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ABSTRACT OF THE DISSERTATION

Evaluation of Clinical Trial Design Quality

Using Desirability Functions

by

Priscilla Kimberly Yen

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2019

Professor Weng Kee Wong, Chair

The design phase of a randomized controlled clinical trial is critical to its success.

With many non-adaptive designs and an explosive number of adaptive designs introduced

to the research community, the number of designs from which a statistician can select

has the potential to be overwhelming. At times, a statistician may be uncertain how a

newer adaptive design will perform in a particular setting of interest. While regulatory

agencies have originally treated adaptive designs with resistance, recent years have seen

more acceptance if there is extensive simulation work that shows good control of Type I

error.

There are many adaptive designs, and it is important to understand and compare

characteristics of competing designs before implementation. However, the overall lack

of understanding of the performance of adaptive designs with regard to several design

characteristics and the lack of an effective tool to measure overall design quality may have

led to clinical trial statisticians implementing traditional designs rather than adopting

more innovative methods. Yet adaptive designs have many appealing features that can

benefit both the clinical trial sponsor, who funds the trial, and the clinical trial subjects.

These strengths include early completion of a trial due to overwhelming efficacy and

minimizing the number of subjects assigned to an inferior treatment arm.
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The aim of this dissertation is to introduce methodology that provides statisticians

and other clinical trial stakeholders with a tool that can measure the overall quality of a

design and thereby facilitate comparison across competing designs. The methodology uti-

lizes desirability functions to measure various statistical and non-statistical features that

contribute to the quality of a design. Specifically, individual desirability functions evalu-

ate a library of components including statistical considerations, such as treatment group

size imbalance, probability of covariate imbalance, accidental bias, control for chrono-

logical bias, Type I error and power, and ethical considerations, such as minimizing the

expected number of failures and total sample size needed in the whole trial. The pro-

posed strategy is to compute an overall desirability score for each design, use it to rank

the clinical trial designs of interest, and select the most relevant and efficient design for

the trial’s various objectives. To facilitate use of the proposed methodology, the project

includes the development of an online interactive tool for the user to incorporate input

before desirability functions are generated to help the user select the most appropriate

design for the trial.
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Notation

nE number of subjects in experimental arm (group E)
nC number of subjects in control arm (group C)
nE(j) number of subjects in experimental arm (group E) at the time of enrollment of the jth patient
nC(j) number of subjects in control arm (group C) at the time of enrollment of the jth patient
n total sample size = nE + nC
Diffj nE(j)− nC(j)
ϕ target allocation: the target proportion of subjects in the experimental arm E = nE

nE+nC
φ probability that subject j will be assigned to the experimental arm E
YEj response of subject j in experimental arm (group E)
YCj response of subject j in control arm (group C)
fE number of failures in experimental arm (group E)
fC number of failures in control arm (group C)
α alpha-level: probability of rejecting a null hypothesis when in fact the null hypothesis is true
Tj experimental arm indicator variable for subject j: 1 if in experimental arm E, 0 if in control arm C
iter the number of iterations performed in a simulation, with each iteration completing one trial
di individual desirability score for a realized value of the ith characteristic (i = 1, · · · ,m)
k a kurtosis parameter used in Harrington’s desirability function
L lower acceptable limit of a response’s or characteristic’s value
U upper limit of a response’s or characteristic’s value
T target value of a response’s or characteristic’s value (NTB variables only)
r scale parameter for individual desirability functions (STB and LTB only)
r1, r2 scale parameters for individual desirability functions (NTB only)
m the number of characteristics included in an overall desirability function
wi weight for characteristic i in calculation of D
D overall desirability score for a design
p the number of covariates that contribute to a response, used in genetic algorithms (Section 3.5)
θ (µE , µC , σ

2
E , σ

2
C)

R nE/nC
ρ correlation between two treatment arms’ responses
p (pE , pC) = probabilities of success in experimental and control arms
β (β0, β1) = (baseline outcome for the experimental arm, treatment effect for the experimental arm)

(Details in Section 4.1.5)

xiv



Acknowledgments

This research has in part been supported by the AIDS Training Grant T32/AI-07370.

I would like to acknowledge my advisor, Dr. Weng Kee Wong, and my committee members for their time,

thoughts, and review of this work. I owe my progression from a “I’ll be done in two years” master’s student

to a committed doctoral student to the support of my family and the inspiration from my professors. Leaving

behind a full-time job in finance to start anew at UCLA Biostatistics, I confirmed I was beginning down

(or up?) a path that indeed aligned with my true interests thanks to Dr. Ron Brookmeyer’s Introduction

to Biostatistics class. Since then, the classes of Dr. Thomas Belin and Dr. Rob Weiss, as well as several

mentors from industry, led me to wonder if perhaps I would want to pursue my PhD. I am forever grateful

to the UCLA Department of Biostatistics for their support in my doctoral endeavours.

This journey would not have been possible without the love and support of my husband Simpson Wong,

my parents Eugene and Kathy Yen, and my close friends and family.

xv



Biographical Sketch

Education

Master of Science, Department of Biostatistics Sept 2012 - Dec 2014
University of California, Los Angeles

Bachelor of the Arts, Economics-Statistics Sept 2004 - May 2008
Columbia University in the City of New York

Professional Employment

Biostatistics Manager - Center for Design & Analysis
Amgen, Thousand Oaks Nov 2018 - present

Biostatistics Intern - US Medical Affairs Biometrics, Oncology Area
Genentech, South San Francisco May 2016 - Aug 2016

R&D Grad Intern - Global Statistical Programming, Bone Therapeutic
Area
Amgen, Thousand Oaks Jun 2014 - Sept 2014
Amgen, Seattle Jun 2013 - Aug 2013

Research Associate - Web Analytics & Business Development Division
Kazaana, Inc., Menlo Park, CA Oct 2011 - Dec 2012

Data Operations Associate
Moody’s Analytics, San Francisco, CA Jul 2008 - Oct 2011

Academic Employment

Teaching Assistant, UCLA Department of Biostatistics
100A - “Introduction To Biostatistics” (t-tests, confidence intervals, sampling) Mar 2018 - Jun 2018
100B - “Introduction to Biostatistics” (confounding, regression, odds ratio,

survival)
Jan 2018 - Mar 2018

203A - “Data Management & Statistical Computing” (SAS, R) Sept 2017 - Dec 2017
200B - “Biostatistics” Jan 2017 - Mar 2017

xvi



Graduate Student Researcher Mar 2017 - Jun 2017
Doctor Evidence, Santa Monica, CA

Graduate Student Researcher Nov 2013 - Jan 2017
UCLA AIDS Institute, Los Angeles, CA

Statistician - Department of Psychology Aug 2016
University of Stellenbosch, Stellenbosh, South Africa

College Academic Mentor Sept 2013 - Jun 2014
UCLA College Academic Counseling Department, Los Angeles, CA

Publications and Presentations

Bantjes J, Tomlinson M, Weiss RE, Yen PK, Goldstone D, Stewart J, Qondela T, Rabie S, Rotheram-Borus
M-J. “Non-fatal suicidal behaviour, depression and poverty among young men living in low-resource com-
munities in South Africa”, BMC Public Health, 2018 Oct; 18:1195.

Epeldegui M, Magpantay L, Guo Y, Halec G, Cumberland W, Yen PK, Macatangay B, Margolick J, Rositch
A, Wolinsky S, Martinez-Maza O, Hussain S: “A prospective study of serum microbial translocation biomark-
ers and risk of AIDS-related non-Hodgkin lymphoma”, AIDS, 2018 Feb; epub ahead of print.

Grenon SM, Owens CD, Nosova EV, Hughes-Fulford M, Alley HF, Chong K, Perez S, Yen PK, Boscardin J,
Hellmann J, Spite M, Conte MS. “Short-Term, High-Dose Fish Oil Supplementation Increases the Production
of Omega-3 Fatty Acid-Derived Mediators in Patients With Peripheral Artery Disease (the OMEGA-PAD I
Trial)”, Journal of the American Heart Association, 2015 Aug; 4(8):e002034.

Nosova EV, Yen P, Chong KC, Alley HF, Stock EO, Quinn A, Hellmann J, Conte MS, Owens CD, Spite M,
Grenon SM. “Short-term physical inactivity impairs vascular function”, Journal of Surgical Research, 2014
Aug; 190(2):672-82.

Grenon SM, Owens CD, Alley H, Chong K, Yen PK, Harris W, Hughes-Fulford M, Conte MS. “n-3 Polyunsat-
urated fatty acids supplementation in peripheral artery disease: the OMEGA-PAD trial”, Vascular Medicine,
2013 Oct; 18(5):263-74.

Awards

42nd Annual Lester Breslow Student Speaking Competition Winner Apr 2016

Fielding School of Public Health Student Writing Competition Departmental Finalist Jan 2016

xvii



Chapter 1

Randomization Procedures: A Review

The objective of this dissertation is to demonstrate the usefulness of desirability functions as a tool in the

evaluation of clinical trial design quality. The motivation behind this research is driven by two reasons: first,

newly defined adaptive designs in the literature are abundant but have yet to be commonly implemented in

clinical trial practice, mainly due to uncertainty regarding the overall performance and quality of these new

designs; second, the multitude of designs available today make a selection overwhelming.

An overview of the clinical trial designs considered in this dissertation is detailed in this chapter. Section

1.1 reviews nonadaptive designs - designs of trials with a predetermined sample size and treatment group

allocation which do not change regardless of the data observed during the trial. Section 1.2 provides an

introduction to response-adaptive randomization (RAR) - designs that seek to incorporate information from

observed data during the trial to adjust sample size or treatment group allocations. Some popular target

allocations of RAR are discussed.

Expanding upon RAR designs discussed in Section 1.2, Chapter 2 introduces a new target allocation

that seeks to minimize total expected responses in two-arm trials when responses between the two arms are

correlated. This new target allocation will be called R.corr throughout this work, and adds to the expansive

list of designs a statistician might consider in the planning stages of a trial.

To evaluate design choices, it is helpful to review desirability functions and how they have been utilized

in the biomedical research community thus far, which is the topic of Chapter 3. Chapter 4 follows with a

framework implementing desirability functions for design quality evaluation. A few examples of implemen-

tation of the framework are provided. An online tool is available to the reader for exploration and utilization

of this framework. Chapter 5 provides a more detailed case study of evaluating different designs that could

be used in a clinical trial studying vertical transmission of HIV in pregnant women. The dissertation closes

1



with an Epilogue summarizing the work and discussing future research topics.

* * *

The designs in this chapter touch on the surface of available designs for two-arm trials and are clearly

not comprehensive; topics such as enrichment designs, platform designs, wedge designs, Bayesian designs,

and designs for trials for personalized medicine are not discussed. Designs selected for review are commonly

mentioned in educational textbooks on clinical trial procedures and statistical inference in randomized clinical

trials. Specifically, the non-RAR designs of Section 1.1 are discussed as a foundation to understanding trial

designs in Rosenberger, et. al’s Randomization in Clinical Trials: Theory and Practice [55]. The textbook

also touches on a few of the RAR designs in Section 1.2. A larger selection of the RAR designs in this

work are inspired by their discussion in Menon, et. al’s Modern Approaches to Clinical Trials Using SAS:

Classical, Adaptive, and Bayesian Methods [61]. The purpose of this review is to familiarize the reader with

such designs and their design characteristics to be discussed in Chapter 4. The reader is then free to extend

the concepts in Chapter 4 to other types of designs, including designs with more than two treatment arms.

Although there are myriad designs widely discussed in the literature, most clinical trials of large phar-

maceutical companies lean towards traditional designs such as complete randomization or permuted block

designs. While the benefits of adaptive designs are not dismissed, trialists may be hesitant to utilize them

due to their limited acceptance by regulatory agencies such as the Food and Drug Administration (FDA).

The hesitance here is often attributed to uncertainty about control of the Type I error in adaptive designs,

as well as other weaknesses that may offset their strengths, including concerns about biased treatment effect

estimates in the presence of time trends. Chapter 4 is a useful contribution because it provides a framework

to objectively assess strengths and weaknesses of various designs so that the overall quality of designs in

regards to a specific research hypothesis may be better understood.

Throughout this thesis, we focus on 2-arm trials, denoting Treatment E as the experimental arm, and

Treatment C as the control arm, and we assume we have resources to recruit n patients. A set of treatment

assignments for n patients is T1, ..., Tn, where Tj = 1 when patient j is assigned to experimental arm E, and

Tj = 0 when patient j is assigned to control arm C. The probability of being assigned to the experimental

arm E is denoted by Pr(Tj = 1) = E(Tj). In this chapter, we denote the difference in sample size between

experimental arm E and control arm C when subject j is enrolled with Diffj = nE(j)− nC(j).
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1.1 Nonadaptive Designs

Nonadaptive designs allocate subjects to a specific treatment arm with a probability that is independent

of how other subjects have responded so far in the trial, as well as of the current subject’s baseline char-

acteristics. Because these design do not adapt to prior subject performance or current subject’s covariates,

they are called “nonadaptive” designs. Amongst nonadaptive designs, we discuss the traditional Complete

Randomization Design, Forced Balance Designs, and Biased Coin Designs.

Complete Randomization Design (CRD)

In Complete Randomization Design (CRD), each patient is enrolled into either treatment arm E or control

arm C with probability 1/2. There are no restrictions imposed upon this design.

An advantage of CRD is the reduction of certain types of biases: such as selection bias - since it is equally

likely to guess the next treatment assignment correctly or incorrectly, and biases due to covariate imbalance -

since the completely random assignment of treatments is expected to lead to a balance in covariates between

treatment arms.

One disadvantage of CRD is imbalance between treatment group size. While different treatment group

sizes does not bias the estimate of the treatment effect, larger imbalances lead to less precision of the

estimate, and hence, a decrease in power. A second disadvantage is that it is unable to address ethical

concerns: as more information is learned about the two treatment arms, complete randomization will ignore

this information and still assign patients to either treatment arm with equal probabilities. Consequently,

the design does not incorporate concern for the patient’s well-being and does not increase the probability of

being assigned to what is considered the superior treatment arm at the time.

1.1.1 Forced Balance Designs

Truncated Binomial Design (TBD)

The Truncated Binomial Design (TBD) (Blackwell and Hodges, 1957) is a forced balance procedure, mean-

ing that exactly half of n patients will be assigned to each treatment arm. In this allocation rule, complete

randomization is performed until one treatment arm contains half of the pre-determined sample size; subse-

quently, all remaining patients will receive the other treatment.

Let Fn = T1, ..., Tn be a set of treatment assignments for n stages of the randomization process. Then,

the truncated binomial design allocation rule is defined by:

E(Tj |Fj−1) =
1

2
, if max(nE(j − 1), nC(j − 1)) <

n

2
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= 0, if nE(j − 1) =
n

2

= 1, if nC(j − 1) =
n

2
.

Note that Pr(Tn = 1) = E(Tn). While the truncated binomial design offers balance treatment arm sizes,

when one treatment arm is considered ”full”, it is clear that the remaining patients will be forced into the

remaining treatment arm, resulting in selection bias and high risk of covariate imbalances.

Random Allocation Rule (RAR)

The Random Allocation Rule (RAR) is also a forced balance procedure, with

E(Tj |Fj−1) =
n
2 − nE(j − 1)

n− (j − 1)
, j = 2, ..., n,

and E(T1) = 1/2.

One can think of this allocation rule in terms of an urn model. One samples from an urn with n/2 balls

for experimental arm E, and n/2 balls for control group C, without replacement. While the RAR guarantees

treatment group size balance, it shares the TBD’s weakness of having 100% predictability of treatment

assignments once n/2 patients have been assigned to one of the treatment groups. A second weakness is its

susceptibility to covariate imbalance.

Permuted Block Design (PBD)

While Truncated Binomial Design guarantees balance in treatment group size at the end of the trial, it does

not guarantee balance at several time points during the trial. In fact, all two of three designs previously

discussed are prone to severe treatment size imbalance at some point during the trial.

In order to avoid severe treatment size imbalance during the entire course of a trial, clinical trialists often

use ”blocks”. Forced balance randomization within blocks is used in order to ensure balance at the end of

each block. Specifically, in the Permuted Block Design (PBD) (Zelen, 1974), there are M blocks of size B,

where B = n/M . Each block is filled using a forced balanced procedure (e.g. Random Allocation Rule,

Truncated Binomial Design), so that there are M occurrences of balanced allocation during the course of

the trial. The maximum imbalance at any time point is then half a block size, B/2.

Let Rj define the position patient i takes within his block. If we fill blocks using RAR, the allocation

rule is:

E(Tj |Fj−1, B,Rj) =

B
2 −

∑j−1
l=j+1−Rj Tl

B −Rj + 1
.

Ensuring balance consistently throughout a trial is important when patient’s outcomes or covariates follow
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a time trend throughout the trial. If there are time-heterogeneous covariates, allowing large treatment size

imbalances during a trial while using CRD, RAR, or TBD could result in significant covariate imbalances.

Similarly, if the trial’s outcome of interest follows a time trend, large treatment size imbalances would result

in uncertainty regarding whether an observed treatment effect was in fact due to treatment itself or due

to the treatment size imbalance. These are examples of chronological bias, which will be detailed more in

Section 4.1.5.

Random Block Design (RBD.RAR, RBD.TBD)

Just as forced balance procedures are subject to selection bias, so is the permuted block design, which

implements forced balance procedures within each ”block” of patients. This is because, if the block size is

known, those in charge of enrolling patients may realize at one point that the probability of being assigned

to a specific treatment is guaranteed.

The Random Block Design protects against this risk, since block sizes are randomly selected from a

discrete uniform distribution. Let Bmax be the maximum imbalance of number of subjects in the two arms,

which is half of the largest block. The different block sizes, picked at random with probability 1/Bmax after

the fulfillment of a single block, are then 2, 4, 6, ..., 2Bmax. Let Bj be the block size of the block with the

jth patient. Let Rj define the position patient j takes within his block, ranging from 1,...,Bj . Each block

can be filled with any forced balance procedure. If we fill each block using RAR, the allocation rule is:

E(Tj |Fj−1, Bj , Rj) =

Bj
2 −

∑j−1
l=j+1−Rj Tl

Bj −Rj + 1
.

In this work, we refer to random block design filling blocks with random allocation rule as RBD.RAR,

and random block design filling blocks with truncated binomial design as RBD.TBD. The number of possible

block sizes fluctuates depending on Bmax, with larger values of Bmax allowing for more potential block sizes,

yet also exposing the trial to the risk of a treatment size imbalance as large as Bmax. One way to address

this is to use only permutations of block sizes that sum to exactly a pre-determined total sample size n.

1.1.2 Biased Coin Designs

Biased coin designs aim to obtain approximately equal allocation while still allocating subjects to treatments

with some randomness. They are different from response-adaptive designs discussed in the next Section

(Section 1.2), because biased coin designs consider only the treatment allocation history, and response-

adaptive designs also take into account patient responses or baseline covariates. Atkinson (2014) provides

reviews of various biased-coin designs and their ability to achieve treatment group size balance [6]. This

subsection introduces a number of biased coin designs; Chapter 4 evaluates the first five as candidate designs.
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Efron’s Biased Coin Design (BCD p)

The Biased Coin Design (Efron, 1971) seeks to provide approximate balance of treatment assignments

whenever the trial is stopped while still providing randomization to reduce biases. This is achieved by

allocating patients to the underrepresented treatment group with a higher, fixed probability. The allocation

rule is defined as

E(Tj |Fj−1) =



1
2 , if |Diffj−1| = 0,

p, if Diffj−1 < 0,

1− p, if Diffj−1 > 0,

(1.1)

where 0.5 < p <= 1, and Diffj is defined just before Subsection 1.1. Clearly, when p = 1/2, we have

complete randomization with the restriction of a maximal imbalance of n/2, and when p = 1, Efron’s biased

coin design simplifies to a permuted block design with a block size of 2, so that every other patient’s allocation

assignment is deterministic, with a maximal imbalance of 0 if n is even. The parameter p thus represents

a trade-off between balance and predictability. Efron’s original paper states: “The value p = 2/3, which is

the author’s personal favourite, will be seen to yield generally good designs...”

Big Stick Design (BSD)

The Big Stick Design (BSD) allows a degree of imbalance up to a magnitude given by a fixed imbalance

tolerance parameter b. The allocation rule is given by:

E(Tj |Fj−1) =



1
2 , if |Diffj−1| < b,

0, if Diffj−1 = b,

1, if Diffj−1 = −b

(1.2)

Big Stick Design (proportion) (proportionBSD)

The Big Stick Design with Maximum Proportionate Degree of Imbalance replaces the absolute difference

used in the Big Stick Design with an acceptable degree of imbalance, Diffj−1/(j − 1). The allocation rule,

then, is:

E(Tj |Fj−1) =



1
2 , if Diffj−1/(j − 1) < prop,

0, if Diffj−1/(j − 1) = prop,

1, if Diffj−1/(j − 1) = −prop,

(1.3)

where prop is a pre-defined acceptable degree of imbalance.
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Biased Coin Design with Imbalance Intolerance (BCDII(p))

The Biased Coin Design with Imbalance Intolerance (BCDII(p)) combines the concepts of the big stick design

and Efron’s biased coin design [19]. The allocation rule is defined by:

E(Tj |Fj−1) =



1
2 , if Diffj−1 = 0,

0, if Diffj−1 = b,

1, if Diffj−1 = −b,

p, if 0 < Diffj−1 < b,

1− p, if − c < Diffj−1 < 0

(1.4)

This allocation rule results in a random walk on the space of 0,...,b, with reflecting barriers 0 and b.

Accelerated Biased Coin Design (ABCD(a))

The Accelerated Biased Coin Design (ABCD(a)) is a bigger umbrella of biased coin designs with a parameter

a. It contains the big stick design, Efron’s biased coin design, and biased coin design with imbalance

intolerance as special cases. Let F be a function that maps integers to [0,1] such that F (x) is decreasing,

and F (−x) = 1− F (x). The allocation rule is then:

E(Tj |Fj−1) = F (Diffj−1),

where

Fa(x) =



|x|a
|x|a+1 , if x ≤ −1,

1
2 , if x = 0,

1
|x|a+1 , if x ≥ 1.

(1.5)

The parameter a controls the degree of randomness, with a = 0 equating complete randomization [4].

As a → ∞, the ABCD is equivalent to the Big Stick Design with b = 2. The design is called ‘accelerated’

because the parameter a exponentially weights the imbalance Diffj−1.

Wei’s Urn Design

The urn design is inspired by an urn that contains α balls representing subjects to be assigned to treatment

group E, and α balls representing subjects to be assigned to control arm A. When a subject is randomized,

a ball is drawn and subsequently replaced. If the ball drawn assigns a subject to group E, then β balls for

group C are added to the urn, thus increasing the probability that the next subject will be assigned to the
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control arm C. Similarly, if the ball drawn assigns a subject to group C, then β balls for group E are added

to the urn, thus increasing the probability that the next subject will be assigned to the experimental arm E.

Thus, at any point, the urn composition is skewed so that the probability of a subject being assigned to the

underrepresented arm is higher. The allocation rule is

E(T1|F0) = 1/2.

E(Tj |Fj−1) =
α+ βnC(j − 1)

2α+ β(j − 1)
, j ≥ 2.

Note that this is different than Efron’s biased coin design and Big Stick Design because the degree of the

probabilities of assignment under Wei’s design alter according to the degree of imbalance [89, 90].

Generalized Biased Coin Design (GBCD)

Smith (1984) introduced a more general biased coin design, with an allocation rule given by

E(Tj |Fj−1) =
nγC

nγE + nγC
,

with γ controlling the randomness of the design. When γ = 0, the GBCD reduces to complete randomization.

On the other hand γ = 1 reduces to Wei’s urn design. Smith recommends γ = 5 in his paper for its ability

to perform well with regards to degree of balance achieved, selection bias, accidental bias, and statistical

inference of post-trial results.

1.2 Response-Adaptive Randomization

Response-Adaptive Randomization (RAR) designs adapt to the cumulative responses observed at a pre-

specified period in the study and may increase or decrease the probability a subject is assigned to a given

treatment arm. RAR designs target an allocation proportion, which depends on pre-stated objectives. The

next subsection provides an overview of target allocation schemes frequently discussed in literature.

1.2.1 Target Allocations

Target allocation is defined as the ideal proportion of subjects placed in the experimental arm E: nE/(nE +

nC). The ideal proportion varies depending on one’s objectives. For example, urn models target an alloca-

tion proportion inversely proportional to the corresponding failure rate in binary response trials. Neyman

allocation seeks to maximize power for a given sample size. RSIHR allocation, named after the initials of

the authors on the original paper (Rosenberger, Stallard, Ivanova, Harper, and Ricks), seeks to minimize
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the expected number of failures of a trial with a given power [72]. Biswas and Mandal (BM) allocation is a

generalization of optimal allocation to normal responses; henceforth we term their proposed allocation as BM

allocation [13]. While the aforementioned allocations are optimal relative to some objective, Bandyopadhyay

and Biswas (BB) allocation assigns treatment according to a mapping of the current difference in means [7].

These target allocations schemes are summarized in Table B.2.

Objective Allocation Name Binary Continuous Normal

1. Maximize power for a fixed
sample size

Neyman
√
pEqE√

pEqE+
√
pCqC

σE
σE+σC

2. Minimize expected number
of treatment failures for a fixed
power

RSIHR
√
pE√

pE+
√
pC

√
µCσE√

µCσE+
√
µEσC

3. Minimize treatment failures
and ensure fewer patients are al-
located to inferior treatment

RSIHR2 NA
√
µCσE√

µCσE+
√
µEσC

if (µE < µC and σE
√
µC/σC

√
µE) > 1

or (µE > µC and σE
√
µC/σC

√
µE) < 1;

1/2 otherwise

4. Urn model (good for low-
ering expected number of treat-
ment failures when pE + pC > 1)

Urn qC
qE+qC

NA

5. Minimize patients with re-
sponse greater than c

Biswas Mandal
(BM)

NA

√
Φ(

µC−c
σC

)σE√
Φ(

µC−c
σC

)σE+
√

Φ(
µE−c
σE

)σC

6. Not formally defined Bandyopadhyay
Biswas (BB)

NA Φ(µC−µET )

7. Minimize the maximum eigen-
value of the inverse of Fisher’s in-
formation (E-optimality)

Baldi Antognini
Giovagnoli (Baldi)

see text NA

Table 1.1: Summary of Allocations Targeted By RAR Designs.

Neyman Allocation

The Neyman allocation maximizes power for a given sample size n and fixed probabilities of success in the

treatment arms [72]. The Neyman allocation can be applied to either binary or continuous responses [96].

The derivation in the binary case is presented here:

Consider a two-arm clinical trial with a binary response. Let pE be the probability of success in experi-
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mental arm E, and pC the probability of success in control group C. Then, qE and qC are the probabilities

of failure for treatment arms A and B, respectively. Let there be a fixed nE patients in group E and nC

patients in C, with nE + nC = n. To test whether the probability of success in the two treatment groups is

equal, we test the hypothesis:

H0 : pE − pC = 0 versus H1 : pE − pC 6= 0.

We apply the Wald test for a user-specified Type I error rate using the test statistic

Z =
p̂A − p̂B√
p̂Aq̂A
nE

+ p̂B q̂B
nC

.

Rather than fixing the sample proportions as nE = nC = n/2 and finding the minimum sample size n

that achieves the desired power, we can instead fix the variance of the test under the alternative hypothesis,

and find the allocation proportion that minimizes the total sample size. The equivalent question is: for fixed

sample size, what allocation maximizes power?

Mathematically, the general optimization problem has the form:

min
nE ,nC

wEnE + wCnC (1.6)

subject to V ar(pE − pC) = K,

where wE and wC are positive weights, and pT = (pE , pC). For the problem at hand, we seek to fix the

variance and minimize the total sample size, so our weights wE and wC are both equal to 1.

Let ϕ be the proportion of patients to be assigned to experimental arm E. Then nE = ϕn, nC = (1−ϕ)n,

and the variance of the estimated difference in probabilities of success pE − pC is

V ar(p̂E − p̂C) =
pEqE
ϕn

+
pCqC

(1− ϕ)n
:= K,

and hence

n =
pEqE
ϕK

+
pCqC

(1− ϕ)K
. (1.7)

We minimize Eq. 1.7 with respect to ϕ by taking the derivative, setting equal to zero, and solving for ϕ.

This gives
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dn

dϕ
= −pEqE

ϕ2
+
pCqC
1− ϕ

2
= 0

and

ϕ =

√
pEqE√

pEqE +
√
pCqC

.

This is known as the Neyman allocation. A weakness of this allocation is that when the success probabil-

ities on both treatment groups are high (pE + pC > 1), more subjects are assigned to the weaker treatment

arm.

RSIHR Allocation

While one objective could be to minimize the total sample size in a trial while still achieving sufficient power,

a second objective could be instead to minimize the total number of treatment failures. This objective equates

to wA = qE and wB = qC in Eq. 1.6. RSIHR allocation (named after the initials of the authors on the

original paper) seeks to minimize treatment failures for a fixed power [72], and the allocation is given by:

ϕ =

√
pE√

pE +
√
pC
.

In the continuous case, ϕ is derived from solving the optimization problem:

min
nE
nC

µEnE + µCnC

s.t.
σ2
E

nE
+
σ2
C

nC
= K.

A direct calculation yields the optimal proportion of subjects in the experimental arm to be

ϕ =

√
µCσE√

µCσE +
√
µEσC

.

However, when µE < µC , it is possible for nE
nC

to be less than 1/2. This shows that while power is maximized

for a fixed expected number of treatment failures, this target allocation has the potential to allocate more

patients to the inferior treatment. RSIHR2 seeks to remove this ethical flaw by modifying the allocation

[96].

Urn Allocation

In trials with binary responses, urn allocation can be used when the probability of success is high in both
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the experimental and the control arms, specifically, when pE + pC > 1. The target allocation is

ϕ =
qE

qE + qC
.

Urn models such as the randomized play-the-winner (RPW) (Wei et al., 1978) and drop-the-loser (DL) rule

(Ivanova, 2003) are procedures that target the Urn allocation, which is only a property of the procedure

rather than the solution to a specific optimality problem.

Biswas and Mandal Allocation (BM)

Biswas and Mandal (2004) sought to extend the concept of minimizing failures in trials with binary outcomes

to trials with normal responses. The resulting allocation assumes that smaller responses are better and

minimizes the total number of patients with response greater than c, thereby minimizing the number of

failures as defined by a threshold [13]. The target allocation is

ϕ =

√
Φ(µC−cσC

)σE√
Φ(µC−cσC

)σE +
√

Φ(µE−cσE
)σC

.

Bandyopadhyay and Biswas Allocation (BB)

Bandyopadhyay and Biswas (2001) proposed a target allocation that does not seek to optimize any formal

objective property. S is a scaling factor or “tuning constant”, with larger values of S resulting in higher

proportions of allocation to the better treatment, but also higher variability in the allocation proportion.

The values 1, 2, and 3 are considered in the original paper. The authors recommend to set S = 2 [7]. The

target allocation is

ϕ = Φ(
µC − µE

S
).

Baldi Antognini and Giovagnoli (Baldi)

Baldi Antognini and Giovagnoli (2010) proposed a target allocation that has both ethical and inferential aims

[5]. They seek to minimize the maximum eigenvalue of the inverse of Fisher’s information (E-optimality).

Consider the compound criterion which combines ethical and inferential objectives:

Φw(ϕ) = w

(
ψE(ϕ)

ψ∗E

)
+ (1− w)

(
ψI(ϕ)

ψ∗I

)
,

where w ∈ (0, 1) is a user-defined weight for importance of ethics, 1 − w is the weight given to inference,

and ψE(ϕ) = qEϕ+ qC(1−ϕ) is the expected proportion of treatment failures, ψ∗E = min(qE , qC), ψI(ϕ) =

pEqE/ϕ+ pCqC/(1−ϕ) is the variance of the estimated treatment difference, and ψ∗I = (
√
pEqE +

√
pCqC)2

is the minimum value of ψI(ϕ) for ϕ ∈ (0, 1). The goal is to minimize the compound criterion. We can
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see, then, w places more importance on minimizing ψE(ϕ), the expected proportion of failures, and (1−w)

places more importance on ψI(ϕ), which minimizes the variance of the estimated treatment difference.

The target allocation ϕ is the solution in (0,1) of the following equation

w

1− w
pE − pC

min(qE , qC)

(√pCqC√
pEqE

+ 1
)2

=
(
√
pCqC√
pEqE

− 1)ϕ2 + 2ϕ− 1

(ϕ(1− ϕ))2
.

The examples in this dissertation will use w = 1/2, giving equal weight to ethics and inference.

1.2.2 Response-Adaptive Randomization (RAR) Designs

Several randomization procedures have been proposed that can target a specific allocation such as those

discussed in the previous subsection. These randomization procedures utilize an allocation function which

calculates the probability that the next subject is to be assigned to the treatment arm. One desirable char-

acteristic of an RAR procedure is its ability to attain the target allocation by the end of subject enrollment

in a trial. Some examples of response-adaptive randomization (RAR) designs are discussed in this section.

Melfi & Page, 2000 (MP)

Let Y1, . . . , Yn be subject responses. If Tj = 1, Yj is normally distributed with mean µE and variance σ2
E .

If Tj = 0, Yj is normally distributed with mean µC and variance σ2
C . A simple allocation function is to

simply set the probability of being assigned to the experimental arm to be the value of the target allocation

ϕ(θ̂j)target, where the hat indicates that the target allocation is estimated after j responses.

φ = ϕ(θ̂j)target

Melfi et al. (2000) showed that nE/n → ϕ(θ) almost surely [60]. However, this function that directly

sets the probability of being assigned to the experimental arm to be directly equal to the target allocation

proportion induces high variability. Extra variance in the treatment group sizes nE and nC can also negatively

impact the optimal properties of ϕ(θ) [55].

Eisele & Woodroofe, 1995 (EW1995)

Eisele & Woodroofe (1995) presented a response-adaptive randomization (RAR) procedure [29]. Assume the

same response model as presented in MP design above. Let

g(x, y) = [1− (
1

y
− 1)x],

where x ∈ [0, 1] and y ∈ [0, 1]. Then Eisele & Woodroofe’s procedure is defined by:
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φ = g

(
nE(j − 1)

j − 1
, ϕ(θ̂j)target

)
.

Doubly-Biased Coin Design (DBCD)

The Doubly Biased Coin Design (DBCD) is a RAR procedure that obtained its name from consideration

of both the proportion of enrolled patients assigned to each treatment arm and the estimate of the target

allocation proportion [47]. Biased coin designs are able to reduce experimenter/selection bias.

The procedure aims to fulfill the goal of allocating nE patients to treatment E, such that nE
nE+nC

equals

the target allocation proportion. Treatment E is assigned, then, with a probability less than the current

maximum likelihood estimate (MLE) of the target proportion when the observed proportion is larger than

this estimate. Similarly, Treatment E is assigned with a probability greater than the current MLE of the

target proportion when the observed proportion is larger than this estimate.

One strength of the DBCD is its reduction in variability of treatment assignments, which it does by

reducing the distance between nE(j) and ϕ(θ̂j). Specifically, let allocation function g(x, y) be defined on

[0, 1]× [0, 1], where

g(x, y) =
y(y/x)γ

y(y/x)γ + (1− y)((1− y)/(1− x))γ
, (1.8)

and the DBCD assignment rule is defined by:

φ = g

(
nE(j − 1)

j − 1
, ϕ(θ̂j)target

)
. (1.9)

Note that if the procedure seeks to consistently target ϕ(θ) = 0.5, the design is no longer response-

adaptive, but reduces to Smith’s generalized biased coin design (GBCD) as discussed in Section 1.1.2. Rather

than setting ϕ(θ) to be constant, the target allocation is recalculated for each enrolling patient using estimates

of the means and variances of the previously enrolled patients. The nonnegative parameter γ determines

the degree of randomness, with γ = 0 being the most random due to φ simplifying to ϕ(θ̂j)target. When

γ → ∞, DBCD becomes an almost deterministic procedure [47]. In this dissertation, we use γ = 2, which

was recommended by Hu et al. (2004) as a suitable trade-off between reducing variability and maintaining

sufficient randomness.

Below is a step-by-step algorithm for constructing a DBCD:

� Step 1. For given error rates Type I (α) and Type II (β), and nominal values of µE , µC , σE , σC ,
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determine the total sample size n, where n = nE + nC , and

nE = nC =
(z1−α/2 + z1−β)2(σ2

E + σ2
C)

(µE − µC)2
.

� Step 2. Let m0 be a user-selected block size for an initial 2m0 subjects. These first 2m0 subjects are

enrolled using permuted block design during a “run-in period”, where we do not yet want DBCD to

be implemented due to the little amount of data accrued. Specifically, enroll 2m0 subjects, with the

probability of each subject j being placed in treatment E equaling m0−nE(j−1)
2m0−(j−1) , where j = 1 . . . 2m0,

and nE(j−1) is the number of patients enrolled in treatment arm E at the time of the (j−1)st patient.

The purpose of this step is to gather enough patients into each treatment group so that estimation of

µ̂E , µ̂C , σ̂E
2, σ̂C

2 can be done in the next step.

� Step 3. Estimate µ̂E , µ̂C , σ̂E
2, σ̂C

2 from the available data.

� Step 4. Let Tj = 1(subject j in experimental arm E). Then, the probability that subject j is enrolled

into experimental arm E can also be denoted as the expected value of Tj , which is calculated using the

assignment rule in Equation 1.9.

� Step 5. Generate a value U from the Uniform[0,1] distribution. If U < [E(Tj |F(j− 1)], assign subject

j to treatment arm E. Otherwise, assign subject j to treatment arm C.

� Step 6. Repeat Steps 3 through 5 until n total subjects have been enrolled.

Sequential Maximum Likelihood Estimation Design (SMLE)

The Sequential Maximum Likelihood Estimation (SMLE) Design sets treatment randomization probabilities

to be equal to the current estimates of the target allocation proportions. It is equivalent to DBCD with

γ = 0. This design can lead to a modest reduction in treatment failures with minimal loss in power relative to

equal randomization designs [55]. However, SMLE has also been shown to be quite variable, with potential

negative effects on power [61].

Efficient Randomized-Adaptive Design (ERADE)

Efficient Randomized-Adaptive Design (ERADE) is an extension of the biased-coin design which targets

equal allocation [48]; ERADE is equivalent to DBCD with γ → ∞. ERADE is a RAR procedure that

can target any pre-specified allocation proportion, while still preserving allocation randomness and boasting

minimal variability. The theoretical properties of ERADE echo those of DBCD: both resulting sample

proportions (nE/n) and estimators are strongly consistent and asymptotically normal.
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φ =


δϕ̂(j − 1) if nE(j − 1)/n > ϕ̂(j − 1)

ϕ̂(j − 1) if nE(j − 1)/n = ϕ̂(j − 1)

1− δ(1− ϕ̂(j − 1)) if nE(j − 1)/n < ϕ̂(j − 1)

, (1.10)

where 0 ≤ δ ≤ 1 is a user-specified parameter that controls the degree of randomness of the randomization

procedure. When δ = 0, the procedure is the most deterministic; when δ = 1, the procedure is most random.

Hu et al. recommend 0.4 ≤ δ ≤ 0.7 [48]. In this dissertation, we use δ = 0.4.

The discrete property of ERADE differentiates it from DBCD, resulting in less variability. In fact,

ERADE is an asymptotically best procedure, attaining minimum variance. In the binary case, the minimum

variance is

1

4(
√
pE(1− pE) +

√
pC(1− pC))3

(
pC(1− pC)((1− pE)− pE)2√

pE(1− pE)
+
pE(1− pE)((1− pC)− pC)2√

pC(1− pC)

)

as shown by Hu et al. (2009) [48].

1.2.3 Inference in Response-Adaptive Designs

The likelihoods for non RAR versus RAR designs are different. In restricted randomization (such as in biased

coin designs), nE can be random, yet it is still ancillary due to independence from observed responses. On

the other hand, in RAR, nE depends on observed responses and is thus no longer ancillary [55]. A “guiding

principle” is that for RAR to be practical, standard inferential tests should be able to be utilized at the end

of a trial [46]. The impact of nE ’s dependence on observed responses is seen in the bias of the treatment

effect estimate in response-adaptive designs. For example, Coad et al. showed that in a trial with binary

responses, the bias in estimating the probability of success pE is given by

E(p̂E − pE) = pE(1− pE)
∂

∂pE
E

(
1

nE(n)

)
.

Let Y1, . . . , Yn be independently and identically distributed, with Y1k ∼ fk(l, θk), k ∈ (E,C), where θk ∈

parameter space Θk. For binary responses, fE(·, θE) is Bernoulli(pE), fC(·, θC) is Bernoulli(pC). For normal

responses, fE(·, θE) is (µE , σE) and fC(·, θC) is (µC , σC). Assume the following three regularity conditions

hold true:

� the parameter space Θk is an open subset of R2,
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� the distributions fE(·,θE), fC(·,θC) follow an exponential family

� the limiting allocation ϕ(θ) = (ϕE(θ), ϕC(θ)) has nk
n → ϕk(θ) for k ∈ E,C almost surely [46].

Then θ̂ is strongly consistent for θ and
√
n(θ̂−θ)→ N(0, I−1(θ)), where I is the Fisher’s information matrix

I(θ) = diag(ϕE(θ)IE(θE), ϕC(θ)IC(θC)) and Ik(θk) = −E
(
∂2logfk(Y1k,θk)

∂θ2
k

)
is the Fisher’s information for

a single observation on treatment k ∈ E,C.

For example, for the DBCD that targets Neyman allocation, we have

√
n

(µ̂E
µ̂C

−
µE
µC

)→ N

(
0,

σE(σE + σC) 0

0 σC(σE + σC)

)

in distribution. The bias of different designs is one of many components of a design that are evaluated during

overall trial quality assessment in Chapter 4.

The variability of a randomization procedure is directly tied with its power [46]. To show this, consider

the Wald test examining the difference in proportions between two arms:

Z =
p̂E − p̂C√
p̂E q̂E
nE

+ p̂C q̂C
nC

.

Under the null hypothesis, Z2 is asymptotically chi-squared with one degree of freedom. Under the alternative

hypothesis, power is an increasing function of the non-centrality parameter of the chi-squared distribution:

Power =
(pE − pC)2

pEqE/nE + pCqC/nC
(1.11)

=
n(pE − pC)2

pEqE
ϕ+(nE/n−ϕ) + pCqC

(1−ϕ)−(nE/n−ϕ)

.

If we define a function

f(x) =
(pE − pC)2

pEqE/(ϕ+ x) + pCqC/[(1− ϕ)− x]
,

and the following Taylor’s expansion:

f(x) = f(0) + f ′(0)x+ f ′′(0)x2/2 + o(x2),

then, after some calculations,

f ′(0) = (pE − pC)2 pEqE(1− ϕ)2 − pCqCϕ2)

pEqE(1− ϕ) + pCqCϕ)2
,
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f ′′(0) = −2(pE − pC)2 pEqEpCqC
((1− ϕ)ϕ)3

.

Then, the non-centrality parameter is

n−1power =
(pE − pC)2

pEqE/ϕ+ pCqC/(1− ϕ)
(1.12)

+ (pE − pC)2 pEqE(1− ϕ)2 − pCqCϕ2

pEqE(1− ϕ) + pCqCϕ)2
(nE/n− ϕ)

− (pE − pC)2 pEqEpCqC
((1− ϕ)ϕ)3

(nE/n− ϕ)2

+ o((nE/n− ϕ)2)

=(I) + (II) + (III) + o((nE/n− ϕ)2).

The first term (I) represents the non-centrality parameter for a design targeting ϕ. The second term (II)

represents the bias of the observed allocation from the optimal allocation. As the observed proportion

deviates from target ϕ in either direction, the non-centrality parameter increases or decreases by term

(pE − pC)2 pEqE(1−ϕ)2−pCqCϕ2

pEqE(1−ϕ)+pCqCϕ)2 . Note that this is only equal to 0 when we target Neyman allocation, with

ϕ =
√
pEqE√

pEqE+
√
pCqC

. Most procedures are asymptotically unbiased, so that E(nE/n − ϕ) = 0. Then, the

average power lost in a design is represented by (III), a direct function of the variability of the design. The

impact of the variability of a randomization procedure on power will be demonstrated throughout this work,

particularly in Chapters 2, 3, and 5.

1.3 Discussion

Adaptive designs allow trialists to achieve objectives such as maximizing power for a statistical test after

observing patient responses, or minimizing the number of patients assigned to the inferior arm. However, their

adoption has been slow in part because of FDA’s historical resistance to adaptive designs. The continuing

growth of research in this area has led to the FDA’s current attitude, which is encouraging use of adaptive

designs so long as Type I error can be controlled. Trialists tend to select simpler or more traditional trial

designs because adaptive designs can result in various biases and statistical inference issues.

This chapter provided an overview of some common clinical trial designs. The designs covered included

non-adaptive designs in Section 1.1 and some response-adaptive randomization designs in Section 1.2. The

RAR designs target a specific allocation and assume responses between the experimental and control arms

are independent. For example, RSIHR target allocation aims to minimize the total expected response of

ȲEnE + ȲCnC for two-arm trials with independent responses between the two groups.
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Chapter 2 extends the RSIHR allocation scheme to the case that accounts for correlation between the two

arms, which may arise due to a common exposure such as a common environmental setting (e.g. subjects

of trial treated at the same hospital). Chapter 3 reviews desirability functions and their recent innovations

and applications in medical research and public health; we show in Chapter 4 how they can be meaningfully

used to effectively compare non-adaptive or adaptive designs across several characteristics and help the

clinician arrive at a most appropriate design for his/her study. Chapter 5 contains a concrete application of

desirability functions to design an improved study for an AIDS clinical trial.
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Chapter 2

Optimal Allocation Proportions

When Outcomes Between Treatment

Arms Are Correlated

In this chapter, we derive a new target allocation that achieves the objective of RSIHR allocation (minimize

total expected response for two-arm trials assuming smaller responses are better), yet additionally extends

to the case that accounts for correlation between the two arms. Such a situation may arise due to a common

exposure such as a shared environmental setting; for example, subjects in a trial are treated at the same

hospital. A common assumption is that responses in the trial are independently and identically distributed

(iid), which may be unrealistic in a clinical trial. This chapter examines how to allocate patients in two-arm

clinical trials when the responses are continuous, smaller responses are better, and the iid assumption is

violated.

The main results of this chapter demonstrate the importance of incorporating correlation in the treatment

arms in the design of a clinical trial. In particular, we:

� first show it is feasible to minimize the total expected response ȲEnE + ȲCnC when responses from

the two arms are correlated by targeting a newly derived target allocation;

� second, targeting this optimal allocation proportion that adjusts for correlation results in smaller

relative bias of the treatment effect;

� and third, failing to adjust the sample size when correlation is present can result in an underpowered

study.
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Section 2.1 provides an overview of correlation issues in two-arm trials. Section 2.2 considers trials

where smaller responses are considered better, and derives the optimal allocation proportion that minimizes

the total expected response when responses between the two arms are correlated. The various effects of

increases in means and variances on this proportion are discussed in Section 2.3. Section 2.4 provides

both parametric and nonparametric results of simulation studies that compare the newly derived optimal

allocation proportion with a few of the other target allocations discussed in Chapter 1. Lastly, the chapter

concludes with a Discussion.

2.1 Correlation in Two-Arm Trials

The Wald test is commonly used in clinical trials to test for a treatment effect between two treatment arms.

A careful look at the Wald test highlights an important assumption that underlies the design and analysis

of many clinical trials: outcomes of interest are independently and identically distributed (iid).

The focus of this chapter is to examine when the responses of two arms, YE and YC , are correlated due to

some common exposure. Sources of common exposures could be environmental, social, economic, physical,

etc. In clinical trials, correlation potentially arises due to common environmental exposures and nature of

care (e.g. being treated at the same hospital), common drug exposures (e.g. concomitant meds), or common

physical characteristics (e.g. shared genes in trials incorporating more than one family member). Large trials

that are well-funded by industry tend to recruit from several diverse centers, with just a few patients per

center. Consequently, correlation is not seen as a major concern in these cases, since these patients are in

diverse settings and ought not to share many common exposures. However, in scenarios where trials are run

on a smaller scale, such as in a single hospital system, the potential for common exposures in trial subjects

should be properly accounted for in both the design and analysis stages.

Previous literature has argued that correlation between outcomes is acceptable when the randomization

procedure employed ignores the correlation (Proschan) [69]. An alternative approach is to have a clustered

randomized trial, where subjects in a cluster are considered exchangeable, but are independent across clusters.

Common cluster units include location sites or similar baseline covariate values. The analysis that ignores

clustering is acceptable if either there is no correlation within clusters, or no correlation between treatment

assignment within clusters (Parzen) [65]. Otherwise, responses in a cluster are usually positively correlated,

and a Wald test that ignores positive correlation is slightly conservative. The upshot is it is still common

practice to have the independence assumption during statistical analysis, and sometimes even in planning.

However, it would be dismissive if we always settled for the independence assumption. In cases of negative

correlation, the Wald test is anti-conservative and exhibits a weakness that can be improved upon should
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correlation be taken into account during the design stage. Furthermore, although previous work has shown

that treating observations as independent is usually “acceptable” [69], Section 2.4 demonstrates that the

bias of our treatment effect estimate can be significantly reduced should the targeted allocation proportion

take into account the correlation between responses YE and YC from the E and C groups, respectively.

An example of correlation between treatment arms is highlighted by Biswas, et al. (2010) [14], using

an example of a meta-analysis of 11 randomized trials investigating thrombolytic treatment versus placebo.

Table 2.1 from their paper shows the number of all-cause mortality events out of the total number of patients

for each treatment arm in each of the 11 studies:

No. of Events / No of Participants
Source Treatment Placebo
Mori et al., 1992 2/19 2/12
Haley et al., 1993 1/14 2/13
NINDS, 1995 76/312 87/312
ECASS, 1995 69/313 48/307
ECASS II, 1998 43/409 42/391
ATLANTIS A, 2000 16/71 5/71
ATLANTIS B, 1999 33/307 21/306
PROACT, 1999 7/26 6/14
PROACT II, 1999 29/121 16/59
Ancrod Stroke Study, 1994 8/64 14/68
STAT, 1999 83/248 82/252

Table 2.1: All-cause mortality associated with thrombolytic therapy in patients with acute ischemic stroke.

Given our usual assumption that responses from the patients in the two treatment arms are independent

(since they are receiving different treatments), the estimated proportion of the number of events in the

treatment arm and that in the placebo arm should be independent. However, the correlation coefficient of

the responses in the two treatment arms is 0.666 [95 % CI: 0.149, 0.897, p-value = 0.01807], thus leading us to

conclude that the responses of the patients in these two arms are significantly correlated [14]. Consequently,

if a twelfth trial were to be run with similar enrollment criteria and treatments, we could fairly assume that

the responses in the two groups of this twelfth trial are correlated.

