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COUPLED FORWARD-ADJOINT MONTE CARLO SIMULATIONS
OF RADIATIVE TRANSPORT FOR THE STUDY OF OPTICAL

PROBE DESIGN IN HETEROGENEOUS TISSUES∗

CAROLE K. HAYAKAWA† , JEROME SPANIER‡ , AND VASAN VENUGOPALAN†

Abstract. We introduce a novel Monte Carlo method for the analysis of optical probe design
that couples a forward and an adjoint simulation to produce spatial-angular maps of the detected light
field within the tissue under investigation. Our technique utilizes a generalized reciprocity theory for
radiative transport and is often more efficient than using either forward or adjoint simulations alone.
For a given probe configuration, the technique produces rigorous, transport-based estimates of the
joint probability that photons will both visit any specified target subvolume and be detected. This
approach enables the entire tissue region to be subdivided into a collection of target subvolumes to
provide a phase-space map of joint probabilities. Such maps are generated efficiently using only one
forward and one adjoint simulation for a given probe configuration. These maps are used to identify
those probe configurations that best interrogate targeted subvolumes. Inverse solutions in a layered
tissue model serve to illustrate and reinforce our analysis.
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1. Introduction. The use of light for noninvasive, in vivo determination of op-
tical and physiological properties of tissue volumes is established for a host of appli-
cations in biomedical optics. In some cases, other imaging modalities, such as x-ray,
ultrasound, or MRI, are used in conjunction with optical techniques to identify het-
erogeneous tissue regions that require further analysis. Knowledge of this structural
information can provide information critical to the design of optical probes to target
these regions effectively or to provide information regarding both the target region
and its surroundings.

With these goals in mind, much effort has been expended in improving the de-
sign of optical probes. For example, there have been attempts to enhance the light
delivered to specific tissue regions by varying source and detector characteristics such
as orientation, size, angle of emission (for sources), angle of acceptance (for detec-
tors), source-detector (s-d) separation, and/or distance between the target volume
and the source/detector [6, 8, 14, 16, 21, 22, 31]. These optical probes are configured
in an attempt to enhance the light that is both delivered to the targeted volume and
subsequently detected at the tissue surface. Clearly, detailed knowledge of the spatial-
angular distribution of the detected light field for a given probe configuration would
serve to assess the effectiveness of these approaches and provide a basis to compare
competing probe designs.
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Previous studies of radiative transfer in tissue from source to detector have been
based mainly on the diffusion approximation to the radiative transport equation [3, 7,
15, 17]. However, the validity of diffusion-based models is compromised when (a) s-d
separations are small or (b) the tissue absorption is comparable to or greater than
scattering. While analytic [27] and specific Monte Carlo [2] approaches have been
investigated, it is unclear how these methodologies would extend to heterogeneous
media. Moreover, conventional Monte Carlo simulations provide results with large
uncertainties in the detected signals due to the small detector sizes often used in
optical probes.

To address this problem in the context of radiative transport, we have developed
a novel Monte Carlo method that produces phase-space maps to provide quantitative
measures of the ability for a given probe configuration to detect light delivered to
specific regions within the tissue. This general approach can be applied to complex,
heterogeneous media. The method makes use of coupled forward-adjoint simulations
to estimate the joint probability of both visitation of a target region and subsequent
detection at the tissue surface. Bayes’s theorem [12] is used to decompose this joint
probability into the product of an absolute and a conditional probability. These two
probabilities are then estimated using separate and efficient simulations. In cases for
which the targeted volume is large compared to both source and detector volumes,
the gains in efficiency over the use of either a forward or an adjoint simulation alone
can be substantial.

In this paper, we describe the foundations of our method as well as its operational
details. We then apply the method to investigate how a layered epithelial tissue is
interrogated by optical probe designs in which we allow variation in s-d separation.
Forward and adjoint simulations are generated for various probe configurations. The
simulation results are used to produce maps that provide both qualitative and quan-
titative information regarding the phase-space distribution of the detected light. This
information provides a basis for the comparison of prospective probe designs to deter-
mine the merits of each. Accurate recovery of optical properties from heterogeneous
tissues via inverse solutions serves to confirm the comparative analysis of candidate
probe designs as evaluated by the coupled forward-adjoint Monte Carlo simulations.

2. Method. To determine the probability of detecting light that has visited a
targeted volume, one could utilize a conventional Monte Carlo simulation in which
one follows photon trajectories from the source to a target volume and then tallies the
final photon weight for those photons that are subsequently detected. Alternatively,
one could use an adjoint Monte Carlo simulation, in which one follows backward-
propagating photons from the detector to the target volume, and then to the source.
However, when the source and detector are each small relative to the target volume,
sole use of a forward or adjoint simulation engenders low signal-to-noise ratios (SNRs).
Such a situation is exceedingly common in biomedical optics.

Our approach is to break the problem into two components and determine sepa-
rately (a) the probability of source to target trajectories, P (V ) (“target visitation”),
and (b) the probability of detection conditioned by target visitation, P (D|V ) (“de-
tection given target visitation”). The combination of these two probabilities using
Bayes’s theorem provides the rigorous joint transport probability of “target visitation
and detection”:

(2.1) P (V ∩D) = P (V ) · P (D|V ).

We use a conventional Monte Carlo simulation to determine P (V ). However, for



COUPLED FORWARD-ADJOINT MONTE CARLO 255

P (D|V ), we utilize an adjoint simulation to combat the inherently low SNR in its
estimation in the reverse direction. This is done by modifying a generalized reciprocity
principle [5, 19, 25, 29] to convert P (D|V ) to a coupled forward-adjoint computation
at the surface of the target volume.

