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ABSTRACT OF THE DISSERTATION

Methods of Mathematical Struggle

by

Michael Arthur Smith

Doctor of Philosophy in Mathematics and Science Education
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Professor Ricardo Nemirovsky, Chair

Mathematicians frequently report feeling an intense kind of internal effort

when doing their research. There’s some reason to believe that this experience

of struggle is integral to developing skill and familiarity with novel mathemati-

cal ways of thinking. Yet surprisingly little is known about the structure of this

experience as mathematicians know it in their research, in part because of the

scarcity of studies examining mathematicians in the midst of working on prob-

lems that are novel to them. In order to help contribute to our understanding

of this domain, I examine the practices of three pairs of mathematicians working

together on some problem from their research. Using a framework of embodied
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cognition to enact a phenomenological analysis, I note three ways in which we can

see mathematicians structuring their experiences of struggle: proximal inhibition,

invoking the continuum, and the use of transformation mappings. I propose that

these three phenomenological constructs combine to offer us insight into the nature

of mathematical practice and of mathematical objects as they are experienced.
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Chapter 1

Overview

1.1 Mathematical Struggle

There’s a collection of riddles based on the challenge of crossing a river with

some constraints. Usually the trick with them is to catch ourselves making a key

unnecessary assumption in our effort to solve them. Consider this problem as an

example:

Cannibals will attack and eat missionaries whenever the missionaries
are outnumbered, but otherwise the cannibals are friendly and cooper-
ative. Suppose three cannibals and three missionaries come across a
river they need to cross. There’s a small boat available, but it can only
hold at most two. How can the six get across using the boat without
any missionaries getting eaten?

Most people who try this puzzle notice that there’s trouble after a few

round-trips with the boat and get stuck. Since someone has to bring the boat

back after delivering someone on the far side, most people quickly realize that you

can’t leave a missionary on the far side (since there would be three cannibals to two

missionaries once the boat returns). And the second trip can’t involve a missionary

since that would get a missionary eaten (either on the far shore if a missionary and

a cannibal go, or on the starting side if two missionaries go). So the second round

1
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trip has to have two cannibals go and one return. But then what? You could have

two missionaries cross, but who would go back? No matter whether you send a

cannibal or a missionary back, someone gets eaten!

As with most river puzzles, the trick is to notice where we’ve made an

unwarranted assumption. In this case, the erroneous assumption is that the boat

should never return with two passengers. The solution sequence goes like so:

1. Two cannibals cross, one returns.

2. Two cannibals cross, one returns.

3. Two missionaries cross, a missionary and a cannibal return. (This is the

tricky part!)

4. Two missionaries cross, one cannibal returns. (So now the three missionaries

are safely on the far side.)

5. Two cannibals cross, one returns.

6. Two cannibals cross.

It’s actually not too hard to demonstrate that this is the only possible

solution, too. At every stage of the puzzle, there are at most five possible moves:

a missionary crosses, a cannibal crosses, a missionary and a cannibal cross, two

missionaries cross, or two cannibals cross. We can exhaust the possible moves at

every stage of the puzzle to see that each one falls into one of four categories: it

either reverses a move just made, forces itself to be reversed in the next move (e.g.,

if we had started by ferrying one cannibal across, it would have had to return with

the boat with no net effect), immediately results in a missionary getting eaten, or

advances progress. The one and only exception is with the very first move, which

could have involved a missionary and a cannibal instead of two cannibals — but in

that case we’d be forced to bring the missionary back, resulting in the same overall
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effect. Therefore, we could have solved this problem simply by asking ourselves at

each stage which of the possible moves does not result in an imminent reversal or

immediate devouring of a missionary. Thus a once confounding puzzle requiring a

burst of insight to solve has been reduced to a sequence determined uniquely by a

simple algorithm.

This puzzle exposes three stages of reasoning that are worth noting. In the

first stage, there’s a sense of getting stuck; our first impulse leads us to a point

where we cannot see how to proceed. In the second stage, there’s a recognition of a

key detail about the puzzle that suddenly makes our confusion and struggle vanish.

In the third stage, we return to the puzzle with our transformed perception and re-

present the solution in a way that’s delightfully clear, almost obvious in retrospect,

and largely devoid of any hint of the struggle that we had experienced to arrive at

our insight.

These stages share a striking similarity with the process we see research

mathematicians go through (Burton, 2004; Davis & Hersh, 1981; Hadamard, 1949;

Pólya, 1945; Thurston, 1994). First they engage with a problem of some sort,

following their intuition and skill until they reach a point where they’re stuck.

Then ideally at some point they achieve a breakthrough (although it’s not always

as dramatic and clear a dissolving of the question as in the river puzzle). Finally,

they describe the original topic with the benefit of their newfound insight, although

usually without highlighting the cognitive effort it took them to gain said insight.

Generally speaking, it’s this final, relatively polished description of the problem

and its solution that gets published in academic journals of mathematics (Burton

& Morgan, 2000; Thurston, 1994).

This insight gives us a first glimpse into a fascinating phenomenon about

mathematics. The parts of math that mathematicians consider to be the most in-

teresting, worthwhile, and challenging (Burton, 2004; Hadamard, 1949; Thurston,
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1994) are actually hidden from view in a sense. This isn’t strictly necessary, but it

does seem to be a dominant trend. The sense of exploration, the encounter with

an apparent paradox, the struggle to overcome it, and the delight in penetrating

the confusion with insight are all well-known to and valued by mathematicians,

but the polished solutions to the original puzzles are generally silent about this

(Burton & Morgan, 2000).

I remember a recurring experience from several math classes I took that

reflects on this phenomenon. At times, the professor would put a proof up on

the board and walk us through the logic of it. Some professors would go to great

lengths to make the logic seem sensible while others would be satisfied to convince

us that each line followed from the previous ones. But in both cases, I found myself

not infrequently caught in an odd position: I could agree that each step of the proof

was true and that the proof demonstrated what it set out to demonstrate, but I

didn’t feel like I really “got” the proof. There was an intangible something about

the proof that I just didn’t quite perceive. But later on I could talk to classmates

and give it some consideration, and often something would just “click.” Suddenly

the whole flow of the proof would make sense; I could comfortably distinguish

between lines that employed some key insight and lines that were just machinery.

Then, and only then, would I feel like I really understood the proof.

I think the analogy to the river problem is striking. If we were to give

someone the algorithm for solving the river problem right after explaining the

problem, they probably wouldn’t have a chance to appreciate the difficulty of the

problem or the insight of the solution. But if that person were to then apply the

algorithm to the original problem and carefully consider what happens in each step,

they might notice the key secret that’s buried in that algorithm: two people must

return at some point. At that point the nature of the problem and the cleverness

of the solution both become available.
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Mathematicians notably report a similar experience when reading others’

published mathematical works (Burton, 2004; Thurston, 1994). There’s a kind of

effort involved in penetrating what the paper is really about, as though there’s

an extra something they seek that’s beyond the truth of the statements given. In

fact, without that seemingly intangible extra something, others’ results are often

useless to them. It’s as though they need to experience the struggle on some level

in order to feel that they actually understand the mathematics.

What all this seems to point toward, then, is the suggestion that the first

phase of reasoning — the encounter of and struggle with a difficult puzzle — is

central to mathematical work in a way that no one entirely understands. Mathe-

maticians like Hadamard (1949), Thurston (1994), and Pólya (1945) have gone to

considerable lengths to describe what seems to constitute this experience of strug-

gle when they reflect on cases they and others like them have experienced, and

what they report is not an irrelevant source of insight. But just as we’re rarely

aware of how priming encourages us to buy more when a store sign says “10 for

$10” than when it says “$1 each” (Gladwell, 2005; Marcus, 2008; Wansink et al.,

1998), it turns out that there’s a great deal to the way this kind of struggle in

mathematical thinking occurs that’s generally below conscious awareness even for

those who are doing the struggling. Mathematicians clearly know that there is ef-

fort, but precisely what constitutes that effort seems to be only partially available

to their conscious minds (Hadamard, 1949; Pronin, 2009).

How, then, might we learn what the nature of this struggle is? And what

would such an exploration buy us as math education researchers?
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1.2 Phenomenology

1.2.1 The Case of Schneider

The philosopher Maurice Merleau-Ponty (1962) described the case of a

World War I veteran by the name of Johann Schneider. Schneider was a pa-

tient of doctors Adhemar Gelb and Kurt Goldstein in the early 20th century due

to brain injury he had sustained during the War. As a result of the injury, he had

great difficulty performing some seemingly simple tasks such as touching his nose

when instructed to do so or describing where his arms or legs were with respect to

his torso with his eyes shut. Yet despite this, Schneider could readily scratch an

itch on his hand or blow his nose using a handkerchief he pulled from his pocket.

How are we to make sense of this paradox in which a man cannot find his nose

when asked to do so but can easily do so when the need strikes him?

Merleau-Ponty addressed this challenge by examining the world as experi-

enced by Schneider. Of course, since Merleau-Pointy is not Schneider, he had to

perform this examination by considering Schneider’s behavior as the behavior of

an experiencing subject, which is to say of someone that experiences the world in

a particular way. In a sense, Merleau-Ponty attempted to relate to Schneider as an

experiencing being, and in making the attempt discovered possibly how Schneider’s

experiences differ from those he was more familiar with. Consider the following

commentary:

Clearly the patient finds in his body only an amorphous mass into which
actual movement alone introduces divisions and links. In looking to his
body to perform the movement for him he is like a speaker who cannot
utter a word without following a text written beforehand. The patient
himself neither seeks nor finds his movement, but moves his body about
until the movement comes. The order given is not meaningless to him,
since he recognizes the inadequacy of his first attempts, and also since,
if a fortuitous gesture produces the required movement, he is aware of
it and can immediately turn his piece of good fortune to account. But
if the order has an intellectual significance for him and not a motor
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one, it does not communicate anything to him as a mobile subject; he
may well find in the shape of a movement performed an illustration of
the order given, but he can never convert the thought of a movement
into actual movement. (Merleau-Ponty, 1962, p. 110, emphasis in the
original)

In providing this account, Merleau-Ponty has given us some insight into the

world as experienced by Schneider. Merleau-Ponty extended this account to theo-

rize a kind of “motor intentionality,” a kind of embodied anticipation of movement

that is normally present in most people but is precisely what is missing in Schnei-

der that causes his curious difficulties. This idea emerged from Merleau-Ponty’s

efforts to understand Schneider’s point of view, which in turn helps to make us

aware of elements of how we interact with the world that we simply may never

have noticed before. For instance, Schneider’s case seems to imply that there’s a

difference between a “concrete movement” like reaching forward to pick up a glass

and an “abstract movement” like sticking our hand forward. In the first case, we

use our hand as the medium through which we enact the intended effect of lifting

the glass; the arm, hand, and indeed our entire body may be “invisible” to us

because it is part of who we are in that instance of interacting with the glass as

an object (Gallagher & Zahavi, 2008). In the second case, the goal is to have our

arm extended forward, and thus the arm has become the object to be influenced

rather than part of us as subjects trying to interact with some object. We might

say that the body as used in “concrete” movements is lived (Gallagher & Zahavi,

2008; Merleau-Ponty, 1962) whereas the body as used in “abstract” movements is

an anatomical object.

It’s also worth noting that there continues to be discussion emerging from

this one example Merleau-Ponty provided many decades ago. For instance, Jensen

(2009) examines and attempts to elucidate the logic involved in Merleau-Ponty’s

account, and Gallagher & Zahavi (2008) expand on the idea of the lived body and

how it applies to modern technology. Over half a century of philosophy and science
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has been impacted as a result of just one careful phenomenological examination of

one man’s experiences. The sincere effort to grasp the world as Schneider grasps it

continues to teach us something about life as it is experienced that can complement

and enrich the analysis of neurological and psychometric results.

1.2.2 The Study of Experience

Phenomenology, then, is a branch of philosophy that examines the structure

of experience as it presents itself (Gallagher & Zahavi, 2008; Moustakas, 1994). A

naturalist account of vision might describe the process of seeing in terms of light

passing through the lens of the eye to strike the retina, stimulating optic nerves

which run to the visual cortex, and so on; by way of contrast, a phenomenological

account does not ask about the mechanisms of vision but instead focuses on what

constitutes the experience of vision for us as seeing subjects. For instance, we can

understand how brain damage might cause someone to be incapable of processing

visual movement, but that tells us nothing about what it is like to actually see the

world without motion (Nagel, 1974). It’s certainly reasonable to expect the two

perspectives to agree, but they are different. Phenomenologist want to explore the

nature of the experience in ways that are not reducible to biological mechanisms.

The key advantage of such a focus is that it allows us to expand and evolve

our perspective. In making a sincere effort to glimpse the world through a partic-

ular subject’s eyes, we certainly learn a great deal about that other person, but we

also learn more about ourselves and how we relate to the world. It broadens our

vision of life and teaches us a deeper understanding of the human condition. In

addition to learning something about how the other person experiences whatever

the phenomenon under consideration is, we also come to understand what about

our own experiences can be shared and what can be different from those of others.

That makes our own experiences more meaningful and better understood, provid-
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ing us with potentially powerful insight into the nature of the specific phenomenon

at hand.

This approach introduces a different notion of generalization than one nor-

mally sees from clinical interviews (Clement, 2000; Ginsburg, 1997), think-aloud

protocols (Ericsson & Simon, 1993), teaching experiments (Cobb, 2000; Steffe &

Thompson, 2000), or quantitative statistical methods (Anderson, 2001). Merleau-

Ponty’s examination of the case of Schneider wasn’t primarily valuable due to

analyzing a syndrome that afflicts some number of patients, nor does it specify the

neurological damage causing Schneider difficulties. Instead, it provides us with

a way of grasping aspects of the human condition in novel ways. It generalizes

by changing our perception of ourselves and the world. Once we know what to

look for, we can see this difference between the body as lived and the body as an

anatomical object in those around us and in our own movements. This is a general

pattern in phenomenological analysis: we find that it generalizes not because we

necessarily expect the analysis to transfer to another case study, but because it in-

spires a sense of familiarity when we spontaneously see an echo of the phenomenon

elsewhere.

Applying phenomenological methods to mathematical struggle, then, can

help enrich our understanding of the phenomenon and expand our ability to per-

ceive aspects of mathematical practice that simply weren’t available to us before.

This can encourage new lines of research and open up potentially fruitful discussion

on novel aspects of math teaching, learning, and doing.

Yet there are many subjects whose experience of mathematical struggle we

could examine. Whom shall we pick, and why?
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1.3 The Struggles of Research Mathematicians

There is good reason to choose any of a number of different subjects to

investigate this phenomenon. An examination of K–12 students’ struggles in math

classes could tell us a great deal about where difficulty occurs and how at least

some students currently try to address or avoid it. Applied statisticians working

in marketing could provide us with some valuable insights about the interaction of

mathematics and business challenges. These and other options are certainly worth

considering.

The present study focuses on the struggles of research mathematicians as

they engage in mathematical problems that are current and challenging to them.

There are several reasons for this choice. First, it is sometimes suggested that

students should engage with mathematics in a way that more closely mimics the

engagement style of mathematicians (Brown, 1993; Brown et al., 1989; Cuoco

et al., 1996; Lampert, 1990; Lave & Wenger, 1991; Schoenfeld, 1992; Stylianou,

2002; Wilkerson-Jerde & Wilensky, 2011; Yong & Orrison, 2008). However, as I’ll

illustrate in chapter 2, there are surprisingly few studies that watch mathemati-

cians in the act of practicing their research. Mathematicians frequently report

that struggle is a very common feature of their research (Aczel, 1996; Boyer, 1968;

Burton, 2004; Burton & Morgan, 2000; Hadamard, 1949; Halmos, 1985; Thurston,

1994), so if we want a more rich understanding of mathematicians’ research experi-

ences then performing a phenomenological analysis on their experiences of struggle

seems like a promising avenue.

Second, there seems to be a significant difference between how mathemati-

cians and non-mathematicians view this kind of struggle. Mathematicians seem

to expect it as part of their work and will stay with it for hours, days, and even

sometimes years at a time (Aczel, 1996; Boyer, 1968; Hadamard, 1949). Yet many

students seem to view their struggles with mathematical problems as a sign of



11

ignorance or intellectual weakness (Hiebert & Grouws, 2007; Schoenfeld, 1985).

Countless times I’ve heard people tell me, “I’ve always found math challenging”

— which strikes me as odd, because I don’t know of anyone who doesn’t feel that

way. Somehow, mathematicians seem to have developed more of a willingness to

stay with this kind of mental difficulty than it seems many — perhaps most —

non-mathematicians have. Exploring mathematicians’ experiences of struggle and

the ways in which they navigate them could give us a great deal of insight into

this phenomenon.

Finally, I find mathematicians’ practice fascinating in its own right. Math-

ematicians have developed a truly amazing amount of skill with one of the most

sophisticated displays of human intelligence our species has yet created. It is a

marvel that we are even capable of mathematics in the first place let alone able to

conjure geometries that defy our physical intuitions and imagine abstractions that

push the boundary of our minds. In the course of investigating mathematicians’

ways of researching, I have found my own sense of what constitutes mathematical

practice transforming. I have a deeper appreciation for the discipline of mathe-

matics, for the remarkable work that mathematicians do, and the nobility of our

joint endeavor to share the beauty and power of mathematics with our students.

I’m fairly confident that I’m not alone in this sentiment.

1.4 The Present Study

This study is a phenomenological analysis of the kinds of struggle that

research mathematicians encounter when doing their research. In other words,

I’ve examined several mathematicians’ experiences with this kind of intellectual

challenge and given a series of case studies that, in a fashion similar to Merleau-

Ponty’s account of Schneider, seem to reveal previously unnoticed elements of how
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the experience is structured.

In order to gain something new from this analysis that wasn’t already in

mathematicians’ self-reports (e.g., Hadamard, 1949), it was necessary to observe

what mathematicians actually do when encountering struggle. In order to get

behavior that I could observe and later analyze, it was necessary to find situations

where mathematicians would work together in front of a blackboard to tackle a

problem together. Therefore, all the subjects observed in this study were working

in pairs.

1.4.1 Research Question & Overview

With this context in mind, then, here is the research question driving the

present study: What are some ways in which mathematicians structure their ex-

periences of struggle while working in pairs in person on a current problem?

In chapter 2 I’ll describe how this work is situated in the literature. Chapter

3 will detail the methodology used in this study to answer the research question,

including an overview of related methodological literature. Chapters 4, 5, and 6

present several case studies each as a means of answering the research question

above. Chapters 7 & 8 will summarize the results, outline the limitations of the

study, and suggest directions for future research.



Chapter 2

Literature Review

The literature relevant to the present study falls into two general categories:

work reflecting the practice, mentality, and experiences of mathematicians; and

writings pertinent to the theoretical framework used in this study. I will discuss

each in turn and then discuss how this background reflects on the research question.

2.1 Mathematicians

The math education research community has had a growing interest, partic-

ularly in the last decade, in exploring the skills, practices, and attitudes of math-

ematicians. There seem to be two main motives behind this. Some researchers

view mathematicians as experts in mathematical problem-solving, and therefore

the people whose abilities and methods we should investigate so that we can better

understand what we want students to emulate. For instance, within the context of

justifying exploring mathematicians’ approaches to proof, Weber & Mejia-Ramos

(2011) say:

If goals of mathematics instruction include having students (1) engage
in the same types of proof-related activities that mathematicians do,
(2) behave like mathematicians in these activities, and (3) adopt math-
ematicians beliefs regarding proof, then it is necessary to have an accu-

13
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rate understanding of the proof-related activities that mathematicians
engage in, how mathematicians perform them, and what their beliefs
about proof actually are. (Weber & Mejia-Ramos, 2011, p. 330)

The other main thread of research about mathematicians is more ethno-

graphical. These studies are aimed at exploring the social dynamics and con-

ventions of mathematical writing, seminar presentations, and collaboration within

math departments, among other facets of the mathematical experience. These

studies attempt to draw attention to subtle aspects of mathematicians’ work that

are often surprising to outsiders, such as the immense amount of creativity math-

ematicians consistently report is essential for their discipline (Burton, 2004; Davis

& Hersh, 1981; Devlin, 2000; Hadamard, 1949; Halmos, 1985; Thurston, 1994).

Such investigations often challenge conventional ideas about what mathematics is.

Each of these two branches — mathematicians’ problem-solving approaches

and expositions of the mathematical community of practice (Lave & Wenger, 1991)

— deserves its own focus. I’ll address each in turn.

Before going into each of these, though, I should mention in passing the work

that’s been done on impasse resolution and repair theory (Blumberg et al., 2008;

VanLehn, 1988, 1990, 1999; VanLehn et al., 1998). This research program has been

exploring in what ways students’ encounters with difficulty (i.e., the reaching of an

“impasse”) influence those students’ learning. This has produced some fascinating

results that relate to mathematical struggle in students, and as such it would be

necessary to account for this subfield in any studies that extend the present work

to students. However, as this dissertation focuses on mathematicians’ encounters

with struggle while working on novel mathematics, I shall leave a more thorough

review of literature on students’ struggles as they relate to learning to a future

research endeavor.
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2.1.1 Problem-solving

In his famous book How to Solve It, the mathematician George Pólya (1945)

outlined the overall process of problem-solving as mathematicians seem to think of

it. Specifically, he suggested a four-step process by which one solves a mathematical

problem:

1. First, one makes an effort to understand the problem, reading it over carefully

and noticing the relevant components, possibly drawing a picture or diagram

to capture important relationships. Pólya suggested that students should

understand the problem well enough to be able to restate it in their own

words.

2. Then one devises a plan for solving the problem. Here Pólya admits to

there being a plethora of approaches, and that one learns which approaches

are appropriate largely via experience and practice. However, he does list

several such as guess-and-check and looking for symmetry.

3. Next, one carries out one’s plan. Provided that one has the technical know-

how (e.g., you have the algebraic manipulation skills to follow through on a

strategy of solving an equation), Pólya seems to view this largely as a matter

of perseverance.

4. Finally, one reviews what one has done and reflects on what went well and

what didn’t. This encourages any lessons learned from the problem at hand

to be more available in future problem-solving situations where those tech-

niques or insights might apply.

However, even if Pólya’s descriptions might resonate with mathematicians’

experiences, they don’t seem to be a helpful medium for learning problem-solving

Livingston (1999); Schoenfeld (1987). Alan Schoenfeld relates a relevant personal

experience:
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Excited by my readings [about Pólya] in the early 1970s, I sought
out some problem-solving experts, mathematics faculty who coached
students for the Putnam exam or for various Olympiads. Their verdict
was unanimous and unequivocal: Pólya was of no use for budding young
problem-solvers. Students don’t learn to solve problems by reading
Pólya’s books, they said. In their experience, students learned to solve
problems by (starting with raw talent and) solving lots of problems.
(Schoenfeld, 1987)

Out of a desire to work out what can help students become better problem-solvers,

Schoenfeld (1985) developed a taxonomy of four key components of problem-

solving ability:

• Resources, which are mathematical understandings that a problem-solver has

available to them. For instance, familiarity with the rules for manipulating

algebraic symbols would be a resource. Resources can be formal (such as

knowing the ε-δ definition of continuity) or informal (such as knowing that a

continuous function won’t send two close-together points to radically different

locations in the range).

• Heuristics, which are strategies for problem-solving such as working back-

wards from the solution or drawing a picture.

• Control, which is the degree to which a problem-solver is able to call upon

resources. For instance, a student might know how to do integration by

parts, but whether they notice that they can use this resource on a specific

problem is a matter of what Schoenfeld calls control.

• Beliefs about mathematics and what it means to practice this. For instance,

Schoenfeld suggests that students often have a belief that math problems

should be relatively quick to solve and thus persistence isn’t seen as a math-

ematical problem-solving virtue.
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This framework shaped a great deal of the subsequent research on problem-

solving (Carlson & Bloom, 2005; Lester, 1994). Viewing mathematicians as “expert

problem-solvers,” it can seem natural to ask what resources, heuristics, methods

of control, and beliefs they have. Numerous researchers expand this to include

affect and metacognition, often associating affect with beliefs and metacognition

with control (e.g., Carlson, 1999b; Carlson & Bloom, 2005; Debellis & Goldin,

2006; Schoenfeld, 1992). I should note that this is significantly different from the

theoretical perspective of the present study, as I’ll explain in section 2.2. How-

ever, because of the history of this topic, it’s helpful to describe the literature on

mathematicians’ problem-solving skills using this language and general theoretical

framework.

Unsurprisingly, mathematicians display a rich and complex array of re-

sources. They seem to be able and willing to think about the structure of math-

ematical objects rather than just their definitions (Sinclaire & Talbaghi, 2010;

Weber & Alcock, 2004; Wilkerson-Jerde & Wilensky, 2011). For instance, in con-

trast to undergraduate math students, mathematicians are more likely to attend

to properties such as that the set Z of integers has a single generator as a group

while the set Q of rational numbers does not.1

We also find that mathematicians seem to involve metacognition deeply

in their practice (Carlson, 1999a,b; Carlson & Bloom, 2005; Schoenfeld, 1992;

Stylianou, 2002). Carlson & Bloom (2005) summarize many of these effects in their

Problem-Solving cycle (Figure 2.1), which they derived from coding the efforts of

mathematicians to solve several unusual problems related to calculus, geometry,

and combinatorics. Once a mathematician had gotten an overall sense of what the

problem was asking for (Orienting), they would plan out a possible approach for

moving forward (possibly on a sub-goal), execute their plan, and then evaluate how

1There’s an overview of what “group” and “generator” mean in this context in section 5.3.1
on page 145.
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Figure 2.1: Carlson & Bloom’s (2005) Problem-Solving Cycle
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effective it had been at achieving their original goal. If it proved inadequate, they

would cycle back and start planning anew. If it was successful, they would cycle

forward to start planning the next stage. Within the “planning” portion there was

a sub-cycle in which they’d form a conjecture, imagine cases in which they thought

their conjecture would hold, and verified whether it worked, producing further con-

jectures to help formulate their overall approach in solving the problem at hand.

Throughout this process Carlson & Bloom report that the mathematicians would

show signs of continual self-monitoring, reevaluating whether their current efforts

were moving them forward in a way that was likely to be fruitful.

Examinations of mathematicians’ affect (relating to Schoenfeld’s (1985) di-

mension of “belief”) as they engage in problem-solving also prove illuminating. Far

from a cold, passionless analysis of the truth or falsity of statements, we find that

mathematicians express a range of emotional and aesthetic attitudes toward their

problem-solving endeavors (Carlson, 1999a,b; Carlson & Bloom, 2005; Debellis &

Goldin, 2006; Hemmi, 2010). They express frustration during times of struggle,

confidence when asserting something sure and familiar to them, confusion when

something they thought would work behaved unexpectedly, and relief and delight

when making a breakthrough.

Carlson & Bloom’s sub-cycle of conjecture-imagine-verify bespeaks a per-

haps surprising finding noted elsewhere: mathematicians seem to employ heuristics

of inductive reasoning (Hadamard, 1949; Lakatos, 1976; Weber, 2008; Wilkerson-

Jerde & Wilensky, 2011). For instance, one of Weber’s (2008) subjects was pre-

sented with the assertion that n is not a perfect square given that n ≡ 3 (mod 4).

He responded like so: “I’m using examples to see what, where the proof is coming

from. So 52 is 25 and that’s 1 mod 4, 36 is 0 mod 4, 49 is 1 mod 4, 64 is 0 mod 4.

I’m thinking that, ah! So it is. . . 24 times 24, that’s 0 mod 4. So a perfect square

has to be 1 mod 4, doesn’t it? n2 equals 1 mod 4 or 0 mod 4. Alright” (p. 443).
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As Weber points out, this is what Harel & Sowder (1998) refer to as an empirical

proof scheme, and in classrooms it’s typically considered to be a flawed approach to

producing or verifying proofs, along with authoritarian proof schemes (i.e., those

based on reference to who made the claim rather than how the claim was made)

— which we also find mathematicians using at times. It seems as though math-

ematicians are sometimes satisfied with an assertion as long as it seems plausible

to them and/or comes from a credible source rather than because they necessarily

have a full proof in mind.

It should be mentioned that after about 1990, the research on problem-

solving moved away from the heuristics-based model Schoenfeld (1985) had initially

described. Heuristics and beliefs were recognized as intertwined, and Schoenfeld

(1992) added a fifth category of “practice” due to the work that had been done

in the years since he had first proposed the framework. Today the focus seems to

have shifted toward teaching through problem-solving and placing the emphasis

on “modeling” (Lester & Kehle, 2003; Lester & Lambdin, 2004). However, the

considerable majority of the work done on exploring the problem-solving behavior

of mathematicians occurred within the earlier theoretical context. Therefore, that

more recent literature will not be reviewed for the present study.

2.1.2 Mathematical Culture

The Euler characteristic

The brilliant mathematician Leonhard Euler observed an initially surprising

pattern about polyhedra: if one were to count up the number f of faces, the number

e of edges, and the number v of vertices (i.e., corners), then:

v − e+ f = 2
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Figure 2.2: A cube

Figure 2.3: Pyramids — a triangular, square, and pentagonal pyramid, respec-

tively

For instance, on a cube (Figure 2.2), there are six faces, twelve edges (four for the

top square, four for the bottom square, and four lateral edges connecting the two

squares), and eight vertices (four for each of the top and bottom squares) — and

we have 6 − 12 + 8 = 2. We can sort of see where this characteristic comes from

in highly regular shapes like pyramids (Figure 2.3): by going counterclockwise as

viewed from above, we can match up each edge with either a face or a vertex, and

after the pairing we’ll be left with a total of two features uncorrelated with edges

(a vertex at the top and a face at the bottom in the case of pyramids, the top and

bottom faces in the case of the cube).

The mathematician Augustin Cauchy proposed a proof of this, which is
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Figure 2.4: Cauchy’s proof of the Euler characteristic for the cube (from http:

//tinyurl.com/cauchycube)

illustrated in the case of the cube in Figure 2.4. If we remove a face and flatten the

shape out, we should end up with a collection of faces, vertices, and edges whose

alternating sum is 1. We can freely add diagonal cuts across the faces remaining

since every cut adds an edge but also adds a face, thus leaving the characteristic

as 1. We can then remove one triangle from the periphery, which amounts to

removing one edge and one face (again leaving the characteristic at 1). If we must

remove two edges, then we also have to remove the vertex where those edges meet,

again leaving the characteristic unchanged. Eventually we should be left with

just one triangle, which has one face, three edges, and three vertices. We could,

therefore, reverse this process to create the original polyhedron, demonstrating

that its alternating sum must be 2.

The problem is that this turns out to be false. For instance, the alternating

sum for the shape in Figure 2.5 turns out to be zero. This was reason for some

concern, since there seemed to be a proof of a statement that turns out to be false.

Lakatos (1976) refers to this phenomenon as proof and refutation, noting that part

of mathematical discovery seems to involve coming across hidden assumptions.

A solution to this curiosity finally appeared when Henri Poincaré suggested

generalizing the counting method. We can draw a collection of curvy triangles

over a surface S in a particular way (e.g., if two triangles touch they must share

http://tinyurl.com/cauchycube
http://tinyurl.com/cauchycube
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Figure 2.5: A polyhedron with Euler characteristic different than 2 (from http:

//tinyurl.com/toruslike)

vertices), and then we can define the (generalized) Euler characteristic χ(S) to be

the alternating sum based on these triangles. This lets us talk about the Euler

characteristic of a sphere, for instance: we can think of the equator as having three

vertices and three edges between them, and then the top and bottom hemispheres

are the faces of two different (curved) triangles.2 In this case we can see that the

Euler characteristic of a sphere is 2.

Rather than asking why so many polyhedra have an Euler characteristic

of 2, it becomes sensible to ask the question in reverse: for which spaces S is

χ(S) = 2? It turns out that any space you can smoothly deform into being a

sphere will have this property. That is, if the shape were a balloon, if inflating it

would make it a ball then its characteristic is 2. This is true in particular for all

convex polyhedra, which is why Cauchy’s proof seems to work on so many familiar

polyhedra but fails for the one in Figure 2.5.

The central value gained here, however, was not just an explanation of when

the Euler characteristic is 2. Asking the question “backwards” like this opened the

2A picture, unfortunately, isn’t very helpful here: it will simply show three dots on the equator
of a sphere to represent the three vertices of each triangle.

http://tinyurl.com/toruslike
http://tinyurl.com/toruslike
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pathway for what later became a major branch of mathematics known as topology.

To a first approximation, topology is the study of what one can do to alter a shape

without changing given characteristics of that shape. Today topology is a subfield

of a size comparable to abstract algebra and analysis (the formal extensions of

elementary algebra and calculus, respectively).

The cultural role of proof

The story of the Euler characteristic bespeaks an often surprising pattern

in the culture of mathematical research. It would seem that with relatively rare

exceptions, mathematicians do not read proofs in order to determine the proofs’

correctness. Rather, they seem to read them in order to learn new techniques or to

gain insight into why the theorem is true (Burton, 2004; Hemmi, 2010; Rav, 2007;

Thurston, 1994; Weber & Mejia-Ramos, 2011). Several of the mathematicians in

Weber & Mejia-Ramos’s (2011) study mentioned that there simply isn’t enough

time for them to verify proofs line by line, and that frequently when reviewing

papers submitted to academic journals of math they would examine the paper

more based on whether the content seemed interesting than on whether each claim

followed from those prior to it. “[Mathematicians] are usually not very good in

checking formal correctness of proofs, but they are quite good at detecting potential

weaknesses or flaws in proofs” (Thurston, 1994, p. 9).

Accenting this, it would seem that there’s something of a discrepancy

between the formal foundations of mathematics and mathematics-as-practiced

(Fisher, 1973; Kleiner, 1991; Livingston, 1986; Steingart, 2012; Thurston, 1994).

For instance, Gödel’s Incompleteness Theorem throws into question the feasibility

of ever having a consistent foundation for mathematical reasoning — and yet we

find mathematicians essentially unmoved by this in practice. In practice, mathe-

maticians seem to want to explore possibility and develop models and infrastruc-
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ture to help them understand mathematical phenomena. The shaky foundations

of their discipline seem to be an amusing afterthought rather than something that

bears on how they think or what they do.

Occasionally some particular theorem looms large in the cultural awareness

of the mathematics community, and at such times we can see what it is about

proof that interests mathematicians as a collective. Andrew Weil’s proof of Fer-

mat’s Last Theorem3 received more scrutiny than most other theorems due to the

history of the conjecture (Boyer, 1968; Kleiner, 1991), but the central value that

the community found in Weil’s contribution was the collection of methods he in-

vented rather than a demonstration of this relatively isolated fact (Aczel, 1996;

Thurston, 1994). By way of contrast, as of the 1970’s the famed Poincaré Con-

jecture4 had produced a flurry of intense work and was highly valued for its own

sake, but it was considered an unfruitful (“unsuccessful”; Fisher, 1973, p. 1104)

problem because the work that had been put into it failed to produce much in the

way of interesting mathematics (Fisher, 1973). (This changed later: in the 1980’s

the idea of Ricci flow was introduced in part as a way of proving the conjecture,

which finally happened in 2006.) We also find that sufficiently rich and successful

theorems can also have the effect of diminishing subfields, as happened with the

proof and subsequent compiling of the Classification Theorem in finite group the-

ory5 (Steingart, 2012) and with Thurston’s (1994) work in a domain known as the

“theory of foliations.” Time and time again, we see that the communal interest

in theorems seems to be driven by the promise of techniques and insights to apply

3In short, the theorem states that there are no triples of integers (x, y, z) for which xn + yn =
zn for any integer n > 2. That is, although there are Pythagorean triples like (3, 4, 5) (as
32 + 42 = 52), there are no “super-Pythagorean” triples.

4Roughly speaking, this says that anything that topologically looks roughly like a 3-
dimensional sphere in 4-space is, in fact, a 3-sphere (i.e., the set of solutions to x2+y2+z2+w2 = 1
viewed geometrically).

5To a first approximation, this theorem describes the complete set of the analogs to prime
numbers in finite group theory. See section 5.3.1 on page 145 for a brief overview of the idea of
groups.
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elsewhere.

Part of becoming a mathematician, then, requires enculturation into these

perspectives on proof (Burton, 2004; Geraniou, 2010; Hemmi, 2006). Math majors

and graduate students have to wrestle with a seemingly paradoxical and implicit

idea of what constitutes a proof and what the social and intellectual roles of proof

are. Furthermore, different subfields of math have different standards for proof and

express their ideas with different language and intellectual infrastructure, which

can make communication across sub-disciplines challenging (Beswick et al., 2010;

Burton, 2004; Thurston, 1994). Just as with joining any community of practice

(Lave & Wenger, 1991), becoming a mathematician requires gaining familiarity

with the nuances of actual practice, which can differ (sometimes dramatically)

from what someone from outside the community might think the practices are.

Dovetailing the observations of how mathematicians engage in problem-

solving, mathematicians also report powerful affective elements in their practice

(Burton, 2004; Davis & Hersh, 1981; Devlin, 2000; Hadamard, 1949; Halmos, 1985;

Poincaré, 1952). It’s common for them to refer to proofs with language such

as “beautiful,” “elegant,” or “ugly,” and some of the more common criteria for

judging the value of a published proof or area of study is whether it’s “significant,”

“interesting,” or “exciting” (or, on the negative side, “trivial”). Euphoria is a

fairly common way of describing the emotional experience that accompanies a

breakthrough on a problem they’ve been struggling with for some time.

Communication within the community

It’s worthwhile to note, though, that the formal mathematical literature

seems to be largely devoid of these references to affect (Burton, 2004; Burton &

Morgan, 2000; Fisher, 1973; Rav, 2007). Feelings appear to be mixed on this mat-

ter: some mathematicians think of the rigor and formalism that the community
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expects as providing a helpful and productive constraint (much as writing down

one’s thoughts can help clarify them), while others lament the breakdown of com-

munication and the effort it takes to figure out what the key ideas of a given paper

are. One of Burton & Morgan’s (2000) subjects articulates this last perspective

fairly succinctly:

I get annoyed with some of my collaborators and a lot of the papers
I am sent, which are definition, theorem, lemma, proof. That seems
to me to be appallingly bad. It is the sort of thing that no one is
ever going to want to read. I think it is important to grab the reader
from the opening sentence. Not “Let A be a class of algebras such
that. . . .” Change it to “This paper opens a new chapter in duality
theory.” (Quoted in Burton & Morgan, 2000, p. 449)

A similar tone appears in colloquia, seminars, and other presentations-based

environments, it would seem (Barany, 2010; Barany & MacKenzie, forthcoming;

Burton, 2004; Greiffenhagen, 2008; Thurston, 1994). Many mathematicians seem

to have a sincere desire to share their insights with others in the mathematical

community. Yet there are considerable challenges to succeeding in this domain,

such as the often unexpectedly large inferential distance between subfields and the

tendency to present in more technical precision than necessary for what many audi-

ence members are looking for. Thurston (1994) describes this in a rather negative

tone, giving the impression that virtually no one at mathematical colloquia get any

benefit past the first five or so minutes of a presentation. Barany & MacKenzie

(forthcoming), to offer some contrast, suggest that members of the audience “do

not aim for a detailed working knowledge of the results being presented—this can

take years to acquire (after which the talk would not have much to offer)—but

rather comprehend the talk in the sense of following the argument, engaging with

the talks conceptual narrative and technical and heuristic manipulations” (Barany

& MacKenzie, forthcoming, p. 6, emphasis in the original).
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Who is speaking or writing also plays a rather significant role. One of the

reasons Hadamard (1949) conducted his exploration of the psychology of mathe-

matical invention was because an earlier study that had explored that domain had

neglected to reference anything about mathematicians’ failures, which was some-

thing Hadamard felt that “only first-rate men would dare speak of” (p. 10). In a

similar vein, Burton (2004) and Burton & Morgan (2000) noted that the statement

“it is difficult to show that” takes on a very different character depending on whom

the author is: a mathematician who has just recently received their Ph.D. is likely

to be seen as showing their inexperience or lack of skill, whereas an established

and respected member of the community with major contributions under their belt

will tend to be perceived as acknowledging a difficulty that is in the problem itself.

Far from being an abstract description of truth, then, we find that commu-

nication in the field of professional mathematics is culturally mediated and nuanced

— indeed, as we find in other communities of practice (Lave & Wenger, 1991).

Teaching attitudes & practices

When it comes to questions of teaching mathematics, it would seem that

mathematicians show a complex — and at times paradoxical — range of attitudes,

in terms of both stated beliefs and perspectives revealed through their actions.

On one hand there’s often a great deal of optimism about students’ ability to get

into the mathematics (Brown, 1993; Devlin, 2000; Hemmi, 2010; Nardi, 2007; Tsay

et al., 2011; Weber, 2004). Oftentimes mathematicians in the role of college in-

structor will go to considerable lengths to clarify the “big ideas” of a proof, the

rationale behind a method, or how they think about the behavior of some mathe-

matical object. Although they seem to generally default to lecture-based teaching

methods, their inclination is often to find a spin on the presentation style that will

help to elucidate the ideas to the students more vividly. Getting students involved
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in asking and attempting to answer questions is often a pedagogical ideal and

several mathematicians report having strategies for accomplishing this, although

frequently with a sense of results being mixed (Burton, 2004; Nardi, 2007).

On the other hand, a certain sense of pointlessness to pedagogical methods

sometimes arises (Fukawa-Connelly, 2012; Nardi, 2007; Thurston, 1994). At times,

many mathematicians see students “learn anyway” (Nardi, 2007, p. 256) seemingly

irrespective of the quality of teaching offered. It’s as though sometimes it can seem

that the ability to learn math is a trait of individual students, and the role of the

professor is to model good mathematical reasoning so that those students who are

willing and able to think about the material can have something to work with.

However, I should be quick to add that this is certainly not a universal attitude,

and many mathematicians who occasionally espouse such a view will also pour their

effort and hope into clearer presentation styles and different classroom didactical

patterns.

2.2 Theoretical Framework

In investigating the experiences of mathematicians, I employ analytic tools

from phenomenology contextualized in a way that critically scrutinizes mind/body

dualism. In chapter 3 I’ll describe what those tools are and how I use them, but

first I must explain their theoretical origin. I do so here.

