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PixNet: A Localized Feature Representation
for Classification and Visual Search
Niloufar Pourian, Student Member, IEEE, and B. S. Manjunath, Fellow, IEEE

Abstract—This paper presents a novel localized visual image
feature motivated by image segmentation. The proposed
feature embeds relative spatial information by learning different
image parts while having a compact representation. First, an
attributed graph representation of an image is created based
on segmentation and localized image features. Subsequently,
communities of image regions are discovered based on their
spatial and visual characteristics over all images. The community
detection problem is modeled as a spectral graph partitioning
problem. This results in finding meaningful image part groupings.
A histogram of communities forms a robust and spatially
localized representation for each image in the database. Such a
region-based representation enables one to search for queries that
might not have been possible with global image representations.
We apply this representation to image classification and search
and retrieval tasks. Extensive experiments on three challenging
datasets, including the large-scale ImageNet dataset, demonstrate
that the proposed representation achieves promising results
compared to the current state-of-the-art methods.
Index Terms—Community detection, feature extraction, image

classification, segmentation.

I. INTRODUCTION

S EARCHING for images with a specific visual content has
been a topic of intense research in recent years [1]. How-

ever, much of this recent work is focused on a global image
representation. Searching for small regions of interest in larger
images is still a challenging problem. An example of such a
case is when one is looking for a car with a specific logo in
the photos taken by people. In such a scenario, having an effec-
tive, localized feature representation is crucial. While localized
methods have been well investigated in the context of detection
and recognition of objects in a scene, they have not found wide
applicability in scalable visual search. The primary contribution
of this paper is developing a novel feature representation that is
localized and compact.
Conventional methods usually represent an image based on

low level global features. These include various global color and
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texture descriptors, SIFT and GIST features, and Bag of Word
models [2]–[6]. While many of underlying features (e.g., SIFT)
are well localized, the image representations are usually global
(e.g., histogram of gradients). One can obviously build localized
versions by either explicitly partitioning the image using seg-
mentation methods or by imposing a pre-defined image grid. In
such cases, additional steps will be needed to process the query
as well as the search results.
There is a wealth of published literature that demonstrates

the usefulness of spatial information in visual classification and
search [7]–[9]. In [9]–[11], a large number of key-point based
descriptors are computed and their relative spatial relationships
are encoded. Also, [12] calculates the location offset of two
matched features. The work in [7] incorporates spatial layout
by introducing a Gaussian location model per visual word and
encoding only the absolute spatial information. Utilizing local-
ized grids into the feature representation is also another common
approach to integrate spatial information [8], [13]–[15]. These
methods often result in a high-dimensional representation and
rely on a pre-defined partitioning of the image which is inde-
pendent of its content. [16] models the spatial layout of im-
ages by sampling a large number of windows per image and
weighting local features proportional to the number of windows
that overlap them when computing a Fisher vector representa-
tion.While [16] does not rely on partitioning of the image, it still
leads to an increase in the dimensionality of the Fisher vector.
In addition, [17] and [18] are based on fast approximate spa-

tial verification. However, due to the high computational cost,
these methods are only applied to the top ranked images in re-
trieval as a post-processing step.
Some researchers utilize part based models for object detec-

tion and image-level annotation [19], [20]. Thework in [20] pro-
poses a new class of object models by specifying a set of points
on the target object boundary in training images with respect to a
set of pre-defined parts (e.g., dog head, dog leg, etc.). Also, [19]
involves training a part-based model from images labeled with
bounding boxes around the object of interest. These approaches
require a manual labeling that is costly to be scalable. However,
in our work, we are only dealing with image level labels.
In addition, one can focus on introducing codebooks by en-

coding image parts [21]–[23]. For instance, the work in [23] fo-
cuses on a semantic-aware image retrieval by introducing Ob-
jectWord defined as a collection of discriminative image patches
annotated with the corresponding objects. To create each Ob-
jectWord, [23] requires that each image be annotated by a single
class. Also, [21] introduces a Part-Book for image parsing. The
approaches in [21]–[23] rely on a pre-defined partitioning of the
image which is independent of its content.