Hanin discussed doubt of the validity of the iid assumption in the context of clinical trials, noting that trial

participant selection is associated with disease characteristics and other medical conditions, which result in a

source of dependence between individual response variables. Pre-randomization treatments provided to all of

a trial’s participants, and the association between family history and the occurrence of health events, were also

listed as reasons to question the independence assumption. In the case of certain educational and behavioural

interventions, the intermingling of patients in different treatment arms post-randomization also introduces

dependence [39]. In clinical trials studying infectious diseases, correlation may be present if participants have

contact with a common infectious source, share tips on how to prevent infection, have spacial correlation,
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clustered data, or shared family structure [30]. Hanin claimed violation of the iid assumption as one of the

reasons many clinical trial results are irreproducible [39].

How can we address correlation during the randomization process? Follman et al. (2014) provide an

example of an NIH study that examined the effect of different factors on a measure of heart size. The

study included members from 112 distinct families. Although this example was observational in practice,

the authors discuss one way to incorporate familial correlation should this trial be a prospective trial with an

intervention arm. The authors highlight a second example of studying efficacy of vaccines against malaria,

and note that children of the same family or living in close proximity to each other tend to have similar

attack rates. The authors discuss two randomization techniques that incorporate pairwise correlations and

aim to minimize the variance of the treatment effect estimate. The first technique assumes all enrolling

subjects’ baseline covariates are available, and ranks permutations of pairwise correlations, randomizing in

descending order of pairwise correlation rank one subject of each pair to one arm and the remaining subject

to the other arm. Note then that these correlations are calculated from the covariances of baseline covariates,

not the response variable. The second technique allows for sequential understanding of correlation, or ranks

of correlations. An estimate of the pairwise correlation from the enrolled subjects is used to select or

assign higher probability to a randomization assignment for the next subject that minimizes variance of the

treatment effect estimate [30].

Biswas, et. al (2010) was the first to derive optimal allocation proportions for a two-arm clinical trial

having correlated binary responses between the two arms [14]. Biswas, et al. (2011) discussed the non-

correlated continuous outcome case [11]. Biswas, et al. (2005) had also derived solutions for three treatment

arms and bivariate responses, where both components of the bivariate response were equally important [12],

and responses between treatment arms were assumed independent. However, an examination of optimal

allocation proportions for continuous responses with correlation between the two treatment arms has yet to

be discussed in the literature. The following section derives the optimal allocation proportion that minimizes

the total response ȲEnE + ȲCnC when responses of the two arms are correlated and when smaller responses

are considered better.

2.2 Derivation of the Optimal Allocation Proportion: Continuous

Outcomes

We present the optimal allocation proportions for two-arm clinical trials with correlated, paired normal

responses and evaluate the performance of various response-adaptive randomization (RAR) designs that
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target the optimal allocation proportions.

Consider a clinical trial with arms E and C, where there are nE patients in experimental arm E and nC

patients in control arm C, so that nE + nC = n. Let YE ∼ N(µE , σ
2
E) and YC ∼ N(µC , σ

2
C) be continuous

normal responses for groups E and C, respectively, and they are correlated with coefficient ρ. We can refer

to historical data available prior to the clinical trial to estimate correlation ρ, pairing similar subjects by

defining clear matching criterion such as tumor size, duration of infection, and family relationship.

We seek to derive the optimal allocation proportion, R = nE
nC

, such that the total expected response is

minimized. Since smaller responses are desirable, this means we want as many patients as possible to have

better outcomes by choice of an optimal design. Thus, this objective may be viewed as incorporating an

ethical consideration into the trial. Since we, without loss of generality, assume smaller responses are better,

we seek to minimize µEnE +µCnC subject to V ar(ψ̂) = ˆV ar(ȲE − ȲC) = K. This constraint is tantamount

to pre-specifying the power of the test statistic. The derivation of the optimal allocation proportion proceeds

as follows.

Set a fixed precision of the treatment effect, i.e. we set nE = Rn
1+R and nC = n

1+R , and we have

µEnE + µCnC =
µEnR

1 +R
+

µCn

1 +R
=

n

1 +R
(µER+ µC).

Let K = V ar(ψ̂) = V ar(ȲE − ȲC). Then V ar(ȲE − ȲC) is equal to

K =
σ2
E

nE
+
σ2
C

nC
− 2σEC(1 +R)

√
nEnC

.

nK =
σ2
E(1 +R)

R
+ σ2

C(1 +R)− 2σEC(1 +R)√
R

.

RK = R

[
σ2
E(1 +R)

Rn
+
σ2
C(1 +R)

n
− 2σEC

√
1 +R√
Rn

√
1 +R√
n

]
.

RK =
σ2
E(1 +R)

n
+
σ2
CR(1 +R)

n
− 2σEC(1 +R)

√
R

n
.

Therefore, n
1+R =

σ2
E

RK +
σ2
CR
RK −

2σEC
√
R

RK , and

n

1 +R
(µER+ µC) =

[
σ2
E

RK
+
σ2
CR

RK
− 2σEC

√
R

RK

]
(µER+ µC).

Substituting n
1+R , we see that we must minimize

1

K

[
(µEσ

2
E + µCσ

2
C) + µEσ

2
CR− 2µEσEC

√
R− 2µCσEC/

√
R+

µCσ
2
E

R

]
= f. (2.1)
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We minimize f with respect to R, set the derivative to zero, and multiply both sides by R2 and see then

that the optimal allocation R = nE
nC

is the solution to:

df

dR
R2 = µEσ

2
CR

2 − µEσECR3/2 + µCσEC
√
R− µCσ2

E = 0. (2.2)

Equation 2.2 shows that the values of the means and variances of the responses in the experimental

arm and the control arm, and the correlation between the responses of the two arms as can be seen by the

covariance term σEC , will determine the value of the optimal allocation proportion R.

Equation 2.2 can be rewritten in terms of the ratios of the means and variances, µ∗ = µE
µC

and σ∗ = σE
σC

.

To do so, divide both sides of the equation by µC to get

df

dR
R2 = µ∗σ2

CR
2 − µ∗σECR3/2 + σEC

√
R− σ2

E = 0, (2.3)

followed by division of both sides of the equation by σ2
C to get

df

dR
R2 = µ∗R2 − µ∗σEC

σ2
C

R3/2 +
σEC
σ2
C

√
R− σ∗

2

= 0. (2.4)

Because ρ = σEC
σEσC

, the term σEC
σ2
C

= ρσEσC
σ2
C

= ρσE
σC

= ρσ∗. Equation 2.4 can then be rewritten as

df

dR
R2 = µ∗R2 − µ∗ρσ∗R3/2 + ρσ∗

√
R− σ∗

2

= 0. (2.5)

Equation 2.5 reveals that the optimal R is a function of the ratio of the means, the ratio of the variances,

and the correlation. There are three analytical solutions of R that solve Equation 2.5; two are imaginary

roots and only one is a real root. After very tedious algebra, the real solution for R is:

Corollary

R =
ρ2σ∗

2

4
+

1

2

√(
a+ b/

[(
3(c+ d

)1/3]
+

1

3× 21/3µ∗2
(
c+ d

)1/3
+

1

2

[
2a− b

/[(
3(c+ d

)1/3]
+

1

3× 21/3µ∗2
(
c+ d

)1/3
+

(
8ρ2σ∗

2

µ∗2
− 8ρ2(−1 + ρ2)σ∗

4

µ∗
+ ρ6σ∗

6

)/
4

√(
a+ b/

[(
3(c+ d

)1/3]
+

1

3× 21/3µ∗2
(
c+ d

)1/3]1/2

,

(2.6)

where

a =
−4(−1 + ρ2)σ∗

2

3µ∗
+
ρ4σ∗

4

4
;

25



b =

(
2(1/3)(−4 + ρ2)2σ∗

4

)
;

c = 27µ∗
2

ρ4σ∗
4

− 144µ∗
3

(−1 + ρ2)σ∗
6

− 18µ∗
3

ρ4(−1 + ρ2)σ∗
6

+ 16µ∗
3

(−1 + ρ2)3σ∗
6

+ 27µ∗
4

ρ4σ∗
8

;

d =
√
−4(16µ∗2σ∗4 − 8µ∗2ρ2σ∗4 + µ∗2ρ4σ∗4)3 + c2.

Figure 2.1 displays df
dRR

2 as a function of correlation and R, µ∗ and R, and σ∗
2

and R. Figure 2.1a)

displays correlation ranging between -1 and 1, b) shows µ∗ ranging from -3 to 3, and c) exhibits σ∗
2

between

0 and 3. These plots indicate that R takes on positive values.

(a) correlation and R (b) µ∗ and R (c) σ∗2 and R

Figure 2.1: df
dRR

2 as a function of

It can be further shown that the real solution has interesting properties relating the behavior of R as

correlation changes for relative relationships between the ratio of the means and the ratio of the variances.

The solution for R satisfies the two behavior properties noted in the two bullet points below.

Corollary

� When
σ2
C

σ2
E
> µE

µC
, R decreases as ρ increases.

� When µE
µC

=
σ2
C

σ2
E

, R =
σ2
E

σ2
C

= µC
µE

. R is then constant, regardless of ρ.

Table 2.2 shows how R changes when µE
µC

= 0.95, with each column depicting a different value of
σ2
E

σ2
C

.

This value of µEµC was chosen to represent a response in the experimental arm considered 5% better than that

of the response in the control arm, since smaller values are considered better. Note that when µE
µC

=
σ2
C

σ2
E

,

R =
σ2
E

σ2
C

= µC
µE

= 1/0.95 = 1.053, which is a constant, as expected, regardless of the value of ρ. The value

of R depends on the ratio of the variances relative to the ratio of the means, and is further illustrated in

Figure 2.3a. The solid red line marks the consistent value of R when
σ2
E

σ2
C

= µC
µE

= 1/0.95 = 1.053. It can be

seen that when
σ2
C

σ2
E
> µE

µC
= 0.95, R decreases as ρ increases (the black, dark red, and navy curves below the

solid red line). On the other hand, when
σ2
C

σ2
E
< µE

µC
= 0.95, R increases as ρ increases (the green and orange

26



curves above the solid red line). The smallest number of patients are placed in experimental group E when

ρ = 1 and when
σ2
E

σ2
C

= 0.5. This means that when the responses of the two groups are perfectly correlated,

if the responses in control arm C have twice the variance as the responses in the experimental arm E, then

the control arm C needs twice the number of enrolled patients as in experimental arm E to minimize the

total expected response from all patients.

R = nE
nC

when
σ2
E

σ2
C

equals

ρ 0.5 0.75 1 1.053 1.2 1.5
-1.0 0.821 0.940 1.035 1.053 1.100 1.185
-0.9 0.814 0.936 1.034 1.053 1.101 1.189
-0.8 0.807 0.933 1.034 1.053 1.103 1.195
-0.7 0.799 0.928 1.033 1.053 1.105 1.200
-0.6 0.791 0.924 1.032 1.053 1.107 1.206
-0.5 0.782 0.919 1.031 1.053 1.109 1.213
-0.4 0.772 0.914 1.030 1.053 1.112 1.220
-0.3 0.762 0.908 1.029 1.053 1.114 1.228
-0.2 0.751 0.902 1.028 1.053 1.117 1.236
-0.1 0.739 0.896 1.027 1.053 1.120 1.246
0.0 0.725 0.888 1.026 1.053 1.124 1.257
0.1 0.711 0.881 1.025 1.053 1.128 1.268
0.2 0.696 0.872 1.023 1.053 1.132 1.282
0.3 0.679 0.862 1.021 1.053 1.137 1.297
0.4 0.660 0.852 1.019 1.053 1.142 1.314
0.5 0.640 0.840 1.017 1.053 1.149 1.333
0.6 0.617 0.826 1.015 1.053 1.156 1.356
0.7 0.592 0.811 1.012 1.053 1.164 1.383
0.8 0.565 0.793 1.009 1.053 1.174 1.414
0.9 0.534 0.773 1.005 1.053 1.186 1.453
1.0 0.500 0.750 1.000 1.053 1.200 1.500

Table 2.2: Values of the optimal ratio R = nE
nC

for µE
µC

= 0.95 and varying
σ2
E

σ2
C

.

Table 2.2 and Figure 2.3a show how R varies with different ratios of variances when the responses in group

E are 5% better than those in group C. Table 2.3 and Figure 2.3b display values of R for a more extreme

difference in the responses from the two groups, with µE/µC = 0.80. When σ2
E/σ

2
C = µC/µE = 1/0.8,

R = 1/0.8 = 1.25, regardless of correlation. This is depicted by the solid red line in Figure 2.3b. It can also

be seen that when σ2
C/σ

2
E > µE/µC = 0.80, R increases as correlation increases (the orange curve above the

solid red line). On the other hand, when σ2
C/σ

2
E < µE/µC = 0.80, R decreases as correlation increases (the

green, black, dark red, and navy curves below the solid red line).

The next section discusses how R changes with changes in the ratio the of means µE/µC and with changes

in the ratio of the variances σ2
C/σ

2
E .
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R = nE
nC

when
σ2
E

σ2
C

equals

ρ 0.5 0.75 1 1.2 1.25 1.5
-1.0 0.921 1.054 1.160 1.233 1.250 1.328
-0.9 0.911 1.048 1.157 1.233 1.250 1.331
-0.8 0.901 1.042 1.154 1.232 1.250 1.334
-0.7 0.890 1.035 1.151 1.231 1.250 1.337
-0.6 0.879 1.027 1.147 1.231 1.250 1.341
-0.5 0.867 1.019 1.143 1.230 1.250 1.345
-0.4 0.854 1.010 1.139 1.229 1.250 1.349
-0.3 0.840 1.001 1.134 1.228 1.250 1.353
-0.2 0.824 0.991 1.129 1.227 1.250 1.358
-0.1 0.808 0.980 1.124 1.226 1.250 1.363
0.0 0.791 0.968 1.118 1.225 1.250 1.369
0.1 0.772 0.955 1.111 1.223 1.250 1.376
0.2 0.751 0.941 1.104 1.222 1.250 1.383
0.3 0.728 0.925 1.096 1.220 1.250 1.392
0.4 0.704 0.908 1.087 1.219 1.250 1.401
0.5 0.677 0.889 1.077 1.216 1.250 1.412
0.6 0.648 0.867 1.066 1.214 1.250 1.424
0.7 0.615 0.843 1.053 1.211 1.250 1.438
0.8 0.580 0.816 1.038 1.208 1.250 1.455
0.9 0.541 0.785 1.020 1.204 1.250 1.475
1.0 0.500 0.750 1.000 1.200 1.250 1.500

Table 2.3: Optimal values of the ratio R = nE
nC

for µE
µC

= 0.80 and varying
σ2
E

σ2
C

.
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Figure 2.3: R for µE
µC

= 0.95 and µE
µC

= 0.80 and varying
σ2
C

σ2
E

.
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2.3 Changes in R Due to Changes in Means or Variances

Section 2.2 shows analytically that R depends on the ratio of the means, the ratio of the variances, and the

correlation ρ. This section studies the changes in R associated with a change in ratio of means, and with a

change in ratio of variances. For example, if µE/µC = 0.80 (20% less expected response in the experimental

arm), and σ2
E/σ

2
C = 1.3 (30% larger variance in experimental arm), how does R change with an increase in

the ratio of means by 10%, so that µE/µC = 0.8× 1.1 = 0.88? From the Lemma in Section 2.2, we see that

the ratio of µE/µC is compared with the ratio of σ2
C/σ

2
E . How does R change when this ratio increases by

10%, so that
σ2
C

σ2
E

= 1
1.3 × 1.1 = 0.846? Which change in R is more significant?

To assess the effect of a change in ratio of means on R, µC is set to equal 1, without loss of generality,

while µE is replaced with µE ∗ (1 + percent change) in Equation 2.2. The solution is termed R1. Similarly,

to assess the effect of a change in ratio of variances on R, σ2
C is set to equal 1, without loss of generality,

while σ2
E in Equation 2.2 is replaced with σ2

E/(1 + percent change). The solution is termed R2.

We conclude that when ρ > 0, the effect of a percent increase in
σ2
C

σ2
E

on R is larger than the the effect of

the same percent increase in µE
µC

on R. In other words, when ρ > 0, R2/R > R1/R. On the other hand, when

ρ < 0, a percent increase in the ratio of means µE
µC

has a larger impact on R than the same percent increase

in the ratio of variances
σ2
C

σ2
E

. This means that when ρ < 0, R1/R > R2/R. When ρ = 0, the same percent

increase in ratio of means and ratio of variances results in the same change in R, such that R1/R = R2/R.

An example for the behavior of changes in R can be seen in Figure 2.4, which illustrates with the solid

black line the function of Equation 2.2 for original values of µE/µC = 0.8, σ2
E/σ

2
C = 0.8 for varying levels of

positive correlation. The red dashed line shows the same function when µE/µC increases by 10%. We can

see that as correlation increases, a 10% increase in ratio of means leads to decreased solutions for R. The

blue two-dash line represents the same function for an equivalent increase of 10% on the ratio of σ2
C/σ

2
E .

As correlation increases, R decreases, placing fewer and fewer subjects in the experimental arm. Note that

for positive correlations, the blue two-dash line is further from the original black solid line than is the red

dashed line, indicating the higher impact of the same percent change of the ratio of variances on R. When

the correlation is zero, the solution for R is the same for the same increase in ratio of means and in ratio of

variances.

The values for R, R1, and R2 that solve Equation 2.2 (where ∂f
∂RR

2 = 0 in Figure 2.4 and wheref is defined

by Equation 2.1) are shown in Table 2.4. For example, when ρ = 0.4, µE/µC = 0.8, and σ2
E/σ

2
C = 1.3, R =

1.2810. If µE/µC is increased by 10%, the optimal allocation becomes R1 = 1.2246, placing fewer subjects in

the experimental arm. The change in R is even larger if σ2
C/σ

2
E increases by 10%, with the optimal allocation

dropping to R2 = 1.2117.
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Figure 2.4: The function ∂f
∂RR

2 for varying levels of correlation ρ when µE
µC

= 0.8,
σ2
E

σ2
C

= 1.3, (1 + percent

change in ratios) = 1.1. The value of R when ∂f
∂RR

2 = 0 is the solution for R in Equation 2.2.
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ρ 1 0.8 0.6 0.4 0.2 0
R 1.3000 1.2916 1.2855 1.2810 1.2775 1.2748
R1 1.3000 1.2712 1.2510 1.2361 1.2246 1.2154
R2 1.1818 1.1929 1.2009 1.2069 1.2117 1.2154
R1/R 1.0000 0.9842 0.9732 0.9649 0.9585 0.9535
R2/R 0.9091 0.9236 0.9342 0.9422 0.9484 0.9535

Table 2.4: Solutions for R, R1, and R2 for µE
µC

= 0.8,
σ2
E

σ2
C

= 1.3, (1 + percent change) = 1.1, as depicted in

Figure 2.4.

The larger impact on R2 than on R1 as shown in Figure 2.4 are similar regardless of the value of when

µE/µC , σ2
E/σ

2
C < 1, and whether the percent change is positive or negative.

2.4 Performance of Optimal Allocation Proportion Adjusting for

Correlation Relative to Other Common Target Allocations

There are two ways to utilize the new optimal allocation proportion R that adjusts for correlation, and found

from solving Equation 2.2 (the solution is hereby termed R.corr). The first is to identify the sample size n

needed to achieve a given power and maintain Type I error at a pre-specified level, and then to place Rn
1+R

in the experimental arm E, and n
1+R in the control arm C. The second is to target R.corr using a Response-

Adaptive Randomization Procedure (RAR), similar to targeting Neyman and RSHIR optimal proportions

by RAR designs DBCD or ERADE in Section 1.2.

However, the target allocations reviewed in Section 1.2 did not adjust for or require a value for correlation;

they depended on estimates for means and variances. To target R.corr, in the context of this dissertation,

correlation is held constant and assumed known throughout the study. In practice, correlation can be

estimated from prior studies or literature, or sequentially estimated within interim analyses of a multi-stage

study.

In order to compare the performance of the optimal allocation proportion adjusting for correlation with

other common target allocations, we examine the total expected response for each allocation under the null

and alternative hypotheses. The null hypothesis is equality of the responses from the two rams. Since R.corr

is derived with the objective of minimizing ȲEnE + ȲCnC when correlation is present, it ought to have

the lowest total response in our comparison study. In addition to examining whether R.corr achieves this,

we further define other performance metrics not related to the optimization problem yet still important to

overall assessment of the design. In these performance metrics, β1 is the value of the true treatment effect,

and β̂1 is the estimated treatment effect. The performance metrics are quantified by:

� bias under H0 = E(β̂1 − β1H0
),
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� relative bias under H1 = E(
β̂1−β1H1

β1H1

)× 100,

� Type I error under H0: proportion of times the null hypothesis was falsely rejected in 10,000 simulated

clinical trials of the same scenario,

� power under H1: proportion of times the null hypothesis was correctly rejected over 10,000 simulated

clinical trials of the same scenario.

However, the Type I error and power are both calculated from the T test statistic. Is this valid given

the correlation structure simulated in the data? The violation of the independence assumption renders

many parametric analyses (standard Gaussian, Student’s t, Chi-squared) inadequate, since they depend at

their core on the independence postulate. Biswas (2010) did not discuss this in his derivation of optimal

allocation proportion in trials with correlated binary outcomes [14], and we address this issue here. How

can we assess the impact of the misspecification of the test statistic distribution on the outcome of our

analyses? Standard assumptions regarding the test statistic distribution lead to commonly reported results:

p-value under the null, power under the alternative, sample size, and estimates of and confidence intervals

for parameters of interest (in this work, namely, the treatment effect). Hanin (2017) notes that neither the

correlation coefficient for a pair of individual observations, nor the distance between their distributions (ε),

is estimable from the observations alone. The author goes on to note that - hypothetically - even if we did

know the correlation and underlying distributions of a pair of observations, we would believe our statistical

analyses to be robust if the distribution, P0, of the test statistic under the iid assumption is close to the

“true” distribution of the same hypothesis without the iid assumption. However, obtaining estimates of the

deviation of the output of the statistical analysis (e.g. some test statistic) as a function of ε “in most cases

goes far beyond the reach of contemporary probability theory and statistics” [39].

In this work, the T test statistic is the primary source used in analyses of a treatment effect. Because

deriving the theoretical deviation of the T test statistic as a function of the ε is difficult, we can still look at

different scenarios and compare the distribution of the T test statistic under the iid assumption (P0) with

that of the T test statistic in the presence of correlation. To do so, we study the T test statistic distributions

under three scenarios:

1. YE ∼ N(µE , σ
2
E), YC ∼ N(µC , σ

2
C); YE ⊥⊥ YC (independent); α is a pre-specified Type I error rate, β̃

is a pre-specified Type II Error rate, with 1− β̃ equaling power. Total Sample Size for a balanced trial

derived from the formula:

n = nE + nC = 2
(z1−α/2 + z1−β̃)2(σ2

E + σ2
C)

(µE − µC)2
. (2.7)
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Half are allocated to treatment arm E, the other half to treatment arm C. The distribution of the T

test statistic is termed P0.

2. YE ∼ N(µE , σ
2
E), YC ∼ N(µC , σ

2
C); ρEC 6= 0; Total Sample Size based on Equation B.1, with half

allocated to treatment arm E, the other half to treatment arm C.

3. YE ∼ N(µE , σ
2
E), YC ∼ N(µC , σ

2
C); ρEC 6= 0; Total Sample Size derived from Equation B.1, but the

allocation proportion is R.corr, optimized for correlated outcomes based on Equation 2.2.

In the study of a case with a treatment effect of -5, where µE = 127, µC = 132, σ2
E = 330, σ2

C =

235, scenario #2 and #3 under the null hypothesis are equivalent (with identical Kolmogorov-Smirnov

distance, as shown at the top of Figure 2.5), and under the alternative hypothesis they yield very similar

distributions. In scenario #3 we observe a higher peak which borrows slightly from the tails. Figure 2.5

displays distributions of the T Test Statistic in the iid, naive, and adjusted analyses, and shows that under

the alternative hypothesis, the test statistic accounting for correlation shifts towards the direction of the

alternative. The Kolmogorov-Smirnov distance from P0 (the distribution depicted by the black solid curve)

increases from 0.06 to 0.12 as correlation increases from 0.05 to 0.40, thus indicating that the distribution of

the T test statistic shifts further and further away from P0 as correlation increases. The distribution of the

test statistic in scenario #3 is closer to P0 on the left tail when compared to the distance from P0 on the

right tail. This indicates that working under the iid framework is less of a deviation from one that adjusts

for the correlation as the data supports or moves in the direction of the alternative.

Similarly, Figure 2.6 depicts the distribution of β̂1 under the null and alternative hypotheses. The

Kolmogorov-Smirnov distance reveals that the distribution of scenario #3 deviates further from that of the

independent case P0 than does scenario #2. However, the figure allows us to make two decisions: first, it

is a safe assumption that the distribution of the coefficient estimate is still normal; second, the deviation

from the iid case of scenario #1 is not too alarming, especially relative to the density curves that show

the distributions of the estimate of log odds for various levels of correlation as shown in Biswas (2010)

[[14]]. Given this observation, we will proceed in Section 2.4.1 with traditional parametric analysis when

comparing the performance of the optimal allocation proportion that accounts for correlation with other

target allocations that may not. Section 2.4.2 compares the performance using bootstrapped confidence

interval widths.
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Figure 2.5: Distributions of the T Test Statistic under H0 : β1 = 0 and H1 : β1 = −5 for ρ ∈ (0.05, 0.20, 0.40).

34



−5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

β̂

D
en

si
ty

KS = 0.01KS = 0.02

ρ = 0.05

Distribution of β̂ Under H0

−5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

β̂

D
en

si
ty

KS = 0.03

KS = 0.04

ρ = 0.20

−5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

β̂

D
en

si
ty

KS = 0.06

KS = 0.07

ρ = 0.40

Distribution of β̂ Under H1

−12 −8 −6 −4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

β̂

D
en

si
ty

KS = 0.01KS = 0.02

ρ = 0.05

−12 −8 −6 −4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

β̂

D
en

si
ty

KS = 0.03

KS = 0.04

ρ = 0.20

−12 −8 −6 −4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

β̂

D
en

si
ty

KS = 0.06

KS = 0.08

ρ = 0.40

iid naiive adjusted

.

Figure 2.6: Distributions of β̂1 under H0 : β1 = 0 and H1 : β1 = −5 for ρ ∈ (0.05, 0.20, 0.40).
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2.4.1 Parametric Methods in Assessing of Optimal Allocation Proportion Ac-

counting For Correlation

We now assess the performance of a design targeting R.corr relative to that of designs that assume outcomes

are independent. The comparative designs considered are Complete Randomized Design (CRD), Permuted

Block Design (PBD) with a block size of 8 (see Section 1.1), and Doubly Biased Coin Design (DBCD)

targeting allocations that do not account for correlation: Neyman, RSIHR, and RSIHR2 allocations (see

Section 1.2).

To compare the designs, we evaluate the total expected response under the six aforementioned clinical

trial designs in two cases with different levels of correlation. Let

X =



1 T1

1 T2

...
...

1 Tj
...

...

1 Tn


, β =

β0

β1

 ,

where Tj = 1( subject j is in experimental arm E). Then, the response Y is modeled by:

Y = Xβ + ε.

Let θT = (µE , µC , σ
2
E , σ

2
C). The below cases are examined and motivated from two real trials [56, 68]:

� Contraceptive Study: θT = (127, 132, 330, 235), n = 355.

H0 : β1 = 0, H1 : β1 = −5.

[a.] ρ = 0.05.

[b.] ρ = 0.30.

� Scleroderma Study: θT = (21.8, 27.5, 219, 144), n = 165,.

H0 : β1 = 0, H1 : β1 = −5.7.

[a.] ρ = 0.05.

[b.] ρ = 0.30.

[c.] ρ = 0.60.
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The data for the contraceptive study come from a study evaluating the association between oral con-

traceptive pills and blood pressure [56], and the data for the scleroderma study come from a clinical trial

looking at Methotrexate versus placebo for scleroderma patients [68]. In both cases, we remain consistent

with calling the experimental arm group E, and the control arm group C. The two cases show that the higher

the correlation between responses in the two arms, the more the design targeting R.corr can reduce the total

response under the alternative hypothesis.

The sample sizes are pre-determined assuming responses are independent with the given means and

variances of the two groups under the alternative hypothesis, with Type I error controlled at α = 0.05 and

power at 80%. Simulations are then based on n = 355 subjects for the contraceptive study and n = 165

subjects for the scleroderma study. Instead of allocating half the subjects in each arm, we seek to minimize

the total expected response of the two groups using the optimal allocation proportion R.corr.

The optimal allocation proportion accounting for correlation, termed R.corr, is shown for varying levels

of correlation in Table 2.5 for the contraceptive study, and in Table 2.11 for the scleroderma study. In the

contraceptive study, the R ranges from 1.2081 when correlation is 0, to 1.4042 when correlation is 1. When

ρ = 0.05, R = 1.2128, while when ρ = 0.30, R = 1.2407.

ρ R.corr
0.00 1.2081
0.05 1.2128
0.10 1.2177
0.15 1.2230
0.20 1.2285
0.25 1.2344
0.30 1.2407
0.35 1.2473
0.40 1.2545
0.45 1.2621

ρ R.corr
0.50 1.2703
0.55 1.2792
0.60 1.2887
0.65 1.2990
0.70 1.3102
0.75 1.3224
0.80 1.3358
0.85 1.3504
0.90 1.3665
0.95 1.3844
1.00 1.4042

Table 2.5: Contraceptive study: optimal allocation proportion for varying levels of correlation with θT =
(127, 132, 330, 235) and n = 355.

In each evaluation, the outcomes are simulated to be correlated with ρ as specified in each case. Each

simulation for a particular design includes 10,000 iterations - each iteration representing a single clinical

trial. In order to introduce correlation into the simulated data, a set of outcomes of length n is simulated

for each treatment group, where the outcome is simulated as such:

� Independently generate a vector Z1 ∼ N(0, 1) of length n and a second vector Z2 ∼ N(0, 1) also of

length n.

� Let Z3 = ρZ1 +
√

1− ρ2Z2.
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� Then n outcomes for arm E are calculated as YE = µE +
√
σ2

1Z1, while the n outcomes for arm C are

calculated as YC = µC +
√
σ2

2Z3.

The Doubly Biased Coin Design (DBCD) is simulated as discussed in Section 1.2.2, with m0 = 5 and,

γ = 2. The value of m0 is specified by the trialist; one might consider to have larger values of m0 if the

responses between subjects are considered highly variable, so that the estimates incorporated into R.corr

are more reliable and so that the target allocation proportion at the start of the response-adaptive portion

of the trial is less variable. After the first 2m0 = 10 patients are enrolled, R of R.corr is derived by solving

Equation 2.2 for each enrolling patient using estimates of the means and variances of the previously enrolled

patients. In this work, correlation is assumed to be known and held constant, although iteratively estimating

correlation with sequential looks at the data can be done in practice. Two assumptions are taken in these

simulations: first that the response of patient j−1 can be observed immediately and prior to the enrollment

of patient j, and that we can assess the data immediately after an observed response. In practice, the timing

of interim looks ought to be pre-defined, and patient j may be allocated using data from earlier patients 1

through j − k, where k ≥ 1.
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Figure 2.7: Contraceptive study: proportion of patients in the experimental arm E for different levels of
correlation, averaged across 10,000 iterations.

After successfully enrolling a total of n patients, Figure 2.6 shows the proportion of patients enrolled

in each treatment arm and the total expected responses. The straight horizontal lines shown in Figure 2.7

reassure us that in our simulations, the proportion of patients in the experimental arm for designs that

do not adjust for correlation were consistent even as we have incorporated correlation into the simulations.
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The blue solid curve depicting proportion of patients in group E under R.corr shows increasing patients in

group E as correlation increases. Note for negative correlation values, R.corr allocates fewer subjects to

the experimental arm than does the other target allocations Neyman, RSIHR, and RSIHR2. Since negative

correlation is not common in health outcomes, we focus on ρ ≥ 0 in this work.
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Figure 2.8: Contraceptive study: (a) R̂ = nE/nC across 355 enrolled patients, ρ = 0.05. Each dotted gray
line represents R̂ in a single iteration. The bolder lines in color represent the average R̂ for the design across
10,000 iterations.
(b) R̂ = nE/nC across 355 enrolled patients averaged across 10,000 iterations.

The value of R̂(j) = nE(j)
nC(j) for each patient j in the contraceptive study with ρ = 0.05 is plotted in Figure

2.8a, where each dotted gray line represents the results of a single simulated study or iteration, and the

bolder lines in color represent the average R(j) = nE(j)
nC(j) for each patient j across 10000 iterations. Figure

2.8b summarizes the average R̂ = nE(j)
nC(j) . We can see that overall, R.corr seeks to place more subjects in

the experimental arm. In this scenario, the gap between R widens between R.corr and Neyman allocation,

and narrows between R.corr and RSIHR2. The narrowing gap between R.corr and RSIHR2 is not surprising

since RSIHR2 seeks to minimize the expected total response and to place fewer patients in the inferior

arm. As more data becomes available with more enrolled subjects, evidence points towards the control arm

being inferior, pushing RSIHR’s R to place more patients in the experimental arm, thus approaching the R

resulting from R.corr. With R.corr consistently having higher R than other designs, the probability of being

assigned to the experimental arm is always higher for each patient in the R.corr design than in the others .

Table 2.6 shows the total expected responses of the simulated contraceptive study under the alternative
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Patients in E (H1) Responses Total Response

mean sd proportion µE µC µEnE + µCnC

ρ = 0.05

CRD 177.256 9.392 0.499 127.007 132.021 45978.777

PBD 177.487 0.810 0.500 127.006 132.023 45977.609

Neyman 192.598 8.540 0.543 127.009 132.000 45898.678

RSIHR 194.178 8.418 0.547 127.026 132.023 45897.802

RSIHR2 194.294 8.429 0.547 127.011 132.011 45892.506

R.corr 194.535 8.606 0.548 127.024 132.022 45895.534

ρ = 0.30

CRD 177.256 9.392 0.499 127.007 132.020 45978.470

PBD 177.487 0.810 0.500 127.006 132.021 45977.342

Neyman 192.493 8.493 0.542 126.993 132.008 45897.362

RSIHR 194.127 8.464 0.547 127.028 132.019 45897.985

RSIHR2 194.051 8.308 0.547 127.037 131.989 45894.980

R.corr 196.516 9.671 0.554 127.029 132.021 45886.340

Table 2.6: Contraceptive study: total observed response under the alternative hypothesis H1 : β1 = −5;
θT = (127, 132, 330, 235) and n = 355.

hypothesis. The comparison with RSIHR allocation is emphasized, as its goal is to minimize the total

expected response, yet does not account for correlation. When ρ = 0.05, accounting for correlation using

R.corr results in lower total response of 45895.534 relative to the total response of 45897.802 under the

RSIHR design which assumes independence. The lowest total response of 45892.506 results from RSIHR2

allocation. Although R.corr on average placed more patients in group E, RSIHR2 yielded a smaller response

due to its µE and µC values of 127.011 and 132.011, respectively, both smaller than the average responses

of R.corr. Excluding RSIHR2 allocation, R.corr target does succeed in having smaller total responses than

the other designs evaluated.

When correlation increases to ρ = 0.30 under the alternative hypothesis, R.corr has the lowest response

of all designs evaluated, with the total response being 45886.340, compared with 45897.985 from RSIHR

allocation. The differences between the expected total responses is larger, highlighting the value of using

R.corr especially for larger correlation values. Note the large improvement of decreasing the expected total

response of R.corr relative to non RAR designs CRD and PBD, which had expected total responses of

45978.470 and 45977.342, respectively. One may consider the difference in total response between RSIHR

and R.corr to be quite small, which can be attributed to the small effect size, but we will see a larger

difference later in the scleroderma case when the effect size is moderate.

In addition to examining performance of R.corr with respect to the objective of minimizing the expected

total response, we should consider other statistics as well. A Wald test is performed to test for a treatment
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effect between the two treatment arms. The results shown in Tables 2.7 and 2.8 include the average treatment

effect estimate (β̂1), the average standard error of the treatment effect estimate (E(se(β̂1))), the standard

deviation of the treatment effect estimate (sd) across 10,000 iterations, the ratio of the standard deviation

to standard error (sd se), bias, relative bias (rb), mean squared error (mse) of the treatment effect, power,

and empirical coverage (ci). The definitions of these measures and metrics in the context of this work are:

� Standard Deviation to Standard Error ratio (sd se) = SD(β̂1)

E(SE(β̂1))
. A ratio close to 1 indicates no

noticeable biases and reasonable estimated standard errors during the simulation. When this ratio is

close to 1, we expect well-controlled empirical test sizes and coverage. A ratio greater than 1 indicates

underestimation of standard errors, resulting in increased Type I error and lower empirical coverage.

When the ratio is less than 1, the standard errors have been overestimated, resulting in lower empirical

Type I errors and higher empirical coverage.

� Bias (bias) = E(β̂1 − β1) is calculated as the estimated treatment effect less the true treatment effect

value.

� Relative bias (rb) = E( β̂1−β1

β1
)× 100 is calculated as the (true treatment effect - estimated treatment

effect)/(true treatment effect) × 100. Since the true treatment effect under the null hypothesis is zero,

the relative bias term is only defined under the alternative hypothesis.

� The mean squared error (mse) = E(β̂1 − β1)2 + V ar(β̂1) is mean squared error of the treatment

effect, calculated as the squared bias term plus the variance of the treatment effect estimate. This

is a meaningful metric since for unbiased estimators, the mean squared error approaches V ar(β̂1) as

n→∞. Note that systematically large SE estimates are indicative of a lack of relative efficiency and

would yield larger MSEs.

� Size (size) is the empirical test size, reporting Type I error under the null hypothesis, and power under

the alternative hypothesis. This is the proportion of trials in which the null hypothesis is rejected

during 10,000 simulated trials of a particular design.

� Empirical coverage (ci) is the percentage of time the (1-α)% confidence interval includes the true value

of the treatment effect.

Table 2.7 shows results for the contraceptive study when ρ = 0.05. The first observation is that the

sample size used (n=355) attains Type I error of 0.05 and power of 0.80 under CRD, as intended. The RAR

designs targeting Neyman, RSIHR, RSIHR2, and R.corr all have lower power than 0.80. This is due to a

loss in power in RAR designs caused by the variability of R = nE
nC

(see Section 1.2.3) [55]. PBD consistently
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β̂1 se(β̂1) sd sd se bias rb mse size ci
Under H 0
CRD -0.014 1.785 1.777 0.996 -0.014 6.348 0.050 95
PBD -0.017 1.783 1.773 0.994 -0.017 6.327 0.049 95
Neyman -0.001 1.804 1.774 0.984 -0.001 6.407 0.049 95
RSIHR -0.008 1.804 1.766 0.979 -0.008 6.379 0.045 95
RSIHR2 0.008 1.794 1.782 0.993 0.008 6.397 0.047 95
R.corr -0.008 1.805 1.767 0.979 -0.008 6.384 0.046 95
Under H 1
CRD -5.014 1.785 1.777 0.996 -0.014 0.289 6.348 0.800 95
PBD -5.017 1.783 1.773 0.994 -0.017 0.340 6.327 0.800 95
Neyman -4.991 1.804 1.772 0.982 0.009 -0.177 6.399 0.792 95
RSIHR -4.997 1.807 1.791 0.991 0.003 -0.062 6.476 0.794 95
RSIHR2 -5.000 1.807 1.765 0.976 -0.000 0.001 6.386 0.796 96
R.corr -4.997 1.808 1.791 0.991 0.003 -0.056 6.480 0.794 95

Table 2.7: Contraceptive study: inferential statistics for various designs testing H0 : β1 = 0 and H1 : β1 = −5
in 10,000 iterations, θT = (127, 132, 330, 235), ρ = 0.05 and n = 355.

has lower MSE for both the null and alternative hypothesis, which is not surprising because its variability of

probability of assigning to the experimental arm is limited by its block size of 8. Under the null hypothesis,

Neyman allocation has the lowest bias, and is able to remain under the nominal 5% alpha level. However,

Neyman allocation does not perform as well relative to R.corr under the alternative hypothesis, with the

former having relative bias of -0.177 and power of 0.792, and the latter having a smaller relative bias of

-0.056 and a higher power of 0.794. However, it is noted that RSIHR2 allocation, which seeks to minimize

the total number of failures (or, minimize the total expected response in the continuous case) and to place

less subjects in the inferior arm, performs best under the alternative hypothesis, with relative bias of 0.001,

highest power among the response-adaptive designs of 0.796, and the highest empirical coverage of 96%. The

increased power and empirical coverage can be attributed to RSIHR2’s SD/SE ratio being the lowest here

at 0.976, pointing to an overestimation of the standard error of the treatment effect estimate. The SD/SE

provided by R.corr and RSIHR under the alternative hypothesis are closer to 1 than that of the other RAR

designs, indicating low biases and reasonably estimated standard errors of the treatment effect estimate.

When higher correlation is introduced into the contraceptive study simulations, with ρ = 0.30, (Table

2.8), the importance of adjusting for correlation is evident, especially under the alternative hypothesis.

Under the null, RSIHR2 has the lowest bias of -0.002, compared to R.corr’s bias of -0.007. RSIHR2’s low

bias under the null and low standard error for the treatment effect estimate results in lowest MSE. With the

exception of RSIHR2, R.corr still outperforms the remaining designs in terms of bias (-0.007), and is able to

maintain Type I error under the 5% nominal alpha level, in spite of overestimation of the standard error of

the treatment effect estimate (lowest sd/se ratio under the null amongst designs considered). On the other

hand, CRD’s Type I error slips just above 5%, due to its higher bias and standard error.
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β̂1 se(β̂1) sd sd se bias rb mse size ci
Under H 0
CRD -0.013 1.785 1.777 0.996 -0.013 6.349 0.051 95
PBD -0.015 1.783 1.774 0.995 -0.015 6.330 0.049 95
Neyman -0.008 1.805 1.773 0.982 -0.008 6.404 0.047 95
RSIHR -0.009 1.804 1.770 0.981 -0.009 6.391 0.046 95
RSIHR2 -0.002 1.792 1.765 0.985 -0.002 6.333 0.046 95
R.corr -0.007 1.809 1.773 0.980 -0.007 6.423 0.045 95
Under H 1
CRD -5.013 1.785 1.777 0.996 -0.013 0.255 6.349 0.802 95
PBD -5.015 1.783 1.774 0.995 -0.015 0.310 6.330 0.802 95
Neyman -5.015 1.805 1.779 0.986 -0.015 0.304 6.427 0.793 95
RSIHR -4.991 1.807 1.795 0.993 0.009 -0.180 6.490 0.792 95
RSIHR2 -4.952 1.805 1.766 0.979 0.048 -0.960 6.384 0.787 95
R.corr -4.992 1.812 1.800 0.993 0.008 -0.166 6.525 0.790 95

Table 2.8: Contraceptive study: inferential statistics for various designs testing H0 : β1 = 0 and H1 : β1 = −5
in 10,000 iterations, θT = (127, 132, 330, 235), ρ = 0.30 and n = 355.

Under the alternative hypothesis, the benefits of adjusting for correlation are more evident, as can be

seen by lowest relative bias. We note that R.corr’s power of 0.790 is not as strong as Neyman allocation’s

power of 0.793, yet R.corr’s relative bias is much lower at -0.166 compared to Neyman’s relative bias of 0.304.

It is also worth noting the high relative bias of -0.960 of RSIHR2, showing that at this level of correlation,

RSIHR2’s estimate of the treatment effect is underestimated to a larger degree than that of the other designs.

RSIHR2 has the lowest power of 0.787, explained by large bias and overestimation of the standard error. The

SD/SE ratio close to 1 of R.corr under the alternative hypothesis indicates reasonable estimates of standard

error, and gives confidence in the strong performance with respect to biases, power, and empirical coverage.

The same simulations were run for other values of ρ. The results of bias and relative bias under the

alternative hypothesis versus correlation are shown in Figures 2.9a and 2.9b. It is interesting to note that

the curves plotting bias of the treatment effect estimate under Complete Randomized Design, Permuted Block

Design, RSIHR, and R.corr share similar shapes. The very close performance of RSIHR allocation and R.corr

should not be surprising since their derivations both depend on minimizing total expected responses, albeit

RSIHR does not adjust for correlation. While RSIHR and RSIHR2 curves begin closely together, when

correlation exceeds 0.25, the RSIHR2 bias begins to decrease and continues to do so as correlation increases.

The deviation in behavior is due to RSIHR2’s adjustment of ensuring that the total expected response is

minimized and less patients are placed in the inferior arm. With 5% correlation, as shown in Table 2.7, the

relative bias under the alternative hypothesis of RSIHR2 is the lowest at 0.001, while that of R.corr is next

with relative bias of -0.056. Neyman allocation has relative bias of -0.177, and PBD performs worst in this

metric with relative bias of 0.340. However, as can be seen in Figures 2.9a and 2.9b, Neyman allocation

performs increasingly poorly as correlation increases from 0 to 0.25, whereby its performance improves as
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Figure 2.9: Contraceptive study: bias and relative bias under the alternative hypothesis for varying levels of
correlation.

correlation increases from 0.25 to 1.

Power as a function of correlation for the contraceptive study is shown in Figure 2.10. The power of

R.corr declines as correlation increases. The loss in power results from the increasing number of patients

allocated to treatment group E, leading to larger treatment group imbalance as correlation increases, as

well as increased variability in nE/n (see Table 2.9) as correlation increases. The faster decline of power

in R.corr design as correlation increases is due to the larger increase in variability of the target allocation

R = nE/nC . For example, as correlation increases from 0.5 to 0.55, the variability of R in RSIHR design

remains consistent around 0.05, but the variability of R in R.corr design increases from 0.351 to 0.523.

It is suggested to increase the sample size as correlation increases and still utilize the R.corr allocation,

due to its demonstrated ability to minimize the total response under the alternative, and its ability to more

accurately estimate the treatment effect (e.g. see relative bias in Table 2.8). For example, in the contraceptive

example with ρ = 0.05, a mere increase of sample size from 355 to 363 was sufficient to bring power from 79.4

to 80.3%. Similarly, with ρ = 0.30, an increase of sample size from 355 to 368 increased power from 79 to

81 %. Meanwhile, the bias under H0 and relative bias under H1 were significantly lower under R.corr than

other allocation targets. Table 2.10 below shows the resulting power from upwards sample size adjustments

to address the drop in power when using R.corr. Note that 475 subjects are needed for 90% power under

CRD, yet 480 subjects are needed for 90% power under R.corr.
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Figure 2.10: Contraceptive study: power vs correlation.

ρ Neyman RSIHR RSIHR2 R.corr
0.00 0.056 0.062 0.038 0.062
0.05 0.056 0.063 0.054 0.071
0.10 0.047 0.064 0.043 0.100
0.15 0.051 0.063 0.034 0.119
0.20 0.056 0.064 0.039 0.130
0.25 0.057 0.074 0.040 0.265
0.30 0.053 0.060 0.041 0.199
0.35 0.051 0.055 0.042 0.185
0.40 0.049 0.054 0.048 0.229
0.45 0.053 0.055 0.037 0.323
0.50 0.057 0.055 0.041 0.351
0.55 0.052 0.053 0.042 0.523
0.60 0.052 0.053 0.039 0.697
0.65 0.051 0.054 0.053 0.753
0.70 0.056 0.058 0.042 1.379
0.75 0.142 0.062 0.045 1.320
0.80 0.057 0.069 0.037 2.116
0.85 0.057 0.061 0.040 2.184
0.90 0.066 0.055 0.037 2.052
0.95 0.052 0.052 0.063 2.959
1.00 0.047 0.055 0.035 3.593

Table 2.9: Contraceptive study: variance of R̂ amongst 355 subjects for varying levels of correlation, averaged
across 10,000 iterations.
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n CRD PBD DBCD.Neyman RSIHR RSIHR2 R.corr
365 0.811 0.810 0.807 0.802 0.795 0.798
375 0.823 0.826 0.811 0.811 0.821 0.810
385 0.833 0.837 0.823 0.820 0.825 0.820
395 0.838 0.840 0.833 0.834 0.841 0.833
405 0.850 0.846 0.842 0.839 0.846 0.840
415 0.860 0.863 0.854 0.853 0.851 0.851
425 0.864 0.864 0.866 0.855 0.865 0.852
435 0.867 0.870 0.875 0.868 0.864 0.868
445 0.884 0.879 0.883 0.874 0.882 0.873
455 0.888 0.889 0.883 0.877 0.884 0.877
465 0.890 0.895 0.896 0.893 0.885 0.890
475 0.900 0.895 0.894 0.893 0.898 0.893
480 0.902 0.900 0.901 0.899 0.899 0.900

Table 2.10: Contraceptive study: sample size adjustments and resulting levels of power ranging from 0.8 to
0.9 with θT = (127, 132, 330, 235) and ρ = 0.30.

The scleroderma example also shows the value of accounting for correlation when the objective is to

minimize the total expected response. It also shows the value of simulation while selecting a study design,

as the designs evaluated perform differently than in the contraceptive study. In the study of scleroderma

patients, µE = 21.8, µC = 27.5, σ2
E = 219, σ2

C = 144. The optimal allocation proportion accounting for

correlation is shown for varying levels of correlation in Table 2.11. The optimal value of R ranges from

1.3947 when correlation is 0, to 1.5208 when correlation is 1.

ρ R.corr
0.00 1.3947
0.05 1.3978
0.10 1.4011
0.15 1.4045
0.20 1.4082
0.25 1.4121
0.30 1.4162
0.35 1.4206
0.40 1.4252
0.45 1.4302

ρ R.corr
0.50 1.4356
0.55 1.4413
0.60 1.4475
0.65 1.4541
0.70 1.4613
0.75 1.4691
0.80 1.4776
0.85 1.4869
0.90 1.4971
0.95 1.5084
1.00 1.5208

Table 2.11: Scleroderma study: optimal allocation proportion for varying levels of correlation, θT =
(21.8, 27.5, 219, 144) and n = 165.

After successfully enrolling a total of n patients, we observe the proportion of patients enrolled in the

experimental arm under the alternative hypothesis, depicted in Figure 2.11. Similar to Figure 2.7, we can

see that the proportion of patients assigned to the experimental arm (group E) for designs that do not

adjust for correlation are consistent regardless of correlation between the responses of the two arms. On the

other hand, the blue solid line depicts the proportion of patients in group E under R.corr, which places an
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Figure 2.11: Scleroderma study: proportion of patients in the experimental arm (treatment group E) for
different levels of correlation, averaged across 10,000 iterations.

increasing proportion of patients in the experimental arm as correlation increases.

The simulation is set up in the same manner as for the contraceptive example. Figure 2.12a shows the

value of R̂ from patients 1 to n = 165 for the doubly-biased coin design (DBCD) targeting R.corr, Neyman,

RSIHR, and RSIHR2 allocations. In each quadrant, the dotted gray lines are the value of R̂ for a given

subject in one simulated trial (a single iteration). The colored lines within the plot show the average R̂

across patient enrollment averaged across 10,000 iterations. These average R̂ values are shown again in

Figure 2.12b for ease of comparison. Note that the larger effect size of the scleroderma example results in

the curves for average R̂ in RSIHR and RSIHR2 designs to come together more quickly; by patient 60 the

two R̂’s are in close agreement, compared to this consistency not occurring until after 100 patients were

enrolled in the contraceptive example. The larger effect size of the scleroderma case also results in a larger

difference in R̂ for R.corr versus Neyman designs.