2.2.1 Phenomenology

Temporality

In listening to Vivaldi’s “Spring,” I am struck with a brightness about the

music. The strings create a rolling landscape of melody that seems to uplift and

almost skip along. During a portion in the middle all but two the instruments
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pause, leaving the flittering sounds that remain to convey an impression that to

me always calls to mind a pair of birds flying playfully together. Later the darker

sounds of minor key convey the passage of a storm, and then a bright shift back

to the growth and abundance of spring.

You and I might have different impressions of Vivaldi’s piece. Perhaps you

are a performing musician and can appreciate the technical details of how the

music is performed much better than I can, or maybe you do not care for classical

music. But one thing remains fairly certain: if we were to play the piece, you

would probably not hear random isolated notes. You would hear a melody.

This deserves some close examination. When we hear someone plunk out

the notes C, D, E on a piano, we hear one note at a time at any given moment. Yet

our experience is not of three distinct notes without relation to one another; rather,

there is a coherence to the experience that conveys the sense of a progression of

notes. Upon the sounding of E, our sense of having heard C and D is still present

with us in a way, shaping our experience of E. Furthermore, this isn’t quite memory;

remembering the first two notes of a melody is a fundamentally different kind of

experience than is experiencing the third note right after the first two have just

been played.

The philosopher Edmund Husserl referred to this phenomenon as retention,

in contrast to recollection (Gallagher & Zahavi, 2008; Zahavi, 2003). Symmetric to

retention is protention, which is an immediately felt anticipation of what is about

to transpire. This is what provides room for surprise: we believe we know what

is coming and then find our expectation confounded. It also gives us the ability

to feel satisfaction in predictability, as when we delight in listening to a beloved

piece of music and hear our expectations so precisely and pleasurably met. And

much as retention is subtly but importantly different from memory, protention is

distinct from imagination.
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The point of such an analysis is to illustrate that our experience of temporal

phenomena like music, speech, and dance cannot be a succession of moments like a

string of beads. Instead, it seems that our experience is spread over an immediately

felt past and an immediately anticipated future. As we examine our own experience

we can become aware of this — but until it is pointed out to us or we think to

reflect on it, it is an invisible feature of the structure of our experience rather than

something to be considered and examined.

Husserl on psychologism and the foundations of science

This examination of temporality is a specific example of a result from a

phenomenological analysis. Phenomenology is the study of phenomena, which is

to say, experiences as they are presented. This is in contrast to reductionistic

analyses, in which we might ask what causes retention and protention — e.g.,

what brain regions might be involved and how they might work together to present

the impression of a coherent moment. It is the impression itself whose structure

phenomenologists are interested in, regardless of how it might come into being

“behind the scenes.”

Phenomenology emerged in part out of Husserl’s effort to address an idea

known as psychologism (Husserl, 1901; Zahavi, 2003). Psychologism suggests that

the rules of logic are the result of properties of psychology. For instance, modus

ponens6 is a valid rule of inference to us because our minds are structured in such

a way as to find it compelling. Were our minds structured differently, we might

find that we disagree with modus ponens in favor of some other rule.

Husserl’s (1901) concern, in short, is that if logic is a subset of psychol-

ogy, then with what shall we deduce the properties of psychology? This apparent

incoherence in psychologism, Husserl argues, suggests that we cannot take a sub-

6This is the logical rule saying that if we know “A implies B” and we also know “A,” then we
may conclude “B.”
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jectivist approach to logic and deduction. Instead, we must justify the foundation

of empirical sciences in the nature of the medium through which we are capable of

empiricism in the first place: conscious experience.

Yet if we are to understand the sciences as emerging from experience, it

becomes necessary to understand the structure of that experience (Gallagher &

Zahavi, 2008; Zahavi, 2003). The structure and character of vision becomes key

to reading measurements and observing experimental results, the fabric by which

our sense of something being “an object” gives us insight into what it means to

observe some thing at all, and the nature of temporality frames the way in which

we’re able to make sense of cause-and-effect, to name just a few examples.

Other-directed phenomenology

I should emphasize that, while phenomenology can focus primarily on the

phenomenologist’s experience, it needn’t be so restricted. Max Scheler points out

that our impressions of other people’s emotional states are immediate. We do

not recognize that someone is sad, for instance, because we watch their downward

gaze, slouched body posture, and slight downward turn of the corner of the lips

and from this deduce that they are sad. Rather, we see them and are struck with

an impression of sadness, which is often mirrored in ourselves to some degree as

part of our awareness of their emotional state. It is after this impression arises

that we can consciously reflect on their body posture, tone of voice, and so on to

work out how the impression might have come in the first place.

Just as in the case of examining our own experiences, there are always

possible “errors” that we sometimes realize by further examination of their context.

What we thought was sadness might turn out to be the other simply being lost in

thought, and there is always the possibility for deception. Yet just as often we can

be aware of another’s emotional reactions before they are, such as when a friend
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shows us concern when we didn’t consciously realize that we were bothered.

We saw this possibility for other-directed phenomenology in Merleau-Ponty’s

(1962) analysis of Schneider (section 1.2.1). We also see it in Noble et al.’s (2006)

exploration of students’ phenomenology of tool-use: by carefully examining stu-

dents’ behavior with an eye toward the structure of their experience, Noble et al.

were able to illuminate how the tool, their use of the tool, and the “lived-in space”

intertwined to define the way in which the process of drawing a circle unfolded for

them.

2.2.2 Embodiment and Cartesian Dualism

One potential source for complication here is in implicitly viewing subjects’

behavior as offering hints into their hidden, private mental processes. Much of the

literature on gesture, for instance, talks about gesture as a window into the mind

(Alibali et al., 1999; Alibali & Goldin-Meadow, 1993; Church & Goldin-Meadow,

1986; Goldin-Meadow, 2003; Hostetter et al., 2007; LeBaron & Koschmann, 2003;

McNeill, 1992, 2005; Stone et al., 1991). In other words, mental and physical

processes are being viewed as two fundamentally different kinds of activity, and

when observing others we can access the former only by careful scrutiny of the

latter — and even then, the strength of our conclusions depends on the strength

of the correlation between mind and body.

However, there is reason to question this division. For instance, my ability

to recognize a pencil as such comes bundled with it a whole realm of possibilities: I

could walk around it and look at it from various angles, lift it and move it around,

write with it, roll it across the table, and so on. Yet when I recognize the ability

to snap it in half and use it as kindling for a fire, something subtle shifts in what

that object is for me. Research on patients with lesions in the prefrontal cortex —

the region of the brain primarily responsible for impulse control — suggests that
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this perception of affordance accompanies a neurological impulse to physically

initiate the perceived-as-possible task (walking around the object, picking it up,

etc.) (Aron et al., 2007). In other words, it seems as though we cannot separate

our recognition of, or conception of, an object like a pencil from our body-felt

sense of how we could interact with it and how we anticipate those interactions

will affect what we experience.

In light of this, I join with others in rejecting the Cartesian mind/body

dualism altogether (Gallagher & Zahavi, 2008; Nemirovsky & Ferrara, 2009; Ne-

mirovsky et al., forthcoming; Noble et al., 2006; Roth & Thom, 2009; Thom &

Roth, 2011). For instance, in observing a student solving a word problem in alge-

bra by writing down a polynomial, I do not assume that the writing exhibits their

thoughts; rather, their physical interactions with the algebraic symbols shape their

experience of the mathematics. Were we to remove their use of the polynomial,

their encounter with the problem would take on a different character. Further-

more, the inscriptions that they experience as “a polynomial equation” have their

meaning because of the interaction, not because of any property of the inscriptions

themselves. As in the pencil example, we cannot separate physical action, percep-

tion of affordance, and cognition in the student. They are all part of an intertwined

whole.

Because this perspective intertwines cognition with physical action, it is

sometimes referred to as “embodied cognition.” However, we must be cautious

with this term for two reasons. First, the phrase “embodied cognition” can seem

to imply that there might be such a thing as non-embodied cognition. It’s impor-

tant to realize that this perspective is embodied cognition in the sense of viewing

all cognition as embodied, which is to say, intertwined with actual or possible

perceptuo-motor activity (Nemirovsky et al., forthcoming; Nemirovsky & Smith,

2011).
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Second, there are many theoretical and empirical works that can fall under

the umbrella of “embodied cognition” (Barsalou, 1999; Hutchins, 1999; Wilson,

2002). For instance, one account of abstract reasoning (including mathematical

thinking) that comes out of cognitive science proposes that we apply conceptual

metaphors or conceptual blends in order to build the abstractions from more basic

components (Gibbs et al., 2004; Lakoff & Johnson, 2003; Lakoff & Núñez, 2000;

Núñez, 2008; Núñez et al., 1999). As a specific example, Lakoff & Núñez (2000)

suggest that complex numbers might emerge by combining the idea of the real

number line (constructed from previous conceptual metaphors) with the sense of

rotation involved in multiplying by −1, so that “half-multiplying” by −1 (i.e.,

multiplying by
√
−1) would result in rotating half-way from positive to negative on

the real number line. In other words, they suggest that the fact that multiplication

by i rotates numbers by 90◦ in the complex plane might be how the complex plane

is cognitively constructed (in terms of conceptual metaphor) rather than being a

result of its definition.

This theoretical perspective has methodological implications — but those

will be explored in the next chapter.

2.3 Situating the Research Question

Recall the research question, first expressed on page 12: What are some

ways in which mathematicians structure their experiences of struggle while working

in pairs in person on a current problem? With the literature outlined in this

chapter, there are three points to focus upon in this question:

• The structuring of experience

• The process of working in pairs in person

• Their working on a current problem
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The structuring of experience refers to a phenomenological examination. The

work done on mathematicians’ problem-solving skills has typically focused on what

mental constructs or strategies mathematicians bring to bear on problems. While

this is valuable work and has given us a number of insights into mathematics as

practiced at the frontier of mathematical knowledge, the implicit focus on mental

structures has left the domain of how struggle is experienced largely unexplored.

This is precisely the sort of domain for which phenomenology seems to be best

suited.

The reason for watching mathematicians working in pairs in person is to

encourage the mathematicians to enact some of the physical behaviors that help to

constitute their sense of what the mathematical ideas are. Many mathematicians

report working on mathematics while doing solo activities that to an outsider

would seem totally mundane, such as taking a walk or driving (Burton, 2004;

Hadamard, 1949; Poincaré, 1952). Such activities wouldn’t afford us much to work

with. But if we can watch mathematicians working under the constraint of needing

to articulate their thinking with a mathematical partner, we significantly increase

the likelihood of gaining insight into how they’re thinking about the mathematics

on a moment-to-moment basis.

Finally, we want to examine them working on a current problem because

this is where the literature mentioned earlier in this chapter suggests we should

see the kind of struggle that mathematicians engage in while working out new

mathematics. While we could have chosen to look at mathematicians engaging

in prepared problems as Carlson & Bloom (2005) do, doing so would distance us

from our present aim of exploring struggle as mathematicians experience it in the

course of their own research.



Chapter 3

Methodology

Because of the theoretical framework described in section 2.2, the methodol-

ogy the present study calls for is different in some key ways from what one normally

finds in math education research. In this chapter, then, I’ll start by contextualizing

my study with an overview of methodologies used to investigate mathematicians’

practices. I’ll then describe the literature for methods most closely related to those

used in this dissertation. With that background I’ll finally detail what was done

to collect, process, and analyze the data to answer the research question.

3.1 Prior Methodological Trends

In terms of the methodologies used to investigate mathematicians’ prac-

tices and culture described in chapter 2, the earliest and most abundant mate-

rial comes from the reflections of the mathematicians themselves, whether self-

prompted (Brown, 1993; Davis & Hersh, 1981; Devlin, 2000; Hadamard, 1949;

Halmos, 1985; Poincaré, 1952; Pólya, 1945; Schoenfeld, 1992; Thurston, 1994) or

based on researchers requesting such reflection from them (Burton, 2004; Edwards,

2010; Hadamard, 1949; Hemmi, 2006; Liljedahl, 2004; Sinclaire & Talbaghi, 2010).

These range from Thurston’s (1994) reflections on his experiences to Hadamard’s

37
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(1949) synthesis of his and his colleague’s encounters with bursts of mathemati-

cal insight to Burton’s (2004) exploration of trends resulting from interviews of

numerous mathematicians.

Another body of literature explores the ways in which mathematicians solve

challenges during an interview. Many of these provide the mathematician in ques-

tion with a problem, paper, or argument from a generally accessible domain like

calculus or group theory (Carlson, 1999a; Carlson & Bloom, 2005; DeFranco, 1996;

Edwards, 2010; Stylianou, 2002; Weber, 2008; Weber & Alcock, 2004; Wilkerson-

Jerde & Wilensky, 2011). The most common methodology employed in such stud-

ies is a think-aloud protocol (Ericsson & Simon, 1993), although some studies such

as Edwards (2010) and Sinclaire & Talbaghi (2010) instead examine mathemati-

cians’ gestures as they explain their thinking.

A few studies emphasize the examination of mathematicians’ published

writings (Burton & Morgan, 2000; Fisher, 1973; Lakoff & Núñez, 2000; Livingston,

1986, 2006; Rav, 2007; Steingart, 2012). By and large, these are attempts to ex-

plore the way mathematical ideas and practices actually appear rather than work-

ing from schemata of “public” mathematics. The exceptions tend to put emphasis

on social characteristics of publishing practice (Burton & Morgan, 2000; Steingart,

2012) or investigate formal mathematics in order to better understand the nature

of mathematical cognition (Lakoff & Núñez, 2000).

Finally, a collection of works emerge from observations of mathematicians

“in action” such as while teaching or giving presentations (Barany, 2010; Barany

& MacKenzie, forthcoming; Fukawa-Connelly, 2012; Greiffenhagen, 2008; Greiff-

enhagen & Sharrock, 2011; Nemirovsky & Smith, forthcoming, 2011; Núñez, 2006;

Tsay et al., 2011; Weber, 2004). These tend either to focus on embodied (often

multimodal) phenomena such as gesture (Barany, 2010; Barany & MacKenzie,

forthcoming; Greiffenhagen, 2008; Greiffenhagen & Sharrock, 2011; Nemirovsky &
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Smith, forthcoming, 2011; Núñez, 2006) or to attend to didactical moves (Fukawa-

Connelly, 2012; Tsay et al., 2011; Weber, 2004).

The study that comes closest to the present one in terms of methodology

is Greiffenhagen & Sharrock (2011), who in their second case study examine the

interplay between a Ph.D. student and his advisor. However, the doctoral student

there had not yet determined his dissertation topic; instead, he was attempting

to decide a dissertation topic with his advisor’s guidance. The present study, by

contrast, examines mathematicians working on problems at the frontier of mathe-

matical understanding. Also, Greiffenhagen & Sharrock were focusing on the role

of apparent fallibility or infallibility in both the creation (“back”) and presentation

(“front”) of mathematics, rather than how their subjects were phenomenologically

structuring their encounters with struggle.

The literature appears to lack an enthography of mathematicians working

on problems that are current to the field. The present study offers an opening into

this area of investigation.

3.2 Methodological Background

3.2.1 Phenomenological Methods

As explained in section 2.2.1, the aim of a phenomenological investigation

is to recognize and capture (usually via description) the structure of a given ex-

perience “as-is.” For instance, rather than asking how our ears can pick up the

sound of music or how our brains recognize a melody, a phenomenologist would

want to explore how it is that we structure our experience such that we hear a

melody rather than just a sequence of notes.

The central challenge to phenomenology is in examining and articulating

the structure of experience rather than simply writing down speculations. It’s



40

not enough, for instance, simply to jot down impressions and free associations

while listening to Beethoven’s symphonies. Doing so might be interesting, but it’s

unlikely to capture the structure of the experience.

Gallagher & Zahavi (2008) outline one solution to this, capturing elements

that appear in most phenomenological methods based on Husserl’s ideas (Husserl,

1901; Palmer, 1994; Zahavi, 2003):

• Performing an epoché (or equivalently, “bracketing” the topic in question)

• Phenomenological reduction

• Eidedic variation

• Intersubjective corroboration

The epoché is a shift away from presumptions about the experience. For instance,

when we watch a bird in flight, we are usually tempted to assume that there

really is a bird there and that this is why we see it. Bracketing this experience

doesn’t deny that there is a bird there, but it doesn’t affirm it either. It is an

intentional shift away from mentally asserting how it is that the experience arises

or what it means, instead choosing to remain open and curious about the way the

experience is presented. In doing this, we become capable of recognizing that we

see certain colors and shapes, that there is also an impression of movement, and

that these visual sensations together with the context immediately present us with

the impression of a bird.

It should be emphasized that this is not a matter of introspecting on our

impressions of our experiences. We do not ask ourselves how we think our impres-

sions of the bird arise. The attention is directed at the experience itself. Were

we to turn our attention instead to our reactions to the experience, the reactions

would then become the experience that we would want to bracket and examine.
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For instance, in watching the flying bird, we might feel a sense of freedom com-

bined with a subtle longing. In bracketing the experience, we might note that the

longing has a drawing-in character, but also a physically felt sense of being unable

to comply with that draw. This is dramatically different from an introspective

account, which might explore questions like why the experience arises in the first

place or what thoughts or feelings we might associate with it.

For example, how do we go about describing the experiential difference
between tasting wine and tasting water, between hearing a foghorn
and seeing the full moon, or between affirming and denying that the
Eiffel Tower is taller than the Empire State Building? Do we do so
by severing our intentional link with the world and by turning some
spectral gaze inwards? No, rather, we discover these differences, and we
analyse them descriptively by paying attention to how worldly objects
and states of affairs appear to us. (Gallagher & Zahavi, 2008, p. 23)

It’s worth noting that there are two steps in this process. The first is

a relinquishment of presumptions about what a given experience means or how

it arises. This is the epoché. The second is an examination within the mental

framework of an epoché; it is here, for instance, that we note that our experience

of the bird’s flight has characteristics that distinguish it from an experience of, say,

lifting a heavy box. This second piece is the phenomenological reduction.

Moustakas (1994) describes the phenomenological reduction in somewhat

more detail than do Gallagher & Zahavi. In doing so he introduces a rigidity to

the reduction that not all phenomenologists agree with, but it is still illustrative

to consider his take on the topic as a way of better understanding at least one way

in which it might work. Moustakas’s approach includes three components of the

reduction: horizontalization, delimiting horizons, and textural qualities.

Horizontalization is a natural extension of bracketing in which we view

every component of the experience as having equal weight or value. For instance,

in watching the flying bird, we do not place greater importance on any of the

sight of the bird’s movements, our anticipations about how the bird is about to
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move, or the slight feeling of effort and awkwardness in our neck that comes from

looking upward. Different components of the experience might be more salient, but

salience is considered an aspect of the experience to be examined rather than an

indication of importance. Indeed, the very question of “importance” vanishes in a

phenomenological examination, except to the extent that the sense of importance

is itself subject to exploration.

As the bird swoops down toward a tree branch, we might feel some antici-

pation that the bird might change its movement and land. We probably would not

anticipate that it would turn into an anvil and break the branch. This is some-

thing of an extreme illustration, but it highlights Moustakas’s second point about

the reduction: experiences have natural domains within which our examination is

likely to apply. Husserl made reference to this via the term “horizon” (Husserl,

1901; Zahavi, 2003). This is intended via analogy: when looking over a landscape,

we can clearly tell what is within it and can tell that there is a horizon dividing

what we can see from that which is surely beyond it. Yet we would be hard-pressed

to draw a pencil-thin line on the terrain where the horizon actually is. In a similar

way, although there’s a clear sense of “within” and also of “without” with respect

to a phenomenon (e.g., we know what it’s like to watch a bird in flight and can tell

it’s different from other experiences like eating a strawberry), we generally cannot

define a clean and clear boundary. Yet there is a horizon, and part of the reduction

involves outlining the extent of the “terrain” being examined even if we cannot

always say exactly where one type of experience ends and another begins.

Moustakas’s third component of the phenomenological reduction involves

examining the “textural qualities” of the experience and articulating them. For

instance, as I write this I can reach down and touch the surface of the table my

keyboard is resting on. I notice that when I lightly brush it, my finger slides easily,

with a hint of pulling as I move my finger parallel to the surface. There’s a slight
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vibration as I do this, which causes a feeling similar to tickling to reach into the

pads of my finger. When I press a little harder, the subtle stickiness dominates

and there’s a considerable increase in the effort I have to place in pulling my

fingers along the surface of the table. The tickle-like feeling is almost entirely

gone, except for a highly dimmed version around the edge of the greatest pressure.

The transition is rather brisk: it seems to take very little increase in pressure to

create a strong prominence of stickiness over smoothness.

In doing this, I continually bracket the experience, repeatedly setting aside

thoughts such as the physics of where the vibration comes from or how my nerves

cause the ticklish sensation to seem to reach inside my fingers. Instead, I reorient

myself on the experience itself, and reorient and re-open as many time as needed.

In this particular example I gave relatively little evidence of horizontalization or

delimiting horizons (which a more in-depth analysis might have done), but I did

attend to the matter of textural qualities: how it felt, what qualities presented

themselves to me, how the qualities seemed to relate to one another, etc.

Gallagher & Zahavi’s (2008) third component of phenomenological methods

— eidedic variation — corresponds to what Moustakas (1994) refers to as “imag-

inative variation.” The central idea is to vary the experience to see what keeps

it “the same” (and in what ways) and what causes it to appear to change. For

instance, would a melody retain its melodic nature if it were to lose its affective

response and become just sounds? What if pitches seemed to go left/right instead

of up/down? What if the pitches didn’t seem to have a directionality at all?

This approach — varying the experience with imagination — emerged from

Husserl’s idea of experiences as having essences (Zahavi, 2003). The idea is that

there is something core to the experience of a melody that makes it melodic, or

something key to watching a flying bird that makes that experience what it is. By

varying things that are attached to but not actually part of that essence, we can
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uncover this essence.

However, not all phenomenologists agree with this vision of Husserl’s. Merleau-

Ponty (1962), for instance, derived his idea of motor intentionality (explored in

section 1.2.1) by examining the experiences of someone who appeared to lack it.

He did not attempt to imaginatively vary the aspects that were not motor inten-

tionality, but instead did practically the opposite as a way of bringing our attention

to a facet of our daily experience that we typically are not aware of. We also see

Nemirovsky (2005) illustrate the difference between a location (e.g., “9110 Judicial

Drive”) and a place (“my home”), but in the spirit of exploring how places become

familiar to us and what that familiarity is experienced as rather than in an attempt

to articulate some essence of place-hood. Neither Merleau-Ponty nor Nemirovsky

are attempting to extract an “essence,” but are instead drawing our attention to

aspects of experience that we seem to all share.

However, the different approaches to phenomenology do appear to share an

interest in exploring the structure of experience rather than simply giving reports

of individuals’ perspectives.

. . . phenomenology is not interested in understanding the world accord-
ing to Gallagher, or the world according to Zahavi, or the world accord-
ing to you; it’s interested in understanding how it is possible for anyone
to experience a world. (Gallagher & Zahavi, 2008, p. 26, emphasis in
the original)

The fourth and final component of phenomenological methodology that

Gallagher & Zahavi reference is intersubjective corroboration. The idea here is

that because we can communicate with others about our phenomenological ob-

servations, we needn’t let the first-person focus of phenomenology totally isolate

us in our exploration of experience. Both you and I could explore the textural

differences between, say, visualizing a tiger and remembering an image of a tiger

seen in a video; and, having done so, we can compare our notes to explore the
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similarities and differences that appear to be between our encounters with these

phenomena.

Similarly, because phenomenology aims to articulate the structure of con-

scious experience as-is, we should expect that a sufficiently rich account is one

that others will relate to, illuminating some nuance of their own phenomena they

had perhaps not consciously reflected on before. We find this in Merleau-Ponty’s

account of motor intentionality, for instance: although we have perhaps always ex-

perienced a difference between artificial and instrumental movements, many people

do not notice this aspect of their experiences until it is illustrated, such as in the

case of Schneider.

As with eidedic variation, not all phenomenologists emphasize the impor-

tance of intersubjective corroboration. For instance, Moustakas (1994) makes no

such reference in his book on phenomenological methods. Max Scheler (2007) ar-

gues that we actually do not have the privileged access to our own experiences that

we seem to, implying that intersubjective corroboration is unnecessary. However,

phenomenology is culturally relevant in part because of the belief that it is possible

to communicate phenomenological insights to others. Even if this is not taken as

a component of the methodology, it would appear that all phenomenologists hold

regard for the possibility of corroborating their observations with others.

At this juncture I should reiterate a point made earlier (page 32 in sec-

tion 2.2.1): phenomenological methods can apply to others’ experiences, not just

those of the phenomenologist. When approaching the experiences of others in a

phenomenological manner, the challenge is to immerse ourselves in the other per-

son’s life, while at the same time being open to question assumptions that we

take for granted in our own life. Merleau-Ponty did this to explore Schneider’s

experiences in detail, and Nemirovsky & Ferrara (2009) display a similar spirit in

helping us to understand students’ encounters with ideas in trigonometry. Using
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language introduced earlier, this process entails bracketing one’s preconceptions of

the other’s and of one’s own experiences. A rich and nuanced understanding of

the other’s experiences is something we pursue in everyday life with more or less

success. The work of phenomenology is to enrich these common practices by lifting

usual barriers, which take the form of stereotypes and pre-judgments about others

and ourselves.

Connection with Research Question

Recall again the research question: What are some ways in which mathe-

maticians structure their experiences of struggle while working in pairs in person

on a current problem? The value of a phenomenological analysis is in its ability

to capture and articulate the ways in which people seem to structure their expe-

riences. Since the aim here is to explore the texture of mathematical struggle as

members of a particular population experience it, phenomenological methods seem

like a natural choice.

Notice in particular that this is distinct from asking what techniques math-

ematicians seem to use when they encounter struggle. Learning how it feels to

hit difficulty in research mathematics, and what arises naturally in response to

this difficulty, may give us insight into the experience of being a mathematician,

which is potentially powerful due to its ability to transform our way of experienc-

ing related phenomena. This might enrich our understanding of what it is like

to implement different strategies, but a phenomenological analysis is unlikely to

articulate those strategies for us.

The appropriateness, then, of this methodology in the present study is due

to the focus on the structure of experience. The term “structure” here could use

some more elaboration, however, which I’ll address below in discussing multimodal

microanalyses.
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3.2.2 Multimodal Microanalysis

One last domain in the literature that’s pertinent to the present methodol-

ogy is the idea of a multimodal microanalysis. The term itself isn’t universally used

— for instance, Greiffenhagen (2008) refers to the process as a “video ethnogra-

phy” — but the core ideas driving the methodological approach seem to be fairly

stable across the different names.

In this context, a microanalysis is a careful examination of the moment-

by-moment behavior of the subject. For instance, a microanalysis of someone ex-

plaining how they think about eigenvectors (cf. Sinclaire & Talbaghi, 2010) might

examine the details of how their hands move on a timescale of seconds. Erickson

(2004), referring to the process as a “microethnography,” examines people’s speak-

ing cadences and places the transcript on a musical score in order to capture pitch,

duration, volume, and so on.

Although some gesture analyses are examples of microanalyses (e.g., Ed-

wards, 2010), those that attempt classification schemes often are not. For instance,

McNeill (1992; 2005) suggests classifying gestures by whether they direct atten-

tion (deixis), emphasize speech (beat), represent by making hand shape and/or

movement similar to the referent (icon), or refer to something by shaping and/or

moving the hands in analogy to the referent (metaphor). Such categorization of

gestures has zoomed out from a moment-by-moment examination of how each in-

dividual gesture occurs, seeking to blur the differences between hand movements

in order to emphasize families of similarity. This can be incredibly useful, but

methodologically it should be distinguished from a microanalysis.

The concept of multimodality dovetails with the phenomenological idea of

horizontalization (Moustakas, 1994), although not all researchers who advocate

multimodal approaches intend the connection (e.g., Thom & Roth, 2011). The

idea is that instead of privileging speech (such as in analyses of transcripts), hand
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movements (as the research on gesture has traditionally tended to), or any other

one semiotic modality (Roth & Thom, 2009) in isolation to others, we can gain a

more holistic insight about the subject by honoring all such modalities as mean-

ingful and deserving of our attention (Nemirovsky et al., forthcoming; Nemirovsky

& Smith, 2011, forthcoming).

A multimodal microanalysis, then, is a zoomed-in examination of a subject’s

movements, speech, verbal cadence, eye gaze, body posture, tool use, and so on in a

way that attends to how these many different factors are all connected. This results

in an analysis that could potentially be not as in-depth as Erickson’s (2004) placing

a transcript on a musical score, but the attention to the person as a whole offers

a means that seems perhaps more natural for gaining insight into the subject’s

structuring of experience.

Connection with Research Question

As was emphasized on page 46, a key aspect of the research question is the

exploration of the structure of experience with regard to mathematical struggle.

Part of what is meant by “structure” here is included in the phenomenological

reduction: what are the characteristics of the experience of struggle in research

mathematics as mathematicians encounter it? Yet as outlined in section 2.2.2,

the perspective being adopted here views the body’s seen-as-sensible actions as

inextricable from the sense of meaning. That is to say, many aspects of what one

physically does in terms of gesture, speech, eye gaze, and so on while engaging in

mathematical reasoning are parts of the way in which one experiences that rea-

soning. In this spirit, then, we can talk about the seen-as-mathematically-sensible

interactions that mathematicians have with one another and their environment

while encountering mathematical struggle as structuring their experience.

However, in saying this we must be careful not to think that a catalog



49

of physical behaviors such as a taxonomy of gestures would suffice. It’s not the

physical behavior on its own that matters, but rather the sense that such behavior is

sensible in the context in question. It is therefore essential to outline not just what

mathematicians do in order to understand how they structure their experiences of

struggle, but in what sense what they do is meaningful.

A multimodal microanalysis allows us to carefully examine a wide array of

behaviors the mathematicians in this study engage in while encountering difficulty

in their research. This becomes the foundation upon which a phenomenological

analysis in an embodied cognitive theoretical framework stands. This helps the

phenomenological analysis to incorporate as many nuances of activity as we can

pragmatically track.

3.3 Data Collection

3.3.1 Participant Selection

The participants in the present study are pairs of mathematicians at a large

southwestern research university in the United States.The choice to observed pairs

was informed by the need to encourage clear but naturally occurring displays of

struggle. It was judged that ABD doctoral students working with their advisors

would be a close proxy to observing mathematicians working together in terms of

skill level, and additionally meetings between doctoral students and their advisors

were also anticipated to be reasonably predictable and thus recordable.

Mathematicians were contacted for another study (cf. Nemirovsky & Smith,

2011, forthcoming) and were asked if they had ABD doctoral students whom they

thought would find being observed in meetings acceptable. This resulted in the

three pairs examined in this study:1

1Names given here are pseudonyms.



50

• Joseph is a topologist with interests in mathematical physics. Working with

him is Bill, his doctoral student. The topics they discuss in the episodes

examined here are in an effort to flesh out Bill’s dissertation as he approaches

his defense.

• Matt is an algebraic geometer who has contributed to string theory. His

working partner is Bart, a German algebraic geometer with whom Matt had

just finished a paper. Bart was visiting so that the two of them could choose

a new problem and make progress on it in-person. (It was fortuitous that

when Matt was approached, this visit of Bart’s was already planned and

imminent.)

• Fay is a graph theorist who specializes in probabilistic graphs. As with

Joseph & Bill, Fay’s graduate student Martha works with her on Martha’s

dissertation as it nears completion. The two of them were also in the process

of writing a paper on Martha’s dissertation material.

3.3.2 Session Observation

After coordinating with a given pair, I reserved a room with a blackboard

at their mathematics department during a time when they were planning to meet.

Two cameras were set up in the two corners of the room opposite the blackboard,

pointed generally toward the center. This allowed for video capture of multiple

angles of participants’ behavior.

I asked the two participants to write on the blackboard rather than on paper

when they wanted to write something for one another, but to otherwise treat the

meeting like any other of theirs. The six participants reported generally not feeling

disturbed by the shift in setting; indeed, Matt & Bart claimed that this was very

much like the way that they always work anyway.
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Each pair was observed three times this way. For Joseph & Bill, the first

two sessions were a week apart and the third was a few months later. Matt & Bart

met continually throughout one week while Bart visited, so all three sessions oc-

curred that week (Monday, Wednesday, and Friday). Fay & Martha’s observations

occurred evenly over a period of two months.

3.3.3 Video Synthesis

Once the video data were collected, they were compressed and then merged

between the two videos. The compression used the program “Handbrake” to con-

vert from an MTS file format to an M4V one. The merger of the two videos in

parallel used the program “QT Coffee” and synchronized the videos by matching

sound and gesture patterns.2

The resulting MOV video shows the images from both cameras side-by-side

with the two sound tracks overlapped. This way it’s possible to watch the video in

a stereoscopic way, catching nearly all the interactions with the blackboard even

as the mathematicians stand in front of it to write on it. The overlapping sound

tracks result in more stable sound: if camera 1 picks up a word that camera 2

barely registers due to the direction a mathematician is facing when they speak,

the speech won’t be relevantly more difficult to hear in the resulting video than if

both cameras had picked up the sound.

This process resulted in nine videos total: 1 video per observation × 3

observations per pair × 3 pairs.

2If you listen to two merged videos that are almost, but not quite, synchronized, it sounds like
the subjects are speaking in an echo chamber. QT Coffee allows you to make small tweaks to the
merger parameters to practically eliminate this effect, yielding a close-to-perfect synchronization
of the two videos.
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3.4 Data Analysis

3.4.1 Developing Mathematical Background

In order to immerse myself in a phenomenological analysis, I had to be

able to follow the mathematical content for each episode in enough detail that

I could understand both the broad strokes of the pair’s efforts throughout the

episode as well as the logic of key mathematical choices at specific times. This

required me to build a significant amount of mathematical background. This was

approachable in part because I needed to develop only enough background to follow

the mathematics rather than be able to participate in it — something like how it’s

usually easier to learn how to read a foreign language than it is to learn how to

write in it.

Prior to the observations, I had performed an informal interview (Bernard,

1988) with one member from each of the pairs (Joseph, Matt, and Fay) about a

paper they had published in order to collect data for other studies (Nemirovsky &

Smith, 2011, forthcoming). These interviews were video-recorded with two cameras

in much the same way described above for the pairs. Preparing for these interviews

required me to read the papers in question and reference graduate math textbooks

and Wikipedia in order to develop enough of an understanding of the material to

ask pertinent questions. The interviews themselves focused on fleshing out the

reasoning in the paper as well as the mathematicians’ motives for investigating

those areas.

The preparation for and engagement in these interviews prepared me with

some background that was relevant to what each pair was doing in each episode.

During the video recording, I took note of any key points that confused me and

asked the pair about it after they had concluded their session. I then created the

merged MOV file as described earlier and reviewed the episode, making a sketch of
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the mathematical moves made throughout the episode. This required me to specify

the mathematics in enough detail to notice where the gaps in my understanding

were. At this stage I also created an index of key moments that seemed to be

pivotal in terms of mathematical struggle.

Once I had the index and the sketch of mathematical reasoning for all

three episodes, I interviewed each mathematician from the pair separately. These

interviews focused on filling the gaps in my understanding of the mathematics as

well as commenting on why they thought they had made specific mathematical

moves. I showed them selected clips of the merged videos as needed to illustrate

what I was asking them about.

It should be emphasized that the intent behind asking the mathematicians

to reflect on why they made certain mathematical moves was not because their

reflections are authoritative. When I review videos my family took of our travels

through Europe two decades ago, I can make educated guesses about what I was

thinking at various moments, but the only advantage I have over anyone else in

doing so is in my somewhat better ability to empathize with my past self; my mem-

ories offer informed hypotheses about the experiences of the person in the video,

but memories are highly fallible and subject to influence by one’s present perspec-

tive Burgess & Shallice (1996); Kahneman (2011); Kahneman & Tversky (1973);

Scheler (2007). In the same way, the central benefit of having mathematicians re-

flect on videos of themselves is in their ability to produce highly educated guesses

about what the person in the video is thinking and feeling, and why. However,

beyond having those informed hypotheses, the mathematicians in these one-on-one

interviews have no more (or less) access to the thinking of the people in the video

than I do (Scheler, 2007).

I used these video-recorded interviews and repeated viewings of the orig-

inal pair-observation videos, as well as any other references the mathematicians
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suggested I look at and what I could find on my own in textbooks and via the

internet, to develop a more complete technical description of the mathematics in-

volved. When I encountered difficulty that I couldn’t solve via my own research

and reasoning, I consulted the mathematicians either by email or in person. Por-

tions of the resulting mathematical description — specifically, the portions needed

for understanding the clips that are examined here for analysis — are included in

the results chapters.

3.4.2 Selecting Clips

While developing my understanding of the mathematical background, I also

repeatedly reviewed the merged videos of pair observations in order to internal-

ize the flow of the session as a whole. Each time I gained new insight into the

mathematics in a way that connected or clarified parts that hadn’t entirely made

sense to me before, I reviewed the videos again to watch for what, if any, of my

impressions of the mathematics changed while doing this. During each viewing

I would write notes describing my impressions of the overall mathematical flow,

particularly moments of struggle and shifts in strategy.

My familiarity with the videos, combined with my notes, gave me solid

hypothesis about which selections were likely to be fruitful for further analysis. I

presented my selections and tentative ideas for analysis to others3 and considered

their feedback in selecting which clips to proceed with.

3.4.3 Generating Multimodal Microanalyses

Once the clips were selected, they were subjected to a multimodal micro-

analysis. The selections were annotated in Elan4, which allows for frame-by-frame

3The primary person to kindly provide me with this first step toward intersubjective corrob-
oration was my advisor, Ricardo Nemirovsky.

4http://www.lat-mpi.eu/tools/elan/

http://www.lat-mpi.eu/tools/elan/
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creation of sub-annotations. This allowed each clip to be subdivided by gesture

components (e.g., when someone moves their hand from their side to the space in

front of them).

Once the subdivision had been created, I took screenshots of the video

and drew arrows and other annotations on the image to indicate what movements

(gestures, changes in eye gaze, inscriptions, leg movements, body position changes,

etc.) had occurred since the previous screenshot.5 I then produced a transcript for

each sub-annotation, resulting in a correspondence between transcript and image

that typically matched on a scale of a fraction of a second.

With all this material produced, it was synthesized into a tabular format

using TEX. This produced a stable PDF that allows for cross-platform viewing of

the resulting microanalysis. This consists of a table with three cells per row: a row

number, an annotated image, and the corresponding transcript. The microanalyses

for all clips referenced in the present work are in the appendix (starting on page

256).

3.4.4 Phenomenological Analysis

The microanalysis provided me with a way of viewing the video in detail

without letting the movements distract me, but also without me missing the rele-

vance of the movements. Having watched the videos many times, the microanalyses

also provided me with an index that reminded me quite vividly of what the video

looked and sounded like when played. Also, the images have associated with them

a timestamp, so whenever there was any question in my mind about what was

going on or what the spirit was of a given phrase or movement, I could quickly

and easily go to that portion of the video and view it.

With this tool in hand, then, I engaged in a phenomenological analysis. This

5The program used for this was Snagit: http://www.techsmith.com/snagit.html

http://www.techsmith.com/snagit.html
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roughly follows the four steps that Gallagher & Zahavi (2008) describe minus the

eidedic variation (so bracketing, phenomenological reduction, and intersubjective

corroboration), although the process was more detailed and less linear than this.

I began by carefully looking over the microanalysis while bracketing what I

observed. This consisted of being open to whatever impressions arose and writing

them down, with a sincere attempt to avoid coming to conclusions. For instance,

at this stage I might note that “Fay is standing away from the board with her arms

crossed and with her brow slightly furrowed,” but rather than asserting that it’s

because she’s probably bothered by what she’s looking at I simply make note that

my impression of her being bothered arose in me as I looked at this section of the

clip. The goal here was to immerse myself in the clip as it is presented, minimizing

the influence of my interpretations by noting that they are my interpretations

rather than claiming them to be hypotheses about what is “really going on.”

However, my impressions are not irrelevant; indeed, they become key in later stages

of the phenomenological analysis, so recording them (along with a timestamp of

when they were recorded) is a key step.

I cycled through a clip repeatedly, starting my written commentary anew

each time, to allow relevant themes to emerge. I would allow for at least one

day between cycles, and normally I would cycle through a different clip in the

interim. This proved to be useful as a way of preventing my earlier impressions of

a clip from suppressing other potentially relevant impressions. For instance, Fay

furrowing her brow and crossing her arms might simply be a sign of her being deep

in thought rather than being particularly troubled by what she’s looking at on the

blackboard. Taking time between such journaling helped me to distance myself

from the prior impression so that others have room to arise naturally.

This process allowed certain themes to emerge. For instance, it became

evident that mathematicians’ use of proximity (in the sense of how far away they
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were from what seemed to be the center of their attention, such as an inscription

or an imagined object in the air they were forming via gesture) was a central

theme in how they structured their experiences with struggle. As these themes

emerged, I shared them with others6 along with the corresponding clips as a first

pass at intersubjective corroboration (and also as a test of my ability to convey

the mathematics needed to contextualize the clip in question). Based on such

input, I focused on a few key themes and selected a few more clips for multimodal

microanalysis based on their promise in providing insight into those phenomena.

The write-up of the results is, itself, part of the phenomenological analysis.

The articulation of the mathematicians’ apparent experiences, along with the way

they structure those experiences, helps to clarify its form. It is also a necessary

medium for intersubjective corroboration. I found I needed to write and rewrite the

description of each clip multiple times in order to develop a sufficiently compelling

account that others found illustrative of the phenomena in question.

It was also necessary to present the material in seminars and at conferences

in order to get feedback from the audience about the degree to which they were

able to perceive something new in the clips as a result of the analysis. This, too,

involved repeated cycles of preparing the presentation, presenting it, and carefully

considering the audience’s input until the analysis reached a respectable point of

saturation.