1520-9210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Robustness to non-ideal segmentation by encoding the relative spatial
information. The blue line represents the connection due to spatial adjacency,
the green line represents the connection due to attribute similarity, and the red
line demonstrates the correct identification of the over-segmented logo. Best
viewed in color.

Alternatively, one can compute localized features in seg-
mented image regions [24]–[33]. These methods adapt to the
image content, and help in defining a limited number of spatial
neighborhoods as the image dimensionality goes from millions
of pixels to few tens of segments. The approaches of [24], [26]
are sensitive to segmentation quality and thus they resort to
manual segmentation in the training phase. [27] uses template
matching between segmented regions while ignoring the rel-
ative spatial information existing among regions. In [25], the
authors propose a graph based segmentation framework that
is able to integrate cues from multi-layer superpixels simulta-
neously and shows improvement in segmentation. However, it
does not tackle the classification problem. The works of [29],
[32]–[34] focus on a semantic segmentation and propose a
model to recover the pixel labels of the training images. How-
ever, the aforementioned methods require that every image in
the training set to be labeled by all the classes that it contains.
This is unrealistic for most scenarios of practical value and
consequently is limited to much smaller datasets. In contrast,
the proposed approach tackles image classification and retrieval
and does not require a user to annotate training images with
all of its associated image labels. Instead, it automatically
groups related image parts across the training set using spectral
clustering. [28] proposes an approach based on soft-matching
tree-walks, however it requires that every image be segmented
into equal number of regions.
In the following, we introduce a spatially localized represen-

tation that captures the attribute similarity with the relative spa-
tial information without encoding the spatial information at the
pixel level or a strong dependence on segmentation. We do this
by posing a problem of learning image parts that are composed
of segmented regions. These regions are homogeneous in color
and texture feature space. An attributed graph for each image
based on segmented regions captures the relative spatial infor-
mation. In addition, collective consideration of all the regions’
attributes in the dataset allows us to determine their visual simi-
larity. We combine this visual similarity with the localized spa-
tial information by creating a network of segmented regions.
Different communities of related regions are discovered based
on spatial and visual characteristics. In addition to learning parts
of an image in an adaptive way, this community detection com-
pensates for variations in segmentation.
As an example, one can consider an image of a car with

over-segmented logo. In our network representation, a logo is
connected to a hood due to spatial adjacency. The hood is linked
(based on visual similarity) to other hoods that are themselves
adjacent to logos. This configuration enables the system to iden-
tify the logo correctly as demonstrated in Fig. 1.

In the proposed network representation, one can think of the
communities of related regions of all images as codebooks with
embedded spatial information. Each segmented region in an
image is associated with a histogram representing the likelihood
of belonging to different communities. An image can now be
represented by combining the individual region histograms, re-
sulting in a robust descriptor with embedded relative spatial in-
formation. We call this new visual image feature a PixNet. Rep-
resenting an image by a PixNet visual image feature is analo-
gous to learning a puzzle from its pieces.
In summary, the main contributions of this paper is to intro-

duce a novel representation that:
— integrates spatially localized information;
— is robust to segmentation variations;
— has a considerably more compact representation than

the other state of the art methods, making the classifier
learning more efficiently and helping in scaling to larger
datasets.

The remainder of this paper is organized as follows. In
Section II, we describe the overall framework of PixNet fea-
ture representation. The applicability of the representation is
illustrated in Section III through an image classification, and
query retrieval problem on three challenging datasets. Finally,
we conclude the paper with some final remarks and directions
for future research in Section IV.

II. PIXNET FEATURE REPRESENTATION
Given a set of images, the goal is to find a compact repre-

sentation that encodes the relative spatial information between
object/image parts. The overall framework for the creation of
this feature is illustrated in Fig. 2. A graph is constructed for
every image based on segmented regions and each region is
represented by a node in the graph. Two nodes are connected
by an edge if the corresponding regions are adjacent. We com-
bine the graphs of all images in a large network that represents
different object parts among different images in the database.
Furthermore, we find groups of similar/related nodes in the net-
work by community detection. Each group (community) defines
a visual codeword that is embedded with the relative spatial in-
formation. Then, each region is represented by a histogram of
these codewords with each bin indicating the strength of associ-
ation of the region to the corresponding codeword. Finally, each
image is represented by sum pooling of its regions’ histograms.
We call this image representation a PixNet visual feature. In the
following, we describe the different stages of processing leading
to the construction of the PixNet feature.