In the next section, we describe our application of coupled forward-adjoint Monte
Carlo methods for the determination of P (V ∩D). This includes a review of classical
reciprocity theory and basic equations. We then describe generalized reciprocity, for
which classical reciprocity is a special case. Finally, we develop our extension of
generalized reciprocity theory to arrive at an estimate of P (V ∩D). This will set the
stage for the application of this methodology to problems in biomedical optics.

3. Coupled forward-adjoint Monte Carlo methods. A series of publica-
tions [5, 19, 20, 25, 24, 30, 29] has developed and described the “midway” forward-
adjoint coupling method to increase the efficiency of estimating detector responses in
radiative transport problems. The idea is to simulate both forward and adjoint Monte
Carlo transport and combine the tallies from each at an intermediate surface to esti-
mate the total system response. The midway method is made rigorous by appealing
to a generalized reciprocity theory for transport equations [19, 20, 29, 30]. The mid-
way method has been shown to be particularly efficient in problems that involve deep
penetration and/or complex streaming pathways taken by the radiation as it moves
from source(s) to detector(s) [19, 20, 24, 25].

We modify the midway method in order to apply it to the estimation of the
conditional probability P (D|V ). Photons are launched at a physical source and are
propagated until they exit the phase space. At each interaction within the tissue,
the photon weight is reduced according to its survival probability, a technique some-
times referred to as “absorption weighting” [23]. Only photon trajectories that have
intersected the target volume V contribute to the estimate of P (V ). These “visiting”
photons generate an induced source internal to V that produces a surface source on
∂V. This surface source is then paired with the adjoint flux on ∂V in a bilinear inte-
gration that produces an estimate of P (D|V ). The product of the two probabilities
P (V ) and P (D|V ) then provides the probability that photons will both visit and sub-
sequently be detected from subvolumes within the phase space. We use this product
to provide quantitative information to assess the characteristics of potential probe
designs.

3.1. Classical reciprocity. We begin with the integro-differential form of the
radiative transport equation (RTE) assumed to hold in the interior of a closed,
bounded subset D of R

3:

(3.1) ∇ · ΩΦ(r,Ω) + μt(r)Φ(r,Ω) = μs(r)

∫
4π

f(Ω′ → Ω)Φ(r,Ω′) dΩ′ + Q(r,Ω),

where Φ(r,Ω) is the photon flux, μt(r) = μs(r)+μa(r) is the total attenuation coeffi-
cient, μs(r) is the scattering coefficient, μa(r) is the absorption coefficient, f(Ω′ → Ω)
is the single scattering phase function, and Q(r,Ω) is an internal (volumetric) source
function, with r = (x, y, z) and Ω = (sin θ cosφ, sin θ sinφ, cos θ) representing position
and unit direction vectors, respectively. A unique solution Φ(r,Ω) is assured for all
r ∈ D, Ω ∈ S2 by specifying the photon flux Φinc(r,Ω) incident on ∂D from outside
the tissue. We introduce an abbreviated form of (3.1):

(3.2) ∇ · ΩΦ + BΦ = Q,

where B denotes the transport operator less the divergence term.
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A typical optical probe is an instrument that both introduces light at the tissue
boundary and collects light reemitted from the boundary using or more detectors
positioned at fixed distances from the source. Assuming that there are no other
(external) sources of light, the unique solution Φ of this RTE can be written as a
superposition of the photon fluxes produced by the internal source Q and the boundary
source Qs defined by

(3.3) Qs(rs,Ω) = −Ω · nsΦinc(rs,Ω) for rs ∈ ∂D, Ω · ns < 0,

where ns is the outward-pointing unit normal at rs:

Φ(r,Ω) =

∫
D×S2

G[(r0,Ω0) → (r,Ω)]Q(r0,Ω0) dr0 dΩ0

+

∫
∂D×S2

Gs[(r0,Ω0) → (r,Ω)]Φinc(rs,Ωs) dr0 dΩ0,(3.4)

where G is the volume Green’s function and Gs is the surface Green’s function for the
problem. An alternate, equivalent representation that uses only the volume Green’s
function is

(3.5) Φ(r,Ω) =

∫
D×S2

G[(r0,Ω0) → (r,Ω)]Q(r0,Ω0) dr0 dΩ0,

where the second term in (3.4) is replaced by the boundary condition

(3.6) Φ(rs,Ωs) = Qs(rs,Ωs)

and Qs is defined as in (3.3) [4]. The relationship (3.3) and the equivalence between
the representations (3.4) and (3.5) together with (3.6) will be utilized in section 3.3.

The response of either a virtual or a physical detector can then be described in
terms of a linear functional of Φ:

(3.7) I =

∫
D×S2

Q∗Φ dr dΩ,

where Q∗ characterizes the detector position, size, and acceptance angle. Both the
source function Q and detector function Q∗ may be described mathematically using
characteristic functions associated with the source and detector. For example, if the
tissue D is assumed to occupy the half space characterized in rectangular coordinates
by z > 0, and a fiber-optic laser source of radius q and unit strength is normally
incident at (0, 0, 0), we have

(3.8) Qs(xs, ys, 0,Ω) =

⎧⎪⎨
⎪⎩

1,
x2
s + y2

s ≤ q2 and

−1 ≤ nD · Ω < − cos θQ,

0 otherwise,

where nD denotes the outward-pointing unit normal at the bounding surface z = 0
and the source is confined to an emission angle θQ. A similar description characterizes
a typical fiber-optic detector placed elsewhere on the tissue surface z = 0, except that
it collects light that scatters into the half space z < 0 at location (XQ∗ , YQ∗ , 0) within
the detector radius q∗ and acceptance angle θQ∗ . Specifically,

(3.9) Q∗
s(xs, ys, 0,Ω) =

⎧⎪⎨
⎪⎩

1,
(xs −XQ∗)2 + (ys − YQ∗)2 ≤ (q∗)2 and

1 ≥ nD · Ω > cos θQ∗ ,

0 otherwise.