3.4.5 Themes and the Research Question

This process resulted in three themes:

• Proximal inhibition, which explores an aspect of how proximity is used in the

encounter with struggle.

6Again, I’m indebted to my advisor Ricardo Nemirovsky for his insightful input in this process.
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• Invoking the continuum, which illustrates a particular use of a type of dia-

gram we might be inclined to label as “geometric.”

• Transformation mappings, which seem to capture a key element of how math-

ematicians experience the use of the blackboard itself.

These three themes in turn weave together to offer insights into the nature of

mathematical practice itself. The next few chapters will detail each of these themes,

as well as their interweaving, in some detail.

However, the research question7 focuses on the structure of experience of

struggle. The relevance of these themes in mathematical practice is that they help

to contextualize the experiential structuring. Struggle is a key part of mathemati-

cians’ practices, and as such the phenomenological analysis of this study came to

touch on some themes that extend beyond the original domain of interest. Yet the

focus in this study is on the encounters with difficulty rather than the whole range

of practices in mathematicians’ research.

7For ease of reference, here is the research question again: “What are some ways in which
mathematicians structure their experiences of struggle while working in pairs in person on a
current problem?”



Chapter 4

Proximal Inhibition

In short, proximal inhibition is a structuring of struggle in which the math-

ematician seems to be pushed back from the blackboard’s diagrams or inhibited in

his ability to approach them. The inhibition results not from any physical inability

to get closer, but instead comes from a sense that such a physical movement would

not afford anything for the mathematics. However, the mathematician wants to

“zoom in” to the particular aspect that is meaningful. This clash between the

desire to modify the key part(s) of the diagrams and the inhibition from doing so

due to not perceiving exactly where or how to make the key adjustment creates a

palpable tension that an observer can often feel.

I’ll illustrate this phenomenon with three clips. Then with these three

examples in mind, I’ll explicate the components of proximal inhibition as they

seem to appear in general.

59
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Figure 4.1: A sphere

4.1 Clip #1: Odd Scalars

4.1.1 Mathematical Context

Homology

The content was in an area known as “odd Khovanov homology.” Homology

in this context is a technique that lets us describe some subtle geometric features

using algebra. For instance, one application of homology — called “singular ho-

mology” — lets us count the “holes” of different dimensions in a geometric object.

Consider a sphere, for instance (Figure 4.1). No matter where we place a loop on

this sphere, we can slide it around along the sphere so that it’s all on one side.

At that point we can shrink it down to a point (Figure 4.2). We can say, then,

that there are no one-dimensional holes on the sphere — or more properly said,

the first singular homology group is the trivial group.

By way of contrast, consider a torus (i.e., a “doughnut” — Figure 4.3). It

turns out that the first homology group of the torus is Z⊕Z, which is to say, two
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Figure 4.2: A loop on a sphere shrinking to become a single point

Figure 4.3: A torus
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Figure 4.4: A loop going the long way around a torus

copies of the integers. This tells us that there are actually two one-dimensional

holes in the torus. We can sort of see one right away as the hole in the middle of

the torus: if we put a loop the long way around the torus, there’s no way to slide

it along the surface so that it can contract to a point (Figure 4.4). This loop acts

like the 1 for one of the copies of the integers in the homology group. So a loop

that goes twice around would be 2, one that goes thrice around would be 3, and

so on. And similarly, a loop going around in the opposite direction would be −1.

(We consider two loops to be the same for this purpose if you can slide one along

the toruss surface to become the other.)

The other hole is actually inside the torus (Figure 4.5). This is like tying

a string around an inner tube: no matter how you try to slide the string around,

it won’t just fall off the inner tube. Then this loop acts like the 1 for the other

copy of the integers in the homology group. Since there isn’t a third copy of the

integers in the first homology group of the torus, we know that weve noticed all

the two-dimensional holes now.

This second copy of the integers would vanish, though, if we were to fill the

“tube” of the torus. At that point the second loop would have somewhere to go to

collapse to a point. So the first singular homology group of the solid torus is just
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Figure 4.5: A loop going the short way around a torus

Z. The fact that it’s missing a copy of the integers that’s present in the normal

(i.e., hollow) torus tells us something about how the hole structures of solid and

hollow tori compare. In particular, since the solid torus, the circle, and the annulus

all have the same first singular homology group, we know that the one-dimensional

hole structure for all these different geometric objects must be the same and must,

in turn, be different from that of the hollow torus in a particular way.

Khovanov Homology

Singular homology is just one sort of homology, namely the kind that reveals

certain kinds of holes. The kind of homology of interest to Joseph and Bill was

known as Khovanov homology, which can give hints about subtle features of knots.

A knot, in a mathematical context, is a way of twisting up a circle in three-

dimensional space. Mathematicians distinguish between different kinds of knots

based on whether it’s possible to “wiggle” one knot into another one without

making the circle cross itself. For instance, a trefoil is viewed as being a different

knot than an “unknot” (i.e., a knot that can be wiggled into the shape of a perfectly

normal, flat circle), but a circle and a circle with a kink in it are both considered

the same knot (namely the “unknot”). (See Figure 4.6.)
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Figure 4.6: Three knots: a trefoil, a circle, and a figure-8 unknot

Figure 4.7: A trefoil in two different shapes

These ideas are meant to model creating physical knots with physical string.

The idea is that two knots are different if you can’t get from one to the other

without cutting the loop of string and then tying it back together again. However,

if you can wiggle one knot into another, in some sense you’d want to consider them

the same knot. For instance, a trefoil is the same as a simple kink-knot since you

can get the latter by just pulling one of the loops of the trefoil out (Figure 4.7).

In the same way that singular homology tells us about the number of certain

kinds of holes, Khovanov homology tells us something about the structure of a

given sort of knot. Among other things, we can tell whether two knots are different
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Figure 4.8: Untying a trefoil with a cut and a splice

based on whether their Khovanov homology groups are different, and we can learn

something about how the knots are different based on the algebraic differences in

their homologies. (This is akin to how, in singular homology, we could tell how

the solid and hollow tori compared to one another based on how their singular

homology groups differed.)

Khovanov homology works in part by looking at how you would transform

one knot into another. You can think of this as playing a movie: you might start

with a trefoil, cut it, move the cut pieces to the other side of another part of the

string, and then splice the ends together (Figure 4.8).

For technical reasons, though, Joseph and Bill don’t model this as cutting

the circle and then putting it back together again. Instead, they model it by

thinking of pinching the circle together into a figure-8 of a sort, splitting the

figure-8 into two separate circles at the pinch point, rearranging them, and then

splicing them back together (Figure 4.9).

If we think of time like a spatial dimension, then the collection of “frames”

for the movie will create a kind of cylinder – technically called a cobordism — that

connects the two knotted-up circles. Each cross-section of the cobordism would

be one frame of the movie, so to speak. In the particular case shown in Figure

4.10, there’s a hole in the cobordism because the trefoil has to be cut, moved, and

spliced back together again in order to untie it. As we move left to right, the “cut”

occurs the moment we encounter the hole (at what Joseph and Bill call a “split”),

and the “splice” occurs the moment the hole closes (at what they call a “merge”).
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Figure 4.9: Splitting and merging (instead of cutting & splicing)

Figure 4.10: A cobordism showing the untying of a trefoil
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So in a sense, Khovanov homology counts how many such holes at a minimum

must appear in the process of untying the knot in question.

It turns out that in order to work out the Khovanov homology groups, we

have to use what’s called a Frobenius algebra. Part of the description of this algebra

involves the following two formulas:

∆(1) = x⊗ x

∆(x) = x⊗ 1 + 1⊗ x

Roughly speaking, is describing the algebraic side of what happens at a split in a

cobordism. What was once one circle becomes two at a split, which the algebra

describes using the tensor notation (i.e., the “⊗” symbol).

Odd Khovanov Homology

Some knots that are more complicated than the trefoil require more than

one cut-and-splice to get untied. In those cases, the order of the cuts and splices

doesn’t matter in terms of Khovanov homology. (See Figure 4.11.)

Joseph and Bill were exploring what happens when they modify the Kho-

vanov homology so that it does distinguish between different cut-and-splice se-

quences. This is akin to how we might decide to modify singular homology so that

it detects different orientations. No matter how we slide a Cartesian axis around

on a sphere, we can’t swap the x and y axes, which means we can think of there

as being two orientations of the sphere: normal and “swapped” (Figure 4.12).

In trying to do something similar with Khovanov homology, Joseph and

Bill were working with what they called odd Khovanov homology. This required

them to modify the Frobenius algebra so that was no longer commutative (or, more

properly speaking, cocommutative), which they would need to do by inserting what

they called “odd scalars.” In the video clip I’ll describe shortly, Joseph specifically
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Figure 4.11: Two slightly different cobordisms that don’t look different to (nor-

mal) Khovanov homology

Figure 4.12: Two different orientations for the sphere
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points out that “there are odd scalars which are called ‘one.”’ This would be

similar to them noticing that they forgot to put a negative-one in the second term:

∆′(x) = x⊗ 1 + (−1)(1⊗ x) = x⊗ 1− 1⊗ x

Fixing this oversight would make it clear that swapping the roles of x and 1 would

give a different formula:

x⊗ 1− 1⊗ x 6= 1⊗ x− x⊗ 1

Odd scalars aren’t exactly the same as negative numbers, but their presence mod-

ifies the Frobenius algebra in some comparable ways.

4.1.2 Video Description

As I describe this clip, I’ll cite row numbers. Those row numbers refer to

the microanalysis in Table A.1 of the appendix.1

Setup

After about 25 minutes of trying to think of odd Khovanov homology in

one way, Joseph erases the board and proposes instead thinking about modifying

∆ by adding odd scalars. This seems to demarcate a shift in strategy. He then

writes a sequence of equations on the board (Figure 4.13):

x2 = 0

∆(1) = x⊗ 1− 1⊗ x

∆(x) = x⊗ x

ε(1) = 0

ε(x) = 1

1If you are viewing this document on a computer and you have the file “tables.pdf” stored in
the same folder as this document, you can click on the words “Table A.1” in order to open the
microanalysis in a separate window. This will allow you to read the text in one window while
referencing the video in another rather than having to skip back and forth.
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Figure 4.13: Joseph writes some equations on the board
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Figure 4.14: Contemplating a ribbon surface

(The “ε” symbol refers to the part of the Frobenius algebra that corresponds to

“capping off” in the cobordism, which in terms of knots means that a circle shrinks

to a point and vanishes. It ends up not playing an explicit role in the rest of the

clip. Similarly, the fact that x2 = 0 ends up not arising as particularly important

for the following analysis.)

Joseph then spends the next two minutes reminding himself and Bill about

the mathematical context, namely that they think this description of a Frobenius

algebra will, in fact, result in the odd Khovanov homology they’re trying to develop.

In order to work out whether this is true, he draws a cobordism. (In this case the

cobordism is referred to as a “ribbon surface.” The difference is that instead of

thinking of going from one knot to another, we think of creating circles and then

merging them together in some knotted-up way. The diagram in Figure 4.14 should

be thought of with “forward in time” being upward.)
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Figure 4.15: Adding “caps” to navigate confusion

Once he does this, though, he realizes there’s a problem: the thinking that

goes into relating the cobordism to the algebra will result in the normal Frobenius

algebra. They’d end up ignoring the formulas Joseph had just written down. This

confuses Joseph because the normal Frobenius algebra yields the normal (non-odd)

Khovanov homology even though they’re thinking about the cobordism in terms of

odd Khovanov homology. The “odd” part just gets ignored. He tries to reconcile

this by thinking about a cobordism that has “caps,” which in the movie-like view

would be seen as a part of a knot splitting off as an unknot and then shrinking to

a point and vanishing (Figure 4.15).

Proximal inhibition demonstrated

But even after relating this to some algebra of homology (shown below the

ribbon surface in Figure 4.15), he still seems flummoxed and sits down, scooting

the chair a little closer to the board but leaning away from it (row 1).

This is a moment where we can see a strong hint of what I’m calling “prox-

imal inhibition.” Joseph physically distanced himself from the board for some

reason. It seems unlikely that he’s leaning against the wooden arm of the chair

purely for reasons of comfort, especially when we consider that Bill is also leaning

away from the board but to the opposite side. It’s much more likely that Joseph
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created this distance as a physical enactment of his current relationship to the

mathematics depicted on the board.

Think of how people react when someone stands too close to them in con-

versation: the person who feels a kind of invasion into his or her personal space will

tend to lean away from the intruder and might even take a step back. Similarly,

when we’re working with a difficult object in our hands like an object we’re trying

to repair or a 3D puzzle, we might tilt our heads away and a bit to the side and

even push the object just a little bit away from us as we furrow our brow when

we’re confused by it. This kind of distancing behavior is a visible aspect of our

discomfort with the situation in question. Yet if we were totally disinterested in

the situation — if we aren’t engaged in a conversation with the person invading

our space or if we lose interest in the object we’re working with — we don’t lean

away while still fixing our attention on it. Instead, we walk away from it or at

least turn our attention (and often our torsos) to something else.

In the same way, it seems likely that Joseph’s distancing behavior here

illustrates two pieces in parallel. On the one hand, he sits down and leans away

because that drops the intensity of the discomfort with the situation. It might

also act as a kind of “zooming out” for him so that he can see the situation from

a wider, more holistic point of view. On the other hand, he’s still engaged with

it, trying to resolve this conundrum. As I’ll illustrate later, this desire to engage

seems to be at least in part an inhibited impulse to move closer to the material on

the blackboard.

Twenty seconds later, Joseph starts suggesting that it might be possible to

resolve this by having all the “odd” parts of the odd Khovanov homology cancel out

to give zero when considering the role of the Frobenius algebra (row 16). Notice

how Joseph remains leaned back in order to reach forward with his left hand.

There’s no mechanical need for him to lean back like this. Quite the contrary,
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it would have been just as easy for him to let the weight of his left arm pull his

torso a bit closer to the board, and doing so would probably have made it visually

clearer which specific part of the board he was trying to indicate. This suggests

once again that he’s leaning back due to his relationship with the mathematics. In

this particular moment, he’s trying to suggest a result that would be convenient

and might help to resolve the paradox vexing him, but he’s not sure it’s true or

that its being true would really resolve the issue. This leaning-back aspect of his

movement is accented by, for instance, the way he leans forward slightly when he

later withdraws his hand from another gesture (rows 28–30).

After he suggests the above, Joseph utters a sentence fragment (“So I think,

I mean, I, I dont quite understand how this can be possible, but assuming that

the. . . ”) and then falls into a lengthy pause (rows 31–44). In the middle of this

pause, he reaches up and touches his face — first his nose (row 37), then brushing

his mouth (row 38), and finally moving to his chin to stroke his beard (row 39).

As we’ll see in several of the case studies here, this touching of the mouth can act

as a signal that the mathematician has just thought of something but is “holding

the tongue” for a moment, presumably to let the new idea gel a bit before saying

anything.

At the end of the pause, Joseph rolls his chair forward and leans forward

to indicate the algebra he had just written below the rightmost cobordism (rows

45–52). This gesture contrasts rather dramatically with the one he had given less

than a minute earlier (row 28). Here he’s leaning into the board, as though much

of his discomfort with the material has lifted. He says, “You know, I, I sort of

want to argue that these just give the zero map. That’s. . . .” This is in reference

to the same point made earlier (namely wanting the “odd” part of the homology

to cancel to zero in terms of the “odd” Frobenius algebra). His body language

indicates some degree of increased comfort, as though he’s more confident of the
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point he’s making. However, as his speech trails off (“That’s. . . ”), he leans back

again and crosses his left arm over his torso as though to recreate his sense of

comfortable distance from the convoluted issue while still remaining engaged with

it (rows 53–54).

Three movement-free seconds later he says, “But I don’t know whether

that makes sense.” He juts his chin forward and points with his left hand while

slightly rolling his shoulders more toward the board (row 59). This makes it seem

somewhat more likely that at the moment Joseph first moved in toward the board,

he was actually recognizing this concern about “whether [getting the zero map]

makes sense.” We can see that he’s still keeping his distance from the board, but

he’s sort of “pushing” toward it, like he’s trying to overcome his sense of resistance

or inhibition. This is reminiscent of how a shy person might simultaneously feel a

desire to talk to a particular person and a hesitation to do so, resulting in a kind

of forward/back yo-yo movement. The principle difference here, though, is that

Joseph’s hesitation seems to come from not knowing how to approach the board in

a meaningful way. It’s not clear to him exactly where on the board the confusion

lies.

Joseph spends the next several seconds trying to articulate his concern to

Bill from this head-forward, pointing position (rows 60–69). To paraphrase, Joseph

worries that computing the odd Khovanov homology without adding odd scalars

into the formulas written for the Frobenius algebra might somehow not “make

sense.” He has some trouble expressing exactly why it might not make sense,

though. As he struggles to describe what the problem is, his sentence trails off

(“We just write these things down and sort of forget about the, uh. . . ”; rows 69–

72) and he drapes his arm across his torso again and leans back a little, even tilting

his head slightly away from the board (rows 70–71).

After freezing for a few seconds he quietly says, “Forget about the grading.
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Well, then, then, um. . . ” (rows 77–79). While speaking, he rights his head (toward

the board) and rocks the chair forward (row 77), but on “um” he rocks his chair

back again (row 79) as though the momentum of what he had been saying had

been helping him oppose his resistance to approaching the board, but once the

momentum faltered he had to fall back to navigate his discomfort with the problem

at hand.

After another few seconds of essentially motionless silence (rows 80–84),

Joseph suddenly brings his hands forward as though holding something invisible

and tilts his head away from the board slightly (rows 85–86). He seems to be

reiterating the problem he has been trying to articulate, namely this challenge

of reconciling the fact that they’re viewing a knot as having an odd Khovanov

homology but that the homology doesn’t seem to follow from the Frobenius algebra

they want to use. This moment where he seems to be holding the entire concept as

a whole in his hands seems to be an effort to rebuild momentum, to keep pressing

against this inability to “zoom in” to the board in a mathematically meaningful

way. We can see it as a kind of momentum-building because in the same breath,

without pausing after the previous sentence, he says, “I mean, I think. . . So. . . ”

(rows 87–89). As he says this, he lifts his left hand to point his palm toward the

board while leaning his head dramatically away from the board. At this moment,

the pressure between two drives — the need for distance from the difficult situation

on the one hand and the desire to “zoom in” to the as-yet undiscovered point of

difficulty on the other — is quite palpable. He’s probably using his left hand to

indicate the region of the blackboard where he has written the formulas for the

Frobenius algebra, but the fact that he chose to rotate his arm the way he has

seems to indicate a sort of pushing against resistance. It’s almost as though his

hand is pushing against an invisible wall blocking his access to the board. However,

since the “wall” is an internally felt need for distance, the resistance it offers seems
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to repel his head and shoulders even as his hand reaches forward.

This whole sequence has shown many rather vivid examples of proximal

inhibition in action. However, I think we can gain some significant insight by

seeing what happens when the inhibition lifts, as it does in the next moment of

the video. In the same breath in which Joseph speaks while holding his hand up,

he says, “Somehow deeply in here there are odd scalars which are called ‘one’”

(rows 90–93). On “deeply” he rapidly leans forward and reaches with his right

hand to a specific point in the formulas for the Frobenius algebra (row 90). The

specific point he’s touching is just to the right of the equal sign in the equation

∆(x) = x ⊗ x. What’s critical to notice here is that as soon as he sees where

the right place to “zoom in” on is, his whole body is abruptly drawn in. It seems

almost like what happens if two people are arm-wrestling and one person suddenly

relaxes his or her arm. Once the inhibition to moving toward the board vanishes,

all that’s left is the desire to move in — or more properly said, the physically

felt impulse to move in that we subjectively experience as noticing the affordance

of approach. There’s no constraint left. This is presumably why we see Joseph

rapidly launching himself toward the board rather than slowly leaning in to make

his point.

4.2 Clip #2: Confusion in Frobenius Algebra

The second instance I’ll show of proximal inhibition comes from the same

pair of mathematicians (Joseph and Bill) as in the first clip described in Section

4.1. Bill had sent an email asking another mathematician, James, for help with the

trouble he and Joseph were having with the Frobenius algebra (see Section 4.1.1).

In this clip, Bill offered an overview of James’ response, which prompted Joseph

to detail the algebra involved. This led to some further difficulty that illustrates
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proximal inhibition.

This clip includes a few instances that one might interpret as proximal

inhibition but stand a good chance of being something else. I’ll point those out as

we go.

4.2.1 Mathematical Context

This was a continuation of the work Joseph and Bill were doing in clip #1,

so you can find most of the relevant mathematical ideas in Section 4.1.1. I’ll talk

about just two other facets of the mathematics here: the relationship between the

operations in the Frobenius algebra and the cobordisms, and the ‘t’ parameter.

Frobenius operations and cobordisms

There are four kinds of events that can change what a knot is:

1. A circle can appear out of nowhere. That is, a point can appear and then

expand out into a circle. (Figure 4.16)

2. Two different knots can touch and merge together. (Figure 4.17)

3. A knot can squeeze two points together and split off a part of itself. (Figure

4.18)

4. A circle can shrink to a point and vanish. (Figure 4.19)

Each of these looks like a specific feature of a cobordism:

1. The appearance of a circle looks like a cup (Figure 4.20).

2. The merging of two knots looks like a merger of two “tubes” (Figure 4.21).

3. The splitting of a knot into two looks like a split of one “tube” into two

(Figure 4.22).
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Figure 4.16: A circle appears — sometimes called a “birth”

Figure 4.17: Two knots merge together
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Figure 4.18: A circle splits into two

Figure 4.19: A circle vanishes — sometimes called a “death”
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Figure 4.20: A cup in a cobordism

4. The vanishing of a circle looks like a cap (Figure 4.23).

In order to record these possibilities, the Frobenius algebra has four operations:

1. The “birth” or “cup” corresponds to a choice of a particular element x of the

Frobenius algebra.

2. The merger corresponds to multiplication. Specifically, it takes elements of

the form a⊗ b and “crunches” them down into a non-tensored form.

3. The splitting corresponds to comultiplication, which Joseph and Bill usually

write using the symbol ‘∆’. This adds a tensor (‘⊗’) to the input, as in the

equation ∆(x) = x⊗ x.

4. The “death” or “cap” corresponds to a function ε that turns elements of the

Frobenius algebra into rational numbers.

In normal Khovanov homology, the Frobenius algebra is fixed. That is to

say, these four operations are known. This means that a specific drawing of a

cobordism acts something like the graph of a function: you can tell exactly what
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Figure 4.21: A merger in a cobordism

Figure 4.22: A splitting in a cobordism
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Figure 4.23: A cap in a cobordism

the cobordism represents in terms of how it acts on any given input. Think of it

this way: We can push elements of the Frobenius algebra through the “tubes” of

the cobordism, and the various junctures will alter the input in various ways. It’s

sort of like a factory that affects just elements of this algebra.

In normal (non-odd) Khovanov homology, if there are multiple parallel

“tubes” of the cobordism then it doesn’t matter where different splits and merges

occur. (This is another way of stating something I said back in Section 4.1.1:

the order in which cuts and splices are done doesn’t matter for normal Khovanov

homology.) However, it does matter with odd Khovanov homology. The main

challenge Joseph and Bill are dealing with in this clip is the question of what effect

swapping the order of ∆ and ε has on the result. One direction in particular —

doing ∆ first and ε second — is particularly confusing to them.

The ‘t’ parameter

In normal (non-odd) Khovanov homology, the comultiplication ∆ acts on

the chosen element x by ∆(x) = x ⊗ x. It’s then extended linearly, which means

that ∆(x⊗x) = ∆(x)⊗∆(x) = (x⊗x)⊗ (x⊗x). However, as Joseph had pointed
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out the previous week (see Section 4.1.2), this approach doesn’t work with odd

Khovanov homology. They need “odd scalars” tossed in. In order to account for

this, Joseph and Bill agreed that they needed to modify their formula for ∆ in the

“odd” case:

∆(x) = x⊗ x+ t(1⊗ 1)

In this case, t is an “odd scalar.” They hope that by adding the second term there

(the t(1⊗ 1)) they can correct for the concern Joseph had raised earlier.

4.2.2 Video Description

The row numbers cited in this clip refer to the microanalysis in Table A.2

of the appendix.2 However, sometimes I’ll refer to rows from the previous analysis,

in which case I’ll specify which table the other row references are meant to point

toward.

Joseph and Bill spent a few minutes discussing the material James had sent

them in response to Bill’s email question. Joseph then suggested that they try

just working out the computations involved in swapping ∆ and ε. He started by

drawing two pictures, one for each order of ∆ and ε (Figure 4.24). In each case,

“forward in time” is to the right. The pair on top in Figure 4.24 shows doing ε

before doing ∆ (i.e., capping off before splitting). The bottom pair shows just the

opposite: first do a split (∆), then cap off (ε). The straight tubes just indicate “do

nothing.”

Joseph then leaps up and starts writing down the algebraic effect of each of

these patterns. First he writes the algebraic sequence for the top pair based on an

input of x⊗ x (rows 1–3) and then steps back slightly from the board (rows 4–5).

2As with the first video, you can open the microanalysis in a separate window if you’re viewing
this on your computer and you have the file “tables.pdf” in the same folder as this document.
Just click on the words “Table A.2.”
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Figure 4.24: Two cobordisms on the board
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The sequence he has written is as follows:

x

⊗

x

7→

x

7→

x

⊗

x

+ t

1

⊗

1

For the sake of clarity, I’ll rewrite it like so:

x⊗ x 7→ x 7→ (x⊗ x) + t(1⊗ 1)

The reason Joseph wrote this somewhat vertically was so that the top part of

each tensor (‘⊗’) would correspond to the top “tube” of the drawn cobordism, and

likewise the bottom tensor factor to the bottom part of the cobordism. So the first

step involves capping off the top part, making the top factor vanish; and then the

second step applies ∆ to what remains.

Joseph then starts trying to write out the algebra for the bottom cobordism

pair. However, he gets stuck midway through. Since ∆(x) = (x⊗x) + t(1⊗1) and

he’s applying ∆ only to the bottom factor of the tensor, the result of the first step

should be x⊗ x 7→ x⊗ ((x⊗ x) + t(1⊗ 1)). He gets as far as writing the x⊗ x in

the output of ∆ (rows 6–15) and then laughs and pulls back (row 16) while saying,

“I don’t understand.”

It’s worth noticing that this actually does not seem to depict proximal

inhibition. Joseph doesn’t seem “held back” in any clear sense. Instead, he’s

pulling away for a moment to glance up at the formula he had just used in the

top algebraic sequence to remember what ∆ does with x. In fact, even while still

finishing speaking the word “understand,” Joseph leans back in to finish writing

the new sequence (row 17). Therefore, this particular proximal shift is unlikely to

be an example of proximal inhibition.
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He gets as far as writing the following (row18):

x

⊗

x

7→

x

⊗
x

⊗

x

+ t

1

⊗

1


The trouble here is that the next step (capping off in the top factor) seems to send

that top x to a rational number, which makes that factor of the tensor vanish.

The net effect would be exactly the same as in the first case. But since this is

odd Khovanov homology, the result should be the negative of the first case. That

is, if the top sequence results in ∆(x), then the bottom sequence should result in

−∆(x). Joseph is confused at this point because this simply isn’t working out as

he had hoped it might. This causes him to step back in a display of proximal

inhibition (row 19). He looks back and forth between the cobordism drawings, the

algebra he had just written, and the algebra he had written for the top pair of

cobordisms (rows 20–33). This goes on for a few seconds with very little speech

(“Uh. . . . And then. . . ”).

In the next moment Joseph tilts his head to the side (row 34). We saw this

before in Section 4.1; see Table A.1, row 53 for example. There it seemed to serve

as an aid to creating distance between Joseph and the board, whereas here it seems

to indicate only puzzlement. It’s as though he’s changing the angle of his head in

order to see the symbols differently in a physically literal way. It’s very unlikely

that he believes that tilting his head like this will actually matter — but much

as we are usually unaware of bouncing our toes when we’re happy, it seems likely

that Joseph’s desire for a “different angle” on this topic is being expressed rather

literally. This phenomenon isn’t universal in the cases of proximal inhibition I’ve

observed, but it’s quite common and seems to be a reasonably reliable indicator of



88

some sort of struggle.

After righting his head, Joseph then goes on to scratch his neck for 24

seconds (rows 39–57). This is a classic example of what I’ll call a self-soothing

behavior (Navarro, 2008). While it’s certainly possible that Joseph has unusually

itchy skin under his beard, that doesn’t immediately suggest why he waited at

least seven minutes before rubbing there and then did so quite casually for nearly

half a minute. Instead, it seems much more likely that he was using the sensitive

parts of his face and neck to help distract him from the discomfort he felt with

the situation at the time, although he probably wasn’t aware of the gesture at all

let alone of its purpose when it occurred. It’s as though by creating sensations in

sensitive areas of the head and neck, Joseph is trying to make the discomfort of

not being able to meaningfully approach the algebra a little less intense. That in

turn might make it easier for him to think about the problem at hand.

We saw this behavior in clip #1 when Joseph touched his nose (Table A.1,

row 37) and chin (Table A.1, row 39). (I’m excluding his touching his mouth in

Table A.1, row 38 since there it seems to serve as a kind of “holding back words”

and might not be soothing behavior.) In fact, in those same Figures we can see

Bill doing the same self-soothing: he has his left hand splayed across his jaw, chin,

and lips. It’s actually notable by its absence in Bill throughout clip #2 up to this

point.

Four seconds after Joseph starts rubbing his neck and jaw, Bill sits forward

in his chair and then redirects his movement to the side while lifting his hand

(rows 43–45). He then says, “Yeah, so I think where we’re losing something right

in these is the tensors” (rows 49–53). He starts out by pointing his finger forward

but keeps his hand close to his chest. He then shoots his hand forward and quickly

taps the board twice at one of the tensor symbols (‘⊗’) upon saying “something

right in these is” (rows 51–52). Immediately after the second tap, though, Bill’s
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hand springs back to touch his face (row 53). He starts by holding his nose but

then slowly moves his hand down his face to his chin (row 55). There his hand

stays for 6 seconds (rows 55–56).

Since Bill had been sitting back fairly calmly throughout most of this clip,

it’s not clear whether his sudden movement forward in row 43 is a kind of collapse

in proximal inhibition. However, his bodily approach here clearly speaks of his

desire to engage with the material, which is one of the two key components of

proximal inhibition. His sudden deflection (rows 44–45) suggests a hesitation in

his ability to do so; however, this could just be him quickly checking that the point

he’s about to make is one he wants to make, or him taking a moment to articulate

it in his mind. Even the soothing behavior he exhibits (rows 53–56) could be due

to social discomfort: he might feel concerned about whether Joseph thinks Bill’s

contribution was relevant. Therefore, while it’s certainly possible this sequence

shows Bill experiencing proximal inhibition, there isn’t enough evidence for us to

privilege that hypothesis over others.

Next Bill lowers his hand (row 57), and then one second later Joseph ends

his 24 seconds of jaw-and-neck touching by crossing his arms in front of his torso,

leaning back, and tilting his head (rows 58–60). Notice how Joseph’s feet are trying

to be closer to the board than the rest of him. We can tell this from the angle

between his hips and upper torso. He even crosses his arms over his upper torso

as though to create a barrier between his trunk and the material that’s bothering

him. This shows the clash between the desire to move in on the one hand and the

inability to do so in a mathematically meaningful way on the other that defines

proximal inhibition. We even see him tilting his head to the side, which I’ve

mentioned before as an indication of mathematical struggle. Bill, too, seems to be

engaged in the push/pull nature of proximal inhibition: he’s focused intensely on

the board and is even trying to lean forward, but at the same time he’s leaning to
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the side as though simultaneously trying to lean away from the board. In fact, after

seven seconds of sitting semi-forward like this, Bill leans back while connecting his

hands together across his belly (row 63), as though to create a barrier much like

Joseph has done. It seems as though the “push back” side of proximal inhibition is

dominant in this moment, and it’s possible that Bill has actually disengaged from

that particular struggle.

In later interviews, Joseph and Bill explained that they had to abandon

this direction of thinking. They decided that the confusion here was too great for

them to spend any more time on the matter. Accordingly, they never succeeded

in collapsing this instance of proximal inhibition the way Joseph was able to in

clip #1 (see Table A.1, row 90). They stayed with this struggle for another 2.5

seconds, and then Bill suggested a change in notation that they both immediately

engaged with instead of continuing to push through what Joseph had written.

4.3 Clip #3: Splicing Varieties Together

Joseph and Bill often show very clear instances of proximal inhibition, but

the phenomenon occurs in many situations across many mathematicians. I’ll illus-

trate with one more case, this time taking from a different pair — Matt & Bart.

At the time of this clip, Matt was a research mathematician in algebraic geometry

at a large southwestern university, and Bart was a visiting professor from western

continental Europe. Matt and Bart had worked together on a paper that had just

been published at the time of this video. Bart had come over to Matt’s research

institution so that the two of them could work together to decide where the next

place to explore should be.
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Figure 4.25: The (real) graph of y2 = x3

4.3.1 Mathematical Context

Matt & Bart are working on a problem in algebraic geometry having to do

with splicing varieties together. A variety is basically the graph of an algebraic

equation.3 For instance, a parabola can be considered a variety since it’s the graph

of an equation of the form y = ax2 + bx+ c. Another example is shown in Figure

4.25, which depicts the graph of the algebraic equation y2 = x3 (known as a cusp).

It’s perfectly reasonable to have as many variables as you like involved in a variety;

for instance, the expression 5x3 + 2x2 − 3y2 + 18z5 − 4z + 7w5 = 0 might have

a solution set, and if so its solution set mapped out in Euclidean space would be

(roughly speaking) a variety. However, since there are four variables involved, it

would require at least four dimensions to depict what this variety might look like.

Most varieties involve too many dimensions to draw.

3Properly speaking, what I’m describing is a type of algebraic set. An algebraic set is a
solution to a system of algebraic equations. A variety is an irreducible algebraic set, meaning in
essence that it’s not the union of two distinct algebraic sets. But this “varieties are graphs” idea
is close enough for our purposes.
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One question that arises is, what happens as we continuously slide from one

kind of variety to another? In normal Euclidean geometry, we can use a parameter

t to describe smoothly moving from one point in space to another like so:

t(a, b, c) + (1− t)(a′, b′, c′)

The addition here happens entrywise: (a, b, c) + (x, y, z) = (a+ x, b+ y, c+ z). As

t takes on values from zero to one, the point that the expression above refers to

moves smoothly from (a′, b′, c′) to (a, b, c). We can use this same trick to convey

what it means to move smoothly between two varieties:

t
∑

x5n + (1− t)
(∑

x3n ×
∑

x2n

)
= 0

Each sum (i.e.,
∑
xmn ) represents an algebraic expression that corresponds to a

variety. So as t moves from zero to one, we move smoothly from the variety

described by
∑
x3n ×

∑
x2n = 0 to the one described by

∑
x5n = 0. That is, t

parameterizes a whole family of varieties the same way in Euclidean geometry it

can parameterize a whole family of points along a straight line.

Of particular interest to Matt and Bart is what happens to curves on these

varieties. A curve on a variety, in this context, refers to the intersection of the

variety in question with a variety produced via a linear equation. For instance,

in Euclidean 3-space, we could describe the curves on the sphere4 as the set of

all possible circles on the sphere since a curve would be the intersection of the

sphere with a plane5. However, this description implicitly uses the real numbers

R, and from the perspective of an algebraist the real numbers have a significant

shortcoming: they aren’t algebraically complete. That is, it’s possible to write

4We can describe the sphere by the equation (x− x0)2 + (y− y0)2 + (z− z0)2 = r2 where r is
the sphere’s radius and (x0, y0, z0) is the sphere’s center.

5Planes in R3 come from linear equations of the form ax + by + cz = d where a, b, c, and d
are constants. The intersection of this with a sphere gives us the ability to substitute one of the
variables — say, z — in the equation for the sphere, and the result is the equation of a circle.
It’s basic algebra, although the formula looks a little messy so I’ll omit it here.
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polynomials with coefficients in R such that the polynomial doesn’t have any roots

in R. (x2 + 1 is the most typical example of this.) The set of all complex numbers

C, on the other hand, is algebraically complete. So, when interpreting algebraic

equations like y2 = x3, algebraic geometers often expand the context such that

the variables (in this case x and y) are considered complex. For instance, (x, y) =

(i, eπi/3) can be considered a solution to y2 = x3 even though it’s not a point on

the cusp in R2 depicted in Figure 4.25.

For technical reasons that aren’t important in our analysis, Matt and Bart

find it helpful to take this one step further and look at the variables as elements

of complex projective space CPn. (Most commonly n = 2.) I’ll elaborate more on

what this means in section 5.3.1 on page 143. The key part that is important for

our purposes is that this move makes the number of possible curves finite. That

is, it makes sense to ask how many curves there are in total on, say, the projective

parabola and the answer will be a finite number.

It turns out that this number of curves doesn’t change as you smoothly

transition from one variety to another using the t parameter described earlier.

This is called the Gromov-Witten invariant and was a result that had been es-

tablished about a decade before the video observations of Matt and Bart. Part

of the challenge that Matt & Bart were facing was how to splice together several

different varieties at once such that you’d need more than one parameter t to tran-

sition across the splicing. They aren’t entirely sure how to do this; that’s part

of the content of their struggle. But during the clip we’ll examine here, they’re

trying to reason through how they might make an analogous extension of the

“one-parameter” argument to the “multiple parameters” situation. The difficulty,

in short, is that when splicing n varieties together for n > 2, the curves on all the

varieties can interact in complicated ways. It’s therefore unclear to Matt & Bart

what exactly needs to be modified in order for this all-at-once splicing to work.
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4.3.2 Video Description

This analysis refers to Table A.3. Matt is wearing a white sweater and Bart

is wearing a dark jacket and glasses with a dark frame.

At the start of this clip, Matt & Bart are examining details of a diagram

on the blackboard trying to make sense of it. On row 1 you can see most of this

diagram immediately around Matt’s right shoulder in the left-hand image. This

diagram is meant to describe how different curves on different varieties interact

when the varieties are spliced together.6 The basic idea for doing this came from

the decade-old result looking at splicing just two varieties at a time together.

After Bart suggests that two different objects on the diagram refer to the

same thing (rows 2–6), both mathematicians seem to search the whole board for

clues as to how to think about whether that statement is true and how to proceed

from that point (rows 7–10). In row 11 we see classic embodied displays of struggle:

Bart steps back and tilts his head, and Matt reaches up to scratch his temple and

then (row 12) drop his hand to his chin.

Here we have both of the key ingredients for proximal inhibition: both Matt

and Bart feel a desire to move in meaningfully toward the board but are inhibited

from doing so due to not perceiving where the meaning lies. This manifests most

obviously with Bart as he leans back and tilts his head in a way reminiscent of

many of Joseph’s movements. There are hints of this phenomenon in Matt as well:

he has covered his torso with his right arm as though to form a barrier between

himself and the blackboard, and his posture has collapsed slightly. However, the

palpable sense of resistance or inhibition that characterizes proximal inhibition

6Properly speaking, these various functions are recording information about the tangency of
the curves. For instance, a curve whose points are of the form (x, x4) has a tangency of 4 at the
origin. It’s possible to record tangency information about a curve via a function up : Pp → N
from an algebraic structure Pp closely related to the monoid to the natural counting numbers
N. However, the proper definition of tangency and how all the tangencies of the different curves
relate turns out not to be terribly important for our analysis.
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isn’t clearly here in Matt. This illustrates an important caveat in the logic of

watching for proximal inhibition: seeing it certainly seems to signal a particular

way of structuring the experience of struggle, but it doesn’t always appear in

challenging situations when it might seem appropriate.

Bart then zips in and annotates the diagram (rows 13–15). However, it’s

important to notice that this actually is not a collapse of proximal inhibition like

that described at the end of section 4.1.2. This wasn’t a matter of Bart suddenly

gaining insight into the mathematical situation. Instead, the annotations Bart is

adding here are labels for some of the arrows. For instance, one part of the diagram

read at the beginning like so:

Pη → Q

In row 13, Bart adds a label to the arrow, like so:

Pη
ϕη→ Q

From earlier, it was clear that both Bart and Matt knew quite well what label

belonged there. It didn’t provide any deep insight for Bart to write ϕη there. It’s

possible that Bart felt the need to write that label in order to make it easier to

remember which label goes there. However, it seems at least as plausible that Bart

did this because he felt drawn toward the board and noticed something he could

approach the board to add. Notice how he immediately turns away from the board

and walks away (rows 16–17) as soon as he has written this annotation, seeming

to emphasize the fact that his writing ϕη bought him only a moment of relief from

the friction between wanting to approach the problem at the board meaningfully

and being uncertain of how to do so. We even see him lean his upper torso away

from the blackboard and brace his arm on a chair behind him once he turns around

(rows 18–20).

It’s worth noticing here that Bart does not put a barrier between his torso

and the blackboard. This seems to be a stylistic difference in dealing with the
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discomfort involved in proximal inhibition. Bart seems to prefer getting physical

distance, whereas here Matt seems to prefer folding his arms over his torso. These

patterns seem to be fairly consistent for each mathematician across the various

clips observed; for instance, Bart generally seems to prefer getting distance over

torso-shielding whereas Matt’s preference seems generally reversed. This suggests

that there may be a kind of stability in expression of proximal inhibition for each

individual even though the variance between individual styles of expression might

be considerable.

However, this tendency is not strict. We see in rows 14–17 how Matt looks

at Bart annotating the diagram, lowers his left arm to form crossed arms across his

solar plexus, and leans back from the board. It seems as though he was checking

what Bart was doing to determine whether Bart had had some kind of insight

and was writing it up on the board. This bespeaks the same kind of “pressure”

back from the board that we saw in previous cases of proximal inhibition. So even

though we see Matt defaulting to something of a shielding strategy for dealing

with the discomfort involved in this struggle, we still see him responding to the

need for distance from the board.