A. Graph Representation
Let denote the number of images in the dataset. For every

image in the dataset, , we incorporate the rel-
ative spatial information using a graph structure. Let

be a graph corresponding to image where
and represent the nodes and edges of this image, respec-
tively. Each node represents a segmented region and two nodes
are connected by an edge if the corresponding regions are ad-
jacent, i.e. is 1 iff region is adjacent to region and
0 otherwise. An example of the graph representation of each
image is shown in Fig. 3. To compute the segmentation, we
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Fig. 2. PixNet visual features construction as described in Section II. This includes the following steps: segmentation, graph and network representations, com-
munity detection of the network, and the regional mappings.

Fig. 3. Graph representations of different images. Each segmented region
represents a node in the graph. Communities – represent the new visual
codewords embedded with localized spatial information. Regions belonging to
each community are indicated by dotted lines. To avoid clutter, only the most
common communities are represented. Image is best viewed in color.

use the method proposed in [35] since the software was pub-
licly available and produces a reasonable number (10-100) of
segmented regions per image. We did explore super-pixel seg-
mentation methods but they typically resulted in a significant
over-segmentation of the images. Since segmentation itself is
not the focus of this work, we did not explore optimizing var-
ious segmentation criteria.
To represent regions (nodes), we extract densely sampled

SIFT features [36] from each image, and map each 128 dimen-
sional feature vector to a segment that they belong to. Each
node is then represented by vector using the Bag of Words
(BOW) model [6], or the Fisher Vectors (FV) model [37]. In
the following, the appearance of node is denoted by .

B. Network Creation
Next, we create a network that is a collection of all nodes

among all images. Until now, nodes are connected solely based
on spatial adjacency. The idea of creating a network representa-
tion is to integrate the visual similarity between all regions in the
network with the localized spatial information. We create a net-
work of segmented regions where
represents the nodes in the network , and is the corre-
sponding adjacency matrix. The th element of , denoted

Fig. 4. Illustration of the network representation. This figure represents an ex-
ample of a network created by using a database of four images. Each node rep-
resents a segmented region in this network. Black lines correspond to the con-
nections due to spatial adjacency while dotted blue lines correspond to connec-
tions based on visual similarity. , with , denotes the graph-
ical representation of image in the database. Each dotted ellipse , with

, is a detected community of related regions across that network.

by , is the weight indicating the strength of connectivity be-
tween nodes and . In creating this network, two nodes are
connected if they are relevant either due to visual similarity or
spatial adjacency. This will be done in the following two steps.
An example of the network representation is shown in Fig. 4.
First, two nodes and are connected by a weighted edge

equal to their attribute similarity (defined in equation (2)) if
node belongs to the set of most similar nodes to node .
Second, we incorporate the spatial adjacency to this network.
Two spatially adjacent nodes are connected with a weighted
edge equal to the average of the weights of all edges connected
to the corresponding nodes. This process is illustrated in Algo-
rithm 1, and can be summarized in the following equation:

(1)

where denotes the attribute similarity between two node
and which will be discussed shortly, is the set of most
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similar nodes to node , and denotes the set of all nodes in
spatial neighborhood of node . The represents the indi-
cator function and is equal to 1 if holds true and zero other-
wise.
The attribute similarity between two nodes and is given

by the following:

(2)

where represents the distance between appearances
of two nodes and , denotes the label associated with the
image that node belongs to, and is a constant larger than 1.
We set to give a higher weight to the visual similarity of
two nodes that belong to images with the same label.

Algorithm 1 Creating Network

Input:
Output: , ,

zero vector

Comment: integrating attribute similarity into adjacency
matrix of
for do

for do
compute

end for
end for
for do

for do
if then

end if
end for

end for

Comment: integrating the spatial context into adjacency
matrix of
for do

for do
if and are not connected due to attribute similarity
then

if and are connected due to adjacency then

end if
end if

end for
end for

When using BOW model to represent nodes, we use the
Hellinger metric [38] to compute the distance between and

. Hellinger distance has been shown to be a good metric for

computing the distance between histograms in classification
and retrieval problems [39]. For normalized and ,
distance is computed by

(3)

with denoting the size of the codebook for BOW (number
of clusters found by approximate kmeans). In the case of Fisher
Vector (FV) model, we choose to be the Euclidean
distance between and .