COUPLED FORWARD-ADJOINT MONTE CARLO 257

It is well known that classical reciprocity theory also permits the detector response
I to be expressed as a linear functional of the solution to the RTE that is adjoint to
(3.1) [23]:

(3.10)

−∇ · ΩΦ∗(r,Ω) + μt(r)Φ
∗(r,Ω) = μs(r)

∫
4π

f(Ω → Ω′)Φ∗(r,Ω′) dΩ′ + Q∗(r,Ω)

and

(3.11) I =

∫
D×S2

QΦ∗ dr dΩ.

Upon comparing the detector response representations (3.7) and (3.11), we notice
that the roles of the source function Q and detector function Q∗ are interchanged in
this statement of reciprocity, so that Q acts as a “detector” function for the adjoint
formulation and Q∗ plays the role of a “source” function for the adjoint equation.

Using operator notation, (3.10) can be written as

(3.12) −∇ · ΩΦ∗ + B∗Φ∗ = Q∗,

where B∗ is the operator adjoint to B. For (3.11) to be valid, it is also understood
that the boundary condition satisfied by Φ∗ on ∂D is dual to that specified for Φ. For
example, in our application ∂D is the surface of the tissue that is composed of the
source region AQ, the detector region AQ∗ , and the complement of these two regions
∂D\(AQ ∪ AQ∗). Here we assume for simplicity that both the source emission angle
and the detector acceptance angle are fully open; i.e., cos θQ = cos θQ∗ = 0. For this
case, the boundary condition at z = 0 satisfied by Φ is

(3.13) Φ(xs, ys, 0,Ω) = Qs(xs, ys, 0,Ω) for (xs, ys) ∈ AQ,

where the right-hand side is defined by (3.8) with cos θQ = 0. The dual boundary
condition for Φ∗ becomes

(3.14) Φ∗(xs, ys, 0,Ω) = Q∗
s(xs, ys, 0,Ω) for (xs, ys) ∈ AQ∗ ,

where the right-hand side is defined by (3.9) with cos θQ∗ = 0. From (3.13) and
(3.14) we have ΦΦ∗ = 0 on ∂D establishing that the boundary conditions are dual to
each other. Note that (3.13) and (3.14) are incomplete statements of the boundary
conditions for r ∈ ∂D\(AQ ∪ AQ∗), as they do not include the full range of Ω. The
missing conditions for our case accommodates a tissue-air refractive index mismatch
using the Fresnel relations for unpolarized light [28]. This results in a mixed boundary
condition comprised of a linear combination of reflecting and nonreentrant conditions,
each component of which leads to duality as shown by Aronson [1].

The duality of the governing equations and boundary conditions enables a detector
response to be computed either in the context of forward Monte Carlo sampling or
adjoint Monte Carlo sampling via this “classical” reciprocity for the RTE. Usually one
of these formulations will lead to a more efficient simulation than the other. However,
many problems in biomedical optics utilize both small sources and small detectors,
making neither formulation efficient.
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However, we can improve the efficiency of classical reciprocity by utilizing a mid-
way surface between source and detector. The midway method combines forward and
adjoint sampling that characterizes those photons that have migrated from source to
detector through a separating midway surface. Application of generalized reciprocity
to the estimation of P (D|V ) using this midway method will then lead us to our final
evaluation of P (V ∩D). In section 3.2 we explain generalized reciprocity and the mid-
way method. In section 3.3 we extend these ideas to compute the joint probability of
visitation and detection P (V ∩D).

3.2. Generalized reciprocity. Let us first consider VM to be an arbitrary
closed, bounded subset of D and ∂VM its surface. Multiplying (3.2) by Φ∗ and (3.12)
by Φ, subtracting the latter product from the former, and integrating the difference
over all locations and directions within VM , we get

(3.15)

∫
VM×S2

∇ · ΩΦΦ∗ dr dΩ =

∫
VM×S2

[QΦ∗ −Q∗Φ] dr dΩ.

Use of Green’s theorem to replace the volume integral on the left-hand side of (3.15)
by a surface integral leads to

(3.16)

∫
∂VM×S2

nM · ΩΦΦ∗ dr dΩ =

∫
VM×S2

[QΦ∗ −Q∗Φ] dr dΩ,

where nM is the outward-pointing unit vector normal to ∂VM . Equation (3.16) is
often referred to as the global reciprocity theorem [30]. Note that if VM = D and the
boundary conditions at the air-tissue interface cause the integral on the left-hand side
to vanish (as is the case in our problem), we then arrive at the “classical” statement
of reciprocity:

(3.17)

∫
VM×S2

[QΦ∗ −Q∗Φ] dr dΩ = 0.

While (3.16) is valid generally, it becomes particularly useful when VM encloses
either the source or the detector region. The surface of VM , ∂VM , can then be
identified as a “midway” surface between source and detector. In this case, every
photon that is detected from the source must intersect the midway surface.