The value of R.corr allocation is evident in Table 2.12, which exhibits total observed response ȲEnE +

ȲCnC for ρ ∈ (0.05, 0.30, 0.60) for the scleroderma case. It can be seen that for all cases, the total response

under the R.corr design is indeed lower than those of the other designs. Specifically, the comparison of R.corr

with RSIHR makes most sense, since both target allocations seek to minimize the total expected response for

a fixed variance, with R.corr adjusting for correlation and RSIHR assuming independence. When ρ = 0.05

in the scleroderma study, the total response under R.corr is 4022.665, while under RSIHR is 4025.571. The

further improvement as gleaned by the size of the gap between the total expected response under R.corr

and RSIHR is more apparent as correlation increases; when ρ = 0.30, R.corr’s total response is 4022.665,

compared with RSIHR’s 4025.571. Finally, when ρ = 0.60, R.corr’s total response is 4018.457, compared
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Figure 2.12: Scleroderma study: (a) R̂ = nE/nC across 165 enrolled patients, ρ = 0.05. Each gray dotted
line represents R̂ in a single iteration. The bolder lines in color represent the average R̂ for the design across
10,000 iterations.
(b) R̂ = nE/nC across 165 enrolled patients averaged across 10,000 iterations.

with RSIHR’s total response of 4025.627.

While total response is successfully reduced when using R.corr compared to CRD, PBD, and Neyman,

RSIHR, and RSIHR2 targeted by DBCD, we also evaluate the performance of these designs by looking at

bias, relative bias, Type I error, and power. Inferential results for the scleroderma study are shown in Table

2.13. Under the null hypothesis, R.corr maintains bias under the 5% nominal alpha level and has bias levels

similar to the other designs evaluated. Under the alternative, the relative bias of R.corr is lower than the

others, at -1.781, versus a relative bias of -1.810 in the RSIHR design. The power under the alternative

drops to 77.4%.

In the scleroderma example, when ρ = 0.30 (Table 2.13), R.corr does not differentiate itself much from

RSIHR design. For example, the relative bias of RSIHR and R.corr are -1.800 and -1.789, respectively,

and powers are similar at 77.4% and 77.5%, respectively. R.corr still outshines CRD, PBD, and Neyman

allocation as targeted by DBCD, since those designs had relative bias all more severe than -2.

In the last scenario assessed for the scleroderma study, a high level of correlation of ρ = 0.60 is introduced.

Under the null hypothesis, R.corr controls its Type I error under 5%, and has the highest empirical coverage

of 95.18%. Under the alternative, we see the high correlation is associated with a larger drop in power to

77.3%, however R.corr boasts the smallest relative bias of -1.599, compared with the closest second provided
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Patients in E (H1) Responses Total Response

mean sd proportion µE µC µEnE + µCnC

ρ = 0.05

CRD 82.516 6.495 0.500 21.986 27.547 4086.427

PBD 82.489 0.962 0.500 21.976 27.545 4085.566

Neyman 88.939 5.685 0.539 21.966 27.544 4048.674

RSIHR 93.686 5.716 0.568 21.980 27.577 4025.877

RSIHR2 93.589 5.611 0.567 22.009 27.560 4027.836

R.corr 93.740 5.808 0.568 21.977 27.575 4025.151

ρ = 0.30

CRD 82.516 6.495 0.500 21.986 27.540 4085.830

PBD 82.489 0.962 0.500 21.976 27.539 4085.108

Neyman 89.009 5.612 0.539 21.973 27.518 4046.900

RSIHR 93.703 5.702 0.568 21.979 27.576 4025.571

RSIHR2 93.659 5.725 0.568 21.983 27.580 4026.523

R.corr 94.069 6.427 0.570 21.974 27.571 4022.665

ρ = 0.60

CRD 82.516 6.495 0.500 21.986 27.531 4085.067

PBD 82.489 0.962 0.500 21.976 27.532 4084.525

Neyman 88.915 5.591 0.539 21.954 27.527 4046.479

RSIHR 93.696 5.714 0.568 21.977 27.578 4025.627

RSIHR2 93.670 5.640 0.568 21.991 27.593 4028.047

R.corr 94.666 7.955 0.574 21.964 27.572 4018.457

Table 2.12: Scleroderma study: total observed response under the alternative hypothesis H1 : β1 = −5.7;
θT = (21.8, 27.5, 219, 144) and n = 165.

by RSIHR2 at -1.714. While RSIHR2 seems to be a consistently strong perform, remember in the scleroderma

study with ρ = 0.05 that RSIHR2 had the highest relative bias amongst the designs assessed. Here with a

correlation of 0.60, CRD had the highest relative bias under the alternative at -2.712.

Figures 2.13a and 2.13b plot bias and relative bias versus correlation. Note that the shapes of these

curves look very different from those provided by the contraceptive study in Figures 2.9a and 2.9b. This

shows the importance of simulation to prepare expectations prior to trial implementation. In both Figures

2.13a and 2.13b, we see that R.corr and RSIHR have the lowest biases and relative biases in most cases of

correlation (except when correlation is nearly 1, when Neyman allocation has lower bias and relative bias).

It is also interesting to note that PBD has lower bias and relative bias than CRD, regardless of correlation

level.

Figures 2.14a and 2.14b plot Type I error and Power versus correlation. In assessing Type I error, we see

that R.corr consistently controls Type I error, while CRD and PBD often times are unable to do so. Neyman
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Figure 2.13: Scleroderma study: bias and relative bias under the alternative hypothesis for varying levels of
correlation.
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Figure 2.14: Scleroderma study: Type I error and power for varying levels of correlation.
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β̂1 se(β̂1) sd sd se bias rb mse size ci
Under H 0
CRD 0.1381 2.059 2.070 1.005 -0.000 4.241 0.057 94.27
PBD 0.1313 2.052 2.061 1.004 0.000 4.213 0.056 94.37
Neyman 0.1436 2.086 2.057 0.986 0.000 4.350 0.048 95.25
RSIHR 0.1452 2.086 2.051 0.983 0.000 4.351 0.047 95.27
RSIHR2 0.1608 2.070 2.042 0.987 0.000 4.283 0.048 95.22
R.corr 0.1419 2.087 2.055 0.985 0.000 4.355 0.049 95.12
Under H 1
CRD -5.5613 2.016 2.027 1.006 0.138 -2.423 4.127 0.785 94.18
PBD -5.5688 2.009 2.017 1.004 0.131 -2.291 4.086 0.786 93.93
Neyman -5.5771 2.032 1.986 0.977 0.122 -2.146 3.960 0.783 95.11
RSIHR -5.5963 2.053 2.025 0.986 0.103 -1.810 4.111 0.775 95.00
RSIHR2 -5.5510 2.054 2.026 0.987 0.148 -2.604 4.129 0.774 94.56
R.corr -5.5979 2.054 2.026 0.986 0.102 -1.781 4.114 0.774 94.89

Table 2.13: Scleroderma study: inferential statistics for various designs testing H0 : β1 = 0 and
H1 : β1 = −.5.7 in 10,000 iterations evaluating θT = (21.8, 27.5, 219, 144), ρ = 0.05 and n = 165.

β̂1 se(β̂1) sd sd se bias rb mse size ci
Under H 0
CRD 0.1453 2.060 2.069 1.005 0.000 4.242 0.055 94.51
PBD 0.1368 2.052 2.056 1.002 0.000 4.213 0.057 94.29
Neyman 0.1261 2.087 2.063 0.988 0.000 4.357 0.048 95.25
RSIHR 0.1532 2.086 2.053 0.984 0.000 4.350 0.047 95.33
RSIHR2 0.1060 2.070 2.045 0.988 -0.000 4.285 0.048 95.25
R.corr 0.1431 2.095 2.059 0.983 0.000 4.388 0.046 95.37
Under H 1
CRD -5.5541 2.016 2.026 1.005 0.145 -2.550 4.124 0.783 94.06
PBD -5.5633 2.009 2.013 1.002 0.136 -2.389 4.069 0.787 93.98
Neyman -5.5454 2.031 2.024 0.996 0.154 -2.703 4.119 0.771 94.47
RSIHR -5.5969 2.054 2.033 0.990 0.103 -1.800 4.142 0.774 94.88
RSIHR2 -5.5971 2.052 2.021 0.985 0.102 -1.795 4.095 0.777 94.74
R.corr -5.5974 2.057 2.027 0.985 0.102 -1.789 4.118 0.775 94.76

Table 2.14: Scleroderma study: inferential statistics for various designs testing H0 : β1 = 0 and
H1 : β1 = −.5.7 in 10,000 iterations evaluating θT = (21.8, 27.5, 219, 144), ρ = 0.30 and n = 165.

allocation is able to control Type I error at the nominal 5% for small to moderate levels of correlation, but

after correlation surpasses 0.50, the ability of Neyman allocation to control Type I error is diminished. In

Figure 2.14b, R.corr has stronger power than Neyman allocation for small levels of correlation, but after

correlation exceeds 0.4, the power of a design targeting R.corr falls more dramatically. The lower power of

R.corr relative to other designs when correlation exceeds 0.4 is due to the higher variability of R̂ = nE/nC ,

and the faster decline in power is a due to the larger increase variability of the design as correlation increases

(Table 2.16).

While 165 patients is an adequate sample size for 80% power in the independent response case, we see

from Table 2.14 that power had been reduced to 77.1% for DBCD targeting Neyman allocation and 78.7%
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β̂1 se(β̂1) sd sd se bias rb mse size ci
Under H 0
CRD 0.1546 2.059 2.069 1.005 -0.000 4.241 0.055 94.46
PBD 0.1439 2.052 2.051 0.999 0.000 4.212 0.055 94.52
Neyman 0.1464 2.084 2.057 0.987 -0.000 4.341 0.050 94.98
RSIHR 0.1469 2.086 2.061 0.988 0.000 4.350 0.049 95.09
RSIHR2 0.1432 2.068 2.078 1.004 -0.000 4.278 0.050 94.95
R.corr 0.1536 2.114 2.079 0.983 -0.000 4.471 0.048 95.18
Under H 1
CRD -5.5448 2.016 2.025 1.005 0.155 -2.712 4.125 0.783 94.18
PBD -5.5562 2.009 2.008 0.999 0.143 -2.513 4.051 0.789 94.25
Neyman -5.5733 2.032 1.989 0.979 0.126 -2.212 3.972 0.779 95.01
RSIHR -5.6011 2.053 2.022 0.985 0.098 -1.725 4.099 0.779 94.53
RSIHR2 -5.6018 2.053 2.016 0.982 0.098 -1.714 4.074 0.779 94.89
R.corr -5.6083 2.066 2.041 0.988 0.091 -1.599 4.173 0.773 94.78

Table 2.15: Scleroderma study: inferential statistics for various designs testing H0 : β1 = 0 and
H1 : β1 = −.5.7 in 10,000 iterations evaluating θT = (21.8, 27.5, 219, 144), ρ = 0.60 and n = 165.

ρ Neyman RSIHR RSIHR2 R.corr
0.00 0.100 0.114 0.091 0.114
0.05 0.080 0.112 0.092 0.126
0.10 0.084 0.122 0.104 0.138
0.15 0.085 0.119 0.094 0.162
0.20 0.078 0.113 0.090 0.186
0.25 0.085 0.110 0.090 0.212
0.30 0.083 0.107 0.094 0.235
0.35 0.090 0.104 0.093 0.278
0.40 0.076 0.102 0.104 0.311
0.45 0.073 0.108 0.104 0.365
0.50 0.073 0.101 0.090 0.398
0.55 0.087 0.103 0.095 0.463
0.60 0.080 0.105 0.089 0.609
0.65 0.081 0.113 0.091 0.789
0.70 0.092 0.127 0.094 0.935
0.75 0.079 0.117 0.089 1.052
0.80 0.075 0.116 0.094 1.364
0.85 0.099 0.119 0.095 1.595
0.90 0.077 0.111 0.086 1.607
0.95 0.079 0.105 0.087 1.771
1.00 0.083 0.095 0.090 2.710

Table 2.16: Scleroderma study: variance of R̂ amongst 165 subjects for varying levels of correlation, averaged
across 10,000 iterations.

for PBD. We also observed in Figure 2.14b that when using R.corr, power drops more drastically than the

other designs considered as correlation increases. An upward adjustment needs to be made on sample size in

the presence of correlated responses between treatment arms. Table 2.17 shows power with increasing sample

sizes from simulations with responses between treatment arms having a correlation of 30%. An increase in

sample size to 185 results in 82.09% power in R.corr. While 212 patients would have been a sufficient sample
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n CRD PBD Neyman RSIHR RSIHR2 R.corr
165 0.7835 0.7873 0.7711 0.7742 0.7772 0.7749
185 0.8226 0.8258 0.8226 0.8197 0.8185 0.8209
205 0.8591 0.8612 0.8637 0.8582 0.8503 0.8550
225 0.8909 0.8912 0.8914 0.8946 0.8900 0.8918
245 0.9171 0.9155 0.9167 0.9100 0.9149 0.9101

Table 2.17: Scleroderma study: sample size adjustments and resulting levels of power ranging from 0.8 to
0.9 (θT = (21.8, 27.5, 219, 144) and ρ = 0.30).

size for 90% power given independent responses, we can see from the Table that a sample size greater than

225 is needed when correlation is 30%.

2.4.2 Nonparametric Methods in Assessing Performance of Optimal Allocation

Proportion Accounting For Correlation

Proschan stated that analysis of trial data can ignore correlation between responses if the randomization

scheme also did not account for the correlation [69]. Tables 2.7- 2.8, and 2.13 - 2.15 show five randomization

schemes that ignore correlation, and one randomization scheme that targets an optimal allocation proportion

that accounts for the correlation. One might argue that the comparison is unfair. To address this issue, we

can use nonparametric methods to compare the six randomization schemes on a level playing field.

Bootstrap is a nonparametric simulation technique that estimates the sampling distribution of a statistic

by simulation. The method draws a sample of original size nE and nC from the data by sampling with

replacement. By doing so, the sample is treated as the whole population, and the resampling allows one

to study the sampling distribution of any statistic, such as the sample mean, or in our case, the sample

difference in means between two treatment groups. The theory behind the bootstrap relies on asymptotics:

as the sample size of the original data goes to infinity, the more accurate the inferences drawn from this

method [28]. In general, 500 to 1000 bootstraps is often recommended.

In each iteration of the simulation in section 2.4.1, yE and yC are treated as responses from the entire

population. There are nE observations drawn from the E population with replacement, and nC observations

drawn from the C population with replacement. Each such occurrence is considered a single bootstrap which

yields a single statistic, and 1000 bootstraps are performed. The statistic we are interested in is (ȲE − ȲC).

With each iteration of the simulation, 1000 bootstraps yields 1000 sample statistics. We then compute

the 95% confidence interval from the 2.5th and 97.5th quantiles of the 1000 sample statistics. Since the

simulation includes 10000 iterations for each randomization design, we have 10000 confidence intervals for

each randomization design as well. The widths of these intervals shed light on our certainty of the estimate

of the difference in the means in the two groups. The confidence intervals from the bootstrap method is
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displayed in Tables 2.18 for the contraceptive trial and 2.19 for the scleroderma trial.

ρ = 0.05 ρ = 0.30

β̂1 95% CI Width β̂1 95% CI Width
CRD -5.000 [-9.8097, -0.1885] 9.6212 -5.001 [-9.5052, -0.4958] 9.0094
PBD -4.999 [-9.8505, -0.1543] 9.6962 -5.001 [-9.5353, -0.4658] 9.0695
Neyman -5.000 [-9.7569, -0.2438] 9.5131 -5.000 [-9.4552, -0.5415] 8.9136
RSIHR -5.000 [-9.7464, -0.2523] 9.4941 -5.000 [-9.4502, -0.5527] 8.8975
RSIHR2 -5.000 [-9.7449, -0.2564] 9.4885 - 5.001 [-9.4492, -0.5491] 8.9001
R.corr -5.001 [-9.7475, -0.2546] 9.4929 -5.000 [-9.4395, -0.5583] 8.8812

Table 2.18: Contraceptive study: average treatment effect estimate β̂1 and 95% confidence intervals from
1000 bootstraps for each of 10,000 iterations.

Table 2.18 shows the confidence intervals and widths from the 1000 bootstraps for the contraceptive

study. It can be seen that when ρ = 0.05 and ρ = 0.30, the confidence intervals of the difference in means

in the design targeting R.corr are more narrow than those of the designs targeting Neyman and RSIHR

allocations. The narrowest width when ρ = 0.05 is from RSIHR2, which coincides with its largest empirical

coverage of 96% in the parametric analyses as shown in Table 2.7. When ρ = 0.30, R.corr yields the most

narrow confidence interval of all six designs, demonstrating higher certainty of estimates of R.corr. The

confidence interval narrows from Neyman to R.corr allocations for ρ = 0.05 and ρ = 0.30, with the widths

for Neyman allocation being 9.5131 and 8.9136, respectively, and the widths for R.corr being 9.4929 and

8.8812 respectively. We observe that the confidence interval width decreases as correlation increases.

ρ = 0.05 ρ = 0.30 ρ = 0.60

β̂1 95% CI Width β̂1 95% CI Width β̂1 95% CI Width
CRD -5.5598 [-11.1872, 0.0698] 11.2570 -5.5545 [-10.8317, -0.2809] 10.5508 -5.5437 [-10.3594, -0.7236] 9.6358
PBD -5.5705 [-11.2563, 0.1192] 11.3755 -5.5627 [-10.8802, -0.2454] 10.6349 -5.5567 [-10.3988, -0.7155] 9.6833
Neyman -5.5780 [-11.1619, 0.0073] 11.1691 -5.5457 [-10.7801, -0.3126] 10.4675 -5.5715 [-10.3574, -0.7877] 9.5697
RSIHR -5.5942 [-11.1222, -0.0679] 11.0543 -5.5965 [-10.7865, -0.4038] 10.3827 -5.6011 [-10.3571, -0.8465] 9.5106
RSIHR2 -5.5487 [-11.0736, -0.021] 11.0526 -5.5972 [-10.7910, -0.4038] 10.3872 -5.5998 [-10.3547, -0.8463] 9.5085
R.corr -5.5986 [-11.1268, -0.0727] 11.0541 -5.5977 [-10.7885, -0.4071] 10.3814 -5.6074 [-10.3677, -0.8496] 9.5180

Table 2.19: Scleroderma study: average treatment effect estimate β̂1 and 95% Confidence Intervals from
1000 bootstraps for each of 10,000 iterations.

In Table 2.19, the confidence intervals and widths resulting from 1000 bootstraps is shown for the sclero-

derma study example. The confidence interval narrows from Neyman to R.corr allocations for ρ = 0.05, 0.30,

and 0.60, with the widths for Neyman allocation being 11.1691, 10.4675, and 9.5697, respectively, versus

11.0541, 10.3814, and 9.5180 for R.corr, respectively. The estimate β̂1 is closer to the true value of β1 = −5.7

when using R.corr than the other designs. The widths of the bootstrapped confidence intervals are consis-

tently more narrow for R.corr than those of CRD and PBD. This is consistent with the larger empirical

coverage of R.corr as reported in the “ci” column in Tables 2.13 through 2.15. Similar to its performance in

the contraceptive study, R.corr has a wider confidence interval than RSIHR when the correlation is 0.05, but
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a more narrow confidence interval than RSIHR when the correlation is 0.30. The larger width of R.corr’s

bootstrap confidence interval when correlation is 0.60 relative to those of RSIHR and RSIHR2 coincides with

the parametric results of the scleroderma study shown in Figure 2.14b, which depicts RSIHR and RSIHR2

having higher power than R.corr when correlation surpasses 0.4.

2.5 Discussion

In this chapter, optimal allocation proportions for clinical trials with correlated continuous responses between

two treatment groups were derived, where smaller responses are considered better, and optimal is defined

as minimization of the expected total response from two treatment groups for a fixed power. The optimal

allocation was shown to be a function of the ratio of the two groups’ means and variances, and the degree of

correlation between outcomes from the two-arm trial. When instead a large response is desirable, we cannot

obtain an optimal allocation by maximizing µEnE+µCnC subject to V ar(ψ̂) = ˆV ar(ȲE−ȲC) = K. Instead,

we can minimize nE
µE

+ nC
µ+C subject to K [50, 96]. While the technical result is interesting, it will benefit from

further work that focuses on more granular details of the framework for practical application. These details

include accurate estimation of the correlation between arms as well as incorporating within-arm correlation.

This chapter addresses correlation issues during individual randomization to treatment arms. Another

approach is to implement clustered randomized trials (CRTs). We use this section to highlight both advan-

tages and drawbacks of CRTs, and how the findings of this Chapter address correlation differently.

CRTs are popular due to their ability to reduce contamination resulting from intermingling of subjects in

different treatment arms. Contamination is a concern in trials where patients have some control with respect

to their treatment. For example, in a trial investigating the efficacy of mindfulness exercises on hypertension,

individuals in the control arm could learn about such exercises and try to adopt them themselves. Cluster

randomized trials minimize treatment contamination by allocating an intervention to an entire group of

units. For example, a set of communities could be assigned an intervention, while another set could be

assigned a control treatment. Another example is randomizing entire family units to a dietary intervention

or control group, so that family members cannot discuss varying treatments amongst themselves.

Besides its strength in decreasing risk for contamination, clustered randomized trials are able to address

common exposures that lead to violation of the independence assumption, since random effects models

can include a random effect for each source of common exposure (e.g. a random effect for hospitals), and

observations can be modeled with a covariance structure [43].

In a single random effect model, the correlation between two observations in the same cluster is called

the intra-cluster correlation (ICC), which is ρICC = τ2

τ2+σ2
w

, where τ2 is the variance of the random effect for
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cluster j, and σ2
w is the variance of the error term. Thus, in this model, observations within a cluster share

a common correlation ρICC , which is a shared correlation for both treatment and control clusters.

In the two random effects model, the separate random cluster effects for treatment and control clusters

(τ2
T and τ2

C , respectively) results in different ICCs for each treatment group. If we allow subjects within

clusters of the control group to share a correlation of ρICC C , and subjects within clusters of the treatment

group to share a correlation of ρICC T , then the ρICC C =
τ2
C

τ2
C+σ2

w
and the ρICC T =

τ2
T

τ2
T+σ2

w
. Random

variation may exist in the control group’s clusters (τ2
C) and in the treatment group’s clusters (τ2

T ).

The intracorrelation cluster coefficient (ICC) helps researchers calculate sample size accounting for cor-

relation between clusters, by adjusting the sample size resulting from standard sample size calculations via

a multiplicative factor, known as the variation inflation factor or design effect :

1 + (navg − 1)ρICC ,

where navg is the average cluster size, and ρICC is the ICC.

Torgerson questioned whether clustered randomization was the best solution to contamination within

trials, and summarized the disadvantages of utilizing the clustered design. First, cluster trials usually require

a larger sample size than would be required in similar, individually randomized trials. Second, cluster trials

tend to experience recruitment bias, where certain clusters or patients are more likely to be allocated to

a certain treatment. Third, although covariate balance at baseline can be achieved if randomization is

performed at the cluster level with a sufficient number of clusters, simple randomization of clusters can still

result in covariate imbalance. For example, in a randomized trial of breast cancer screening, the study arms

witnessed an imbalance in socioeconomic groups, in spite of the inclusion of 87 clusters and 50,000 women

[2]. With randomization at the individual level, a sample size this large would have a very low probability

of witnessing covariate imbalance. For more on covariate imbalance, refer to Section 4.1.3. Fourth, selection

bias is an indismissable risk. Clusters are typically randomized to a treatment, whereby participants are

asked post-randomization whether they consent to treatment and inclusion in study analysis (often requiring

follow-up visits). If a large proportion of participants do not provide their consent, or if participants are

more likely to consent to one treatment type than other, selection bias is a risk (see more on selection bias

in Section 4.1.4). Fifth, clustered designs sometimes employ Zelen’s method, of which there are two types:

single and double consent. In single consent design, patients who rejected the experimental treatment upon

initial offering are then offered the control treatment. In double consent design, patients are initially offered

the treatment to which they were randomized; if they decline the randomized treatment, they are then offered

alternative therapies, including the investigative treatment [83, 84]. Utilizing Zelen’s method consequently
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dilutes the treatment effect and thus requires a further upwards adjustment in sample size.

In addition to Torgerson’s examples on why individual randomization rather than clustered randomization

ought to be considered, we note that in clustered randomized trials, the random effect that contributes to

correlation between responses needs to be identified – is it the treatment site?, the community?, the personnel

administering treatment? How can we still address correlation when the source is unknown? While Biswas

was the first to utilize individualized randomization while accounting for correlation for clinical trials with

binary responses, this chapter expands the work to trials with continuous responses, resulting in the target

allocation R.corr. This allocation is considered an extension of RSIHR allocation discussed in Section B, as

RSIHR allocation minimized the expected total response in trials with two arms for independent responses,

and R.corr minimizes the expected total response while adjusting for correlation between treatment arms.

A natural extension of this work would be to incorporate within arm correlation into the minimization of

µEnE + µCnC while holding the variance of the treatment effect estimate fixed.

Optimal in this work has thus far referred to the minimization of the total expected response for a given

power. We have seen that even in the case of µE = 127, µC = 132, σ2
E = 330, σ2

C = 235, and ρ = 0.05, the

optimal allocation proportion R.corr places ( 0.548
1−0.548 ) = 21% more subjects in the experimental arm. The

difference in patient allocation when using R.corr versus other target allocations is more apparent for larger

values of correlation: when ρ = 0.30, R.corr places ( 0.554
1−0.554 ) = 24% more subjects in the experimental arm.

The ability of R.corr to result in lower total response µEnE +µCnC is also more apparent for larger values of

correlation, as could be seen in Tables 2.6 and 2.12 for contraceptive and scleroderma examples, respectively.

The value of adjusting for correlation is also evident in the lower relative bias of the treatment effect

estimate, as was shown in contraceptive and scleroderma examples of Section 2.4.1. Finally, the presence of

correlation requires an upwards adjustment of sample size in order to deliver sufficient power, as shown in

Tables 2.10 and 2.17.

While there is value in targeting the R that solves Equation 2.2, this optimal allocation proportion may

be difficult to implement in practice. An estimate of correlation from prior data requires the data to be

paired, and is sensitive to the pairing decisions. An unequal number of subjects in each treatment arm would

result in truncation of observations from the more heavily represented arm. In practice, pairing of subjects

in different treatment arms is difficult. The subjects could be paired based off of their genetic similarities,

or matched on baseline covariates such as time surpassed since screening and infectious disease outbreak,

or white blood cell count range and tumor size. Follmann stated one option was to pair subjects by their

ranked pairwise correlations [30] calculated from covariance matrices of their baseline covariates.

Another disadvantage of R.corr is the resulting imbalance between the treatment group sizes may lead to

other concerns. For example, placing 21% more subjects in experimental arm E leads to a higher likelihood
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of having a large string of patients consecutively allocated to E, which could negatively impact the power of

the trial to detect a treatment effect, and places the design at risk for biases due to time trends. Treatment

group size imbalance will be the topic of Section 4.1.1. Furthermore, one may wonder how the imbalanced

allocation performs with respect to other common statistical issues such as covariate imbalance and accidental

bias, which are the topics of Sections 4.1.3 and 4.1.2, respectively. Indeed, the accidental bias is minimized

when treatment group sizes are equal [28]. Thus, while optimal allocation proportions derived in this chapter

is able to minimize total expected responses, the ability to hedge against other potential biases is important.

This is the motivation for Chapter 4, which discusses how to assess the strengths and weaknesses of various

randomization procedures and designs, and presents a framework for clinical trial design selection. In order

to discuss this framework and investigate design choices, it is helpful to first review desirability functions,

the topic of the following chapter.
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Chapter 3

Desirability Functions:

A Literature Review

Chapter 1 provided a brief overview of a select number of clinical trial designs. Chapter 2 expanded on the

RSIHR allocation scheme in Section B to find an optimal target allocation for two-arm trials where responses

between the arms are correlated. Chapter 2 concluded by showing that R.corr’s performance did well with

respect to minimizing expected total response, but had varying satisfactory levels of performance depending

on the trial data with regards to other design characteristics of interest such as bias and power. With no

straight-forward decisions on design selection due to conflicting strengths and weaknesses, the choice of a

design to implement can be difficult. To further investigate design choices as we will do later in Chapter 4,

it is helpful first to review the main tool we use to accomplish our task: desirability functions.

A desirability score is a continuous measure that takes on values between zero and one, with large values

representing greater desirability. Harrington introduced the concept of a desirability function in 1965, and

used it to measure the goodness of a product. When the quality of a final product or outcome is determined

by several components or subscores, as is often the case, a desirability function is constructed for each

component first before they are combined into an overall desirability function. The approach is attractive

because it provides a simple way of arriving at an overall assessment of the product based on several - and

frequently disparate - measures of quality of the product. One can view desirability functions as a way of

handling multiple response variables [40].

Our aims in this chapter are to review the use of desirability functions in the biomedical arena, their

recent innovations, and potential use for applications in more challenging problems. Desirability functions’

ability to easily capture several components of a product or process in a single score has attracted many
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users across diverse disciplines since inception, and continues to do so. A Google Scholar search using the

keywords “desirability function” yields over 350,000 results, and adding the term “engineering” yields over

100,000, showing its wide use and common acceptance. Here are some of them:

- industrial engineering: assessing quality of different tire tread compounds (Derringer et al., 1980)

[26]; assessing quality of acetic fermentation when using different kinetic parameters (Pizarro,

2003) [67];

-chromatography: evaluating performance of various high-performance liquid chromatograms in

the separation of mixtures (Bourguignon, 1991) [16];

- mechanical engineering: rating the ability of varying factor levels to remove material from the

surface of a less resistant body using liquid nitrogen as a coolant (Aggarwal, 2008) [1];

- identifying mechanical properties that are associated with higher overall steel quality (Kim et

al., 2000) [53];

- agriculture: evaluating quality of callus induction and rating its growth (Honari et al., 2014)

[45];

- environmental science: identifying factors that result in the most efficient bioremediation of

weathered crude oil in coastal sediment (Mohajeri et al., 2009) [62].

Further evidence of the continuing popularity of desirability functions can be seen in its existence in R

packages and popular commercial software Design Expert by StatEase, and JMP by SAS. Given the data,

the packages construct individual desirability functions and then the overall desirability function using user-

specified options. The software also can find the individual response values that maximize the overall

desirability.

Over the years, various improvements on and extensions of desirability functions have been made, and

they remain an active topic of research. Such recent improvements include allowing responses to be (i)

correlated, (ii) discrete, (iii) collected over time, and (iv) quantified according to the uncertainty associated

with the responses used in the desirability function. For example, Wu (2004) defined a new individual

desirability function that incorporates variation and correlation among the responses [93]; Coffey et al. (2007)

incorporated discrete outcomes [21]; Chen et al. (2015) introduced a desirability function that accounts for

repeated measures over time [18], and Chen et al. (2012) incorporated the standard deviation of predicted

responses into an augmented desirability function [17].

Interestingly, there is still little use of desirability functions in the biomedical field even though their

potential applications seem to be highly relevant, since patients’ progress is seldom based on one single
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measure but based on several submeasures or components. Frequently, problems arise when components

that contribute to the score do not provide the same indications or when they are measured on a different

scale. For instance, in rheumatoid arthritis, the ACR20 improvement criteria is a binary variable indicating

whether there is at least 20% improvement in at least three of the following components: patient assessment,

physician assessment, pain scale, disability questionnaire, and acute phase reactant. All five components

witnessing a 50% improvement versus three components witnessing a 20% improvement and two components

witnessing a decline would by the traditional definition of ACR20 be rated equivalently. Desirability scores

can provide an alternative option to capture and evaluate the contributions from various components and

help physicians compare their patients’ outcomes on a more granular level. There is thus good potential for

greater use of desirability functions in biomedical research. Our literature review shows there is increasing

use of such functions in recent years, suggesting that the medical research community may be beginning to

explore their potential more seriously. Interestingly, our search reveals there are fewer than 20 such papers

in biomedical journals with good statistical content. We briefly review these papers and note most of them

do not take advantage of the many innovations that have been recently developed for desirability functions.

Section 3.1 reviews the historical development of desirability functions and some of their applications.

In Section 3.2, we discuss the existing biomedical applications of desirability functions and its potential

for future use. Section 3.3 presents more recent and sophisticated development of desirability functions to

tackle increasingly more complex problems. Section 3.4 provides a brief case study showing how desirability

functions can help us gain insight in the longitudinal assessment of overall HIV patient status. Section 3.5

introduces algorithms that aid in optimizing the inputs of an overall desirability score.

3.1 Construction of Desirability Functions

3.1.1 The Original Desirability Function (Harrington, 1965)

There are many components that contribute to product quality and these components can vary in scale

and relative importance. In particular, some components may present conflicting signals on product quality,

complicating its evaluation. Harrington assumed all measures are continuous and proposed to first construct

a desirability function using an exponential transformation for each of the components, resulting on scores

on a common scale between zero and one, with one being most desirable. An overall desirability score is

then constructed by combining the various individual desirability functions [40].

The initial step is to identify which components or responses are of interest to assess the overall quality

of a product. After these components are selected, there are two steps to calculate an overall desirability
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score:

Step 1. Obtain individual desirability scores.

Categorize the bounds of the individual response’s acceptable range as one-sided (later designated smaller-

the-better or larger-the-better by Derringer et al., 1980) or two-sided (later designated nominal-the-better).

One-sided variables work in one direction: values are more desirable either when they are minimized, or

when they are maximized. On the other hand, two-sided variables have a target value that is most desirable,

and values are less desirable as they deviate away from that target value.

Let yi be the value of a response. For two-sided variables, let U and L be the upper- and lower- bounds

of the outcome’s acceptable values, respectively. Let d0 denote an assigned desirability score to a specific

response value y′i0 of a two-sided variable, while d1 and d2 are assigned desirabilities assigned to two specific

response values of a one-sided variable.

For two-sided variables:

y′i =
2yi − (U + L)

U − L
.

This is followed by the mapping of a single value of yi0
′ to an assumed desirability d0. The desirability of

that value should be independent from the values of other responses of interest. For example, one could

assign a desirability d0 of 0.75 to a response y′i0= 0.1, which would mean that a value slightly higher than

the midpoint between the upper and lower bounds corresponded to a good desirability score. Then, d0 and

y′i0 are used to define a scaling parameter:

k =
ln[ln( 1

d0
)]

ln|y′i0|
.

Then the individual desirability of a two-sided single response is:

di = exp[−|y′i|k].

Figure 3.1 shows three desirability functions for percentage weight change with varying scaling parame-

ters.

For one-sided variables: Assign two response values yi1 and yi2 (yi1 > yi2) to two desirabilities d1 and

d2, so that these response values can be rescaled:

y′ij = −ln[−ln(dj)]; j = 1, 2.

A linear transformation is then done to derive y′i:
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y′i =
yi − yi2
yi1 − yi2

(y′i1 − y′i2) + yi2.

Then the individual desirability of the single-bounded variable is:

di = exp[−exp(−y′i)].

Figure 3.2 shows three individual desirability functions for percentage skin score change, where smaller skin

scores are better.

Step 2. Obtain an overall desirability score.

After obtaining individual desirability functions for each attribute, an overall desirability score that

accounts for the m attributes can be obtained, defined as

D = (dw1
1 dw2

2 ...dwmm )
1∑m

i=1
wi , (3.1)

where wi is the user-specified weight assigned to each individual desirability di, with larger weights indicating

more importance.

There are several ways to construct an overall desirability function which should have good properties.

For example, the overall desirability should increase in value whenever one of the individual desirabilities

increases in value. The overall desirability function should also be able to account for the varying amount

of contribution in importance to the overall product quality from each component. Harrington argued that

individual weights of one were adequate for many scenarios, simplifying the equation to the geometric mean

of multiple components’ individual desirabilities. Derringer later noted advantages for using weights not

necessarily equal to one. Harrington’s choice of geometric mean was suitable for industrial manufacturing

since low individual desirability scores decrease overall desirability more rapidly than if other functions such

as the arithmetic mean were to be used. The geometric mean and the overall desirability score is thus

intended to significantly penalize an overall product if even one outcome has an unacceptable or undesired

response.

Table 3.1 displays an overall rating system of overall desirability, proposed by Harrington (1965) [40]:

In the literature, the scaling factor k is commonly referred to as a “kurtosis” parameter that a user could

specify for two-sided variables, where k > 1 results in smoother shapes around the midpoint between L and

U, while k < 1 penalizes small deviations from this midpoint. The sensitivity to user-specified values d0
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Desirability
Score

Interpretation

1.00 The ultimate in satisfaction and quality, where an improvement
beyond this point would have no additional meaningful value

[0.80, 1.00) Acceptable and excellent (represents unusual quality or perfor-
mance well beyond anything commercially available)

[0.63, 0.80) Acceptable and good (represents an improvement over the best
commercial quality)

[0.40, 0.63) Acceptable but poor (quality is acceptable to the specification
limits but improvement is desired)

[0.30, 0.40) Borderline (if specification exists, then some of the product quality
lies exactly on the specification maximum or minimum)

(0.00, 0.30) Unacceptable (materials of this quality would lead to failure)
0.00 Completely unacceptable

Table 3.1: Harrington’s interpretations of desirability scores.

and y′i0 and hence this scaling parameter in two-sided variables can be seen in Figure 3.1, which depicts the

desirability function of percentage weight change, with lower specification limit L = -0.38, upper specification

limit U = 0.28, and y′i0 = 0.2.
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Two−Sided Harrington Desirability Functions 
for Percentage Weight Change

Figure 3.1: Harrington two-sided individual desirability functions, with L = -0.38, U = 0.28.

Specifically, in Figure 3.1 a, b, and c, d0 = 0.63, d0 = 0.82, and d0 = 0.992, respectively, resulting in k =

0.48, k = 1, and k = 3, respectively. The interpretation of these values is that a weight percentage change of
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-11.3% and +1.3% are a “good” change in Figure 3.1a, an “excellent” change in Figure 3.1b, and a change

nearly “ultimate in satisfaction” in Figure 3.1c.

Figure 3.2 depicts the one-sided Harrington desirability functions for percentage skin score change for

different values of yi1 and yi2. Since smaller values of skin score are considered better, negative percentage

skin score change of larger magnitude is desirable. The penalizations as percent skin score change increases

progress in levels of severity in Figures 3.2a through c.
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Figure 3.2: Harrington one-sided individual desirability functions.

3.1.2 Modified Desirability Function (Derringer et al., 1980)

One would probably agree that the user-specified parameters in Harrington’s method may be a bit confusing

and highly subjective. Derringer et al. (1980) modified how the desirability functions are constructed

in Step 1 by simplifying the scaling of the variables and making the desirability functions more flexible

[26]. Derringer et al.’s simplified method of defining desirability functions is now the default method for

constructing desirability functions and is shown below:

Modified Step 1. Obtain Derringer & Suich’s individual desirabilities.

Let yi, L, and U be defined as before, and T be the target value of a nominal-the-better type response.

There are shape parameters r, r1, and r2 > 0 and they are selected by the user.
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For Larger the Better (LTB):

di =


0 for yi ≤ L

(yi−LU−L )r for L < yi < U

1 for yi ≥ U

(3.2)

For Smaller the Better (STB):

di =


1 for yi ≤ L

(U−yiU−L )r for L < yi < U

0 for yi ≥ U

(3.3)

For Nominal The Better (NTB):

di =


(yi−LT−L )r1 for L ≤ yi ≤ T

(U−yiU−T )r2 for T < yi ≤ U

0 for yi < L or yi > U

(3.4)

We observe that unacceptable values of a response yi yield an individual desirability d=0, while desirable

values at or beyond a threshold yield an individual desirability of one. Large values of r1 and r2 are selected

if desirability di does not increase substantially until yi gets significantly close to the target value, T . On

the other hand, small values of r1 and r2 such as 0.1 indicate that there is a larger acceptable region about

T .

After obtaining individual desirability scores for each of the variables of interest, the overall desirability

score is obtained by Equation B.11 of Harrington’s method. Desirability functions of the LTB, STB, and

NTB types are shown in Figure 3.3.

In practice it may be problematic to define shape parameters and weights within their desirability scores.

Subjectivity in weight and scale specification is one criticism of desirability scores, however, this subjectivity

also exists in the creation of other composite scores. Using desirability functions, the validity of weights

and scales can be supported by using a consensus of expert opinion. Furthermore, recent developments have

proposed systematic methods of defining shape and weight parameters. This is discussed in detail in Section

3.8.
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Figure 3.3: Derringer desirability curves with varying shape parameters for L = 0, U = 1, and T = 0.5.

3.1.3 Differentiable Desirability Functions (Castillo et al., 1996)

Castillo et al. (1996) suggested further modifications and presented differentiable desirability functions [25].

His proposed functions were differentiable even without the specification of shape parameters, allowing for

efficient gradient-based optimization algorithms, rather than traditional search methods used for Derringer’s

construction.

Let f(y) be a quartic polynomial that solves conditions elaborated upon in the original paper. Castillo

et al. proposed the following desirability function when there is a single non-differentiable point:

di =



a1 + b1yi if L < yi ≤ T − dy

f(y) if T − dy < yi ≤ T + dy

a2 + b2yi if T + dy < yi ≤ U

0 otherwise

where dy is a small neighborhood around the non-differentiable point, and a1, b1, a2, b2 are constants. The

rationale was that this modified desirability approach is easier to understand and more intuitive than the

shape parameters r, r1, and r2.
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Weights can still be used in Castillo’s method: if the maximum height of all individual desirability

functions is set to one at the target of all responses, all the responses are weighted equally; on the other

hand, if the target for one response is mapped to a desirability of 0.5, and the target for a second response

is mapped to desirability of one, the second response is weighted twice as important as the first.

Castillo et al. applied this modified approach to a wire bonding process from a semiconductor manufac-

turing process. The drawback of Castillo’s approach is that it is only suitable for NTB-type variables.

3.1.4 A Maximin Method (Kim et al., 2000)

Kim et al. (2000) presented a modified desirability score suitable for cases when the overall minimal level

of satisfaction with respect to all responses needs to be maximized [53]. The authors’ use of a desirability

function in exponential form allowed the function to take on various shapes.

Let z represent the distance of an estimated response from its target, standardized by dividing by the

maximum allowable deviation. This z parameter then ranges between 0 and 1 for LTB and STB responses,

and between -1 and 1 for NTB responses; specifically, we have

For Larger-the-Better (LTB): z = yi−T
U−T

For Smaller-the-Better (STB): z = yi−L
U−L

For Nominal-the-Better (NTB): z = U−yi
U−L .

The individual desirabilities take on an exponential form and are defined by

d =


exp(c)−exp(c|z|)

exp(c)−1 , t 6= 0

1− |z|, t = 0

,

where c is a constant parameter that allows the model to consider the level of responses’ predictive ability.

An estimated response with lower predictive ability should have a smaller effect on the desirability score. To

incorporate predictive ability of the response, the authors propose replacing c with c′ = c+(1−R2)(cmax−c),

where R2 is the coefficient of determination, and cmax is set large enough so that d(z) with c = cmax is

concave such that d(z) has virtually no effect on the optimization process. Other predictive ability measures

such as Akaike’s information criterion (AIC) can also be used.

The overall desirability score is then DKim = maxmin(d1, d2, ·, dm). The advantages of Kim et al.’s

approach is that it does not make any assumptions regarding the form or degree of the estimated response

models, and it is robust to potential dependencies among response variables. A drawback of this maximin
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approach is that it takes the least-worst worse-case-scenario: for example, it would choose a solution with

individual desirability levels (0.6, 0.6, 0.6, 0.6) with an overall desirability of DKim = 0.6, over (0.9, 0.9, 0.9,

0.58) with an overall desirability of DKim = 0.58. While this can be a drawback in many scenarios, Kim et

al. present cases for which such a strategy is helpful.

3.1.5 Method that Minimizes Average Distance from Targeted Desirabilities

(Ch’ng et al., 2005)

Ch’ng et al. (2005) introduced a method to find optimal variable settings assuming normality and homo-

geneity of error variances [20]. The individual desirabilities are defined as

di =
(2yi − (U + L))

(U − L)
+ 1,

with 0 ≤ di ≤ 2. Notice this is consistent with Harrington’s individual desirability function plus one. The

authors defined a composite score DCh’ng as the weighted average of the distance between an individual

desirability score and its value at that characteristic’s target value:

DCh′ng =
(
∑m
i=1 wi|di − di(Ti)|)

m
,

where di(Ti) is the value of the individual desirability function at target value Ti. Since this composite

score is a measure of how far desirability scores are from their full potential values, the optimization criterion

is to minimize DCh′ng.

The advantages of Ch’ng’s method are its interpretability and its minimal subjective specification of

parameters; in fact, the number of user-specified parameters (weights) is just the number of responses being

evaluated.

3.2 Applications of Desirability Functions in the Medical Field

Medical studies are replete with examples where a composite outcome is used to gauge patient improvement.

Desirability functions have only recently begun to show their value in medical settings, since a way of

understanding multiple outcomes and how they affect an overall status of a process or a patient can likely

result in more effective decisions regarding design or patient care. Interpretation of overall desirability score

D and understanding how that relates to patient improvement may vary for each problem or disease. The

interpretation needs validation using real data from several trials with a similar cohort of patients.
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The first examples shown below use simple shape parameters of one and equal weights when finding the

overall desirability, while the later examples are presented in order of increasing complexity.

3.2.1 Bone Drilling Optimization (Pandey et al., 2015)

A common concern during bone drilling is the thermal and mechanical damage inflicted on the bone. In an

optimization of a bone drilling process, Pandey et al. (2015) used desirability functions to find the optimal

factor levels for two parameters – feed rate and spindle speed – that would result in the optimal combination

of two outcomes – temperature and force – during bone drilling in orthopedic surgery [64]. Three levels

for each of the two parameters were evaluated, leading to a 32 full factorial design. Shape parameters were

set to one and outcome weights were each set to half in a simple application of the desirability function.

ANOVA and F-tests were used to determine percentage contribution of both feed rate and spindle speed on

composite desirability, with higher F-values indicating stronger influence on the overall desirability.

The authors concluded that feed rate had the highest impact on the outcomes of interest. The factor

settings that resulted in the highest overall desirability score (feed rate of 40mm/min and spindle speed of

50rpm) were recommended to minimize temperature and thrust force during bone drilling.

3.2.2 Combining Metabolic Stability & Functionality of Peptides (Van Dorpe

et al., 2011)

The evaluation of penetration of biological barriers often examine the transport of drugs through the blood-

brain barrier (BBB), which is essential to target brain receptors during the diagnosis or treatment of central

nervous system (CNS) disease. Separating blood from the brain, the BBB plays an important role in both

allowing beneficial compounds in and harmful compounds out. The metabolic stability of peptides in both

plasma and brain tissue is also important because it determines the duration that peptides are presented to

the brain.

Van Dorpe et al. (2011) noted that CNS peptides have pharmaceutical potential if they can penetrate

the BBB and resist enzymatic degradation for longer periods of time. The authors sought to use desirability

functions to select the optimum peptide, with ‘optimum’ being defined as a compromise between the multiple

objectives of BBB transport and metabolic stability [86].

In the determining of drugability of eight different peptides, four different responses were evaluated: blood

brain barrier (BBB) influx and efflux, and metabolic stability in brain and in plasma. The four responses

were assigned their individual desirability scores via linear desirability functions (r=1), and then combined

with equal weights to an overall desirability score via a geometric mean. Derporphin had the highest overall
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desirability score and thus claimed the highest BBB drugability.

3.2.3 Evaluating Cirhossis (Gennings et al., 2010)

Gennings et al. (2010) observed there was no consistent approach to evaluating cirhossis patients’ disease

status, and utilized desirability functions to obtain a numerical “wellness” score they named the Relative

Wellness Index (RWIc) [33]. Ten experts collaboratively selected ten responses and their respective shape

parameters to calculate the overall desirability scores of 109 subjects from the North American Study for

the Treatment of Refractory Ascites (NASTRA) dataset.

While former studies of the original NASTRA dataset reported insignificant differences in risk of death

or transplant between the two study arms, the authors studied hazard using a Cox PH model and found

that a drop of 0.1 in the desirability score (RWIc) was associated with a 21% increase in risk of death or

transplant, highlighting the information desirability scores can hold. When dichotomizing the desirability

score to ¿ 0.5 and ¡ 0.5, authors identified a significant difference between the two groups.

The composite score was then independently validated using 1342 subjects by constructing the desirability

functions and Cox PH model the same way. The validation confirmed that the desirability score was able

to predict transplant-free survival. A sensitivity analysis shifting individual desirability functions’ shape

parameters by ± 10-20% showed robustness of the significant association between transplant-free survival and

the overall desirability function, highlighting the ability of desirability functions to reflect more information.

Suleman (2014) and Lazic (2015) also utilized expert opinion by mapping response values to individual

desirabilities for rating drug quality for the treatment of intestinal parasites in Ethiopia, and during gene

selection and ranking for a breast cancer study, respectively [78, 57]. Both authors noted that traditional

methods of manual selection, looking to prior literature, and categorizing candidates as successes or failures

due to a single attribute could result in missing potentially interesting and clinically significant candidates

that satisfied a spectrum of acceptable attribute combinations.

The example in the next section shows another method to utilize professional evaluation in the building

of individual desirability functions.

3.2.4 Assessing Scleroderma Progression (Wong et al., 2007)

Wong et al. (2007) utilized desirability functions to assess the progression of scleroderma disease in a

survival analysis setting [91]. Kaplan-Meier plots for single outcome variables and multiple endpoints helped

the authors decide that patients with a 10% drop in lung performance tests should be monitored. The plots

further established the importance of certain outcomes - skin score, modified health assessment questionnaire
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(mHAQ), patient global assessment, physician global assessment (pga), and FVCP - when assessing the

overall health of a scleroderma patient.

Physician global score ranged from -2 to +3, and was used as a calibrating variable: patients were broken

into buckets per their physician global assessment score at the one-year time point, and each bucket was

assigned a desirability value. Specifically, pga scores of -2, -1, 0, 1, 2, and 3 had initial desirabilities of 0,

0.2, 0.4, 0.6, 0.8, and 1 respectively. Percentage mean and median change for skin score and mHAQ were

calculated for each bucket.

Desirability functions were then plotted, with desirability score on the y- axis and the mean or median

percent change on the x- axis. For example, the bucket of patients with pga of 0 were assigned desirability of

0.4, whilst the same bucket’s median skin score percent change was -7%. Meanwhile, the bucket of patients

with pga of three were assigned desirability one, whilst the same bucket’s median skin score percent change

was -23%. Each of these median percent change scores for each bucket was plotted against the desirability

score previously defined. In this way, the individual desirability functions were plotted, and intermediate

values could then be mapped to their corresponding individual desirabilities.

The authors then proceeded to show how the individual desirabilities could be combined with different

weights to obtain the overall desirability score. While a scaling parameter was not specifically defined here,

using median percent change within each plausible value of physician global score thereby defined the shape

of each individual desirability curve.