C. Community Detection

Our goal is to find similar/related regions in the network rep-
resentation by which one can detect spatially localized code-
words. We call each group a community. By partitioning the net-
work into different communities, it is possible to learn similar
parts of the objects in the database, for instance a group of logos
in the examples of Fig. 1. In addition, such a community detec-
tion can compensate for variations in segmentation.
For graph partitioning, we use the normalized cut method as

described in [40]. In this algorithm, the quality of the partition
(cut) is measured by the density of the weighted links inside
communities as compared to the weighted links between com-
munities. The objective is to maximize sum of the weighted
links associated with a particular community while minimizing
sum of the weighted links associated between this community
and other communities.
Suppose be the number of partitions (communities) in the

network. This graph partitioning provides a codebook of size
that is integrated with spatial information. If we choose to be
small (fewer number of communities), the detected communi-
ties may be such that they include all parts of a particular object
as a whole. While larger values of result in a case that dif-
ferent parts of objects fall into different communities.
Once this community detection technique is applied to the

images in the database, one can find communities of related seg-
mented regions. Fig. 5 shows an example of how different parts
of eight sample images belong to the detected communities.

D. Regional Mappings

Once we detect communities of similar regions, each region
is represented by a histogram of these communities. The bins
of each histogram indicates the strength of association of a re-
gion to the corresponding community. Let denote the set of
all nodes in the spatial neighborhood of node , be the com-
munity with , and denote the set of all
nodes that are in the top nearest neighbors of node . The
strength of association of a node to a community is mea-
sured by two factors: first by the attribute similarity between
node and community , second by considering the attribute
similarity between neighbors of node and different communi-
ties in the network along with the relation between community

and each of the communities in the network. Fig. 6 illustrates
the mapping process of each node to the detected communities.
Let denote the attribute similarity between node
and community . The function is defined by the
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Fig. 5. Row (a) illustrates eight sample images from the VOC07 database. Row (b) represents the corresponding segmentations of the samples images. Each
color denotes a segmented region. The segmentation is obtained by online software provided by authors in [35]. In row (c), each color denotes a community that
the segmented regions of figures in row (b) belong to. These communities belong to the set of all detected communities over the entire database. The community
detection algorithm is described in Section II-C.

Fig. 6. Illustration of the mapping process of each node to the detected com-
munities. Segmentation of a sample image is depicted (left) and the detected
communities are represented by dotted closed-curves (right). The degree of as-
sociation of each node and each of the communities is denoted by .

fraction of top nearest neighbors to node that belong to
community

(4)

Moreover, we define to measure the relation between
two communities and

(5)

where denotes the total number of nodes in the net-
work. In particular, measures the number of links
between the two communities and divided by the total
number of links between community and all other commu-
nities. Thus, the strength of association of a node to a commu-
nity can be determined by in (6), as shown at the bottom

Fig. 7. Sample images from VOC07 (top row), TREC (middle row), and Ima-
geNet2010 (bottom row) databases with their corresponding labels.

of the page. Now one can use to represent each node by a his-
togram of length . In such representation, each bin is equal
to that is the likelihood of node belonging to community .
Finally, each image is defined by summing the histograms that
are associated with the segmented regions of the image.