The function ΦΦ∗ that occurs in (3.16) has been called a “contributon” response
function [5, 19, 20, 24, 25, 29, 30] and used to define a unit of information that charac-
terizes transport from source to detector. The integral of this function appearing on
the left-hand side of (3.16) plays a similar role here. It captures the flow of information
across the boundary of the midway volume VM .

If VM encloses the source region as shown in Figure 3.1(a) and Q∗ = 0 in VM ,
the left-hand side of (3.16) is positive and equals

∫
VM×S2 QΦ∗, which is the adjoint

representation of the detector response. If VM encloses the detector region, and
Q = 0 in VM , the left-hand side of (3.16) is negative and equals −

∫
VM×S2 Q

∗Φ,
which is the forward representation of the detector response. Reversing the sense
of nM by replacing the outward-pointing unit normal with the inward-pointing unit
normal changes the sign in the surface integral on the left-hand side of (3.16) and
also reverses the sense of enclosure. That is, if VM is treated as an enclosure for the
source, then nM points outward. However, if the complement of VM in D, D\VM , is
treated as an enclosure for the detector, then nM points inward.
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(b)(a)
QQ

VM

∂VM

VM

∂VM

Q∂VM

Q∗Q∗

Fig. 3.1. Geometry of (a) generalized reciprocity with the midway surface ∂VM enclosing the
physical source, and (b) an extension to generalized reciprocity with an induced boundary source
Q∂VM

out of VM used to compute conditional probabilities.

In many situations, this midway surface method proves to be more efficient than
using either the forward or adjoint simulation alone [19, 20]. The gains in efficiency
will largely be the consequence of the relatively larger “size” of VM compared with
either the size of the source region, where Q 	= 0, or of the detector region, where
Q∗ 	= 0. Here “size” is to be interpreted in a probability sense as opposed to a
strict physical size. More precisely, the relevant condition is that the probability of
reaching V from either the source or detector should be larger than the corresponding
probabilities in the reverse directions.

3.3. Probability of visitation and detection. The probe design problem
requires an understanding of more than the total system response at the detector from
the original optical source. It requires, in addition, knowledge of the detector response
due only to those photons that have visited a targeted tissue region V. For our
application, V is a region that encloses neither the source nor the detector. Thus, to
make use of generalized reciprocity, we treat V as a region that generates a secondary
or “virtual” source, induced by the original physical source. This construct allows us
to decompose the problem into two subproblems. The first problem deals only with
the estimation of P (V ) and is handled using conventional Monte Carlo simulation.
The second problem handles the estimation of P (D|V ) and will be accomplished by
a suitable application of the generalized reciprocity relation (3.16).

Accordingly, the midway volume VM can be considered as an arbitrary volume
enclosing neither source nor detector with surface ∂VM . A possible geometry is shown
in Figure 3.1(b). This arbitrary volume VM is one at whose boundary, ∂VM , infor-
mation will be collected from both forward and adjoint photons for the estimation
of P (V ) and P (D|V ), respectively. We estimate the first factor of (2.1), P (V ), by
launching photons from the original source Q characterized in (3.8) and, for those
photons that enter VM , tally the entering weight of each photon. These photons pro-
duce estimates of P (V ) and generate samples drawn from an induced source Q∂VM

impinging on ∂VM from inside VM . The boundary surface ∂VM then defines the
surface for the midway method applied to the problem of estimating the conditional
probability, P (V |D).

The details of the required computation deserve elaboration. Denote Φ(r,Ω) as
the solution of the boundary-value problem of (3.1) with source described as in (3.8),
and let ΦVM

(r,Ω) denote the restriction of Φ(r,Ω) to r ∈ VM . The photon flux
Φ∂VM

(r,Ω) for r ∈ ∂VM , Ω · n∂V < 0, where n∂V = unit normal out of VM (into
D\V) then generates a boundary source Q∂VM

(rs,Ωs) = −Ωs ·n∂VM
Φ∂VM

(rs,Ωs) on
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∂VM . If we merely replace the source function Q by the source function Q∂V(r,Ω)
and repeat the derivation that led to (3.16), we obtain

(3.18)

∫
∂VM×S2

n∂VM
· ΩΦVM

Φ∗ dr dΩ =

∫
VM×S2

[Q∂VM
Φ∗ −Q∗ΦVM

] dr dΩ.

We replace Q∗(r,Ω) by Q∗(r,−Ω) to generate an adjoint flux, Φ∗(r,−Ω), inside the
tissue. This, of course, reverses the direction in the arguments of Q∗ and Φ∗ in (3.18),
which then reads∫

∂VM×S2

n∂VM
· ΩΦVM

(r,Ω)Φ∗(r,−Ω) dr dΩ

=

∫
VM×S2

[Q∂VM
(r,Ω)Φ∗(r,−Ω) −Q∗(r,−Ω)ΦVM

(r,Ω)] dr dΩ

=

∫
VM×S2

Q∂VM
(r,Ω)Φ∗(r,−Ω) dr dΩ(3.19)

since Q∗ = 0 inside VM . Estimation of (3.19) is performed using an adjoint simulation
and provides the detected response due to the induced source Q∂VM

, or P (D|V ).
The forward simulation of photons exiting an arbitrary target volume VM is used

to determine P (V ) and is matched with the adjoint simulation estimate of P (D|V )
at ∂VM . The joint probability of visitation and detection P (V ∩ D) (see (2.1)) is
formed by the product of these two factors. The resulting probability characterizes
a three body system involving radiative transport from (a) the original source Q to
(b) the target volume VM and finally to (c) the detector. In what follows, we shall
refer to joint probability of visitation and detection of the target volume, P (V ∩D),
as interrogation of the target volume.