3.2.5 Clinical Trials Sample Size (Fransen et al., 2009)

Fransen et al (2009) observed that there is no one agreed upon measure to assess progression of psoriatic

arthritis, and noted that combining outcomes in chronic inflammatory rheumatic diseases, such as rheumatoid

arthritis and systemic sclerosis, could lead to increased precision and validity. This is because randomized

controlled trials studying these diseases often use binary or dichotomized responses as the primary outcome,

which generally lead to loss in power relative to scenarios using continuous measures. The authors recalcu-

lated the required sample size of a previous clinical trial had desirability scores been used, and concluded

that the method utilizing desirability scores had higher efficiency [31].

Desirability functions combined four key responses, incorporating functional disability as well as the

patient’s self-evaluation of disease progress, into an overall composite score that the authors named CRISS.

The selection of these four responses was to be consistent with the responses that construct the Disease

Activity Score (DAS28), one of the common assessment scores used in rheumatoid arthritis. The authors

retrospectively used the medians of 44 expert ratings for boundaries of clinical states of remission and low,
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moderate, and high arthritic activity. Remission was equated to Harrington’s “acceptable and excellent”,

low disease activity to “acceptable and good”, moderate disease activity to “poor/borderline”, and high

disease activity to “unacceptable”.

In a Phase II trial seeking to evaluate the efficacy of a TNF-inhibitor as a therapy for psoriatic arthritis,

the treatment was found to be statistically more effective than placebo when evaluating group differences

via t-test in scores at 16 weeks. The authors calculated the effect size and the relative efficiency to compare

the efficiency of the individual desirability scores with that of the original variables. The number of patients

required for a specified statistical power is inversely proportional to the squared effect size. The authors

showed that in the TNF-inhibitor trial, the individual desirability scores had higher efficiency compared to

when using the original outcomes. For example, when using the individual desirability function for tender

joint count to calculate sample size, only 41% of the sample size was needed as compared to when using the

clinical score itself.

The authors observed that a meaningful approach would be to take the minimum score of a set of scores

(as in Section 2.4) to show that a treatment does better on all components of arthritic activity. However, for

the sake of efficiency, a simple geometric mean was taken to combine the four individual desirability scores

into an overall desirability score. Compared to sample size based on DAS28, the sample size based on the

authors’ new overall desirability score was 13% smaller. Furthermore, the authors showed the robustness of

their results by performing a sensitivity analysis with different percentiles of the expert ratings defining the

individual desirability curves. Their work is an excellent example of how desirability functions can be used

effectively in biomedical research.

3.2.6 Discrete & Continuous Outcomes in a Dose-Response Study (Coffey et

al., 2007)

Coffey et al. (2007) discussed the advantages of using desirability functions to analyze outcomes in a dose-

response study [21]. One unique aspect of their paper is the use of desirability scores as an outcome in

further modeling. The neurotoxicity of a five-pesticide mixture was assessed using one control dose and six

experimental fixed doses. Five endpoints were assessed in the examination of toxicity: motor activity, gait

abnormality, tail-pinch response, and the neurochemical endpoints of cholinesterase activity in the brain and

in whole blood.

Five expert toxicologists responded to a questionnaire which asked the respondents to characterize the

level of toxicity associated with various responses. These responses were not just continuous, but also

included binary and ordinal endpoints. For example, for the outcome gait score, the five possible responses
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were ordinal: “none”, “slightly abnormal”, “somewhat abnormal”, “markedly abnormal”, and “severely

abnormal”. The expert toxicologist respondents then drew a line on a continuum between absolutely no

toxicity and the most severe toxicity, indicating their belief of how toxic the drug was based on response

levels. The distance between the left boundary of no toxicity and the respondent’s marked line was converted

to a proportion which was used as the individual desirability score (e.g. a line drawn halfway between no

toxicity and most severe toxicity would be given a score of 0.5).

Desirability functions were then modeled using a simple logistic cumulative distribution function (CDF)

for the strictly increasing endpoint of gait normality, and two logistic CDFs for the remaining concave-shaped

responses (motor activity, cholinesterase activity in the brain and in the blood, and tail-pinch response).

Individual desirability scores were combined into an overall desirability score using the geometric mean

with equal weighting. The data suggested a nonlinear dose-response with a dose threshold, so the authors

used a nonlinear exponential model with a threshold parameter, using desirability score as the outcome. A

summary threshold for all outcomes was obtained, and is interpreted as an estimate of the smallest dose

where evidence of toxicity is present in at least one of the endpoints. A sensitivity analysis using different

desirability functions yielded similar results, showing the robustness of the authors’ methods.

3.2.7 Using Desirability Functions for Vaccine Formulation (Dewe et al., 2016)

In vaccine formulation, it is important to elicit a strong immune response while maintaining reactogenicity

and safety profile. Regulators have increasingly demanded justification of inclusion and doses of different

vaccine components. While recent literature showed vaccine formulation was still heavily based off of de-

scriptive studies, Dewé et al. (2016) used desirability functions for the first time in the formulation of a

vaccine [27]. Furthermore, the authors obtained confidence intervals to quantify uncertainty associated with

desirability scores using the bootstrap method.

The primary immunogenicity endpoint was hemagglutination inhibition (HI) titer 21 days after vaccina-

tion, a measure of antibodies circulating in the body. The geometric mean titer (GMT) was defined as the

anti-log of a log HI mean estimate, while the geometric mean ratio (GMR) was defined as the ratio of two

groups’ GMTs. The reactogenicity endpoint was frequency of severe solicited general adverse events (AEs)

observed within seven days after vaccination.

Desirability functions are beneficial in vaccination component selection because the effects of multiple

components (MPL and AS03, in this case) as well as their interaction effects on multiple outcomes (immuno-

genicity and reactogenicity) can be evaluated. The effects of the two components on HI titer were evaluated

in a linear regression model. The difference between the least square mean and the arithmetic mean of the
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HI titers was used to estimate the GMR. The effects of the two components on the reactogenicity endpoint

were evaluated in a logistic regression model. The authors chose a logistic curve to shape their desirability

functions.

The lower 90% confidence interval of the predicted HI titer less the average HI titer was used in the

logistic desirability function to calculate three sub-desirability scores for immunogenicity, one for each of

three vaccine strains. The immunogenicity desirability score was then calculated by taking the geometric

mean of the three strains’ individual immunogenicity sub-desirabilities. The probability of experiencing

an adverse event as determined by the reactogenicity logistic regression model was used in an exponential

function to calculate a desirability score for reactogenicity.

Although the authors note the challenge of weight selection, they prioritize immunogenicity improvement,

giving the immunogenicity desirability score a weight of 0.6, and the reactogenicity desirability score a weight

of 0.4. The overall desirability score was thus able to characterize the desirability of any formulation in the

experimental domain. A sensitivity analysis showed that rankings varied slightly depending on weight

choices. To account for variance stemming from the linear model for immunogenicity and the logistic model

for reactogenicity, the authors employed a bootstrap method, noting that the distribution of the ranks do

not alter the ranking as decided by the desirability score in the original analysis.

The authors note that the desirability functions allowed for a broader range of possible solutions to be

explored while remaining clinically executable in the medical field, since fewer subjects were enrolled than

would have been necessary in a formal clinical trial.

3.2.8 Desirability Scores of Randomization Sequences (Schindler, 2016)

Schindler (2016) utilized desirability scores to assess the desirability of various randomization sequences,

where a randomization sequence is the order in which treatment arms are assigned to enrolling clinical trial

subjects [75]. He focuses on two types of biases in randomized clinical trials: the first is selection bias, where

an investigator finds a way to intervene with treatment assignment to patients; the second is chronological

bias, where treatment quality could change throughout the course of a trial, whether more co-medications

become available or a physician’s skill improves. The selection bias can be described as an investigator’s

ability to guess the next allocation in a balanced trial design depending on how many patients are in the

experimental arm and how many are in the control arm. The two biases are then able to be summarized in

a single score that assesses the desirability of a design.

In a simple example, Schindler evaluates a randomization sequence using the proportion of correct guesses,

and the Type 1 and Type II errors in the presence of chronological bias. In the overall desirability function,
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half the weight is placed on selection bias (proportion of correct guesses), and the other half on chronological

bias (Type I and Type 2 errors).

The overall desirability of a design can then be assessed by calculating the desirability of each possible

randomization sequence resulting from that design, and then looking at the expected overall desirability,

the standard deviation of the expected overall desirability, and the probability that the expected overall

desirability is zero.

3.2.9 Systematic Definition of Shape & Weight Parameters (Chen et al., 2015)

Shape and weight parameters are important determinants of the desirability score. The subjective definitions

of shape and weight parameters may have contributed to the biomedical field’s relatively slower adoption

of desirability functions, since - in the case of health data - physicians or experts may not agree on how

different outcomes correspond to different degrees of disease progression, and furthermore, the selection of

physicians or experts who define the impact of different outcomes on disease progression are subject to

selection bias. While entropy weight theory is a useful method to obtain objective weights by measuring

overall variability of responses [77], it is often not applicable in biomedical research because its use is limited

to quality (categorical) characteristics. Zhang et al. (2013) and Zhou et al. (2015) show how entropy weights

can be used in the construction of desirability functions to assess colloidal gas alphorn [95, 97].

Chen et al., proposed a systematic method of defining shape parameters and weights that was applicable

also to continuous outcomes [18]. Since an individual desirability score should approximate a gold standard

as close as possible, Chen et al. noted that we can replace di in our previous Equations B.8 - B.10 with dg,

a given gold standard (e.g. physician global assessment score) rescaled between 0 and 1. For example, for

STB variables:

dg = (
U − yi
U − L

)ri + εi,

where εi is an approximation error. Nonlinear least squares can then be used to estimate shape parameter

ri. Since the gold standard was used as the outcome of the nonlinear least squares model, the resulting shape

parameter then places the desirability curve of the response into perspective relative to the gold standard.

The estimated ri can then be used in turn to obtain the individual desirability score di using the original

STB equation in Equation B.9. The same method can also be applied to LTB and NTB variable types.

After obtaining the individual desirability scores for all outcomes, weights can then be found in a similar

manner, using

dg = (dw1
1 dw2

2 ...dwmm )
1∑m

i=1
wi + ε.
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An arbitrary component’s weight can be set to one. Then, nonlinear least squares can again be used

to solve for the remaining weights, with the constraint that they be non-negative. After estimation of the

weights, they can be rescaled such that they sum to one. After the weights are calculated, the overall

desirability score can be constructed as before using Equation B.11. The methodology presented by Chen

et al. provides a strong methodology for adoption in future biomedical research.

3.2.10 Desirability Functions in a Longitudinal Setting (Chen et al., 2015)

Chen et al. (2015) also sought to use desirability scores in a longitudinal study, and thus introduced a

new method of incorporating desirability scores over time [18]. If an overall desirability score at time t is

denoted by Dt, then a modified Lp norm can be used to combine these overall desirability scores at different

time points into a single score. If there are t time points, then a composite overall desirability score can be

constructed:

D∗ = [
λ1D

p
t1 + ...+ λkD

p
tk

λ1 + ...+ λk
]1/p,

where λj is the weight of time point tj , j = 1,. . . ,k. The advantage of this approach is that when one variable

may not be measured as consistently as others, its weight at that time point can be zero, while still utilizing

the information it provides for the other time points.

The authors utilized the new method of obtaining scale and weight parameters and the new incorporation

of desirability scores from different time points to compare the two arms of a clinical trial of 168 scleroderma

patients. These patients were treated with placebo or oral type I collagen over the course of 12 months,

and followed up at month 15. Following clinical practice, patient’s global assessment of health (pga) and

physician’s overall assessment of disease activity (poa) were used as gold standards during estimation of

shape parameters and weights. Shape and weight estimation varied significantly depending on the choice of

gold standard. The lower bound and upper bounds of each variable were specified as observed ranges from

baseline to month 12.

When patient’s global assessment of health was used as the gold standard, many of the components had

higher desirabilities. Although the choice of the gold standard affects the shape parameters and the weight

estimates, the overall interpretation of disease progression was consistent across the results, finding that the

scleroderma patients in this trial failed to show a significant progression over time.
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3.3 Innovations in Desirability Functions

Desirability functions have started to emerge in the biomedical field, but their applications are often sim-

plified. Perhaps one reason it has not yet been widely adopted in the medical field is that its traditional

version does not address variance or uncertainty. A handful of authors have addressed this issue with newly

proposed methods: Wu (2004) defined a new individual desirability function that incorporates variation

and correlation [93, 94]; Govaerts et al. (2005) maximized the expected overall desirability and introduced

theoretical confidence intervals for overall desirabilities [35]; Monteagudo (2008) introduced an overall de-

sirability determination coefficient to assess the quality of the measure [23]; He et al. (2012) proposed to

maximize the minimum desirability score of confidence regions rather than single prediction values [42]; and

Chen et al. (2012) introduced a secondary individual desirability function that accounts for the variance

of the predicted response [17]. Despite the importance of accounting for variability in the health field, the

methods of Wu, Govaerts, and He have yet to be implemented in biomedical research. Their methods are

detailed in this section.

3.3.1 Incorporation of Variation & Correlation of Responses into Desirability

Functions (Wu et al., 2000; Wu, 2004)

Wu et al. (2000) noted that a disadvantage of the traditional desirability function is its inability to consider

variation and correlation between responses [92]. While Taguchi’s robust design method reduces variation by

focusing on a single quality characteristic to optimize the other parameters [80], finding the optimal settings

for all variables is difficult. Indeed, improving the values of one variable may come hand in hand with the

digression of another, especially amongst negatively correlated variables. A modified double-exponential

desirability function was proposed.

Let c, c1, c2 be scalar constants, and let r, r1, and r2 be shape parameters for the desirability function.

Wu and Hamada’s double-exponential desirability functions are defined as:

For Larger the Better (LTB):

di =


1−exp(−cyri )
exp(−cLr) for L ≤ yi <∞

0 for yi < L

For Smaller the Better (STB):

di = exp(−c|yi − L|r), for L ≤ yi <∞
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For Nominal The Better (NTB):

di =


exp(−c1|yi − T |r1) for −∞ < yi ≤ T

exp(−c2|yi − T |r2) for T ≤ yi <∞.

One drawback of this approach is that it requires more user-specified parameters than the original

Derringer-Suich desirability function. The rest of the overall desirability score D is constructed as in Equation

B.11.

Wu (2004) builds on this by incorporating a loss function of the prediction function of y, which can be

represented as L(y(x)), and can further be expanded in a Taylor series about target T of y [9]. The loss

function is inspired by Taguchi’s definition of quadratic quality loss functions. Let kj be the loss coefficient

of characteristic or response yi when it deviates from the target Ti. Let kij be the correlated loss coefficient

of quality characteristics yi and yj when they simultaneously deviate from their respective targets, Ti and

Tj . Let ρij be the correlation coefficient between yi and yj , so that the quality loss can be approximated by

a quadratic function as:

Loss =

m∑
i=1

ki(yi − Ti)2 +

m∑
i=1

m∑
i<j

kij(yi − Ti)(yj − Tj)

=

m∑
i=1

[k̃i · ((ŷi − Ti)2 + σ̂2
i ] +

m∑
i=1

m∑
i<j

k̃ij · ((ρ̂ij σ̂iσ̂j + (ŷi − Ti)(ŷj − Tj))

: =

m∑
i=1

Lossi +

m∑
i=1

m∑
i<j

Lossij .

The double-exponential desirability value for yi is then defined as

dii = exp[−Lossi],

and the correlated desirability value between yi and yj is

dij =


1 Lossij < 0

exp[−Lossij ] Lossij > 0.
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With m total responses, the total overall desirability DWU is then

DWU = [

m∏
i=1

m∏
i<j

diidij ]
1/m.

Wu utilized this method to identify the ideal factor settings for 8 variables for a plasma-enhanced chemical

vapor deposition process where deposition thickness and refractive index were both outcomes of interest, as

well as a second case to identify the ideal settings for 6 variables for a polysilicon deposition process where

surface defects, thickness, and deposition rate were outcomes of interest. Wu compared his new desirability

scores with those derived from factor settings identified in previous literature, showing a significant increase

in total desirability. Wu’s desirability function has yet to be utilized in health outcomes’ research.

3.3.2 Distribution of the Desirability Score (Trautmann, 2004, 2005)

Trautmann (2005) acknowledges that Harrington’s desirability function and Derringer-Suich’s modifications

are widely accepted (e.g. Tyuev et al., 1997; Wu et al., 2000; Averill et al., 2001; Ben-Gal et al., 2002), yet

observes that confidence intervals are not easily accessible due to a lack of understanding of the distribution

of the desirability score [85].

Trautmann derives the distribution of Harrington’s desirability functions with the assumption that the

components evaluated are normally distributed. Let component Yi N(µi, σ
2
i ). Then, for one-sided variables:

Zi := exp[−Y ′i ] Lognormal(µ̃i, σ̃
2
i ),

with µ̃i = −(b0i + b1iµi) and σ̃2
i ) = (b1i)

2. Similarly, for two-sided variables:

Xi := |Y ′i | FoldedNormal(µ̃i, σ̃2
i ),

with µ̃i = 2
Ui−Liµi−

Ui+Li
Ui−Li and σ̃2

i = ( 2
Ui−Li )

2σ2
i . Then, by the density transformation theorem, the density

and distribution functions are:

For one-sided variables:

fDi(di) = − 1√
2πσ̃ilog(di)di

· exp[− 1

2σ̃2
i

(log(−log(di))− µ̃i)2]

FDi(di) = 1− Φ[(log(−log(di))− µ̃i)/σ̃i].
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For two-sided variables:

fDi(di) =
1√

2πσ̃idini
· (−log(di))

1/ni−1

[exp(−((−log(di))
1/ni − µ̃i)2/2σ̃2

i ) + exp(−((−log(di))
1/ni + µ̃i)

2/2σ̃2
i )]

FDi(di) = 2− Φ

[
((−log(di))

1/ni − µ̃i)
σ̃i

]
− Φ

[
((−log(di))

1/ni + µ̃i)

σ̃i

]
,

where Φ(x) is the cumulative distribution function of the standard normal.

The distribution of the overall desirability score when using the geometric mean is analyzed separately

for one- and two- sided type variables. The first step involves rewriting the overall desirability score D:

For one-sided variables, the sum of lognormal random variables is involved:

D := (

m∏
i=1

di)
1/m = (

m∏
i=1

exp[−exp[−Y ′i ]])1/m = (exp[−
m∑
i=1

exp[−Y ′i ]])1/m.

For two-sided variables:

D := (

m∏
i=1

di)
1/m = (

m∏
i=1

exp[−|Y ′i |ni ])1/m = (exp[−
m∑
i=1

|Y ′i |ni ])1/m.

Then, given m one-sided variables with individual desirabilities di, the density and distribution func-

tion of the overall desirability score D when combined via geometric mean can be approximated. Since

D := (exp[−
∑m
i=1 exp[−Y ′i ]])1/m and the exponent −

∑m
i=1 exp[−Y ′i ] ∼ Lognormal(µ∗, σ∗2), then Z :=

exp[−exp[−Y ′i ]] approximately follows a double lognormal distribution DLN(µ∗, σ∗2). Then, since D =

Z1/m, the approximate distribution of a one-sided overall desirability score is:

fd(D) ≈ − 1√
2πσ∗log(D)D

exp
[
− 1

2σ∗2
(log(−m · log(D))− µ∗)2

]

FD(D) ≈ 1− Φ
[ log(m) + log(−log(D))− µ∗

σ∗
]
.

On the other hand, given two independent two-sided variables Yi(i = 1, 2) with individual desirability

scores di and kurtosis parameter ni = 1∀i, the overall desirability score has the density function:
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√
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,

where erf(x) = 2 · Φ(
√

2x)− 1.

The authors were unable to derive an analytical form of the cumulative distribution function for overall

desirability scores consisting of two-sided variables. The densities and distribution functions for Kim’s

minmax D were also derived in Trautmann’s work.

The significance of this work is its contribution towards quantifying uncertainty of both individual de-

sirability scores as well as overall desirability scores. The authors note that extensions to understanding the

distributions of desirability scores of the Derringer-Suich construction would be valuable.

3.3.3 Optimizing Expected Desirability and Defining Confidence Intervals (Go-

vaerts et al., 2005)

Govaerts et al. (2005) noted that desirability functions are sensitive to validity of model predictions, and

sought to quantify uncertainty stemming from this dependency [35]. Since the desirability score is a random

variable, the authors proposed to optimize the expectation of the desirability. To differentiate between the

two concepts of maximizing overall desirability versus maximizing the expected overall desirability, we let

DC(x) denote the classic overall desirability score which takes its maximum at xoptC, and DN (x) be the
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“new” expected overall desirability score which takes its maximum at xoptN . Then,

DN (x) = E[

p∏
i=1

(di)
wi ] 6=

p∏
i=1

(di(E[Yi|x]))wi = DC(x).

The asymptotic distribution of the optimized expected desirability score can be used to build confidence

intervals for the true expected desirability score, where we replace unknown quantities with their classic

estimators as observed from the data, marked by hats.

Since the average overall desirability score could not be expected to be asymptotically normal due to its

range of [0, 1], a logit transformation can be used so that the support ranges [−∞,+∞]. Then, using the

delta method, the confidence interval for DN (x) is:

exp[logit(D̂N (x))± z1−α/2

√
ˆV ar[logit(D̂N (x))]

1 + exp[logit(D̂N (x))± z1−α/2

√
ˆV ar[logit(D̂N (x))]

.

The performance of this theoretical confidence interval obtained by the delta method was evaluated

through simulation by comparing the observed 2.5th and 97.5th percentiles of a simulated distribution with

the theoretical 95% confidence interval. It was concluded that the approximated asymptotic distribution

given by the delta method provides accurate confidence intervals even with small samples. Furthermore, if

the distribution of D(x) has no analytical form, a prediction interval for D(x̂Copt) can still be made using the

quantiles of an empirical distribution obtained through simulation.

3.3.4 Desirability Determination Coefficient and A Ranking Method (Mon-

teagudo et al., 2008)

Monteagudo et al. (2008) noted the importance of strong predictive models, and introduced four concepts

that could be used with desirability functions: an overall desirability’s determination coefficient (R2
D), a leave-

one-out cross-validation (LOO-CV) determination coefficient (Q2
LOO), a ranking algorithm, and a ranking

quality index Ψ∗ [23].

The overall desirability’s determination coefficient (R2
D) is a measure of the effect of the set of variables

(X’s) in reducing the uncertainty when predicting overall desirability values using linear regression models,

and is defined as:

R2
D = 1− SSE

SSTO
= 1−

∑
(Dyi −Dŷi)

2∑
(Dyi −Dyi)

2
,

where SSE is the Sum Square Error, SSTO is the Total Sum of Squares, and Dyi and Dŷi are the mean
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value of the overall desirability score for the observed yi responses, and the overall desirability score for

the predicted response, respectively. Larger R2
D indicates more certainty in predicting D with a set of

independent variables X. The analogous leave-one-out cross-validation (LOO-CV) determination coefficient

Q2
LOO is used to establish the reliability of the method in predicting D:

Q2
D = 1− SSELOO−CV

SSTO
= 1−

∑
(Dyi −Dŷi(LOO−CV ))

2∑
(Dyi −Dyi)

2
,

where SSELOO−CV is the leave-one-out cross validation square sum of residuals and Dŷi(LOO−CV )
is the

predicted overall desirability when using LOO-CV.

Monteagudo then proposed a ranking algorithm that uses desirability functions to rank candidates under

consideration by determining similarity with the optimal candidate as determined by the highest desirability

score. To do so, a ∆i is calculated for each candidate i over m characteristics, defined as the sum of weighted

Euclidean distances of each X value from its optimal value: ∆i =
∑m
X=1 δi,X ·wx, where δi,X = |Xi−Xoptimal|.

Evaluating δi,X allows an analyst to see how each variable influences the overall desirability D, and for more

degrees of freedom to finding optimal weights.

The STB desirability function is then applied to these ∆i. Nonlinear least-squares regression is used to

solve for optimal set of weights wx so that the difference between the individual desirabilities of ∆i and Di

are minimized. This minimization is to ensure that the information represented by the X’s and combination

of the X’s that contribute to the overall desirability are as close as possible. Ranking can be done then with

candidates with highest values of individual desirabilities of ∆i.

A quantitative criterion the authors call a ranking quality index is defined. Let OT be a true order list of

candidates ordered by decreasing overall desirability D, labeled 1, . . . , n; OW be the worst-order list ordered

by increasing overall desirability D; and OR be a list resulting from the ranking algorithm, ordered by

increasing ∆i. Obtain individual desirabilities (STB) for each of the rank values in these three lists, setting

L = 1 and U = n, the number of candidates under consideration. Let dOTi be the individual desiraiblities list

for the true order, dOWi be the individual desirabilities list for the worst-order, and dORi be the individual

desirabilities list that result from the ranking algorithm. The quality of the ranking can then be assessed by

seeing how far |dPTi − dORi | is from zero. The ranking quality index is defined as:

Ψ∗ = |
∑n
i=1 |dOTi − dORi |

n
| · 2

|
∑n
i=1 |dOTi −dOWi |

n |
,

where the second term allows Ψ∗ to range between [0, 1], where a Ψ∗ of zero indicates a perfect ranking,

and a Ψ∗ of one indicates the worst ranking.
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Monteagudo applied his proposed methods to rank 95 drug candidates, with antibacterial activity and

cytotoxicity as the outcomes of interest with equal importance. His method was an improvement relative to

the standard approach of the pharmaceutical industry, which was to optimize objectives one at a time, often

leading to less-than-optimal results. Monteagudo’s overall desirability function had an R2
D of 0.7 and a Q2

D

of 0.63, indicating good statistical quality of the overall desirability score and an adequate level of reliability

on the method used to predict D. The overall desirability was then optimized to obtain the levels of the

descriptors included in the linear regression models that would simultaneously produce the most desirable

combinations of the properties.

3.3.5 Maximin Desirability Scores of Confidence Regions (He et al., 2012)

He et al. (2012) created a robustness measure for overall desirability, pointing out that a true response yi(x)

is usually unknown, and that models are used to fit each response using empirical data [42].

Let there be k factors x = (x1, x2, . . . , xk) that influence m independent responses, y1, . . . , ym. Assume

a response yi can be approximated with yi = fi(x)Tβi + εi, where εi N(0, σ2). Consequently, fi(x) reveals a

vector of coefficients for the betas: a first-order linear model is represented by fi(x) = (1, x1, . . . , xk)T , and

a second-order quadratic model is represented by fi(x) = (1, x1, . . . , xk, x
2
1, . . . , x

2
k, x1x2, . . . , xk−1xk)T . As-

suming Xi = (fi(x1), . . . , fi(xn))T is full column rank, then the least squares estimate of beta is β̂i =

(XT
i Xi)

−1(Xi)
T yi. Since the expected value of the error term is zero, the predicted response at x is

then ŷi = fi(x)T β̂i, and the variance of the predicted response is var(ŷi) = σ2
i vi(x) where vi(x) =

fi(x)T (XT
i Xi)

−1fi(x). Then the (1− α) confidence interval of the mean response y(x) is given by

[LC,UC] = [ŷ(x)± tα/2,n−p
√
σ̂2vi(x)].

If [LC,UC] is the (1− α)1/m confidence interval on a yi(x) where i = (1, 2, . . . ,m), then a simultaneous

joint confidence region for m independent responses with family error rate equal to α is then the product of

these intervals: [LC1, UC1]X[LC2, UC2]X . . .X[LCm, UCm].

If the true responses take any point η = (η1, η2, . . . , ηm)′ inside a (1 − α) confidence region, then the

robustness measure for overall desirability is defined as:

DR(x) = min
η
D[d1(η1), d2(η2), . . . , dm(ηm)]|(η1, η2, . . . , ηm)

= min
η

{ m∏
i=1

(di(ηi)
wi)

1∑
wi |(η1, η2, . . . , ηm)

}
.

This thus represents the worst-case scenario; the minimal overall desirability D value when the true
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responses are located anywhere in the confidence region. The goal here is to find the factor settings that are

associated with the best worst-case scenario.

Let minetaidi(ηi)|ηi ∈ [LC,UC] be denoted as dRi , called the individual robust desirability. Then,

dRi(x) = di[LCi] for Larger the Better responses, dRi(x) = di[UCi] for Smaller the Better responses, and

dRi(x) = di[LCi]if |LCi − Ti| ≥ |UCi − Ti|, or di[UCi] otherwise for Nominal the Better responses. DR(x)

can then be simplified using the confidence region to:

DR(x) = (

m∏
i=1

minηid
wi
Ri

)
1∑
wi .

He et al. suggested finding the robust optima associated with a gradually decreasing set of α values to

aid in finding the best solution with some level of flexibility. The authors presented an example searching

operating conditions that optimize simultaneously the yield, viscosity, and molecular weight of a chemical

process. For comparison, the traditional Derringer’s desirability function was utilized (i.e. setting α = 1)

and shown to have a weakness in that the output responses’ confidence intervals are not always in a specified

allowed range. He’s method reveals a robust solution based on confidence intervals of output responses rather

than individual predicted values.

3.3.6 Minimization of Variance of Predicted Responses using Desirability Func-

tions (Chen et al., 2012)

While He et al. (2012) sought to maximize the minimal overall desirability D value when the true responses

are located anywhere in a confidence region, Chen et al. (2012) sought to narrow prediction intervals

by minimizing the variability in predicted responses, an objective not achieved by traditional desirability

methods [17].

Let var(ŷi) and vi(x) be defined as in Section 1.4.4. The variance of the predicted response, var(ŷi),

can then be minimized if the standard deviation (SD) of each predicted response is transformed into an

individual desirability function dsi . The SD of predicted responses is certainly of the STB type, so the lower

bound L is set to be 0. The upper bound can be ciσi (where ci is a multiple selected by the user), where

smaller values of ci allow for smaller ranges for the values of sd(ŷi).

Chen et al. call the desirability function for the sd(ŷi) the secondary individual desirability function,

defined as:

dsi =


( ciσi−sd(ŷi)

ciσi
)r = (

ci−
√
vi(x)

ci
)r for 0 < vi(x) < c2i

0 for vi(x) ≥ c2i .
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The authors point out that if x∗ denotes the optimal solution from Harrington’s desirability function, defining

ci =
√
vi(x∗) would lead to the secondary individual desirability function to represent the relative change in

standard deviation between the new optimal solution and x∗ when scaling parameter r = 1.

A combination of all the secondary individual desirabilities into a secondary overall desirability function

can then be done by taking the geometric mean:

S = (ds1ds2 . . . dsm)1/m.

The augmented desirability function is then defined as the weighted product of the overall desirability

score D and the secondary overall desirability S:

DSλ = DλS1−λ,

where λ and 1−λ are user-selected weights between 0 and 1 that indicate the relative importance of optimizing

D versus S. Lower values of λ place less importance on the optimization of the multiple responses. Contour

plots can be used to graphically display how optimal solutions shift with varying values of λ.

In a study to evaluate performance of the augmented approach in DSλ, two applications were examined.

In one, the optimal factor settings to maximize extraction yields of three different saikosaponins were sought.

In a second, the ideal settings for voltage and buffer solution concentration were identified to optimize

resolutions, analysis time, and capillary current. Utilization of the authors’ augmented method resulted in

a reduction of variances of predicted responses by 50%.

3.4 AIDS Case Study

In this subsection we apply desirability functions to assess HIV disease progression in a real study. Desirability

functions are a useful tool in the assessment of HIV because looking at a single covariate such as CD4+ cell

count is insufficient to understand the overall activity of the virus in the body. The goal is to simultaneously

assess several covariates contributing to the course of the disease, including CD4+ cells, which are white

blood cells that find and destroy bacteria and viruses in the body, and CD8+ T-cells, which recognize

infection and kill virally infected cells.

The MACS Study began in 1984, enrolling 4,954 gay and bisexual men and following-up semi-annually

[59]. Since then, the MACS Study has grown to include newer cohorts. We focus on the 2001-2003 “new

recruit cohort”, which enrolled 1,350 men between October 2001 and August 2003 [58]. We will keep the

originally given visit names in this analysis; visit 365 was called the initial visit by the MACS clinicians for
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this cohort.

The responses are hematocrit (%), CD4+ cell count, CD8+ cell count, and white blood cell count in

construction of overall desirability. Hematocrit is the ratio of the volume of red blood cells to the total

volume of blood. Viral load was not included in the analysis due to a high percentage of missing information

- nearly 40% of the cohort did not have viral load recorded throughout the study. Older cohorts in the

MACS dataset had even less viral load data. One later cohort exists beginning in 2010, but has less subjects

and thus is not inspected for this analysis. Had more viral load data been available or had missing data

patterns been fully understood in this study, viral load would have been a good example of a gold standard

(dg) to derive shape parameters and weights as in Section 3.2.9 (perhaps partitioned by time elapsed since

infection, since the relationship between viral load and time is not linear).

Table 3.2 provides some details for the variables of interest and the parameters used in their respective

individual desirability functions. The four variables are NTB variables. The midpoint of an acceptable

range was set as the target value, and r1 and r2 were set to be values that yielded a 0.8 desirability for

the edges of the variable’s acceptable range. This allowed NTB variables to have a set of values that would

score well between 0.8 and 1, with values deviating from the acceptable range scoring less than 0.8. Weights

were arbitrarily set for sake of demonstration, giving most importance to CD4+ and CD8+ cell count. In

practice, it is recommended that experienced experts of the disease are entrusted with defining the weight

parameters of the individual components.

Type L T U r r1 r2 w
Hematocrit (%) NTB 29 44 55 - 0.5 0.22 0.2
CD4+ cell count NTB 200 1000 2402 - 0.25 0.5 0.3
CD8 cell count NTB 0 575 3007 - 0.2 1.1 0.3
White blood cell count NTB 0 7750 48700 - 0.4 2.4 0.1

Table 3.2: Outcomes of interest in assessing subject HIV disease progression, their individual desirability
function definitions, and weights.

Each subject’s lab values in a single visit contributed to an overall desirability score D at that time point,

where D was calculated using the parameters from Table 3.2 in Equation B.11. Figure 3.4a shows the average

desirability for all patients who were HIV-negative or positive at the specified visit. The overall desirability

score across visits for HIV-negative subjects, depicted by the black line, remains relatively steady. The

gradual increase in overall desirability from HIV-positive patients is attributed to two reasons: first, newly

converted subjects take a few to several visits to have a dramatic decline in scores; second, the efficacy of

antiviral treatment pulls up the desirability score of subjects who have had HIV for longer periods. These
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two reasons are supported by Figure 3.4c, to be discussed shortly.

Figure 3.4: MACS study: a) average overall desirability score ± 2SE across visits for all HIV- negative and
positive subjects; b) overall desirability score of five extreme cases of seroconverters; c) overall desirability
score over time for seroconverters with the diagnosis visit calibrated as time 0; d) overall desirability score
over time for nonconverters.

Figure 3.4b reveals desirability scores over time for five individuals who became HIV positive during the

study. The five cases shown were selected due to their extreme changes in overall desirability score. Patient

3074 was first discovered to be HIV positive on visit 400, 5936 on visit 410, 2057 on visit 430, 3572 on visit

520, and 7171 on visit 550, as indicated by the gray vertical reference lines in the plot. The corresponding

drops in their desirability scores reflect the ability of the desirability score to capture patient status. The

figure demonstrates that a subject’s overall desirability score tends to decline before the subject is officially

diagnosed with HIV - see the purple line connecting the diamonds for subject 7171, whose score declined
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from nearly 0.9 at visit 490 before dropping to just over 0.7 at visit 500 and rising shortly back to nearly 0.9

before plummeting to 0 at the next visit of 550, where he was formally defined as a seroconverter.

Figure 3.4c shows overall desirability over time relative to the first sero-positive visit, which we reset as

zero and indicate with a gray vertical reference line. This figure provides some clues to the overall positive

trend of overall desirability in the subjects who are HIV-positive at a given visit in Figure 3.4a. The overall

desirability score visibly declines at about the diagnosis visit minus 30. The desirability score continues to

decline until about diagnosis visit plus 75, showing improvement in patients’ lab values. Figure 3.4d shows

overall desirability of five randomly selected individuals who remained HIV negative during the study. The

plummeting desirability for patient 9935 was attributed to a sudden drop in hematocrit to 29%. In general,

the nature of the overall desirability score in nonconverters is stable within the range of 0.85 and 0.95 relative

to that of converters.

This case study demonstrates the value of utilizing desirability functions in assessing health outcomes. It

also is an example of how desirability scores can still provide valuable insight in health outcomes even when

the desirability functions are defined without a gold standard.

3.5 Advanced Programming & Algorithms

After an overall desirability function is defined, one popular problem to be solved is to identify the value

x of each of p input variables that maximize the overall desirability function while still remaining within a

specific plausible range [L(xh), U(xh)]:

maxD = (dw1
1 dw2

2 ...dwmm )
1∑m

i=1
wi

s.t. L(xh) ≤ xh ≤ U(xh), h = 1, 2, . . . , p.

Different optimization algorithms have been used to do so. For example, Derringer and Suich utilized a

direct search method known as Hook-Jeeves [26]. The strength of the Hook-Jeeves search method is that it

need not be differentiable; its weakness lies in its high probability of identifying only local optimal solutions.

Castillo used a gradient-based algorithm, which required differentiable functions as discussed in Section 3.1.3,

and also yields local optimal solutions sensitive to the initial search point [25]. Genetic algorithms are a

search technique robust to initial search parameters that can find global maximums [44].

Genetic algorithms (GAs) are inspired by natural selection as observed in evolution and are gaining

popularity in the area of optimization. GAs were first introduced by John H. Holland in 1960, and have

been further expored by David E.Goldberg [44, 34]. “Living organisms are consummate problem solves. They

exhibit a versatility that puts the best computer programs to shame,” Holland prefaced in his courses [44].

GAs search stochastically through the real space of the problem by generating a random initial population.

90



This starting point of a set of random initial “population” - or, solutions - is what differentiates GAs from

other conventional search and optimization techniques. Within the initial population, each individual’s

fitness as determined by chromosomes is assessed so that the fittest individuals (solutions) can reproduce

the next generation. Chromosomes represent solutions to an optimization problem, whereby the solution’s

set of values are denoted by x1, . . . , xp. Selection, crossover, and mutation are examples of genetic operators

that will affect the reproduction cycle and generation of subsequent generations. New generations’ members

continue to be assessed and mated until an optimal solution is found, whereby the algorithm stops. A

solution is deemed optimal when no improvement in fitness is seen across several consecutive generations.

The change in fitness considered insignificant and the number of generations considered sufficient to declare

a solution optimal varies depending on the problem and the preferences of the user.

To initiate the genetic algorithm, one must first specify:

� Population size: the number of chromosomes (scenarios), N , that are retained in each generation.

� Number of replications: the number of times, v, each scenario is simulated.

� Crossover rate: the probability of crossover, Pc.

� Mutation rate: the probability of mutation, Pm.

The total desirability value of scenario j depends on the response variables i in scenario j in replication

v, yijv, with i = 1, . . . , p, j = 1, . . . , N , v = 1, . . . , n, where the responses resulting from some input variable

xij with i = 1, . . . , p and j = 1, . . . , N . Individual desirability scores dijv are calculated for each scenario’s

responses in each replication, which thereby contribute to the overall desirability scores of scenario j in

replication v: Djv. The mean overall desirability of each scenario D̄j is then calculated by averaging Djv

across the number of replications v = 1, . . . n.

To employ the GA, one must understand the crossover and mutation genetic operators. The crossover

process mates pairs of chromosomes by randomly selecting a pair of chromosomes A and B from the current

generation with probability Pc. The chromosomes are built of genes [a1, a2, . . . , ap] and [b1, b2, . . . , bp],

respectively. This pair of chromosomes A and B will reproduce the new chromosomes Anew and Bnew via a

parameter λ ranging between 0 and 1 and crossover equations:

Anew = λA+ (1− λ)B, (3.5)

Bnew = (1− λ)A+ λB. (3.6)

Mutation, on the other hand, replaces a gene aj with a new gene aj∗ via the mutation Equations 3.7, 3.8.
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Let lj and uj be lower and upper limits of the specified gene aj , u
∗ be a uniform random variable between

0 and 1, i be the number of the current generation, and maxgen be the maximum number of generations.

aj∗ = aj + (uj − aj)× u∗ × (1− i

max gen
), (3.7)

aj∗ = aj + (aj − lj)× u∗ × (1− i

max gen
). (3.8)

Note that the term 1 − i
max gen has a value close to 1 in the first generation, and a value close to 0 in

the last generation, resulting in larger mutations in early generations, and almost no mutation in the last

generations.

How are a pair of chromosomes A and B selected for crossover and mutation? Pasandideh (2006) discusses

and compares four methods relevant to desirability functions, finding them not statistically different [66]. The

four methods all utilize the mean desirability D̄j of scenario j. Since the results yielded from the four methods

are similar, we will review just one method for chromosome selection. In this method, a multiple-comparison

statistical test is used to adjust for the random nature of the desirability, grouping chromosomes such that

there is no statistical difference within the groups, but there exist differences among different groups. The

critical value of Least Significant Difference (LSD) is calculated as LSD = tα/2,N(n−1) ×
√

2MSE(D̄j)√
n

. Any

pairs of D̄j that differ less than the LSD are considered statistically equal. The chromosomes x1, . . . , xp are

arranged in ascending order, grouping them together when they differ by less than the LSD: when they are

considered statistically equal. Each group k of chromosomes is then selected with probability

pk =

∑
∀j∈Group k D̄j∑N

j=1 D̄j

,

whereby if a group is selected, its best chromosome as defined as having the highest D̄j is selected for

mating. N selections of chromosomes are made to make a generation with N chromosomes. The crossover

and mutation operators of Equations 3.5 - 3.8 are applied to the N chromosomes. The algorithm is repeated

until the stopping criteria is reached.

The reader is encouraged to refer to the original work for further details. Examples of utilizing the genetic

algorithm to optimize the inputs or components of an overall desirability score can be found in Kim (2004),

who applied the method to optimization of a gas metal arc welding process [52], and Pasandideh (2006),

who highlighted the value of the method with simulated numerical results [66].
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3.6 Discussion

In this chapter, we have provided an overview on desirability functions and how they are widely used in

various disciplines to assess the overall quality of a product or outcome by combining several outcomes of

interest into an overall composite score. The flexibility of desirability functions makes them an appealing tool

for assessing health outcomes. Interestingly, desirability scores have been used only in a handful of medical

applications and applied in a simple way. For example, the default shape parameters of one and equal

weighting are generally assumed in medical applications even though these parameters can be estimated

using nonlinear least squares and the Lp norm to assess an overall outcome over time. Medical applications

also have yet to regularly incorporate model uncertainty into the desirability scores, or use functions to

minimize variance of predicted responses. Despite the simple applications of desirability scoring used in

medical applications thus far, the examples presented in this chapter highlight the ease of simultaneous

interpretation of multiple responses reflected in the desirability scores.

The next chapter expands upon the work of Schindler discussed in Section 3.2.8 by employing desirability

functions to assess a wider variety of design components and design types. The value of utilizing desirability

functions as a tool in clinical trial design quality assessment will be demonstrated through a handful of case

studies.
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Chapter 4

Evaluation of Clinical Trial Design

Quality Using Desirability Functions

The aim of Chapter 2 was to minimize overall total expected responses in two-arm trials with correlated

responses between the two treatment groups. It could be seen that achieving this objective might come at

the cost of other objectives. This chapter extends upon the ideas of Schindler from Section 3.2.8 by creating

a framework to simultaneously evaluate multiple characteristics of a design. Section 4.1 discusses examples of

the different components or characteristics of a clinical trial that contribute to its quality. With the exception

of Type I error and power, the components included in this chapter are unique and novel components of

desirability functions in the assessment of trial quality. Section 4.2 discusses how scale parameters and weights

can be selected during the construction of desirability functions used to evaluate clinical trial design quality.

A proposed framework is then presented in Section 4.3 regarding the construction of individual desirability

scores for the characteristics under review during assessment of candidate clinical trial designs. The chapter

ends with Sections 4.3.1 through 4.3.3, which provide examples of the application of the proposed framework.

These examples include evaluation of two-arm clinical trials with binomial responses, continuous responses,

and correlated continuous responses between the treatment arms. The value of utilizing desirability functions

to pinpoint the strengths and weaknesses of a design and to culminate this information into a well-informed

decision is shown. We have created an online tool to help trialists implement the framework presented in

this chapter at https://priscillakyen.shinyapps.io/DesignEvaluation_beta/.
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4.1 Components of Designs Considered

In the beginning phases of designing a clinical trial, research, ethical, and logistical objectives are formed.

Most clinical trials aim to fulfill multiple objectives, and some of these objectives may compete [55, 41, 88].

Examples of competing objectives include: a) sufficient sample size and power vs. cost; and b) sufficient

treatment group sample sizes to make convincing, unbiased treatment group comparisons vs. minimizing

allocation of patients to a potentially inferior or toxic treatment. Competing objectives are indeed a large

challenge during clinical trial design selection. We proceed to review design components to be evaluated in

the context of this chapter.

4.1.1 Treatment Group Size Imbalance

Forced balance procedures such as those discussed in Section 1.1.1 are used for balancing treatment as-

signments. Balanced group sizes in clinical trials hedges against accidental bias, the bias in the estimated

treatment effect that is due to the omission of significant confounders from the model [55]. This shall be

shown in Section 4.1.2. Friedman et al. (1981) argue that equal allocation amongst treatment groups has

two benefits: first, power is maximized when allocation is equal; second, equal allocation caters to the ethical

concept of equipoise that clinical trialists should believe to be true at the start of a trial [32]. The potential

imbalance of non forced balance designs such as CRD and adaptive designs may reduce power. Lachin has

shown, however, that allocation ratios must exceed 7:3 in order to severely impact power [54]. Recent litera-

ture has convinced many clinical trialists that the first benefit of maximum power mentioned by Friedman et

al. (1981) is not necessarily true ([73, 46]). However, the culture of clinical trials has embedded the concept

of treatment group size balance as an important part of clinical trial design.

In this chapter, each design is evaluated using 10,000 simulated trials. The treatment group size imbal-

ance, defined as nE−nC , is assessed at the end of each simulated trial. The distribution of observed treatment

group size imbalance for each given design is then assessed using an individual desirability function.

4.1.2 Accidental Bias

Accidental bias describes the measure of bias in the treatment effect that is introduced due to some unob-

served yet confounding covariate.

In this subsection, we shall modify notation and allow Tj = 1 for an individual in experimental arm E,

and Tj = -1 for an individual in control arm C, i = 1, ..., n.

Let us consider the true model to be a standard normal error regression model:
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E(Y ) = µe+ αt+ βz, (4.1)

where e is a vector of ones: e = (1, 1, ..., 1)′, t is the treatment vector given by t = T = (t1, ..., tn)′, and

z is a covariate that is significantly associated with the outcome Y .

Denoting the design matrix X, we see that

X =



1 t1 z1

1 t2 z2

...
...

...

1 tn zn


, X ′Y =


e′Y

t′Y

z′Y



.

Using ordinary least squares method, if we look at (X ′X)−1X ′Y , then the consistent estimate of α is

E(α̂) =
n(µe′t+ nα+ βz′t)− e′t(nµ+ αe′t)

n−(e′t)2
.

However, if the covariate z is incorrectly excluded from the model of Equation 4.1, then

E(Y ) = µe+ αt,

Denoting the design matrix X, we see that

X =



1 t1

1 t2
...

...

1 tn


, X ′Y =

e′Y
t′Y



.

(X ′X)−1 =
1

n2 − (e′t)2

 n −e′t

−e′t n


.

Using ordinary least squares method, if we look at (X ′X)−1X ′Y , then the biased estimate is

α̂ =
nt′Y − (e′t)(e′Y )

n2 − (e′t)2
.
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The squared bias term is then

[E(α̂− α)]2 = (
n

n2 − (e′t)2
)2β2(z′t)2.

The impact of imbalanced treatment group sizes is highlighted by the (e′t) and is clear: larger imbalances

contribute to greater bias in the estimate of the treatment effect. The bias in the estimate of the treatment

effect also increases with the magnitude of the coefficient β for the omitted covariate z. Lastly, accidental

bias depends on the term (z′t)2, which is zero when z is orthogonal to t. The unconditional expectation can

be taken for a fixed vector z, with t being a realization of T and ΣT = V ar(T ):

E(z′T )2 = z′ΣT z,

By Rao, E(z′T )2 cannot exceed the maximum eigenvalue of ΣT ([71], p62). Due to this inequality, Efron

uses the maximum eigenvalue of ΣT as a criterion to evaluate the degree to which accidental bias impacts

a design. Specifically, the maximum eigenvalue of ΣT can be used as a minimax criterion, such that the

randomization procedure T1, . . . , Tn with the minimum maximum eigenvalue is selected [28].

In the context of this work, the asymptotic derivations for the covariance vector of T are not ideal.

Instead, my approach is to calculate an accidental bias factor:

Accidental Bias Factor Estimate =

(
n

n2 − (e′t)2

)2

ˆλmax, (4.2)

where λmax is the maximum value of the covariance matrix of T:

Var T = Σ =



E[(T1 − ET1)(T1 − ET1)] E[(T1 − ET1)(T2 − ET2)] . . . E[(T1 − ET1)(Tn − ETn)]

E[(T2 − ET2)(T1 − ET1)] E[(T2 − ET2)(T2 − ET2)] . . . E[(T2 − ET2)(Tn − ETn)]

...
...

. . .
...

E[(Tn − ETn)(T1 − ET1)] E[(Tn − ETn)(T2 − ET2)] . . . E[(Tn − ETn)(Tn − ETn)]


The expected value of a treatment for patient j is estimated in my simulations by taking the mean

of the patient’s treatment indicator value across all iterations. Specifically, for patient j and iteration i

(i = 1, ..., iter), ETi =

iter∑
i=1

Ti

iter . This estimate then allows us to find the estimate Σ̂, which is then used to find

an estimate of the accidental bias factor. To my knowledge, previous simulations discussed in literature look

only at λmax, whereas this work newly incorporates treatment group size imbalance - which also contributes

to accidental bias - through simulation.
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As the number of iterations iter → ∞, the estimate of the accidental bias factor reaches its theoretical

value. Designs yielding lower accidental bias factor estimates are favorable. In practice, this means the

designs with lower average treatment group imbalance, and with less variability within treatment assignments

for each subject j, are less likely to have treatment effect estimates impacted by unobserved covariates.

Lachin et al. note that with the exception of truncated binomial design, accidental bias seems to be

negligible for forced balanced designs [55]. However, accidental bias in response-adaptive designs seems to

be an area less studied. Using the accidental bias factor estimate from Equation B.26, this work is able to

compare the impact of unobserved covariates on a broader range of designs.

4.1.3 Covariate Imbalance

Covariate imbalance occurs when the average values of a potential confounder C are very different between

treatment groups. Covariate imbalance is not used to describe differences in response Y . Imbalance in

covariates is a non-ideal scenario that statisticians try to avoid during the design stage. Instead, covariate

balance is desired because balance across all potential confounders C will assure analysts that any differences

between the two treatment groups at the end of a trial can be attributed to the treatment effect, and not to

some other lurking variable. Most clinical trials report a large number of baseline covariates by treatment

group to ensure that the two groups were “balanced” at baseline, and that differences at the end of the trial

should thereby be attributed to the differences in treatment.