At row 22 we see Bart moving his left hand up to adjust his glasses while

leaning forward slightly. This seems to be his expression of the beginning of an

insight into the problem at hand. Four seconds later he tilts his head to the side and

moves his hand to his mouth as Matt looks at him (row 23). Both the head-tilt and

the hand touching the mouth are signals we’ve seen before: the head-tilt (paired

with fixedness of attention) seems to bespeak an attempt to navigate struggle by

getting a new perspective, and the hand touching the lips can indicate an effort to

“hold back words” as the mathematician checks both whether the insight just seen

is correct and how to express it. Yet when Bart doesn’t speak for a few seconds,

Matt starts to suggest something while initiating a hand movement toward the
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board (row 24). Notice that this is consistent with the idea that Matt knows on

some level what some of Bart’s gesture mean. Matt is probably trying to offer a

possible way forward given that their current direction of thought might be too

unproductive for the effort they’re putting into it.

A fraction of a second after Matt starts speaking, Bart starts leaning for-

ward (row 24). He hasn’t yet taken his hand away from his mouth, so it’s reasonable

to suggest that he hasn’t quite finished thinking through what he wants to say. Yet

he apparently wants to make sure it gets said and would rather move toward the

board slightly prematurely than have the thought lost. In the very next moment

he interrupts Matt, rights his head, and throws his left hand forward away from

his lips (row 25). Notice in particular the words he says here: “Oh, of course it is!

It’s zero! Uh, I mean that’s the kernel. . . ” (rows 25–27). A kernel of a function is

the set of all values that get sent to zero; for instance, the function f(x, y) = x− y

has a kernel consisting of all ordered pairs of the form (a, a) (i.e., all the points

on the Cartesian plane along the line y = x). Saying “it’s zero” is actually pretty

imprecise as a way of describing why two different parts of the blackboard diagram

are in fact equal when neither one is zero. However, in this case Bart is talking

about the difference between the two objects in question. For instance, it turns

out that (1, 2) + (3, 3) gets sent to the same value under f as (1, 2) does (namely

−1) because (3, 3) gets sent to zero under f . Bart’s comment here would be akin

to saying that (1, 2) + (3, 3) and (1, 2) are the same because “it’s zero.” So there’s

a degree of imprecision here in how Bart first spoke, which matches the fact that

he started moving his torso toward the board before he felt ready to remove his

hand from his mouth. This is also why we see him needing to correct himself a

moment later.

Row 25 most vividly shows the moment of collapse of proximal inhibition.

Bart is no longer just moving toward the board, but the words fly out with his



98

hand. In response, Matt deflects the movement he had started with his left hand

in row 24 so as to touch his ear (row 26) and return to the crossed-arms position

(row 27). His attention has gone to the board where Bart is about to describe his

thoughts. From that point through most of the rest of the clip, Matt slowly drifts

toward the board (rows 27–31). This is not the “zooming in” movement we saw

with Joseph earlier in this chapter or with Bart in rows 25–27. However, there’s

still a sense of the proximal inhibition having been lifted, albeit in a way Matt has

not yet seen. This highlights a key social dynamic for proximal inhibition: some

of the loss of inhibition can transfer socially even before all parties involved have

a sense of how to move in meaningfully. There’s a sense here of Matt moving in to

be involved in the revealing of the insight. (We can be fairly confident that Matt

isn’t moving in here just to see the board better because throughout this and other

clips, he has been quite comfortable referring to specific parts of the board from a

distance greater than that shown in row 26.)

4.4 Chapter Summary

Proximal inhibition consists of two phenomenological elements, namely:

• a desire to move in toward the blackboard to clarify a point, paired with

• an inability to do so due to not perceiving precisely where to move and/or

what to say.

This phenomenon occurs in some instances of mathematical struggle. Here I’ve

focused on three clips to examine a few examples and non-examples.

I’ve also made an effort to highlight three embodied phenomena that, while

not directly related to proximal inhibition specifically, are sometimes seen in fairly

specific contexts in many forms of mathematical struggle including proximal in-

hibition. First, there are self-soothing gestures such as touching the neck or face.
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These seem to serve at least two purposes: they help to decrease stress when

faced with internal difficulty or struggle (Navarro, 2008), and they help to distract

one’s senses from one’s environment beyond the skin. The latter effect may aid

concentration on challenging problems like those of our subjects here.

Second is touching the lips with the hand, especially after a long pause

(often more than 10 seconds). This gesture signals that the mathematician is

about to speak, as though he or she has just had a key insight but is holding words

back in order to check the idea for veracity and the phrasing for accuracy. The

converse does not necessarily hold, though: we don’t find that mathematicians

almost always touch their lips upon having an insight.

Third, we see that some mathematicians at times tilt their heads to the

side when tackling a challenging problem related to material on the blackboard.

In the same way that the presence of the lip-touching gesture tells us more than

its absence does, this head-tilt seems to be more powerful as a positive signal of

struggle than does its absence as an indicator of ease.

Notice that these various embodied phenomena do more than signal to an

onlooker that the subject is experiencing mathematical struggle; they also give us

insight into what the structure of the experience is for the person in question. For

instance, imagine that we see someone working on a problem in complex analysis

and are writing a few diagrams and equations on a board. They then step back

and cross their arms over their belly. Thirty seconds later they tilt their head

to the side, and then around ten seconds after that they reach up and rub the

side of their neck with one hand while keeping the other crossed over their torso.

Suddenly the hand rubbing their neck zips to their mouth and all movement stops.

Three seconds later they drop their hand and start walking toward the board.

Being aware of the embodied patterns described in this chapter gives us

a reasonably vivid sense of what’s going on here. This person structured the
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problem on the board and then stepped back and crossed their arms in a display

of proximal inhibition. The head-tilt likely indicated an effort to think of the

problem differently, and the rubbing of the neck served to help reduce some of

the internal discomfort that comes from cognitive struggle. The flash of insight

occurred at the moment the hand zipped to the mouth, and the proximal inhibition

lifted a few moments later as demonstrated by their stepping forward.

This is just one possible sequence of many. By having encountered instances

of embodied patterns of navigating struggle such as in this chapter, our perception

of this kind of behavior changes and we see more than we did before. The next two

chapters will explore what a similar type of embodied phenomenological analysis

can reveal to us about mathematicians’ use of the blackboard itself.



Chapter 5

Invoking the Continuum

Many people have observed how there seems to be a kind of natural division

in mathematical practice between algebraic and geometric reasoning. For instance,

Hadamard (1949) describes how he and many other mathematicians use a great

deal of conscious mental imagery to think about mathematics, whereas many of

their colleagues report that they see nothing when thinking about math problems.

Burton (2004) indicates how these non-visualizers seem to be quite aware that some

people use mental imagery, whereas those who report mental imagery sometimes

indicate that they think all mathematicians reason this way. In my own experience

as a teacher, I’ve noticed that I often have to work out which of a more algebraic

or geometric approach is likely to work for the student who comes to me asking

for clarification during office hours.

The question of what exactly distinguishes algebraic and geometric ways of

thinking or representing seems intuitively obvious at first pass, but it actually turns

out to be pretty complicated. At first we might want to say that a mathematical

representation is geometric if it “looks like” the object it’s supposed to represent,

whereas it’s algebraic if it represents arbitrarily. For instance, a drawing of a sphere

is meant to represent a sphere by looking like one, whereas the algebraic formula

101
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x2 + y2 + z2 = 1 represents a sphere by indicating quantities and relationships

between quantities in a way we could have in principle represented any other way

(e.g., the equation α2 +β2 +γ2 = e2πi would work just as well as long as we relabel

the Cartesian axes of three-space). But this turns out to be problematic. Just

as I’m free to alter x to become, say, α in the algebraic expression, I could also

draw the sphere using a different color of ink. Thus the arbitrariness of the algebra

does have an analog in the geometric situation. And according to the set-theoretic

definition of geometric objects like the sphere, the equation form actually visually

appears more similar to what a sphere “really is” than does the relatively arbitrary

representation we use by drawing something that looks like a ball.

So instead of trying to come up with a definition that properly captures

our intuition about the division between algebraic and geometric methods, I’ll

highlight just one aspect of reasoning that seems to be important for what one

might be inclined to label as “geometric thinking.” That aspect is the invocation

of the continuum. That is to say, one thing that makes the drawing of the sphere

different from the equation of the sphere is that making small alterations to the

drawing slightly changes key properties of the mathematical object to which it

refers. For instance, if you redraw the sphere so that it’s a little bit smaller, that

means its radius is a little bit shorter. However, if you redraw the equation a

little bit smaller, that doesn’t change anything at all about its meaning. Tiny

movements matter in the drawing but not in the equation.

This might not capture everything of interest in the distinction between

algebraic and geometric reasoning. However, it does seem to highlight one aspect

that mathematicians implement rather frequently. Most of the mathematicians

I’ve investigated invoke the continuum as a method for navigating mathematical

struggle. However, the role that the objects within the continuum of the blackboard

play differs significantly depending on how the continuum was invoked. In this
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chapter, I’ll spell out the major nuances that emerged as salient from the work of

the mathematician pairs I observed.

5.1 Clip #1: Inverted Pyramid

For the opening clip of this chapter, I’ll return to Matt & Bart, whom we

met in section 4.3 (page 90). The focus for Matt & Bart is algebraic: when the

objects they’re referring to have a natural geometric interpretation, more often

than not the objects involve too many dimensions to be visualized, and the way

this pair chooses to deal with this is by focusing mainly on the equations and

functions involved. Yet Bart still elects to invoke the continuum here to organize

his thinking and encourage himself and Matt to cease making a particular sort of

error.

5.1.1 Mathematical Context

Most of the mathematical context for this clip was given in section 4.3.1:

Matt and Bart are thinking in terms of splicing varieties together. The new element

we’ll need for this clip is the idea of a monoid structure attached to certain varieties.

Monoids

A monoid is a set of mathematical objects together with an operation such

that the set (a) is closed under the operation, (b) is associative under the operation,

and (c) has an identity element with respect to the operation. For instance, the

set N = {1, 2, 3, · · · } of natural numbers is a monoid under multiplication: it’s

closed (meaning you can multiply any two natural numbers and you’ll get another

natural number) and associative (meaning n × (m × p) = (n × m) × p for any

natural numbers n, m, and p), and multiplying any natural number by the natural
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Figure 5.1: A geometric depiction of a monoid

number 1 results in no change. The set [1,∞) of real numbers no less than 1 under

multiplication is another example of a monoid. Yet another example is the set

Z = {· · · ,−2,−1, 0, 1, 2, · · · } of integers under addition.1

We can see a geometric example of a monoid in Figure 5.1. The elements

of the monoid are the crossing points of the grid — essentially any point on the

Cartesian plane whose coordinates are of the form (m,n) where m and n are

non-negative integers. The operation is vector addition: if we draw an arrow

from the origin (i.e., (0, 0)) to each of the two points being added together, then

the sum will be the point you get by translating one of the arrows so that it

starts where the other arrow ends. This has the net effect of adding coordinates:

(a, b) + (c, d) = (a + c, b + d). But it’s worth noticing that we can capture this

monoid structure with a quick picture.

The picture Bart uses in this clip is related, but is more like that in Figure

5.2. The idea here is that you can get to any element of the monoid by adding

1If you’re familiar with the idea of a group, you can think of monoids as a generalization of
groups where we don’t require the existence of inverses. Therefore all groups are monoids.
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Figure 5.2: A different depiction of the same monoid from Figure 5.1

together multiple copies of just two vectors, namely (1, 0) and (0, 1). (These are

thus referred to as generators of the monoid.) For instance, (2, 3) = (1, 0)+(1, 0)+

(0, 1) + (0, 1) + (0, 1). Each addition of a generator causes us to go up the “ladder”

by one “rung,” so the horizontal lines in the middle are meant to depict the internal

dynamic of the monoid.

Monoids on varieties

It turns out that it’s possible to assign a monoid structure to a variety

in a way similar to how we assigned a monoid structure to the first quadrant of

the Cartesian plane above. However, for a general variety V , it turns out to be

necessary to pick a point p on V in order to generate the monoid structure. To

highlight this, Matt & Bart refer to the monoid generated by the choice of a point

p on a given variety as Pp.
2 The point p allows Matt & Bart to focus on one of the

(finitely many) curves passing through p in order to create a function up : Pp → N.

That is, elements of the monoid Pp are given correspondence to natural numbers.

2This isn’t exactly true. Pp is a quotient of a particular monoid structure with respect to p.
However, the difference turns out to be both very complicated and unimportant for the purpose
of following what Matt & Bart are doing in this clip.
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Figure 5.3: The map up : Pp → N represented graphically

If we represent Pp as in Figure 5.2, then we can see the function up as being a

compression to a vertical line of counting numbers (Figure 5.3).

One of the challenges Matt and Bart face when splicing varieties together

is to track what happens to the monoid structures of each of the varieties being

spliced. In order to work this out for splicing just two varieties at a time, it turns

out to be helpful to pick points on the two varieties that will end up being fused

together in the splicing. To be more specific, suppose our two varieties are V

and V ′, and we’re picking points p ∈ V and p′ ∈ V ′. Then we’ll rename the

corresponding varieties Pp and Pp′ to keep track of our choice of points and curves.

When we splice these two varieties together, the points p and p′ will fuse together to

form a new point q (Figure 5.4). Matt & Bart refer to the monoid that corresponds

to the resulting spliced variety as Pq.

In section 4.3.2 we saw Matt and Bart using an algebraic diagram that
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Figure 5.4: Two curves fuse together at q

looked something like this:

Pη
ϕη→ Q

↗ ↖

Pq → Q⊕N N2 ⊂ Q⊕Q

↘ ↙

Pη′
ϕη′→ Q

This is meant to capture what exactly happens to the monoid structure during the

splicing. Q here is a monoid, and the functions ϕη and ϕη′ are meant to take the

place of the maps up and up′ respectively.3 So, the top and bottom rows represent

the monoid structures of the two varieties being spliced together, and the middle

row is the same for the monoid structure of the resulting spliced variety. The arrows

going between the rows represent functions that relate the rows to one another in a

way consistent with the splicing. The set inclusion (i.e., Q⊕N N2 ⊂ Q⊕Q) points

3This also isn’t exactly true. There is, again, a difference emerging from the fact that we’re
actually taking quotients of the spaces involved. However, as before, we can basically ignore this
for the purposes of the present analysis.
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out that there’s a clear way to send elements of the monoid for Pq to each of Pη

and Pη′ based on a kind of projection.

5.1.2 Video Description

The row numbers cited in this section refer to the microanalysis in Table

A.4 of the appendix.

Build-up to geometric shift

At the beginning of this clip, Bart (on the left) and Matt (on the right)

have spent 4 minutes and 19 seconds sitting across from one another discussing

how to approach this question of splicing multiple varieties together at once. The

material currently on the board came from an earlier attempt that was almost

purely algebraic. They had been trying to approach the problem as a whole,

looking at the collection of all the varieties involved and trying to describe the

result of splicing them all together at once.

Bart suggests that they focus instead on the question of “how to move some

curve” (rows 4–7), by which he means that they should consider splicing just two

varieties at a time via tracking curves on each of them. He then jumps up and

prepares to erase the board (rows 10–12). But then he pulls his hand away from

the board and says, “What we do have. . . ” (rows 13–15). On “do,” he makes a

jabbing movement with the eraser as though to punctuate his point (rows 14–15).

But after this he pauses and stares at the board for a few seconds without moving,

and then erases most of the left-hand half of the board (rows 17–20), pausing

before erasing one last portion near the middle (row 21).

Both the erasing and the pauses here are significant indicators of Bart’s

thinking. He chose to erase the part of the board with lots of algebraic reference

to an approach they were partially abandoning. The diagrams to the left of that
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algebra remains untouched. At no point throughout the rest of this clip do either

Bart or Matt refer to those diagrams on the leftmost edge of the board, but later

algebraic expressions do replicate some of the material Bart has just now erased.

Thus it seems likely that this act of erasing is meant to signal a shift in approach.

Bart and Matt have agreed to try a new strategy in response to their earlier

struggles.

Part of what signals this action as meaningful is how Bart did not simply

jump up and mechanically erase parts of the board to create space to write. In-

stead, he got up, prepared to erase, and then aborted the movement in order to

make a point (“What we do have. . . ”). He then erased sections of the board, paus-

ing briefly (row 21) in order to consider whether he would need the algebraic map

he was about to erase. Thus this is not just a clearing of space on the blackboard,

but a calculated clearing of space, demarcating a shift in strategy.

You can see in row 21 how Matt is about to speak. Right before then he

reached up to touch his mouth (row 18), temple (row 19), and nose (row 20) in

sequence before dropping his hand down to speak (row 21). This is yet another

instance of the mouth-touching “I’m formulating something I want to say” signal

mentioned earlier. As mentioned before, this gesture seems to indicate that the

mathematician has an insight that he or she thinks is pertinent but wants to take

a moment to make sure the idea makes sense or is properly thought out. At this

moment, Matt is referring to the idea that if we look two curves each on a different

variety, we can examine what happens around those curves as we splice the two

varieties together in a way such that those two curves meet at a single point (rows

22–24). This defines their mathematical approach throughout the rest of this clip.

At just the moment Matt finishes speaking, Bart raises his hand to his

forehead and glasses while bowing his head (row 24). He thinks in this position for

two seconds, at which point Matt starts to speak. That prompts Bart to interrupt
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with “Yeah, exactly” while touching his mouth with his hand (rows 25–26). This

seems to mark the moment when Bart and Matt are on the same page, so to speak.

Now they’re both thinking about approaching the splicing of varieties together by

focusing on what happens as two paths, one on each variety, get spliced together at

a point. It’s only after this moment of acknowledged agreement that Bart lowers

his left hand, as though he no longer needs the self-soothing that hand appears to

provide.

Bart prepares to draw what they’re describing on the board but then with-

draws his hand while thinking about it (rows 32–33). He pauses all movement for

five seconds at this point. He then walks up to the board and erases some faint

leftover markings using his fingers (rows 35–36) and then paces slowly as though

deep in thought (rows 37–40). Notice also how Matt has turned his face away from

Bart and the board while touching his chin, despite the fact that his torso is still

oriented solidly toward both Bart and the board (row 36). This pattern of seem-

ingly absent-minded body stimulation — Bart’s pacing and Matt’s chin-touching

— combined with the turning away of the gaze seems to be a telltale signal of

careful thought.

Geometric shift

Bart abruptly turns toward the board, starts speaking, and prepares to

write on the board (rows 41–42). But at that moment he breaks his speech and

then starts over as he moves his hand to the right (row 43). This seems to indicate

that what Bart is about to put on the board here is meant as something non-

central, like a guideline to thinking rather than the main work. As we’ll see in a

moment, it’s reminiscent of how a student who’s working on a difficult trigonometry

problem might quickly sketch a unit circle off to the side in order to keep the

algebraic relationships straight: while the drawing helps to guide the thinking,



111

Figure 5.5: The points p and p′ merge into point q

in some sense the algebra is more central and is what will make it into the final

presentation of a solution.

As Bart pauses after saying “we want to,” he draws two curves with points

p and p′ on them, a right arrow, and a picture showing the two curves joined at

a point q (rows 43–45; Figure 5.5 depicts Bart’s drawing). This is a considerable

shift in representation methods. Although we can see some seemingly geometric

depictions on the left-hand side of the board (in, say, row 45), those are more like

graphs than drawings: they indicate relationships between algebraic objects. Slight

movements of the inscriptions don’t change the meaning the way slight movements

of the graph of y = 2x would make the graph refer to something entirely different.

And while the diagrams on the right are indeed geometric (technically referred to

as “tropical diagrams”), they aren’t part of the particular reasoning pathway that

had Bart and Matt write algebraic statements on the left-hand half of the board

where Bart later erased them. Thus we can deduce that there is something about
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the specifically geometric representation that is this pair of paths merging into one

that Bart anticipates as being useful. (Notice that Matt still hasn’t looked up at

the board at this point.)

It’s worth noting, though, that these paths have an arbitrary character to

them. Although the top path with the point p on it in Figure 5.5 has a loop in

it, there actually wouldn’t be anything different about its having no loop, or two

loops. It has the shape it does because it represents a generic path. This is much

the same way as someone who is trying to think about triangles in general might

visualize one specific triangle (say, a 30-60-90 triangle) with which to reason. Many

of Euclid’s proofs draw a specific triangle but intend the triangle to be generic in

some sense with variable side lengths and angle measures. We still call such proofs

“geometric,” and for our purposes they still fit the phenomenon we’re interested in:

they invoke the continuum. Small adjustments in the shape of the triangle might

not affect the reasoning, but they do actually mean something in terms of which

triangle is depicted. In the same way, the paths that Bart has drawn here seem

to represent variable paths that we might twist or loop or otherwise modify. Such

modifications have meaning in that it would change one specific path to another

— but it doesn’t affect the role that the representation has in his reasoning.

Contrast this with an expression like x2 − 8x+ 15. This can stand in for a

whole family of quadratic expressions — for instance, any of the form x2 + (a +

b)x + ab. So if we were to use this particular expression to reason about such

quadratic expressions in the abstract, we would have made this example generic

while still being specific. Yet it still would not invoke the continuum: if I were to

move the 15 slightly upward, or if I were to make the 2 a little bit smaller, it would

not change which example from the family of quadratic expressions it is.4

4It might occur to some readers that were I to make the 2 sufficiently larger so that x2 became
x2, it would mean something different. However, it doesn’t clearly mean anything to enlarge the
2 by half as much, or a tenth as much. This is somewhat analogous to the ε-δ definition of
continuity: something counts as an invocation of the continuum for a given mathematician if
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Bart steps back, checks that Matt agrees with the drawing, and touches his

chin (rows 46–47). This begins a five-second-long staring at the board in which

it seems that this new drawing is helping to guide Bart’s and Matt’s thoughts as

they wrestle with the exact method of splicing the varieties in question together.

Confusion in the algebra

After the pause, Bart jumps forward and starts writing down functions at

the top of the board (rows 48–52). Notice that this is in the same place on the

board where he had originally been about to draw the path-splicing image. This

seems to indicate that the algebra he’s writing there may be more central to the

point of his analysis here. As of row 52, Bart has written this:

up : Pp → Z

up′ : Pp′ →

Here, Pp and Pp′ are meant to be varieties containing the points p and p′ re-

spectively as well as their corresponding paths. The u maps indicate the monoid

structure that is part of each variety. Recall that part of the question of what

happens in this splicing is precisely what happens to the monoid structure. So

part of what Bart and Matt need to work out is how these u maps behave and

interact after splicing Pp and Pp′ together. In this case Bart made a minor mistake

that’s about to be corrected: he had written Z (the integers) instead of N (the

natural numbers, i.e., the positive integers) as the codomain for up. This pre-

sumably came from Bart defaulting to thinking about groups instead of monoids

(since group structure is much more common in abstract algebra than is monoid

and only if arbitrarily small changes in the notation correspond to arbitrarily small changes in
meaning for the mathematician in question.
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structure). The resulting correction (rows 53–54) makes the algebra look like so:

up : Pp → N

up′ : Pp′ → N

At this point Matt suggests that Pp and Pp′ are actually the same “because

p and p′ have to attach to the same thing.” Bart thinks for a few moments and then

agrees, writing an equal sign between Pp and Pp′ . This turns out to be an error,

which is key to what follows: the relationship between Pp, Pp′ , and Pq (which has

not been mentioned as yet in this clip) is something that Matt and Bart straighten

out only after invoking the continuum again later on.

Then Bart moves his hand near the board and then pulls it away to turn to

Matt and say, “So now we now have the whole diagram that we drew a hundred

times” (rows 62–65). The diagram they’re referring to is shown in section 5.1.1. It

refers to the process of splicing just two varieties together. Bart is suggesting here

that they can use essentially the same diagram in order to explore what happens

specifically to two varieties in a splicing of many others at once. It’s important

to note, however, that the diagram to which Bart is referring does not invoke the

continuum at all: it uses letters to represent varieties and monoids, and labeled

arrows to indicate functions going from one type of mathematical object to another.

Small movements in this diagram do not reflect changes in the concepts to which

it refers.

Bart then starts to draw the diagram. The leftmost part of this diagram

should be Pq (again, not yet referenced in this clip), so he writes “P” and then

glances up to check the relationships indicated by the monoid maps at the top

of the board (row 65). Those u maps are very closely involved with the diagram

Bart is trying to draw, so it’s unsurprising that he’d embody a connection between

the two by keeping his hand and body oriented on the diagram-in-progress while

focusing his attention on the u maps. Bart seems to have a sense that he needs to
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navigate between those monoid maps above and the diagram-in-progress below, as

though doing so binds their meanings together (rows 65–68). This is the first time

that Pq is referenced here.

At this point, the mistake Matt and Bart had made becomes more salient.

Bart recognizes that if Pp = Pp′ , then by the same reasoning they’re both equal to

Pq. So he laughingly says, “So let’s just call it ‘P ’” while he zips up to edit the

line below the u maps (row 68). So now the material at the top of the board reads:

up : Pp → N

‖

up′ : Pp′ → N

Pq = P

Yet at this point Matt objects (rows 70–73). Notice here how Matt does not touch

his face before speaking, as though to interject his objection as rapidly as possible

as soon as he saw reason to believe there was a problem. However, immediately

thereafter he touches his nose as he formulates how to express his objection (row

72). This kind of abrupt change in face-touching patterns arises at times as a kind

of, “I need a moment to think about this” signal. Bart seems to take the strength

of Matt’s initial objection as good reason to literally step back and reconsider the

situation, with his attention fixated first on the u maps and then on the paths to

the right of the u maps.

Then after a moment Bart suddenly sees what Matt saw, tosses his hand up

in the air in revelation, and goes forward to erase the equation Pq = P (rows 74–

75). Notice how Bart seems to realize this at the same moment that Matt figures

out how to express what he had wanted to express. Thus we see Matt pointing

to the error at the same time that Bart tosses his right hand in the air (row 74).

Matt goes back to touching his own head as Bart erases the equation (row 75), but
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in this case it would seem that he does this in order to address a sense that there

is something else wrong with this scenario as they’ve been thinking of it. He then

notices the mistake made before: Pp and Pp′ are in fact different varieties (rows

76–78).

At this point Bart recognizes what Matt is saying and replies, “They are

different components” (rows 79–81)5. After a moment of thinking at the board,

Bart walks toward Matt while making a chopping movement and saying, “They

are both faces of Pq” (rows 83–88), as though to drill this point into his own mind

while communicating the point to Matt.

The sense we get while watching this recognition of error is that it’s not

enough for Bart that he recognizes the mistake. There was a reason the mistake

was made in the first place. Without emphasizing a different way of thinking, that

old reasoning method that caused them to conclude that Pp is the same as Pp′

might resurface. Thus Bart has to emphasize the reasoning that seems to correct

the error: Pp and Pp′ (the original two varieties) are faces of Pq (the resultant

spliced variety). This interpretation gets reinforced throughout the remainder of

the clip.

The next move Bart makes is to replace the equation Pq = P that he had

just erased with Pp, Pp′ ⊂ Pq (row 89). So now the equation set looks like so:

up : Pp → N

up′ : Pp′ → N

Pp, Pp′ ⊂ Pq

Then he stands back, glances at Matt, and then looks back to the board while

Matt says, “And then what I think we want is that, uh. . . ” (rows 90–91). But

5I should note here that I’ve seen both of the European mathematicians in this study (Bart
as well as Joseph) use their middle fingers as pointers like is shown in row 80. I encountered the
same phenomenon in my graduate studies in math when I had Russian teachers. There doesn’t
seem to be any intent to be offensive. It seems as though it’s simply an effort to use the longest
finger for pointing.
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Figure 5.6: A depiction of Bart’s drawing of an inverted pyramid

Bart interrupts, which in turn seems to cause Matt to reach up and ruffle his hair

in a self-soothing gesture (rows 91–92). Bart’s manner and the hesitant way he

speaks, paired with the need he feels to interrupt Matt with his not-yet-carefully-

phrased hesitation, seems so suggest that Bart is tentatively holding to a new way

of viewing the situation that he’s still having some difficulty with. It’s as though

Matt’s input threatened to derail Bart’s efforts to work through his new perception

of the situation, encouraging him to interject his conversational placeholder.

Appearance of the inverted pyramid

After a two-second pause, Bart speaks as though he suddenly sees how to

proceed (row 93). It’s at this moment we see him invoke the continuum again, this

time in the form of capturing the relationships that make his insight sensible. He

draws an inverted pyramid like that shown in Figure 5.6 (rows 94–101). This is

a marked shift from non-continuum-based representations (e.g., the u maps and
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the P -lettering for the varieties) to a visibly continuum-based one: whereas small

variations in where up is written won’t change the mathematical meaning of the

map up : Pp → N, small variations in the angles at which the lateral edges of the

inverted pyramid meet will definitely change which pyramid is being represented,

even if only slightly.

As with the paths drawn earlier (Figure 5.5 on page 111), this pyramid

is a generic particular: it takes the place of any other of a number of possible

pyramids that could have been drawn in its place. It’s worth noticing that the

shape this pyramid represents probably won’t look like a pyramid at all. Most

varieties with any interesting properties will have at least four real dimensions6,

and most varieties are too complicated to model with something as flat as the

lateral side of a pyramid. So the fact that he’s trying to model the relationship

between Pp, Pp′ , and Pq with a pyramid like this indicates a use of the continuum

that is intended only to capture relationships between mathematical entities rather

than to capture how they would literally look if we could somehow see the spliced

spaces.

This is reminiscent of how we draw a unit circle to indicate the family of

solutions to the equation x2 + y2 = 1. At first glance we might want to say that

the circle really is what the solution set looks like. However, that’s not literally the

case. The solution set is really an infinite collection of ordered pairs of numbers

— one for x and one for y in each pair. The circle emerges because we invoke the

continuum in order to organize the relationships between these numbers: we think

of the x coordinate as indicating how far to the right we move, and the y coordinate

as indicating how far up we move. Had we instead interpreted x as distance from

6Properly speaking, what I should say here is that most interesting varieties involve more than
one complex variable. If there are n complex variables, then we can model the resulting variety
with 2n-dimensional Euclidean space. If there were some way to visualize four dimensions, then,
we would be able to see the whole variety of an equation like y2 = x3 rather than just the
two-dimensional slice that looks at only the real component of each of x and y.
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the origin and y as a measure of how far counterclockwise we had rotated (i.e., if

the equation had instead been of the form r2 +θ2 = 1), then the solution set would

“look like” an infinity sign. Thus invoking the continuum doesn’t necessarily show

us what a mathematical object “really looks like,” but it can give us a spatial way

of keeping track of the relationships between different mathematical entities.

The emphasis here is on the word “spatial” rather than “relationship.”

Someone who is sophisticated at algebraic reasoning can recognize y = x2 as a

description of a relationship between quantities x & y even though it’s explicitly

not an invocation of the continuum. Indeed, some people such as Devlin (2000)

argue that mathematics is essentially about nothing but relationships. What con-

tinua seem to afford for Bart here is a way of involving his spatial intuitions in

representing and thinking about the relationships. For instance, it’s not literally

the case that the monoid Pq has faces at all; instead, by envisioning it as an in-

verted pyramid, Bart brings his spatial sense of “behind,” “next to,” movement,

and so on to bear on how Pp, Pp′ , and Pq are related in a way that the algebraic

representations simply didn’t seem to him to afford.

As Bart draws the inverted pyramid, Matt describes a point about the

behavior of the monoid structure of Pq and how it relates to those of Pp and Pp′

(rows 93–105). During this time, Bart continues to direct his attention toward

the inverted pyramid, making minor cosmetic corrections such as closing gaps that

his first attempt to quickly sketch the pyramid had left (rows 104–106). These

kinds of minor changes actually do not seem to be important in terms of changing

the diagram per se; rather, they’re correcting imperfections in key attributes that

the diagram is meant to capture, which Bart fixes as part of his continual effort to

focus on it as a way of organizing his thoughts about the interrelationships between

each of the varieties involved in this problem. It’s unlikely that he felt relevantly

confused by the fact that one of the lateral edges he had drawn didn’t quite reach
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Figure 5.7: Bart’s drawing of the monoid structure for Pq

all the way down to the vertex, so it seems reasonable to conclude that this kind

of minor perfecting is primarily a focusing tool, like the student who fills in the

corners of a triangle while trying to work out a geometric proof.

Bart replies to Matt’s comment after two seconds by saying, “Yeah, but

it’s facets, right? Maybe that’s important. It’s still facets” (rows 107–108). Bart’s

primary aim here seems to be on correcting a way of thinking that seems to be

getting him confused, and which he seems to think that this tool of the inverted

pyramid can help him with. He even goes up to the board and writes the word

“facets” on it to the right of the line “Pp, Pp′ ⊂ Pq” (row 109). Notice how vividly

the spatial nature of the continuum is shaping Bart’s way of thinking and talking

about this clarification. He follows this up by drawing horizontal lines on the faces

of the inverted pyramid in a depiction of the joint monoid structure of Pq (rows

111–112). The resulting drawing looks like Figure 5.7.

Bart takes a few moments to try to label the faces of the pyramid (rows

113–118). He then recognizes an error: he had mistakenly labeled one of the faces
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Figure 5.8: The pyramid after getting its lateral faces labeled

Pq when really the whole thing is Pq (rows 118–119). After correcting it (rows

120–121), he ends up with the image shown in Figure 5.8. Bart finds that he

needs to indicate that the whole pyramid is Pq by writing “Pq” on the top while

lamenting, “Now I’m confused all the time” (rows 120–122). The combination of

his expressed concern and his act of labeling seems to suggest that he is intending

this invocation of the continuum to guide his thinking enough to show him the

way through his confusion.

Summary

It’s worth emphasizing that the main domain of interest for Matt and Bart

was basically algebraic. Although they were working with ideas originally inspired

by geometry, the kind of algebraic geometry they were trying to navigate was too

different from common intuitions about space and shape for visual approximations

to be of much use in directly depicting the varieties they were examining. Thus
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the notational default for these two algebraic geometers was something whose

representations — usually algebraic symbols — generally tended not to invoke the

continuum.

However, we still see cases here where the continuum is invoked in order to

keep relationships organized, presumably via spatial intuitions that aren’t avail-

able in non-continuous notations. In the case of the paths, there was a generic

character to them even though they were particular instances as they were drawn:

drawing different representatives would not have changed the relationships that

those drawings were meant to capture. The same was true of the inverted pyra-

mid, only it also had an additional characteristic: in most cases, even though the

objects they’re interested in (i.e., varieties) have components that can be visualized

(the way it’s possible to visualize the two-dimensional part of a four-dimensional

sphere as a circle), they generally are not going to look like pyramids or faces of

pyramids. Yet they still found value in capturing the relationships between various

aspects of the varieties within the continuum using this shape. In particular, they

were able to capture the fact that the two varieties they were starting out with

were being spliced together (along with others) in order to create the larger variety

at the end; and they were also able to capture the monoid structure of each variety

as well as display the central question that they were trying to explore about the

algebraic structure of the resulting spliced space.

So this switching to a medium in which they were invoking the continuum

seemed to be an effort to involve spatial intuitions in the perception and organiza-

tion of the monoids’ relationships. This was something they were finding difficult

to manage in the non-continuous-notation context, and indeed they found it diffi-

cult to keep consistent in the continuum-based context as well. Yet they (especially

Bart) persevered anyway out of a sense that this would act as a kind of map out

of their confusion-based struggle.
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5.2 Clip #2: Finger Moves

This clip centers on Joseph and Bill, the two mathematicians who were

working on odd Khovanov homology in section 4.1. In contrast to Bart’s and

Matt’s work, Joseph and Bill work almost entirely with diagrams that invoke the

continuum. One effect of this is that those invocations of the continuum take on

a different character than did the inverted pyramid Bart drew, with more of an

immediate sense that the drawings are what the shapes “look like.” The contrast

is a bit like that between a circle viewed as a solution set to x2 + y2 = 1 on the

one hand and it viewed as the intersection of a plane with a right circular cone on

the other.

5.2.1 Mathematical Context

The problem Joseph & Bill are working on in this clip is distantly related to

the Khovanov homology problem described in sections 4.1.1 and 4.2.1, but by this

stage they had largely given up on odd Khovanov homology. Instead, they were

exploring how to extend the ideas of knot theory into ribbon knots. This requires

us to explore two different domains: knot diagrams and Reidemeister moves, and

how that translates to ribbon knots. I’ll also need to explain one of the diagrams

that they use in the second half of the clip, referencing one of the Reidemeister

moves.

Knot diagrams & Reidemeister moves

Mathematicians want to consider two knots to be “the same” if they differ

purely by wiggling or sliding the “string” around without having to make any cuts

or splices. For instance, we want to consider two knots to be “the same” if they

differ only by a single twist at some point (Figure 5.9). Similarly, we wouldn’t
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Figure 5.9: Reidemeister 1 (ignoring a kink)

Figure 5.10: Reidemeister 2 (ignoring overlap)

want to consider two knots to be different if two sections of the string happen to

overlap without being linked together (Figure 5.10), nor would we want to call

them “different” if we were just to slide one portion of string from one side where

two other portions cross to the other side of a crossing (Figure 5.11).

This turns out to be a little tricky to formalize when talking about strings.

However, if we restrict ourselves to talking about pictures of knots (like Figures

5.9, 5.10, and 5.11), we can formalize the rules around how we can manipulate

the pictures. These pictures are referred to as knot diagrams, and the rules for

manipulating these pictures are called the Reidemeister moves. Figures 5.9, 5.10,

and 5.11 are referred to as Reidemeister 1, Reidemeister 2, and Reidemeister 3,

respectively.

For a quick example, Figure 5.12 shows how we can transform a circle (an
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Figure 5.11: Reidemeister 3 (ignoring sliding portions)

Figure 5.12: Turning a circle into a pseudo-trefoil

“unknot”) into something that looks very close to a trefoil - but if you were to

actually make this pseudo-trefoil out of string, you could easily stretch it back out

into a circle. So as you’d intuitively expect, mathematicians generally want to

consider all the diagrams shown in Figure 5.12 as referring to “the same knot” in

some sense.

Ribbon knots

Normally, knot theory looks at ways of tangling up a one-dimensional loop

in three-space. However, another fair question is what happens when you widen

the string into a ribbon so that it’s (locally) two-dimensional. In many cases the

ribbon knot will look the same, such as in Figure 5.13. However, it’s also possible

to create a new kind of knot in which the ribbon goes through its own center
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Figure 5.13: A ribbon knot that’s equivalent to a normal knot

(Figure 5.14). Since it’s always possible to knot a ribbon the way you would knot

a string, the collection of ribbon knots includes the collection of normal knots as

a subset. So, working out the rules for manipulating ribbon knots should include

the Reidemeister moves as a special case.

When trying to switch from talking about knots to talking about knot

diagrams, we could imagine just laying the knot down flat on a piece of paper and

tracing the string, leaving small gaps to indicate what crosses over what. With

ribbon knots, however, a similar trick ends up creating many, many more cases

of equivalence than with knots. In fact, the three Reidemeister moves seem to

capture all the differences between knot diagrams that we want to describe as

being of the same knot. But with a ribbon, we could end up flattening a hood

into a fold (Figure 5.15). We certainly would want to consider a ribbon knot to

be the same whether it displayed this kind of ‘V’ pattern even though there’s no

analog in normal knots. Similarly, a “bubble” in the middle of a ribbon (Figure

5.16) shouldn’t make a difference as to which knot it is, so the corresponding ring

that comes from flattening out such a shape shouldn’t matter.
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Figure 5.14: A ribbon knot that’s different from a normal knot

↓

Figure 5.15: Flattening a hood into a ‘V’ shape
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Figure 5.16: A “bubble” flattening into a ring of sorts
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Figure 5.17: A “finger move” pushing the boundary into the hood’s base

Finger moves

A large amount of the challenge that Joseph & Bill face in this clip is

coming up with a way to account for all such fold patterns rather than thinking

of some of them haphazardly. The main idea driving this session was Joseph’s

observation that they could push the boundary of the ribbon up to key points

(what they referred to as singularities) but that they couldn’t really do this for

similar singularities when the ribbon cuts through itself (like in Figure 5.14).

For example, in considering the phenomenon show in Figure 5.15, Joseph

points out that it might be possible to imagine pushing one’s finger into the side

of the ribbon up to the base of the hood (Figure 5.17). Doing this makes it so that

when we flatten out the hood into a ‘V’, the point where the two sides of the fold

meet is no longer there (Figure 5.18).

The question driving most of the use of continuum-based drawings here is

whether this “finger moves” approach will work for all such singularities. (The

answer turns out to be “no,” but that doesn’t turn out to matter for the purposes

of the present study.)
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Figure 5.18: The “finger move” of Figure 5.17, flattened out

Figure 5.19: A (sideways) diagram depicting the algebra of Reidemeister 2

The Reidemeister 2 diagram

A second portion of the analysis considers what happens when Joseph &

Bill switch to thinking in terms of a particular diagram depicted in Figure 5.19.

The diagram they actually mean to refer to is that shown in Figure 5.20.

This diagram references the connection between the Reidemeister moves

and homology (see section 4.1.1 on page 60). We won’t need the details of this

connection until Chapter 6 (see section 6.1.1); instead, I’ll just sketch roughly what

this diagram refers to in relatively broad strokes since that will turn out to be good

enough for our purposes in this clip.

Stage 1 of the diagram in Figure 5.20 shows that we’re dealing with two



131

Figure 5.20: Figure 5.19 corrected
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Figure 5.21: Moving from stage 1 to stage 2 of the diagram in Figure 5.20

Figure 5.22: Loops on top of one another

loops or portions of string (roughly speaking). We can pinch these two together

in the middle, merge them, and separate them into two loops (Figure 5.21). This

results in a “sum” of two loops. If we read the diagram of Figure 5.20 in columns,

we can see this “sum” by the direct sum (‘⊕’) symbol between the two loops.

Remember that Reidemeister 2 says in effect that if one loop is lying on top

of another, you can pull them apart — or conversely, you can take two separate

loops and put one on top of the other. If we do that with two loops, we end up

with a ring in the middle (Figure 5.22). If we were to separate the three loops we

see there, we’d get stage 3 of Figure 5.20.