4. Implementation. Monte Carlo simulations of both the forward RTE equa-
tion (3.1) and the adjoint RTE (3.10) are quite conventional [10, 26]. Photon and ad-
joint photon biographies are generated by alternately sampling from exponential dis-
tributions representing intercollision distances and angular deflections sampled from
the Henyey–Greenstein phase function [11, 28]. The resulting random walks are fol-
lowed until they escape the tissue phase space.

We utilize our coupled forward-adjoint methodology to create quantitative maps
of the entire tissue that illustrate how the light interrogates various regions in the
tissue. We shall refer to these maps as “interrogation maps.” To create such maps,
the tissue is subdivided into a finite number of voxels, each treated as a target volume
V. The matching of photon trajectories between the forward simulation and the
adjoint simulation occurs at the boundary of each voxel. The integration shown on
the left-hand side of (3.19) requires the pairing of estimates of the photon current
J = n∂VM

·ΩΦ̃ from the forward simulation with the estimation of the photon flux Φ∗

from the adjoint simulation. Upon exiting a voxel V, both the location and orientation
of the photon’s track are assigned to one of N∂V ·Nμ ·Nφ spatial-angular bins:

(4.1) Δijk :

⎧⎪⎪⎨
⎪⎪⎩

r ∈ ∂Vi, i = 1, . . . , N∂V,
2(j−1)
Nμ

< (μ + 1) ≤ 2j
Nμ

, j = 1, . . . , Nμ,

2π(k−1)
Nφ

< φ ≤ 2πk
Nφ

, k = 1, . . . , Nφ.

Each solid angle bin is determined by μ = cos θ and φ, where θ is the polar angle and
φ is the azimuthal angle. The north pole for the directional system is taken to be the
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outward-pointing normal on each voxel side. Trajectories in the forward simulation
that exit bin Δijk are matched with trajectories in the adjoint simulation that enter
the same angular bin. We determine P (V ∩ D) for each voxel V by summing the
product of the tallies of the forward and adjoint photons in the matched spatial-
angular pairs over all bins:

(4.2) P (V ∩D) =

N∂V∑
i

Nμ∑
j

Nφ∑
k

JijkΦ
∗
ijkΔ∂ViΔμjΔφk.

In (4.2), Jijk is estimated by tallying the photon weight wijk per unit area and solid
angle upon exiting the voxel surface

(4.3) Jijk =
1

NF

NF∑
n=1

w
(n)
ijk

Δ∂ViΔμjΔφk
,

where NF is the number of photons launched in the forward simulation. The adjoint
simulation converts the adjoint current to an adjoint flux via the relation

(4.4) Φ∗
ijk =

J∗
ijk

μj
,

where μj is the polar cosine of the entering photon. The weight w∗
ijk of each adjoint

photon entering the voxel surface is then used in the estimate of the adjoint current

(4.5) J∗
ijk =

1

NA

NA∑
n=1

w
∗(n)
ijk

Δ∂ViΔμjΔφk
,

where NA is the total number of adjoint photons launched. For simplicity, we use
uniform spatial and angular bins. In practice, however, we anticipate the need to
utilize finer binning closer to the tissue surface and at other locations where the
distribution of the light field either is highly anisotropic or possesses large spatial
gradients. Sufficiently deep in the tissue, where the flux is expected to be nearly
isotropic, a coarse uniform angular grid should suffice.

The variance of our P (V ∩ D) estimates is derived as specified in the midway
method literature [20]. Specifically, the relative variances of the forward current Jijk
and the adjoint flux Φ∗

ijk are determined by

(4.6) r2[Jijk] =

∑NF

n=1

[
w

(n)
ijk

]2

[∑NF

n=1 w
(n)
ijk

]2 − 1

NF

and

(4.7) r2[Φ∗
ijk] =

1

μ2
j

⎧⎪⎨
⎪⎩

∑NA

n=1

[
w

∗(n)
ijk

]2

[∑NA

n=1 w
∗(n)
ijk

]2 − 1

NA

⎫⎪⎬
⎪⎭ ,

respectively. Since the quantities of Jijk and Φ∗
ijk are estimated from forward and

adjoint random walks that are sampled independently, a first-order approximation of
the relative variance of their product is provided by the sum of their relative variances

(4.8) r2[JijkΦ
∗
ijk] ≈ r2[Jijk] + r2[Φ∗

ijk].
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The variance of P (V ∩D) is obtained by summing the variances of the products over
all bins:

(4.9) σ2[P (V ∩D)] =

N∂V∑
i

Nμ∑
j

Nφ∑
k

r2[JijkΦ
∗
ijk]J

2
ijkΦ

∗2
ijk.

Note that (4.9) provides the variance for each target volume. For a fixed number
of launched (forward and adjoint) photons, an increase in N∂V, Nμ, and Nφ results
in an increase in r2[JijkΦ

∗
ijk] because there are fewer photons per bin and will tend

to increase the relative error in the estimate for each bin. While an increase in the
number of bins will tend to increase the variance σ2[P (V ∩ D)], it will also reduce
the discretization error. Optimal choices for N∂V, Nμ, and Nφ vary depending on the
precise location of the voxel in the tissue. For the purposes of the results presented
in this initial study, we chose uniform spatial and angular binning. An analysis of
the optimal binning allocation strategy is beyond the scope of this paper and, in any
event, will be highly problem-dependent.