In this work, the setup for the study of covariate imbalance follows that of Lachin and Rosenberger (2016)

[55]. Three different patterns are studied to see the probability of imbalance at the end of a trial:

1. C11, C12, ..., C1n are i.i.d. N(0,1).

2. C21, C22, ..., C2n drift linearly over time on the interval (-2,2] + a N(0,1) random variable.

3. C31, C32, ..., C3n are autocorrelated. Specifically, C3j = C3j−1 + a N(0,1) random variable, with j =

2,...,n and the first of the series C31 equaling a N(0,1) random variable.

These three scenarios represent three different types of covariates. The first is standardized normal, and

is a good representation of what one expects from most covariates measured in a study. Different means

and variances can be simulated, but N(0,1) is a representative proxy. The second scenario is representative

of a covariate subject to a linear time trend. This is not to be confused with a linear time trend influencing

the primary outcome of interest Y of a trial. An example of a covariate subject to a linear drift may be

improving average blood pressure in patient population, when blood pressure is not the primary endpoint
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of interest. The third scenario is for autocorrelated variables, also known as serially correlated or serially

dependent. This means that a covariate value is not independently and identically distributed, but rather,

depends on the previous value. Returns on stock prices are frequently used as an example of autocorrelated

variables, since past returns seem to influence future performance and returns. Other examples include

annual rainfall, sunspot activity, and the price of agricultural products. In health, autocorrelation is seen in

covariates quantifying exposure to pollutants. For example, asthma symptoms and daily ambient particulate

matter concentrations are characterized as being related through an autocorrelated lag model [74].

At the end of 10,000 simulated trials for a design, we compute the frequency in which |CA − CB | > ε,

where ε can be specified by the user. The (frequency/total number of iterations) yields the simulated

probability of covariate imbalance. Although not explored in this work, a trialist may simulate different

covariates other than C1, C2, C3, and may vary ε depending on the threshold of imbalance acceptance for

a particular covariate.

4.1.4 Selection Bias

Selection bias stems from the ability of an investigator or experimenter to predict the next treatment as-

signment, and therefore possibly bias the results by removing the random allocation of patients and the

independence of patient characteristics and treatment assignment [15]. If the investigator has information

on prior assignments, s/he may introduce bias by allocating a patient when the next assignment is likely

to be the desired assignment from the perspective of the investigator. The bias may also take form when

deciding against a prescribed allocation.

Since Blackwell & Hodges’ introduction of this topic in 1957, Berger (2005) has further categorized selec-

tion bias into four types [15, 9]. First-order selection bias occurs when either the patient or the investigator is

able to choose a specific treatment group, knowing the patient’s characteristics. This is common in design’s

using Zelen’s method, as discussed in Section 2.5. Second-order selection bias occurs when a clinical trial’s

investigator has access to the trial’s randomization list and has the potential to enroll or exclude patients in

a specific order. Third-order selection bias occurs when only future patient allocations are concealed, thus

giving the investigator the ability to predict future allocations based on prior assignments. Fourth-order

selection bias, also known as residual selection bias, arises when investigators are blinded to both past and

future allocations.

The work in this dissertation focuses on third-order selection bias. In practice, a clinical trial usually

targets double-blinded treatment assignment (the individual responsible for assigning treatments and the

analysts do not know who receives which treatment). However, in reality, selection bias is still a risk that
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should be considered during the design of a trial. In spite of the double-blinded nature of many trials,

treatment assignment may sometimes still be guessed or even obvious: patients in different treatment arms

may experience different side effects; or sometimes the treatment arms themselves are unable to be masked

(e.g. surgery vs. chemotherapy). In a meta-analysis of randomized clinical trials in which surgery was an

intervention, less than 25 % of the trials concealed treatment allocation [49]. Even in nonsurgical cases,

Berger stated his opinion that target allocations in RAR designs that minimize a specific objective function

come with the price of increased selection bias. In a response to Taves’s statement in 2010 claiming that

“Minimization should be the method of choice in assigning subjects in all clinical trials” [81], Berger wrote:

“The idea behind minimization is brilliant, but its failure is the flip side of the same coin, and cannot

be separated from its benefit. The claim to fame is that subjects are allocated not randomly but rather

deterministically, so as to minimize an imbalance function (hence the name). It is this, the heart and soul

of the method (and not some tangential aspect), that leads to its downfall.

“Investigators using minimization can determine the group to which a prospective subject would be

allocated, and then decide if this is a good thing or a bad thing, in terms of creating an imbalance with

respect to some key predictor or outcome not considered in the imbalance function. In other words, there is

no allocation concealment, and selection bias is there for the taking. [Even by removing a patient’s necessary

allocation to a treatment, but rather assigning a high probability], are we really to believe that a betting

man needs certainty, and not just good odds, to place a wager? If the odds of each treatment come close

enough to 50% so as to truly take a bite out of selection bias, then the baby is lost with the bath water, and

minimization no longer does what it purports to do. There is simply no way around this.”

- Berger, in a letter to the Editor of Contemporary Clinical Trials [10].

The literature has shown that systematic baseline imbalances can occur in randomized trials, where

selection bias would force imbalance in covariates influencing patient allocation [76, 82]. Berger (2005)

states that randomization is necessary to ensure that any observed baseline imbalances are random, but it

is not sufficient [9].

The predictability of a randomization sequence is given by

ρpred =

n∑
j=1

E

∣∣∣∣[E(Tj |F(j−1)]−
1

2

∣∣∣∣ ,
which is a measure in restricted randomization of the difference between the conditional probability of

treatment assignment and the conditional probability [8]. We can then calculate a distribution of observed

selection ρpred values across all simulations.
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4.1.5 Chronological Bias

Chronological bias is contained within the larger umbrella of accidental bias and is an area of focus both in

the literature and in this work. This is because the fulfillment of objectives such as minimizing treatment

failures or minimizing the number of patients allocated to an inferior treatment is achieved by targeting one

of the target allocations discussed in Section B, which can result in a large number of consecutive patients

being enrolled to a single arm. This can be a problem when the performance of a patient is associated with

time. It is worth differentiating here that chronological bias speaks to the time trends mentioned in this

chapter, which are different than covariate C2 of section 4.1.3, since the former trend affects the response or

endpoint of interest, and the latter affects an independent variable or confounder.

Three time trends studied in this work are linear, logarithmic, and stepwise in nature. A linear time trend

signifies a linear change in the expected outcome of a patient across the course of the trial. For example,

studies have noted that there is “good evidence of more aggressive treatment of blood pressure in recent

trials. Mean baseline systolic blood pressure in [the] ACTIVE [trial] was 6-8 mm Hg lower than in SPAF3,

despite similar enrollment criteria” [38]. A second example of a linear time trend is in the multicentre

randomized trial comparing azathioprine versus placebo for patients with primary biliary cirrhosis (PBC),

where it was noted that there was a steady decline in baseline log serum bilirubin levels with time, thus

leading to the conclusion that subjects enrolled later in the trial were on average healthier than those enrolled

at the beginning [3]. An example of a logarithmic time trend is in surgical trials, when surgeons’ operational

skills improve over the course of the trial [36]. On the other hand, a stepwise time trend signifies a sudden

change during the trial which changes the expected outcome of patients from that point forward. Examples

of this in practice might be a single change in medical or administrative staff, an adjustment in enrollment

criteria, or a natural disaster partway through the trial which changes the expected response of a subject.

To protect a randomized clinical trial against chronological bias, an analyst must consider the observed

bias in the analysis. However, the bias is often unknown during the design of the trial. At that early stage, the

best protection is choosing a randomization scheme that hedges against large potential chronological biases

and their effects on treatment effect estimation. For example, the ICH E9 (1998) guidelines recommend

randomization in blocks (e.g. Random Block Design) when chronological bias is a concern [37]. Blocks

protect against time trends since they avoid large runs of enrolled patients being allocated to a single arm,

and blocks of subjects are influenced by a time trend equally.

In the literature, Schindler (2016) and Tamm and Hilgers (2014) have studied linear, logarithmic, and

stepwise trends over the course of the trial. Specifically, their setup is an extension of Rosenkranz (2011).

The basic regression model that is the foundation for estimation of the treatment effect β1 throughout this
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dissertation is shown in the box below. Let

Basic Regression Model Components

X =



1 T1

1 T2

...
...

1 Tj
...

...

1 Tn


, β =

β0

β1

 , (4.3)

where Tj = 1( subject j is in experimental arm E). Then, the response Y is modeled by:

Y = Xβ +ZβTIME + ε. (4.4)

The errors εj are independently and identically normally distributed with mean 0 and variance σ2, and

are assumed to be independent of treatment assignment. In this model, ZβTIME reflects a time trend due

to the sequential enrollment of patients which contributes to the expected response. Three time trends

are studied: linear, logarithmic, and stepwise. The type of time trend influences the definition of the time

covariate Z. The authors assume uniform enrollment throughout the recruitment stage of the trial, and thus

use patient index number to model time throughout the trial. Assuming uniform enrollment and a time

trend that influences subjects regardless of treatment group, Z is defined as:

1. Linear: Zj = (j − 1)

2. Logarithmic: Zj = log(j)

3. Stepwise: Zj = 1(j ≥ t), 1 ≤ t ≤ n, (4.5)

where j indexes patient number in the order of enrollment, and β represents the strength of the time

trend. For example, in a study with a linear time trend with β = 1/127 and n = 128, the expected response

of subject j would be E(Yj) = β0 + β1Tj + 1
127 (j − 1). This means that the last enrolled patient (j = 128)

would have an expected response 1 unit higher than the first enrolled patient (j = 1) simply due to the time

trend, or “chronological bias”. Similarly, subjects 1 through 127 would have linearly increasing expected

outcomes by 1/127 units each, with the increase having no association with treatment effect.

The authors focus on evaluating how different permuted block randomization sequences perform with

respect to chronological bias. The focus of interest is the bias and the variance of the estimate of the
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treatment effect. The authors also calculate the empirical type I error by simulating scenarios under the

null hypothesis of no treatment effect, and evaluating the proportion of p-values that are less than α = 0.05

when implementing a two-tailed t-test with pooled variance estimation.

Using their results, the authors recommend using small block sizes to hedge against biased estimates of

the treatment effect. Lachin and Rosenberger (2016) comment that the impact of time trends in biasing the

treatment effect estimate depends on the randomization procedure of a design, and consequently a worthy

topic of exploration is which procedures mitigate the impact of chronological bias. Villar et al. (2017) look

at the effects of time trends due to changes in standard of care and due to patient drift for RAR designs

implemented in trials with binary responses [87]. Ryeznik et al. (2018) assess via simulation the performance

of eight different designs, including CRD, PBD, DBCD, and urn designs, with three different doses, in the

presence of time trends.

4.1.6 Expanding on Formerly Investigated Chronological Bias Patterns

This dissertation continues to expand from Tamm and Hilgers’ work. The following changes which allow

improved flexibility - and arguably accuracy - are implemented:

1. The time trends studied are not assumed to necessarily affect both treatment groups. A time trend

may impact one group only, or the two treatment groups could witness different time trends or trends

with different degrees of severity.

2. Two Type I errors are calculated, by simulating scenarios under the null hypothesis of no treatment

effect, and computing the proportion of p-values that are less than α = 0.05 in the Wald Test of a

linear regression that a) does not include, and b) includes a covariate for time trend. Notice that a)

is equivalent to the two-tailed t-test performed by Tamm and Hilgers. For more on Type I error, see

Section 4.1.10.

3. Power is also evaluated, by simulating scenarios under the alternative hypothesis of an existing

treatment effect, and computing the proportion of p-values that are less than α = 0.05 in the Wald

test of a linear regression that a) does not include, and b) includes a covariate for time trend. This

approach is significant because including a covariate for time trend in the linear regression results in a

loss in power. Statisticians may be interested in simulating the extra sample size needed to compensate

for this loss. For more on power, see Section 4.1.10.

4. The performances of various designs not limited to Permuted Block Randomization are summarized.
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5. A different patient enrollment pattern is studied: previous work has modeled time trends as a

function of patient number; we now allow model patient recruitment with varying Poisson rates.

Regarding the first change, since a surgeon’s improvement or lengthy trials are referred to as examples

of sources of chronological bias, it may not be practical to assume that both treatment groups are subject

to chronological bias, and if they were, subject to the same chronological bias. This thesis expands upon the

previous literature by further exploring some scenarios that may be more likely in practical clinical trials.

We will use Z here to represent time trend covariates. The Z matrix of Equation 4.4 is adjusted to:

Z =



Z1linEC Z1linE Z1linC Z1stepEC Z1stepE Z1stepC Z1logEC Z1logE Z1logC

Z2linEC Z2linE Z2linC Z2stepEC Z2stepE Z2stepC Z2logEC Z2logE Z2logC

...
...

...
...

...
...

...
...

...

ZjlinEC ZjlinE ZjlinC ZjstepEC ZjstepE ZjstepC ZjlogEC ZjlogE ZjlogC

...
...

...
...

...
...

...
...

...

ZnlinEC ZnlinE ZnlinC ZnstepEC ZnstepE ZnstepC ZnlogEC ZnlogE ZnlogC


. (4.6)

Let βTIME =

βTIME = (βlinEC, βlinE, βlinC, βstepEC, βstepE, βstepC, βlogEC, βlogE, βlogC)T . (4.7)

Then, responses Y are modeled as:

Response Model With Time Trend

Y = Xβ +ZβTIME + ε. (4.8)

If enrollment into the trial is uniform, the Z covariate is modeled as a function of patient number:

Definition of Z when subject enrollment is uniform

ZjlinEC = (j − 1), ZjlinE = (jE − 1), ZjlinC = (jC − 1),

ZjlogEC = log(j), ZjlogE = log(jE), ZjlogC = log(jC), and

ZjstepEC = 1(j > t), ZjstepE = 1(jE > t), ZjstepC = 1(jC > t).

See Figures 4.1 through 4.3 for linear, logarithmic, and stepwise trends in a single treatment group only.

The mean response in control group C is 0, and the mean response in experimental group E is 0.5. The

strength of the time trend λ is chosen so that the last subject affected by the trend has an expected response
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(a) ZjlinE = (jE − 1), βlinE = 1/63.
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(b) ZjlinC = (jC − 1), βlinC = 1/63.

Figure 4.1: Linear trends across n = 128 subjects with 64 subjects in each arm, resulting in a net one unit
increase in response from the first to last subjects affected by the time trend.
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(a) ZjlogE = log(jE), βlogE = 1/log(64).
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(b) ZjlogC = log(jC), βlogC = 1/log(64).

Figure 4.2: Logarithmic trends across n = 128 subjects with 64 subjects in each arm, resulting in a net one
unit increase in response from the first to last subjects affected by the time trend.
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(a) ZjstepE = 1(jE ≥ t), βstepE = 1.
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(b) ZjstepC = 1(jC ≥ t), βstepC = 1.

Figure 4.3: Stepwise trends across n = 128 subjects with 64 subjects in each arm, λ = 1, t = 33, resulting
in a one unit increase in response beginning at the 33rd subject of the arm affected by the time trend.

one unit higher than the first subject unaffected by the trend. The subjects enrolled between the first and

last subjects are affected by the time trend in a linear, logarithmic, or stepwise function. For example, in

Figure 4.3a, the mean response in the experimental group begins at 0.5, a indicated by the solid blue line,

and the gap in response between the experimental and control group (solid red line) scan be attributed

solely to the effect of the treatment. Halfway through the trial, a stepwise trend occurs, raising the expected

response in the experimental arm from 0.5 to 1.5, resulting in the gap in response between the two groups

to be attributed to both a treatment effect and an external stepwise trend. In Figure 4.1a and 4.2a, the

start and end points are similar, but the pattern of the time trend achieves the final response in a linear

and logarithmic fashion, respectively. When the trend is in the same direction as the treatment effect (e.g.

Figures 4.1a, 4.2a, 4.3a), the treatment effect estimate will be overestimated, and Type I error will increase,

since the response level can incorrectly be attributed to a response to treatment. When the trend is in the

opposite direction as the treatment effect (e.g. Figures 4.1b, 4.2b, 4.3b), the treatment effect will be masked

and harder to detect, resulting in a drop in power. For example, in Figure 4.3b, the average response in the

control group (red lines) is equivalent to the average response in the experimental group (blue line), and no

treatment effect would be detected if a Z covariate for stepwise trend were not adjusted for. The alternative

hypothesis would be falsely rejected in this case.

In the definitions above, it is assumed that subjects are enrolled into the trial at a uniform rate. On the
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other hand, if enrollment into the trial is not uniform, measurement time mj of the response plays a role in

the definition of Z. Let G ∈ [EC,E,C] represent whether the time trend affects both the experimental and

control groups, the experimental group only, or the control group only. Let M equal the last measurement

time, and step ∈ [0, 1] indicate at what fraction of the total measurement time a stepwise change occurs.

Definition of Z when subject enrollment varies over time

ZjlinG = mj ,

ZjlogG = log(mj), and G ∈ [EC,E,C]

ZjstepG = 1(mj ≥ step×M).

Modling time trends a sa function of time rather than subject number provides flexibility and enhanced

accuracy in our simulations.

When it is difficult to look at raw response values, Altman et al. suggest using CUSUM plots, which

plots the cumulative sum Sj of response value less their expected value:

Sj =

n∑
j=1

(Yj − Y0), (4.9)

where Y0 is the expected value of the response [3]. There are multiple ways to define Y0, including taking

the average response across the first nstart observations, or letting it equal the specified expected response

in the alternative hypothesis. In Figure 4.4, Y0 is set to the expected value of the response as specified in

the alternative hypothesis: 0 for responses in control group C, and 0.5 for responses in experimental arm E.

If no time trends are present in the data, and the true mean is Y0, we would expect the values of Sj to be

close to zero, and the CUSUM plot should be nearly flat. A change in level of raw responses appears as a

change in the slope of the CUSUM.

In Figure 4.4, a CUSUM graph replicates the trend reflected in 4.1a. It can be seen that the responses

in the control arm C lie close to their expected value of 0, with a relatively flat line. On the other hand, the

cumulative sum Sj in experimental arm E deviates further and further away from 0, with a positive slope.

The changes in Sj from one patient in experimental arm E to the next point to the linear nature of the trend

rather than a logarithmic or stepwise nature.

Simulating Recruitment

Two practical scenarios lead us to believe that chronological time trends are more accurately depicted

when they are modeled as a function of time, rather than as a function of patient number. First, we would

expect chronological trends to be a bigger concern when enrollment is slow. If there is buildup of resistance

to an HIV vaccine over time, it would be less of a concern for a clinical trial that finished recruiting (and

107



0 20 40 60 80 100 120

0
10

20
30

40

Linear Trend in Group E Only

Patient Number

C
U

S
U

M

0

Trt Group E
Trt Group C

Figure 4.4: CUSUM plot displays the cumulative sum of response values less their expected value (see
Equation 4.9) and depicts the same linear time trend in the experimental arm E as shown in Figure 4.1a.

measuring the primary endpoint of interest) in three months relative to one that took two years, even if

both trials had the same sample size. Second, recruitment rarely occurs at a single rate during the course

of a trial. Especially in cases of rare diseases, finding eligible patients who are willing to enroll can be much

more difficult near the end of the trial than in the middle of it. When this happens, we would not expect

the change in outcome attributed to the time trend in a trial with n=128 patients to be the same between

patients 30 and 31 versus 120 and 121, when the former patients have a gap between recruitment of 2 weeks

and the latter patients have a gap between recruitment of 8 weeks.

If time trends are a concern, the rate at which patients are enrolled and the time at which their responses

are measured may also affect analysts’ interpretation of the results. If patients are enrolled uniformly across

the course of a trial, then Tamm’s model from Equation 4.5 is adequate; otherwise, recruitment time must

be carefully modeled. We divide our simulation of a clinical trial into three distinct time periods: rampup,

steady recruitment, and slowing - or plateauing - recruitment. The rampup period is commonly seen in

clinical trials, as sites prepare the logistics of beginning protocols at their respective locations. Many clinical

trials have sites formally begin recruitment on different dates, also contributing to a “rampup” period that is

marked by slower patient enrollment than most of the remainder of the trial. After all sites have joined and

the trial has picked up some momentum, patient enrollment enters a “steady” period where a good number

of patients are enrolled each month. Nearing an end of a clinical trial, the third period is often marked by

a plateauing recruitment rate, often attributed to difficulty in finding interested or eligible subjects who are
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willing to enroll.

Since total sample size and recruitment rates alter the length of total recruitment time, recruitment rates

are set as percentage of target sample size per month, and the three different stages are defined by the

percent time they take of the total recruitment time. Figure 4.5 depicts enrollment of n = 128 patients. The

rampup period enrolls 2% of the target sample size per month for the first 15% of the total recruitment time,

followed by a steady enrollment period that enrolls 5% of total sample size for the next 60% of recruitment

time. The trial ends with slowing recruitment of 2.5 % of the target sample size. Figure 4.6 shows a more

aggressive recruitment pattern, enrolling 2%, 20%, and 5% of the target sample size each month during the

rampup, steady, and slow periods, respectively.

The components of a design that can be affected by chronological bias are bias, relative bias, Type I

error, and power. In this work we call the naive analysis the one that does not adjust for an existing time

trend in a linear model assessing treatment effect. On the other hand, the adjusted analysis includes in the

linear model assessing treatment effect a covariate for patient number (j, jE , or jC) in the case of uniform

enrollment and the time trend affecting both groups, or a covariate for measurement time (mj) in the case

of varying rates of enrollment throughout the trial. The naive analysis yields naive bias, relative bias, Type

I error, and power. The adjusted analysis yields adjusted versions of these design components.

Figure 4.5: Cumulative Patients Enrolled, with 2%, 5%, and 2.5 % of total subjects (n=128) enrolled per
month in the rampup, steady, and slow periods, respectively.
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Figure 4.6: Cumulative Patients Enrolled, with 2%, 20%, and 5 % of total subjects (n=128) enrolled per
month in the rampup, steady, and slow periods, respectively.

4.1.7 Expected Number of Failures

The Expected Number of Failures of a design is calculated as the average number of failures in the design over

a large number of iterations. When the outcome is binary, the outcome is already “success” or “failure”,

making this calculation straight forward. When the outcome is continuous and considered smaller the

better, a failure is defined as any outcome greater than a pre-defined maximum threshold. Let iter = the

total number of iterations (the total number of simulated trials), and fEi , fCi be the number of failures in

the experimental and control arms in iteration i, respectively. Then the

Expected Number of Failures =

∑iter
i=1 fEi + fCi

iter
. (4.10)

If this characteristic of a design is important to you, consider using a response-adaptive-randomization

design (ERADE, DBCD, SMLE, EW1995) that targets the RSIHR allocation. The distribution of observed

failures through the simulated trials can be assessed with an individual desirability function.
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4.1.8 Expected Total Response

The expected total response is defined as ȲEnE + ȲCnC . Two approaches can be taken in assessing this

component. The first is to calculate the total response as the average total response across all 10000 iterations

by using the average responses across all iterations of a trial and the average treatment group sizes across all

iterations of a trial. The second approach evaluates the distribution of observed total responses from each

iteration. In Section 4.3.3, both approaches are discussed and the value of the second approach is shown.

When smaller responses are best, a smaller total expected response is desired, and can be targeted with

RSIHR allocation (see Section B). When smaller responses are best and correlation is suspected, the target

allocation R.corr from Chapter 2 can be utilized.

4.1.9 Bias in the Estimation of the Treatment Effect

We can continue to assess bias and relative bias as defined in Section 2.4. However, the model is now adjusted

so that it may adjust for time trends as discussed in Section 4.1.5.

For binary responses, the outcome success (Y = 1) or failure (Y = 0) is generated using a binomial

distribution with success parameter p. Let j represent subject j ∈ 1, · · · , n, and h ∈ c(0, 1) represent the

null and alternative hypothesis respectively. Let X,β = (β0, β1),Z, and βTIME be defined as in Equations

4.3 and 4.8. The true probability of success is defined as:

p = Probability(Y = 1|j, h) =
exp(Xβ +ZβTIME)

1 + exp(Xβ +ZβTIME)
. (4.11)

A simple comparison of the responses is often a first analytical step in clinical trials. In the binary case,

this comparison is a difference in success probabilities, and does not take into account other covariates which

could be confounding the probability. This is called the naive analysis. On the other hand, the adjusted

analysis adjusts for confounders that may be explaining some of the variance of the response. In the context

of this work, the true model is known. The naive analysis excludes ZβTIME from the analysis of the data.

On the other hand, the adjusted analysis includes ZβTIME . Specifically, for binary responses,

Naive: p̂ = Probability(Y = 1|j, h) =
exp(Xβ̂)

1 + exp(Xβ̂)
. (4.12)

Adjusted: p̂ = Probability(Y = 1|j, h) =
exp(Xβ̂ +Zβ̂TIME)

1 + exp(Xβ̂ +Zβ̂TIME)
. (4.13)
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For continuous responses, the true response is defined as:

E(Y |j, h) = Xβ +ZβTIME . (4.14)

The naive and adjusted analyses are defined as:

Naive: E(Y |j, h) = Xβ̂, (4.15)

Adjusted: E(Y |j, h) = Xβ̂ +Z ˆβTIME . (4.16)

Consistent with the simulation setup from Chapter 2.4.1, bias is calculated as E(β̂1 − β1), the expected

difference between the estimate of the treatment effect β̂1 and the true value of the treatment effect β1.

Relative bias is calculated as E( β̂1−β1

β1
) × 100. Since typically we set the true value of the treatment effect

β1 to be 0 under the null hypothesis, the relative bias is only defined under the alternative hypothesis, when

β1 6= 0. A distribution of observed bias and relative bias values are evaluated in both naive and adjusted

analyses. When a time trend may in fact be responsible for differences in treatment groups, the naive

treatment effect estimate is biased and could lead to an incorrect decision of rejecting the null hypothesis.

4.1.10 Type I error & Power of the Design

Two critical characteristics of a design are Type I error and power. In the design stage, the Food and Drug

Administration (FDA) places emphasis on controlling Type I error, especially in adaptive designs when

multiplicity (multiple looks at the data) is a concern. Type I error is the probability of rejecting the null

hypothesis when in fact the null hypothesis is true. On the other hand, the power of the design is the

probability of rejecting the null hypothesis given that the alternative is true. In the context of this work,

the observed data is used to estimate the treatment effect and its standard error. The null hypothesis is:

H0 : β1 = 0, where β1 is the coefficient for the treatment effect. The alternative hypothesis is: H1 : β1 6= 0.

Formally, Type I error is calculated as

P (reject H0 | H0 true) = P (
β̂1

SE(β̂1)
< zα/2 | β1 = 0). (4.17)

It is common for clinical trials to aim to control Type I error at or below 5%.

Rosenberger (2016) has commented that power has often become a secondary consideration to the ethical

objectives of adaptive designs, yet notes that since accurately reporting no treatment difference is important,

power considerations are not to be taken lightly [55, 79]. Power is calculated as
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P (reject H0 | H1 true) = P (
β̂1

SE(β̂1)
< zα/2 | β1 6= 0). (4.18)

It is common for clinical trials to aim for high power such as 80% or 90% during the design stage. In this

chapter, Type I error and power are calculated in both the naive and adjusted analyses (Equations 4.12,

4.13 for binary responses, Equations B.6, B.7 for continuous responses).

4.2 Determining Scale Parameters and Weights

Two approaches to determining scale parameters are explored. One involves setting scale parameters so

that Derringer and Suich’s individual desirability functions for each of the components can be created using

Equations B.8 through B.10. The second maps specific individual desirability scores to specific values

of a component. Individual points are connected linearly so an individual desirability curve is created.

Figure B.13 shows an example of each of these methods. This “mapping method” has been used in the

literature when a scaling parameter did not accurately reflect opinions of stakeholders or when how the

scaling parameter affected the shape of the desirability function was difficult to understand (see Section

3.2.3, [33, 57, 78]). Usage of one method for some characteristics and the alternative method for other

characteristics is also possible.
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Figure 4.7: Individual Desirability Function: Type I error.

In Figure B.13a, the scaling method is used with Equation B.9 and scale parameter r = 0.65, L = 0.01,
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and U = 0.15. This means that any Type I errors below 0.01 will receive an individual desirability score

of 1, and any Type I errors above 0.15 will receive an individual desirability score of 0. A Type I error of

0.05 yields an individual desirability of approximately 0.8, highly desirable. Figure B.13b shows a plot based

on a mapping of different Type I errors to different desirability scores. It can be seen that a Type I error

yields a desirability score of 0.8 (highly desirable), and a Type I error of 0.15 yields a desirability score of

0.2 (unacceptable). The mapping that results in this function is Type I errors of (0, 0.05, 0.06, 0.1, 0.15,

0.21) for individual desirability scores of (1, 0.8, 0.6, 0.4, 0.2, 0), respectively.

It is important that the optimal value of a characteristic and scale parameters accurately reflect an overall

consensus on penalizations of different magnitudes of deviations from those target values. It is difficult to

use nonlinear least squares to solve for scale parameters to align a characteristic’s desirability score with

a quantitative gold standard (Section 3.2.9) in the case of evaluating clinical trial design. Although the

information matrix is used in finding optimal designs, it reflects the value of certain aspects of a design only.

Without a quantitative gold standard that can accurately include all characteristics in consideration, using

nonlinear least squares to solve for scale parameters is not an option.

Thus, in the context of evaluation of clinical trial design, we suggest reverting to a method like the one

used in Section 3.2.3 - 3.2.5, where a panel of experts is consulted. This is known as the Delphi method. The

Delphi method was developed by RAND in the 1950s with the original purpose of forecasting the impact

of technology on warfare [70]. Since its development, the Delphi method has maintained popularity in the

research community with thousands of citations, showing the value of controlled opinion feedback [24], and

performing equally well with other group decision analysis methods such as nominal group technique and

social judgment analysis [51, 63].

Utilizing the Delphi method, a panel of statisticians and other clinical trial stakeholders independently

provide their opinion on how certain values of clinical trial characteristics or components ought to be scored,

and how certain deviations away from target values ought to be penalized. These opinions shape the

individual desirability functions which calculate the di’s of Equation B.11. They should also provide their

thoughts on the relative importance - the weights or wi’s - of each characteristic to the overall assessment

of the trial. After providing these opinions, these stakeholders should review the feedback in the form of a

“group response”, or convene to discuss, whereby eventually a consensus opinion ought to be reached on the

shapes of individual desirability functions and weights.
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4.3 Evaluation of Design Quality: A Framework

The ability of desirability functions to simultaneously assess multiple characteristics or components of a final

product were discussed in Section 3. Examples of different and sometimes conflicting clinical trial design

characteristics are discussed in Section 4.1. In this Section, a framework is presented so that one can utilize

desirability functions to assess the overall weaknesses and strengths of each design under consideration, and

quantitatively calculate a standardized score so that designs may be compared objectively. The framework

is as follows:

1. Define clinical trial characteristics to be evaluated and specify whether they are Smaller-the-Better,

Larger-the-Better, or Nominal-the-Better variables. These characteristics could include, but are not

limited to, the components of a design discussed in Section 4.1. Simulate iter clinical trials and observe

each design’s performance in regards to these characteristics.

2. Observe the distribution of values for each characteristic to aid in definition of upper bounds, lower

bounds, and target values.

3. Define individual desirability functions for each characteristic using the Delphi method described in

Section 4.2. Calculate the individual desirability score for each characteristic and each simulated trial.

This means that iter scores will be calculated for each characteristic. These individual scores can be

examined to understand the strengths and weaknesses of each design.

4. Define weights as described in Section 4.2. Calculate the overall desirability score for each simulated

trial using Equation B.11.

5. Observe the distribution of overall desirability scores for each design. Calculate the probability that

the overall desirability score is zero for each design:

P (D = 0) =

iter∑
i=1

1(Di = 0)/iter.

Use this probability, the mean, standard deviation, and other distributional statistics to help under-

stand the performance of each design within the simulated scenario.

The characteristics evaluated are not limited to those presented in this work. One contribution of the over-

all desirability score is its ability to incorporate an unlimited number of characteristics. One can incorporate

information regarding other statistical characteristics, ethical objectives, or logistic outcomes. Sensitivity
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analyses may be performed on both shape parameters and weights to observe how design selection may

change with altering preferences.

An online tool at https://priscillakyen.shinyapps.io/DesignEvaluation_beta/ is available for

readers to evaluate the quality of different clinical trial designs for two-arm trials.

4.3.1 Application 1: Binomial Responses

Here, we seek to apply the framework of Section 4.3 to an example of design comparison provided in Menon

et. al (2015) (Section 10.4.2) [61]. In this example, a two-armed trial expects probability of success in the

experimental arm E to be 0.7, and in the control arm C to be 0.4. We denote this with p = (pE , pC) =

(0.7, 0.4). No time trends are expected. Following the notation of Equations 4.3 and 4.11, β = (β0, β1) =

(ln(2/3), ln(3.5)) = (−0.405, 1.253).

The authors evaluate non-adaptive designs CRD and PBD, as well as RAR designs DBCD, ERADE, and

SMLE targeting RSIHR allocation. As the results showed little difference in the performance of the three

RAR designs with respect to treatment failures and power, we will expand upon the designs explored. In

this Section, we seek to compare both non-adaptive designs and RAR designs. The designs considered are

shown below:

Design Parameters Abbreviation
Complete Randomized Design CRD
Random Block Design Filled With Truncated Binomial maximum block size = 12 RBD.TBD
Efron’s Biased Coin Design p = 2/3 BCD 2/3
Biased Coin Design with Imbalance Intolerance p = 2/3, mti = 8 BCDII 2/3
Doubly Biased Coin Design γ = 2

targeting Neyman DBCD.Neyman
targeting RSIHR DBCD.RSIHR

Efficient Randomized-Adaptive Design δ = 0.5
targeting Neyman ERADE.Neyman
targeting RSIHR ERADE.RSIHR

For a brief overview of these designs and the simulation setup used, refer to Chapter 1. For example,

for DBCD, refer to Section 1.2. The components of the design evaluated are those discussed in Section 4.1.

Menon uses a sample size of n = 120 to achieve 92% power of the Wald test under equal allocation. We will

utilize a sample size of n = 106 to achieve 90% power and maintain Type I error at 0.05. The null hypothesis

is H0 : β1 = 0 and the alternative hypothesis is H1 : β1 = 1.253. We report the performance of each design

with respect to these components, and discuss individual desirability functions and weighting which result

in the ultimate selection of a design.

Treatment Group Size Imbalance

The first component considered is treatment group size imbalance, defined as the difference in group sample
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size: nE − nC . Table 4.1 exhibits the performance of the designs considered with respect to this design

component.

Patients in
E (mean)

Patients in
E (sd)

Proportion
in E

Average Treatment
Group Imbalance

CRD 52.98 5.20 0.50 -0.04
RBD.TBD 52.98 0.79 0.50 -0.03
BCD 2/3 53.00 1.05 0.50 -0.00
BCDII 2/3 53.04 3.44 0.50 0.08
DBCD.Neyman 58.17 3.33 0.55 10.35
DBCD.RSIHR 60.48 3.82 0.57 14.96
ERADE.Neyman 58.02 2.19 0.55 10.04
ERADE.RSIHR 60.34 2.84 0.57 14.67

Table 4.1: Binary example: treatment group characteristics and size imbalance nE−nC underH1 : β1 = 1.253
over 10,000 simulated trials, p = (0.7, 0.4) and n = 106.

The designs considered allocated between 41-57% of the predetermined sample size n = 106 to the

experimental arm E. CRD and the forced balance procedures represent the non-adaptive designs evaluated,

and all averaged equal allocation to the two arms over 10,000 simulated trials. The RAR designs targeting

Neyman and RSIHR placed more subjects in the better-performing experimental arm. While DBCD and

ERADE designs targeting Neyman and RSIHR allocations resulted in similar average number of subjects

assigned to the experimental arm, note that ERADE assigned patients to the experimental arm with less

variance, with a standard deviation of 2.19 and 2.84 across 10,000 simulated trials for Neyman and RSIHR

targets, respectively, compared with DBCD’s standard deviation for Neyman and RSIHR targets of 3.33 and

3.82, respectively.

To shape the individual desirability function for treatment group size imbalance, one might consider that

the experimental arm has a higher rate of success, so negative treatment group imbalances (nE − nC < 0)

ought to be penalized more steeply. Since the treatment group size imbalance values range from negative

to positive, and an imbalance of 0 is considered best, we will treat this component as a Nominal-the-Better

(NTB) variable with a target value of 0. The treatment imbalance values of (-35, -25, -15, -8, -3, 0, 8,

12, 15, 22, 30) are mapped to individual desirability scores of (0, 0.2, 0.4, 0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2,

0). This function is used to compute an individual desirability score for each value of treatment group size

imbalance yielded from each of 10,000 simulated trials. Table 4.2 summarizes the distribution of scores for

treatment group size imbalance. Figure 4.8 plots the individual desirability function for treatment group size

imbalance and other assessed design characteristics at the completion of examining all design components.

The distribution of scores varies greatly depending on the design. RBD.TBD and biased coin designs

BCD 2/3 and BCDII 2/3 never scores below 0.48. The other designs assessed do have treatment imbalance

more extreme than -35 or +30, resulting in minimum scores of 0. RBD.TBD and BCD 2/3 have median
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Individual Desirability Scores for Treatment Group Size Imbalance
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.000 0.486 0.700 0.683 0.867 1.000
RBD.TBD 0.680 0.900 1.000 0.954 1.000 1.000
BCD 2/3 0.486 0.867 0.950 0.942 1.000 1.000
BCDII 2/3 0.600 0.680 0.800 0.744 0.850 1.000
DBCD.Neyman 0.000 0.467 0.700 0.629 0.850 1.000
DBCD.RSIHR 0.000 0.257 0.467 0.474 0.700 1.000
ERADE.Neyman 0.000 0.600 0.700 0.669 0.800 1.000
ERADE.RSIHR 0.000 0.314 0.467 0.480 0.700 1.000

Table 4.2: Binary example: summary of individual desirability scores for treatment group size imbalance,
nE − nC under H1 : β1 = 1.253, for various designs, p = (0.7, 0.4) and n = 106.

scores of 1 and 0.95, respectively, which is unsurprising as they are forced balance designs. DBCD.RSIHR

and ERADE.RSIHR have the lowest median scores of 0.467, DBCD.RSIHR has the lowest mean score of

0.474. All designs assessed were able to have at least one simulated trial observe a treatment group size

imbalance of 0, which resulted in the individual desirability score of 1.

Accidental Bias

The accidental bias factor estimates over 10,000 simulated trials is shown for each of the evaluated designs.

Accidental Bias Factor Estimates
Min Mean Max

CRD 0.107 0.110 0.146
RBD.TBD 0.132 0.132 0.133
BCD 2/3 0.124 0.124 0.127
BCDII 2/3 1.178 1.188 1.191
DBCD.Neyman 0.110 0.113 0.684
DBCD.RSIHR 0.109 0.115 0.415
ERADE.Neyman 0.123 0.126 0.890
ERADE.RSIHR 0.115 0.120 0.361

Table 4.3: Binary example: accidental bias factor estimates under H1 : β1 = 1.253 over 10,000 simulated
trials, p = (0.7, 0.4) and n = 106.

The average accidental bias factor estimate ranges from 0.110 to 1.188. Recall that larger accidental bias

factor estimates indicate more substantial bias in the estimate of the treatment effect should other significant

confounders be excluded from the model. The amount of bias of the treatment effect estimate is the accidental

bias factor multiplied by the squared coefficient of the confounding variable (Section 4.1.2). Not surprisingly,

CRD yields the lowest minimum accidental bias factor estimate and the lowest average as well. BCDII 2/3

has an alarmingly high accidental bias factor average of 1.188. Even its lowest accidental bias factor estimate

across 10,000 simulated trials is approximately 10 times greater than that of the other designs. Neyman

allocations’ worst-case accidental bias factor estimates in the simulations are also substantially higher than

those of other designs at 0.684 and 0.890 for DBCD and ERADE designs, respectively.
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Looking at the distribution of accidental bias factor estimates, the individual desirability function is

constructed by mapping accidental bias factor estimate values of (1, 0.2, 0.13, 0.12, 0.11, 0.1) to individual

desirability scores (0, 0.2, 0.4, 0.6, 0.8, 1).

Individual Desirability Scores for Accidental Bias
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.354 0.797 0.828 0.810 0.847 0.853
RBD.TBD 0.392 0.394 0.394 0.394 0.394 0.394
BCD 2/3 0.457 0.520 0.520 0.520 0.522 0.522
BCDII 2/3 0.000 0.000 0.000 0.000 0.000 0.000
DBCD.Neyman 0.079 0.714 0.754 0.732 0.779 0.793
DBCD.RSIHR 0.146 0.654 0.740 0.704 0.779 0.818
ERADE.Neyman 0.028 0.473 0.493 0.485 0.509 0.537
ERADE.RSIHR 0.160 0.564 0.620 0.598 0.661 0.702

Table 4.4: Binary example: summary of individual desirability scores for accidental bias factor estimates
under H1 : β1 = 1.253 for various designs, p = (0.7, 0.4) and n = 106.

The individual desirability score function computes a distribution of individual desirability scores for

each of the accidental bias factor estimates across 10,000 simulated trials. Table 4.4 displays the summary

statistics of the resulting scores. The designs have a large range of scores for this component. For example,

CRD has the highest maximum individual desirability score of 0.853, and its median is not much lower at

0.810. However, note that RBD.TBD and BCD 2/3 have better worst-case scenarios for this component,

with minimum scores of 0.392 and 0.457, respectively, compared with CRD’s worst-case score of 0.354. The

spread of the distribution and varying performance depending on one’s preference for hedging against worst-

case scenarios or taking the average performance shows value in studying the entire distribution of estimates

rather than just the mean. The high accidental bias factor estimates greater than 1 for BCDII 2/3 result in

consistent individual desirability scores of 0. This means that any overall desirability function that gives any

positive weight to accidental bias will automatically give BCDII 2/3 an overall score of 0. Second to CRD,

DBCD targeting Neyman allocation performs well with an average score of 0.732 across all simulated trials.

Covariate Imbalance

Recall the three types of covariates discussed in Section 4.1.3: C1 is a standard normal variable, C2 repre-

sents a covariate that changes linearly over time, and C3 represents an autocorrelated variable. Table 4.5

displays the probabilities of covariate imbalance as estimated by the proportion of 10,000 simulated trials

having covariate imbalance exceeding 0.3 for these three covariate types under both the null and alternative

hypotheses. We can see that the probability of covariate imbalance for C1 (a standard normal random vari-

able) ranges from 0.122 to 0.131 under the null hypothesis. However, under the alternative, the probability

decreases for all designs evaluated; the non-adaptive designs are able to keep balance for C1. RAR designs see

an imbalance of C1 exceeding 0.3 around 10% of the time. C2 models a linear trend and is more likely to be
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Under H 0 Under H 1
C1 C2 C3 C1 C2 C3

CRD 0.122 0.311 0.281 0.000 0.311 0.281
RBD.TBD 0.124 0.142 0.275 0.000 0.000 0.000
BCD 2/3 0.125 0.160 0.255 0.000 0.160 0.255
BCDII 2/3 0.125 0.321 0.209 0.000 0.321 0.209
DBCD.Neyman 0.128 0.245 0.277 0.104 0.259 0.270
DBCD.RSIHR 0.123 0.279 0.265 0.108 0.263 0.276
ERADE.Neyman 0.131 0.174 0.241 0.094 0.199 0.243
ERADE.RSIHR 0.129 0.238 0.246 0.108 0.213 0.254

Table 4.5: Binary example: probability of covariate imbalance under H0 : β1 = 0 and H1 : β1 = 1.253 as
defined by |CE − CC | > 0.3, C ∈ {C1, C2, C3}, p = (0.7, 0.4) and n = 106.

imbalanced in CRD and BCDII 2/3 designs under the alternative C3 is an autocorrelated variable and does

poorly in most of the designs except for RBD.TBD. Note that RBD.TBD is able to keep covariate balance

for all three variable types under the alternative hypothesis. The probabilities (0.30, 0.25, 0.18, 0.15, 0.10,

0) are mapped to individual desirability scores (0, 0.2, 0.4, 0.6, 0.8, 1.0). Since covariate imbalance is more

of a concern when there seems to be a significant treatment effect, the individual desirability functions are

applied to probability of covariate imbalances under the alternative hypothesis. In this example, our degree

of penalization for probabilities of imbalance are consistent regardless of covariate type. In later examples

(Section 4.3.2, 4.3.3, 5.2), we demonstrate varying acceptance levels of probability of covariate imbalance for

covariates C1, C2, and C3. Table 4.6 shows the resulting individual desirabilities.

Individual desirability scores for imbalance of 3 covariates
C1 C2 C3

CRD 1.000 0.000 0.076
RBD.TBD 1.000 1.000 1.000
BCD 2/3 1.000 0.533 0.179
BCDII 2/3 1.000 0.000 0.316
DBCD.Neyman 0.784 0.165 0.120
DBCD.RSIHR 0.768 0.150 0.095
ERADE.Neyman 0.811 0.347 0.221
ERADE.RSIHR 0.766 0.304 0.184

Table 4.6: Binary example: individual desirability scores for probability of covariate imbalance under the
alternative hypothesis H1 : β1 = 1.253 for various designs evaluating p = (0.7, 0.4) and n = 106.

Since the probability of covariate imbalance is a proportion calculated from the number of simulated

trials, each design has only a single individual desirability score value for each of C1, C2, C3, rather than

a distribution of individual desirability scores. C1 performs best with our level of tolerance for covariate

imbalance, with desirability scores ranging from 0.766 of ERADE.RSIHR to 1.000 for the non-RAR designs.

CRD and BCDII 2/3 perform unacceptably with individual desirability scores of 0 with regards to C2, which

models a covariate with a linear trend. RBD.TBD performs the strongest with an individual desirability
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score of 1, which is not surprising due to the blocking nature of the design. Trailing far behind is the second

strongest design with respect to balancing C2: BCD 2/3 with an individual desirability score of 0.533. Note

CRD’s unacceptable score of 0 with regards to C2. RBD.TBD again performs best with C3 with a score of

1. The RAR designs perform poorly, on the other hand, with scores ranging from 0.095 to 0.221, but still

score better than CRD with a score of 0.076.

Selection Bias

Table 4.7 displays the selection bias for trials simulated under the alternative hypothesis. Under the null

hypothesis, selection bias is less of a concern since no significant treatment difference would render similar

probabilities of being assigned to either treatment group. Note that selection bias is always zero for CRD,

Selection Bias
Min Mean Max

CRD 0.00 0.00 0.00
RBD.TBD 6.50 14.68 22.00
BCD 2/3 10.17 13.24 17.33
BCDII 2/3 17.17 25.00 31.67
DBCD.Neyman 3.68 10.08 44.19
DBCD.RSIHR 3.85 9.02 30.48
ERADE.Neyman 23.79 26.41 43.43
ERADE.RSIHR 20.31 25.33 36.31

Table 4.7: Binary example: selection bias under H1 : β1 = 1.253 for various designs evaluating p = (0.7, 0.4)
and n = 106.

since the probability of being assigned to either treatment arm is always 1/2. On the other hand, Neyman

allocation targeted by DBCD and ERADE have very different performances in regards to selection bias:

ERADE is more predictable with a minimum selection bias across all simulated studies of 23.79, compared

to DBCD’s minimum selection bias of 3.68. RSIHR allocation is similar, with DBCD having lower selection

bias values. The larger selection bias of ERADE indicates more extreme probabilities of being assigned

to the experimental treatment. Ultimately, as seen in Table 4.1, DBCD and ERADE average the same

proportion of patients in the experimental arm, but ERADE’s standard deviation for patients assigned to

the experimental arm is less than that of DBCD, which confirms the selection bias shown here. The values

of (55, 40, 27, 15, 5, 0) are mapped to individual desirability scores of (0, 0.2, 0.4, 0.6, 0.8, 1). The individual

desirability function is used to calculate a distribution of individual desirability scores from the selection

bias values of the designs under evaluation under the alternative hypothesis across 10,000 simulated trials.

Table 4.8 summarizes the resulting individual desirability scores for selection bias.

CRD has the perfect individual desirability score of 1 for selection bias; other designs have a range

of scores from 0.144 to 0.860. While DBCD targeting Neyman allocation a high average score of 0.699,

it also has the most extreme worst-case individual desirability score of 0.144. ERADE targeting Neyman
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Individual Desirability Scores for Selection Bias
Min 25th Percentile Median Mean 75th Percentile Max

CRD 1.000 1.000 1.000 1.000 1.000 1.000
RBD.TBD 0.483 0.583 0.610 0.609 0.630 0.770
BCD 2/3 0.561 0.623 0.637 0.635 0.650 0.697
BCDII 2/3 0.328 0.411 0.433 0.434 0.456 0.564
DBCD.Neyman 0.144 0.664 0.706 0.699 0.741 0.853
DBCD.RSIHR 0.346 0.694 0.729 0.720 0.755 0.846
ERADE.Neyman 0.154 0.401 0.411 0.410 0.420 0.453
ERADE.RSIHR 0.257 0.415 0.427 0.428 0.440 0.512

Table 4.8: Binary example: individual desirability scores for selection bias under H1 : β1 = 1.253 for various
designs evaluating p = (0.7, 0.4) and n = 106.

allocation, being more predictable and having less variation for treatment assignment, has lowest best-case

scenario selection bias individual desirability scores of 0.453. From the density plots, ERADE design shows

lower selection bias scores than does DBCD, whether they target Neyman or RSIHR allocation and lower

variance of scores.

Expected Number of Failures

Table 4.9 displays the expected number of failures under the alternative hypothesis.

Expected Number of Failures
Min Mean Max

CRD 28.00 47.72 66.00
RBD.TBD 29.00 47.64 66.00
BCD 2/3 31.00 47.72 68.00
BCDII 2/3 29.00 47.76 66.00
DBCD.Neyman 25.00 46.15 63.00
DBCD.RSIHR 29.00 45.47 63.00
ERADE.Neyman 28.00 46.18 62.00
ERADE.RSIHR 27.00 45.49 65.00

Table 4.9: Binary example: expected number of failures under H1 : β1 = 1.253 for various designs evaluating
p = (0.7, 0.4) and n = 106.

The least number of failures witnessed amongst the designs evaluated across 10,000 simulated trials is 25

failures in DBCD targeting Neyman allocation. On average, RSIHR allocation, whose goal is to minimize

the number of failures, indeed has the lowest number of failures whether targeted by DBCD or ERADE,

with 45.47 and 45.49 failures for those designs, respectively. Meanwhile, BCDII 2/3 has the largest average

number of failures of 47.76. All non-adaptive designs evaluated have an average of about 47.7 failures. Note

then, that utilizing DBCD design targeting RSIHR allocation has on average 2.2 failures less than non-RAR

designs do. Since 25 is the minimum number of failures observed in the simulation, 25 is mapped to an

individual desirability score of 1. The number of failures (70, 58, 46, 37, 30, 25) is mapped to individual

desirability scores of (0, 0.2, 0.4, 0.6, 0.8, 1). Table 4.10 summarizes the resulting individual desirability
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scores.