This overall sequence — pinching two strings into two loops, then overlap-

ping them and separating them into a circle and two loops — describes roughly
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the process involved with connecting Reidemeister 2 to the Khovanov homology of

knots. (Recall that we want the Khovanov homology of two knot diagrams that

differ by a Reidemeister 2 move to be the same.)

5.2.2 Video Description

The analysis for the first part of this section refers to Table A.5.

When this session begins, Joseph and Bill had just spent fifteen minutes

sitting across from one another while discussing ribbon knots. They’ve been fo-

cusing on a paper sitting at a desk next to them. The paper describes ways of

computing the usual Khovanov homology for a knot (see Section 4.1.1). They’ve

been trying to work out how to extend the reasoning to work for ribbon surfaces.

Setting up the problem

Joseph is trying to explain to Bill that there are some kinds of singularities

that can occur with ribbon surfaces but not with normal knots. He struggles to

convey his intent through gestures (rows 4–7), but he decides that this is less

effective than working at the board and thus jumps up to draw a picture of an

example of what he means (rows 8–14). The shape he draws is the hood depicted

in Figure 5.15 on page 127, although he refers to it as a “blanket” (rows 15–16).

He describes the folding process that would occur if one were to try to flatten the

hood down (rows 16–21), eventually describing the ‘V’ shape that would be three

sheets thick (rows 23–25).

At this point he indicates how this particular folding crease meets at the

top in the shape of a kind of mathematical object known as a cusp (rows 25–26).

An example of where this shape occurs is in the graph of the equation x2 = y3

(Figure 5.23; see also Figure 4.25). In saying that this “is what we normally call

a ‘cusp’” (rows 39–40), Joseph is describing how sharply the two sides of the ‘V’



134

Figure 5.23: A cusp — the graph of x2 = y3

come together. It’s interesting to notice how, in preparing to make this point, he

engages in a similar process of perfecting the invocation of the continuum (row

31) that we saw Bart doing in section 5.1.2. We also see Bill briefly engage in

eye-shielding behavior (rows 35–37) in response to Joseph sharing that he felt the

need to work out that the meeting point of the two sides of the ‘V’ is indeed a

cusp.

Joseph emphasizes how “nothing funny is happening there,” pointing at the

spot on the three-dimensional hood that corresponds to the cusp in the resulting

folded hood (rows 44–45). This is true specifically of the ribbon knot itself, not

what we could fairly call the ribbon knot diagram containing the ‘V’ shape. So the

singularity appears only in the flattening out of the ribbon, and “nothing funny is

happening” in the part of the ribbon corresponding to the singularity point.

It’s worth noticing how richly Joseph is using the continuum here. A slight

movement in how the hood is shaped would result in a meaningful change in where

the cusp ends up and what the curves leading up to the cusp are shaped like. Had

Joseph indicated a point just a few millimeters to the right, he would have been

specifying a mathematically different area. This is in marked contrast to pointing

at the ‘x’ in the equation “x2 = y3” where a slight shift from the center of the ‘x’

to one of its sides doesn’t really change the fact that you’re still indicating that
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particular x. Joseph’s use of these diagrams is rather like how you or I might use

a map: yes, there are some circular blots indicating key locations and indicating

one part of that blot or another doesn’t really change much, but by and large

slight movements of our fingers will result in us pointing to significantly different

locations. This seems to be key to how Joseph is viewing this particular challenge

in describing kinks in ribbon knots.

After this point Joseph steps back for a moment and says, “So anyway, so

there’s guys like that as well that can happen” (row 45). Here he’s noting that

this is one more type of singularity that they’ll have to account for in developing

Reidemeister-like moves for ribbon knot diagrams. In stepping back like this, he’s

disengaging from his hands-on interactions with the continuous diagrams on the

board, presumably because he reached a stage of completion in conveying the

original point that brought him to the board in the first place.

Thus far we’ve seen Joseph invoke the continuum in order to lay the ground-

work for later reasoning. Just as with Bart’s continuum drawings in Section 5.1,

Joseph’s figures are generic particulars: pulling the hood a little farther to the

left would have changed which example he was considering but would not have

changed anything relevant to what he was trying to describe. But there’s also a

näıve sense in which we want to say that Joseph’s drawings really, honestly do look

like the shapes he’s talking about: unlike using a circle to represent the solution

set to x2 + y2 = 1, the objects Joseph and Bill are working with really could be

modeled fairly accurate with physical ribbons. We can imagine pinching a por-

tion of the edge of an elastic ribbon and folding it to the side, and the resulting

three-layer-thick region around the fold would have essentially the shape of a ‘V’

like that in Figure 5.15. So while Joseph (like Bart earlier) seems to be invok-

ing the continuum in order to capture some relationships, he seems to do so with

something more like a cartographical map than, say, a Venn diagram.
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Describing the finger moves

After about four seconds of thought, Joseph gets drawn in toward the board

(row 47) in a pattern that weakly shares some characteristics of what happens when

proximal inhibition is lifted. He has had a flash of insight about how to approach

this problem — namely the use of finger moves. Notice how, even though Joseph

is trying to talk to Bill, he keeps everything but his head and eyes oriented on the

continuum-based drawing at the board. He even chooses to indicate the drawing

with his hand that’s holding the chalk, even though doing so makes it awkward

for him to turn and look at Bill. Furthermore, his speech doesn’t refer directly to

the diagram much less any one part of it. This seems to suggest that his thinking

about this situation is closely tied to his sense of what the diagram on the board

affords: he can interact with it in some way in order to address this problem. That

is to say, his thinking about this situation seems to be bound up in this particular

invocation of the continuum.

In order to explain his idea, Joseph first notes that if the ribbon surface

is closed7 then it must have a boundary somewhere (rows 49–51). Joseph’s hand

gesture in rows 49–50 involves repeatedly and rapidly chopping both hands in

synchrony as though to indicate a clean cut on either side of the continuum-based

drawing at the board. This has a rich kind of interaction with the continuum-based

nature of the drawing: there’s an implication that the drawing should be thought

of as continuing beyond what is shown, but Joseph’s hand gestures emphasize that

this continuing does not go on forever. The object can be contained between his

hands in a sense. Yet it’s understood that this boundary would change in some

mathematically relevant way if it were moved slightly (although because Joseph’s

7It’s worthwhile to be aware that the term “closed” has special meaning for mathematicians.
In topology it often refers to the idea that there’s a crisp edge of the set, so to speak. Roughly
speaking, if a country were “closed” in the mathematical sense, then it would include the bound-
ary markers (e.g., rivers) that separate its territory from those of its neighbors rather than the
boundary markers being owned by neither.
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Figure 5.24: Joseph’s drawing of an arc on the ribbon

example is a generic particular, such slight movement wouldn’t affect the point

he’s making). Contrast this with those algebraic expressions that have a sense

of continuing on beyond what’s shown: it doesn’t make immediate sense what it

would mean to slightly vary where you stop. For instance, stopping “1+x+x2+· · · ”

at, say, x8 creates a kind of clear boundary, but there isn’t an obvious way of

stopping ever so slightly before or after x8: you can’t make the stopping point

halfway between x8 and x9.

Joseph’s next move (rows 52–55) is to “draw an arc” from the base of the

hood to the imagined boundary of the ribbon (Figure 5.24). Then right away he

emphasizes that they’re looking at the boundary of the ribbon (rows 56–57) and

draws a kind of loop around the arc and erases the arc with his finger, yielding

Figure 5.25 (rows 59–60). Because of the mathematical context, we know that

Joseph is showing a kind of before-and-after pair of images meant to describe a

smooth movement: the arc is sort of like a very, very fine cut in the ribbon, and

the “finger move” involves pushing a finger through the middle of the elastic fabric

along the cut in order to clearly separate the two sides. Again, this richly uses

the continuum: although we can show a similar before-and-after sequence for, say,



138

Figure 5.25: Joseph’s drawing of a “finger move” after erasing the arc

expanding a factored quadratic expression, there isn’t really a way to imagine what

it looks like as we smoothly transition from factored form to expanded form.

One could argue that here Joseph is using the continuum-based diagram

in order to communicate clearly with Bill — and I think that’s part of what’s

motivating him. But the fact that Joseph stepped back, crossed his arms in front

of his torso, shielded his eyes from Bill’s direction, and just stared at the drawing

(rows 69–71) seems to indicate that Joseph is also using the drawing as something

to fix his attention on as he navigates his uncertainty about how to address this

type of singularity. Rather than teaching Bill the way he might teach a student

during office hours, Joseph seems to be sharing his thinking basically as it comes

to him.

Partially dropping use of the continuum

We now jump ahead 29 minutes. The row references for the remainder of

this discussion will be with respect to Table A.6.

Joseph and Bill have illustrated more of their thinking about these finger

moves on the board (row 1). So far everything they’ve drawn there has been an
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Figure 5.26: Joseph’s drawing of the diagram for the chain complex for Reide-

meister 2

invocation of the continuum. However, at this point the pair of them are trying to

work out the ribbon-surface analogy of the second Reidemeister move for knots. In

order to do this, Joseph jumps up and attempts to draw the diagram they use to

describe the homology involved in the second Reidemeister move for normal knots

(rows 4–12). This results in the picture shown in Figure 5.26.

This diagram is a heterogeneous mix of continuum-based components and

non-continuum-based ones. Each of the ends of the arrows is a generic-particular

drawing that shows some portion of a knot (or several knots as in the topmost

drawing), and those implicitly invoke the continuum. However, the overall layout

of the diagram does not invoke the continuum: small movements in the location

of the diagrams or the positioning of the arrows wouldn’t change the meaning of

any part of the diagram at all. The direct sum symbol (‘⊕’) in the middle is also

explicitly algebraic: it indicates that the algebraic structures corresponding to the

top and bottom knot drawings should be added using the direct sum. So the

central ideas and relationships involved in this diagram are the non-continuum-

based ones; it’s quite conceivable that relatively little would have been lost had the

continuum-based drawings in this diagram been replaced with verbal descriptions.

It would seem that Joseph drew the diagram rotated 90 degrees counter-
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clockwise, which results in the lower-left and upper-right arrows being reversed.

Once Joseph sits down, Bill attempts to emphasize this point by saying, “I think

that’s turned on its side” and tilting his head sideways to indicate which way the

diagram should be read (row 14). Later we’ll see this detail cause some confusion,

indicating that Joseph might not have understood Bill’s point here.

Thereafter Bill returns to his earlier sitting posture (row 17). The pair of

them stare at this new diagram for six seconds, and then Bill speaks up. He tries to

depict the analogy to ribbon surfaces using his hands while saying, “Since they’re

the same. . . ” (rows 17–19). At this moment he’s moving his right hand so that

it’s sliding along the palm of his left hand back and forth along the direction of his

right hand’s fingers. He pauses for six seconds while concentrating on the diagram,

does a faster version of the same sliding gesture, and then abandons the gesture in

favor of indicating the diagram and saying, “Yeah, I mean, you can deal with that

top circle, right?” (rows 19–20). Bill is referring to the circle in the middle of the

topmost continuum-based drawing of the new diagram. He follows up by sweeping

his extended hand to the side and saying, “Clear away both of those, and then

there’s just some sort of ways that we bootstrap” (rows 21–24). The process he’s

describing are manipulations of knots of ribbon surfaces. This all happens within

the continuum containing the topmost knot of the Reidemeister diagram (Figure

5.26).

Bill’s next move is to point his index finger and indicate the transition

represented by the upper-lefthand arrow (row 24). Then after a one-second pause

he opens his hand again and says in a semi-startled way, “Oh! No, that keeps them

the same!” (row 25). So in this moment here we can see an interplay between the

continuum-based thinking of manipulating ribbon surfaces on the one hand and

the non-continuum-based description of how each of those continua are connected.

In an almost perfect reversal of the situation we saw with Bart’s use of an inverted



141

pyramid in order to capture algebraic relationships in a continuum (section 5.1.2 on

page 117), here Joseph and Bill seem to be using an algebraic description in order

to capture relationships that we’re to interpret as occurring within a continuum.

Summary

There are several details about invoking continua that arose from this case

study:

• There was a sense in which most of the continuous drawings used here seemed

as though they “look like” the objects to which they refer. (Note that this is a

statement about the phenomenology rather than the physical notations: it’s

in Joseph’s & Bill’s perception of the drawings, rather than in the drawings

themselves, that the sense of “looks like” arises.) This framing allowed the

invocations of the continuum to be central to the reasoning here and even

take over the central working areas of the blackboard. (This is in direct

contrast to Bart’s choices for where to draw his invocations of the continuum

in section 5.1.2.)

• Virtually every invocation was a generic-particular. This isn’t strictly neces-

sary; for instance, they could have examined just one particular hood-folding

pattern, worked through the finger-movement argument, and then noted that

the argument generalizes to other hoods as well. Instead, the emphasis was

on treating the drawing as actually being all cases like it at once. This ap-

pears to be a robust pattern in continuum-use amongst the mathematicians

studied here.

• We saw the animation of an invocation in such a way so as to suggest that

it extended, continuously, beyond what was drawn. This seems to be a

character of continua-as-experienced: even though the continuous drawings
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themselves seem to take up a relatively specific region of the board, implicit

in their drawing is the idea that the continuum itself extends arbitrarily

in all directions. This fact sometimes appears in mathematicians’ gestural

interactions with the drawings.

• A sequence of edits to the drawings (Figures 5.24 and 5.25) conveyed a dy-

namic movement whose nature can be understood only by knowing that the

drawings — and what happens between them — are embedded in the same

continuum.

• The switch to a non-continuous diagram (Figure 5.26) seems to serve a similar

(if reversed) purpose here as switching to continua did for Bart in the previous

clip: it changes the available affordances in order to offer a different and

potentially fruitful way of perceiving the relationships of interest. The fact

that the opposite direction (continua to non) served a similar purpose seems

like it was probably a result of the “looks like” sense involved in Joseph’s &

Bill’s understanding of the drawings of ribbon knots.

These phenomena help to paint a fairly vivid picture of the role invocations have

in mathematical struggle. However, there are still a few more nuances that are

worth developing our awareness about; we’ll explore those in the remaining clip.

5.3 Clip #3: Tropical Diagrams & the CP2 Tri-

angle

The final clip for this chapter returns to Matt & Bart. They have moved

on from thinking about splicing varieties to exploring a nuance of what they call

tropical diagrams. Tropical diagrams encode certain aspects of the algebra of com-

plex projective plane in a continuum-invoking way. We also find that the complex
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projective plane gets a representation as what appears to be a simple triangle.

The timbres of these two invocations of the continuum are significantly different

in ways that turn out to be informative for the nature of how continua relate to

struggle.

5.3.1 Mathematical Context

The two main threads I’ll need to explain for this clip are (a) tropical

diagrams and (b) the representation of the complex projective plane CP2 as a

triangle. To describe tropical diagrams, I’ll need to explain what a complex torus

is and then what the tropical vertex group is, at least in broad strokes. For the

triangle representation, I’ll start by explaining real projective space and then show

how that extends to the complex projective plane.

Complex torus

Recall that a torus is a shape that looks quite a lot like a doughnut (Figure

4.3). It turns out that we can specify each location by saying how far along the

tube and how far around the tube we have to go from some predetermined starting

point to get to the destination point. This is in much the same way that we can

specify any point on the Cartesian plane by saying how far over and how far up

we have to go from the origin to get there. In order to do this, we can develop a

coordinate system for the torus by focusing on two different circles: a circle that

rings the tube, and a circle that goes around the doughnut hole. Those two circles

will cross at some point, which we can call the origin. Then we can specify how

far along each of the circles you want to travel in order to get to a given point on

the torus. For instance, (π, π) could be used to describe a point on the outmost

rim of the torus on the opposite side from the circle that rims the tube. In this

sense, mathematicians often model a torus as a Cartesian product S1 × S1 of two
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Figure 5.27: An annulus

circles.

Topologists commonly think of the main feature of a circle S1 as being that

it has a hole. It shares many of the same properties of other one-holed flat objects

such as an annulus (Figure 5.27). We could imagine stretching the annulus out

arbitrarily far and squeezing its inner circle arbitrarily inward such that we have an

entire plane minus a single point. We can think of this as the Euclidean plane R2

minus the origin.8 However, algebraists (including algebraic geometers) generally

prefer to work with complex numbers C rather than real numbers R due to the

former being algebraically complete (see section 4.3.1). So rather than referring to

the punctured Euclidean plane, Matt & Bart prefer to use the punctured complex

plane C∗.

With this adjustment, then, we can refer to the complex torus C∗ × C∗ =

8Properly speaking, an annulus and a punctured plane do differ in a topologically relevant way:
the annulus is closed whereas the punctured plane is open. This is relevant because there isn’t
actually a way to stretch out a closed annulus to become an open punctured plane. Fortunately,
this difference turns out to be irrelevant for pretty much everything we’re going to discuss here.
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(C∗)2.9 This is essentially an algebraic trick that lets us describe the coordinate

of a “torus” as (z, w) where z and w are nonzero complex numbers. For instance,

(3 + 2i,−3i) is a valid point on the complex torus.

Groups, automorphisms, and generators

The complex torus has a group structure, meaning that it’s a monoid (see

section 5.1.1) such that every element has a corresponding partner (an inverse)

that, when combined with the monoid operation, results in the monoid’s identity.

An example of a possible group structure on the complex torus would be pointwise

multiplication: (x, y) × (z, w) = (xz, yw). (This is not the group structure that

Matt & Bart use, but I’ll describe the idea of the tropical vertex group in terms

of this group structure since it’ll convey the essential idea well enough.) Another

example of a group is the set Z of integers under addition.

An automorphism of a group is a way of rearranging the elements of the

group in a way that respects the group operation. For instance, one valid automor-

phism of Z sends n to −n. If we apply this automorphism to each integer in the

true equation 3− 5 = −2, then we still end up with a true equation: −3 + 5 = 2.

Somewhat more formally, we say that an automorphism φ on a group G is a func-

tion such that, if g and h are elements of G, then φ(gh) = φ(g)φ(h).

It turns out that the set Aut(G) of all automorphisms on a group G is also

a group if we take the group operation to be function composition. For instance, it

turns out that there are only two automorphisms on Z: the one described earlier

(which we’ll call ψ), and the trivial one ι that sends n to n. That is, Aut(Z) =

{ι, ψ}. We have ψ ◦ ψ = ι since −(−n) = n, and ι composed with anything is the

original function. So, Aut(Z) has a group structure under ◦.
9There’s another way to define the complex torus that seems to be more common: take the

quotient of C2 by the lattice Γ = {(a + bi, c + di) : a, b, c, d ∈ Z}. This makes it easier to see
that the complex torus is, as a topological space, equivalent to the 4-torus T 4 = (S1)4. However,
Matt and Bart apparently prefer the (C∗)2 formulation.
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A more complicated example would be Aut(Z× Z). It turns out that this

has eight elements:

1. (m,n) 7→ (m,n)

2. (m,n) 7→ (−m,n)

3. (m,n) 7→ (m,−n)

4. (m,n) 7→ (−m,−n)

5. (m,n) 7→ (n,m)

6. (m,n) 7→ (−n,m)

7. (m,n) 7→ (n,−m)

8. (m,n) 7→ (−n,−m)

Notice that we can create every one of these functions by composing functions 2,

3, and 5. For the sake of a specific example, let’s say that 2, 3, and 5 are f , g,

and h, respectively. Then 7 can be thought of as the function h ◦ f , or as the

function g ◦ h. 4 is f ◦ g or g ◦ f . Because of this, we can say that f , g, and h

generate the group Aut(Z × Z), which is to say that you can get every element

of this automorphism group by various combinations of these three. In short, a

collection S of elements of a group G generate G if every element of G comes from

some combination of elements of S.

Tropical vertex group

It turns out that the space Aut((C∗)2) is very small the same way Aut(Z×Z)

is. Therefore, Matt and Bart chose to explore a related but more complicated space.

Specifically, that space is a subspace of this one:

Aut(C[x±1, y±1][[t]])
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The notation C[x, y] indicates the set of all polynomials with two variables x & y

whose coefficients are complex numbers. For instance, 3x5− 4ix2 + (2− 3i)x3y2−

(5 − i)y is an element of C[x, y]. C[x±1, y±1] is the same, only we allow for the

multiplicative inverses of x and y. In a sense, we can think of C[x±1, y±1] as

representing the set of varieties that can exist on the complex torus, thinking of x

and y as variables that can each take on values in C∗.

The “[[t]]” part means that we’re considering all polynomials in t whose

coefficients are from C[x±1, y±1]; for instance, if f , g, and h are from C[x±1, y±1],

then ft3 + gt2 + ht is an element of C[x±1, y±1][[t]]. More generally, an element

of C[x±1, y±1][[t]] has the form
∑
fnt

n where fi ∈ C[x±1, y±1] and fi = 0 for all

values of i larger than some maximum. (That is, there aren’t any “power series” in

t.) Adding this formal “t” parameter10 creates a sufficiently complicated structure

in the automorphism group that Matt & Bart considered it interesting and worth

studying.

The tropical vertex group V is a special subset of Aut(C[x±1, y±1][[t]]) de-

fined by a particular set of generators. To describe the set of generators, I’ll

describe how one could construct any given one of these generators. We’d start by

picking a pair of integers (a, b) ∈ Z× Z = Z2 such that (a, b) 6= (0, 0) (i.e., they’re

not both zero). Then pick a function f ∈ C[x±1, y±1][[t]] with the following form:

f(a,b),g(x, y, t) = 1 + txayb · g(xayb, t)

Here, g ∈ C[z][[t]]. That is to say, g is a polynomial in the formal parameter t

whose coefficients are complex polynomials in one variable z. So g has the general

form:

g(z, t) =
∞∑
n=0

hn(z)tn

10This is a different t than was used in section 4.3.1 to describe the process of transitioning
from one variety to another. Matt & Bart never used “t” in the latter sense in the clips examined
in the present work.
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where hn is a polynomial with complex coefficients for every n and with hn = 0

for all sufficiently large n (so that g is finite in length).

The choice of those two (f and (a, b)) completely determines an automor-

phism θ(a,b),f on C[x±1, y±1][[t]]. This is because we can use f to describe how the

automorphism will act on each of our three parameters:

θ(a,b),f (x) =
x

(f(x, y, t))b

θ(a,b),f (y) = y(f(x, y, t))a

θ(a,b),f (t) = t

(In short: x 7→ xf−b, y 7→ yfa, and t 7→ t.) This defines θ(a,b),f entirely.11 For

instance:

θ(a,b),f (3x+ 2xy − xy2t) = 3(xf−b) + 2(xf−b)(yfa)− (xf−b)(yfa)2t

The tropical vertex group V is then defined to be the subgroup of the

automorphism group Aut(C[x±1, y±1][[t]]) that’s generated by the set of all such

automorphisms θ(a,b),f as we vary our choices of a, b, and f .

Tropical diagrams

It turns out that there’s a graphical way to describe elements of the tropical

vertex group — though not obviously as a subgroup of Aut(C[x±1, y±1][[t]]). The

pictures we get from doing this are called tropical diagrams.

These pictures occur in the Cartesian plane. In order to represent an el-

ement θ(a,b),f of V’s generating set, we draw either a line through the origin or a

ray from the origin (whichever we prefer) that passes through the point (a, b).We

11I’m glossing over a detail here, which is that θ(a,b),f is actually a ring homomorphism. That
is, there are two operations (addition and multiplication) in the set C[x±1, y±1][[t]], and θ(a,b),f
interacts nicely with both of them in the same way a group automorphism interacts nicely with
the group operation. Roughly speaking, this just means we can apply θ(a,b),f to each of x, y, and
t without worrying about what’s immediately around those variables.
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then say that any path not passing through the origin in R2 represents an element

of V via two rules:

1. Each time the path crosses a line or a ray corresponding to an automorphism,

we view that as indicating the composition of that particular automorphism

or its inverse.

2. The choice of whether it’s the automorphism or its inverse that’s composed

depends on the direction in which the path crosses the line or ray. That

choice is determined upon the drawing of the line or ray.

I’ll walk through three examples in order to illustrate how these tropical diagrams

work.

Example #1 Consider two generators θ1 and θ2 of V. θ1 has (a, b) = (1, 0) and

f1(x, y, t) = 1+ tx.12 This we choose to represent with a line, which must therefore

be a horizontal line so that it passes through the point (1, 0). We’ll let θ2 have

(a, b) = (0, 1) and pick f2(x, y, t) = 1 + ty.13 We’ll also represent this with a line,

which therefore must be a vertical line.

This gives us the picture in Figure 5.28. Notice that although Figure 5.28

looks like a Cartesian axis, it’s not. Each line represents an element of the gener-

ating set for V. It just so happens that because of our choices of elements of Z2 for

each automorphism, we ended up with a horizontal line and a vertical line. Also

notice that we’ve chosen just two elements of the generating set to display here;

we’re free to pick as many or as few as we like since we’re just trying to depict one

element of V.

12This fits the form described earlier by letting g(z, t) = 1. Thus f1(x, y, t) = 1 + txayb ·
g(xayb, t) = 1 + tx1y0 · 1.

13This is actually almost the same choice of f . We use exactly the same g, namely g(z, t) = 1,
so the difference is entirely accounted for in the new choice of (a, b).
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Figure 5.28: Two lines representing two generators of V

Figure 5.29: A tropical diagram of an element of V

We’ll specify that “down” is non-inverse composition for the θ1 line and that

“right” is non-inverse for θ2. Having done that, we can add a path to indicate an

element of V via a counterclockwise loop around the origin starting from the upper-

lefthand region (Figure 5.29). (Really, any path that doesn’t pass through the

origin is acceptable as a means of representing some element of V. It doesn’t have

to be a loop. This just happens to be a useful example.) This path corresponds to

applying θ1 first, then θ2, then the inverse of θ1, and then the inverse of θ2. That

is, this element is φ = θ−12 ◦ θ−11 ◦ θ2 ◦ θ1.
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Figure 5.30: Adding a ray to make this element the identity automorphism

We actually have enough information that we could, potentially, work out

exactly what φ is. We end up with the following:

φ(x) =
x+ tx2 + 2t2x2y + txy + t3x2y2

1 + tx+ t2xy + ty

φ(y) =
y(1 + 2tx+ 2t2xy + ty + t2x2 + 2t3x2y + t4x2y2)

(1 + tx+ t2xy)(1 + tx+ t2xy + ty)

φ(t) = t

One thing this shows is that φ is not the identity (since, if it were, φ(x) would be

x and φ(y) would be y). It “turns out to be interesting” (to quote Matt from a

one-on-one interview) to ask what we would have to add in, and where, in order

to modify the composition so that it does come out to be the identity. We can

express the answer in terms of the tropical diagram pretty readily (Figure 5.30):

we add a ray from the origin with slope 1 (say, with (a, b) = (1, 1)) and associate

with it the function f3(x, y, t) = 1 + t2xy. What this says, then, is that if we call

the new automorphism θ3, then θ−12 ◦ θ3 ◦ θ−11 ◦ θ2 ◦ θ1 is equivalent to the identity

in the automorphism group.
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Figure 5.31: Bunching infinitely many rays arbitrarily close to the one of slope 1

Example #2 Now we’ll use the same values for (a, b) for each of θ1 & θ2, but

we’ll modify their corresponding functions like so:

f1(x, y, t) = (1 + tx)2

f2(x, y, t) = (1 + ty)2

This makes the initial picture look the same (Figure 5.28). However, in this case

a loop like we did before (Figure 5.29) would not produce the same element of V

as it did in example #1. The composition would end up looking quite different.

That said, we can still ask the same question as before: what rays and/or lines

can we add in order to turn this element into the identity map? It turns out that

in this case, we have to add an infinite number of rays of slopes n
n+1

and n+1
n

for

every natural number n (so slopes 1/2, 2/3, 3/4, · · · ; and also slopes 2, 3/2, 4/3,

· · · ). Visually this looks like rays that get “bunched up” against the ray of slope 1

(Figure 5.31). Each one of these rays needs to have a function attached to them.

Exactly what those functions are isn’t terribly important for what comes next, but

it will be worthwhile to know that the function associated with the ray passing

through (1, 1) is:

f(1,1)(x, y, t) =
1

(1− t2xy)4
=

(1 + t2xy)4

(1− t4x2y2)2·2
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Figure 5.32: A dense cone of rays

Example #3 Finally, let’s look at what happens when we cube the functions

from example #1. Expressed algebraically:

f1(x, y, t) = (1 + tx)3

f2(x, y, t) = (1 + ty)3

We consider the same loop as before (Figure 5.29). Only this time, instead of

getting rays bunching up against a single line (as in Example #2), we get rays

bunching up on either side of a dense14 cone within which every ray of rational

slope is present (Figure 5.32). The function corresponding to the ray with slope 1

(in the very center of the cone) has the following form:

f(1,1)(x, y, t) =

(
∞∑
n=0

1

3n+ 1

(
4n

n

)
(t2xy)n

)9

Mark points and modularized spaces In all the examples I’ve given here, all

the rays and lines have been centered on the origin. In some tropical diagrams,

however, there might be multiple “origins” that are connected with line segments

(Figure 5.33). The basic idea is the same, though: we can represent an element of

14The term “dense” here refers to the fact that there aren’t any “gaps” between the rays of
rational slope even though the ones of irrational slope aren’t there. This comes from the fact
that every real number can be approximated as well as we like with rational numbers.
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Figure 5.33: A tropical diagram with multiple mark points

V with a path that meanders anywhere other than through any of the “origins,”

which they refer to as mark points. This allows Matt & Bart to get around the

fact that there are some elements of V that cannot be represented with the “one

mark point only” version. For instance, θ(a,b),f ◦θ(c,d),g ◦θ(a,b),h can’t be represented

without multiple mark points if f 6= h because the two automorphisms with the

same choice of (a, b) would have the same slope, meaning that whichever one is

represented with a ray could not be “activated” without “activating” the other one.

If we offset where the two otherwise overlapping automorphism lines are centered,

though, we needn’t encounter this problem.

Matt & Bart used these kinds of tropical diagrams to construct what they

referred to as modularized spaces. These spaces come from gluing together “cells”

that are copies of Euclidean space. For instance, the tropical diagram in Figure

5.33 has four things that can vary: the location of the center mark point (i.e., the

one not attached to any rays) and the lengths of the three line segments connecting

that center point to each of the mark points acting as bases of the rays. The central
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mark point can go anywhere in the Euclidean plane R2, and the lengths of the three

line segments just have to each be nonnegative. Therefore the space across which

Figure 5.33 can vary is R2 × R3
≥0. This space forms one cell of the modularized

space.

When creating topological spaces out of cells, topologists will often treat

copies of Euclidean space like disks of various dimensions. For instance, we can

treat R2 like a disk of radius π/2 by representing points of R2 in polar coordinates

(r, θ) and then using the function (r, θ) 7→ (arctan(r), θ). In a similar way, it’s

possible to contract R3 into a ball of radius π/2, and in general the same trick will

turn Rn into an n-dimensional “ball” of radius π/2. It’s possible, then, to think

of a sphere as consisting of a point, a copy of R1, and two copies of R2: turn all

the Rn into “balls,” glue both ends of the interval that was R1 to the point (thus

making a circle that’ll be the sphere’s equator), and sew each disk to this new

circle along each disk’s boundary (so one disk becomes the northern hemisphere

and the other the southern one). This describes the sphere — a kind of topological

space — in terms of a cellular structure.

Modularized spaces get built similarly, but the cells are copies of R2m ×

(Rn
≥0)

m when there are m central mark points and n lines connecting the central

mark points to each other and the origins of the rays. Figure 5.33 had m = 1 (just

one central mark point) and n = 3 (for the three lines connected to the central

mark point). One particular case Matt and Bart consider is when several of the

lengths are zero, in which case the diagram has lines doubled up on one another

(Figure 5.34). Although technically the rays would be right on top of one another

and thus not visible like in Figure 5.34, Matt and Bart still consider it important

to draw these distinctly so that they keep track of the fact that there are multiple

there. It’s critical since a path crossing that spot would refer to the composition

of multiple automorphisms.
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Figure 5.34: Figure 5.33 with the variable lengths set to zero

Projective planes and homogeneous coordinates

One way to think of the real projective plane RP2 is as the collection of all

lines through the origin in three-space. Thus every nonzero point in R3 defines a

unique element of RP2 since only one line through the origin passes through any

given nonzero point in three-space. In fact, one way to think of an element ` ∈ RP2

that passes through a point (x, y, z) 6= (0, 0, 0) is as the set of points that differ by

a constant:

` = {(λx, λy, λz) | λ ∈ R}

Thinking this way, we can represent the right-hand side of this equation using

homogeneous coordinates :

` = (x : y : z)

Notice that this means that the choice (x, y, z) is not unique — which makes sense

since ` passes through many different nonzero points.

We can do a similar trick with the complex projective plane CP2, only we

have to do it via analogy. CP2 is the collection of all complex lines passing through

the origin in complex three-space C3. It turns out that every nonzero point in C3
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has exactly one element of CP2 passing through it and, analogously to RP2, the

whole collection of points that constitute CP2 differ only by a (complex) constant.

That is to say, if ρ ∈ CP2 passes through (x, y, z) ∈ C3, then:

ρ = {(λx, λy, λz) | λ ∈ C} = (x : y : z)

It’s worth noticing that the same notation gets used for homogeneous coordinates

in CP2 as in RP2, even though there’s a critical difference between them (namely

that the constants in the former are from C and in the latter are from R). So

it’s important to keep track of context in order to properly interpret homogeneous

coordinates.

Representing projective planes with triangles

Because R3 is a vector space, we can pick a few specific points (i.e., our

basis) and describe any point in terms of those few specific points:

(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)

The trouble with doing something algebraically analogous in RP2 is that it’s not

immediately clear what it means to add lines together.15 However, we can still do

something roughly close by thinking geometrically in terms of how “close” lines

are to one another.

Let me illustrate with a few examples. On the xy-plane (i.e., the plane in

R3 corresponding to the first two coordinate slots), let’s imagine we’re pivoting

the line (1 : 0 : 0) (i.e., the x-axis) about the origin until it lies atop the y-axis

(i.e., becomes (0 : 1 : 0)). There are two directions we could go in to do this: we

could pivot the line so that it sweeps through the first and third quadrants (Figure

5.35), or we could pivot it to sweep through the second and fourth quadrants

15At first pass it might seem like we could do this pointwise: (a : b : c) + (d : e : f) = (a+ d :
b+ e : c+ f). Unfortunately, this turns out to be inconsistent since (a : b : c) = (λa : λb : λc) for
nonzero λ.
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Figure 5.35: Rotating the x-axis counterclockwise

(Figure 5.36). Correspondingly, there are two lines in RP2 that are “halfway”

between the x- and y-axes, namely the diagonal line with slope 1 (i.e., (1 : 1 : 0))

and the diagonal line with slope −1 (i.e., (1 : −1 : 0)). This means we can depict

all the lines in the xy-plane while being true to how “close” lines are to one another

by placing them on a lens (Figure 5.37).

The same kind of reasoning works for lines in the xz-plane and the yz-plane.

However, if we try to put all of these shapes together to form RP2, we run into

a problem of not having enough spatial dimensions to put these lenses together

meaningfully. We can get around this problem provided that we’re okay with losing

some information. One choice of information to lose (the one that Matt & Bart

chose) is the dierction of travel from one axis to another. This amounts to smashing

the top and bottom arcs of the lens from Figure 5.37 together so that it now forms

a single line (Figure 5.38). Now the center point represents both (1 : 1 : 0) and

(1 : −1 : 0). This creates some ambiguity, but it lets us depict all of RP2 with a

single triangle (Figure 5.39). So now the base represents all lines in the xy-plane,
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Figure 5.36: Rotating the x-axis clockwise

Figure 5.37: A lens depicting all possible lines in RP2 that are “directly between”

(1 : 0 : 0) and (0 : 1 : 0)

Figure 5.38: The lens from Figure 5.37 with one “direction” ignored
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Figure 5.39: A triangle representing all of RP2

Figure 5.40: The centroid, which represents all of (±1 : ±1 : ±1) in RP2

the vertical side represents those in the xz-plane, and the hypotenuse16 represents

those in the yz-plane. Or said more simply, each edge represents the region of

RP2 where one homogeneous coordinate is zero. Then the region in the middle

indicates all the lines that are not in any of those three planes. In particular, the

four three-dimensionally diagonal lines (i.e., (1 : 1 : 1), (−1 : 1 : 1), (1 : −1 : 1),

and (1 : 1 : −1)) would all be represented as the centroid (Figure 5.40).

It turns out we can do the same thing with CP2. It’s much harder to

16It’s not actually important that this triangle be a right triangle. In fact, it’s not even
important that the sides be straight. For ease of reference, though, I’ll continue using right
triangles.
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understand what’s going on geometrically, but in effect that just means that each

edge of the triangle obfuscates more details about CP2 than the same diagram does

for RP2. For instance, instead of there being just two ways to get from (1 : 0 : 0) to

(0 : 1 : 0) while leaving the last homogeneous coordinate zero, there are infinitely

many. The drawing for CP2 that corresponds to Figure 5.37 would actually depict

a squished sphere rather than a squished circle.17 As long as we’re willing to

account for this degree of information loss, we can use diagrams for CP2 that look

for all intents and purposes just like triangles.

Relating tropical diagrams to CP2 triangles

There’s a close connection between the tropical diagrams and the triangles

that get used to represent the complex projective plane. I’ll illustrate the relation-

ship by elaborating upon the earlier examples given for the tropical diagrams.

Returning to example #1 In example #1 (see page 149), recall that f1 =

(1 + tx)1 and f2 = (1 + ty)1. That 1 in the exponent of each means that we’re

considering an arbitrary point on the interior of each of two different edges of the

triangle representing CP2 (Figure 5.41). In other words, we’re picking two arbi-

trary complex lines through the origin in C3, each with exactly one homogeneous

coordinate being zero, but not the same coordinate between the two.

So within this context, we can ask the following question: How many alge-

braic varieties pass through the edges of the triangle at only those two points while

being maximally tangent to the hypotenuse? Or if we were to phrase this question

in terms of CP2 instead of in terms of its representation as a triangle, the question

would be: How many collections of lines that form algebraic varieties will include

17Why, you might ask? Because if you were to tie both ends of the real line together at a
point, you’d end up with a circle — but if you were to tie the whole edge of the complex plane
together at a single point, you’d end up with a sphere.
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Figure 5.41: One point on each “leg” of CP2 is chosen

Figure 5.42: The variety (collection of lines) passing through the two given points

(complex lines)

the two lines we started with while being as tangent as possible to the remaining

axis that excludes our two chosen lines?

It turns out that this question is answered by the formula of the function

corresponding to the ray of slope 1 that makes the loop represent the identity

automorphism in V. Recall that the function in this case was (1 + t2xy)1. It turns

out that the form of the formula in the middle means that the only varieties that

can fit this scenario are lines. The exponent of 1 indicates that there is just one

such line, depicted in Figure 5.42. This shouldn’t be too surprising since it’s pretty

normal for there to be one unique line (as a variety) passing through two given
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Figure 5.43: Two points per “leg” are now chosen

points. The condition of tangency ends up not being all that relevant in this case

because lines (as varieties) either don’t meet anywhere or meet transversely. The

tricky part, really, is keeping track of the fact that “line” has two meanings in

this context: a complex line (meaning an element of CP2) and a variety that we

want to call a “line.” The latter is a line in the sense of being the collection of

solutions to an equation of the form aX + bY + cZ = d where X, Y and Z are the

coordinates of a complex line (X : Y : Z) and a, b, c, d are complex numbers. In

other words, it’s a “line” because it’s a collection of solutions to a linear equation.

However, the “points” in this “line” are complex lines.

Returning to example #2 In the second example (page 151), f1 = (1 + tx)2

and f2 = (1 + ty)2. The 2 in the exponent for each of these indicates that we’re

concerned with two points on each of two sides of the triangle (Figure 5.43). The

same question arises: How many varieties pass through these points while being

maximally tangent to the hypotenuse? Again, this question gets answered by

looking at the form of the function corresponding to the ray with slope 1:

f(1,1)(x, y, t) =
1

(1− t2xy)4
=

(1 + t2xy)4

(1− t4x2y2)2·2
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Figure 5.44: The four lines that fulfill the two-by-two restriction

As with example #1, we see that there’s a factor on the top of the form 1 + t2xy.

The exponent on this one — in this case 4 — indicates how many lines (in the

sense of solutions to linear equations) there are between these. The fact that this

number is four isn’t too surprising (see Figure 5.44). In a similar way, there’s a

factor of the denominator of the form (1 − t4x2y2)2, which apparently refers to

conics. (Whereas in R2 there are several families of conics (parabolas, hyperbolas,

circles, etc.), there are very few families of conics in CP2. Restricting ourselves to

nonlinear conics makes this designation fairly specific.) The fact that this factor

is squared (so that it reads (1 − t4x2y2)2·2) indicates that there are two conics

that pass through all four points while being maximally tangent to the hypotenuse

(Figure 5.45).

Although it seems intuitively obvious as to why there are only four possible

lines based on the triangle representation, it might not seem so clear why there are

just two conics. I’ll illustrate why this is the case via analogy. Here is the general

form of a conic section in R2:

ax2 + bxy + cy2 + dx+ ey + f = 0

Although there are technically six coefficients we want to work out, we can always

divide both sides by one of the nonzero ones so that we’re left with just five of
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Figure 5.45: A conic passing through four points while being maximally tangent

to the hypotenuse

them.

This means that if we specify that, say, (x, y) = (2, 3), then we end up with

one equation in five unknowns. If we specify that the conic section we’re looking

for passes through four such specific values for x and y, then we end up with four

equations in five unknowns. This means that the space of all possible solutions is

(at most) one-dimensional — which is to say, we should be able to specify what

four of the unknowns are once we specify what one of them is.