III. EXPERIMENTAL RESULTS
We evaluate our method in several different settings by using

three challenging datasets: PASCAL VOC07, TREC, and Ima-
geNet’10 (ILSVRC2010) dataset. We compare our method with
3 different baseline methods for image classification described
in Section III-B. Moreover, it is shown how the performance

(6)
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TABLE I
COMPARISON OF MAP BETWEEN SPATIAL PYRAMIDS (SPM) WITH LEVELS,
SPATIAL FISHER VECTORS (SFV), AND PIXNET VISUAL FEATURES (PIXNET)

ON VOC07 (TOP) AND TREC (BOTTOM) DATABASES. BAG-OF-WORDS
(BOW) AND FISHER-VECTORS (FV) ARE USED FOR CODING

REGIONAL APPEARANCES. RESULTS ARE REPORTED
FOR

Fig. 8. Comparison of the dimensionality of SPM, SFV, and PixNet features.

of our method varies as the level of segmentation changes. By
setting the parameters of [35], we achieve two levels of segmen-
tation with an average number of 20 and 50 segments per image
which are referred to as “Coarse” and “Fine”, respectively. We
further evaluate the performance of our approach as a function
of the number of detected communities. In addition, we show
the sensitivity of our method on parameter , number of nearest
neighbors based on similarity in the creation of the network. Fi-
nally, we illustrate the applicability of our method in a query
retrieval setting where the query image contains only the object
of interest.

A. Datasets
We evaluated the performance of the PixNet visual fea-

tures on three datasets: ImageNet 2010 (ILSVRC2010) [41],
PASCAL VOC07,1 and TREC. ImageNet 2010 is a publicly
available dataset containing 1,000 object classes and 1.2 mil-
lion training images, 50,000 validation images and 150,000
test images. PASCAL VOC07 is another publicly available
dataset containing 20 object classes, 5, 011 training images and
4,952 test images. To evaluate the performance of different

1“The Pascal Visual Object Classes Challenge 2007 (VOC2007) Results,”
[Online]. Available: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/

TABLE II
COMPARISON OF THE ERROR RATE OF PIXNET VISUAL FEATURES ON
IMAGENET 2010 DATASET WITH THE STATE OF THE ART REPORTED
RESULTS. PIXNET ACHIEVES A SLIGHTLY HIGHER ERROR RATE

THAN CNN AT A MUCH LOWER COMPUTATIONAL COST.
PIXNET RESULTS ARE REPORTED FOR

Fig. 9. Comparison between the performance of BASE and PixNet method.
Results are reported for PASCAL VOC07 database.

methods in identifying the object of interest when it occupies
only a small portion of the image in a cluttered background,
we have collected a set of images by extracting frames from
TRECVID 2012 instant search (INS) dataset (consists of about
70,000 short video files) which we refer to as TREC dataset.
Since the groundtruth was only published for a subset of the
data, we have only considered classes that have sufficient
numbers of true positives. TREC dataset contains 10 object
classes (Mercedes logo, Brooklyn bridge tower, Eiffel tower,
Golden Gate Bridge, London Underground logo, Coca cola
logo, Stonehenge, US Capital exterior, Hoover Dam exterior,
One World Trade center building), 5, 083 training images, and
5, 206 test images. Fig. 7 illustrates examples of images in each
of the databases.

B. Baseline Methods
We compare our method with Spatial Pyramid method (SPM)

[8] which encodes the global positions of features in the image,
and also with the Spatial Fisher Vectors (SFV) [7] which incor-
porates spatial layout by introducing a Gaussian location model
per visual word. Since the code for SFV was not publicly avail-
able, we re-implemented the algorithm based on [7].
To show the importance of encoding the spatial adjacency of

segmented regions, we have also tested the performance by cre-
ating the network solely based on attribute similarity of the seg-
mented regions in the database while ignoring the spatial neigh-
borhood of the regions. We refer to this method as the base-
line (BASE) method. We show how the presence and absence
of the relative spatial neighborhood information affects the per-
formance of the system.
In addition, to investigate the performance of PixNet features

on a large dataset with large number of classes, the error rate
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Fig. 10. Per-class classification accuracy of spatial pyramids (SPM) with
levels, spatial fisher vectors (SFV), and PixNet visual features (PixNet) with
“Coarse” and “Fine” levels. Fisher-vectors (FV) are used for coding regional
appearances. Results are reported on the PASCAL (VOC07) dataset with

.

Fig. 11. Effect of number of communities ( ) on the classification accuracy.
Results are reported on the PASCAL (VOC07) dataset with .

of the proposed approach is compared with the state of the art
results achieved on the challenging ImageNet dataset.
Finally, one should note that we did not compare with other

segmentation based approaches [24], [26] as they require
ground truth segmentation in the training phase.