Individual Desirability Scores for Expected Number of Failures
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.067 0.317 0.367 0.379 0.444 0.880
RBD.TBD 0.067 0.317 0.367 0.380 0.444 0.840
BCD p 0.033 0.317 0.367 0.378 0.444 0.771
BCD2 p 0.067 0.317 0.367 0.378 0.444 0.840
DBCD.Neyman 0.117 0.350 0.400 0.408 0.467 1.000
DBCD.RSIHR 0.117 0.350 0.422 0.421 0.489 0.840
ERADE.Neyman 0.133 0.350 0.400 0.407 0.467 0.880
ERADE.RSIHR 0.083 0.350 0.422 0.421 0.489 0.920

Table 4.10: Binary example: summary of individual desirability scores for expected number of failures under
H1 : β1 = 1.253 for various designs evaluating p = (0.7, 0.4) and n = 106.

We can see that individual desirability scores range from 0.033 as given by BCD 2/3 design, to 1, as given

by DBCD targeting Neyman allocation. On average, the designs evaluated yield individual desirability scores

ranging fro 0.327 to 0.421. While both DBCD and ERADE targeting RSIHR designs have the same median

and mean individual desirability scores of 0.42 and 0.421 respectively, ERADE proves to be more variable,

with lower worst-case individual desirability score of 0.083, compared to DBCD’s 0.117. Nonadaptive designs

perform similarly.

Bias

Table 4.11 exhibits the performance of the evaluated designs with respect to bias under the null hypothesis

H0 : β1 = 0.

Bias E(β̂1 − β1)
Min Mean Max

CRD -1.593 -0.003 1.668
RBD.TBD -1.564 0.001 1.407
BCD 2/3 -1.446 0.001 1.712
BCDII 2/3 -1.763 0.002 1.558
DBCD.Neyman -17.998 -0.012 1.908
DBCD.RSIHR -1.674 -0.004 18.332
ERADE.Neyman -17.733 -0.010 1.617
ERADE.RSIHR -1.851 0.006 17.926

Table 4.11: Binary example: bias E(β̂1−β1) for various designs under H0 : β1 = 0 with sample size n = 106.

The average bias E(β̂1 − β1) when the null hypothesis H0 : β1 = 0 is true ranges from -0.012 as seen in

DBCD design targeting Neyman, to 0.006 as seen in ERADE design targeting RSIHR. The lowest absolute

value average bias is 0.001, as seen in RBD.TBD and BCD 2/3. While Neyman allocation resulted in

believing the control treatment was better (bias more extreme than -17) in worst-case scenarios, RSIHR

allocation resulted in the opposite (bias more extreme than +17) in its worst-case scenarios. The lack of
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symmetry about the mean for DBCD and ERADE designs targeting Neyman and RSIHR allocations is

interesting, as well as the direction of the bias. The bias values of (-5, -2, -0.25, -0.05, -0.01, 0, 0.01, 0.05,

0.25, 1, 5) are mapped to individual desirability scores of (0, 0.2, 0.4, 0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2, 0). Table

4.12 summarizes the resulting individual desirability scores.

Individual Desirability Scores for Bias
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.167 0.343 0.395 0.437 0.521 1.000
RBD.TBD 0.172 0.343 0.399 0.448 0.509 1.000
BCD 2/3 0.164 0.342 0.395 0.444 0.509 1.000
BCDII 2/3 0.162 0.342 0.395 0.436 0.523 1.000
DBCD.Neyman 0.000 0.342 0.392 0.433 0.519 1.000
DBCD.RSIHR 0.000 0.340 0.393 0.437 0.521 1.000
ERADE.Neyman 0.000 0.343 0.391 0.433 0.521 1.000
ERADE.RSIHR 0.000 0.342 0.393 0.444 0.516 1.000

Table 4.12: Binary example: individual desirability scores for bias E(β̂1 − β1) under H0 : β1 = 0 for various
designs evaluating p = (0.7, 0.4) and n = 106.

Table 4.12 shows that the distributions of individual desirability scores for bias under the null hypoth-

esis are similar. The extreme bias values provided by DBCD and ERADE targeting Neyman and RSIHR

allocation yielded minimum individual desirability scores for bias of 0. On average, Neyman allocation -

targeted by either DBCD or ERADE - had the lowest individual desirability scores for bias of 0.433, slightly

lower than the average score of CRD. On the other hand, although RSIHR resulted in occasional individual

desirability scores of 0 with regards to bias, the allocation which seeks to minimize treatment failures also

averaged equal - when targeted by DBCD - or higher - when targeted by ERADE - individual desirability

scores for bias than did CRD. Specifically, DBCD.RSIHR and CRD both averaged a desirability score of

0.437 for bias, and ERADE.RSIHR averaged an individual desirability score of 0.444 for bias. RBD.TBD

yielded the highest individual desirability score of 0.448 for bias on average, and did best for worst-case

scenarios with a score of 0.172. For all designs, we see the median score is less than the mean score.

Relative Bias

Table 4.13 reports the relative bias of the designs evaluated. Recall that relative bias in this work is defined

as E( β̂1−β1

β1
)× 100 under the alternative hypothesis.

Table 4.13 shows that on average, the model overestimates the probability of success in the experimental

arm, as can be seen by the positive relative bias. The ideal value for relative bias is zero. The true value

of β1 under the alternative hypothesis is log(3.5) = 1.253. Any β1 > 0 believes that pE > pC = 0.4, so

relative bias less than -100 indicates the model believes the control arm has a higher probability of success,

which is certainly untrue under the alternative. The strongest performer amongst designs evaluated with

respect to average relative bias across 10,000 simulated trials is BCDII 2/3, with an average relative bias of
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Relative Bias E( β̂1−β1

β1
)× 100

Min Mean Max
CRD -116.66 2.23 135.43
RBD.TBD -112.27 2.42 151.95
BCD 2/3 -117.58 2.25 143.11
BCDII 2/3 -122.96 2.10 143.63
DBCD.Neyman -205.96 2.96 149.65
DBCD.RSIHR -106.66 3.20 1484.96
ERADE.Neyman -1432.54 2.83 223.05
ERADE.RSIHR -123.85 3.27 186.99

Table 4.13: Binary example: relative bias E( β̂1−β1

β1
)×100 under H1 : β1 = 1.253 for various designs evaluating

p = (0.7, 0.4), β = (β0, β1) = (−0.405, 1.253) and n = 106.

2.10. The weakest performer with respect to average relative bias is ERADE targeting RSIHR allocation,

with an average relative bias of 3.27. DBCD targeting RSIHR allocation has extreme values of maximum

relative bias of 1484.96 observed in 10,000 simulated trials. On the other hand, Neyman allocation targeted

by DBCD and ERADE has extreme minimum relative bias observed of -205.96 and -1432.54, respectively.

The strong designs in regards to relative bias when only evaluating min, mean, and max are BCDII 2/3,

CRD, BCD 2/3, and Neyman allocation targeted by DBCD. RSIHR allocation targeted by ERADE is a

moderate performer, with reasonable min and max of -123.85 and 186.99, respectively, but a relatively high

average relative bias of 3.27.

Recall that relative bias less than -100 indicates a belief that the control arm has a higher probability

of success, which is known to be untrue. Given this, values below -100 ought to be penalized more heavily.

Given this reasoning, we allocate an individual desirability score of 0 when relative bias is less than or equal

to the value of -101. Positive relative bias reflects an overestimation of success in the experimental arm, but

at least results in a higher probability of correctly rejecting the null hypothesis, and thus should be penalized

less. A relative bias of 125 believes that the probability of success in the experimental arm is greater than

0.9, and shall be our maximum acceptable value for positive relative bias. We assign relative bias values of

(-101, -75, -50, -25, -10, 0, 10, 25, 55, 90, 125) to individual desirability scores (0, 0.2, 0.4, 0.6, 0.8, 1, 0.8,

0.6, 0.4, 0.2, 0). Table 4.14 summarizes the individual desirability scores calculated from the mapping for

relative bias.

The distributions of individual desirability scores are similar. The highest 25th percentile individual

desirability score for relative bias is 0.497 of CRD, BCDII 2/3, and ERADE.Neyman. On average, BCD 2/3

performs the strongest for this component with an average individual desirability score of 0.641. Other strong

performers include RBD.TBD and CRD, with relatively high mean scores of 0.639, 0.638 respectively, and

relative high median scores of 0.630 and 0.637 respectively. Meanwhile, Neyman allocation targeted by DBCD
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Individual Desirability Scores for Relative Bias
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.000 0.497 0.637 0.638 0.785 1.000
RBD.TBD 0.000 0.493 0.630 0.639 0.781 1.000
BCD 2/3 0.000 0.493 0.643 0.641 0.781 1.000
BCDII(2/3) 0.000 0.497 0.644 0.640 0.786 1.000
DBCD.Neyman 0.000 0.494 0.622 0.632 0.786 1.000
DBCD.RSIHR 0.000 0.493 0.628 0.634 0.789 0.998
ERADE.Neyman 0.000 0.497 0.630 0.635 0.789 0.997
ERADE.RSIHR 0.000 0.492 0.633 0.635 0.796 0.997

Table 4.14: Binary example: summary of individual desirability scores for relative bias E( β̂1−β1

β1
)×100 under

H1 : β1 = 1.253 for various designs evaluating p = (0.7, 0.4), β = (β0, β1) = (−0.405, 1.253) and n = 106.

performs the weakest on average with an average individual desirability score of 0.632. ERADE.RSIHR has

the highest 75th percentile individual desirability score of 0.796, yet never achieves the ideal relative bias of

0 which would have given it an individual desirability score of 1 for this design component.

Type I Error and Power

Table 4.15 displays the performance of the evaluated designs with respect to Type I error and power as

calculated as the empirical rejection proportion of the null hypothesis H0 : β1 = 0 under the null and

alternative hypotheses, respectively. Because Type I error and power calculates the proportion of rejected

null hypotheses across 10,000 simulations, it takes on a single value rather than a distribution of values,

so each design will only receive a single individual desirability score for these design components. We see

Type I Error Power
CRD 0.0508 0.8778
RBD.TBD 0.0486 0.8747
BCD 2/3 0.0496 0.8738
BCDII(2/3) 0.0494 0.8783
DBCD.Neyman 0.0540 0.8761
DBCD.RSIHR 0.0513 0.8791
ERADE.Neyman 0.0518 0.8809
ERADE.RSIHR 0.0524 0.8862

Table 4.15: Binary example: Type I error and power for various designs evaluating p = (0.7, 0.4), β =
(β0, β1) = (−0.405, 1.253), with a sample size of n = 106.

that with a sample size of n = 106, Type I error varies from 0.0486 to 0.0540, and power varies from

0.8738 to 0.8862. While ERADE.Neyman and ERADE.RSIHR have the highest power of 0.8809 and 0.8862,

respectively, their Type I errors of 0.0518 and 0.0524 are also not controlled as well as those of other designs.

Note that Menon’s original evaluation of this scenario included n = 120 for 92% power, and did not report

empirical Type I error as the null scenario was not simulated in that evaluation [61]. RBDTBD, BCD 2/3,

and BCDII(2/3) are the three designs able to control Type I error below the nominal α = 0.05 level.
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DBCD was expected to have power below 90% due to variability of the estimate target allocation proportion

ρ(θ̂j)target, and it is not surprising that ERADE’s power is higher than that of DBCD due to lower variability

of ρ(θ̂j)target (see Sections 1.2.2 and 1.2.3).

The Type I error values of (0.06, 0.0575, 0.0555, 0.0525, 0.05, 0.025) and power values of (0.79, 0.82,

0.84, 0.86, 0.88, 0.90) are given individual desirability scores of(0, 0.2, 0.4, 0.6, 0.8, 1). Table 4.16 exhibits

the resulting individual desirability scores.

Individual Desirability Scores
Type I error Power

CRD 0.736 0.778
RBD.TBD 0.811 0.747
BCD 2/3 0.803 0.738
BCDII(2/3) 0.805 0.783
DBCD.Neyman 0.500 0.761
DBCD.RSIHR 0.696 0.791
ERADE.Neyman 0.656 0.809
ERADE.RSIHR 0.608 0.862

Table 4.16: Binary example: individual desirability scores for Type I error and power calculated from 10,000
simulated studies for various designs evaluating p = (0.7, 0.4), β = (β0, β1) = (−0.405, 1.253) and n = 106.

Individual desirability scores for Type I error range from 0.5 for DBCD.Neyman to 0.811 for RBD.TBD.

Power scores range from 0.738 for BCD 2/3 to 0.862 for RSIHR allocation targeted by ERADE design. Note

that none of the power individual desirability scores are 1, since none of the designs yielded a power of 90%.

Overall Desirability Score

So far we have studied the performance of eight different clinical trial designs, each in 10,000 simulated

trials. Their results with regards to 11 different design characteristics have shown that some designs are

stronger with regards to some characteristics, yet weaker in others, making it no easy task to select a single

best design. Now we combine the individual desirability scores to assess the overall performance of each

of these designs. The distribution of individual desirability scores was used to calculate a distribution of

overall desirability scores. Table 4.17 displays the summary statistics of the overall desirability score D for

each of the designs evaluated. Table 4.18 displays the mean individual desirability score for each component

assessed and the weights used to calculate the overall desirability scores.

Immediately it is noted that BCDII(2/3) is eliminated from consideration, as its overall desirability score

is zero across all 10,000 simulated iterations. RBD.TBD has the highest mean overall desirability score D

of 0.639, and the highest median overall D of 0.635. Excluding BCDII(2/3), the weakest performer was

ERADE.Neyman, with the lowest average D of 0.544. Although DBCD.RSIHR on average scored higher

with a mean overall desirability score of 0.588, it also had a higher probability of 0.038 of scoring 0, compared

to ERADE.RSIHR’s 0.003.
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Figure 4.8: Binary example: individual desirability functions.
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Overall Desirability Score D
min q 25 mean median q 75 max Prob(overall D = 0)

CRD 0.000 0.607 0.631 0.625 0.653 0.721 0.004
RBD.TBD 0.000 0.617 0.639 0.635 0.658 0.736 0.001
BCD 2/3 0.000 0.584 0.604 0.601 0.623 0.694 0.001
BCDII(2/3) 0.000 0.000 0.000 0.000 0.000 0.000 1.000
DBCD.Neyman 0.000 0.553 0.576 0.570 0.596 0.672 0.004
DBCD.RSIHR 0.000 0.559 0.588 0.563 0.612 0.705 0.038
ERADE.Neyman 0.000 0.544 0.566 0.560 0.585 0.648 0.003
ERADE.RSIHR 0.000 0.551 0.578 0.564 0.599 0.681 0.014

Table 4.17: Binary example: summary statistics for overall desirability scores of various designs evaluating
p = (0.7, 0.4) and n = 106.

Table 4.18 recapitulates the means of individual desirability scores for the 11 design components consid-

ered, the average overall desirability over 10,000 simulated trials, and the proportion of trials which resulted

in an overall desirability of 0. This summary allows us to pinpoint the strengths and weaknesses of each

design; nonadaptive designs did well to keep covariate C1 balanced (a standard normal covariate), and also

did better controlling Type I error. Although power was weighted more importantly in calculation of the

overall score, the weights of covariate imbalance for C1, relative bias, and Type I error were also important,

components for which RBD.TBD were strong. We can see that the weakness of the RAR designs is balancing

covariate C2, which modeled a linear time trend within the subject covariates (not the response), however

since we gave this a weight of 0 in this example. The RAR designs also did not do as well in controlling

Type I error relative to RBD.TBD. ERADE.RSIHR performed best for bias under the null hypothesis, but

the relatively lower weight attributed to the bias component led to a lower overall score.

Overall, Random Block Design with blocks filled by Truncated Binomial Design is the strongest design in

this example, given the scale and weight parameters selected. This design yielded the highest mean overall

desirability score of 0.639, and has the lowest probability of 0.001 of having a desirability score of 0. It is

recommended that trialists test the sensitivity of their weight specifications: for example, changing weight

preferences so that expected number of failures has a larger emphasis, with final weights being (0.030, 0.178,

0.119, 0, 0.015, 0, 0.180, 0.060, 0.119, 0.119, 0.179) for the components in the order shown in Table 4.18,

resulted in a stronger score provided by complete randomized design.
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CRD RBD.TBD BCD 2/3 BCDII(2/3) DBCD.Neyman DBCD.RSIHR ERADE.Neyman ERADE.RSIHR weight

Treatment Group Size Imbalance 0.683 0.954 0.942 0.744 0.629 0.474 0.669 0.480 0.030

Expected No. of Failures 0.379 0.380 0.378 0.378 0.408 0.421 0.407 0.421 0.061

Covariate Imbalance

C1 (N(0,1)) 1.000 1.000 1.000 1.000 0.784 0.768 0.811 0.766 0.121

C2 (linear time trend) 0.000 1.000 0.533 0.000 0.165 0.150 0.347 0.304 0.000

C3 (autocorrelated) 0.076 1.000 0.179 0.316 0.120 0.095 0.221 0.184 0.061

Selection Bias 1.000 0.609 0.635 0.434 0.699 0.720 0.410 0.428 0.061

Accidental Bias 0.810 0.394 0.520 0.000 0.732 0.704 0.485 0.598 0.182

Bias 0.437 0.448 0.444 0.436 0.433 0.437 0.433 0.444 0.061

Relative Bias 0.638 0.639 0.641 0.640 0.632 0.634 0.635 0.635 0.121

Type I Error 0.736 0.811 0.803 0.805 0.500 0.696 0.656 0.608 0.121

Power 0.778 0.747 0.738 0.783 0.761 0.791 0.809 0.862 0.182

Overall Desirability D (mean) 0.631 0.639 0.604 0.000 0.576 0.588 0.566 0.578

Prob(Overall Desirability D = 0) 0.004 0.001 0.001 1.000 0.004 0.038 0.003 0.014

Table 4.18: Binary example: Mean individual desirability scores for 11 design components considered, mean overall Desirability score D, and
Probability(D = 0).



4.3.2 Application 2: Clinical Trial Assessing Methotrexate Vs. Placebo in Early

Diffuse Scleroderma

In a clinical trial of Methotrexate versus placebo in early diffuse scleroderma patients [68], the primary

outcome of interest is total Rodnan skin score measured at twelve months after baseline, with lower values

of skin score indicating improvement in the patient. The null hypothesis is that there is no treatment

effect, with the expected response in both treatment arms to be 27.5. The alternative hypothesis expects a

treatment effect of -6 (H1 : β1 = −6)for the Methotrexate treatment arm, hereby called experimental arm

E. Thus, the alternative hypothesis expects the mean response in the placebo group C to be 27.5, and in the

Methotrexate group E to be 21.5. Previous literature has indicated higher variance in the treatment group,

so σ2
A = 219, and σ2

B = 144. The total sample size to maintain Type I error at the alpha = 0.05 level and

power at 80% is n = 165 patients.

Subject recruitment is modeled with varying Poisson rates, with the rampup, steady, and slow periods

taking 15%, 60%, and 25% of total recruitment time, respectively, and enrolling 2%n, 7%n, and 2.5%n a

month, respectively. It is expected that the average level of health of enrolling subjects will be improving

over time, and thus the expected outcome is expected to be 1 unit lower at the end of the recruitment period

(t = 20 months) relative to the start of the recruitment period, and that this difference is independent of

the treatment group. This means that λ = −0.03125, since the last patient recruited in month 20 will have

their measurement taken at 32 months (32×−0.03125 = −1).

Complete Randomized Design (CRD), Random Block Design Filled with Random Allocation Rule (RBD.RAR)

and a maximum block size of 12, PBD with block size of 8 (PBD), Neyman allocation targeted with ERADE

design (ERADE.Neyman), and RSIHR allocation targeted with ERADE design (ERADE.RSIHR) are con-

sidered. For each design under consideration, 10,000 trials are simulated. The overall performance of these

designs with respect to 15 design characteristics are summarized in this section.

Treatment Group Characteristics

Table 4.19 displays a summary of treatment group characteristics. With a total sample size of n = 165, it is

Patients in
E (mean)

Patients in
E (sd)

Proportion
in E

CRD 82.481 6.446 0.500
RBD.RAR 82.499 0.650 0.500
PBD 82.475 0.954 0.500
ERADE.Neyman 88.774 4.403 0.538
ERADE.RSIHR 93.531 4.506 0.567

Table 4.19: Methotrexate trial: treatment group characteristics under H1 : β1 = −6 over 10,000 simulated
trials, θT = (27.5,−6) and n = 165.
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not surprising that CRD, RBD.RAR, and PBD all end with similar treatment arm sizes, with approximately

half of the patients (nA = 82.5) in each of the two arms. The average number of subjects placed in the

methotrexate experimental arm begins at 82 subjects (50%) in the CRD design, up to 94 subjects (57%) in

the RSIHR allocation targeted by ERADE. The forced balance designs RBD.RAR and PBD, as expected,

have lower standard deviations of 0.650 and 0.954, respectively, for patients placed in the experimental arm.

The variability of subjects placed in the experimental arm when using RAR designs ERADE.Neyman and

ERADE.RSIHR is lower than that of CRD, with standard deviations of 4.403 and 4.506 versus CRD’s 6.446.

Recall from Section 1.2.3 that the variance of the target allocation within a design influences its power, with

larger variances resulting in losses in power.

Treatment Group Size Imbalance

The treatment group size imbalance characteristics of each design are displayed in 4.20. CRD, RBD.RAR,

and PBD on average are balanced designs, whilst ERADE.Neyman on average places 13 more subjects, and

ERADE.RSIHR on average places 22 more subjects in the methotrexate experimental arm. CRD can place

as many as 45 more subjects in the placebo arm than in the experimental arm, more than any other design

assessed. Forced balance designs RBD.RAR and PBD both place at most 5 subjects more in either arm.

RAR designs ERADE.Neyman and ERADE.RSIHR place at most 19 and 13 more subjects, respectively, in

the placebo arm, and at most 53 and 59 more subjects, respectively, in the methotrexate experimental arm.

Treatment Group Size Imbalance nE − nC
Min Median Mean Max

CRD -45 -1 -0 51
RBD.RAR -5 1 -0 5
PBD -5 -1 -0 5
ERADE.Neyman -19 13 13 53
ERADE.RSIHR -13 21 22 59

Table 4.20: Methotrexate trial: summary statistics for treatment group size imbalance, nE − nC , under
H1 : β1 = −6 for designs evaluating θT = (27.5,−6) and n = 165.

Although treatment group size balance is typically desired, we can reflect our preference in placing

more subjects in the experimental Methotrexate arm by having a small yet positive imbalance mapped to an

individual desirability score of 1. Given the small average imbalances in the five designs assessed, a placement

of 3 more subjects in the experimental Methotrexate arm than in the control placebo arm will be given an

individual desirability score of 1. Deviations away from this value in either direction are given scores less than

1, and thus treatment group size imbalance is considered a nominal-the-better (NTB) design component.

Perfect balance as depicted by an imbalance of 0 is also desirable and given a score of 0.8. The remaining

individual desirability function is shaped by percentile information. Designs placing more subjects in the

placebo arm than in the Methotrexate arm should be penalized more for higher magnitudes of imbalance if
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the treatment is effective. The (1/7*2, 1/7*3, ..., 1/7*7)th percentiles are mapped to individual desirability

scores of 0.8, 0.6, 0.4, 0.2, and 0, respectively. Ultimately, the NTB individual desirability function maps

values (0, 0.2, 0.4, 0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2, 0) to values (-46, -25, -7, -3, 0, 3, 7, 13, 19, 25, 60). Table 4.21

summarizes the resulting individual desirability score distributions from 10,000 simulated trials. RBD.RAR

Individual Desirability Scores for Treatment Group Size Imbalance
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.010 0.356 0.533 0.559 0.733 1.000
RBD.RAR 0.500 0.733 0.867 0.800 0.867 1.000
PBD 0.500 0.733 0.733 0.795 0.867 1.000
ERADE.Neyman 0.040 0.400 0.600 0.582 0.733 1.000
ERADE.RSIHR 0.006 0.189 0.333 0.359 0.467 1.000

Table 4.21: Methotrexate trial: summary statistics for individual desirability scores for treatment group size
imbalance nE − nC under H1 : β1 = −6 for various designs, θT = (27.5,−6) and n = 165.

and PBD have the best overall performance with respect to treatment group size imbalance, always having an

individual desirability score of at least 0.50. It is noted that CRD and ERADE.RSIHR have similar minimum

individual desirability scores, however CRD’s performance for this component is generally stronger than that

of ERADE.RSIHR, with a mean score of 0.559 compared to ERADE.RSIHR’s mean score of 0.359, the lowest

of all the considered designs. ERADE.Neyman and CRD have similar distributions, with 25th percentiles

at 0.356 and 0.400, 50th percentiles at 0.533 and 0.600, means of 0.559 and 0.582, 75th percentiles both at

0.733, and maximum scores both at 1, respectively.

Accidental Bias

Table 4.22 shows Accidental Bias Factor estimates as discussed in Section 4.1.2. The expected bias on the

treatment effect is the accidental bias factor estimate × the square of the coefficient of the omitted covariate.

It can be seen that CRD, RBD.RAR, and PBD have lower accidental bias factor estimates than those of

RAR designs ERADE.Neyman and ERADE.RSIHR. This is not a surprise since the accidental bias factor

is inversely proportional to treatment group size imbalance. This results in RBD.RAR and PBD having a

uniform distribution of accidental bias factor estimates of 0.053 and 0.049, respectively, since their range

of treatment group size imbalance is very small. Neyman allocation as targeted by the ERADE design has

average accidental bias factor of 0.059, ranging from 0.058 to 0.072, and RSIHR allocation has the slightly

larger range of accidental bias factor ranging from 0.057 to 0.075.

The individual desirability function for accidental bias is shaped by the distribution of observed accidental

bias factor estimates in the simulation results. Specifically, the (1/5*5, 1/5*4, 1/5*3, 1/5*2, 1/5*1, 1/5*0)th

percentiles drive the decision to map values of (0.076, 0.059, 0.067, 0.053, 0.049, 0.045) to scores of (0, 0.2,

0.4, 0.6, 0.8, 1).

Table 4.23 provides the summary statistics for the individual desirability scores of accidental bias, where
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Accidental Bias Factor Estimates
Min Mean Max

CRD 0.046 0.047 0.057
RBD.RAR 0.053 0.053 0.053
PBD 0.049 0.049 0.049
ERADE.Neyman 0.058 0.059 0.072
ERADE.RSIHR 0.057 0.059 0.075

Table 4.22: Methotrexate trial: accidental bias factor estimate under H1 : β1 = −6 over 10,000 simulated
trials, θT = (27.5,−6) and n = 165.

Individual Desirability Scores for Accidental Bias
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.405 0.906 0.932 0.916 0.942 0.947
RBD.RAR 0.595 0.600 0.600 0.600 0.600 0.600
PBD 0.796 0.799 0.800 0.800 0.800 0.800
ERADE.Neyman 0.039 0.190 0.200 0.214 0.245 0.262
ERADE.RSIHR 0.012 0.189 0.228 0.239 0.285 0.390

Table 4.23: Methotrexate trial: summary statistics for individual desirability scores for accidental bias factor
estimates, θT = (27.5,−6) and n = 165.

the strength of CRD is shown with highest mean score of 0.916 and highest max score of 0.947. CRD’s

worse-case scenario for this component yields an individual desirability score of 0.405, a score lower than

the minimum scores of RBD.RAR and PBD of 0.595 and 0.796, respectively. ERADE.Neyman and ER-

ADE.RSIHR scores for accidental bias range from 0.039-0.262 and 0.012-0.390, respectively, revealing larger

impacts on the bias of the treatment effect estimate in the presence of unobserved covariates compared to non

RAR designs. Between the two RAR designs, ERADE.RSIHR performs better with respect to accidental

bias than does ERADE.Neyman.

Covariate Imbalance

Covariate imbalance is assessed for the three covariates described in Section 4.1.3. The probability of covariate

imbalance is defined as P (|Z̄A − Z̄B | > ε. In this simulation, ε = 0.3. Table 4.24 shows the probabilities

estimated across 10,000 iterations.

Under H 0 Under H 1
C1 C2 C3 C1 C2 C3

CRD 0.051 0.214 0.175 0.000 0.214 0.175
RBD.RAR 0.055 0.058 0.141 0.000 0.000 0.000
PBD 0.052 0.067 0.158 0.000 0.067 0.158
ERADE.Neyman 0.054 0.144 0.159 0.051 0.151 0.160
ERADE.RSIHR 0.056 0.153 0.155 0.049 0.158 0.168

Table 4.24: Methotrexate trial: probability of covariate imbalance, as defined by |CE − CC | > 0.3, C ∈
{C1, C2, C3} under H0 : β1 = 0 and H1 : β1 = −6 for various designs evaluating θT = (27.5,−6) and
n = 165.
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It can be seen that the probability of covariate imbalance exceeding 0.3 for C1 under the null hypothesis

is about the same for the five designs evaluated, ranging from 0.051 to 0.056. However, under the alternative

hypothesis, it can be seen that C1 is able to maintain balance when CRD, RBD.RAR, and PBD are utilized.

Notice that RBD.RAR and PBD are designs that force balance between two treatment group sizes, and CRD

tends towards balance as total sample size n increases. The probability of C1 differing by more than 0.3

between treatment groups are larger for the RAR designs ERADE.Neyman and ERADE.RSIHR, at 0.051

and 0.049, respectively.

C2 models a N(0,1) random variable plus a shift that increases with time. It can be seen that forced

balance procedures RBD.RAR and PBD perform better with respect to balance of this covariate, with

probability of imbalance not exceeding 0.07 under either the null or alternative hypothesis. On the other

hand, CRD, ERADE.Neyman, and ERADE.RSIHR, which do not guarantee treatment group size balance,

are prone to higher probabilities of covariate imbalance for covariates like C2. For example, ERADE.RSIHR

has the largest probability of imbalance of 0.158 under the alternative hypothesis. This is consistent with

expectations: if a time trend is present in a covariate, ensuring that the two treatment group sizes are about

the same at several points throughout a trial will lead to more alike values of covariate C2, whereas trials that

are prone to consecutive assignment of subjects to the same treatment arm are at higher risk for imbalance

of a covariate subject to a time trend.

C3 models an autocorrelated variable, meaning that values of the covariate depend on previous responses.

The performance of the evaluated designs with regards to C3 is similar to that of C2, with the exception of

the Permuted Block Design, which had a much higher probability of imbalance of 16% under both null and

alternative hypotheses.

For covariate C1, the (1/4*4, 1/4*3, 1/4*2, 1/4*1, 1/4*1/2)th percentiles of positive probabilities are

mapped to individual desirability scores of (0, 0.2, 0.4, 0.6, 0.8), and zero probability of imbalance is mapped

to an individual desirability score of 1. This equates to the probabilities of (0.170, 0.163, 0.159, 0.127, 0.063,

0) being mapped to scores of (0, 0.2, 0.4, 0.6, 0.8, 1). For covariate C2 and C3, quintiles map values of

(0.216, 0.170, 0.154, 0.117, 0.053, 0) and (0.176, 0.169, 0.163, 0.159, 0.127, 0), respectively, to scores of (0,

0.2, 0.4, 0.6, 0.8, 1). Table 4.25 displays the resulting individual desirability scores.

RBD.RAR always shows strong performance in the assessed covariate types, with a score of 1 for all

three covariates. While CRD is strong in balancing C1 type covariates, we can see it performs more poorly

for covariates C2 and C3, with scores of 0.004 and 0.031, respectively, relative to RAR designs. For example,

ERADE.Neyman has individual desirability scores of 0.416 and 0.568 for C2 and C3, respectively. While this

is more desirable than scores of ERADE.RSIHR, note that if we incorporate C1, ERADE.Neyman overall has

a better performance than ERADE.RSIHR, since ERADE.Neyman’s scores for C2 and C3 are slightly lower
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Individual desirability scores for imbalance of 3 covariates
C1 C2 C3

CRD 1.000 0.004 0.031
RBD.RAR 1.000 1.000 1.000
PBD 1.000 0.758 0.606
ERADE.Neyman 0.136 0.416 0.568
ERADE.RSIHR 0.800 0.343 0.245

Table 4.25: Methotrexate trial: individual desirability scores for probability of covariate imbalance under
H1 : β1 = −6 for various designs evaluating θT = (27.5,−6) and n = 165.

than those of ERADE.RSIHR, but ERADE.Neyman’s score for C1 is significantly lower at 0.136 compared

to ERADE.RSIHR’s 0.800.

Selection Bias

Table 4.26 shows the performance of the designs evaluated with respect to selection bias. As is expected,

selection bias of CRD is 0, since the probability of being assigned to the treatment arm is always 1/2.

RBD.RAR has higher selection bias in this scenario since block sizes up to size twelve are allowed, and

smaller block sizes yield higher proportion of correct guesses should the block size be known. In reality, the

probability of knowing the block size should be very small, since the block size is dynamic and randomly

selected. Note that RBD.RAR’s ability to have block sizes smaller than PBD’s block size of 8 was not

sufficient enough to bring down its minimum selection bias of 20.36 below PBD’s minimum selection bias of

12.94. ERADE.Neyman and ERADE.RSIHR share similar selection bias values in this case, ranging from

38.30 to 51.18 and 37.86 to 50.15, respectively.

Selection Bias
Min Mean Max

CRD 0.00 0.00 0.00
RBD.RAR 20.36 27.36 36.62
PBD 12.94 20.70 33.65
ERADE.Neyman 38.30 41.52 51.18
ERADE.RSIHR 37.86 41.55 50.15

Table 4.26: Methotrexate trial: selection bias for various designs under H1 : β1 = −6 evaluating θT =
(27.5,−6) and n = 165.

The individual desirability function for selection bias was shaped based off of the (1/5*5, 1/5*4, 1/5*3,

1/5*2, 1/5*1, 1/5*0)th percentiles of selection bias values in the simulated trials, resulting in the values

(51.2, 41.4, 37.1, 24.2, 10.4, 0) being mapped to (0, 0.2, 0.4, 0.6, 0.8, 1). Table 4.27 summarizes the resulting

individual desirability score distributions for selection bias. CRD has a uniform distribution of individual

desirability scores for selection bias at the perfect value of 1, since each subject is always randomized

to either arm with equal probabilities. Interestingly, RBD.RAR with maximum block size of 12 has a

distribution of scores consistently lower than those of PBD with block size of 8. The 25th ot 75th percentile
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Individual Desirability Scores for Selection Bias
Min 25th Percentile Median Mean 75th Percentile Max

CRD 1.000 1.000 1.000 1.000 1.000 1.000
RBD.RAR 0.408 0.529 0.553 0.552 0.575 0.656
PBD 0.454 0.629 0.653 0.651 0.675 0.763
ERADE.Neyman 0.000 0.186 0.201 0.206 0.228 0.344
ERADE.RSIHR 0.021 0.185 0.200 0.205 0.227 0.365

Table 4.27: Methotrexate trial: summary statistics for individual desirability scores for selection bias under
H1 : β1 = −6 for various designs evaluating θT = (27.5,−6) and n = 165.

of ERADE.Neyman and ERADE.RSIHR are very similar from 0.19 to 0.23, but ERADE.RSIHR’s minimum

and maximum scores of 0.021 and 0.365 are slightly higher than those of ERADE.Neyman’s of 0.000 and

0.344, respectively.

Expected Number of Failures

Recall that in the Methotrexate case study, we classify a subject with an outcome of skin score exceeding 31

as having failed. Table 4.28 shows a summary of the number of failures witnessed in the 10,000 simulated

trials of each design.

Expected Number of Failures
Min Mean Max

CRD 31.00 50.33 71.00
RBD.RAR 30.00 50.35 78.00
PBD 30.00 50.31 72.00
ERADE.Neyman 32.00 49.57 70.00
ERADE.RSIHR 29.00 48.98 73.00

Table 4.28: Methotrexate trial: expected number of failures under the alternative hypothesis for various
designs evaluating θT = (27.5,−6) and n = 165.

A first comparison of interest notes that ERADE.RSIHR successfully has the lowest average number of

failures of 48.98, compared to CRD’s average of 50.33. The minimum number of failures is also lowest for

ERADE.RSIHR, at 29 failures, compared with CRD’s minimum of 31 failures. However, ERADE.RSIHR

can potentially yield more failures ( 73) than all designs assessed, with the exception of RBD.RAR which

saw a maximum number of failures of 78.

Percentile statistics again help shape the individual desirability function. The individual desirability

function for expected number of failures maps the values of (78, 56, 52, 50, 47, 44) to individual desirability

scores of (0, 0.2 0.4, 0.6, 0.8, 1). Note that 78 failures equates to 47% of the total subjects in the trial failing,

and 44 failures equates to 27% of the total subjects in the trail failing. 16.5% of the simulated trials had

less than 44 failures; these trials would then receive a score of 1 for this component. Table 4.29 summarizes

the distribution of individual desirability scores for expected number of failures.

RBD.RAR has the lowest minimum score of 0, meaning at least one of its simulated trials yielded more
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Individual Desirability Scores for Expected Number of Failures
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.064 0.300 0.600 0.570 0.867 1.000
RBD.RAR 0.000 0.300 0.600 0.569 0.867 1.000
PBD 0.055 0.300 0.600 0.570 0.867 1.000
ERADE.Neyman 0.073 0.350 0.600 0.606 0.867 1.000
ERADE.RSIHR 0.045 0.350 0.667 0.636 0.933 1.000

Table 4.29: Methotrexate trial: summary statistics for individual desirability scores for expected number of
failures under H1 : β1 = −6 for various designs evaluating θT = (27.5,−6) and n = 165.

than 78 failures. PBD and CRD follow next with low minimum scores of 0.055 and 0.064, respectively.

ERADE.RSIHR has a minimum score of 0.045. ERADE.Neyman’s worst performance in terms of number

of failures yielded a score of 0.073. On average, we can see ERADE.RSIHR differentiate itself from the

other designs, with the highest mean score of 0.636. ERADE.RSIHR also had the highest median score of

0.667, relative to the other designs, which all had median scores of 0.600. ERADE.RSIHR’s 75th percentile

score was 0.933, compared with 0.867 of the other designs. On average, non RAR designs scored lower with

respect to this component.

Bias

Table 4.30 shows the bias under the null hypothesis across 10,000 simulated trials. Recall that the true

difference in success probabilities under the null is 0, and θ = (27.5,−6), n = 165. Table 4.30 shows that

Naive Adjusted
Min Mean Max Min Mean Max

CRD -6.720 0.172 7.931 -6.898 0.171 8.031
RBD.RAR -7.189 0.159 7.519 -7.177 0.159 7.571
PBD -6.891 0.161 7.419 -6.893 0.161 7.419
ERADE.Neyman -8.196 0.139 9.221 -8.311 0.135 9.213
ERADE.RSIHR -8.032 0.115 8.182 -8.119 0.117 8.173

Table 4.30: Methotrexate trial: bias of the treatment effect estimate E(β̂1 − β) under H0 : β1 = 0 of or
adjusted for time trend.

non-RAR designs have the same mean bias in both naive and adjusted analyses: CRD, RBD.RAR, and PBD

have average biases of 0.172, 0.159, and 0.161, respectively. ERADE.Neyman has an average bias of 0.139 in

the analysis not adjusting for time trend, and a slightly lower bias of 0.135 in the analysis adjusting for time

trend. ERADE.RSIHR interestingly has higher average bias in the adjusted analysis. The range of bias in

the adjusted analysis is broader than that in the naive analysis for all the designs assessed except for PBD.

For example, ERADE.RSIHR had a range of bias in the naive analysis of -8.032 to 8.182, and a range of

bias in the adjusted analysis of -8.119 to 8.173.

In the definition of the individual desirability function for bias in the naive analysis, the distribution of

bias had fatter tails for positive values than for negative values, and the largest bias of 9.221 was considered
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undesirable. This led to the (1/10*1, 1/10*2, 1/10*3, 1/10*4, 1/10*5)th percentiles of bias values less than

3 mapping to (0, 0.2, 0.4, 0.6, 0.8), the bias of 0 to a score of 1, the (1/10*6, 1/10*7, 1/10*8, 1/10*9)th

percentiles of bias values less than 3 mapped to scores of (0.8, 0.6, 0.4, 0.2), and the bias value of 3 mapped

to a score of 0. This led to the values (-2.613, -1.710, -1.078, -0.561, -0.066, 0, 0.410, 0.900, 1.426, 2.070,

3.000) mapping to scores of (0, 0.2, 0.4, 0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2, 0). Table 4.31 reveals the resulting

individual desirability scores for bias in the naive analysis.

Individual Desirability Scores for Bias
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.000 0.093 0.356 0.379 0.628 1.000
RBD.RAR 0.000 0.102 0.360 0.381 0.629 1.000
PBD 0.000 0.100 0.359 0.381 0.630 1.000
ERADE.Neyman 0.000 0.093 0.351 0.376 0.625 1.000
ERADE.RSIHR 0.000 0.087 0.355 0.376 0.624 1.000

Table 4.31: Methotrexate trial: summary statistics for individual desirability scores for bias (E(β̂1 − β))
under H0 : β1 = 0 without adjusting for time trend under the null hypothesis.

The restriction of having any simulated trial with a bias value greater than 3 led to all designs having

a minimum individual desirability score for naive bias of 0. All designs evaluated also had a maximum

individual desirability score of 1. ERADE.Neyman had the lowest median score for bias of 0.351. PBD.RAR

and PBD had highest median scores of 0.360 and 0.359. It is noted that the performance of the five designs

in regards to naive bias under the null hypothesis are similar.

The same rules for defining the individual desirability function for bias in a naive analysis not adjusting for

time trend are used to define the individual desirability function for bias in an adjusted analysis incorporating

a covariate for time trend. This resulted in bias values of (-2.619, -1.714, -1.082, -0.565, -0.070, 0, 0.406,

0.898, 1.427, 2.073, 3.000) mapping to values of (0, 0.2, 0.4, 0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2, 0). Table 4.32

summarizes the resulting distribution of individual desirability scores for bias.

Min 25th Percentile Median Mean 75th Percentile Max
CRD 0.000 0.092 0.356 0.379 0.630 1.000
RBD.RAR 0.000 0.103 0.360 0.382 0.632 1.000
PBD 0.000 0.100 0.361 0.381 0.632 1.000
ERADE.Neyman 0.000 0.094 0.349 0.376 0.627 1.000
ERADE.RSIHR 0.000 0.087 0.353 0.376 0.628 1.000

Table 4.32: Methotrexate trial: summary statistics for individual desirability scores for bias (E(β̂1 − β))
under H1 : β1 = 0 after adjusting for time trends under the null hypothesis.

A comparison between Tables 4.31 and 4.32 reveals that the individual desirability scores for bias in the

naive and adjusted analyses are very similar. A look at the 25th and 75th percentiles reveal a very slight

increase in scores for bias in adjusted analyses for most designs. Note that a comparison of medians shows
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that the centers of the distributions of scores for naive and adjusted bias are very similar.

Relative Bias

Table 4.33 exhibits the relative bias across 10,000 simulated trials for the designs evaluated. Recall that a

relative bias less than -100 indicates incorrectly that the placebo has the stronger desired treatment effect

than the experimental arm. It can be seen that Neyman allocation has the most extreme relative bias in

Naive Adjusted
Min Mean Max Min Mean Max

CRD -123.162 -7.196 140.833 -124.756 -7.203 140.303
RBD.RAR -116.424 -6.902 109.992 -115.534 -6.893 110.190
PBD -130.309 -7.263 130.245 -131.178 -7.255 130.201
ERADE.Neyman -145.877 -7.295 116.006 -147.064 -7.120 116.539
ERADE.RSIHR -139.623 -7.242 127.399 -140.144 -7.261 124.711

Table 4.33: Methotrexate vs Placebo Arms: relative bias E( β̂1−β
β ) × 100 under H1 : β1 = −6 naive of or

adjusted for time trend, evaluating θT = (27.5,−6) and n = 165.

the wrong direction, believing the placebo to be more effective than the treatment arm with a relative bias

of -146 and -147 in the naive and adjusted analyses, respectively. Recall from Section 1.2.3 that variability

of the proportion of subjects in each arm and the variability of the target allocation proportion contribute

to bias. CRD had the largest variability of proportion of subjects in each arm; we see that it also has

the largest maximum bias in both the naive and adjusted analyses of 141 and 140, respectively. The RAR

designs ERADE.Neyman and ERADE.RSIHR had the next largest variability of patient allocation; its

effects on relative bias can be seen as they have the most extreme values of bias in the negative direction of

approximately -140 or more extreme in the naive and adjusted analyses.

Since relative bias values less than -100 incorrectly suggest a stronger treatment effect in the placebo arm

than in the treatment arm, we automatically penalize any relative bias at -101 or more extreme to individual

desirability scores of 0. Using CRD as a gold standard, quintiles of relative bias values observed under CRD

less than and greater than 0 help define the individual desirability function for relative bias for observed

values less than and greater than 0, respectively. This leads to the relative bias values of (-104, -47, -31, -20,

-10, 0, 7, 16, 25, 39, 141) to individual desirability scores of (0, 0.2, 0.4, 0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2, 0) for

relative bias in naive analyses not adjusting for time trend. Table 4.34 displays the resulting distribution of

individual desirability scores for relative bias in the naive analysis.

On average, CRD scores highest with respect to the naive relative bias component, with an average

individual desirability score of 0.514. While its median and 75th percentiles are also the highest, note

that the 25th percentile score is led by RBD.RAR with a score of 0.261, exceeding that of CRD’s 0.258.

RAR design ERADE.Neyman does sufficiently well, having comparable scores with CRD in the lower ends
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Individual Desirability Scores for Relative Bias
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.000 0.258 0.507 0.514 0.753 1.000
RBD.RAR 0.000 0.261 0.494 0.507 0.738 1.000
PBD 0.000 0.254 0.503 0.510 0.745 1.000
ERADE.Neyman 0.000 0.256 0.504 0.510 0.746 1.000
ERADE.RSIHR 0.000 0.252 0.500 0.509 0.748 1.000

Table 4.34: Methotrexate trial: summary statistics for individual desirability scores for relative bias

E( β̂1−β
β )× 100 under H1 : β1 = −6 for various designs evaluating θT = (27.5,−6) and n = 165.

of the distribution. We can see the distributions begin to separate when looking at the 75th percentile

scores: CRD pulling ahead with a score of 0.753 and ERADE.Neyman trailing behind with a score of 0.746.

ERADE.RSIHR has a fatter lower tail in the distribution, with lower scores pulling down the 25th and 50th

percentiles. Interestingly, ERADE.RSIHR’s 75th percentile score is 0.748, higher than ERADE.Neyman’s

score of 0.746.

A similar decision rule defining the individual desirability function for naive relative bias also defines that

of the adjusted relative bias. CRD again is used as the reference or gold standard, leading to the adjusted

relative bias values of (-101, 47, -31, -20, -10, 0, 8, 16, 25, 40, 140) to be mapped to individual desirability

scores of (0, 0.2, 0.4, 0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2, 0). Table 4.35 displays the resulting distributions of

individual desirability scores for relative bias in the adjusted analyses.

Individual Desirability Scores for Relative Bias
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.000 0.260 0.504 0.514 0.755 1.000
RBD.RAR 0.000 0.262 0.495 0.508 0.741 1.000
PBD 0.000 0.254 0.505 0.511 0.745 1.000
ERADE.Neyman 0.000 0.253 0.506 0.511 0.746 1.000
ERADE.RSIHR 0.000 0.254 0.497 0.509 0.752 1.000

Table 4.35: Methotrexate trial: summary statistics for individual desirability scores for adjusted relative

bias E( β̂1−β
β )× 100 under H1 : β1 = −6 for various designs evaluating θT = (27.5,−6) and n = 165.

While CRD’s individual desirability score still averaged the highest with a score of 0.514, other designs

show improvement with a small upward shift in their scores’ values. The exception to this is ERADE.RSIHR,

whose 25th percentile, mean, and 75th percentile scores increased, yet whose median decreased from 0.500

to 0.497. Overall, the behavior of the scores is similar, and rankings based off relative bias alone do not

change.

Type I Error and Power

The proportion of rejected null hypotheses across 10,000 simulated trials is calculated to understand the Type

I error and power in analyses both naive to and adjusted for the time trend. Table 4.36 showcases the tradeoff
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in performance between Type I error and power resulting from both analyses. For example, ERADE.RSIHR

produces reduced Type I error (from 0.0494 to 0.0481) when adjusting for the linear time trend, but also

produces reduced power (from 0.7778 to 0.7762). Note that in this scenario, non RAR designs are unable

to control Type I error below 0.05, and alternatively have higher power than RAR designs. Interestingly,

CRD and RBD.RAR have improved Type I error rates in adjusted analyses, yet PBD has an increased

Type I error in the adjusted analysis. The RAR designs’ lower power relative to non RAR designs is due to

the variability of the target allocation (see Section 1.2.3). ERADE.Neyman’s Type I error seems robust to

omission of a linear time trend covariate, with similar Type I error rates of 0.0482 and 0.0483 in the naive

and adjusted analyses. On the other hand, forced balance designs RBD.RAR and PBD have power levels

robust to omission of a linear time trend, with power of 0.787 in both the naive and adjusted analyses in

RBD.RAR, and power of 0.7873 and 0.7876 in the naive and adjusted analyses in PBD. RBD.RAR and

PBD’s insensitivity to omitting a time trend covariate with regards to correctly rejecting the null hypothesis

show the value of forced balance designs with regards to robustness in designs expecting time trends.

Type I error (Naive) Type I Error (Adjusted) Power (Naive) Power (Adjusted)
CRD 0.0533 0.0530 0.7886 0.7851
RBD.RAR 0.0521 0.0513 0.7857 0.7857
PBD 0.0510 0.0519 0.7873 0.7876
ERADE.Neyman 0.0482 0.0483 0.7777 0.7758
ERADE.RSIHR 0.0494 0.0481 0.7778 0.7762

Table 4.36: Methotrexate trial: Type I error and power for various designs evaluating θT = (27.5,−6) and
n = 165.

While constructing the individual desirability function for Type I error, a clinical trial expecting to deliver

results to a regulatory agency might wish to automatically penalize any Type I error above 0.05 with a Type

I error individual desirability score of 0. In this case, some leniency is provided so that the designs may still

be compared relative to each other. Quintiles are used to shape the individual desirability function, resulting

in the naive Type I error values of (0.05430, 0.05234, 0.05144, 0.0536, 0.04916, 0.04500) and the adjusted

Type I error values of (0.05400, 0.05212, 0.05154, 0.05010, 0.04826, 0.04500) mapping to the individual

desirability scores of (0, 0.2, 0.4, 0.6, 0.8, 1).

Quintiles also were used for guidance in shaping the individual desirability function for power, resulting in

naive power values of (0.775, 0.777, 0.7825, 0.788, 0.800, 0.900) and adjusted power values of (0.775, 0.776,

0.782, 0.786, 0.800, 0.900) mapping to values of (0, 0.2, 0.4, 0.6, 0.8, 1). The naive and adjusted power

individual desirability functions are close with each other in this case study since the time trend affects

both groups and is small. We would expect a time trend unique to a single treatment arm to have larger

differentiating effects on Type I error and power in naive and adjusted analyses.
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Table 4.37 displays the individual desirability scores for Type I error and power in naive and adjusted

analyses.

