) + 𝑐�]# + [3𝑎�ç (𝑠 − 𝑠v)# + 2𝑏�ç (𝑠 − 𝑠v) + 𝑐vç ]#

+	[3𝑎�çç(𝑠 − 𝑠v)# + 2𝑏�çç(𝑠 − 𝑠v) + 𝑐vçç]#)	
^
# 

(156) 

 
Now we have a set of relations to map the discrete nodal values into continuous smoothly 

connected domains that are ready for computing the integrals.   
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F. Mathematical lemmas  
We provide a reference table of several important mathematical lemmas that has been 

used frequently in fundamental solutions derivations in appendix B for chapter 3.  

 𝛿-- = 3, 𝛿-O =
𝜕𝑥-
𝜕𝑥O	

 
(157) 

 
𝜕𝑥)*
𝜕𝑥-	

= 	
𝜕
𝜕𝑥-	

z𝑥O − 𝑥O�{ = 	𝛿-O	 (158) 

 
𝜕𝑓(𝑟)
𝜕𝑥-	

	=
𝑑𝑓
𝑑𝑟

𝜕𝑟
𝜕𝑥-	

 (159) 

 		
𝜕	𝑟
𝜕𝑥-	

=
1

2�𝑥)*𝑥)*
𝜕	𝑥)*𝑥)*
𝜕𝑥-	

=
1
2𝑟 o𝑥)*

𝜕	𝑥)*
𝜕𝑥-	

+	𝑥)*
𝜕	𝑥)*
𝜕𝑥-	

p =
1
𝑟 𝑥)*

𝜕𝑥)*
𝜕𝑥-	

= 	
𝑥)*𝛿-O
𝑟 = 	

𝑥*́
𝑟 		 (160) 

 𝜕#𝑟
𝜕𝑥-	𝜕𝑥O

= 	
𝜕	
𝜕𝑥-	

	
𝑥)*
𝑟 = −

𝑥)*𝑥*́
𝑟C +

1
𝑟 𝛿-O 

(161) 

 𝜕#𝑟
𝜕𝑥-#

=
𝜕	
𝜕𝑥-	

	
𝑥*́
𝑟 = −

𝑥*́𝑥*́
𝑟C +

1
𝑟 𝛿-- = −

𝑟#

𝑟C +
3
𝑟 =

2
𝑟 

(162) 

 𝜕	
𝜕𝑥-	

1
𝑟 	= 	−

𝑥*́
𝑟C 

(163) 

 𝜕	
𝜕𝑥-	

𝜕	
𝜕𝑥O	

1
𝑟 	= 3 o

𝑥*́𝑥)*
𝑟£ 	−	

𝛿-O
3𝑟Cp 

(164) 

Stresslet derivation:  

 
𝑇-O� 	= −𝛿-�

2𝑥O
𝑟C +

𝜕𝑆-O	
𝜕𝑥�	

+	
𝜕𝑆�O	
𝜕𝑥-	

 (165) 

 𝜕𝑆-O	
𝜕𝑥�	

= −
𝑥�
𝑟C 𝛿-O +

1
𝑟C z𝑥-𝛿O� + 𝑥O𝛿-�	{ − 3

𝑥O𝑥-𝑥�
𝑟£  (166) 

 𝜕𝑆�O	
𝜕𝑥-	

= −
𝑥-
𝑟C 𝛿�O +

1
𝑟C z𝑥�𝛿O- + 𝑥O𝛿�-	{ − 3

𝑥O𝑥�𝑥-
𝑟£ 	 (167) 

 𝑇-O� 	= −𝛿-�
2𝑥O
𝑟C 	−

𝑥�
𝑟C 𝛿-O +

1
𝑟C z𝑥-𝛿O� + 𝑥O𝛿-�	{ − 3

𝑥O𝑥-𝑥�
𝑟£ 	−

𝑥-
𝑟C 𝛿�O +

1
𝑟C z𝑥�𝛿O- + 𝑥O𝛿�-	{

− 3
𝑥O𝑥�𝑥-
𝑟£  

(168) 

 𝑇-O� 	= 	
2𝑥-
𝑟C 𝛿O� − 3

𝑥O𝑥-𝑥�
𝑟£ 	−

2𝑥-
𝑟C 𝛿�O − 3

𝑥O𝑥�𝑥-
𝑟£  (169) 

 𝑇-O� 	= −6
𝑥O𝑥�𝑥-
𝑟£  (170) 
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