C. Evaluation
Classification: For image classification, we learn a binary

SVM classifier per class for all image representations, and eval-
uate the performance using Mean-Average-Precision (MAP).
The Average Precision (AP) is computed by the interpolated av-
erage precision [42]. MAP is chosen in order to be comparable
with the results reported on PASCAL VOC database.
Table I shows the MAP scores for different vocabulary

sizes using BOW and FV as appearance models for segmented
regions applied to VOC07 and TREC datasets. As shown, our
approach achieves higher classification accuracy compared to
the SPM and SFV methods while having a considerably more
compact representation. It can be seen that Fine PixNet achieves
a higher classification accuracy compared to the Coarse PixNet.
This is due to the fact that larger number of segmented re-
gions results in encoding more relative spatial information.
Fig. 8 shows the comparison between the dimensionality of
different features. The PixNet feature dimentionality does not
change as the number of codewords ( ) varies and is less than
the dimension of all other methods. Together with the results in
Table I, it is evident that among the methods considered here,

Fig. 12. Effect of parameter on the classification accuracy. Results are re-
ported on the PASCAL (VOC07) dataset with .

Fig. 13. Comparison between the performance of SPM with and PixNet
method in a query retrieval setting. Results are reported for TREC database with

.

PixNet achieves the highest performance with the smallest
feature dimension.
To compare with the state of the art results reported on Im-

ageNet 2010, the performance of PixNet is measured by error
rates. Table II illustrates such a comparison between PixNet and
the state of the art [43]–[45]. It is worth noting that CNN [45] has
a slightly lower error rate than PixNet. Thework in [45] involves
training a convolutional neural networks (CNN). The network
consists of eight layers with weights; first five are convolutional
and the remaining three are fully connected. The output of the
last fully connected layer is fed to a softmax which produces a
distribution over the class labels. Their network maximizes the
multinomial logistic regression objective. To achieve their ac-
curacy and train their large network, they found that they had
to increase the size of the training data. Hence they used dif-
ferent data augmentation strategies such as random cropping of
sub-images and random perturbations of the illumination. How-
ever, in the proposed work we did not need to do that. In gen-
eral, CNN exploits rectangular image patches to learn high order
local features using multilayer architectures. The learning ca-
pacity of these networks depends on the number and size of
the kernels in each layer and the number of kernel combina-
tions between layers. The model in [45] included 650,000 neu-
rons, 60 million parameters, and 630 million connections and is
trained with stochastic gradient descent on two GPUs for about
a week. This is much more computationas computational com-
plexity is discussed in III-D. This result emphasizes the suit-
ability of PixNet for large scale datasets.
Fig. 9 compares the performance of our approach and the

BASE method. One can see that PixNet method has a higher ac-
curacy than the BASEmethod, thus highlighting the importance
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Fig. 14. Sample queries of Golden Gate Bridge (top) and U.S. State Capital Building (bottom) for TREC database with their true positive hits at depth 100 in a
query retrieval problem for SPM and PixNet visual features.

of encoding the relative spatial information between segmented
regions in an image.
The per-class classification accuracy of PixNet and baseline

methods are shown in Fig. 10. It can be seen that PixNet
achieves the highest boost in classification accuracy for “pot-
tedplant” class compared to other methods.
Fig. 11 illustrates the effect of different number of communi-

ties on the classification accuracy. For PASCAL database, the
performance of our approach barely changes as the number of
communities varies for values larger than 100.
Furthermore, we investigated the sensitivity of our approach

on parameter , number of nearest neighbors based on simi-
larity in the creation of the network. Fig. 12 shows that our
method is robust in T over the range of 10 to 100. Very large
values of T (due to the connection of unrelated nodes) adversely
affect the performance.
Retrieval: Since the proposed method has the advantage

of breaking the image into object parts, we also investigated
the applicability of PixNet features in a query retrieval setting
where the query image contains only the segmented region in-
dicating the object of interest. The similarity score is computed
by where is the Hellinger metric defined
in equation (3), and , are the image representations
of images and . The performance is evaluated using F
measure.
Fig. 13 illustrates that PixNet features achieve a higher

retrieval score compared to the SPM at level 0. In addition,
Fig. 14 shows results for a sample query along with its true
positive hits at depth 100. The PixNet approach returns higher
number of true positives. We have not reported results for SPM
at higher levels or SFV as these methods work on rigid shapes
and are not relevant in this case.