Individual Desirability Scores
Type I Error

(Naive)
Type I Error
(Adjusted)

Power (Naive) Power (Adjusted)

CRD 0.102 0.106 0.610 0.555
RBD.RAR 0.253 0.433 0.516 0.585
PBD 0.481 0.276 0.575 0.623
ERADE.Neyman 0.846 0.796 0.225 0.160
ERADE.RSIHR 0.760 0.810 0.229 0.207

Table 4.37: Methotrexate trial: individual desirability scores for Type I Error and power for various designs
evaluating θT = (27.5,−6) and n = 165.

CRD has the lowest scores of 0.102 and 0.106 for individual desirability scores for naive and adjusted

Type I errors. ERADE.Neyman has the highest score in naive analysis and ERADE.RSIHR has the highest

score in adjusted analysis. RBD.RAR and PBD have large score differences with and without adjustments

for time trends, with RBD.RAR score’s increasing from 0.253 to 0.433, and PBD’s score decreasing from

0.481 to 0.276. The range of scores is greater for adjusted power (0.160 to 0.623) than for naive power (0.225

to 0.610).

Overall Desirability Score

In order to calculate the overall desirability scores of the five designs assessed for the Methotrexate trial,

the relative importance of the 15 assessed characteristics is considered. Table 4.38 displays the normalized

selected weights for treatment group size imbalance, expected number of failures, covariate imbalance C1,

covariate imbalance C2, covariate imbalance C3, selection bias, accidental bias factor estimate, bias under

the null hypothesis, relative bias under the alternative hypothesis, naive and adjusted Type I error, and

naive and adjusted power. These are the wi’s in Equation B.11. Also shown is a reiteration of the mean

individual desirability scores of the five assessed designs for each design component. These are the di’s used

in Equation B.11, resulting in the mean overall desirability score shown in bold at the bottom of the table.

The probability that the overall desirability score is 0 as estimated by the frequency of the overall desirability

score equaling 0 in the 10,000 simulated trials is also shown.

With the individual desirability functions of the 15 components as defined in this section, and the weights

as defined in Table 4.38, it is clear that non-RAR designs have better quality than RAR designs. While the

RAR designs indeed score higher for expected number of failures and Type I error, and score competitively

for bias and relative bias components, non-RAR designs also score sufficiently well for expected number

of failures, and significantly better for accidental bias. Specifically, accidental bias and expected number

of failures are given the largest weight of 0.143 each. While non-RAR designs score approximately 0.570
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CRD RBD.RAR PBD ERADE.Neyman ERADE.RSIHR weight

Treatment Group Size Imbalance 0.559 0.800 0.795 0.582 0.359 0.024

Expected No. of Failures 0.570 0.569 0.570 0.606 0.636 0.143

Covariate Imbalance

C1 (N(0,1)) 1.000 1.000 1.000 0.136 0.800 0.095

C2 (linear time trend) 0.004 1.000 0.758 0.416 0.343 0.000

C3 (autocorrelated) 0.031 1.000 0.606 0.568 0.245 0.000

Selection Bias 1.000 0.552 0.651 0.206 0.205 0.048

Accidental Bias 0.916 0.600 0.800 0.214 0.239 0.143

Bias (Naive) 0.379 0.381 0.381 0.376 0.376 0.024

Bias (Adjusted) 0.379 0.382 0.381 0.376 0.376 0.048

Relative Bias (Naive) 0.514 0.507 0.510 0.510 0.509 0.048

Relative Bias (Adjusted) 0.514 0.508 0.511 0.511 0.509 0.095

Type I Error (Naive) 0.102 0.253 0.481 0.846 0.760 0.095

Type I Error (Adjusted) 0.106 0.433 0.276 0.796 0.810 0.095

Power (Naive) 0.610 0.516 0.575 0.225 0.229 0.048

Power (Adjusted) 0.555 0.585 0.623 0.160 0.207 0.095

Overall Desirability D (mean) 0.418 0.480 0.519 0.329 0.397

Prob(Overall Desirability D = 0) 0.187 0.174 0.176 0.186 0.188

Table 4.38: Methotrexate trial: mean individual desirability scores for 15 considered design characteristics,
mean overall desirability score D, and Probability(D=0).
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for expected number of failures compared to RAR designs’ scores greater than 0.600, non-RAR designs

differentiate themselves as higher quality designs with higher scores in accidental bias: CRD scores 0.916,

RBD.RAR scores 0.600, and PBD score 0.800, whilst ERADE.Neyman and ERADE.RSIHR both score

below 0.300.

PBD scores highest on average with a mean overall desirability score of 0.519. ERADE.Neyman has the

lowest average overall desirability score of 0.329. In deciding the design of the best quality, it is important to

look not only at the average overall desirability score D, but also the probability of the overall desirability

score being 0. RAR designs ERADE.Neyman and ERADE.RSIHR can be eliminated from consideration

with this set of individual desirability functions and weights, with scores of 0.39 and 0.397 respectively,

lower than those of the non-RAR designs. ERADE.Neyman and ERADE.RSIHR also have relatively high

probabilities of overall desirability score being 0, 0.186 and 0.188, respectively. Amongst PBD’s 10,000

simulated trials, 17.6% of them resulted in distributions if individual desirability scores that culminated

in an overall desirability score of D = 0. This is lower than CRD’s 18.7%, and just slightly higher than

RBD.RAR’s 17.4%. However, PBD’s overall mean score of 0.519 is substantially higher than RBD.RAR’s

0.480, making it an easy choice in design selection.

4.3.3 Application 3: Correlated Responses

Let us revisit the Methotrexate vs Placebo example for the scleroderma study from Section 2.4.1[68]. We

focus on the hypothetical case where responses between the two treatment arms share a 30% correlation:

θ = (21.8, 27.5, 219, 144), ρ = 0.30. The sample size is increased from 165 to 185 to ensure at least 80%

power (See Table 2.17). While this seems similar to the example of 4.3.2, we approach this example with no

reason to believe a time trend may be present that affects the responses in the two treatment groups. Since

no time trend is expected, the naive and adjusted analyses are collapsed into a single analysis, removing

design components adjusted bias, adjusted relative bias, adjusted Type I error, and adjusted power. In this

section, we incorporate the desire to minimize the total expected response, since lower skin scores are better,

by including this design characteristic as one to be assessed in the overall desirability function.

The method of defining individual desirability functions uses percentiles information and is similar to

that presented in Section 4.3.2 and will not be repeated here. There are two exceptions: power and total

expected response. Since the sample size was increased from 165 to 185 to ensure greater than 80% power,

power of 0.8 is mapped to an individual desirability score of 0.8, and power of 0.9 or greater is mapped to an

individual desirability score of 1. The range of power witnessed from the simulations was 0.8169 to 0.8334.

Total expected response µEnE + µCnC is a newly assessed design component and thus its individual
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desirability function construction will be discussed more at length here. Two approaches were taken to

assess total expected response. The first approach was to calculate µEnE + µCnC by using the average

number response in each treatment group across all 10,000 simulations and the average number of subjects

in each treatment group across all 10,000 simulations. This resulted in each of the assessed designs having

a single total expected response value. The individual desirability function could then be built taking the

maximum average response of the designs considered when the number of patients placed in the Methotrexate

arm is two standard deviations below the mean number of patients placed in the Methotrexate arm and

maps this value to an individual desirability score of 0. It then takes the minimum average response of the

designs considered when the number of patients placed in the Methotrexate arm is two standard deviations

above the mean number of patients placed in the Methotrexate arm, mapping this value to an individual

desirability score of 1. The purpose of looking at these tail ends of the distributions is to have a broader

range of values included in the calculation of an individual desirability score greater than zero and less than

one. Intermediate score values greater than zero and less than one are mapped in the usual manner, using

quintiles information from the total expected response of the assessed designs with the average number of

patients placed in the Methotrexate arm for each design to inform decisions. This approach of individual

desirability function definition led to the values of (4661.18, 4583.17, 4541.90, 4512.83, 4512.79, 4434.26)

mapping to individual desirability scores of (0, 0.2, 0.4, 0.6, 0.8, 1). Figure 4.9a shows vertical lines at

these mapping points; one can deduce that this mapping definition seems to be missing some information,

especially with values as close as 4512.83 and 4512.79 mapping to such different individual desirability scores.

This mapping led to individual desirability scores ranging from 0.19 to 0.81, with each design’s scores spaced

almost equally apart.

Identifying the flaws of this first approach, we can improve the individual desirability function by further

differentiating the performance of the designs. This is done by looking at the entire distribution of yEnE +

yCnC . Since 10,000 trials are simulated for each design, this means that each design will have 10,000 total

responses to be scored. When this is done, the quintiles of the total responses are used to help shape the

individual desirability function. Specifically, since larger responses are less desirable, we want to penalize

positive deviations away from the mean response more than to negative deviations away from the mean.

This leads to the midpoint between the fourth and fifth quantiles mapping to a score of 0, followed by the

fourth, third, second, first quantiles mapping to scores of (0.2, 0.4, 0.6, 0.8), and the minimum observed total

response mapping to a score of 1. This results in the total responses of (5012, 4693, 4586, 4494, 4386, 3787)

mapping to values of (0, 0.2, 0.4, 0.6, 0.8, 1). The spread of values in this function will help differentiate the

designs in a more meaningful way than does the narrow spread of the first approach. Figure 4.9b displays

the density plot of the distributions of total responses across all simulated trials, with vertical lines again at
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(a) Density plot of total expected response defined by
taking µE , µC , nE , and nC as the average mean response
in group E and C, and the average number of subjects in
group E and C, across 10,000 simulated studies.
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(b) Density plot of total expected response defined by
taking the entire distribution of simulated total responses
across 10,000 simulated studies.

Figure 4.9: Density plots of total expected response, with gray vertical lines placed at the values mapping
to individual desirability scores of (0, 0.2, 0.4, 0.6, 0.8, 1).

the mapping points.

Table 4.39 summarizes the distribution of individual desirability scores for expected total responses. The

differences in the distributions highlights the value of using the second approach in defining the individual

desirability function for this design component.

Min 25th Percentile Median Mean 75th Percentile Max
CRD 0.000 0.192 0.408 0.433 0.657 0.936
PBD 0.000 0.195 0.407 0.435 0.656 0.987
Neyman 0.000 0.261 0.492 0.490 0.736 0.988
RSIHR 0.000 0.312 0.564 0.534 0.798 0.985
RSIHR2 0.000 0.317 0.564 0.536 0.793 1.000
R.corr 0.000 0.315 0.569 0.537 0.800 0.983

Table 4.39: Methotrexate trial with correlated responses: summary of individual desirability scores for total
expected response under H1 : β1 = −5.7, where smaller responses are better.

Table 4.39 clearly exhibits the differences in distributions of individual desirability scores for total re-

sponse; R.corr has the highest median score of 0.569; PBD has the lowest median score of 0.407. On average,

CRD has the lowest score of 0.433, and R.corr has the highest score of 0.537. Although R.corr scores highest

in the 50th and 75th percentiles and in the mean, its scores are close to those of RSIHR and RSIHR2.

Notice that the RAR design DBCD targeting Neyman allocation, which seeks to maximize power, performs
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very differently than RSIHR, RSIHR2, and R.corr, which all seek to minimize total expected response. For

example, on average Neyman allocation scores 0.490 with respect to total expected response, while RSIHR,

RSIHR2, and R.corr all score above 0.533.

Individual Desirability Function Definitions

Tables 4.40 and 4.41 display the definitions of the individual desirability functions for the 12 assessed compo-

nents for nominal-the-better type design components, and for either larger-the-better or smaller-the-better

type design components, respectively. Refer to Section 4.3.2 for details on defining the individual desirability

functions.

Nominal-the-Better (NTB) Components
Individual

Desirability
Score d

Treatment Group
Size Imbalance

Bias Relative Bias

0 -48.000 -2.436 -101.000
0.2 -16.000 -1.600 -45.396
0.4 -9.000 -0.998 -30.124
0.6 -3.000 -0.491 -18.960
0.8 0.000 -0.028 -9.529
1 3.000 0.000 0.000

0.8 17.000 0.425 7.031
0.6 23.000 0.898 14.637
0.4 27.000 1.422 23.973
0.2 35.000 2.047 37.502
0 76.000 3.000 105.209

Table 4.40: Methotrexate trial with correlated responses: mapping definitions for individual desirability
scores for nominal-the-better (NTB) design components.

Smaller-the-Better (STB) & Larger-the-Better (LTB) Components
Individual
Desirabil-
ity Score

d

Accidental
Bias

Imbalance
C1

Imbalance
C2

Imbalance
C3

Selection
Bias

Expected
No. of

Failures

Type I
Error

Power Total
Re-

sponse

0.0 4.214 0.038 0.203 0.157 88.126 88.000 0.054 0.775 5012.822
0.2 0.058 0.037 0.179 0.152 21.734 65.000 0.052 0.777 4693.442
0.4 0.054 0.035 0.176 0.152 17.051 61.000 0.052 0.782 4586.338
0.6 0.041 0.033 0.168 0.152 13.309 59.000 0.051 0.788 4494.315
0.8 0.040 0.032 0.168 0.149 8.964 56.000 0.051 0.800 4385.915
1.0 0.037 0.000 0.051 0.136 0.000 53.000 0.050 0.900 3787.256

Table 4.41: Methotrexate trial with correlated responses: mapping definitions for individual desirability
scores for smaller-the-better (STB) and larger-the-better (LTB) design components.

Overall Desirability Score

Using the individual desirability functions defined above, distributions of individual desirability scores were

calculated. Table 4.42 shows the mean individual desirability scores of each component. Using these as di’s,
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and the weights in the right column as wi’s of Equation B.11, a distribution of overall desirability scores if

calculated. Table 4.42 displays the mean and frequency of scores equaling 0.

CRD PBD Neyman RSIHR RSIHR2 R.corr weight

Treatment Group Size Imbalance 0.619 0.799 0.696 0.516 0.517 0.497 0.033

Expected No. of Failures 0.549 0.551 0.592 0.624 0.628 0.626 0.033

Covariate Imbalance

C1 (N(0,1)) 1.000 1.000 0.598 0.211 0.800 0.145 0.131

C2 (linear time trend) 0.200 1.000 0.800 0.400 0.600 0.008 0.000

C3 (autocorrelated) 0.600 1.000 0.400 0.200 0.800 0.042 0.000

Selection Bias 1.000 0.212 0.498 0.494 0.555 0.424 0.016

Accidental Bias 0.443 0.444 0.496 0.539 0.540 0.542 0.197

Bias 0.383 0.383 0.383 0.385 0.384 0.384 0.066

Relative Bias 0.512 0.513 0.512 0.515 0.519 0.515 0.131

Type I Error 0.095 0.200 0.800 0.400 0.909 0.600 0.131

Power 0.857 0.867 0.839 0.837 0.850 0.834 0.066

Total Expected Response 0.433 0.435 0.490 0.534 0.536 0.537 0.197

Overall Desirability D (mean) 0.372 0.407 0.488 0.409 0.548 0.408

Prob(Overall Desirability D = 0) 0.175 0.169 0.170 0.169 0.162 0.170

Table 4.42: Methotrexate trial with correlated responses: mean individual desirability scores for 12 considered
design characteristics, mean overall desirability score, and probability that overall desirability score is 0.

With the individual desirability functions defined in Tables 4.40 and 4.41, and weights shown in Table

4.42, it is first worth noting that R.corr is not deemed to have the highest overall quality. It successfully

performs best with regards to Total Expected Response, with an average individual desirability score of 0.537

for this component, just slightly higher than RSIHR and RHSIR2’s scores of 0.534 and 0.536, respectively.

R.corr certainly outperforms CRD and PBD in minimizing the total expected response, due to its higher

probability of allocating subjects to the experimental Methotrexate arm. In spite of its stronger performance

with respect to total expected response, R.corr has an overall quality deemed similar to PBD and RSIHR

designs, and loses to RSIHR2, which is deemed to have the highest quality of the designs assessed, with an

overall desirability score of 0.548, and probability of overall desirability equaling 0 being the smallest of the

designs assessed at 0.162.

Tables 4.42 shows the individual desirability scores that aid our understanding of the strengths and

weaknesses of each design; R.corr does well minimizing expected total response and total expected failures,
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but does substantially poorly in regards to controlling the probability of covariate imbalance for covariate

C1. In this regards, R.corr has an individual desirability score of 0.145 for probability of covariate imbalance

for C1. RSIHR also fairs poorly with a score of 0.211, whilst the other designs all successfully score nearly

0.6 or higher. R.corr performs equally well with or even better than the other designs in accidental bias,

bias, relative bias, and power. While R.corr underperforms relative to RSIHR2 with respect to probability

of covariate imbalance, it also underperforms with respect to Type I error, with R.corr having a simulated

Type I error of 0.0512, compared to RSIHR2’s 0.0505. The weaknesses of R.corr affect its overall quality

enough for a trialist to instead turn to RSIHR2 when his preferences are accurately reflected by the individual

desirability function definitions and weights described. In a sensitivity analysis, even doubling the weight

assigned to total expected response was insufficient to conclude its quality superior to that of RSIHR or

RSIHR2.

4.4 Discussion

In this chapter, different components or characteristics of a clinical trial that contribute to its overall quality

are discussed. The inclusion of the majority of the components - treatment group size imbalance, accidental

bias factor estimate, selection bias (as defined by ρpred rather than proportion of correct guesses as was

Schindler’s approach [75]), probability of covariate imbalance, expected number of failures, total expected

response, bias, and relative bias - in the scoring of trial quality is a novel use of desirability functions. A

framework is provided regarding the decisions behind defining individual desirability functions for each of

these components or characteristics, as well as behind the weighting of each of these individual desirability

functions in the overall desirability function. Three examples implementing this framework were provided.

Upon understanding the framework for assessing design quality using desirability functions, different clinical

trial stakeholders should utilize the framework to score design characteristics of interest to them. Other design

components that could be considered but are not discussed here include financial cost, time to completion,

feasibility of implementation, minimizing the number of subjects assigned to the inferior arm, and probability

of stopping early due to early detection of futility or overwhelming efficacy.

The next chapter provides a more in-depth application of the framework introduced here to an HIV clinical

trial assessing the efficacy of anti-retroviral treatment in pregnant mothers in reducing the probability of

vertical transmission.
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Chapter 5

Application to AIDS Clinical Trial

In this chapter, we illustrate how to use desirability functions to select a suitable design for a previously

published HIV clinical trial. In 1994, at the first interim analysis of a multicenter clinical trial conducted

by the Pediatric AIDS Clinical Trials Group (Protocol 076) evaluating the efficacy of zidovudine (AZT)

in the prevention of maternal-infant HIV transmission, the Data and Safety Monitoring Board (DSMB)

recommended early termination of the trial in favor of AZT. The DSMB recommended that all patients

receiving placebo be provided with the experimental treatment AZT. The trial consequently halted after the

first interim analysis.

The approach to design evaluation in this Chapter is similar to that in Chapter 4; however, the application

presented here dives into further detail and explores weight sensitivity analyses and analysis of clinical trial

designs with different sample sizes. The purpose of the weight sensitivity analysis is twofold: to highlight

the importance of accurately defining weights during construction of the overall desirability function, and to

remind the reader that certain clinical trial designs have inherent strengths and weaknesses with respect to

the evaluated design components

Section 5.1 provides a brief overview of the original clinical trial setup. Section 5.2 explores design

selection using the framework presented in Chapter 4 and the trial’s original enrolled sample size at the time

the trial ended (n = 477). Our initial individual desirability functions and weights result in selection of

Permuted Block Design with a block size of 8. We find that placing less importance on covariate imbalance

leads to a change in selection to DBCD.Baldi. Recall that Baldi allocation has its own weight parameters

asking a user to weight ethics and inference; here we have given the Baldi allocation scheme equal weights in

ethics and inference. We also find that should we increase our interests in balancing a covariate C1 (a N(0,1)

random variable) and in increasing power, our selection shifts to Complete Randomized Design (CRD), the
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design used in the actual clinical trial. In Section 5.3, we examine how the choice of design changes when

each design enrolls only the minimum number of subjects necessary for 90% power. This requires only 190

to 226 subjects to be enrolled for the designs considered. Prior applications have provided each design under

evaluation with the same sample size. This new facet can be evaluated quantitatively using a new individual

desirability function for sample size needed to attain 90% power. In practice, we can also incorporate the

sample size needed into financial considerations for a study. With less subjects available in these simulated

studies, each design’s weaknesses have little leeway for forgiveness. We see that with all the weight settings

evaluated in the prior subsection, RSIHR allocation targeted by the EW1995 RAR design consistently has

the highest overall desirability score. Section 5.4 concludes this chapter with a Discussion.

5.1 Original Clinical Trial Setup

A 1994 randomized, double-blind, placebo-controlled trial evaluated zidovudine (AZT) in pregnant women

(between 14 and 34 weeks’ gestation) with human immunodeficiency virus (HIV) Type I, as defined by having

CD4+ T-lymphocyte counts above 200 cells per cubic millimeter. The primary endpoint was maternal-infant

transmission of HIV Type I, determined by the 18-month followup of the infant. The target sample size

was 636 assessable mother-infant pairs, which was considered able to control Type I error for three interim

analyses. Complete randomized design (CRD) was used to randomize mothers to either the AZT or placebo

arm [22].

The first interim analysis included data from April 1991 through December 20, 1993. At this time, there

were nE = 239 pregnant women placed in the zidovudine experimental arm, and nC = 238 pregnant women

placed in the placebo control arm, for a total sample size of n = 477 recruited from 59 centers, of which

409 women gave birth to 415 live-born infants. HIV-infection status at 18 months of age was known for 363

infants: 13 infections out of 180 status-known infants from the zidovudine group, and 40 infections out of

183 status-known infants from the placebo group. Forty-six infants were excluded from the analysis because

their culture data was not available at the time the interim analysis was performed. The most common

reason for data unavailability was due to culture results having yet to be submitted; other reasons included

withdrawal before culture was taken, infant was too young, or neonatal death without culture.

The proportions of infants infected were estimated using Kaplan-Meier evaluation of the 363 infants

with known HIV-infection status. This yielded estimates of proportion of infants infected as 8.3% in the

zidovudine group [95% CI: 3.9-12.8], and 25.5% in the placebo group [95% CI: 8.9-25.5]. The difference

in proportions was significant (Z=4.03, two-sided P = 0.00006). The interim stopping boundary required

Z > 3.47 (P < 0.0005). The overwhelming evidence in favor of zidovudine as an antepartum and intrapartum
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treatment for the mothers, and as a treatment for the newborn, resulted in the DSMB’s recommendation to

terminate the trial early and to provide zidovudine treatment to all participants of the trial.

5.2 Redesigning the Clinical Trial

We will focus on the trial prior to the first interim analysis and see whether designs other than Complete

Randomization (CRD) could have provided further value. We will simulate the trial with simulation setup

discussed in Chapter 4. Non-adaptive designs considered are CRD and PBD with block size of 8. Adaptive

designs ERADE, DBCD, SMLE, and EW1995 are also considered, targeting Neyman, RSIHR, Urn, and

Baldi targets. The Baldi allocation here will place equal weight on ethics and inference. With pE = 0.917

and pC = 0.745, we begin assuming no time trend and have β = (β0, β1) = (1.072121, 1.330146).

Treatment Group Characteristics

Table 5.1 summarize treatment group characteristics. The number of patients placed in the AZT exper-

Patients in
E (mean)

Patients in
E (sd)

Proportion
in E

CRD 238.48 10.89 0.50
PBD 238.50 0.80 0.50
ERADE.Neyman 183.37 15.94 0.38
ERADE.RSIHR 250.81 2.69 0.53
ERADE.Urn 356.30 20.96 0.75
ERADE.Baldi 327.84 5.37 0.69
DBCD.Neyman 183.75 16.79 0.39
DBCD.RSIHR 250.89 5.70 0.53
DBCD.Urn 358.15 23.02 0.75
DBCD.Baldi 328.80 7.33 0.69
SMLE.Neyman 185.38 21.01 0.39
SMLE.RSIHR 250.79 11.51 0.53
SMLE.Urn 353.60 28.31 0.74
SMLE.Baldi 328.94 11.89 0.69
EW1995.Neyman 183.24 17.63 0.38
EW1995.RSIHR 250.93 7.10 0.53
EW1995.Urn 356.62 25.90 0.75
EW1995.Baldi 329.61 9.58 0.69

Table 5.1: AZT trial: Treatment group characteristics under H1 : β1 = 1.330 over 10,000 simulated trials,
p = (0.917, 0.745) and n = 477.

imental arm varies substantially depending on the trial design used, with as little as 183 (38%) patients

when using Neyman allocation by EW1995 or ERADE, and as many as 358 (75%) patients when using Urn

allocation targeted by ERADE, DBCD, and EW1995. The standard deviation of patient allocation ranges

from 0.80 of PBD and 28 of SMLE.Urn. Of the response-adaptive designs, note that those targeting RSIHR

allocation have lower standard deviations than those targeting other objectives. Baldi allocation also has low
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patient allocation standard deviation. On the other hand, the Urn allocation sees higher standard deviation

exceeding 20. Recall from Section 1.2.3 that the variance of the target allocation within a design influences

its power, with larger variances resulting in losses in power.

Treatment Group Size Imbalance nE − nC
Min Median Mean Max

CRD -89 -1 -0 83
PBD -3 1 0 3
ERADE.Neyman -331 -107 -110 -29
ERADE.RSIHR 5 25 25 45
ERADE.Urn 81 237 236 375
ERADE.Baldi 157 177 179 255
DBCD.Neyman -323 -107 -109 -21
DBCD.RSIHR -23 25 25 73
DBCD.Urn 49 241 239 395
DBCD.Baldi 137 179 181 263
SMLE.Neyman -307 -103 -106 25
SMLE.RSIHR -59 25 25 115
SMLE.Urn -31 233 230 403
SMLE.Baldi 97 181 181 285
EW1995.Neyman -329 -107 -111 -9
EW1995.RSIHR -27 25 25 81
EW1995.Urn 11 237 236 411
EW1995.Baldi 119 181 182 265

Table 5.2: AZT trial: summary statistics for treatment group size imbalance, nE−nC , under H1 : β1 = 1.330
over 10,000 simulated trials, p = (0.917, 0.745) and n = 477.

Table 5.2 displays summary statistics for treatment group size imbalance nE−nC . While CRD on average

has equal treatment group sizes with a mean treatment group size imbalance of 0, it also allocated as many

as 89 less patients in the AZT experimental arm and up to 83 more patients in the AZT experimental arm

across 10,000 simulated trials. PBD with a block size of 8 resulted in a maximum absolute value treatment

group imbalance of 3. While CRD and PBD on average result in balanced designs, Table 5.2 shows how

ERADE, DBCD, SMLE, and EW1995 designs allocate patients for the four allocations Neyman, RSIHR,

URN, and Baldi. Note that Neyman allocation on average places 110 less patients in the AZT arm, even

though the AZT arm has a higher probability of success. Neyman’s preference for allocating subjects to

an inferior arm is a known characteristic of the allocation for trials with large probabilities of success in

both arms. The other three allocations - RSIHR, Urn, and Baldi - all on average place more subjects in

the AZT experimental arm. For example, with ERADE design, RSIHR, Urn, and Baldi allocations place on

average 25, 236, and 179 more subjects in the AZT experimental arm. Table 5.2 also reveals that ERADE

targeting RSIHR, Urn, and Baldi never placed more subjects in the control arm during 10,000 simulated

trials. While Urn allocation on average placed the most subjects in the AZT experimental arm, note that

Baldi allocation places more subjects in the AZT treatment arm than in the control arm, and with less
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variance than Urn allocation. For example, Urn allocation targeted by DBCD places 239 more subjects in

the AZT experimental arm and Baldi allocation targeted by DBCD places 181 more subjects in the AZT

experimental arm on average, and the standard deviation of this placement for Urn and Baldi targeted by

DBCD is 23.02 vs 7.33, respectively (Table 5.1). Thus although Urn allocation places more subjects in the

stronger-performing arm, the lower variability of subject allocation provided by Baldi allocation is something

to consider.

While constructing the individual desirability function for treatment group size imbalance, we can decide if

a treatment group size imbalance of, say, -10 and +10 should be penalized equally. This may be reasonable

if the clinical trial team truly is not sure which treatment arm is superior. However, given prior data,

perhaps we can reasonably say we have a belief that the AZT experimental arm has a higher probability of

success compared to the placebo control arm, and we would penalize positive imbalances less than negative

imbalances. Given this, treatment imbalances of (-100, -50, -20, 0, 33, 60, 90, 150, 200, 250, 300) are mapped

to individual desirability scores of (0, 0.2, 0.4, 0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2, 0), respectively. This means

that we are scoring designs that place 60 more subjects (about 30%) in the AZT experimental arm than in

the placebo arm the highest. The resulting individual desirability score function computes a distribution of

individual desirability scores for each of the treatment group size imbalances across 10,000 simulated trials.

Table 5.3 shows the summary statistics of the resulting treatment group size imbalance scores.

Individual Desirability Scores for Treatment Group Size Imbalance
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.044 0.450 0.590 0.573 0.691 0.993
PBD 0.570 0.590 0.606 0.597 0.606 0.618
ERADE.Neyman 0.000 0.000 0.000 0.027 0.044 0.340
ERADE.RSIHR 0.630 0.727 0.752 0.749 0.776 0.889
ERADE.Urn 0.000 0.140 0.252 0.261 0.372 0.860
ERADE.Baldi 0.180 0.460 0.492 0.485 0.516 0.572
DBCD.Neyman 0.000 0.000 0.000 0.033 0.052 0.393
DBCD.RSIHR 0.380 0.703 0.752 0.752 0.800 0.993
DBCD.Urn 0.000 0.116 0.236 0.249 0.364 0.967
DBCD.Baldi 0.148 0.444 0.484 0.478 0.516 0.643
SMLE.Neyman 0.000 0.000 0.000 0.057 0.092 0.752
SMLE.RSIHR 0.164 0.655 0.752 0.742 0.844 0.993
SMLE.Urn 0.000 0.124 0.268 0.286 0.428 0.993
SMLE.Baldi 0.060 0.412 0.476 0.476 0.540 0.777
EW1995.Neyman 0.000 0.000 0.000 0.034 0.052 0.510
EW1995.RSIHR 0.353 0.691 0.752 0.753 0.815 0.993
EW1995.Urn 0.000 0.108 0.252 0.264 0.396 0.993
EW1995.Baldi 0.140 0.428 0.476 0.471 0.524 0.703

Table 5.3: AZT Trial: summary statistics for individual desirability scores for treatment group size imbalance
under H1 : β1 = 1.330 for various designs evaluating p = (0.917, 0.745) and n = 477.

On average, RSIHR allocation targeted by DBCD.RSIHR scores highest in regards to treatment group
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size imbalance. RSIHR allocation targeted by other designs SMLE, EW1995, and ERADE also score well.

Neyman allocation regardless of design has a median and average score close to 0, since it tends to place

more subjects in the placebo arm. Even in its best case scenario, Neyman allocation has a maximum score

of 0.752 when targeted by SMLE design. Note, however, that high scores occur rarely for SMLE.Neyman,

since even its 75th percentile score is 0.092. While Neyman allocation consistently performs poorly with

respect to treatment group size imbalance, note that RSIHR allocation performs well even in its worst-case

scenarios. Particularly, ERADE.RSIHR’s lowest score across 10,000 simulated trials was 0.630, higher than

the average score of CRD and PBD of 0.573 and 0.597, respectively. The higher score is a direct result of the

decision to shape the individual desirability score such that a positive imbalance receives a higher score than

a negative imbalance of the same degree. RSIHR allocation seeks to minimize failures, so its preferential

allocation the the AZT experimental arm resulted in it scoring high in this component as well. However,

notice CRD’s best-case scenario has a maximum score of 0.993, in line with the best-case scenario of RSIHR

targeted by SMLE and EW1995. Also note that the individual desirability scores of urn allocation have a

long right tail: for example, if we focus on ERADE.Urn, the mean and 75th percentile scores are low at 0.261

and 0.372, but we see that it can also yield a high score of 0.889. The varying shapes of the distributions of

the individual desirability scores show the value of not scoring only the mean treatment group size imbalance

across 10,000 simulated trials, but each realization of a trial’s treatment group size imbalance.

Accidental Bias

Table 5.4 displays the performance of the designs with regards to accidental bias. Accidental bias factor

estimates range from 0.006 as shown by RSIHR allocation targeted by SMLE and EW1995, to 0.436 as

shown by Urn allocation targeted by EW1995. Recall from Section 4.1.2 that the expected squared bias

of the treatment effect estimate due to the omission of a covariate is the accidental bias factor estimate

multiplied by the squared effect of the covariate on the outcome (as measured by its coefficient squared).

Focusing on the worst-case of an accidental bias factor estimate of 0.436 of EW1995.Urn, this means that for

a covariate which results in a 5% decrease in probability of success with a one unit increase of the covariate

(βomitted = −0.5275), the bias on the treatment effect would be ±
√

(−0.5275)2 × 0.436 = ±0.348. Recall

that the true value of β1 = 1.330146, so the estimated difference in probability of success attributable to

experimental treatment AZT would be exp(1.072121+1.330146−0.348)
1+exp(1.072121+1.330146−0.348) − 0.745 = 0.886− 0.745 = 0.141, rather

than the true difference in probability of success of 0.172.

On average, CRD, PBD, DBCD.RSIHR, SMLE.RSIHR, and EW1995.RSIHR had the lowest average

accidental bias factor estimates. RSIHR’s comparable performance to traditional CRD and PBD indicates

that the bias on the treatment effect due to unobserved confounders is comparable between these designs in

this trial. Note also that CRD, PBD, and RSIHR allocation has a consistent accidental bias factor estimate
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Accidental Bias Factor Estimates
Min Mean Max

CRD 0.007 0.007 0.007
PBD 0.007 0.007 0.007
ERADE.Neyman 0.013 0.014 0.047
ERADE.RSIHR 0.008 0.008 0.008
ERADE.Urn 0.019 0.034 0.126
ERADE.Baldi 0.008 0.008 0.012
DBCD.Neyman 0.012 0.014 0.042
DBCD.RSIHR 0.007 0.007 0.007
DBCD.Urn 0.023 0.044 0.231
DBCD.Baldi 0.007 0.008 0.012
SMLE.Neyman 0.018 0.020 0.052
SMLE.RSIHR 0.006 0.007 0.007
SMLE.Urn 0.035 0.066 0.424
SMLE.Baldi 0.007 0.008 0.015
EW1995.Neyman 0.014 0.016 0.052
EW1995.RSIHR 0.006 0.007 0.007
EW1995.Urn 0.029 0.057 0.436
EW1995.Baldi 0.007 0.008 0.012

Table 5.4: AZT trial: accidental bias factor estimate under H1 : β1 = 1.330 over 10,000 simulated trials,
p = (0.917, 0.745) and n = 477.

throughout the simulated trials, with the minimum accidental bias factor estimate of 0.006 - 0.007 being

approximately equal to the maximum accidental bias factor estimate of 0.007. This contrasts with the range

of accidental bias factor estimates provided by other RAR designs: for example, urn allocation targeted by

DBCD yielded accidental bias factor estimates ranging from 0.023 to 0.231, and Neyman allocation targeted

by ERADE from 0.013 to 0.047.

While even the worst-case scenario resulted in an accidental bias of EW1995.Urn of 0.436 seemed to not

shift our treatment effect drastically in an example with a one-unit increase in the confounding covariate

decreasing the probability of success by 5%, one should still be careful on how they would like to penalize

or reward different values of accidental bias factor estimates, since large absolute values of a covariate or its

coefficient would result in larger bias in the estimation of the treatment effect. Thus, we may decide that

the individual desirability function should heavily penalize even small increases in the accidental bias factor

estimate. Referring to Table 5.4 for accidental bias factor estimates, and the overall summary statistics

of the combined realizations of accidental bias factor estimates of all designs, the accidental bias factor

estimate values are mapped to individual desirability scores. For example, we see that EW1995.Urn had

the highest maximum accidental bias factor estimate of 0.436, and thus assign an accidental bias factor

estimate of 0.5 to individual desirability score 0. The 75th percentile of all realizations of accidental bias

factor estimate was 0.0199; the average was 0.0189. The 25th and 50th percentile values were 0.006834 and

0.008471, respectively. The lowest witnessed accidental bias factor estimate seen was 0.006491, so the value
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0.006 is mapped to an individual desirability score of 1. Ultimately, the values (0.5, 0.03, 0.1, 0.008, 0.0068,

0.006) are given scores (0, 0.2, 0.4, 0.6, 0.8, 1). Table 5.5 summarizes the resulting individual desirability

scores for accidental bias factors for each design. CRD has reasonably high individual desirability scores for

Individual Desirability Scores for Accidental Bias
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.761 0.853 0.858 0.855 0.861 0.862
PBD 0.794 0.794 0.794 0.794 0.794 0.794
ERADE.Neyman 0.205 0.479 0.489 0.484 0.497 0.513
ERADE.RSIHR 0.592 0.593 0.594 0.594 0.594 0.594
ERADE.Urn 0.200 0.211 0.227 0.239 0.256 0.399
ERADE.Baldi 0.526 0.590 0.595 0.594 0.598 0.642
DBCD.Neyman 0.200 0.484 0.495 0.489 0.504 0.518
DBCD.RSIHR 0.797 0.859 0.865 0.864 0.870 0.874
DBCD.Urn 0.200 0.217 0.235 0.243 0.259 0.400
DBCD.Baldi 0.527 0.596 0.618 0.628 0.654 0.780
SMLE.Neyman 0.200 0.366 0.388 0.378 0.403 0.421
SMLE.RSIHR 0.714 0.853 0.868 0.861 0.875 0.877
SMLE.Urn 0.076 0.256 0.286 0.295 0.328 0.399
SMLE.Baldi 0.477 0.584 0.594 0.610 0.622 0.842
EW1995.Neyman 0.200 0.442 0.456 0.449 0.466 0.484
EW1995.RSIHR 0.786 0.859 0.868 0.865 0.874 0.877
EW1995.Urn 0.064 0.236 0.260 0.271 0.294 0.399
EW1995.Baldi 0.525 0.595 0.617 0.635 0.672 0.855

Table 5.5: AZT Trial: summary statistics for individual desirability scores for accidental bias factor estimates
under H1 : β1 = 1.330 for various designs evaluating p = (0.917, 0.745) and n = 477.

accidental bias, ranging from 0.761 to 0.862. Note the longer left tail of the distribution of scores for CRD,

with a minimum score of 0.71, a median of 0.858 greater than the mean of 0.855, and a maximum score of

0.862 just slightly higher than the 75th percentile score of 0.861. Meanwhile, the PBD design consistently

yields a score of 0.794 across the 10,000 simulated designs. Neyman allocation regardless of the targeting

design has lower scores ranging from 0.2 to 0.5. The average score of Neyman allocation ranges from 0.378

to 0.489, depending on the targeting design. The low worst-case individual desirability scores of 0.064 and

0.076 for urn allocation targeted by EW1995 and SMLE, respectively, warn users of substantial worst-case

accidental bias. The urn allocation average had individual desirability scores all below 0.3, further warning

of a higher degree of potential accidental bias. On the other hand, the average scores greater than 0.86 by

DBCD.RSIHR, SMLE.RSIHR, and EW1995.RSIHR indicate lower accidental bias risk in these designs than

in ERADE.RSIHR, with a relatively lower score of 0.594.

Covariate Imbalance

Recall the three types of covariates discussed Section 4.1.3: C1 is a standard normal variable, C2 represents

a covariate that changes linearly over time, and C3 represents an autocorrelated variable. Table 5.6 displays

the probabilities of covariate imbalance exceeding 0.3 for these three covariates under the null and alternative
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hypotheses. Note first that the probabilities of covariate imbalance for covariates C1, C2, and C3 are very

similar whether or not there is a treatment effect. For example, the probability of imbalance for covariate

C1 is 0.001 and 0.000 under the null and alternative hypotheses, respectively, for either CRD or PBD. The

estimated probability of imbalance of C2 is 0.031 under CRD under either the null or alternative hypotheses.

The insensitivity of probability of covariate imbalance to whether or not there is a treatment effect for

CRD and PBD is expected, since the allocation rules of these designs do not depend on the estimate of the

treatment effect.

Under H 0 Under H 1
C1 C2 C3 C1 C2 C3

CRD 0.001 0.031 0.022 0.000 0.031 0.022
PBD 0.001 0.001 0.016 0.000 0.001 0.016
ERADE.Neyman 0.001 0.010 0.015 0.002 0.100 0.025
ERADE.RSIHR 0.001 0.002 0.010 0.001 0.002 0.011
ERADE.Urn 0.001 0.122 0.030 0.005 0.318 0.062
ERADE.Baldi 0.002 0.007 0.027 0.002 0.014 0.023
DBCD.Neyman 0.001 0.021 0.022 0.001 0.104 0.026
DBCD.RSIHR 0.001 0.010 0.020 0.001 0.012 0.019
DBCD.Urn 0.000 0.136 0.019 0.004 0.282 0.052
DBCD.Baldi 0.002 0.022 0.038 0.002 0.030 0.034
SMLE.Neyman 0.001 0.043 0.021 0.001 0.082 0.025
SMLE.RSIHR 0.001 0.030 0.020 0.000 0.034 0.018
SMLE.Urn 0.000 0.129 0.023 0.005 0.266 0.050
SMLE.Baldi 0.003 0.058 0.034 0.002 0.050 0.032
EW1995.Neyman 0.001 0.027 0.019 0.001 0.108 0.024
EW1995.RSIHR 0.001 0.018 0.020 0.001 0.015 0.022
EW1995.Urn 0.001 0.134 0.021 0.005 0.261 0.054
EW1995.Baldi 0.003 0.039 0.036 0.002 0.044 0.033

Table 5.6: AZT trial: probability of covariate imbalance, as defined by |CE − CC | > 0.3, C ∈ {C1, C2, C3}
under H0 : β1 = 0 and H1 : β1 = 1.330 for various designs evaluating p = (0.917, 0.745) and n = 477.

Under the null hypothesis H0, most designs do well avoiding covariate imbalance for C1, with the propor-

tion of simulated trials resulting in C1 covariate imbalance exceeding 0.3 ranging from 0.000 to 0.003, with

Baldi allocation resulting in highest proportion of 0.002 to 0.003. On the other hand, under the alternative

hypothesis, we observe a larger range in probabilities of covariate imbalance for C1, with Urn target having

an estimated probability of 0.005. On average, the probability of covariate imbalance for C1 under either

the null or alternative is acceptably small in this trial.

The probability of imbalance of covariate C2 using CRD and PBD is 0.031 and 0.001, respectively,

regardless of whether the trials are simulated under the null or alternative hypotheses. The highest risk for

imbalance of C2 is present in urn allocation targeted by DBCD design under the null, with an estimated

probability of imbalance of 0.136, and in urn allocation targeted by ERADE design under the alternative,

with an estimated probability of imbalance of 0.318. Under the alternative, many of the RAR designs have
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lower probability of imbalance of C2 than CRD, including ERADE.RSIHR, ERADE.Baldi,and DBCD.Baldi.

The value of simulation is evident here, with Neyman and Urn allocations proving less protective against

imbalance of a covariate with a linear trend than other target allocations Baldi and RSIHR.

Lastly, the probability of imbalance of covariate C3 using CRD and PBD is 0.022 and 0.016, respectively,

regardless of whether the trials are simulated under the null or alternative hypotheses. The highest risk for

imbalance of C3 under the null hypothesis is when targeting Baldi utilizing DBCD, with a probability of

imbalance of 0.038. ERADE targeting urn allocation under the alternative hypothesis has a probability of

imbalance of 0.062. Opposite to the relative performance of these designs with C2, Urn and Baldi target

allocations proved to have higher probabilities of imbalance for C3 than Neyman and RSIHR allocations.

While in Chapter 4 we have provided the same individual desirability function for C1, C2, and C3, here

in this more applied case study we show the flexibility of the framework by providing a distinct individual

desirability function to score each covariate type’s probability of imbalance exceeding 0.3. We continue to

focus on covariate imbalance scenarios only when there is a treatment effect present (under the alternative

hypothesis). Covariate imbalance is an undesirable characteristic, and is thus of the smaller-the-better type,

with values of 0 receiving the highest score of 1. Since the proportion of covariate imbalance exceeding 0.3 for

covariate C1 ranges from 0 to 0.005, we map a value of 0.006 and greater to an individual desirability score

of 0. Specifically, probabilities (0.006, 0.004, 0.001, 0.005, 0.002, 0) are mapped to individual desirability

scores of (0, 0.2, 0.4, 0.6, 0.8, 1).

For the C2 covariate representing a linear trend, the proportions of imbalance in 10,000 simulated trials

ranged from 0 to 0.062. We would like to automatically penalize designs with a probability of C2 covariate

imbalance greater than 0.25 to have an individual desirability score of 0 for this design characteristic. While

a probability of 0 yields a perfect score of 1, we do see some designs such as PBD and ERADE.RSIHR

yielding low probabilities of imbalance of 0.001 and 0.002. After that, we see the probability values jump

towards 0.3. Given this, the probabilities (0.25, 0.15, 0.10, 0.0325, 0.0010, 0) are mapped to scores (0, 0.2,

0.4, 0.6, 0.8, 1).

The C3 covariate represents an autocorrelated covariate, where the value of the subject’s covariate de-

pends on that of a previous subject. While this is not a concern regarding the response, it is a feasible type

of independent variable. The proportions of covariate imbalance for C3 in 10,000 simulated trials ranged

from 0 to 0.062. Designs ERADE.RSIHR yield low probabilities of imbalance of 0.011, so we will map the

value of 0.01 to a score of 0.80. The probabilities of imbalance of C3 of the other designs seem to range

uniformly; the probability values (0.06, 0.045, 0.03, 0.02, 0.01, 0) are mapped to scores (0, 0.2, 0.4, 0.6, 0.8,

1).

Table 5.7 shows the resulting individual desirability scores for probability of covariate imbalance for the
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discussed three covariates. PBD performs well balancing C1 and C2, and relatively well for C3, with scores

Individual desirability scores for imbalance of 3 covariates
C1 C2 C3

CRD 1.000 0.608 0.560
PBD 1.000 0.799 0.682
ERADE.Neyman 0.327 0.398 0.508
ERADE.RSIHR 0.560 0.793 0.772
ERADE.Urn 0.120 0.000 0.000
ERADE.Baldi 0.360 0.716 0.534
DBCD.Neyman 0.387 0.386 0.472
DBCD.RSIHR 0.440 0.731 0.620
DBCD.Urn 0.160 0.000 0.105
DBCD.Baldi 0.320 0.617 0.341
SMLE.Neyman 0.380 0.453 0.506
SMLE.RSIHR 0.600 0.595 0.632
SMLE.Urn 0.050 0.000 0.132
SMLE.Baldi 0.340 0.550 0.376
EW1995.Neyman 0.387 0.368 0.528
EW1995.RSIHR 0.560 0.710 0.556
EW1995.Urn 0.110 0.000 0.085
EW1995.Baldi 0.307 0.567 0.361

Table 5.7: AZT Trial: individual desirability scores for probability of covariate imbalance under
H1 : β1 = 1.330 for various designs evaluating p = (0.917, 0.745) and n = 477.

of 1, 0.799, and 0.682, respectively. Note that although CRD has a score of 1 in balancing C1, several other

adaptive designs are able to outperform it for C2 and C3. For example, ERADE.RSIHR has scores of 0.793

and 772 for C2 and C3, respectively, compared with CRD’s 0.608 and 0.560, respectively. Urn and Neyman

allocations have low individual desirability scores for all three covariates C1, C2, and C3. For example,

urn allocation targeted by EW1995 has undesirable scores of 0.110, 0.000, and 0.085, for C1, C2, and C3

respectively. Recall Neyman allocation tends to place more subjects in the AZT experimental arm, and here

we note that it also performs poorly in balancing covariates. Baldi allocation has a score of approximately

0.3, depending on the targeting design, for standard normal covariate C1, and score below 0.4 for C3 for

DBCD, SMLE, and EW1995 designs, but does better under ERADE with an individual desirability score of

0.534 for covariate C3. Although Baldi allocation does not do well in avoiding imbalance of C1 and C2, note

that it scores above 0.7 for covariate C2, regardless of the targeting design. For example, ERADE.Baldi has

a score of 0.716 for C2, higher than the score of CRD, and underperforming only relative to ERADE.RSIHR

and PBD designs.

Selection Bias

Table 5.8 displays the performance of the evaluated designs in regards to selection bias. Recall from Section

4.1.4 that third-order selection bias occurs when past subject allocation is known or can be correctly guessed

by an investigator, influencing their ability to predict and act on their belief of future allocations based on
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prior assignments. Thus, the higher the selection bias measure shown in Table 5.8, the more susceptible a

trial’s results are to selection bias, which influences validity of the treatment effect estimate since certain

subjects may be more likely to be assigned to one arm or the other.

Selection Bias
Min Mean Max

CRD 0.00 0.00 0.00
PBD 47.47 60.51 79.23
ERADE.Neyman 104.79 116.78 126.16
ERADE.RSIHR 103.12 115.76 121.48
ERADE.Urn 104.80 119.15 133.52
ERADE.Baldi 125.72 139.85 155.79
DBCD.Neyman 8.80 20.27 73.38
DBCD.RSIHR 7.83 16.10 41.87
DBCD.Urn 13.00 37.74 97.01
DBCD.Baldi 71.96 101.50 136.67
SMLE.Neyman 2.65 10.45 61.31
SMLE.RSIHR 1.96 5.98 18.45
SMLE.Urn 6.71 26.81 99.18
SMLE.Baldi 88.48 99.35 121.38
EW1995.Neyman 6.19 15.64 63.31
EW1995.RSIHR 4.95 11.58 30.02
EW1995.Urn 12.59 33.72 221.65
EW1995.Baldi 81.96 101.20 133.83

Table 5.8: AZT trial: selection bias under H1 : β1 = 1.330 for various designs evaluating p = (0.917, 0.745)
and n = 477.

By definition, the selection bias of CRD is 0, since the probability of being allocated to either arm is

always 0.5, regardless of the stage of the trial or any prior results. PBD with block size 8 results in an average

selection bias of 60.51. Selection bias in PBD is less of a concern if the block size is able to be hidden from the

investigator. However, should the investigator know the block size, he may occasionally enroll subjects with

an idea of the probability of assignment to the AZT experimental arm. Of the RAR designs, Table 5.8 shows

that, save for Urn design targeted by EW1995, the ERADE design has much higher selection bias of over 120

compared to the same target allocations pursued by DBCD, SMLE, or EW1995. ERADE’s larger selection

bias than other RAR designs is not surprising due to its attainment of the lower bound of the variance of

nE/n, as discussed in Section 1.2.2. Amongst the RAR designs, RSIHR targeted by SMLE had the lowest

min, mean, and max selection biases of 1.96, 5.98, and 18.45, respectively. Conversely, EW1995.Urn saw the

highest worst-case selection bias of 221.65. When implementing DBCD, RSIHR yielded the lowest selection

bias of 16.10. Baldi allocation had relatively high selection bias of 101.50.