As a means to eliminate the discretization error, we investigated a method pro-
posed by Cramer [5] in which two sets of trajectories are launched at the voxel bound-
ary in exactly opposite directions. Each set is then followed until possible detection
at the source or detector. However, due to the small size of the fiber-optic source
and detector and the large number of target volumes treated in our application, this
method was not particularly efficient and was not employed in this study.

Note that while we are summing over all spatial-angular bins in this study, we
could easily provide maps containing information for photons entering and exiting at
any particular set of orientations or locations. This more refined information would
enable an evaluation of the impact of angular variations in the light distribution on
the conditional system response. Such angular detail will be especially important for
voxels in regions in which the light field is highly anisotropic, for example, in the
proximity of collimated sources or interfaces of refractive index mismatch.

5. Numerical results. We apply our methodology to a test case depicting ep-
ithelial tissue consisting of a thin upper cellular layer (0 < z < 0.5 mm) situated above
a much thicker structural (stromal) layer (z > 0.5 mm). The goal of this study is to
assess the effect of probe s-d separation on the interrogation of each layer. We first
examine the forward problem; that is, we generate P (V ∩D) spatial-angular maps for
normal tissue. We refer to this as our “background” tissue problem. The purpose of
these maps is to indicate the effectiveness of a given probe configuration to detect and
isolate transformations in each of the layers associated with the formation of precan-
cerous tissue. Simulated data of measured reflectance is then generated that contains
information characterizing physiologically relevant changes in one or both layers. This
measured data is then used to predict changes in the layered optical properties via an
inverse solution that employs a special perturbation and differential Monte Carlo op-
timization method developed previously [9, 10]. For our particular study in epithelial
tissue, we will discuss possible relationships between the information provided by the
P (V ∩D) maps and the quality of the inverse solution results.

5.1. Background tissue forward problem. We first consider a homogeneous
background tissue with a refractive index n = 1.4 and optical properties typical of
normal stromal tissue [13] at an optical wavelength of 849 nm: μa = 0.034/mm,
μs = 6.11/mm, g = 0.9. Here g is the average cosine of the Henyey–Greenstein single-
scattering phase function commonly used for tissue [28]. The probe configurations
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considered consist of both source and detector oriented normal to the tissue surface
with s-d separations ranging from 1–3 mm. The source and detector have emission
and acceptance angles θQ = θQ∗ = 15.3◦ relative to their central axis and are 200 μm
in radius. To efficiently present the P (V ∩ D) results, which constitute a three-
dimensional data set, we sum the results of (4.2) along the y-axis and project them
onto the x-z plane in 0.1 mm × 0.1 mm pixels, each of which represents a different
target volume V.

Figure 5.1 displays the interrogation P (V ∩D) maps for the background tissue.
In this analysis, we compare probe features consisting of s-d separations of 1, 2, and
3 mm. In these plots, the color of every voxel represents the absolute (unscaled)
conditional probability of detection (conditioned by visiting the voxel in question).
We shall refer to this quantity as the “conditional system response.” To enable the
visualization of a greater dynamic range in P (V ∩D), the colors are represented on
a log scale with a spectrum ranging from large (red (10−8)) to small (blue (10−11))
probability. A dashed white line at a z = 0.5 mm delineates the interface between
the two layers of interest. Note that in each of these maps, we display the conditional
system response for each voxel. The database so constructed provides the raw material
for the analysis of competing probe configurations.

Fig. 5.1. Interrogation map of the background problem for s-d separations of 1, 2, and 3 mm
(left to right).

The results of Figure 5.1 can be normalized by the sum of P (V ∩ D) over the
whole domain D to produce a true probability density function which we will refer to
as an “interrogation density function”:

(5.1) pV ∩D =
P (V ∩D)∫
D
P (V ∩D)

.

Equation (5.1) provides an appropriate function to assess how a particular region of
interest is interrogated. This normalized function allows different probe configurations
to be compared on an equivalent basis. For example, we can integrate pV ∩D over the
top layer T or bottom layer B, resulting in

∫
T
pV ∩D and

∫
B
pV ∩D, respectively. This

will provide the relative contribution from each layer to the detected signal in the
form of a probability.

Figure 5.2 presents the integration of pV ∩D over the top and bottom layers as
a function of s-d separation. These results reveal that roughly four times as much
detected signal has interrogated the bottom layer as opposed to the top layer. The
bottom layer probabilities increase by 4.5% (from 0.805 to 0.841) as the s-d separation
increases from 1 to 3 mm, revealing that the larger s-d separations are more effective
in interrogating the bottom layer than the smaller ones. Recall that by “interrogate”
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Fig. 5.2. Interrogation density function (5.1) integrated over the top T and bottom B layers as
a function of s-d separation.

we mean that the light both has visited the region and is subsequently detected. This
is not surprising, as the detected photons using probes with larger s-d separations
will possess longer trajectories that will typically penetrate deeper into the tissue.
Consistent with this bottom layer analysis, the top layer probabilities decrease by
nearly 20% (from 0.195 to 0.159) as the s-d separation increases from 1 to 3 mm,
indicating that the smaller s-d separations provide a considerable improvement in
the interrogation of the top layer. This information drawn from our transport model
assists in the design of probes for the accurate recovery of optical properties in each
layer.

We next solve the inverse problem using similar probe configurations to verify
the expected correlation between information given by our P (V ∩D) maps and the
ability of specific probe designs to determine optical property changes in one of the
layers.