D. Scalability

The compact representation of the PixNet visual features
makes it suitable for large scale datasets. A moderate com-
putational complexity is important when considering scaling
to thousands of images and hundreds of categories. When
training our method the largest computational cost is in finding
the top nearest neighbors to each node as part of the algo-
rithm for constructing the network. The simplest solution is
to compute the distance from each node to all the other nodes
in the network. This approach has a running time of
where is the number of nodes in the network and is the
dimensionality of the data. We have greatly reduced this cost by

performing the search using a space partitioning data structure
(k-d tree) with running time of . We note that the
original k-d tree might exhibit poor performance [46]–[52], and
several remedies have been proposed [53]–[57]. We used the
implementation of k-d tree in opencv library [58] and achieved
good enough of a performance for all our experiments (see
Table I). As the size of the database increases, the network can
be constructed using a subset of the images from the training
data. Consequently, one would not need to increase the cost
associated with the network construction. This is analogous to
the clustering of features using kmeans for codebook creation.
At the test time, the largest bottleneck is in mapping each
region of the test image to the communities of the network
again by finding the top nearest neighbors of each region (and
its surrounding regions) in each of the communities. At this
stage, we take the similar approach as the training phase. In
our experiments the overhead cost for VOC07 at training time
for 5, 011 images is less than 5 minutes and at test time for
4,952 images is less than 3 minutes which is an average of
0.03 seconds/image using a quad core computer with 3.0 GHz
processors. This cost is negligible compared to the gained
compact regional representation.

E. Remark

The localized information corresponding to image-parts that
occupy a relatively small portion of the image is typically lost
in the majority of the image representations. Most such repre-
sentations are global in nature, even when the features are com-
puted locally. In contrast, the PixNet representation enables one
to partition the image and learn its salient parts. In the proposed
representation a segmented region is mapped to communities in
PixNet and each community is given equal weight independent
of number of pixels belonging to it. This is illustrated through
the qualitative results shown in Fig. 14. As shown, the query
occupies a small portion of many of the retrieved images, how-
ever the PixNet features are able to retrieve them. Furthermore,
the quantitative results show that PixNet achieves a higher re-
trieval accuracy than the baseline methods. Another important
aspect of the proposed PixNet features is that the detected com-
munities map back to localized regions in the image, as illus-
trated in Fig. 5. Further, localized descriptors have a higher dis-
criminative power as shown in applications of image classifica-
tion (see Section III-C1), or content based image retrieval (see
Section III-C2).
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IV. CONCLUSION
This paper presented a compact spatially localized visual

image feature by combining the visual similarity of image
parts with the localized relative spatial information through
a network of segmented regions. A graph partitioning algo-
rithm is employed to discover groups (communities) of related
segmented regions across the database. A histogram of com-
munities forms a robust and spatially localized representation
for each image in the database.
We illustrated the applicability of PixNet visual features in an

image classification problem and presented results in a query re-
trieval example. Further, we showed that the proposed approach
is robust to segmentation variations, and can achieve a more
compact representations than the state of the art approaches. We
show that even with sum pooling of the localized features for
a classification task, PixNet is able to achieve a good perfor-
mance. Sum pooling allows one to have a vector representation
for an image as it might be more desirable in a classification
task. This is because one can use the vector representation in uti-
lizing many of the machine learning techniques. Depending on
the application, one may choose to use a vector representation
of an image, or choose to use the updated localized representa-
tion of image-parts. Our future work focuses on ways of better
representing the localized feature representations (histogram of
communities) and integrating them in a formulation to retrieve
images with specific spatial configuration of objects.
The proposed method also has the potential for object class

localization by highlighting regions that contribute to a specific
object. A possible direction for future research is to explore
image compression using PixNet visual features. Another direc-
tion for future research is in-video product annotation [59] and
video analysis [60]. We also plan to investigate the applicability
of PixNet visual features in multi-modal retrieval problems.
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