The tangency condition gives us one more restriction. If the conic is to be

tangent to, say, the line y = 0 (i.e., the x-axis), then to find the point of tangency

we can substitute zero in for y to get ax2 + dx+ f = 0. The fact that it’s tangent

to this point rather than simply passing through it means that the discriminant

must be zero, which is to say, d2 − 4af = 0. This places a quadratic condition on

our set of possible solutions, which forces there to be at most two solutions. Since

we can always apply a rigid transformation to the plane such that the line that

the conic section is tangent to is sent to the x-axis, this actually captures all the

possible cases.

Something very similar happens in CP2. There are two main differences,
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though. First, we’re working over C instead of R, which grants algebraic com-

pletion. This means that instead of having at most two solutions, there will be

exactly two solutions (up to multiplicity). Second, the general form of a conic in

CP2 is a bit different. We can write the above formula for conics in R2 because

we’re thinking of points in R2 as (x, y). But in CP2, we think of “points” (i.e.,

lines) in the general form (X : Y : Z). This means that as long as we take the axis

of tangency to be where Z = 0, we can replace x and y with X and Y respectively

and place Z wherever it needs to be so that the degree of each term is 2:

aX2 + bXY + cY 2 + dXZ + eY Z + fZ2 = 0

Otherwise the computations and arguments are basically the same: we divide

through by one of the nonzero variables and then notice that we have four values

for (X : Y : Z), yielding four linear equations in five unknowns; and finally, the

tangency condition imposes a quadratic restriction on the remaining possible set

of solutions.

Recall, though, that we were able to derive this purely by considering the

formula for the function corresponding to the ray of slope 1 in the tropical diagram.

Although I haven’t specified why this connection exists (and don’t plan to for the

sake of keeping this math description somewhat manageable in length18), the take-

away message here is that there is this close association.

Returning to example #3 In example #3 (page 153), f1 = (1 + tx)3 and

f2 = (1 + ty)3. This means we’re dealing with three points on each of the legs

of the triangle (Figure 5.46). The formula for the ray of slope 1 is a bit less

18There is a body of literature in algebraic geometry, spanning at least ten years, that goes
into a great deal of depth about how this connection works. Apparently even currently practicing
research mathematicians outside of algebraic geometry need to do a lot of reading before following
the reasoning behind this connection in technical detail.
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Figure 5.46: Three points are chosen on each of two axes of CP2

transparent in this case:

f(1,1)(x, y, t) =

(
∞∑
n=0

1

3n+ 1

(
4n

n

)
(t2xy)n

)9

However, there’s an interpretation of this situation that goes back to the same

question as before: How many varieties are there that pass through these points

and are maximally tangent to the hypotenuse? Unsurprisingly, there are nine lines

(three choices for each edge, so 3 × 3). There are also 18 conics because of the

counting method used in “Returning to example #2” (page 163): for two choices

on each of the legs, there are two conics. This is equivalent to one choice on each leg

(namely, the one the conic does not pass through). So there are 3× 3 = 9 choices

for points, and each choice yields two conics. These numbers do appear in the

above formula, although much more subtly so than in the formulas for examples

#1 & #2.

Summary

The key aspects of all this background we’ll need is (a) a sense of how to see

tropical diagrams, (b) an understanding of how to read the triangle as a depiction

of CP2, and (c) a recognition that these two are closely associated. The main

thrust of Matt & Bart’s work in this clip is on figuring out how large n needs to
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be to fit a given modularized space (see page 153) into Rn (i.e., how “large” they

need the ambient Euclidean space to be).

5.3.2 Video Description

This analysis makes reference to Table A.8.

Setup

At the beginning of this clip (row 1), we can see two images on the black-

board: what looks like a Cartesian axis for three-space R3, and what looks like two

fuzzy axes for R3 connected by a fuzzy line. The “Cartesian axis for R3” drawing

is actually a tropical diagram without a path drawn on it. The same is true of the

drawing of two “axes” connected by a line. The fuzziness of the latter comes from

the fact that there are several mark points (see page 153) clustered around two

areas, and thus the rays coming off of them with the same slope are on top of one

another. The multiple lines here are meant to keep track of the fact that there are

multiple rays occupying the same space.

Matt drew the fuzzy diagram five minutes earlier (at the start of their

meeting) in order to express a concern of his stemming from a conversation the

two of them had started the day prior. The non-fuzzy diagram was Bart’s doing

in his attempt to work out what restrictions should be present on Matt’s diagram

(and therefore what the dimensions of the corresponding cell should be). Notice

that both of these diagrams are invocations of the continuum, with Matt’s drawing

being a generic particular (since the line segments have variable length) but Bart’s

not. (Bart has, in effect, drawn Figure 5.34 on page 156.)
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Creation of the CP2 triangle

In rows 2–11 we see Bart invoke the continuum again by creating the CP2

triangle. He says, “. . . you’re talking about a situation where your mark points

maps [sic] to the intersection of the strata.” When saying “mark points,” Bart

fills in a dot at the right angle of the triangle he just created (row 14). This dot

represents a single line in CP2 with exactly one nonzero homogeneous coordinate

(e.g., (1 : 0 : 0)). He then starts to point at one of the legs of the triangle (rows

15–16) but then jumps over to point at the collection of arrows emitting above

(row 17) and to the right of (row 18) one of the mark points on Matt’s diagram

(“These two strata, right?”)

Roughly speaking, a stratum is a collection of rays emitting from a mark

point. There’s a sense in which these can be seen as corresponding to the legs of

the CP2 triangle. Bart is suggesting that under the correspondence between the

tropical diagram and the triangle, the lower-left mark point corresponds to one

of the corners of the triangle and the collection of rays emitting from it map to

the legs of the triangle. Notice in particular how he keeps his torso oriented to

the board the whole time and, when pointing out “these two strata” (rows 17–

19), he leans over to his right rather than moving his feet. He even immediately

returns to the position where his body is centered back on the triangle (row 20)

and re-engages with the triangle (row 21). In doing this, he’s expressing that his

thinking is about the triangle but that this thinking is inextricably bound up in

Matt’s diagram. He’s continuing to navigate within the two continua invoked thus

far.

Bart then notices that he’s confused (rows 28–29). The trouble here is

that the correspondence between the tropical diagram and the triangle isn’t clear

enough in Bart’s mind to let him make sense of what would happen in the triangle

were the lower-left mark point made to move along the ray going down and to the
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left. Initially he thinks he has made sense of it (rows 30–31), but he decides that

he’s mistaken (row 32). Notice how, at the same time, Matt feels a need to move

away from the board, first just standing at a bit of a distance (rows 27–30) and

then sitting down (rows 33–35). It seems as though Matt is too relaxed for this to

be an instance of proximal inhibition: the component of displaying an embodied

but inhibited drive to move closer to the board in a meaningful way seems to be

missing. Yet he still seems to want to get a wider view even though he could

presumably see the whole board perfectly well from his vantage point shown in

row 26.

Contrast this with Bart’s behavior. We see him touching the key mark

point of the tropical diagram (e.g., rows 30 & 35) while keeping his eyes, torso,

and feet oriented on the board. He also repeatedly moves his attention back and

forth between the two continua (rows 36–40). This doesn’t quite have the character

of his explaining something to Matt; rather, he’s actively using both continua in

order to reason. That is, while Bart is demonstrably thinking with the diagrams,

Matt seems to be thinking about them from afar at this point.

“Strata” versus “dis” & “his”

Bart questioningly suggests that the behavior of the mark point as it moves

downward in the tropical diagram implies that its corresponding point in the CP2

triangle should be in the interior (rows 40–43). Matt responds affirmatively (row

43), and Bart reacts to this by disengaging with the continua on the board (rows

45–46) and engaging more directly with Matt (rows 47–49). Bart’s concern here

is that if the mark point maps to the triangle’s interior, then the strata can’t map

to the boundary of the triangle since the mapping is continuous. In Bart’s mind,

the strata are labeled by di (so one stratum is d1, another d2, etc.), so this failure

for the strata to map to the boundary doesn’t match a fact the pair of them had
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determined before this meeting, namely that all di are mapped to the boundary.

Bart’s confusion gets compounded by Matt’s reply: “We have dis over there.

I’m not talking about the dis; I’m talking about just the simple strata” (rows 50–

56). In this moment we can see how Bart, despite looking at the tropical diagram

as Matt speaks, is not currently engaging with them (rows 52–54). Instead, he

turns away from them (row 55) and walks up to the table to engage with one of

the papers they’re referencing (row 56). He reiterates that he’s confused (row 57)

and seems to be looking for some clarification on the relationship between strata

and the dis (rows 58–59).

It seems that Matt is not confused by this (rows 60–76). There’s a distinc-

tion between the dis (in the cells that make up the modularized space), the his

(in the modularized space itself), and the strata (in the tropical diagram). Bart

references the need to define “stratum” more precisely (rows 58–59), which Matt

sees as a non-issue (rows 60–63). Instead, Matt seems to think that Bart is focused

on the his (and, because of how the his are defined, the dis as well) but wants him

to focus on the strata instead (rows 71–76).

Trading control of the board

Bart sits down to examine the paper more closely (rows 78–79). Matt seems

to take this as a signal to elaborate on what he has been talking about (rows 79–

81), but just as he starts Bart seems to get the point he thinks Matt has been

trying to convey (row 79). Bart here is rather insistent that Matt not continue

the explanation, though clearly Matt does want to continue and takes a while to

step back (row 82). Having so recognized Bart’s emphatic request, though, Matt

turns and sits down just as Bart jumps up to continue the train of thought (rows

83–85).

This illustrates a dynamic of using invocations of the continuum that we’ve
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seen before but was usually more subtle than in this instance: we do not see

mathematicians both animating the same invocation at the same time. They

might both be posed to engage with it, as in Joseph and Bill in, say, Table A.2 row

44. Yet we never see both mathematicians tracing parts of an invocation with their

hand or using chalk or an eraser to modify the diagram at the same time. Instead,

the mathematicians in this study use social dynamics to create an opening for their

ability to animate and/or modify the invocations in question. In this case, Bart

talks over Matt until Matt surrenders control of the board. It seems reasonable to

suggest that Bart wasn’t really trying to get Matt away from the board; rather,

it’s more likely that Bart just didn’t want an idea he now understands to be

explained to him. Yet the fact remains that Bart did not make any movement

toward the board until after Matt backed away from it (rows 82–83). This pattern

of negotiating and trading control of the board is highly robust across all three

mathematicians studied in the present work.

I should be quick to add that this phenomenon is not restricted to invoca-

tions of the continuum. I’ll return to this matter in the next chapter.

Moving the point in the CP2 triangle

Bart seems to experience a brief moment of hesitation here (rows 84–86).

Even after standing up to engage with the board, he stops halfway there and leans

back while haltingly trying to say what the next step is (“Because then, because

then, but then I want. . . but then you want. . . ”). He then concludes that “this is

[the] usual kind of duality,” at which point he engages with the tropical diagram

(rows 86–89). The “usual kind of duality” refers to the correspondence between

the behavior of the tropical diagram and the CP2 triangle.

Bart’s recognition here draws him back to the triangle to his left (row 90)

in order to reaffirm the point he had briefly mentioned earlier: the point on the
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triangle that he had drawn at the right angle should actually be in the interior

(rows 91–93). It’s worth emphasizing at this point just how incredibly rich this

invocation of the continuum really is. A passive observer watching this portion

of the clip with the sound off would see Bart erase a dot in the right angle of a

triangle and draw another one near the triangle’s centroid, much like Figure 5.40

(page 160). Because Bart had spent so much time looking back and forth between

this triangle and the tropical diagram, such an observer might deduce that the

two are related somehow. Yet this is significantly inadequate to explain what role

the triangle plays in Bart’s struggles here. The context of building cells that in

turn build modularized spaces which relate to conics in CP2 would all be missing,

despite the fact that this is the central focus of the struggle here. This illustrates

the incredible importance of mathematical context and the rich expertise of the

mathematicians involved to make such invocations relevant. A deeply intricate

topic needn’t yield a deeply intricate drawing.

Applying the body’s multiplicity

Having made this adjustment in the triangle, Bart then pulls away from

the board and expresses confusion again (rows 95–97). Specifically, he stoops and

turns away from the board and moves away from it before turning back to it, all

while holding the back of his head as though in a protective or self-isolating state.

He then launches into engagement with the tropical diagram (row 98) in order to

start deriving the relationship of the point he just drew in the triangle.

While checking with Matt, Bart keeps his feet and hips oriented on the

tropical diagram even when associating the point he’s making with the triangle

(rows 98–102). Once he starts referencing “the geometric side,” though, we see

him shifting his torso toward the triangle (row 103). Through most of the rest

of the clip we see him creating an ongoing association between the triangle and
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the tropical diagram (rows 104–112), much like he did earlier (see page 169). This

time, however, he’s attending to the movement of the point rather than just its

location. After Matt mentions it, Bart focuses on what happens as the mark point

moves downward (rows 107–111) and then concludes that the point in the interior

of the triangle would move toward the hypotenuse (row 112).

Notice how, because both diagrams here are invocations of the continuum,

the correspondence between them that Bart expresses by his back-and-forth of

body and attention doesn’t just mean that they’re related. It allows for covaria-

tion with respect to continuity. That is, small movements in the tropical diagram

are meaningful (to Bart), and that meaning transfers to small movements of the

corresponding point in the triangle, which are also meaningful (to Bart). This is

mediated by the multiplicity of Bart’s body — that is, by the fact that he can

engage (say) his torso and one hand with one continuous drawing and engage his

other hand with another drawing. The covariation here is embedded in a sense of

how two different parts of Bart’s body (mainly his torso and right hand) behave

with respect to one another.

Let me illustrate what I mean here with a relatively simple example. If we

have two runners X and Y and we know that Y runs twice as quickly as X, we can

represent this fact a couple of different ways. One way would be to write y = 2x

where y is Y’s speed and x X’s. This is a representation of covariation that doesn’t

involve the continuum and doesn’t obviously involve the multiplicity of the body

either.19 Alternatively, I could represent X with my left hand and Y with my right,

and apply the movement rule that whenever I move my left hand away from (or

toward) me by some amount, I need to move my right hand away from (or toward)

me by twice that amount. In doing this I’m applying the multiplicity of my body

19I note that I and many others, including the subjects of this study, actually do use the body’s
multiplicity for algebraic non-continuous inscriptions in some cases. See, for instance, Alibali &
Nathan (2005) for an example of teachers doing this.
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(although still not invoking the continuum in any inscription) to demonstrate the

covariation of X’s & Y’s positions. If I were to do something similar but instead

I use each hand to trace a drawn number line, then this becomes an animation of

continua via my body’s multiplicity.

In a similar way, Bart here is animating both invocations — the CP2 triangle

and the tropical diagram — via his body’s multiplicity. There are two differences

worth noting, though. First, rather than making a point of moving his hands at the

same time, he alternates. This would be somewhat akin to a teacher who alternates

between tracing the distance X travels and tracing the corresponding distance Y

travels. This is probably at least in part due to the fact that the movement in the

CP2 triangle is actually quite complicated since nearly all points of the triangle

actually correspond to multiple different elements (lines) in CP2.

Second, rather than animating two different continua with different parts

of his body, Bart instead uses one part (his right hand) to animate one diagram

at a time while he uses another (his torso) to remain engaged with the triangle.

His doing this repeatedly, combined with what he is saying and the mathematical

context, all demonstrate his sense of the covariation here. This seems to provide

him with a way of navigating the mathematical situation by literally physically

navigating the two continua with a sense of correspondence between them.

Summary

This case study required the most lengthy description of mathematical con-

text for any in the present study thus far — and yet the behavior of the diagrams

on the blackboard were no more complicated than those we saw in previous case

studies in this chapter. We see, quite simply, Bart erasing a point on one part of a

triangle and drawing a new point elsewhere in the same triangle. This highlights

the incredible richness of invocations of the continuum: the sense in which small
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movements are meaningful requires a remarkably sophisticated understanding of

why the diagram might be useful in the first place.

We also saw how Bart created a close association between his CP2 triangle

and Matt’s tropical diagram by repeatedly switching his attention between the

two. Keeping in close proximity to both of them kept them active in a sense, but

much of what he wanted to attend to was the way in which these two continua

were related. In particular, because of how they were related, the meaningfulness of

small movements in one transferred to meaningful small movements in the other.

Bart seemed to envelop this via his application of the multiplicity of his body.

This in turn allowed him a way of navigating his uncertainty by literally physically

navigating each of two invocations of the continuum in a connected way.

Finally, this clip has a moment that vividly illustrates a social dynamic of

negotiating interactions with the inscriptions on the board. Here, all inscriptions

were invocations of the continuum, so at first glance this might seem like a property

of continua. However, as I’ll illustrate in the next chapter, this dynamic seems to

be a key part of how mathematicians address the more general question of board

use.

5.4 Chapter Summary

When we first move into a new house, it has a foreign character to it. Our

feet aren’t used to the height and placement of the steps, the sounds the front door

makes as it swings open and latches closed are unfamiliar to us, and we might have

a bit of trouble setting the stove burners to the right temperature if “medium”

here is different than “medium” was at the last place we lived. But as we settle

in and get used to the quirks and character of the new domicile, what was once

foreign becomes familiar: we tug the door just so in order to make it latch, we know
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without having to think much exactly where the cups are, and our hands reach

exactly where the light switches are just by our wanting to flick them. In short,

our repeated local travel turns this once-new place into a dwelling (Nemirovsky,

2005).

Mathematicians seem to experience a similar sort of process with mathe-

matics. Devlin (2000) even describes mathematics in terms of exploring a strange

mansion filled with odd and fascinating art and furniture, lamenting that many

math students never get an opportunity to enter let alone explore. We can catch a

glimpse of this phenomenology by looking at our own experiences with math: the

Cartesian plane started out as a foreign mathematical place (Nemirovsky, 2005),

but with “local travel” (graphing equations, anticipating how function graphs

change when we alter the original function slightly, etc.) we made this place

more of a dwelling for us.

Invocations of the continuum seem to behave somewhat like cartographical

maps for the mathematicians observed here. Their goal, it would seem, is to explore

the mathematical terrain at hand — but in some cases they seem lost or like they’re

unsure of how to get from point A to point B. For instance, in the first clip we

saw Matt & Bart getting confused because they made a wrong turn, so to speak,

which prompted Bart to draw an inverted pyramid to illustrate the relationships

between the involved monoids. This provided him with a new way of experiencing

the mathematics they were exploring: since small movements would reflect small

changes in meaning, the physical sense of placement and orientation became a

tool he could bring to bear on thinking about the mathematical relationships

that were challenging him. The local travel of the inverted pyramid has a different

phenomenological character for Bart than does the local travel of, say, the inscribed

function declaration up : Pp → N. Indeed, this different character seems to be

precisely why Bart draws the pyramid in the first place: it affords different kinds
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of interaction.

There’s also a strong hint here of these continua being transparent-in-use,

much as Peirce describes in terms of Icon use (Nemirovsky & Smith, 2011; Peirce,

1991). For instance, when we see a photograph of a relative, it’s quite natural

for us to say “This is my cousin” rather than “This is a picture of my cousin.”

Similarly, when using a map to navigate a city, we might point at an intersection

and say “We turn right here,” essentially dropping the map/territory distinction

in the practical use of the map even though we would never confuse the two upon

reflection. In the same vein, we see Bart highlighting sides of the pyramid and

saying “. . . it could be this and that,” and we also see Joseph pointing at the base

of the hood in his drawn ribbon to emphasize how there’s “nothing funny going on”

at that point. Much like with cartographical maps, the continua become stand-ins

for the terrain the mathematicians are attempting to navigate.

It’s worth reflecting on the different degrees to which invocations of the

continuum seem, to the mathematicians, to look like that which they depict. The

inverted pyramid from section 5.1 is quite dramatically not a look-alike for arbi-

trary spliced varieties, while Joseph’s ribbon knot diagrams from section 5.2 —

and even his projected diagrams (e.g., Figure 5.15) — seemed to be attempts to

show almost exactly what the mathematical objects should look like. Yet this isn’t

a clear division. In the third clip (section 5.3) we find that Matt and Bart are using

a tropical diagram, which is just about as literal in the “looks like” sense as is a

classical drawing of the unit circle in the Cartesian plane, the main exception being

the multiple rays drawn next to one another to represent that they’re on top of

one another. This Bart connected to the CP2 triangle, which at first pass dramat-

ically does not look like what it represents — but in another way it is what CP2

“looks like” in the same way that a sphere can be drawn as a circle.20 So rather

20This is actually a very close analogy: we could represent a sphere with a triangle in a similar
way as we did for RP2 and CP2. The main difference is that we can visualize the sphere’s
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than being a dichotomy, we see something of a spectrum, along which different

degrees of looks-like-ness appear as part of mathematicians’ ways of experiencing

the notation in question.

However, we do not see any particular differences in how continua of dif-

ferent degrees of “looking like” are treated for the purpose of navigating struggle.

Some (such as the paths with the points p, p′, and q from section 5.1 and the

cobordism drawings from section 4.2) are used as references: they were not writ-

ten down with the intent of being manipulated or transformed, but instead were

drawn to keep track of relationships in a spatial way. Many of Joseph’s & Bills

drawings (especially from section 5.2) are drawn specifically to be altered as a way

of animating them — but not all of them, as we can see in the continua embedded

in the Reidemeister 2 diagram (Figure 5.26). Some continua are traced and, as a

result, altered, such as the inverted pyramid from section 5.1 and the CP2 triangle

from section 5.3. What’s dominant here isn’t whether the mathematicians can

literally see the mathematical objects in their drawings; rather, what dominates is

the cartographical nature of continua for them — the sense in which movements

and positioning are richly meaningful as a means of navigating the mathematics.

Beyond this cartographical method of turning mathematical places into

dwellings, we find that two properties of invocations of the continuum appear as

significant. First, there is the notion of generic particulars — invocations that

are specific by their nature, but are meant to represent any of a family of shapes

like them. This is similar to how in elementary calculus it’s common to draw an

arbitrary smooth graph to illustrate the ideas of derivative and integral: we are,

indeed, drawing the graph of a particular function, but in fact we as teachers often

mean to indicate by the graph that any differentiable function would do. It’s fairly

common to use unnecessary flairs like an extra local maximum in order to accent

compression and distortion process occurring in 3-space, but we need more dimensions even to
make sense of RP2 or CP2.
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Figure 5.47: A generic-particular function graph with a local-maximum “flair”

(from http://clas.sa.ucsb.edu/staff/lee/Tangent%20and%20Derivative.gif)

the generic-particular nature of the graph (Figure 5.47), just as we saw Bart add a

loop to the path containing the point p (Figure 5.5) and saw Joseph draw a curved

boundary to the ribbon surface in section 5.2. This addition of flairs doesn’t always

happen with generic particulars; we find none in the cobordism drawings Joseph

creates in section 4.2, for instance. Yet it occurs often enough to be a characteristic

worth noting.

Second, we find that the continua are implicitly boundless, but in a pecu-

liar way. Both Joseph’s ribbon knot drawings and Bart’s inverted pyramid are to

be understood as extending beyond the region drawn. However, there’s no confu-

sion involved in designating regions near the invocations for something else. For

instance, even though Bart’s inverted pyramid extends infinitely upward in prin-

ciple, there doesn’t seem to be any sense of conflict for Matt or Bart about there

being notation on the board directly above the pyramid. The infinite expanse is

contained in a particular (if only vaguely outlined) region of the board. This is

an intriguing property of continua that will help to fit the material of this chapter

http://clas.sa.ucsb.edu/staff/lee/Tangent%20and%20Derivative.gif
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with the results of the next.

In fact, a number of phenomena arose here that will receive more detailed

examination in the next chapter. Bart’s choice to invoke continua off to the side

in section 5.1 but more centrally in section 5.3 raises the question of the role of

board centrality. The phenomenon of idle perfecting of the invocations appears

with non-continuous inscriptions as well, and also ties in proximal inhibition. And

finally, the social dynamics involved in negotiating who it is that may activate and

engage in the board’s notation paint a picture that helps synthesize the phenomena

discussed throughout the present work.

But before I can elaborate on these connections, I will need to illustrate

one more phenomenological construct, which is the topic of chapter 6.



Chapter 6

Transformation Mappings

In the mid-19th century, the scientist Michael Faraday isolated what he

called “bicarburet of hydrogen,” which later received its current name of benzene.

Benzene had a myriad of uses and thus became the center of study for chemists of

the era. They worked out that its molecule must be made up of six carbon atoms

and six hydrogen atoms (C6H6). Yet whereas other known hydrocarbons such

as methane (CH4) had a fairly clear atomic arrangement (Figure 6.1), benzene’s

structure was much more elusive. Most ways of arranging six carbons and hy-

drogens into a molecule don’t result in something with benzene’s known chemical

properties.

Chemists struggled with this for nearly half a century. The revelation finally

came when the chemist August Kekulé thought to arrange the carbon atoms in

a ring (Figure 6.2). This gave them a way to understand the origin of many of

benzene’s properties in the same way they could understand methane’s from its

diagram. Notice, though, that the difficulty was not in their understanding of

chemical structure (Lewis) diagrams like Figures 6.1 & 6.2. Rather, the challenge

was in finding a legitimate transformation from “C6H6” to a diagram like Figure

6.1 that preserves benzene’s properties.
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Figure 6.1: The molecular structure of methane (as a Lewis diagram)

Figure 6.2: A Lewis diagram of benzene
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This theme of finding legitimate transformations that seem to preserve

something of interest to the individuals in question is central to the mathemati-

cians in this study. Every pair in every observation covers the blackboard with

inscriptions that are meant to illustrate these transformations. As such, the board

becomes, for the mathematicians, a canvas upon which are painted implicit trans-

formation mappings that illustrate the mathematical objects being explored.

The key defining feature here is the sense of something being preserved

between transformations. When we rewrite x2 + 2x + 1 as (x + 1)2, there’s an

impression that we’ve simply expressed “the same thing” (namely some quantity)

differently. Indeed, the sense that the transformation is legitimate is inseparable

from this impression of having preserved something while factoring the original

expression. Similarly, when we rewrite y = x2 as a parabola drawn on a Carte-

sian plane, the transition seems to preserve the relationship between two variable

quantities. Indeed, it’s precisely this sense that “the relationship” is preserved that

makes Cartesian graphs useful as an algebraic tool.

In this chapter I’ll illustrate several ways in which transformation mappings

— by which I mean networks of inscriptions that the mathematicians see as con-

nected via legitimate (i.e., something-preserving) transformations — structure the

subjects’ encounters with struggle. In an analogous way to how we become familiar

with a new object like a wallet by seeing “the same thing” from many different

angles, mathematicians seem to gain familiarity with a mathematical object by

seeing it as preserved across transformations. Many nuances of how they engage

in these transformations, and what they do when they struggle to “see from a

different angle” the objects they’re interested in, will emerge as a result. This,

in turn, will help to unify many of the findings of the present study into a wider

framework of these mathematicians’ experiences with struggle.
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6.1 Clip #1: Chain Maps

6.1.1 Mathematical Context

The mathematical context for this clip is largely the same as that given

in section 4.1.1. Joseph and Bill are still talking about odd Khovanov homology.

They’re explicitly referencing Reidemeister moves, which were explained in section

5.2.1. The main idea I’ll need to elaborate upon here is that of a chain map.

Chain Maps

Mathematicians want the Khovanov homology (see section 4.1.1) of two

different knot diagrams to be the same if the two diagrams differ only by Reide-

meister moves. (That is, transformations of knot diagrams by Reidemeister moves

are legitimate.) That way the Khovanov homology says something about the knot

(i.e., that which is seen as preserved across Reidemeister moves) instead of saying

something about how the knot happens to have been drawn. Doing this requires

building the homology in a particular way that ignores these Reidemeister differ-

ences.

As a general rule, homologies come from chains. A chain in the mathe-

matical sense is a sequence of algebraic objects that are connected by functions

corresponding to the type of object such that going two steps down the chain

results in being sent to “zero,” whatever that means for the objects in question.

So if the objects are groups (see section 5.3.1, page 145), the functions have to

be homomorphisms (i.e., group-operation-preserving: f(xy) = f(x)f(y)), and the

“zero” in this case is the group’s identity. Here’s an example of a chain:

0→ Z f→ Z× Z g→ Z→ 0

In this case, Z represents the integers under addition, and Z×Z indicates ordered
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pairs of integers. “0” refers to the group with one element.1 To give a specific

example, let’s say the homomorphism f here sends n to (n, 0) while g projects on

the second coordinate (i.e., g(a, b) = b). Then g ◦ f always sends everything to

zero: g ◦ f(n) = g(n, 0) = 0.

Homologies in topology often come from creating chains by looking at ge-

ometric relationships and then essentially setting all the parts of the chain that

refer to things we don’t care about to zero. So to construct Khovanov homology,

we would somehow create a chain that corresponds to a knot diagram of the knot

we’re interested in, and then set everything that would change by doing Reide-

meister moves to zero. One way to do this is by creating a second chain based on

a knot diagram that differs by, say, one Reidemeister 1 move and then checking

that the way we built the two chains will result in the same homology. We can do

this by constructing what’s called a chain map2.

To get the idea of a chain map, pretend that we have two chains, G and H.

G looks like this:

· · · → Gn → Gn+1 → Gn+2 → · · ·

and H looks like this:

· · · → Hn → Hn+1 → Hn+2 → · · ·

You can think of each Gi and Hi as being a group, like Z × Z. A chain map

φ : G → H would be a whole sequence of functions φi : Gi → Hi. That is, φ is the

1If a group has only one element, then it doesn’t matter what we call that element or what
we call the group operation. For instance, the group could be zero under addition, or it could be
1 under multiplication, or it could be the identity function ι(x) = x on the real numbers under
function composition. In every case, although the names change, the group structure remains the
same: the group element combines with itself to produce itself. Thus, mathematicians commonly
refer to the group with one element, or the “zero group.”

2Mathematicians often use the term “map” to refer to functions that are special in some
way. For instance, topologists often say something like “f is a map” to indicate that f is a
continuous function. It’s also fairly common to have homomorphisms called “maps” when the
objects being considered are groups. There is in fact a relationship between this use of “map”
and a cartographical map, but for our purposes we can ignore that and just read “chain map”
as “a special function between chains.”
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stuff in the middle band here:

· · · → Gn → Gn+1 → Gn+2 → · · ·

↓ φn ↓ φn+1 ↓ φn+2

· · · → Hn → Hn+1 → Hn+2 → · · ·

But chains aren’t just a collection of groups or other algebraic objects. A chain in-

cludes the functions that, in our diagrams above, are going horizontally. (Metaphor-

ically, a chain isn’t just a collection of links, but a collection of links connected in

an order.) So just like how we want linear transformations to preserve linearity

(i.e., f(v + w) = f(v) + f(w)), we want chain maps to preserve something about

the sequentiality of the chain. Mathematicians capture this desire by requiring

that all the squares “commute.” Let’s focus on just one square to clarify what this

means:

· · · → Gn
f→ Gn+1 → · · ·

↓ φn ↓ φn+1

· · · → Hn
g→ Hn+1 → · · ·

If we imagine we’re traveling around this square starting at Gn in the upper-

lefthand corner, then we can either follow f to the right or φn down. If we follow

φn down to Hn, then the only direction we can go that’s with the arrows is along

g to Hn+1. On the other hand, if we start out following f to Gn+1, we can still

reach Hn+1 by then taking φn+1. That is, we’re comparing the functions g ◦φn and

φn+1 ◦ f . It’s possible that these two functions are not equal — that is, we could

end up in radically different parts of Hn+1 depending on which path we take. But if

φ is a chain map, then it doesn’t matter which path we take: g◦φn = φn+1◦f . This

requirement means that φ preserves something about how the algebraic objects in

G are connected, much the same way a linear transformation preserves linearity.3

3In fact, this analogy runs quite deeply. This bespeaks a general pattern from a domain of
mathematics called category theory, in which a category is the collection of all of a given kind
of mathematical object together with “arrows” that preserve whatever mathematicians consider
to be interesting about those objects. In the category of vector spaces, linear transformations



188

Chains that are “equivalent”

We know that two linear spaces are “equivalent” in some sense if there’s a

way we can go back and forth while preserving the linear structure of the space.

This lets us say that Euclidean 3-space R3 and the collection of quadratic poly-

nomials R[x]/ 〈x3〉 are “the same” in the sense that we can easily figure out the

ordered grouping (3, 5,−2) from the polynomial 3x2+5x−2 and vice versa, and this

correspondence preserves the linear structure of both spaces. Although these two

spaces are different, there’s nothing about their linear structure that’s different.

So, as vector spaces, they’re the same (i.e., isomorphic).

In the same way, we can say that two chains G and H are isomorphic if

there’s a way of going back and forth between them while preserving the chain

structure. Chain maps preserve chain structure, so this gets formalized as saying

that there are chain maps φ : G → H and ψ : H → G such that ψ ◦φ and φ ◦ψ are

both identity maps on their respective chains. At one point we’ll see Joseph and

Bill draw chain-map arrows going both ways, and this is why: in normal Khovanov

homology, two chains that result from knot diagrams that differ by a Reidemeister

move are isomorphic, and they’re trying to explore what happens when they switch

the context to odd Khovanov homology.

Using pictures in place of groups

Finally, I should note that topologists often use drawings of the geometric

objects the groups in the chain come from in place of the groups. For instance, we

can think of a circle as two points with two strings connecting those points (Figure

6.3). If we call the points p and q, then we can pretend that the symbols “p” and

are the “arrows.” In the category of chains, chain maps are the “arrows.” In group theory,
homomorphisms are the “arrows.” So from a categorical point of view, what we’ve just done
is said that a chain map is what it has to be in order to make the collection of chains into a
category.
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Figure 6.3: A circle as two points plus two line segments

“q” have algebraic meaning as variables and add or subtract copies of them. For

instance, you could write 2p−3q the same way you could write 2x−3y for variables

x and y. So all told, the zero-dimensional parts of this circle create a group that

we can write as Zp⊕ Zq := {mp+ nq : m,n ∈ Z}. Similarly, we can call the two

lines k and `, in which case the group we’d get from that is Zk ⊕ Z`, treating k

and ` like variables too.

Because there aren’t any pieces of higher dimension, the corresponding

groups are all trivial, or “zero.” So the chain4 will look like this:

· · · → 0→ 0→ Zk ⊕ Z` f→ Zp⊕ Zq → 0

Each of those arrows is a homomorphism. Most of them are zero, with the ex-

ception being f (from dimension 1 to dimension 0). There’s a way to work out

geometrically what f is, but for our purposes it’s not important. What’s important

4This chain is specifically for deriving singular homology — i.e., counting “holes” in the space.
Khovanov homology focuses on different features than these for knot diagrams. The exact details
aren’t important for the analysis that follows. All that’s needed is a recognition that the chain
complexes we’ll see in the video analysis come from geometric features.
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is recognizing that we get a chain by attending to geometric features of whatever

we’re looking at.

It’d be perfectly acceptable to use drawings of the original geometric fea-

tures rather than symbols representing the groups. Figure 6.4 shows what the same

chain above might look like if we were to draw k and ` instead of writing “Zk⊕Z`”

and similarly drawing two points instead of showing the zero-dimensional group in

the chain.

Figure 6.4: A chain depicted via continua

Summary

What Joseph and Bill are doing in this clip, then, is exploring what happens

to the chain map in normal Khovanov homology when they apply it to chains built

toward developing odd Khovanov homology. They’re specifically looking at two

chains corresponding to knot diagrams that differ by a Reidemeister 1 move. They

want odd Khovanov homology to come out the same for knot diagrams that differ

only by Reidemeister moves, and they’re trying to make sense of how they might

make that happen.

6.1.2 Video Description

This section references the gesture analysis found in Table A.9.
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Preparing the chain map diagram

Seven minutes prior to the image shown in row 1, Joseph tried to tackle

this question about invariance under Reidemeister moves by drawing a chain map

on the board. We can see this chain map immediately above Bill’s head in the

rightmost image of row 1. This is a single square of two very simple chains, each

ending in zero on either side. Each chain uses continuum-based drawings, each

of which is a cross-section of a cobordism — or equivalently, a snapshot in time

of the process of cutting and splicing knots into new configurations. (However,

the overall depiction of the chain map does not invoke the continuum: slightly

shifting the bottom-right continuous drawing slightly downward wouldn’t change

the meaning of the chain map at all for Joseph or Bill.)

Joseph erases the bottom row corresponding to one of the chains (rows 2–5).

The diagrams that had been written there before turned out not to be as helpful

as Joseph and Bill thought they’d be. The top row is the chain that emerges

from a knot diagram with a twist in it, but the bottom row doesn’t correspond

to the same diagram with the loop un-twisted (i.e., after reversing the twist with

Reidemeister 1; see Figure 5.9). Joseph’s erasing that bottom board occurs as soon

as they recognize the error.

This is a common theme we’ll see throughout this chapter. The mathemati-

cians are not concerned about keeping track of the history of their wrong turns,

even as warning signs about what mistakes not to make. Instead, the inscriptions

on the board must preserve the integrity of the overall transformation mapping —

which is to say, all inscriptions that bespeak transformations must bespeak legiti-

mate transformations. Things that are mistaken get erased right away rather than

be left to corrupt the work on the board.

Joseph then writes a new chain (rows 6–11). It’s worth noticing that both
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of these chains have a very simple structure:

0 → A → B → 0

0 → C → 0 → 0

(Henceforth I’ll drop writing the zeros at either end since those aren’t written in

Joseph’s drawing.) Here, A represents the structure implied by the curve with a

circle separate from it, B represents the two line segments having been merged,

and C is just the curve without the circle. Joseph drew a single dot to represent

“zero” to the right of C (row 10). Each of these diagrams is meant to show a

cross-section of a cobordism, or equivalently, a moment in time of the movie that

plays from turning one collection of knots into another. (See section 4.1.1.) The

single dot represents a loop shrinking to a point and then vanishing, which in the

cobordism looks like a cap. The corresponding algebraic structure of this is zero.

All of this means that the only nonzero horizontal function is that between A and

B, and that function could be anything at all that preserves the structure of A

and B in order to make it a chain: no matter what it does, going two steps will

result in zero.5

Joseph continues his attempt to describe this transformation (i.e., the chain

map) by drawing arrows between A and C and also drawing a vertical line below

B (rows 12–19):

A → B

↑↓ |

C → 0

He says here, “We need to write down chain maps this way and this way.” The

idea is that since everything but C is zero in the bottom row, a chain map going

5Joseph later clarified in a follow-up interview that this simplicity comes from the fact that
the Reidemeister 1 move is relatively simple. The pairs of chains corresponding to Reidemeister
moves 2 and 3 are each quite a bit more complicated, and the “go two steps and land at zero”
requirement plays a much more important role.



193

down would by necessity be zero everywhere except possibly in going from A to C.

Since the functions in a chain map are structure-preserving, the function going up

to B from zero would have to have B’s zero as its entire range. Therefore, creating

a chain map going down and another going up would require only that Joseph and

Bill determine the functions going between A and C.

In particular, notice that the function going from A to C could be just

about anything in order to make the chain map going down be, in fact, a chain

map: whether we go A → B → 0 or A → C → 0, we’ll end up at zero. (Joseph

later points this out explicitly, on rows 167–170.) So the main direction of interest

is going up from C to A, which makes the function going from A to B very

important. Thus, we see Joseph mark the A→ B function with an m and calling

it a “multiplication” (rows 21–22):

A
m→ B

↑↓ |

C → 0

This is a multiplication because in the Frobenius algebra one uses to build Kho-

vanov homology, mergers of knots correspond to multiplication. The key question,

then, is what the function from C to A must be.

Initial attempt to work out the chain maps

This involves a fair amount of effortful thinking for the both of them (rows

23–29). We see Bill touching his face in a self-soothing and/or self-isolating gesture

(rows 23–25) and then using his pencil to point at something he’s imagining that’s

presumably related to this situation while looking down and to his right (row

26). We also see Joseph essentially frozen, staring at the board during this whole

segment; although it’s possible he’s simply spacing out, given the context and what

comes next it seems more likely that he’s concentrating heavily on his thoughts
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Figure 6.5: A sheet with a cap attached to it

about the diagram.

In row 29 Joseph says, “So what are the usual ones and why?” He’s referring

to the “usual” chain maps involved in normal Khovanov homology for Reidemeister

1, and he’s hoping to make sense of what the chain maps should be in this odd

Khovanov homology setting based on those. This prompts him to look away from

the board (rows 30–31) presumably to try to remember those chain maps. We also

see Bill engage with his notes in order to look up something that will help them

recall what the maps were (rows 31–34).

Joseph notes that “in one direction you cap off with a torus, don’t you?”

while glancing up at the board briefly (rows 33–35). This is in reference to a

cobordism, where capping off refers to shrinking a knot to a point and then making

it vanish. In the cobordism this might look like a sheet with cap attached to it

(Figure 6.5). A torus, on the other hand, looks like a handle when attached to

surfaces. So capping off with a torus would look like a sheet with a handle attached

to it such that the handle is angled upward (Figure 6.6). If we think of Figure 6.6

with time going upward, then the movie consisting of watching the cross-sections
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Figure 6.6: A sheet with a handle attached to it

go forward in time would look like Figure 6.7. Notice that the last two images of

Figure 6.7 look like the drawings for A and C. What Joseph is saying, then, is

that the capping off that happens when moving down the chain map from A to C

is capping off with a torus (as opposed to capping off with a non-torus such as in

Figure 6.5).