5.2. Perturbed tissue inverse problem. Here we discuss the impact of the
interrogation maps on the accurate recovery of optical properties. To utilize informa-
tion gained from our P (V ∩D) maps, which are generated for various s-d separations,
probes with similar features are employed for the recovery of optical properties. How-
ever, for the purpose of performing a two-parameter inverse solution, at least two
detectors are required. To perform the inversion, we choose to employ six detectors
to make the inverse solution more robust with respect to signal noise in the measured
reflectance signal. These detectors are 200 μm in diameter and are positioned adjacent
to each other to form a linear detector array that spans 1.2 mm. We solve the inverse
problem with this detector array immediately adjacent to the source, resulting in s-d
separations that span [0–1.2] mm. We also consider the quality of the inverse problem
results in seven other configurations by moving the detector array progressively away
from the source in increments of 0.2 mm. This provides measurements with eight dis-
tinct ranges of s-d separations: [0–1.2] mm, [0.2–1.4] mm, [0.4–1.6] mm, [0.6–1.8] mm,
[0.8–2.0] mm, [1.0–2.2] mm, [1.2–2.4] mm, and [1.4–2.6] mm. These configurations of
six detectors with a single source provide a spatially resolved measurement of reflected
light. Clearly, the progressive movement of the detector array away from the source
results in the interrogation of deeper layers, as already seen in Figure 5.2.

We examine two test cases that represent transformations in each layer typical
of optical properties changes occurring from the development of precancer: (a) an
increase in optical absorption within the lower layer due to the recruitment of in-
creased blood flow and (b) an increase in optical scattering within the upper layer
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due to local cellular transformations. Simulated spatially resolved reflectance data are
generated using two-region Monte Carlo simulations with 2% Gaussian noise added.
Our method to determine μa and μs uses starting values taken from our background
(homogeneous) case. Perturbation and differential Monte Carlo methods [9, 10, 18]
are used in a two-parameter optimization algorithm to determine the changes to these
optical properties, μ̂a = μa + δμa and μ̂s = μs + δμs, prescribed in one of the layers
that best fit the simulated measured data. The solution identifies the layer optical
properties that best match the measured data in the least squares sense. Details of
the inverse solution method are described elsewhere [9, 10, 18].

5.2.1. Bottom layer μa perturbation. In our first test case we consider a
200% increase to μa relative to the background optical properties in the bottom
layer. All other optical properties are held fixed. This results in the following set of
optical properties: μs = 6.11/mm, μa = 0.034 in the top layer and μ̂s = 6.11/mm,
μ̂a = 0.068/mm in the bottom layer. Our two-parameter inverse solution seeks to
identify and decouple both μ̂s and μ̂a successfully.

Figure 5.3 displays the recovered optical properties in the bottom layer as a
function of the separation between the source and the linear array of detectors. Error
bars representing one standard deviation confidence intervals are shown. The solid
and dashed horizontal lines represent the true μ̂s and μ̂a values in the bottom layer,
respectively. The μ̂s recovery for all ranges of s-d separation is excellent. The quality
of the μ̂a estimates improves as the s-d separation increases, as is evidenced by more
accurate mean values and smaller confidence intervals. This is consistent with the
improved interrogation of the bottom layer at larger s-d separations as predicted by
Figure 5.2.
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Fig. 5.3. Recovered bottom layer absorption (◦) and scattering (•) coefficients due to a 200%
μa perturbation in the bottom layer as a function of the range of s-d separations provided by the
detector array.

While the inverse solution results are consistent with the features shown in Fig-
ures 5.1 and 5.2, it must be noted that these interrogation maps were generated from
the background, not the perturbed system. To focus on changes in the interrogation
provided by the perturbed system, we examine a map that displays the relative dif-
ference in the interrogation of the perturbed tissue as compared to the background
problem (shown in Figure 5.1). Figure 5.4 provides this result, specifically a map of
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Fig. 5.4. Plots of the relative difference between the interrogation density function for a 200%
μa perturbation in the bottom layer and the background system for s-d separations of 1, 2, and
3 mm (left to right).

[(p̂V ∩D − pV ∩D)/pV ∩D] for s-d separations of 1, 2, and 3 mm.
These maps display regions in which the relative difference between the inter-

rogation of the perturbed and background medium is zero (green (0 contour)), in-
creasingly negative (deeper blues (−0.2, −0.4 contours)), and increasingly positive
(yellow-orange-red (0.2, 0.4 contours)). Negative values indicate diminished interro-
gation in the perturbed medium relative to the background system, while positive
values indicate enhanced interrogation.

From these maps we observe that the enhancement of interrogation penetrates
deeper into the bottom layer with increasing s-d separation. This is consistent with the
improved inverse solution results at larger s-d separation. However, this interrogation
at larger s-d separation is offset by the increased absorption in the bottom layer of
the perturbed system, which depletes the detected signal. This may explain why the
μ̂s predictions do not improve markedly.

To understand the contributions from each layer, we integrate the data in Fig-
ure 5.4 over the top and bottom layers, (

∫
T
p̂V ∩D−

∫
T
pV ∩D)/

∫
T
pV ∩D and (

∫
B
p̂V ∩D−∫

B
pV ∩D)/

∫
B
pV ∩D, respectively. From these results (shown in Figure 5.5) we see that

the probability of interrogating the bottom layer is degraded slightly in the perturbed
medium due to the increased absorption in that layer. Despite the detrimental effect
of the increased bottom layer absorption, interrogation of the bottom layer still im-
proves with increases of the s-d separation. This again is consistent with the inverse
results shown in Figure 5.3. Figure 5.5 also displays the integrated top layer results.
Although these results are not pertinent to the bottom layer inverse problem con-
sidered here, they may shed light on other inverse problems in which determination
of top layer optical properties is desired within a system that is simultaneously un-
dergoing a change in the bottom layer absorption. All top layer values are positive,
indicating improved interrogation in this layer of the perturbed medium compared to
the background medium due to the increased absorption in the bottom layer.