The point of working out the function A→ C when what they want is the

function C → A is that in normal Khovanov homology, these two compose to form

the identity. That is, going A→ C → A sends everything in A to itself, and going

C → A → C sends everything in C to itself. Thus knowing what the function

A→ C does can give them a hint about what the function C → A must do. This

comes from the fact that Joseph and Bill want A & C to be “the same” in some

sense, and therefore they need to work out what the legitimate transformations

between them are. Much as how knowing how to expand an algebraic expression

can give insight into how to factor, Joseph and Bill are hoping to understand the

transformation C → A by understanding the other direction first.
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Figure 6.7: The “movie” of capping off with a torus

This turns out not to be enough for Joseph and Bill at first, and they spend

a fair amount of time thinking about this and referring to their notes (rows 36–

58). However, in rows 50–57 we see Bill notice something: he rapidly switches

his attention between the notes in his lap and the blackboard and then points

toward the board. Bill then reaches forward to indicate A (rows 58–63). In doing

so, he keeps his gaze fixated on his notes. Bill’s reach here is slow and careful,

and he’s checking and possibly re-checking his conclusion even as he moves to

make it. This behavior bespeaks a kind of caution in expressing reasoning about

material on the board that one doesn’t see with, say, quick calculations on a piece

of scratch paper. Bill could, in principle, share his thinking as soon as it occurs to

him (e.g., “I wonder if that top row is a merge minus a torus”) — but what we

see instead is this checking and hesitation and careful reflection before he’s willing

to speak. This is reminiscent of how mathematicians’ published papers often say

little about where an idea came from or what mistakes they made in the course

of coming to a conclusion (Burton & Morgan, 2000; Thurston, 1994). Yet here, in

a way reminiscent of one of Greiffenhagen & Sharrock’s (2011) points, we see this

same sort of caution present in the process of developing the mathematical ideas

themselves.
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Figure 6.8: Joseph’s drawing in row 75 of Table A.9

Notice also the social dynamic here: Joseph rolls up to the board and starts

modifying the diagram, and as soon as Bill looks up and notices this he pulls back

from the board (rows 61–66). Bill continues to make his point, but by gesturing in

the space in front of him while he leans back instead of by pointing to parts of the

diagram on the board (rows 68–71). This is another example of the phenomenon

we saw in the case of Matt and Bart in chapter 5 where they were implicitly

negotiating who had control of the board (see page 171). In this case Joseph is

inscribing Bill’s point on the board while checking what he needs to add to make

it true (rows 71–75).

Figure 6.8 shows what Joseph has drawn in row 75. This is a transformation

in which Joseph & Bill are trying to preserve the function between C and A. Much

as how rewriting y = x2 + 2x as y = (x + 1)2 − 1 can make it easier for us to see

where the vertex of the function’s parabolic graph is, Joseph has written Figure

6.8 as a way of seeing the function in question from a different (and, he hopes,

insightful) angle.

Correcting a mistake

After a bit of a pause (rows 81–83), Joseph’s wrist zips to his mouth (row

84). This is the mouth-touching behavior mentioned in chapter 4. Accordingly,

Joseph then drops his hand and says, “Wait a minute” (row 85). The moment his
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hand zips to his mouth, it seems that he noticed an inconsistency on the board: in

Figure 6.8 either m isn’t a merge and is thus misleadingly labeled, or the cup needs

to be inverted to be a cap. Which it is depends on which direction they’re going

(from A to C or vice versa). This is why he laughingly says, “That’s downwards

isn’t it? How are we. . . Which way are we reading. . . ” (rows 86–90). The laughter

here seems to serve as a way of dispelling tension caused by confusion and a sense

that there’s something wrong written on the board.

Once Joseph asks the question, Bill squeezes his eyes in concentration (row

87) and then specifies that they’re trying to describe the function going from C

up to A (rows 90–100). From this Joseph concludes that m must be referring to a

split rather than a merge and immediately erases the m (rows 101–102). Again, we

see this immediacy with which something that corrupts the overall transformation

mapping gets erased, even though doing so erases the history of their thinking

on the blackboard. It’s far more important that the inscriptions refer only to

legitimate transformations, as otherwise the different “views” being drawn on the

board don’t refer to “the same thing.”

Because Joseph knows what m should actually be, he immediately writes

the word “split” where m used to be (rows 103–105). This is a nuance of writing

down transformations that appears repeatedly throughout every case we’ll examine

in this chapter. Because the board is used almost exclusively for transformation

mappings6, inscriptions take on a charge of significance. Joseph could have simply

made a mental note that the m represented a split, but because it was written

with the intent of standing for “merge” it had to be erased and replaced with

6In all the recorded observations of mathematicians in the midst of working that I’ve engaged
in thus far — both for this research endeavor and related ones — I’ve seen only one exception to
the use of the board for transformation mappings: sometimes mathematicians will write a note
to themselves off to the side of their main workspace. For instance, they might write “Email
Alex about supervector spaces” at the edge of the board. I’ve always seen these notes written
at the edge of the board, and they’ve almost always been separated by a line dividing the note
from the workspace. This doesn’t happen in any of the clips used in the present study.
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something written with a more accurate intention. Furthermore, rather than just

writing “s,” we see him write down the entire word “split.” Arguably this could

have been because the letter ‘s’ looks a great deal like the numeral ‘5’ and as such

it’s normal to avoid the use of the letter ‘s’ in mathematics, but in areas closely

related to Joseph’s field of research it’s quite common to ignore this convention.7

Writing the whole word “split” exactly on top of where the m had been before

seems to be a way of emphasizing that thinking in terms of a merge was just wrong

and that this is a correction.

Also, notice how Bill snatches his hand back from the board and covers his

mouth with his forearm as soon as Joseph points out the mistake (rows 102–104).

While doing this, he apologizes twice, laughs, and acknowledges that Joseph’s

correction is right. This gesture is made even more stark by the fact that Bill

drops his arm from around his face once Joseph has finished writing “split” on the

board (row 106). It’s as though Bill’s discomfort comes largely from there having

been something wrong on the board rather than just from his having suggested

something erroneous. This bespeaks the importance to Bill of links in a link-map

on the board having flawless integrity since a weak link would make the subsequent

chain of reasoning fragile and confusing.

We also, again, see a trade-off here as to who may animate the diagram.

In row 106 we can see how Bill starts his movement toward the board only once

Joseph has withdrawn from it. This seems to be a case of Joseph relinquishing

control of the diagram entirely on his own rather than because of any clear signal

Bill gave that he wanted to engage with it.

7“s” (lower case) often gets used to express what’s called a section of a projection mapping,
and it also gets used to describe a path s : I → X in a topological space X. Other variable names
are common, too — most notably σ and γ for sections and paths respectively. But the point is
that “s” is actually a common variable name in topology and differential geometry, which are
major parts of what Joseph researches.
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Checking one direction for isomorphism

Jumping ahead about 40 seconds, we see Joseph using the “commuting

square” property of chain maps (rows 141–143). In defining the chain map going

upward, they already know that going from C to the right to zero and then up to

B must land them at the zero of B. This means that going from C up to A and

then over to B must also land them at the zero of B. They think the function

C → A is described by Figure 6.8, so Joseph explores what happens to each of

the split (rows 145–156) and the cup (rows 157–163) under the multiplication map

A → B. Since the two components cancel out, Joseph and Bill conclude that the

description they’ve given for the function C → A does work.

It’s worth noting how Joseph navigates between the two “views” the C →

A→ B process: he traces the path in the chain map diagram (row 142) and then

switches to pointing toward and navigating the cobordism-like drawings to the

left (rows 143–148). He even uses a hop upward of his hand near the blackboard

to mimic what the A → B step will look like in this “view” (row 147). The

“sameness” here that makes the implicit transformation legitimate is described by

the up-and-over path on the chain map and by the cobordism-like arithmetic in

the left-hand diagrams.

Also, notice how this C → A → B path is itself part of a larger object

Joseph and Bill are trying to create, namely the chain map going upward. The

chain map upward can be thought of as a transformation of the lower chain to

the upper one; indeed, this is essentially what they’re trying to construct. And

even the chains themselves can be thought of as sequences of transformations (e.g.,

from A to B). The transformation expressed in the contrast between the chain map

diagram and the cobordism-like drawings seems to be taking paths within the chain

map diagram as that which is preserved. This suggests a considerable dynamism in

these mathematicians’ experience as to what constitutes “a mathematical object.”
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Joseph notes that they can’t use the commuting-square property to work

out what the function A → C should be since “you can put right anything for

it to be a chain map” (rows 167–170). Bill suggests that it just be a matter of

capping off the circle in A so that it vanishes to produce C (rows 172–180), which

Joseph says seems reasonable (rows 182–185). Thus at this point, they have their

candidate chain maps and just need to test what happens when they go back and

forth (i.e., A→ C → A and C → A→ C).

Joseph starts out by looking at C → A→ C. He uses his finger to traverse

the chain maps (rows 189–192) and then quickly reasons that the resulting com-

posite function must be “minus the identity” (rows 199-201). It seems that this

reasoning was too quick for Bill (rows 203–204), so Joseph pauses for a moment

and labels the two key functions f and g (rows 208–212):

A
m→ B

f ↑↓ g |

C → 0

This allows him to clarify that he was claiming that g ◦ f = −Id, which he writes

on the board (rows 213–215). (Mathematically this means that going C → A→ C

sends each element of C to its additive inverse. If C were the integers Z, going

up and down again would send, say, 3 to −3. This happens because they’re

dealing with odd Khovanov homology instead of normal Khovanov homology.)

These labels serve as a way of signaling a transformation from the chain map path

to the function equation. Thus, roughly speaking, the current transformation

mapping has three nodes: the chain map diagram, the cobordism-like arithmetic,

and the function equation — yet it’s important to bear in mind that the chain map

diagram in particular does not seem to consistently behave as though it represents

“one thing” for these mathematicians.
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Figure 6.9: The last diagram drawn on the board (row 248 of Table A.9)

The opposite function loop

The remainder of the clip is focused on the other direction — which is to

say, working out what f ◦ g is. This seems to be considerably more challenging

for them (rows 219–224). Notice that in row 219, Joseph actually writes f ◦ g on

the board. Given the mathematical context, there’s relatively little ambiguity that

this is the next thing they need to look at. Thus Joseph’s writing this seems to

be emphasizing, “This is the next view we need a legitimate transformation to.”

It’s an attention-directing inscription, applying the nature of the board-in-use as a

medium for transformation mappings to focus them on the next step. It’s probably

also a matter of Joseph knowing that he wants to write “f ◦ g = [something]” and

he’s writing down the part that he knows — although it’s worth noting that he

doesn’t actually write down the equal sign.

Joseph then haltingly draws each component of this map in a form similar

to that in Figure 6.8 (rows 226–248). The drawing he ends up with at the end of

this clip is shown in Figure 6.9. Notice how Joseph picks a new space fairly far

away from the f ◦ g inscription to draw this. That could be a matter of space,

but this phenomenon is fairly common throughout the mathematicians observed

here. It seems to have the character of a lemma: Joseph seems to intend for the
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transformation mapping to go between f ◦ g and this pictorial arithmetic drawing

to justify whatever the final expression for the function equation should be.

Summary

This episode has within it most of the phenomena that we’ll use to detail the

role that transformation mappings can play in struggle navigation. One of the main

points to notice here is Joseph’s & Bill’s reaction to error (page 197): nervousness,

a need to release tension (through laughter or chuckling), and an impulse to correct

it right away. Furthermore, the correction (erasing m and replacing it with the

word “split”) wasn’t strictly necessary, but because it represented something that

was mistaken in its intent upon being written it needed to be corrected. The

correction itself was also made directly on top of where the original mistake had

been; this might seem like it would have to be that way (since the m was part of

an algebraic expression), but this pattern is sufficiently robust in situations where

it isn’t necessary that the necessity stands a good chance of not having been the

central motive for Joseph in that moment. We’ll see more examples of this later

in this chapter.

There’s also a question of what constitutes “a mathematical object.” On

one level, Joseph and Bill are trying to construct chain maps between chains that

represent two knot diagrams that differ by one Reidemeister move. But in zooming

in on the behavior of these chain maps, the objects become paths in the chain map

diagram — or equivalently (after a path-preserving transformation), composite

functions. Even then, though, the composite functions’ formulas become the center

of attention the same way that terms and variables become the center of our

attention when completing the square on an expression like x2 + 6x − 3. This

nuance will become key when we reflect on the apparent contrast between created

and discovered mathematics in mathematicians’ phenomenology.
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We also briefly saw the board being used for emphasis, as a means of direct-

ing attention. Joseph’s writing f ◦ g was, strictly speaking, unnecessary — but it

still constituted part of his effort to think about the mathematics. This reflects on

moves such as his decision to roll up to the board and write down Bill’s suggestion

as Figure 6.8 (rows 60–75): by writing the pictorial expression down, he’s implic-

itly agreeing that this is a legitimate transformation of the C → A path. This

contrasts, for instance, with Joseph’s simply changing the topic when he disagrees

with Bill’s suggestion in rows 125–141.

There were also a few specific examples of negotiating board control, first

raised in chapter 5 (see page 171). This dynamic seems to emerge from a prop-

erty of the transformation mappings together with social norms in mathematical

communities of practice (Lave & Wenger, 1991) and the interpersonal dynamics

of these two particular mathematicians. As we examine other examples of board

control negotiation, we’ll be able to see some attributes that underly this dynamic,

which will in turn tell us something more about the role transformation mappings

play in mathematical struggle.

6.2 Clip #2: Facets

For this clip we return to the scene with Matt & Bart already described in

section 5.3. This time we’ll focus on the interactions with the algebraic statements

that resulted in Bart drawing the inverted pyramid.

6.2.1 Mathematical Context

There is nothing new to add about mathematical context beyond what’s

already described in section 5.3.1.
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6.2.2 Video Description

This analysis again refers to Table A.4.

Regions of workspace

The material on the board at the beginning (row 1) is a collection of trans-

formation mappings, several of which are separated by drawn dividers (the vertical

line in the middle and the half-box in the lower-righthand corner). The left half

of the board is mostly algebraic notation that Bart had written and is all part of

one transformation mapping. The triangle and the three-pronged star on the far

left were Matt’s doing and referred to notation that was where Bart’s formulas are

now written. The diagrams on the upper-lefthand corner of the board (which you

can barely see in row 1; see row 18 for a better view) are part of Bart’s thinking

that led him to write the algebra. The two regions to the right of the vertical line

are Matt’s doing and reference a way of thinking about this splicing problem from

a more tropical-vertex-group point of view.

After they agree to shift strategies to focusing on just one pair of varieties

at a time (rows 1–9), Bart jumps up and grabs the eraser as he says, “Basically

this is not such a concern at this point” (rows 10–13). He then proceeds to erase

his algebraic notation (rows 17–22), pausing for a moment to evaluate whether a

particular square diagram (rather like a square of a chain map) is part of what

should be erased (row 21). The transformation mapping Bart erases has no known

flaw as far as the two of them are concerned, but they’ve determined that it’s not

something they should be thinking about right then. This, combined with the

need for space on the board within which to write a new transformation mapping,

brings Bart to erase this portion.

It’s worthwhile to notice that Bart does not erase everything related to the

original transformation mapping: he leaves the two diagrams in the upper-lefthand
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corner alone. This occurred earlier, too, which is why we see Matt’s triangle and

three-pronged star on the left even though the algebra to which it’s connected was

erased quite a bit earlier. This illustrates how, while it’s totally unacceptable to

have nodes of the transformation mapping that imply illegitimate transformations,

it’s perfectly fine to have fragments of earlier transformation mappings.

This also reveals a phenomenological element of the blackboard for these

mathematicians, namely the idea of regions of workspace (Nemirovsky & Smith,

2011). Bart finds it helpful to erase the region of the board where the now-irrelevant

algebra is but seems to implicitly view the column to the left of that region with

the diagrams as separate. There’s no need to erase them because he already has a

region within which to work.

Notice also that while thinking about what to write, Bart moves in toward

the board to use his hand to erase a part of the region he just cleared (rows 32–36).

This is reminiscent of the idle perfecting phenomenon we saw in chapter 5 in which

intense concentration on an invocation of the continuum sometimes encouraged the

mathematician engaged with the drawing to make minor adjustments that didn’t

pertain directly to the reasoning. (See, e.g., the section starting on page 117.)

It’s normal for erasers to miss a few marks when used on a blackboard, and on

occasion those marks, if left alone, might cause some minor visual confusion when

something new is written. (For instance, a lingering mark might make a y look like

an x.) Yet mathematicians are willing to ignore these imperfections in erasing up

until those flaws threaten to cause some confusion, at which point they erase them.

(E.g., noticing that a y looks like an x, a mathematician will likely erase the small

mark that’s threatening to cause confusion.) Bart’s being drawn to make this small

gesture of erasing, then, seems like it’s probably a similar sort of perfecting-while-

thinking behavior to what we saw in invocations of the continuum. It seems like

a way of overcoming something that might have otherwise turned into proximal
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inhibition since he’s able to engage in the board this way. This connection seems

especially evident when we see how he seems to be actively repelled from the board

once the imperfection has been erased (row 37).

After Bart paces (rows 37–40), he moves toward the board to prepare to

write the functions describing the monoid structure of the two varieties being

spliced (rows 41–42). But then we see his hand deflect to the side (row 43) in

order to draw the paths depicted in Figure 5.5. Earlier when examining this

move, we emphasized how the paths were an invocation of the continuum, and

specifically how the paths drawn were generic particulars. Here, though, I’d like

to emphasize where the paths were drawn. The intent here is to create a snapshot

of the relationships between the key points p & p′ on the two varieties about to

be spliced together; the diagram of paths is not itself intended as a center for

reasoning the way Joseph’s cobordism-like drawings in section 6.1.2 were. There

seems to be this implicit effort to designate the center of the working space for

nodes of the transformation mapping that are actively involved in the effort to

explore the mathematical ideas involved.

Emphasizing correction with erase-and-replace

Jumping ahead half a minute, we find Bart writing down the functions up

and up′ (rows 49–54). Here again is what he has written on the board at this point:

up : Pp → N

‖

up′ : Pp′ → N

Notice, again, how Bart initially wrote Z instead of N for the function up, but once

he noticed the mistake he abandoned his in-process writing of up′ to erase the Z

and replace it (rows 52–53).

Matt argued for the equality of Pp and Pp′ based on the idea that p and
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p′ both become q after the two paths are made to cross (rows 52–57). This is

what later leads Bart to suggest that the monoid Pp′ , which he’s viewing as being

the same as Pp, is also Pq (row 66). This turns out to be a mistake, but we can

understand why this seemed sensible at the time: if p and p′ are being viewed as

already merged at q, then Pp and Pp′ are being viewed as already spliced to form

(part of) Pq.

Bart wrote Pq immediately below Pp′ :

up : Pp → N

‖

up′ : Pp′ → N

Pq

There’s no equal sign written between Pp′ and Pq here. Instead, equality is implied

by where Pq has been written. When suggesting that it just be called “P” (without

subscripts), he appends “= P” to the last row (row 68):

up : Pp → N

‖

up′ : Pp′ → N

Pq = P

Almost immediately after Bart writes this, though, Matt objects (rows 70–72).

Bart immediately backs away from the board (rows 72–73), heeding Matt’s warn-

ing but not quite seeing the problem just yet. As soon as he does, though, he

immediately zips in and erases the bottom row (the one reading Pq = P ) (rows

74–77). So, we can see the urgency to erase expressions that imply illegitimate

transformations manifests here as well.

There is a brief exception to this, though. The vertical equal sign between

Pp and Pp′ is also mistaken, but Bart takes a few moments to get to erasing it.

Instead, he spends a few seconds emphasizing what he sees as the correct way to
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describe the situation, even adding an emphasis gesture seemingly directed toward

Matt (rows 79–81), and then erases the equal sign (rows 81–82). Yet while doing

all of this he keeps his torso oriented on the board as though to stay engaged with

adjusting the inscriptions there. This suggests that in that moment, he feels that

it is more urgent to convey to Matt that he understands the correction than it is

to actually make the correction on the board.

Bart takes a few moments to continue the emphasis after making the cor-

rection (rows 83–88) and then returns to the board to add a correction (row 89):

up : Pp → N

‖

up′ : Pp′ → N

Pp, Pp′ ⊂ Pq

The subset symbol (‘⊂’) is being used here to indicate “are faces of.” Notice how

Bart wrote this in such a way that Pq ended up being written exactly where it was

before, but this time it does not carry the connotation of equality to Pp′ . Quite the

opposite: the subset symbol indicates that Pp and Pp′ are both different than Pq

since they constitute parts (“faces”) of it. This erase-and-replace pattern seems to

act as a way of emphasizing that Pq takes on a different role here even though it’s

written in the same place. Also, as we saw with Joseph erasing the m in Figure 6.8,

what was important here was the fact that Pq had been written where it was with

the intent of conveying equality with Pp′ , so erasing it and rewriting it becomes

important for Bart.

A written word in the working space

Jumping ahead about 20 seconds, Bart has drawn the inverted pyramid and

is finishing perfecting it as he thinks about Matt’s suggestions (row 106). Matt

had just suggested a relationship between up, up′ , and an unwritten function uq.
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Bart wants the focus to be on the fact that Pp and Pp′ are facets of Pq rather

than just how the monoid structure of the three spaces relate (rows 107–108).

In order to make this point, he writes the word “facets” on the board under the

lower-righthand instantiation of N (row 109):

up : Pp → N

‖

up′ : Pp′ → N

Pp, Pp′ ⊂ Pq facets

As we saw in Joseph’s writing “f ◦ g,” writing something on the board seems

to emphasize it, presumably because of the insistence that what’s on the board

imply a legitimate transformation. The word “facets” isn’t really a mathematical

statement like an equation is or even like a topological diagram is, but it still plays

an important role here: it amplifies the role of the inverted pyramid as a way

of highlighting the importance and nature of the relationships between the three

varieties involved here. (Note that the very phrasing of Pp and Pp′ as facets of Pq

makes sense only in the context of this invocation of the continuum. The notation

“Pp, Pp′ ⊂ Pq” only implies that Pp and Pp′ are subsets of Pq rather than having

some kind of spatial relation to one another or to how they contribute to Pq.)

Summary

In section 6.1 we saw Joseph erasing “m” from Figure 6.8 and writing on

top of it with the word “split.” We see something similar here, first in replac-

ing Z with N but then more dramatically in the use of Pq as written below the

function expressions for up & up′ . Not only was it important to erase the mistake

immediately and then write a correction directly on top, but again the intent when

writing is important. This emphasizes the point that transformation mappings are

not a property of the marks on the board, but are rather a property of how the
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mathematicians experience them. The first Pq had been written where it was to

convey equality to Pp′ , but the second time it was written in the same place as a

correction but without any intent to imply equality with Pp′ .

However, we find that there are subtleties to this impulse to erase. Bart

finds it sufficiently important to convey in gesture and vocal emphasis that he

understands the corrections being made that he abandons the correction process in

the middle twice (once before erasing the vertical equal sign between Pp & Pp′ , and

once before writing Pp, Pp′ ⊂ Pq). This suggests that the interpersonal dynamic

between Matt & Bart makes it seem to Bart as though part of working together

requires conveying mutual understanding of why a correction is necessary. We

saw something similar with Joseph & Bill, but it didn’t stand out as dramatically

at the time: Joseph actually waits on making his correction of replacing “m”

with “split” until Bill verifies that he recognizes the error too, giving credence to

Joseph’s concern (Table A.9, row 102).

We also saw Bart replace part of the mistaken expression (“Pq = P”) with

a written word (“facets”). This is particularly relevant because the word isn’t

actually the result of a transformation. Yet Bart still intends it as a correction on

his earlier mistake. He’s emphasizing the type of thinking that goes into keeping

future transformations legitimate. Writing the word itself on the board provides

this way of thinking with a kind of place of emphasis reminiscent of when Joseph

write “f ◦ g” as a means of guiding attention.

More generally, the role of placement emerges here as salient for transfor-

mation mappings. In principle, the nodes of a transformation mapping could be

placed anywhere on the board; what’s important is how mathematicians see the

connections between the inscriptions on the board. Although a single node (like

the inverted pyramid) might be an invocation of the continuum, the overall trans-

formation mapping doesn’t have the defining property: slightly moving where the
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pyramid had been drawn wouldn’t change its meaning at all. Yet we find there are

rules of placement: reference nodes are pushed to the periphery, and the central

region seems to be reserved for active reasoning and navigation. Indeed, it’s this

reservation of the central space as a working space that seems to grant the written

word “facets” such emphasis. Furthermore, even though positioning doesn’t have

the precision of meaning that defines an invocation of the continuum, we do find

that positioning can imply meaning, as with the placement of “Pq” immediately

below “Pp′” to encode the fact that they are being thought of as equal.

Finally, there was a brief moment in which Bart engaged with perfecting

the board as a blank canvas in a way reminiscent of the idle perfecting he does with

the inverted pyramid later (rows 102–107). I’ll return to this matter in chapter 7,

as it will help relate transformation mappings and proximal inhibition.

6.3 Clip #3: Erasing δ and graph-confining

Our final clip will examine a pair that has not had an opportunity to appear

as yet: Fay and Martha. The two of them are working in a subfield known as graph

theory, which explores what one can tell about how different nodes of some network

are connected. The topic, working style, and interpersonal dynamics of this pair

resulted in them never invoking the continuum in any of the three observations

made of them, and also in no clearly discernible instances of proximal inhibition.

Yet we find that their use of transformation mappings offers us insight in this

domain.

6.3.1 Mathematical Context

An example of a graph from mathematical graph theory is a friendship

graph from Facebook. This might work like so: you draw a node for each person
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Figure 6.10: An example of a Facebook friendship graph (from http://tinyurl.

com/examplefriendshipgraph)

who is “friended” on your Facebook profile and a node for each person who has

“friended” one of your Facebook friends, and then draw connections between every-

one who has “friended” one another. The result typically shows clusters of highly

interconnected nodes with the clusters loosely tied to one another (Figure 6.10).

In principle, we could create a similar graph for the entire internet by having a

node for each webpage and an arrow going from node A to node B if website A has

a hyperlink to website B. However, in practice this is a horribly unwieldy graph.

Even if we set aside the problem of how to physically draw such a huge graph,

http://tinyurl.com/examplefriendshipgraph
http://tinyurl.com/examplefriendshipgraph
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Figure 6.11: A graph with vertices labeled with their degrees (from http://

tinyurl.com/wikigraph)

finding out what that graph is at a given moment would be quite a challenge,

particularly since it changes all the time.

In order to examine ways of analyzing such “real-world” graphs, Fay &

Martha decided to apply probabilistic techniques to measure various aspects of such

graphs. In this episode, they were applying probabilistic techniques to something

called the Laplacian matrix of the graph in question. To describe the Laplacian

matrix, we’ll need the context of knowing what the degree of a graph’s vertex is

and also what the adjacency matrix is.

Degree of a vertex

The graph shown in Figure 6.11 has each vertex labeled with its degree.

Roughly speaking, the degree of a vertex is the number of edge endpoints that are

plugged into the vertex. Notice that this means that loops are counted twice; for

instance, the vertex labeled “5” has a degree of 5 because both ends of the loop

attached to it count toward the degree.

One way to construct the Laplacian matrix of a graph involves creating

http://tinyurl.com/wikigraph
http://tinyurl.com/wikigraph
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Figure 6.12: A graph with enumerated vertices (from http://tinyurl.com/

wikigraph2)

what’s called the degree matrix of said graph. For a graph with n vertices, this

consists of an n × n diagonal matrix (i.e., a matrix whose nonzero entries are all

along the diagonal) where the the entry on row i and column i is the degree of the

ith vertex. For instance, the degree matrix for the graph shown in Figure 6.12 is:

4 0 0 0 0 0

0 3 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 1


We can read this as saying that vertex #1 has degree 4, vertex #2 has degree 3,

and so on.

Adjacency matrix

Commonly in graph theory, it’s helpful to encode the graph under consid-

eration into matrix form. One way of doing this is with what’s called an adjacency

http://tinyurl.com/wikigraph2
http://tinyurl.com/wikigraph2
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matrix. This is a matrix whose entry in the ith row and jth column is 1 if there’s

an edge going from vertex i to vertex j, and zero otherwise. For instance, the

adjacency matrix for the graph shown in Figure 6.12 is:

1 1 0 0 1 0

1 0 1 0 1 0

0 1 0 1 0 0

0 0 1 0 1 1

1 1 0 1 0 0

0 0 0 1 0 0


Notice that this matrix is symmetric across the diagonal. That is, representing

the entry on the ith row and jth column by aij, the matrix would look exactly the

same if we were to swap each entry aij with the entry aji. This is always true of an

undirected graph: if vertex i is connected to vertex j, then vertex j is connected

to vertex i.

This isn’t necessarily true of a directed graph in which the edges are arrows

(implying you can go in only one direction). For instance, the graph shown in

Figure 6.13 has the following adjacency matrix:

0 1 0 0 0

0 0 1 0 1

1 0 0 0 0

0 0 0 0 1

0 0 0 0 1


This matrix would be symmetric if every arrow in its graph had a corresponding

arrow going in the opposite direction. The only arrow that wouldn’t need a corre-

sponding partner would be the loop on vertex #5 since going forward or backward

along that arrow results in the same overall movement (i.e., from vertex #5 to

vertex #5).
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Figure 6.13: A directed graph (from http://tinyurl.com/wikigraph3)

Laplacian matrix

The Laplacian matrix L of an undirected graph can be constructed from

the graph’s adjacency matrix A and degree matrix D like so:

L = I −D−1/2AD−
1/2

The matrix I is the n× n identity matrix consisting of 1s along the diagonal and

0s everywhere else. For instance, if n = 3, then:

I =


1 0 0

0 1 0

0 0 1


The value that Fay & Martha get from considering the Laplacian is actually

in its eigenvalues. The eigenvalues of a matrix are numbers that can be algorith-

mically derived from the matrix by solving a particular equation (namely Ax = λx

and solving for λ). There’s a geometric interpretation for eigenvalues, but that

ends up not being used here. Instead, Fay and Martha are interested in what is

called the spectrum (labeled “spec L”) of the Laplacian matrix L. In essence, the

http://tinyurl.com/wikigraph3
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spectrum is the set of eigenvalues where duplications are counted. For instance,

(0, 0, 1, 3) is a possible spectrum for a matrix.

It turns out that the number of a given eigenvalue in the Laplacian matrix

tells us something important about the original graph. For instance, the number

of times zero occurs as an eigenvalue of the Laplacian matrix ends up being the

number of connected components of the original graph. (“Connected component”

in this case means basically what it sounds like: if you can reach one vertex from

another by traveling along edges, then those two are part of the same connected

component — and otherwise they’re part of different connected components. Mul-

tiple connected components look like separate graphs.)

Expectation

One way to get around the mess of real-world graphs is to treat each graph’s

properties as random variables. The example that’s most central to this particular

clip has to do with the degree of each vertex: since the graph is so unwieldy,

the degree of any given vertex of the graph can be treated as though it’s an

unknown random number. The statistical trick, then, is to work out roughly

what its distribution must look like. That’s often very challenging, so a good

approximation to this is working out how likely a given vertex is to deviate from

its expected degree.

The word “expectation” has special meaning in probability theory. The

expected value of a random variable is, roughly speaking, the value you generally

expect it to take on average over many iterations. For instance, let’s say that for a

given coin we’ll give heads the value of 1 and tails the value of 0. If the coin is fair,

then the expected value is 1
2

(since after many, many coin flips you expect that half

of them will come up heads). On the other hand, if it’s weighted so that you’re

three times more likely to get heads than tails, the expected value is 3
4

(since on
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average you expect three out of four coin tosses to come out heads).

To give a different example, suppose we have a random variable X that can

take on any integer value between zero and six. If X is uniformly distributed (i.e.,

every number is equally likely), then the expected value of X is 3.8 Notice that

unlike the case of the coin-flip, it’s actually possible for X to take on its expected

value. As a general rule, it’s more likely that a given random variable ranging

across consecutive integers can take on a value close to its expected value when

the number of possible integers is large.

Deviation from expected degree

Fay & Martha treat the degree of each vertex as a random variable and

then ask the question, “How likely is this random variable to differ significantly

from its expected degree?” One way to approach this question is to ask what the

probability is that the random variable will differ from its expected value by more

than some specific amount. The particular formula Martha puts on the board is

this:

p

(
|di − ti| >

√
3 ln(4n/ε)

δ

)
< ε

It turns out that this formula is wrong, so I won’t explain all its details. I’ll just

highlight the ones that are important for understanding what happens in this clip.

The p function is probability; for instance, if X is a random variable representing

a coin flip as described earlier, then we could say “The probability of the coin

coming up heads is 1
2
” by writing p(X = 1) = 1

2
. di and ti both refer to the degree

of the ith vertex: di is its actual degree, and ti is its expected degree. So |di − ti|

is the (positive) difference between the actual and expected degree of vertex #i.

8Whenever a discrete random variable is uniformly distributed, the expected value of that
variable is just the familiar average: add up each possible value and the divide by the number of
such values. So the expected value is (0 + 1 + 2 + 3 + 4 + 5 + 6)÷ 7 = 3. This is in fact the same
thing done for the fair coin: if each option of 1 and 0 is equally likely, then the expected value is
the average of 1 and 0, which is 1

2 .
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The value involving the square root turns out to be where the error is. The

important thing to notice here is that it involves ε as a divisor. Typically ε is used

to represent a small variable amount, so the argument of the natural logarithm

here should be considered to be quite large. Roughly speaking, we could have

written this inequality like so:

p(|di − ti| > Mε) < ε

Here Mε is some large number depending on ε such that Mε gets bigger as ε gets

smaller. So, we can read this inequality as being a precise version of the claim

that “The probability that the degree of vertex #i differs from its expected value

by a large amount is small.” That is, a given probability is small, and that given

probability is that there’s a large difference between the actual and expected values

of the degree. What’s missing in that verbal formulation is the fact that the words

“large” and “small” here are connected in a precise way: if “small” means ε, then

“large” means
√

3 ln(4n/ε)
δ

.

The last detail to be aware of here is that δ is supposed to be the minimum

degree of the graph in question. The minimum degree of a graph is the degree

of the vertex with the smallest degree. For instance, the minimum degree of the

graph in Figure 6.11 is zero, and that of Figure 6.12 is 1 (because of vertex #6).

6.3.2 Video Description

This discussion uses the gesture analysis found in Table A.7. Fay is the

one wearing the solid-colored long-sleeve shirt, and Martha is wearing a striped

short-sleeve shirt and holding a paper in one hand throughout the clip.
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The flawed inequality

The clip begins with Martha jotting down the inequality described at the

end of section 6.3.1 (rows 1–4):

p

(
|di − ti| >

√
3 ln(4n/ε)

δ

)
< ε

She then writes “if δ > C lnn” above this inequality (row 12), referring to C as a

constant and pointing out that they can make ε be as small as they like by making

C sufficiently large (rows 14–18). Here she’s outlining an idea she got from a paper

she’s holding in her hand.

Martha is presenting this idea because while it seems to bear on her work,

this inequality seems flawed to her. In effect, the idea is to replace δ with C lnn —

but, Martha points out, if you do that and make C large, then the expression in

the square root becomes small (rows 22-29). This is a problem because it suggests

that as you widen the range of possible values for |di − ti| to take on, you get a

smaller probability. (This would be akin to saying that were you to flip a coin

twice, the probability of getting heads on the first toss is less than the probability

of getting a heads on the first toss and a tails on the second. It simply doesn’t

make sense since the second case is a special case of the first.)

Fay then steps forward and indicates that the expression involving the

square root is wrong (rows 30–37). She takes the time to shake her head in re-

sponse to Martha’s confusion (rows 33–37), and then erases the part she sees as

flawed (row 38). This, as in the previous two clips, demonstrates the impulse to

erase an error on the board as quickly as possible — but it also shows, again, how

this impulse is tempered by a desire that both mathematicians involved know what

the error is.

Yet it’s worth noting that Fay doesn’t get Martha to the point of agreeing

with her about the nature of the problem before erasing δ. Instead, Fay erases δ
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by hand and then steps away from the board to work on articulating the problem

(rows 41–50). Martha slowly follows her during this time, pouring over the paper

in her hand in an effort to make sense of Fay’s objection (rows 46–52). Then the

two of them stand at a distance thinking about it until Fay calls for a shift in

emphasis (“. . . let’s forget about anything”; rows 63–66). This pattern seems to

emerge from Fay knowing that there is a problem — and in particular that the

δ shouldn’t be written there — but not really knowing how to express it. Since

it takes so much effort and time for her to articulate the problem, she feels the

need to erase the error before reaching an understanding with Martha. This is

compatible with the idea that the impulse to erase perceived errors on the board

gives way to negotiation between the pair only because the negotiation seems more

urgent: in this case, where the urgency isn’t something Fay feels she can act upon,

she rubs out the mistake as soon as the difficulty in communicating the problem

presents itself to her.

In short, the issue is that the top inequality (δ > C lnn) lets them treat

δ roughly like lnn. (“So this [is] basically saying you know δ is like log n”; rows

87–92.) But if they could treat δ like lnn, then they would already know that

the probability they’re considering is small. That would make the bound they’re

looking at irrelevant. (“. . . everything is beautiful. What’s the problem?”; rows

98–101.) Thus the δ in the square root doesn’t belong there.

Once Martha recognizes Fay’s point (rows 104–105), she starts articulating

her understanding of the problem (rows 107–110). It’s worth emphasizing this

point: Martha is already clearly aware that Fay knows that the formula is prob-

lematic, so this explanation cannot be in order to get Fay on board with the nature

of the problem. It therefore seems most likely that Martha is detailing the problem

she sees here because of some combination of (a) wanting to convey to Fay that she

really does get what the problem is and (b) wanting to crystalize her own thinking
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about the mistake.

However, Fay doesn’t seem terribly interested in listening to Martha expli-

cate this. She jumps in to proclaim that the use of δ is “nonsense” (rows 110–111).

In fact, we see this conversational pattern throughout the next several seconds

(rows 112–129): Fay seems to be primarily interested in emphasizing the fact that

the expression is flawed, not in whether Martha agrees since that has already been

established. It’s as though the delay in articulating the flaw here needs to be made

up in emphasis.

Also, notice that there is a dynamic of board-use negotiation that emerges

from this conversational pattern: when Fay cuts Martha off this way, Martha dis-

engages from the board in mid-sentence (row 111). Since Martha wasn’t using the

board for her own reasoning but rather to communicate that she now understands

Fay’s point, but Fay conveyed in her interruption that this wasn’t a concern for

her, Martha relinquished control of the board. This is a somewhat different inter-

personal dynamic than we observe in Matt & Bart, who at times seem to socially

wrestle with one another for board control; or in Joseph & Bill, where we usually

only see Bill taking control of the board during some moments when Joseph shows

no particular interest in using it. It’s certainly possible that Martha’s pulling away

from the board is akin to Bill’s when Joseph moves toward the board, as though

she anticipates Fay wanting to write — but in most other situations observed, it’s

clear that Fay commonly conveys her desire to write by walking up to the board

rather than just by interrupting Martha.

Drawing a graph in outline

After she finishes expressing her disapproval of the square-root expression,

Fay walks up to the board, picks up chalk, and draws a circle (rows 131–139).

While doing this she says, “So in fact the reason I asked you to look at the big. . . .
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So suppose now I have a lot of points.” This circle is meant to represent the “lot of

points” she has, meaning that the number of vertices for the graph in question is

quite large (i.e., n is large). It’s as though she intends Martha to imagine that there

are “a lot of points” already drawn on the board and that her circle is intended to

encapsulate all of these.

It’s worth emphasizing that this is not an attempt to imply a legitimate

transformation from the inequality they had been examining before to what Fay is

drawing. Instead, the intent here is to start afresh. This node of a transformation

mapping actually relates to the inscriptions we see at the far right of the board

(“e = I −D−1/2AD−1/2,” etc.). What is preserved here is more subtle than we’ve

seen up to this point: the equations on the right are describing ways of constructing

objects analogous to the Laplacian matrix of an arbitrary “large” graph, and the

imagined graph that Fay is outlining here is being outlined in sufficient vagueness

that the only properties it will have are those that relate to the spectrum of the

Laplacian matrix. So, that which is being preserved here is a collection of abstract

properties of an arbitrary “large” graph.

At this point she has not yet articulated her idea verbally. In short, the

trick she’s suggesting is to argue that there are very few vertices of very small

degree. This means that they can work just with vertices whose degree is not

small in order to determine the eigenvalues of the graph’s Laplacian matrix, and

then argue that the influence of the low-degree vertices is very small because there

are so few of them and the eigenvalues describe global properties of the graph.9

The remainder of the clip involves Fay using highlighting (Goodwin, 1994)

to articulate the idea. She shades in the region where the small-degree vertices of

9What’s meant by “global properties” here is that the eigenvalues are derived from the overall
structure of the graph and aren’t affected strongly by small changes like adding or subtracting
an edge. This is akin to how the median of a collection of numbers doesn’t change much if you
add or subtract a few numbers, so the median is a global property of the data set. This would
be in contrast to the sum of the values, which will change quite significantly when you add or
subtract more values.
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the graph (“points”) are intended to fall (row 168), emphasizes that there aren’t

many there by saying as much while tapping the board with her non-writing hand

(row 174), and concludes by encircling the rest of the implied graph (rows 180–

181). The key thing to note here is that, rather than engaging in legitimate

transformations between nodes of the transformation mapping, she is modifying

an already-extant node with legitimate transformations. In particular, it’s fine to

view all the vertices of small degree as collected in a corner of the graph; we’re

free to rearrange them however we please since the arrangement of vertices doesn’t

affect the graph at all. Furthermore, Fay is using the small area of the region

holding the vertices of small degree as a way of representing the fact that there

are relatively few of them. Most ways of arranging vertices won’t distribute them

uniformly, meaning that area won’t vary linearly with the number of vertices.

Thus Fay’s representation of the small number of low-degree vertices as a small

area asserts this structure on the imagined-as-present graph.

This behavior is reminiscent of Joseph’s manipulation of the ribbon surface

to demonstrate finger moves in section 5.2.2. For instance, he modified the “hood”

of the ribbon by drawing an arc (Figure 5.24) and then erasing the arc to draw a

“finger move” (Figure 5.25). The legitimate transformations there were not just

between different nodes of the transformation mapping, but were actually within a

particular node as it was modified to reflect a particular unfolding process. In this

same way, Fay conveys rearranging the vertices so that the problematic ones are

in a corner as a way of highlighting the fact that there are relatively few of them.

Summary

There are three insights to take away from the examination of this clip.

First, we see here a nuance of the interplay between the impulse to rid the board

of error and the desire to verify that both people involved understand why the
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error needs correcting. We see Fay immediately moving up to the board to touch

the mistake once she sees and starts articulating the problem (row 26), but she

hesitates long enough to give Martha a chance to recognize the problem. Yet when

it becomes clear that Martha isn’t going to see it right away, Fay erases the error

before stepping back to work on expressing the problem. This suggests that, at

least for Fay, there is a relatively small bound on the ability of the social dynamic

to hold back the need to erase the error on the board.

Second, and closely related, we see that the effort to articulate the error

probably isn’t being made primarily to convey what the error is. When Martha

understands Fay’s point, she starts to express it in her own words — yet it’s not

with the tone of, “Is this right?” Instead, it’s a pretty high-confidence statement.

She even abandons the effort to continue when Fay interrupts her (rows 110–111).

Similarly, Fay continues to criticize the error for nearly a quarter of a minute after

Martha acknowledges the problem. This reinforces the point we saw with Matt &

Bart when Bart abandoned his corrections on the board in order to emphasize at

Matt what the correction was — seemingly not because Matt needed to understand,

but because Bart needed Matt to know that Bart understood. This bespeaks a

kind of social metacognition that’s key in mathematicians’ navigation of struggle:

it’s not just important that both mathematicians understand what’s going on, but

that when working together they need the other to know that they understand.

Finally, Fay’s modification of the invisible graph shows how legitimate

transformations can occur by modification of a single node rather than strictly

as something seen going between inscriptions. As mentioned earlier, we saw this

before with Joseph’s description of finger moves on ribbon surfaces. This helps to

emphasize the fact that transformation mappings are not embedded in the physical

inscriptions per se, but are rather emergent from the mathematicians’ phenomenol-

ogy of the inscriptions.
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6.4 Chapter Summary

The results we’ve seen in this chapter can help us interweave most of the

phenomena discussed in the present work. This will receive detailed discussion in

chapter 7. But before we move on, let us briefly revisit what we’ve seen so far

about transformation mappings:

• Whether a node of the transformation mapping implies an illegitimate trans-

formation for the mathematicians in question depends not just on what is

written, but also upon the intent when it was written. We saw this both in

Joseph’s erasing “m” to replace it with the word “split” as well as in Bart’s

erasing Pq to later replace it with the same symbol. Indeed, the sense that

something important was not preserved seems to have been intertwined with

the impulse to erase the perceived error.

• The board also seems to be implicitly carved into regions with designated

purpose. For Bart, for instance, the region immediately below the function

statement for up′ : Pp′ → N was being used to specify the relationship be-

tween Pq, Pp′ , and Pp. The subsequent correction specifying that Pp & Pp′

were facets of Pq therefore also went in this region, implicitly emphasizing

the correction over the error.

• Because the board seems to be designated primarily for transformation map-

pings, what is written there takes on a charge of significance, as in Joseph’s

writing “f ◦ g” seemingly to direct focus to that next step. This applies to

written words (e.g., “split” and “facets”) as well even though they needn’t

necessarily represent the result of a legitimate transformation.

• The matter of what the “object” is that’s being preserved between legiti-

mate transformations appears to be a flexible matter and can change on a



228

moment-to-moment basis depending on the needs of the mathematicians at

that moment.

• There are at least two ways to convey a legitimate transformation. The most

common one seen in these episodes is the creation of multiple nodes, akin

to how we might write “2x + 6” immediately below “2(x + 3)” in order to

indicate distribution. Yet we also see mathematicians sometimes modifying

a single node in order to convey a process that is something-preserving.

With these points in mind, we will now summarize the results of this study.



Chapter 7

Summary

When reading the expression 25 × 11, we have many resources to bring to

bear on it. We can run it through the standard multiplication algorithm to find out

that it’s 275. We can use distribution to think of it as 25× 10 + 25. We can think

of the 25 as referring to a quarter (25¢) and notice that this is one quarter shy of

12 quarters, which is $3, so the total quantity is 300 − 25. We can rearrange the

primes to view it as 5×55 and think of that as 5×50+5×5. In the end, we might

be tempted to think that the quantity “really is” 275 — but the symbol “275” itself

implies a kind of procedure too: add two hundreds, seven tens, and five ones. The

sense that the quantity “really is” 275 presumably comes from great familiarity

with this kind of notation (and in particular being repeatedly told when learning

arithmetic that expressions like this are “answers” to arithmetic problems).

What makes all these different ways of viewing this quantity appropriate

is the sense that in converting from one to another, we’re performing legitimate

transformations — which is to say, we’re doing something that leaves “the quan-

tity” unchanged. In much the same way that we think of pictures of the Eiffel

Tower that are taken at different angles or at different times of day as being im-

ages of the same thing, these different “views” of 25× 11 come across as being of

229
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something that is preserved across these transformations.

Just as we can never see the whole Eiffel Tower at once but can see it

only from a given vantage point, we can never see the whole of 25 × 11. We

can only ever catch glimpses of it. Each strategy for reinterpreting this quantity

captures a different angle, and the more angles we perceive the more nuanced our

understanding of this quantity becomes. Indeed, it’s reasonable to suggest that

our understanding of 25 × 11 is, in fact, our anticipations about what legitimate

transformations the symbol “25× 11” affords (Roth & Thom, 2009).

Notice that in the case of the Eiffel Tower, we have a collective sense that

there really is an object in Paris that all these images, memories, descriptions, and

so on are referring to. There’s a strong impression that if the words “the Eiffel

Tower” constitute a symbol, there really is a physical referent to which the symbol

points. Analogously, those who are conversant with arithmetic have a sense that

the symbol “25 × 11” has a referent, and that this referent is preserved across

transformations such that “275” and “300 − 25” also refer to it in a way that

“274” does not.

From a phenomenological point of view, what is of interest here is not the

question about whether there really is such a quantity as “two hundred seventy-

five” apart from its symbols and instantiations (e.g., as $2.75 in pennies). What

is of interest is the impression that there is such a thing. Whether or not Platonic

mathematical objects exist, there still seems to be some structure to the experience

of mathematical objects as Platonic to which we need to attend if we want to

understand mathematicians’ experiences with struggle in their research. In other

words, in bracketing mathematicians’ experiences (see chapter 3, section 3.2.1), I

am setting aside the question of what mathematical objects are and am instead

exploring what mathematical objects seem to be.

As we saw in chapter 6 — indeed, as we’ve seen in all clips considered for this
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Figure 7.1: Rotating a pyramid to see exactly three faces

study — this perspectival shifting between expressions via legitimate transforma-

tions seems to structure mathematicians’ attempts to navigate novel mathematics.

Just as it might require effort to work out how to orient a model of an Egyptian

pyramid such that we see exactly three faces (Figure 7.1), we see mathematicians

working to “angle” the objects of their study in an insightful way. From Joseph’s

& Bill’s attempts to make sense of odd Khovanov homology to Fay’s graphical

manipulation of implied low-degree vertices of a graph, the felt sense that there is

something there that is being partially described by the inscriptions on the board

defines the framework within which struggle even becomes possible for them.

7.1 Creation and Discovery

One effect of this insight is to help dissolve a subtle paradox in mathematical

practice. On one hand, mathematics sometimes gives the impression of speaking

to eternal truths. For instance, it seems like a fact about the world that
√

2

is irrational — and if it were to turn out that we actually could write it as a

ratio of whole numbers, then we’d probably think of ourselves as having been

mistaken as though there’s a truth to compare our understanding to. On the other
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hand, mathematicians at times report a sense that they’re creating mathematical

objects or structures; indeed, Thurston (1994) argues that much of the value of his

contributions in one field came from communicating a novel infrastructure he had

created, and Hadamard (1949) emphasizes the question of mathematical invention,

not discovery.

To illustrate a possible resolution, let’s consider a familiar situation: the

Cartesian plane. René Descartes’ basic idea was to explicitly choose to view two

related variables as each describing a kind of distance traveled from a starting

point. We can reasonably say that Descartes created this correspondence.1 We

can also view this correspondence as being a definition of which transformations are

legitimate between equations of two variables and graphs on the Cartesian plane.

Thus, once Descartes created this correspondence, there was a correct answer to

the question of what, say, y = x2 looks like when graphed. Anything other than

a particular upward-opening parabola centered on the origin would not be seen

as representing the same relationship between x & y under this correspondence.

Thus, once the rules of legitimacy for a transformation have been created, the

implications of those transformations can — and, I suspect, usually do — take on

the character of being discovered.

When we watch Joseph & Bill struggle with chain maps (section 6.1), we

can see how this interplay of creation and discovery manifest in their phenomenol-

ogy. Khovanov homology is a formalization of a transformation — namely, it’s

a rule for deriving certain algebraic structures from knot diagrams in a way that

preserves “properties of the knots.” Odd Khovanov homology is a modification

1It could be argued that there “really is” a correspondence in a Platonic sense between equa-
tions like 2x2 +y2 = 3 and planar shapes like ellipses, and Descartes was actually discovering this
correspondence, not creating it. However, mathematicians often are under the impression that
they are creating entities or correspondences, and as we are attempting to explore mathematics
as experienced it is this impression, rather than the ontology from which it comes, that we’re
interested in. For the sake of the example, I’ll assume Descartes felt he was creating rather than
discovering his Cartesian plane; even if I’m mistaken, the analogy should still work just fine.
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of this transformation. Much as how equations in two variables look very differ-

ent on the plane when we view the variables as polar coordinates2, changing the

homology to be odd Khovanov offers a rich domain for exploration — including

the need to test whether this definition of a legitimate transformation is internally

consistent. Joseph’s & Bill’s efforts to make sense of the chain maps involved in

the Reidemeister moves reflects this exploration within a constructed context.

What we find, then, is that in practice mathematics is not a matter of

creation versus discovery. Rather, creation is necessary to make discovery possi-

ble in the first place, and discovery is the point of bothering with creation at all.

Creation — the definition and clarification of legitimate transformations — gen-

erates the sense of there being mathematical objects that inscriptions represent.3

Within this context, each object presents itself in the mathematicians’ experience

as having properties that can be explored via these transformations.

It seems reasonably fair to say, then, that the phenomenology of mathe-

matical struggle consists mostly of the interplay between (a) determining trans-

formations that are internally consistent and have room to be interesting and (b)

exploring what can be learned about mathematical objects-as-presented as they

undergo legitimate transformations. This can take many, many forms: developing

promising transformations (e.g., the Cartesian plane, tropical diagrams, the in-

verted pyramid), exploring whether a transformation is internally consistent (e.g.,

odd Khovanov homology), working through an unfamiliar transformation (e.g.,

section 4.2), knowing that a legitimate transformation to a new inscription type

(“representation”) should already exist but not being sure how to find it (e.g.,

2To give a specific example, if we view x as radians counterclockwise from straight right and
y as distance from the origin, then y = x2 looks like a rapidly expanding spiral rather than a
parabola.

3Again, this is independent of the question of whether these objects “really exist.” Whether
they do or not, we somehow come under the impression that there really are things like “the
number 275” and “a quadratic function.” This phenomenology has a structure, and it would
seem that the structure is made up out of legitimate transformations.
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the Lewis diagram for benzene, the effort to remove singularities in ribbon knot

diagrams that resulted in finger moves), and possibly others.

It’s particularly helpful to notice how this interacts with the sense of what

mathematical objects are on a moment-to-moment basis. Sometimes a chain is

an object being transformed under a chain map, and sometimes it’s a collection

of mathematical objects connected by a sequence of transformations (section 6.1).

In one moment a function describing the monoid structure of a spliced variety

is a transformation, and the next it’s an object that has components such as a

kernel (section 4.3). This dynamism of object-ness makes a great deal of sense

when we recognize that the impression of there being an object in the first place

seems to come from the view of transformations as something-preserving: since the

transformations can themselves be represented (e.g., labeling a linear transforma-

tion with a letter like “f” or “Λ”) and since those representations can themselves

undergo legitimate transformations (e.g., describing a linear transformation on a

finite-dimensional linear space with a matrix), we can shift the phenomenological

encounter with “a mathematical object” to bear on the process of granting phe-

nomenological object-hood. In other words, this seems to offer a phenomenological

reduction of the process of mathematical abstraction in a way that is compatible

with the apparent fluidity of object-hood in mathematics.

7.2 Phenomenology of the Blackboard

This vision of the experience of mathematical struggle helps us to under-

stand some quirks about board-use we observed in chapter 6. When the mathe-

maticians walk into the room, they are faced with a blank canvas.4 It is pregnant

4Of course, this isn’t always true. Sometimes the previous residents of the room won’t have
erased the marks on the board, in which case I would imagine the marks are seen as basically
unimportant. It’s also possible that there are markings on the board left from the last time those
mathematicians were there. However, these exceptions shouldn’t distract from the main point,
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with possibility and, for many, practically calls to be structured and given form.

Yet as soon as they write upon it, the structure given splits it into regions (Ne-

mirovsky & Smith, 2011). For instance, Bart’s inverted pyramid implicitly gives

the area immediately around it a three-dimensional structure — but this infinite

expanse of continuous space simply does not continue beyond a somewhat ill-

defined boundary. Inscriptions just inches away are comfortably seen as separate

from this space.

What seems to be going on here is that the board is a place for inscribing

“perspectives” of mathematical objects. Perspectives are kept mentally distinct on

the board, and their positioning with respect to one another matters only if, and

only to the extent that, they are drawn with the intent of positioning mattering.

We see this, for instance, in Bart’s placing Pq immediately below Pp′ to imply

equality, but after erasing Pq and then writing it again it no longer conveys this

implication because the equality was not intended in the second writing of Pq.

One trend seen in the mathematicians of this study is a tendency to cluster

nodes of a common transformation mapping into one overall area of the board.

We see this in how Joseph groups the notation for the chain maps (including

the cobordism-based expressions) close together and also in how Bart erases one

transformation mapping in order to prepare the board for another (as though

the mapping region has already been specified and he’s simply working with this

implicit structuring of the blackboard). We also see this in its contrast when Fay

draws her circular depiction of a graph a fair distance to the side of the inequality

she has just soundly rejected as “nonsense” as though to emphasize that what she’s

drawing is significantly different from what that inequality refers to. Mind you, this

last example also illustrates how this clustering phenomenon is a tendency rather

than a firm rule: Fay doesn’t feel that it’s important to walk to the far side of

and it’s also simply a matter of fact that the boards actually were blank when the observed
mathematicians entered the rooms in which they were recorded for the present study.
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the board across Martha in order to draw her circle near the inscriptions to which

it most relates. Yet with occasional exceptions like this one, the general trend

seems to be to carve out regions of the blackboard for individual transformation

mappings.

This also bears on the issue of errors. Since the board is seen as a space

for expressing the results of legitimate transformations, as soon as something on

the board is recognized as illegitimate (which is to say, as failing to preserve that

which the mathematicians are trying to preserve), its recognition seems to include

the drive to erase the misleading node. The presence of an error seems to be

uncomfortable, which we see most dramatically in Joseph’s & Bill’s laughter and

self-soothing reactions to recognizing a flaw (e.g., in the recognition that the “m”

in Figure 6.8 needs to be a split rather than a merge). Furthermore, as an extension

of the point about placement being relevant based on intent upon being written,

what matters seems to be the intent upon writing what turns out to be an error

rather than whether the inscription could be reinterpreted differently. Thus we see

the “m” being erased and replaced with the word “split,” and we see “Pq” being

erased and replaced with “Pq” again.

The replacement phenomenon further illustrates this carving of blackboard

space. Because the specific spot upon which the error had been written was des-

ignated for a particular sort of node of the transformation mapping, it calls for

an appropriate substitution. That is, the correction must occur directly on top

of where the error once was. This seems to help emphasize the correction in the

mathematicians’ minds while also providing them with a legitimate collection of

perspectives on the mathematical properties they are exploring.

The use of single words in this context is particularly interesting, as it seems

to ride on this phenomenological structuring of the blackboard as a working space

for transformation mappings. Words like “split” and “facet” aren’t themselves
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the result of any legitimate transformations, although in their respective contexts

they do refer to such transformations. Yet we find them appearing as part of the

erase-and-replace phenomenon. This seems to emphasize key aspects of thinking

about the transformation mappings rather than being emphases of the results of

the transformations. For instance, Bart’s focus on thinking of Pp & Pp′ as facets

of Pq offers a way to think about what the splicing of varieties is doing under this

particular transformation from varieties to monoids. Calling them “facets” doesn’t

actually describe the technical nature of the relationship the way “parabola” de-

scribes a quadratic graph in a technical way5, but it does help Matt & Bart think

about how they might determine what a more detailed description should be.

This charge of significance doesn’t just apply to corrections, though. The

most blatant example of this we saw was in Joseph’s writing down “f ◦ g” to

direct attention to a particular path in the chain map diagram, but we’ve seen

it many times implicitly. Bart choosing to write down “up : Pp → N” and the

related function up′ implicitly claims that these are important things to attend

to — that these are relevant perspectives on some kind of mathematical object

they’re interested in. We also see this in its absence, as when Joseph chooses not

to write down Bill’s suggestion about the “sheet cup” and “sheet torus” (Table A.9,

rows 125–131). Since the meat of the struggle is in navigating across legitimate

transformations to get a better sense of how it’s possible to experience a given

mathematical object, what is written on the board takes on an implicit claim of

being in service to this purpose.

5Saying that “parabola” is a technical description of the Cartesian graph of a quadratic func-
tion assumes we’re defining a parabola to be a locus — specifically, the set of points equidistant
from a given line (the directrix) and a given point (the focus).
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7.3 The Role of Continua

This also offers a new spin on the the “algebra versus geometry” matter

that comes up at times in mathematical practice. Algebraic manipulations seem

to consist of legitimate transformations that leave a given (typically unknown

or variable) quantity unchanged. For instance, we can rewrite x2 + 5x + 6 as

(x + 2)(x + 3), and in saying that we’re rewriting it we’re implicitly declaring

that there’s a transformation that’s legitimate by its preservation of the overall

quantity to which these expressions refer. Those two expressions — “x2 + 5x+ 6”

and “(x + 2)(x + 3)” — become two different nodes of a transformation mapping

from which our impression of “this quantity” as a mathematical object emerges.

However, we find that these characters also appear in invocations of the

continuum, which seem to capture a majority of what we intuitively want to label

as “geometric.” Just as we can transform y = x2 + 5x+ 6 into y = (x+ 2)(x+ 3)

legitimately (in its preservation of the variable quantity y), we can legitimately

transform either of these algebraic equations into a Cartesian graph of a particular

parabola. The Cartesian graph would then be a node in a transformation mapping,

giving us another view of the mathematical entity we can typify as “the relation-

ship” or “the covariation” between x and y. And we see this actually happening in

mathematicians’ practice, such as in Bart’s depiction of the relationship between

Pp, Pp′ , and Pq by an inverted pyramid. Thus it would seem that in practice, in-

vocations of the continuum constitute a type of node in a transformation mapping

— a node of a phenomenologically different character than algebraic statements,

for sure, but not one playing a fundamentally different role. In other words, we

find that at least one key aspect of geometry is actually embedded within the sense

of what is algebraic.

Why, then, is there the phenomenological impression of geometry being in

contrast to algebra? Why, for instance, does it feel so incredibly different to go
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from y = x2+2x to a graph than it does to go from y = x2+2x to y = x(x+2)? My

guess is this: invocations of the continuum bring our sense of spatial arrangement

(and, sometimes, our sense of movement within space) to bear on the expression

of that which is preserved across transformations. When we draw Cartesian axes

to start defining a node of a transformation mapping, our familiarity with the

axes bestows the region around them with the character of a planar continuum

that it didn’t have before. We see this phenomenon in Bart’s creation of the

inverted pyramid: there is space implicitly surrounding the pyramid, which is not

an impression we get at all from, say, his function declarations (e.g., up : Pp → N).

This integrates our sense of spatial arrangement and movement into the legitimacy

of the transformation in a way that simply doesn’t happen when factoring x out

of x2 + 2x. Certainly, positioning is relevant there — but not continuous, spatially

charged positioning, and not in a way that is intrinsic to the transformation.

In chapter 5 we noticed that mathematicians treat invocations of the con-

tinuum with a kind of transparency. We can now see a possible reason why this

is: these continua are nodes in a transformation mapping, and as such help to

constitute the mathematicians’ experience of there being a mathematical object

that they’re examining. We actually observed the same thing before, with Bart

proclaiming that a particular portion of a monoid was part of the kernel of a map

ϕη while pointing to inscriptions on the board (section 4.3). We also saw Joseph

referring to the arrows representing parts of chain maps as being functions partially

constituting chain maps (section 6.1).

We also noticed, in the case of Bart navigating between a tropical diagram

and a CP2 triangle, how there’s this attempt to show the relationship between two

continua via the multiplicity of the body. We now have a more rich framework

within which to embed this observation: the multiplicity of the body is one tool

with which mathematicians can illustrate a legitimate transformation. When the
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two nodes that are being related via a legitimate transformation are both contin-

uous, movement and positioning of the body can illustrate this transformation.

However, any two nodes can, in principle, be linked by this kind of multiplicity.

We see a non-continuous example of this in the way in which Bill interacts with

both the board and his notes in Table A.9, rows 59–64: he’s immersing himself in

his notes while reaching forward, trying to offer new information via a legitimate

transformation from his notes to the chain map on the board.

7.4 Node Activation and Social Dynamics

The nodes of transformation mappings can be activated and animated in

the course of use (Nemirovsky & Smith, 2011). We can see, for instance, how

Joseph gestures directly in front of his newly drawn ribbon surface to indicate how

it’s intended to be folded (Table A.5, rows 15–19): the positioning of these gestures

immediately in front of the drawing seems to be an effort to animate it and convey

in more detail what the ideas are behind it. We also see this in Martha’s navigation

of the inequality that is troubling her (Table A.7, rows 22–28), although in this

case it’s more a matter of her navigating the various inscriptions in a deictic way.

Although this kind of closeness to the board clearly isn’t necessary for

navigating struggle, it certainly seems preferable to the mathematicians in this

study. Indeed, this is what makes proximal inhibition possible: there is a desire

to engage with the nodes of the transformation mappings that gets frustrated

by a lack of clarity about how to perform transformations on them that are at

once legitimate and insightful. But we also see some work-arounds in these clips.

For instance, Bart’s idle perfecting of the inverted pyramid gives him a way of

concentrating on the inscription and remaining intimately close to it despite being

somewhat befuddled by the situation to which it refers (“Now I’m confused all the
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time”; Table A.4, rows 120–122). In ways like this, the mathematicians studied

here repeatedly find ways to engage with the mathematical symbols and drawings

on the board in a very hands-on sort of way.

This is a specific instance of a point first raised in section 2.2.2: we miss

something important if we view abstraction as a purely mental phenomenon. These

nodes of the transformation mappings cannot be fully understood as inscriptions

that are seen from afar in a certain way. Rather, they call for certain kinds of

action, and the range of seen-as-possible actions is richer and more detailed the

more familiar the related legitimate transformations are to the mathematician in

question.

It also seems that this call for hands-on interaction in symbol-use is intrin-

sically an activity for one person at a time, at least for the pairs observed here.

Indeed, in all nine observations, there was only one instance of both mathemati-

cians engaging in the board at the same time.6 The rest of the time there was

some kind of implicit negotiation as to who may control the board and, thus, en-

gage with the nodes of the transformation mappings. This negotiation took on a

different character with each pair based on the particulars of their interpersonal

dynamic, but was still clearly present. It seems to carry a similar tone to how two

people in a conversation will socially negotiate who is talking at a given moment;

indeed, in a way, we can think of their interactions in these sessions as a sort of

ongoing mathematical conversation where large portions of the “speech” happen

through node activation.

One last part of this transformation-based conversation that appeared in

the present work was a kind of social metacognition. We see again and again how,

when it’s discovered that an attempted transformation was actually illegitimate

6This clip was excluded since it was nearly impossible to see what the two mathematicians
— Matt & Bart — were doing at the board. Based on the context and the inscriptions that
appeared, it seems that they were effectively using different parts of the blackboard as personal
scratch “paper.”
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(i.e., that which was supposed to be preserved in fact might not have been), it

becomes important to convey the recognition of the error to the other mathemati-

cian. The wording here is important: the goal is to convey the recognition, not

the error itself. We saw this in how Martha spelled out the problem in the argu-

ment that Fay had just discredited: clearly Fay knew what the problem was, so

Martha’s only reason for doing this was to convey her understanding of the error.

Similarly, Bart emphatically described the correction that would have prevented

the mistake of identifying Pp and Pp′ — but again, in a context in which Matt

clearly didn’t need that correction emphasized for his understanding. This need

for social metacognition is so strong that it can even put on hold the impulse to

erase nodes representing illegitimate transformations.

7.5 In Sum

All told, then, the present exploration of the phenomenology of mathe-

maticians’ struggles has brought us to recognize the structuring of struggle within

the framework of legitimate transformations. In terms of the inscriptions on the

blackboard, we can recognize these as transformation mappings, where each node

provides the mathematicians with a particular vantage point on the object of their

study. The struggle, in essence, is in determining and applying legitimate trans-

formations that will bear on the topic in question. Some transformations invoke

the continuum, bringing to bear a collection of affordances that are unique to con-

tinuous spaces. We also find that these nodes of the transformation mappings call

for a kind of closeness when they are being actively used for reasoning, which pro-

vides the framework for proximal inhibition (when the desire to move in is actively

present but being stymied by confusion about how to perform or verify a legitimate

transformation).
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It is promising at the end of a phenomenological investigation to see the

structures explored synthesizing in this way. Mathematicians in the midst of doing

research seem to feel that they are doing mathematics, as though it’s some one

thing that can be done. Developing several separate observations akin to Merleau-

Ponty’s (1962) “motor intentionality” can certainly provide us with a significant

amount of insight — but seeing these different pieces combine to describe a whole

suggests that we are detailing something key to the nature of the experience itself.

We can hope, therefore, that this examination has given us a solid beginning into

the examination of the phenomenology of mathematical struggle.



Chapter 8

Discussion

In this study we’ve seen three phenomenological constructs. Transformation

mappings form the experiential backbone of the notation used on the blackboard,

some of the nodes of the mapping take on the phenomenological character of being

invocations of the continuum, and most nodes call for close proximal engagement

which, in turn, can be frustrated and result in the pattern of proximal inhibition.

8.1 Implications

What, then, have we gained by these observations? First, as mentioned in

chapter 1, we are more likely to notice relevant instantiations of these phenomena as

they arise. For instance, after writing the chapter on proximal inhibition, I started

noticing it in my students1 at times when they were working on worksheets, such as

by leaning back from the paper with a perplexed look and a tilt of the head. This

was even clearer when they were working in small groups. Yet I did not notice

it when watching them take exams. These are informal observations, emerging

naturally in the moment, so it would be premature to form conclusions from this.

1These were college students taking a mathematics course sequence intended to prepare them
for teaching at the elementary school level.
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However, it does raise some questions: Is there something about worksheets that

better allows for proximal inhibition as compared to exams? If so, why? To what

extent does this phenomenological difference discourage students — whose progress

is typically determined by exams — from exploring mathematics in a way akin to

how mathematicians do?

I should also emphasize that these observations do not emerge from my

watching my students carefully and asking whether and when I can see proximal

inhibition in what they’re doing. The process is more organic than that. Most of us

would probably recognize a person who smiles nervously, bows their head, covers

their eyes with their hand, and turns away slightly as expressing embarrassment;

yet many people aren’t conscious of this eye-shielding pattern until it’s explicitly

pointed out, at which point it leaps to our attention in places we wouldn’t have

thought to look for it such as deep concentration. In the same way, I notice when

my students invoke the continuum without my really trying to notice, and I find

it quite natural at that point to consider what the continuum affords for them and

how it relates to questions of legitimacy in transformations.

However, it is still an open question whether these kinds of insights offer any

pedagogical advantages. They might; it might turn out that teachers who have a

deeper phenomenological insight into their students’ encounters with mathematics

can guide those students more effectively toward experiencing the material in a

particular way. Yet it might also turn out to be mostly irrelevant for teachers to

know this, much as a dancer might find little to no benefit in knowing how nerves

cause muscles to tense despite the obvious relationship to the art. This domain

needs more exploration; I’ll describe some possible avenues for this in section 8.3.

What we can say, though, is that this provides insight that can be useful

for researchers. It helps us to ask questions that might not have occurred to us to

ask otherwise, such as with the possible phenomenological contrast between tests
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and worksheets. It offers us a different kind of insight into how mathematics can

be, and is, experienced, which can inform us as to what some valuable research

programs might be that we might not have considered otherwise. And it invites us

to recognize subtleties about the mathematics itself, which can help us to determine

what we would like to see our students capable of.

This raises a second point about what these phenomenological constructs

offer us: insight into the nature of mathematics. It seems highly relevant, for in-

stance, that the mathematicians in this study seem to develop a sense of object-ness

about that which they’re studying by the process of generating different inscrip-

tions that they think of as outlining a something-preserving transformation. If this

holds in general — for instance, if our sense of “the unit circle” as a mathematical

object comes from seeing different expressions as being of “the same thing” — then

this raises some interesting and potentially valuable questions: What determines

whether a transformation can be seen as legitimate? How does the sense that

something is being preserved arise in the first place? Is this arising of object-ness

a separate experiential process from understanding the transformation itself, and

if so, how might we typify that difference?

We can speculate on the answers to questions such as these, but in essence

they are empirical questions. I’ll describe some possible avenues for answering

them in section 8.3.

8.2 Limitations of the Study

8.2.1 Specialized Population

Before describing future studies, though, I’ll explicate some of the limita-

tions of this study. First, as mentioned in section 1.2.2, phenomenological studies

typically generalize by transforming our perceptions rather than by showing in-
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variance across a representative sample. They’re general in the sense that we see

the world differently in situations other than the case studies examined. Yet all six

mathematicians observed were from the same department, so it’s quite plausible

that we’ve seen just one relatively tiny piece of how mathematicians structure their

encounters with struggle in their discipline. It would be somewhat surprising but

not wholly implausible, for instance, to find that Russian mathematicians working

in Moscow navigate struggle completely differently than we’ve seen in our subjects

here.

In particular, Fay & Martha ended up providing vastly less material for

the present study than did the other two pairs. Most of their interaction across

all three observations consisted of Martha presenting a question or suggestion and

Fay responding with explanations or suggestions. There were surprisingly few clear

instances of struggle anywhere in their in-person interactions. It was clear that

there was some sort of effort going on between sessions, but it seemed to occur

individually and privately. It seems highly plausible, then, that the phenomeno-

logical constructs described in the present work might be peripheral or maybe

even irrelevant to certain working styles. How the experience of struggle differs for

some individuals in isolated practice as compared to when they’re doing partnered

work in front of a blackboard remains an essentially untouched question beyond

mathematicians’ after-the-fact reflections.

It’s also quite plausible that by focusing on mathematicians as experts, I’ve

left out other kinds of mathematical struggle that are navigated in the course of

professional work. For instance, in what ways might physicists’ encounters with

mathematical difficulty differ from those of mathematicians? They might feel that

the existence of the electromagnetic field is more literal than the existence of, say,

the cyclic group with 12 elements. Is this actually the case, and if so, from where

does this impression arise? We could also consider engineers’ mathematical dif-
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ficulties: how does their pragmatic aim with the math bear on challenges they

encounter? Does legitimacy play a different role for them than it does for mathe-

maticians, and if so, how? Having a collection of phenomenological constructs as

they apply to some mathematicians’ struggles can help to frame these questions,

but it doesn’t really answer them. It’s important, therefore, to recognize that

what we’ve gained here is some insight into one way of viewing what mathematics

is, and that there are other perspectives on what math is that the present study

simply does not touch on.

Also, this study did not consider students at any of the levels our field is

typically interested in. As described earlier and as I’ll elaborate upon in section 8.3,

this study seems to raise some interesting questions about students’ experiences

that call for further examination — but nothing said here actually shows anything

about students’ experiences. Therefore it seems somewhat hazardous to make any

pedagogical recommendations based on what has been described in the preceding

chapters.

8.2.2 Observational Interference

Also, as with most ethnographic studies, there are complications based on

the fact that the very effort to observe the mathematicians working might have

interfered with their usual working methods. It’s unrealistic for us to tell how

profound such an influence might have been since we have nothing to compare it

to.

One possible influence along these lines was the presence of two cameras and

one to two observers (me and sometimes another camera operator) who weren’t

involved in the process. Across the 101
2

hours of video, there were four glances made

at the camera during the course of the mathematicians’ working, which seems to

suggest that they generally ignored the cameras. Yet it seems unlikely that there
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was no influence at all on their working style, and at the end two pairs (Joseph

& Bill and Matt & Bart) showed concern that what we had observed might have

been confusing due to a lack of context.

Another possible influence was the somewhat unusual setting. I asked each

pair to meet in a room large enough to set up cameras far enough away that a wide-

angle shot would capture most of what they were doing. This ended up occurring

in classrooms in the math department rather than in any faculty offices. Yet all

three pairs reported that they usually met in an office2. I also asked them to use

the blackboard instead of working on paper so that it was possible to observe what

they were writing. This probably influenced the dynamics of how they usually

would interact (although in the case of Matt & Bart, they joked that this didn’t

affect what they did at all except in providing a larger-than-usual blackboard).

This raises concerns of authenticity. How much does the medium of scratch

paper contrast with that of the blackboard in terms of the role of inscription

for mathematical struggle? How heavily do the mathematicians normally rely

on the ability of a private blackboard in an office holding their prior inscriptions

from their last meeting rather than being erased? In follow-up interviews, all six

mathematicians indicated that they felt that the setting had not really affected

the way they had worked — but it’s quite possible that this was simply true upon

reflection rather than actually having no relevant effect on their phenomenology

at the time. This is a concern about which the present study’s methods provide

virtually no illumination.

8.3 Some Possible Future Research

With all that said, we still seem to gain from this study some insight into

mathematicians’ practices and, through that, a more detailed sense of what math-

2Joseph’s for Joseph & Bill, Matt’s for Matt & Bart, and Fay’s for Fay & Martha.
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ematics is. This suggests some promising further lines of inquiry.

8.3.1 Further Phenomenological Investigation of Struggle

Further explorations of related data

Some of these directions are suggested by the data from this study that were

not analyzed for time considerations. For instance, in comparing early interviews

for different studies (Nemirovsky & Smith, 2011, forthcoming), the observations

made for this study, and the recorded follow-up interviews with each mathemati-

cian afterwards, there seems to be a shift in how the mathematicians articulate

and gesture about the objects to which they’re referring. In particular, familiarity

seems to encourage them to treat the object as more of a self-contained thing that

takes up less gestural space. It seems worthwhile to explore this phenomenon in

more detail since it seems like it should bear on the process of making legitimate

transformations pre-reflective (e.g., as in our immediate knowing that 2(x+ 3) can

be converted into x+6 as part of our sense of what “2(x+3)” means; see Gallagher

& Zahavi, 2008).

There’s also a fascinating trend of anthropomorphization in much of the

data mentioned as well as in the pilot data. You can see a hint of this in Joseph’s

reference to how the two sides of the folded hood of a ribbon knot meet as a

cusp: “. . . in fact, these guys do actually meet like the equation x2 = y3. . . ”

(Table A.5, rows 36–39). This certainly isn’t ubiquitous; we don’t see Joseph

or Bill clearly demonstrating this in the “odd scalars” material (Table A.1), for

instance. This caused me to remember how, as a math graduate student, I would

sometimes hear others in my program using intention-based language (e.g., “This

guy doesn’t like anything from this subspace and eats all of them” as a description

of a map’s kernel). This seems to be reminiscent of Devlin’s (2000) argument

that mathematical reasoning uses the same brain circuitry as we use for discussing
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other people, citing his own experience of working with well-known mathematical

structures like the complex plane as meeting with “an old friend.” It could be

quite fruitful to explore how and when this kind of anthropomorphization shapes

mathematicians’ experience of mathematical objects, both in the already-collected

data as well as in presentations such as colloquia and lectures.

Explorations of struggle in other populations

There also seems to be promise in applying phenomenological methods to

investigate struggle in other populations. Two general classes seem likely to be

fruitful: other technical professionals, and students. Professionals, as mentioned

earlier, could give us a more nuanced understanding of how mathematics behaves

in practice. How does the sense of object-hood differ for physicists, engineers, and

economists as compared to professional mathematicians? How does this change

the sense of what mathematics affords in terms of exploring the questions these

professionals are interested in? Essentially the same methods used in this study

could be brought to bear on professionals in a few different domains to flesh out

these questions.

Exploring students’ phenomenology might give us insight into the devel-

opment of mathematicians’ styles of structuring their struggle. How do first-year

doctoral students differ from those who just passed their qualifying exams, in terms

of how they navigate the experience of struggle? How does this differ from under-

graduate math majors, or high school students? Exploring the phenomenology of

students at these various levels might provide us with a rich understanding of how

mathematical experience can unfold.



252

8.3.2 Explorations of Legitimacy

Longitudinal studies of students

Along similar lines, it could prove to be incredibly insightful to track how

object-ness arises in a few specific case-studies of math students over the course

of a term or longer. For instance, linear algebra on the surface seems to require

students to develop familiarity with a wide range of transformations and abstrac-

tions, such as at one level treating vectors as objects and at another level treating

entire vector spaces as objects in order to navigate the ideas of isomorphism and

local linearity in multivariable calculus. This could prove to be a rich domain for

exploring how mathematical objects come into being for students, and in what

ways this appearance of object-ness is related to and different from familiarity

with the procedures involved in going from one type of inscription to another

(e.g., going from a geometric description of a linear transformation to its matrix

form given a basis). Another potentially rich domain might be introduction to

algebraic topology, which rapidly introduces new transformations and then treats

those transformations as objects in further transformations.

Teaching experiments

It would also be potentially very valuable to learn to what extent attending

to the sense of something being preserved as the origin of mathematical objects as

experienced can help inform a curriculum. For instance, Smith & Thompson (2007)

advocate something to this effect for algebra, focusing on the idea that quantities

are what algebraic transformations preserve. Sowder et al. (2009) seem to put

this idea to excellent effect in their math curriculum for prospective elementary

school teachers, explicitly emphasizing the idea of quantities and then asking these

prospective teachers to reason with the quantities rather than just the symbols

representing the quantities. We see a similar idea in, for instance, Yerushalmy &



253

Schwartz’s (1993) argument for framing algebra education around the theme of

functions rather than rules.

This same idea could be applied to other curricula. In probability, say, we

might think of preserving information. For instance, suppose we think it’s equally

likely that a given coin is (a) fair or (b) twice as likely to come up heads as tails.

If we flip the coin and it comes up tails, that gives us new information that makes

it less likely that the coin is biased. Specifically, whereas the probability of it

being biased was 1
2

before, after the coin-flip it’s 2
5
.3 If we can give mathematical

structure to the idea of “information,” we might be able to teach probability with

an eye toward legitimate transformations.

This raises the possibility of running a series of teaching experiments (Steffe

& Thompson, 2000) to explore what happens when different math courses have

an emphasis on legitimacy. It might turn out that explicitly focusing on what is

preserved might not significantly improve students’ understanding — but if so, that

would be incredibly valuable to know. It stands a fair chance of revealing nuances

of how the sense of object-ness comes into being for students. It might also help us

to better understand what kinds of “local travel” (Nemirovsky, 2005) are needed

in different domains in order to develop the intuition of something-preservation.

8.4 In Conclusion

I would be remiss in omitting one final dimension that emerged from this

study, however ephemeral. I found that in the course of developing the constructs

of this study, I came to understand my own mathematical efforts in more detail.

3This comes from Bayes’ theorem:

P (biased|tails) =
P (tails|biased)P (biased)

P (tails|biased)P (biased) + P (tails|fair)P (fair)
=

( 1
3 )( 1

2 )

( 1
3 )( 1

2 ) + ( 1
2 )( 1

2 )
=

1
6
5
12

=
2

5
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I remember doing many of the things I observed these mathematicians doing —

but seeing it from another perspective cast it in a new light for me. I now feel

as though I understand my own understanding better, that I have a more refined

sense of how my mathematical thinking works. I also feel that I have a better

sense of the nature and value of the kind of effort I would experience when trying

to make sense of something that seems impossible.

Because of this, I find mathematics even more beautiful than I did before.

This exploration has enriched my appreciation and sense of aesthetics for math-

ematical reasoning. It is also clear to me that this did not come simply from

learning more mathematics; rather, it came from examining the process of doing

mathematics in detail, with a kind of reverence for the ways in which masters of

the art display their prowess.

This brings to mind a well-known quote from Richard Feynman:

I have a friend who’s an artist and has sometimes taken a view which
I don’t agree with very well. He’ll hold up a flower and say “look how
beautiful it is,” and I’ll agree. Then he says “I as an artist can see
how beautiful this is but you as a scientist take this all apart and it
becomes a dull thing,” and I think that he’s kind of nutty. First of
all, the beauty that he sees is available to other people and to me too,
I believe. Although I may not be quite as refined aesthetically as he
is. . . I can appreciate the beauty of a flower. At the same time, I see
much more about the flower than he sees. I could imagine the cells in
there, the complicated actions inside, which also have a beauty. I mean
it’s not just beauty at this dimension, at one centimeter; there’s also
beauty at smaller dimensions, the inner structure, also the processes.
The fact that the colors in the flower evolved in order to attract insects
to pollinate it is interesting; it means that insects can see the color. It
adds a question: does this aesthetic sense also exist in the lower forms?
Why is it aesthetic? All kinds of interesting questions which the science
knowledge only adds to the excitement, the mystery and the awe of a
flower. It only adds. I don’t understand how it subtracts. (Feynman,
1988)

In a similar spirit, I feel that this exploration of the mathematical spirit only

adds. It has been personally valuable and inspiring, something I am immensely
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pleased to have performed. I hope I’ve managed to share at least a glimpse of this

delight with you as well.



Appendix A

Gesture analyses for selected clips

A.1 Joseph & Bill — “odd scalars”
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A.3 Matt & Bart — Bart pushed back
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A.4 Matt & Bart — inverted pyramid
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A.5 Joseph & Bill — finger moves
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A.6 Joseph & Bill — indexical map
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A.7 Fay & Martha — graph confining
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A.8 Matt & Bart — adjusting a triangle
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A.9 Joseph & Bill — chain map
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