5.2.2. Top layer μs perturbation. We now examine a second test case involv-
ing a 120% increase in μs in the top layer relative to the background value. All other
optical properties in both layers are held fixed. This results in the following set of op-
tical properties: μ̂s = 7.332/mm, μ̂a = 0.034/mm in the top layer and μs = 6.11/mm,
μa = 0.034/mm in the bottom layer. Figure 5.6 displays the recovered optical prop-
erties in the top layer as a function of the separation between the source and the
linear array of detectors. The results show improved estimates in the mean values of
μ̂s as well as smaller confidence intervals when the linear detector array is closer to
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Fig. 5.5. Relative difference between the interrogation density function for a 200% μa pertur-
bation in the bottom layer versus the background, integrated over the top T and bottom B layers as
a function of s-d separation.
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Fig. 5.6. Recovered top layer absorption (◦) and scattering (•) coefficients due to a 120% μs

perturbation in the top layer as a function of the range of s-d separations provided by the detector
array.

the source. This is in line with the results shown in Figure 5.2 that showed improved
interrogation of the top layer at the smaller s-d separations. The recovered mean
values of μ̂a display no correlation with s-d separation.

For this case it is also useful to examine plots of the relative difference between
the perturbed and background medium which are shown in Figure 5.7. The increased
scattering in the top layer of the perturbed medium results in enhanced interrogation
of this layer. This is especially true when the s-d separation is small, as evidenced
by the deep red colors (0.2 contour) in the top layer. However, this enhancement
dissipates rapidly as the s-d separation increases and indicates that the increased
scattering in the top layer plays a diminishing role in the detected signal. This is
easily discerned by focusing attention on the top layer and noticing that while this
area is primarily red (0.2 contour) at small s-d separations, it rapidly changes to
orange, yellow, and green (0.1 and 0 contours) at larger separations. Moreover, for
even larger separations (not shown), this region changes to blue (−0.2 contour). This
illustrates that as the s-d separation increases, the increased scattering in the top layer
no longer provides an enhanced interrogation of the top layer. This occurs because the
photon pathlengths between source and detector increase for larger s-d separations,
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Fig. 5.7. Plots of the relative difference between the interrogation density function for a 120%
μs perturbation in the top layer and the background system for s-d separations of 1, 2, and 3 mm
(left to right).

resulting in the depletion of the detected signal by absorption in the top layer. This is
the principal cause for the lack of significant improvement in the μ̂a predictions with
increasing s-d separation shown in Figure 5.6.

The relative difference maps integrated over each layer are shown in Figure 5.8.
These plots confirm that the integrated sampling of the top layer is enhanced in the
perturbed medium but that this enhancement decreases rapidly with increasing s-d
separation. Again, while the integrated bottom layer results are not directly relevant
to our top layer inversion, it is interesting to observe that the increased scattering
in the top layer has a diminishing effect on the bottom layer interrogation as the s-d
separation increases.
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Fig. 5.8. Relative difference between the interrogation density function for a 120% μs pertur-
bation in the top layer versus the background, integrated over the top T and bottom B layers as a
function of s-d separation.

It is important to note that for a given medium, the P (V ∩D) maps (Figures 5.1,
5.4, and 5.7) for all s-d separations were created from a single forward and a single
adjoint Monte Carlo simulation. To achieve this degree of computational efficiency, we
have made use of the symmetry of the layered problem and the probe configuration.
This enables the application of linear superposition to align the two simulations for any
selected s-d separation for the generation of the resulting P (V ∩D) maps. While the
use of the coupled forward-adjoint Monte Carlo technique is already more efficient
than conventional Monte Carlo simulation, use of symmetry further enhances the
computational efficiency of our methodology. A study of the comparative efficiency
of conventional Monte Carlo simulation and the coupled forward-adjoint technique
developed here is beyond the scope of this paper.
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6. Summary and conclusions. We have developed a transport-based tech-
nique that determines the joint probability that photons will visit any tissue subvol-
ume and subsequently be detected. Calculation of this conditional system response
(system interrogation) is based on an extension of classical reciprocity theory for radia-
tive transport that couples the responses of forward and adjoint Monte Carlo simula-
tions at the boundary of any designated tissue subvolume. These maps of conditional
response provide insight as to how s-d configurations affect the spatial distribution
of tissue interrogation. While our maps that display the conditional system response
were integrated over all angles, it is important to reiterate that angle-specific P (V ∩D)
maps can also be generated easily and will be of interest for many applications.

We then applied this computational methodology using data descriptive of a two-
layer epithelial/stromal tissue and produced P (V ∩ D) maps for varying s-d sepa-
rations. Moreover, we provided evidence that the maps produced by our coupled
forward-adjoint Monte Carlo method provide useful and reliable guidelines for the
choice of preferred probe designs, as measured by the successful recovery of optical
properties from selected tissue regions.

In biomedical optics applications, the tissue volume targeted for further examina-
tion is typically large compared to both the source and detector. In these cases, the
coupled forward-adjoint Monte Carlo approach will be especially advantageous from
a computational efficiency standpoint. Use of variance reduction methods applied to
both forward and adjoint simulations will further increase the efficiency of this new
computational method.
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