The percentiles of the realized selection bias values resulting from 10,000 simulated trial was utilized in

deciding the shape of the individual desirability function. For example, the 90th percentile selection bias

value was 119, and thus a selection bias value of 120 or greater will be given a score of 0. Selection bias
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of 65 was the 60th percentile of all realized values, and was given a score of 0.4; the value of 12 was the

20th percentile and contributed to the decision of giving a value of 10 a score of 0.8. Ultimately, the values

(120, 100, 65, 20, 10, 0) were mapped to individual desirability scores of (0, 0.2, 0.4, 0.6, 0.8, 1.0). Table 5.9

summarizes the distributions of the resulting individual desirability scores for selection bias.

Individual Desirability Scores for Selection Bias
Min 25th Percentile Median Mean 75th Percentile Max

CRD 1.000 1.000 1.000 1.000 1.000 1.000
PBD 0.319 0.408 0.421 0.420 0.432 0.478
ERADE.Neyman 0.000 0.015 0.029 0.033 0.046 0.152
ERADE.RSIHR 0.000 0.023 0.038 0.042 0.057 0.169
ERADE.Urn 0.000 0.000 0.008 0.016 0.026 0.152
ERADE.Baldi 0.000 0.000 0.000 0.000 0.000 0.000
DBCD.Neyman 0.352 0.586 0.611 0.629 0.672 0.824
DBCD.RSIHR 0.503 0.637 0.688 0.684 0.731 0.843
DBCD.Urn 0.217 0.497 0.527 0.521 0.551 0.740
DBCD.Baldi 0.000 0.128 0.186 0.174 0.225 0.360
SMLE.Neyman 0.416 0.745 0.814 0.795 0.861 0.947
SMLE.RSIHR 0.631 0.858 0.891 0.880 0.913 0.961
SMLE.Urn 0.205 0.543 0.583 0.592 0.641 0.866
SMLE.Baldi 0.000 0.182 0.207 0.198 0.221 0.266
EW1995.Neyman 0.408 0.636 0.705 0.698 0.760 0.876
EW1995.RSIHR 0.555 0.732 0.779 0.769 0.815 0.901
EW1995.Urn 0.000 0.514 0.548 0.541 0.574 0.748
EW1995.Baldi 0.000 0.152 0.192 0.181 0.216 0.303

Table 5.9: AZT Trial: summary statistics for individual desirability scores for selection bias under H1 : β1 =
1.330 for various designs evaluating p = (0.917, 0.745) and n = 477.

Since selection bias is always 0 for CRD, its individual desirability score for this component is always

1. The block size of PBD was 8, small enough such that it scored less well for this component, with an

average score of 0.420. Baldi allocation targeted by ERADE always had selection bias greater than 120,

so its individual desirability score is consistently 0 across all simulated trials. It is able to do better under

other designs; for example, DBCD.Baldi had an average selection bias individual desirability score of 0.174.

Neyman and RSIHR allocations did well with average scores ranging from 0.62 to 0.88, except when targeted

by ERADE in which case selection bias was more probable, with scores less than 0.5

If the statisticians and clinicians in the planning phases of the trial believe that the risk of selection bias is

minimal, it is recommended that the individual desirability function still be constructed with care to reflect

preferences of penalization if selection bias were in fact a concern. The weight of the selection bias can be

lowered accordingly, or even set to zero, so that a design’s score on this component plays little or no role in

the overall evaluation of a design.

Expected Number of Failures

In the context of this trial, minimizing the expected number of failures equates to minimizing the number
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of maternal-infant HIV transmissions. Due to the nature of the outcome, this ethical objective could be

considered much more critical in this trial than in those with less extreme outcomes. While RSIHR allocation

specifically aims to minimize the expected number of failures, we seek to evaluate the performance of the

other designs. Table 5.10 shows the expected number of failures as deduced from 10,000 simulated trials.

Expected Number of Failures
Min Mean Max

CRD 48.00 80.62 110.00
PBD 50.00 80.61 111.00
ERADE.Neyman 60.00 90.17 127.00
ERADE.RSIHR 50.00 78.40 110.00
ERADE.Urn 31.00 60.36 92.00
ERADE.Baldi 40.00 65.23 95.00
DBCD.Neyman 60.00 90.05 126.00
DBCD.RSIHR 50.00 78.43 110.00
DBCD.Urn 27.00 60.05 95.00
DBCD.Baldi 39.00 65.08 89.00
SMLE.Neyman 60.00 89.70 122.00
SMLE.RSIHR 46.00 78.46 110.00
SMLE.Urn 28.00 60.81 100.00
SMLE.Baldi 36.00 65.06 96.00
EW1995.Neyman 59.00 90.06 126.00
EW1995.RSIHR 49.00 78.46 112.00
EW1995.Urn 28.00 60.33 93.00
EW1995.Baldi 36.00 65.03 99.00

Table 5.10: AZT trial: expected number of failures under H1 : β1 = 1.330 for various designs evaluating
p = (0.917, 0.745) and n = 477.

Recall that the objective of Neyman allocation is to maximize power for a fixed sample size, and that it

is well-known that Neyman allocation can place less subjects in the stronger-performing arm when the prob-

ability of success is high in both arms of a trial. Neyman allocation’s inability to place more subjects in the

AZT experimental arm results in its inability to yield lower maternal-infant HIV transmission rates; Neyman

allocations resulted in an average of 90 failures out of 477 subjects, regardless of the design implementing

the allocation. Neyman allocation also had the highest worse-case scenarios of 127, 126, 122, and 126 when

targeted by ERADE, DBCD, SMLE, and EW1995, respectively. We see then that in the case of the AZT

trial, with high probabilities of success in both the AZT and control arms of 0.917 and 0.745, respectively,

Neyman allocation performs worse with respect to expected number of failures than does non-RAR designs

CRD and PBD. The other target allocations on average are able to reduce the number of expected failures

compared to CRD and PBD. Whilst RSIHR’s goal is to minimize the expected number of failures, we see

that on average it is able to outperform Neyman allocation, but actually yields more failures than do Urn

and Baldi allocations. Specifically, RSIHR allocation results in about 78 maternal-infant HIV transmissions,

regardless of which RAR design targets it. This is certainly an improvement over Neyman’s 90 expected
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failures. However, Baldi allocation results in an expected 65 maternal-infant HIV transmissions, and Urn

allocation does extremely well with 60 expected maternal-infant HIV transmissions. This means that for this

trial, Urn allocation would result in an expected 23% less maternal-infant HIV transmissions than RSIHR

allocation. The best-case scenario witnessed in 10,000 simulated trials is also provided by Urn allocation,

targeted by either SMLE or EW1995 designs, with 28 maternal-infant HIV transmissions out of 477 total

subjects. Urn and Baldi share in worst-case scenarios, with maximum number of failures seen across 10,000

simulated trials ranging from 89 to 99.

In the construction of the individual desirability function for expected number of failures, the minimum

and maximum number of failures across the 10,000 simulated trials was considered. Although the maximum

number of failures witnessed was 127, the 90th percentile for expected number of failures was 93. Conse-

quently, trials yielding 100 failures or more were given individual desirability scores for this component of

0. The 20th percentile for number of failures was 62, which was mapped to a score of 0.6. Continuing to

evaluate the distribution of failures across the simulated trials, the values (100, 85, 72, 62, 50, 25) were

given scores (0, 0.2, 0.4, 0.6, 0.8, 1.0). Table 5.11 summarizes the resulting individual desirability score

distributions for each design.

Individual Desirability Scores for Expected Number of Failures
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.000 0.187 0.262 0.274 0.354 0.816
PBD 0.000 0.187 0.262 0.273 0.354 0.800
ERADE.Neyman 0.000 0.053 0.133 0.141 0.200 0.633
ERADE.RSIHR 0.000 0.215 0.308 0.307 0.385 0.800
ERADE.Urn 0.107 0.520 0.633 0.617 0.717 0.952
ERADE.Baldi 0.067 0.440 0.540 0.533 0.633 0.880
DBCD.Neyman 0.000 0.053 0.133 0.142 0.215 0.633
DBCD.RSIHR 0.000 0.215 0.308 0.307 0.385 0.800
DBCD.Urn 0.067 0.520 0.633 0.622 0.733 0.984
DBCD.Baldi 0.147 0.440 0.540 0.536 0.633 0.888
SMLE.Neyman 0.000 0.053 0.133 0.148 0.215 0.633
SMLE.RSIHR 0.000 0.215 0.308 0.307 0.385 0.832
SMLE.Urn 0.000 0.500 0.617 0.608 0.717 0.976
SMLE.Baldi 0.053 0.440 0.540 0.536 0.633 0.912
EW1995.Neyman 0.000 0.053 0.133 0.142 0.215 0.650
EW1995.RSIHR 0.000 0.215 0.308 0.306 0.385 0.808
EW1995.Urn 0.093 0.520 0.633 0.617 0.717 0.976
EW1995.Baldi 0.013 0.440 0.540 0.537 0.633 0.912

Table 5.11: AZT Trial: summary statistics for individual desirability scores for expected number of failures
under H1 : β1 = 1.330 for various designs evaluating p = (0.917, 0.745) and n = 477.

With trials resulting in 120 failures or more being considered absolutely unacceptable with an individual

desirability score of 0, the majority of the designs assessed did have worst-case scenarios attaining this

undesirable score. Specifically, all designs except ERADE.Urn, ERADE.Baldi, DBCD.Urn, DBCD.Baldi,
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SMLE.Baldi, EW1995.Urn, and EW1995.Baldi had at least one simulated trial out of 10,000 which resulted

in 120 failures or more. While Baldi and urn allocations typically were able to have better worst-case

scenarios, with non-zero minimum individual desirability scores, they also scored highest on average, with

scores ranging between 0.53 and 0.63, compared with CRD and PBD’s individual desirability score of 0.27.

The designs with the worst best-case scenarios can be seen by their lowest maximum individual desirability

scores: Neyman allocation even in their strongest trials with regards to minimizing failures had maximum

scores of 0.633 to 0.650, which was close to urn allocation’s average individual desirability scores. The large

range and even difference in distributions of the individual desirability scores for expected number of failures

prove it to be a strong differentiator between designs if this ethical objective is important to those designing

the trial.

Bias

Table 5.12 displays bias under the null hypothesis across 10,000 simulated trials. Recall that the true

difference in success probabilities under the null is 0, and β = (β0, β1) = (1.072121, 0).

Bias E(β̂1 − β1)
Min Mean Max

CRD -0.740 0.002 0.729
PBD -0.750 -0.000 0.868
ERADE.Neyman -0.918 0.000 0.782
ERADE.RSIHR -0.766 0.001 0.901
ERADE.Urn -0.896 0.003 0.781
ERADE.Baldi -1.054 -0.014 0.841
DBCD.Neyman -0.823 0.004 0.797
DBCD.RSIHR -0.790 -0.000 0.748
DBCD.Urn -0.928 0.001 0.925
DBCD.Baldi -1.162 -0.016 0.953
SMLE.Neyman -0.820 0.002 0.848
SMLE.RSIHR -0.825 0.002 0.750
SMLE.Urn -0.917 0.002 0.784
SMLE.Baldi -0.931 -0.009 0.913
EW1995.Neyman -0.890 -0.001 0.816
EW1995.RSIHR -0.754 0.002 0.861
EW1995.Urn -0.816 0.002 0.818
EW1995.Baldi -1.070 -0.005 0.857

Table 5.12: AZT trial: bias of the treatment effect estimate (E(β̂1 − β1)) under H0 : β1 = 0 for various
designs evaluating p = (0.917, 0.745) and n = 477.

The average bias under the null for most designs was close to 0. Specifically, PBD, ERADE.Neyman, and

DBCD.RSIHR all had average bias of 0.000. CRD had an average bias of 0.002. Designs yielding the highest

average bias were ERADE.Baldi and DBCD.Baldi, with a bias of -0.014 and -0.016, respectively. Note that

CRD has the smallest range of bias, ranging from -0.740 to 0.729. This means CRDs worst underestimation of

the treatment effect results in estimating the difference in success probabilities between AZT and placebo to
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be exp(1.072121 + 0 - 0.74)/(1+exp(1.072121 + 0 - 0.74)) - exp(1.072121)/(1+exp(1.072121)) = -0.163, and

its worst overestimation of the treatment effect results in estimating the difference in success probabilities to

be exp(1.072121 + 0 + 0.729)/(1+exp(1.072121 + 0 + 0.729)) - exp(1.072121)/(1+exp(1.072121)) = 0.113.

Amongst the four target allocations assessed, for a given design (e.g. DBCD), Baldi had the worst

underestimation of β1. Baldi targeted by ERADE, DBCD, SMLE, and EW1995 had a minimum bias of

-1.054, -1.162, -0.931, and -1.070, respectively, across 10,000 simulated trials. For overestimation of β1,

DBCD.Baldi had the worst maximum bias of 0.953, followed closely by DBCD.Urn with a maximum bias of

0.925.

While the minimum bias of the treatment effect under the null hypothesis was -1.16 in 10,000 simulated

trials, the 10th percentile bias value was -0.28. Similarly, the maximum bias realized was 0.95, but the 90th

percentile bias value was +0.28. Given this, trials resulting in bias of ±0.5 are given an individual desirability

score of 0 for the bias component. The value of 0 is given a score of 1. A symmetrical nominal-the-better

individual desirability function is constructed based off the distributional characteristics of the realized bias

values across 10,000 simulations. For example, the median bias was 0.0009 and the 45th and 55th percentiles

were ±0.025 and assigned scores of 0.80. The final definition of the individual desirability function assigned

values of (-0.5, -0.25, -0.12, -0.05, -0.025, 0, 0.025, 0.05, 0.12, 0.25, 0.5) to individual desirability scores of (0,

0.2, 0.4, 0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2, 0). Table 5.13 displays the summary statistics of resulting individual

desirability scores for bias.

Individual Desirability Scores for Bias
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.000 0.213 0.369 0.405 0.551 1.000
PBD 0.000 0.208 0.361 0.401 0.546 0.990
ERADE.Neyman 0.000 0.213 0.367 0.404 0.551 0.999
ERADE.RSIHR 0.000 0.211 0.371 0.402 0.546 0.991
ERADE.Urn 0.000 0.210 0.367 0.403 0.551 1.000
ERADE.Baldi 0.000 0.186 0.341 0.377 0.529 0.997
DBCD.Neyman 0.000 0.212 0.366 0.404 0.554 0.999
DBCD.RSIHR 0.000 0.211 0.369 0.404 0.552 0.999
DBCD.Urn 0.000 0.210 0.368 0.404 0.554 1.000
DBCD.Baldi 0.000 0.183 0.343 0.378 0.529 1.000
SMLE.Neyman 0.000 0.208 0.368 0.404 0.551 1.000
SMLE.RSIHR 0.000 0.211 0.368 0.407 0.555 1.000
SMLE.Urn 0.000 0.206 0.364 0.401 0.549 0.998
SMLE.Baldi 0.000 0.187 0.344 0.383 0.536 1.000
EW1995.Neyman 0.000 0.201 0.359 0.396 0.543 1.000
EW1995.RSIHR 0.000 0.204 0.365 0.400 0.547 1.000
EW1995.Urn 0.000 0.207 0.364 0.399 0.546 0.999
EW1995.Baldi 0.000 0.182 0.344 0.378 0.536 1.000

Table 5.13: AZT Trial: summary statistics for individual desirability scores for bias (E(β̂1 − β1)) under
H0 : β1 = 0 for various designs evaluating p = (0.917, 0.745) and n = 477.
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Table 5.13 shows that each design’s distribution of individual desirability scores for the bias component

are quite similar; there is less variance in their summary statistics than was witnessed in the expected

number of failures component. Each design has scores ranging between 0 and nearly 1. On average, most

designs score around 0.40. CRD has an average score of 0.405; many designs are able to do almost as well.

The designs that do more poorly on average are ones that target Baldi allocation, with an average score of

approximately 0.38, and lower 25th, 50th, and 75th percentile values of 0.18, 0.34, and 0.53, respectively.

However, the difference in the individual desirability scores is smaller than those seen in other components.

While bias under the null is important, relative bias under the alternative is probably of more interest

to those designing the clinical trial, since they are inclined to believe a treatment effect does exist.

Relative Bias

Table 5.14 shows relative bias across 10,000 simulated trials for the evaluated designs.

Relative Bias E( β̂1−β1

β1
)× 100

Min Mean Max
CRD -77.70 1.13 111.91
PBD -74.39 1.19 105.62
ERADE.Neyman -72.52 6.47 1232.99
ERADE.RSIHR -66.71 1.23 118.75
ERADE.Urn -68.26 1.77 101.72
ERADE.Baldi -70.66 1.05 99.46
DBCD.Neyman -73.69 5.01 1232.09
DBCD.RSIHR -75.78 1.29 106.87
DBCD.Urn -77.62 1.77 124.31
DBCD.Baldi -80.98 1.10 101.04
SMLE.Neyman -72.25 4.13 1219.22
SMLE.RSIHR -75.76 1.36 104.21
SMLE.Urn -70.86 1.61 109.41
SMLE.Baldi -73.71 0.68 94.78
EW1995.Neyman -75.05 4.61 1229.39
EW1995.RSIHR -67.88 1.40 86.27
EW1995.Urn -70.88 1.79 101.13
EW1995.Baldi -82.85 0.97 90.71

Table 5.14: AZT trial: bias of the treatment effect estimate under the alternative hypothesis (E( β̂1−β1

β1
)×100)

for various designs evaluating p = (0.917, 0.745),β = (β0, β1) = (1.072121, 1.330146) and n = 477.

Since the minimum relative bias is still greater than -100, we see that none of the designs conclude that

the placebo arm has a higher probability of success. SMLE targeting Baldi yields the lowest average relative

bias of 0.68 across 10,000 simulated trials, even lower than the average relative bias of 1.13 yielded by CRD.

The strong performance of SMLE targeting Baldi is not undone by a large variance of relative bias; its

minimum and maximum relative biases are -73.71 and 94.78, respectively, both better than the minimum

and maximum of CRD of -77.70 and 111.91, respectively. Baldi targeted by ERADE, DBCD, and EW1995
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also have better average relative bias values than CRD. Note, however, that EW1995.Baldi yields worse

minimum relative bias of -82.85, compared with -77.70 of CRD.

While Baldi is a strong performer with regards to relative bias, Neyman allocation yields higher relative

biases. For example, Neyman allocation targeted by ERADE yielded an average relative bias of 6.47. This

means that on average, ERADE.Neyman estimated β̂1 to be 0.0647× 1.330146 + 1.330146 = 1.416, meaning

that the estimated difference in probabilities of success in the two arms attributable to the treatment was

0.178 rather than the true difference in probabilities of 0.172. We can see that on average, then, these designs

all perform quite well with regards to relative bias. Inspecting the maximum relative biases seen in 10,000

simulated trials, we see that most designs have a worst-case relative bias of about 100, which would mean that

the design estimated β̂1 to be 1× 1.330146 + 1.330146 = 2.663, resulting in an estimation of the difference in

probabilities of success in the AZT versus placebo arms to be 0.977 - 0.745 = 0.232. ERADE.Neyman had a

maximum relative bias of 1233, which means that it estimated β̂1 to be 12.33×1.330146+1.330146 = 17.731

(estimating guaranteed success in the AZT arm), resulting in an estimation of the difference in probabilities

of success in the AZT versus placebo arms to be 0.999-0.745 = 0.255. Neyman’s highest average relative

bias and highest maximum relative bias across 10,000 simulated trials goes hand-in-hand with its goal to

maximize power, since overestimation of the treatment effect would lead to a correct rejection of the null

hypothesis and an increase in power.

The minimum relative bias observed across 10,000 simulated trials was nearly -83, and the 1st percentile

was -0.45. This leads us to setting our minimum acceptable relative bias to -80. On the other hand, the

maximum relative bias was nearly 1233, and the 99th percentile of relative bias was 55; the maximum

acceptable relative bias is set to 100. Since under the alternative, there exists a positive treatment effect,

positive values of relative bias ought to be penalized less than negative values. Observing the distributional

characteristics of relative bias in the simulated trials, the values (-80, -50, -20, -11, -5, 0, 5, 20, 35, 60,

100) are mapped to individual desirability scores of (0, 0.2, 0.4, 0.6, 0.8, 1.0, 0.8, 0.6, 0.4, 0.2, 0). Table

5.15 summarizes the resulting individual desirability score distributions for relative bias. With our choice of

relative bias value-to-score mapping, we see some differentiation between the performances of the designs, yet

the scores do not vary as much as, say, those for expected number of failures. Other individual desirability

functions were tested for sensitivity analyses but the similarity of the distributions for relative bias amongst

the designs evaluated led to similar differences in scores for the other tested functions as well. Due to our

definition of -80 and 100 as our minimally and maximally acceptable relative bias values, most designs yield

scores ranging between 0 and 1. CRD has a mean individual desirability score for relative bias of 0.611, as does

ERADE.RSIHR, ERADE.Urn, and DBCD.Urn. The only design that fairs better is DBCD.Baldi, with an

average score of 0.612. Neyman allocation does not do as well, with a slightly lower score ranging from 0.58 to
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Individual Desirability Scores for Relative Bias
Min 25th Percentile Median Mean 75th Percentile Max

CRD 0.000 0.434 0.617 0.611 0.771 1.000
PBD 0.000 0.430 0.615 0.608 0.769 0.998
ERADE.Neyman 0.000 0.394 0.590 0.583 0.753 1.000
ERADE.RSIHR 0.000 0.433 0.623 0.611 0.770 1.000
ERADE.Urn 0.000 0.426 0.611 0.605 0.764 1.000
ERADE.Baldi 0.003 0.436 0.613 0.611 0.772 0.999
DBCD.Neyman 0.000 0.396 0.594 0.588 0.761 1.000
DBCD.RSIHR 0.000 0.438 0.622 0.611 0.769 1.000
DBCD.Urn 0.000 0.420 0.611 0.604 0.765 1.000
DBCD.Baldi 0.000 0.439 0.621 0.612 0.769 1.000
SMLE.Neyman 0.000 0.398 0.595 0.588 0.757 1.000
SMLE.RSIHR 0.000 0.435 0.620 0.610 0.767 1.000
SMLE.Urn 0.000 0.425 0.612 0.605 0.764 1.000
SMLE.Baldi 0.026 0.440 0.625 0.614 0.771 1.000
EW1995.Neyman 0.000 0.397 0.591 0.586 0.756 1.000
EW1995.RSIHR 0.069 0.444 0.628 0.615 0.769 1.000
EW1995.Urn 0.000 0.424 0.614 0.605 0.762 1.000
EW1995.Baldi 0.000 0.446 0.628 0.615 0.771 1.000

Table 5.15: AZT Trial: summary statistics for individual desirability scores for relative bias E( β̂1−β1

β1
)× 100

under H1 : β1 = 1.330 for various designs evaluating p = (0.917, 0.745) and n = 477.

0.59. Neyman’s poor performance is also apparent when looking at 25th percentile values: SMLE.Neyman’s

25th percentile score is 0.397, compared with ERADE.Baldi, which has the highest 25th percentile score of

0.446. 75th percentile values also show little variance, ranging from 0.753 by ERADE.Neyman to 0.772 by

ERADE.Baldi. EW1995.RSIHR’s minimum score of 0.069 shows less extreme biases than most of the other

designs with a minimum score of 0. However, the other designs targeting RSIHR - ERADE, DBCD, SMLE

- were not able to avoid scores of 0 due to their maximum relative bias values being greater than 100.

Type I Error and Power

While RAR provide value in their ability to target allocations that fulfill objectives such as maximizing

power or minimizing failures, the FDA has emphasized that designs must control the Type I error. The

proportion of trials amongst the 10,000 simulated that resulted in a failure to reject the null hypothesis is

the Type I error, and the proportion of trials that resulted in the correct rejection of the null hypothesis is

the power. Table 5.16 displays the Type I error and power.

The ability of all designs evaluated to achieve power greater than 90% is not surprising, since with

pE = 0.917 and pC = 0.745, only 189 subjects are needed to achieve 90% power at the α = 0.05 level.

The overwhelming evidence of the treatment effect is what resulted in the trial’s early termination after

its first interim look. While power is strong for designs evaluated, we can see Type I error varies from

0.0486 of SMLE.Urn, to 0.539 of EW1995.Neyman. Note that EW1995 consistently has higher Type I error

greater than 0.053. For example, EW1995 targeting urn allocation had Type I error of 0.0535, even though
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Type I Error Power
CRD 0.0493 0.9995
PBD 0.0502 0.9995
ERADE.Neyman 0.0479 0.9973
ERADE.RSIHR 0.0506 0.9995
ERADE.Urn 0.0504 0.9995
ERADE.Baldi 0.0513 0.9985
DBCD.Neyman 0.0500 0.9979
DBCD.RSIHR 0.0518 0.9994
DBCD.Urn 0.0482 0.9983
DBCD.Baldi 0.0485 0.9978
SMLE.Neyman 0.0522 0.9987
SMLE.RSIHR 0.0525 0.9992
SMLE.Urn 0.0486 0.9981
SMLE.Baldi 0.0502 0.9976
EW1995.Neyman 0.0539 0.9983
EW1995.RSIHR 0.0536 0.9995
EW1995.Urn 0.0535 0.9987
EW1995.Baldi 0.0535 0.9978

Table 5.16: AZT trial: Type I error and power for various designs evaluating p = (0.917, 0.745),β =
(β0, β1) = (1.072121, 1.330146) and n = 477.

SMLE targeting the same urn allocation was able to keep Type I error at 0.0486. The designs that were

able to control their Type I error at or below 5% are CRD, ERADE.Neyman, DBCD.Neyman, DBCD.Urn,

DBCD.Baldi, and SMLE.Urn.

The individual desirability function definitions for Type I error and power are easier to define, since most

statisticians have a clear conception of what they consider acceptable or not. This trial wants to control

Type I error at 5%, but Table 5.16 reveals that some designs yield lower Type I errors. Given this, we will

assign a Type I error of 0.05 the individual desirability score of 0.8, highly acceptable, and the Type I error

of 0.045 or lower the individual desirability score of 1. As 0.0539 is the largest Type I error, provided by

the EW1995.Neyman, the Type I error of 0.054 and higher is given the score of 0. Given this, we decide to

penalize deviations from 0.05 to 0.054 equally: the Type I error values of (0.054, 0.053, 0.052, 0.051, 0.05,

0.045) are given scores (0, 0.2, 0.4, 0.6, 0.8, 1).

The evaluation of power can be done in two ways. Since each of the designs evaluated resulted in power

greater than 0.9, we can automatically assign them all individual desirability scores of 1 for the power

component. The other method is to relate power with sample size and score the designs with higher power

with a higher score since this could be a proxy function for sample size needed. We will evaluate sample

size needed separately in this case. A desirability score of 0.9 is desired, so a design yielding power of 0.9 or

higher is given an individual desirability score of 1 for the component of power. A desirability score below

0.8 is considered absolutely unacceptable, so the value of 0.79 or less is given a score of 0. More specifically,
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the values (0.79, 0.80, 0.83, 0.85, 0.88, 0.9) to scores (0, 0.2, 0.4, 0.6, 0.8, 1). Table 5.17 displays the resulting

individual desirability scores for Type I error and power for each of the designs considered.

Individual Desirability Scores
Type I Error Power

CRD 0.828 1.000
PBD 0.760 1.000
ERADE.Neyman 0.884 1.000
ERADE.RSIHR 0.680 1.000
ERADE.Urn 0.720 1.000
ERADE.Baldi 0.540 1.000
DBCD.Neyman 0.800 1.000
DBCD.RSIHR 0.440 1.000
DBCD.Urn 0.872 1.000
DBCD.Baldi 0.860 1.000
SMLE.Neyman 0.360 1.000
SMLE.RSIHR 0.300 1.000
SMLE.Urn 0.856 1.000
SMLE.Baldi 0.760 1.000
EW1995.Neyman 0.020 1.000
EW1995.RSIHR 0.080 1.000
EW1995.Urn 0.100 1.000
EW1995.Baldi 0.100 1.000

Table 5.17: AZT Trial: individual desirability scores for Type I error and power for various designs evaluating
p = (0.917, 0.745) and n = 477.

Note that since only 180 subjects are needed to attain 90% level at the alpha = 0.05 level, each of

the simulated trials has high power well over 0.90, resulting in each design having the highest individual

desirability score of 1 for the power component. On the other hand, individual desirability scores for Type

I error vary from 0.02 from EW1995.Neyman to 0.884 from ERADE.Neyman. EW1995.Neyman did not

perform well with respect to Type I error. Conversely, DBCD.Neyman and ERADE.Neyman have Type I

error individual desirability scores of 0.800 and 0.884, respectively. Urn allocation targeted by DBCD does

next best, with a score of 0.872. SMLE.Urn also did well with a score of 0.85. Baldi allocation targeted by

DBCD scores similarly with a score of 0.860. RSIHR allocation performs moderately with ERADE and a

score of 0.680, and poorly when targeted by DBCD, SMLE, and RSIHR, with scores of 0.440, 0.300, and

0.080, respectively.

Overall Desirability Score

In order to calculate the overall desirability score, the relative importance of the 11 assessed characteristics is

considered. The weights for treatment group size imbalance, expected number of failures, covariate imbalance

C1, covariate imbalance C2, covariate imbalance C3, selection bias, accidental bias factor estimate, bias

under the null hypothesis, relative bias under the alternative hypothesis, Type I error, power, and sample
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Figure 5.1: AZT trial: individual desirability functions.
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Figure 5.2: AZT trial: individual desirability functions, continued.
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size needed to obtain 90% power are denoted in the vector

w = (wimbal, wfails, wc1, wc2, wc3, wsb, waccbias, wbias, wrelbias, walpha, wpower, wn).

In the first weight setting considered, the first decision is to place no weight on selection bias, because

the trial is double-blinded and there is no reason to suspect the integrity of the blinding would be violated.

The second decision is to place little weight on a) treatment group size imbalance and on b) bias under

the null hypothesis. The driver for a decision like this would be when there is strong evidence in pre-

clinical and early phase studies for efficacy of experimental drug AZT, so a) placing more subjects in the

AZT arm might be preferred for ethical reasons, and b) there is strong evidence that the trial will show

preference to the alternative hypothesis, reducing the importance of bias under the null. Next, the primary

endpoint of maternal-infant transmission of HIV Type I, determined by the 18-month followup of the infant

is considered to be highly undesirable, so we want to prioritize minimizing the expected number of failures

and place heavy weight on this component. Since a time trend in confounders may play a role, some weight

is given to covariate imbalance C2. As discussed in Section 4.1.3, covariate type C3 in healthcare settings

often represents some association with pollutants or other exposure that follows an autocorrelated lag model.

Although there is no certainty whether this exists, we can hedge against imbalance of a covariate of this

type by placing some weight on this component. More importantly, heavier weight is assigned to balancing

covariate type C1, an often present normally distributed random variable. Since this trial’s findings will

be submitted to regulatory agencies for approval, control of Type I error is essential, and is given as much

weight as minimizing the number of failures. Power is also important, but as many more subjects are being

enrolled than necessary for 90% power, only little weight is assigned to this component.

To summarize, the weight settings are w1 = (wimbal = 0.5, wfails = 3, wc1 = 2, wc2 = 1, wc3 = 1, wsb =

0, waccbias = 3, wbias = 0.5, wrelbias = 2, walpha = 3, wpower = 1).

With the individual desirability functions defined in this section and these weights, the highest scoring

design was Permuted Block Design (PBD). Recall that the block size used throughout this work for PBD is

8. Tables 5.18 to 5.20 summarize the mean of the individual desirability scores for each component and that

design component’s weight, and display the resulting overall desirability score for each design.

175



176

CRD PBD ERADE.Neyman ERADE.RSIHR ERADE.Urn ERADE.Baldi weight
Treatment Group Size Imbalance 0.573 0.597 0.027 0.749 0.261 0.485 0.029
Expected No. of Failures 0.274 0.273 0.141 0.307 0.617 0.533 0.176
Covariate Imbalance C1 1.000 1.000 0.327 0.560 0.120 0.360 0.118
Covariate Imbalance C2 0.608 0.799 0.398 0.793 0.000 0.716 0.059
Covariate Imbalance C3 0.560 0.682 0.508 0.772 0.000 0.534 0.059
Selection Bias 1.000 0.420 0.033 0.042 0.016 0.000 0.000
Accidental Bias 0.855 0.794 0.389 0.588 0.236 0.589 0.176
Bias 0.405 0.401 0.404 0.402 0.403 0.377 0.029
Relative Bias 0.611 0.608 0.583 0.611 0.605 0.611 0.118
Type I Error 0.828 0.760 0.884 0.680 0.720 0.540 0.176
Power 1.000 1.000 1.000 1.000 1.000 1.000 0.059
Overall Desirability D (mean) 0.620 0.621 0.000 0.559 0.000 0.540
Prob(Overall Desirability D = 0) 0.028 0.028 0.648 0.022 1.000 0.037

.

Table 5.18: AZT trial: mean individual desirability scores for 11 considered design characteristics, mean overall desirability score D, and Probabil-
ity(D=0), for CRD, PBD, ERADE.Neyman, ERADE.RSIHR, ERADE.Urn, and ERADE.Baldi designs (n = 477).

DBCD.Neyman DBCD.RSIHR DBCD.Urn DBCD.Baldi SMLE.Neyman SMLE.RSIHR weight
Treatment Group Size Imbalance 0.033 0.752 0.249 0.478 0.057 0.742 0.029
Expected No. of Failures 0.142 0.307 0.622 0.536 0.148 0.307 0.176
Covariate Imbalance C1 0.387 0.440 0.160 0.320 0.380 0.600 0.118
Covariate Imbalance C2 0.386 0.731 0.000 0.617 0.453 0.595 0.059
Covariate Imbalance C3 0.472 0.620 0.105 0.341 0.506 0.632 0.059
Selection Bias 0.629 0.684 0.521 0.174 0.795 0.880 0.000
Accidental Bias 0.398 0.864 0.260 0.626 0.222 0.861 0.176
Bias 0.404 0.404 0.404 0.378 0.404 0.407 0.029
Relative Bias 0.588 0.611 0.604 0.612 0.588 0.610 0.118
Type I Error 0.800 0.440 0.872 0.860 0.360 0.300 0.176
Power 1.000 1.000 1.000 1.000 1.000 1.000 0.059
Overall Desirability D (mean) 0.000 0.529 0.000 0.564 0.000 0.506
Prob(Overall Desirability D = 0) 0.632 0.022 1.000 0.037 0.580 0.023

.

Table 5.19: AZT trial: mean individual desirability scores for 11 considered design characteristics, mean overall desirability score D, and Probabil-
ity(D=0), for DBCD.Neyman, DBCD.RSIHR, DBCD.Urn, DBCD.Baldi, SMLE.Neyman, and SMLE.RSIHR designs (n = 477)
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SMLE.Urn SMLE.Baldi EW1995.Neyman EW1995.RSIHR EW1995.Urn EW1995.Baldi weight

Treatment Group Size Imbalance 0.286 0.476 0.034 0.753 0.264 0.471 0.029

Expected No. of Failures 0.608 0.536 0.142 0.306 0.617 0.537 0.176

Covariate Imbalance C1 0.050 0.340 0.387 0.560 0.110 0.307 0.118

Covariate Imbalance C2 0.000 0.550 0.368 0.710 0.000 0.567 0.059

Covariate Imbalance C3 0.132 0.376 0.528 0.556 0.085 0.361 0.059

Selection Bias 0.592 0.198 0.698 0.769 0.541 0.181 0.000

Accidental Bias 0.308 0.602 0.326 0.865 0.287 0.632 0.176

Bias 0.401 0.383 0.396 0.400 0.399 0.378 0.029

Relative Bias 0.605 0.614 0.586 0.615 0.605 0.615 0.118

Type I Error 0.856 0.760 0.020 0.080 0.100 0.100 0.176

Power 1.000 1.000 1.000 1.000 1.000 1.000 0.059

Overall Desirability D (mean) 0.000 0.552 0.000 0.400 0.000 0.384

Prob(Overall Desirability D = 0) 1.000 0.034 0.636 0.027 1.000 0.038
.

Table 5.20: AZT trial: mean individual desirability scores for 11 considered design characteristics, mean overall desirability score D, and Probabil-
ity(D=0), for SMLE.Urn, SMLE.Baldi, EW1995.Neyman, EW1995.RSIHR, EW1995.Urn, and EW1995.Baldi designs (n = 477).



In a sensitivity analysis, what sort of weight preference would lead us to choose a response-adaptive

randomization? Tweaking two of the weights such that slightly more weight was placed on imbalance, and

no weight was placed on covariate imbalance C1, such that w2 = (wimbal = 1, wfails = 3, wc1 = 0, wc2 =

1, wc3 = 1, wsb = 0, waccbias = 3, wbias = 0.5, wrelbias = 2, walpha = 3, wpower = 1), Baldi allocation targeted

by DBCD has the highest overall desirability score of 0.604.

On the other hand, if the trial is not blinded throughout the entire study’s randomization period, or if

the integrity of the blinding is questioned, more weight may be placed on selection bias. If we also emphasize

importance of balancing covariate C1, place no weights on covariate imbalances C2 and C3, decrease weight

placed on accidental bias factor estimate, and increase weight on power, such that w3 = (wimbal = 1, wfails =

3, wc1 = 2, wc2 = 0, wc3 = 0, wsb = 0.5, waccbias = 3, wbias = 0.5, wrelbias = 3, walpha = 3, wpower = 2),

Complete Randomized Design (CRD) has the highest overall desirability score of 0.642.

Table 5.21 displays only, for brevity, the overall desirability score and the probability of overall desirability

being 0.

w2 w3

D Prob(D = 0) D Prob(D = 0)
CRD 0.580 0.028 0.642 0.028
PBD 0.583 0.028 0.599 0.028
ERADE.Neyman 0.000 0.648 0.000 0.663
ERADE.RSIHR 0.564 0.022 0.478 0.026
ERADE.Urn 0.000 1.000 0.331 0.421
ERADE.Baldi 0.567 0.037 0.000 1.000
DBCD.Neyman 0.000 0.632 0.000 0.632
DBCD.RSIHR 0.548 0.022 0.534 0.022
DBCD.Urn 0.000 1.000 0.481 0.107
DBCD.Baldi 0.604 0.037 0.551 0.050
SMLE.Neyman 0.000 0.580 0.000 0.580
SMLE.RSIHR 0.501 0.023 0.525 0.023
SMLE.Urn 0.000 1.000 0.429 0.122
SMLE.Baldi 0.585 0.034 0.547 0.034
EW1995.Neyman 0.000 0.636 0.000 0.636
EW1995.RSIHR 0.390 0.027 0.413 0.027
EW1995.Urn 0.000 1.000 0.321 0.131
EW1995.Baldi 0.398 0.038 0.381 0.040

.

Table 5.21: AZT trial: mean overall desirability score D, and Probability(D = 0), for 18 considered designs
(n = 477).

5.3 Design Selection with Sample Size Reduction

While the previous analysis of the AZT trial utilized the same sample size as the trial in practice, we observed

that the study was highly powered, leading to its early termination in favor of investigative treatment approval
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after the first interim analysis. We concluded that PBD, DBCD.Baldi, and CRD were the most desirable

given the three stated preference settings of the 11 design characteristics of interest.

However, given that these designs actually require different sample sizes to achieve 90% power, which

design performs best with respect to these same design characteristics of interest, after reaching a sample

size sufficient to obtain 90% power? To answer this question, simulation was used to obtain the sample size

needed for each design. Other than sample size, the same design parameters as presented in the previous

section are utilized. Using the necessary sample size only, the analysis is repeated. The results are detailed

in this section.

Treatment Group Characteristics

Table 5.22 summarizes treatment group characteristics. Note that, in general, non-RAR designs require

smaller sample size to obtain 90% power. This aligns with our expectations, since the variability in the

changing target allocation of RAR designs reduces power (see Section 1.2.3). ERADE is the most efficient

of the RAR designs discussed, and thus has smaller sample sizes than the other RAR designs. The sample

size needed to obtain 90% power ranges from 190 for ERADE.Neyman and ERADE.RSIHR designs, to 226

for DBCD.Baldi design. The proportion of subjects placed in the experimental AZT arm ranges from 0.38

(Neyman allocation targeted by ERADE, DBCD, and EW1995) to 0.75 (Urn allocation targeted by DBCD).

These allocations are consistent with those shown in Table 5.1 with the full sample size of n = 477.

n Needed for
90% power

Patients in
E (mean)

Patients in
E (sd)

Proportion
in E

CRD 195 97.70 6.98 0.50
PBD 195 97.50 0.80 0.50
ERADE.Neyman 190 71.94 10.49 0.38
ERADE.RSIHR 190 99.92 1.75 0.53
ERADE.Urn 210 154.87 13.95 0.74
ERADE.Baldi 218 150.34 3.77 0.69
DBCD.Neyman 193 73.64 10.86 0.38
DBCD.RSIHR 193 101.49 3.61 0.53
DBCD.Urn 215 160.41 15.06 0.75
DBCD.Baldi 226 156.63 4.94 0.69
SMLE.Neyman 195 77.02 11.90 0.39
SMLE.RSIHR 195 102.54 7.14 0.53
SMLE.Urn 215 156.74 17.59 0.73
SMLE.Baldi 225 155.49 7.91 0.69
EW1995.Neyman 195 74.04 11.55 0.38
EW1995.RSIHR 196 103.11 4.61 0.53
EW1995.Urn 220 162.39 16.67 0.74
EW1995.Baldi 220 152.91 6.42 0.70

Table 5.22: AZT trial reassessment using sample size needed for 90% power: Treatment group char-
acteristics under H1 : β1 = 1.330 over 10,000 simulated trials evaluating p = (0.917, 0.745), n =
n needed for 90% power.
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Treatment Group Size Imbalance nE − nC
Min Median Mean Max

CRD -51 1 0 57
PBD -3 -1 -0 3
ERADE.Neyman -116 -42 -46 22
ERADE.RSIHR -2 10 10 30
ERADE.Urn -10 100 100 192
ERADE.Baldi 68 80 83 140
DBCD.Neyman -121 -43 -46 15
DBCD.RSIHR -19 9 10 35
DBCD.Urn -25 107 106 195
DBCD.Baldi 48 86 87 142
SMLE.Neyman -121 -39 -41 53
SMLE.RSIHR -47 11 10 67
SMLE.Urn -65 101 98 191
SMLE.Baldi 23 85 86 159
EW1995.Neyman -123 -43 -47 31
EW1995.RSIHR -28 10 10 46
EW1995.Urn -40 106 105 196
EW1995.Baldi 40 86 86 148

Table 5.23: AZT trial reassessment with reduced sample size: summary statistics for treatment group size
imbalance, nE − nC , under H1 : β1 = 1.330 over 10,000 simulated trials evaluating p = (0.917, 0.745) and
n = n needed for 90% power.

Table 5.23 displays summary statistics for treatment group size imbalance nE−nC . The average treatment

group size imbalance ranges from -47 as seen in the trial utilizing EW1995.Neyman, to +106, as seen in the

trial utilizing DBCD.Urn. PBD has the smallest range in treatment group size imbalance of -3 to +3. The

largest range is seen in EW1995.Urn, which places as many as 40 more subjects in the control arm to 196

more subjects in the experimental AZT arm.

Accidental Bias

Table 5.24 shows the multiplicative increases of the accidental relative bias factor summary statistics when

reducing the sample size. For example, the average accidental bias factor estimate for CRD increased more

than five-fold from 0.007 to 0.034 (five-fold calculated pre-rounding). The multiplicative increases when

using sample size needed to obtain 90% power relative to the n = 477 of the original trial are shown in the

parentheses. The multiplicative increases range from 3.8 when using SMLE.Baldi design, to 27.7 when using

ERADE.Urn design. This large increase of 27.7 in maximum accidental bias factor estimate is due to the

large treatment group size imbalance. While the proportion of subjects in experimental AZT arm is about

0.74 in both the previous and current analyses, the smaller sample size in the current analysis implies a larger

treatment group size imbalance. Specifically, the largest witnessed proportion of imbalance in the reduced

sample size analysis is 192/210 = 0.91, larger than the proportion of imbalance in the original sample size

analysis of 375/477 = 0.79. (See Section 4.1.2.)
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Accidental Bias Factor Estimates
Min (Multiplicative

Increase)
Mean

(Multiplicative
Increase)

Max
(Multiplicative

Increase)
CRD 0.034 (5.1) 0.034 (5.2) 0.040 (5.7)
PBD 0.036 (5.2) 0.036 (5.2) 0.036 (5.2)
ERADE.Neyman 0.072 (5.6) 0.086 (5.9) 0.183 (3.9)
ERADE.RSIHR 0.048 (5.8) 0.048 (5.8) 0.051 (6.0)
ERADE.Urn 0.094 (4.8) 0.183 (5.3) 3.487 (27.7)
ERADE.Baldi 0.033 (4.3) 0.037 (4.4) 0.078 (6.4)
DBCD.Neyman 0.071 (4.7) 0.084 (6.0) 0.194 (4.6)
DBCD.RSIHR 0.035 (5.5) 0.036 (5.5) 0.038 (5.6)
DBCD.Urn 0.108 (4.6) 0.226 (5.1) 3.424 (14.8)
DBCD.Baldi 0.027 (3.8) 0.034 (4.2) 0.066 (5.5)
SMLE.Neyman 0.082 (4.6) 0.094 (4.7) 0.217 (4.2)
SMLE.RSIHR 0.035 (5.3) 0.035 (5.4) 0.045 (6.1)
SMLE.Urn 0.143 (4.1) 0.285 (4.3) 3.218 (7.6)
SMLE.Baldi 0.025 (3.8) 0.035 (4.1) 0.099 (6.7)
EW1995.Neyman 0.079 (5.5) 0.094 (5.7) 0.217 (4.2)
EW1995.RSIHR 0.034 (5.2) 0.034 (5.2) 0.038 (5.5)
EW1995.Urn 0.121 (4.2) 0.248 (4.4) 2.850 (6.5)
EW1995.Baldi 0.027 (4.1) 0.036 (4.5) 0.085 (7.0)

Table 5.24: AZT trial reassessment with reduced sample size: accidental bias factor estimate under
H1 : β1 = 1.330 over 10,000 simulated trials evaluating p = (0.917, 0.745) and n = n needed for 90% power;
multiplicative increases relative to accidental bias factor estimate yielded from n = 477 are shown in paren-
theses.

In the original analysis, we focused on the worst-case of an accidental bias factor estimate of EW1995.Urn

(0.436 when n = 477), which resulted in underestimating the difference in probability of success by 0.031.

With reduced sample sizes, EW1995.Urn still yielded the worst-case accidental bias factor estimate, yet it

was much higher at 3.487. This means that for a covariate which results in a 5% decrease in probability of

success with a one unit increase of the covariate (βomitted = −0.5275), the bias on the treatment effect would

be ±
√

(−0.5275)2 × 3.487 = ±0.985. Recall that the true value of β1 = 1.330146, so the estimated difference

in probability of success attributable to experimental treatment AZT would be exp(1.072121+1.330146±0.985)
1+exp(1.072121+1.330146±0.985)−

0.745 = (0.805 − 0.745)or(0.967 − 0.745) = 0.060or0.222, rather than the true difference in probability of

success of 0.172.

The ranking of the designs using solely accidental bias factor estimate remained similar. For example,

CRD, PBD, DBCD.RSIHR, SMLE.RSIHR, and EW1995.RSIHR once again had the lowest average acciden-

tal bias factor estimates. On the other hand, Urn allocation targeted by any of the RAR designs evaluated

were the worst-performing designs with regards to this component, being the only designs yielding accidental

bias factor estimates greater than 2.

Covariate Imbalance
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Recall the three types of covariates discussed in Section 4.1.3: C1 is a standard normal variable, C2 represents

a covariate that changes linearly over time, and C3 represents an autocorrelated variable. Table 5.25 display

the probabilities of covariate imbalance exceeding 0.3 for these three covariates under the null and alternative

hypotheses.

Under H 0 Under H 1
C1 C2 C3 C1 C2 C3

CRD 0.037 0.173 0.135 0.000 0.173 0.135
PBD 0.033 0.039 0.132 0.000 0.039 0.132
ERADE.Neyman 0.043 0.116 0.119 0.040 0.262 0.149
ERADE.RSIHR 0.039 0.055 0.102 0.032 0.053 0.101
ERADE.Urn 0.031 0.283 0.144 0.056 0.492 0.222
ERADE.Baldi 0.042 0.077 0.137 0.036 0.097 0.127
DBCD.Neyman 0.037 0.151 0.142 0.039 0.253 0.158
DBCD.RSIHR 0.038 0.105 0.143 0.030 0.101 0.133
DBCD.Urn 0.029 0.303 0.136 0.060 0.456 0.195
DBCD.Baldi 0.040 0.114 0.149 0.037 0.131 0.143
SMLE.Neyman 0.037 0.177 0.140 0.034 0.237 0.153
SMLE.RSIHR 0.037 0.164 0.140 0.030 0.164 0.136
SMLE.Urn 0.030 0.245 0.125 0.053 0.414 0.187
SMLE.Baldi 0.039 0.210 0.146 0.036 0.180 0.140
EW1995.Neyman 0.035 0.163 0.135 0.041 0.265 0.153
EW1995.RSIHR 0.034 0.126 0.136 0.032 0.124 0.132
EW1995.Urn 0.026 0.292 0.123 0.055 0.427 0.187
EW1995.Baldi 0.043 0.182 0.153 0.036 0.158 0.157

Table 5.25: AZT trial reassessment with reduced sample size: probability of covariate imbalance under
H0 : β1 = 0 and H1 : β1 = 1.330 over 10,000 simulated trials, as defined by |CE − CC | > 0.3, C ∈
{C1, C2, C3} for various designs evaluating p = (0.917, 0.745) and n = n needed for 90% power.

The increase in probability of covariate imbalance with reduced sample size can be seen by comparing

Tables 5.6 and 5.25. The largest increase in probability is seen in C1 under the null hypothesis, with a

multiplicative increase of nearly 50 times, from 0.002 to 0.03. While this is a large increase, the probability

of covariate imbalance for C1 under the null hypothesis is still small, with all designs yielding a probability

less than 5%. Indeed, the average multiplicative increases under the null hypothesis were 39, 9, and 6 for

C1, C2, and C3 covariates, respectively. Under the alternative hypothesis, SMLE.RSIHR saw the largest

increase in probability of imbalance for C1, with a multiplicative increase greater than 59 from 0.0005 to

0.030. Again, although the increase is large, the overall probability of imbalance for C1 under the null

is small, with the largest probability of covariate imbalance being 0.056 from ERADE.Urn. The average

multiplicative increases under the alternative hypothesis are 27, 7, and 6, for C1, C2, and C3 covariates,

respectively.

Selection Bias

Table 5.26 shows the performance of the evaluated designs in regards to selection bias. While the selection
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Selection Bias
Min Mean Max

CRD 0.00 0.00 0.00
PBD 16.65 24.66 35.05
ERADE.Neyman 39.04 45.97 58.60
ERADE.RSIHR 37.06 45.22 49.57
ERADE.Urn 42.77 52.60 69.26
ERADE.Baldi 53.58 63.86 77.91
DBCD.Neyman 5.32 12.66 48.68
DBCD.RSIHR 4.18 9.89 22.17
DBCD.Urn 9.34 23.80 59.18
DBCD.Baldi 28.22 49.27 81.61
SMLE.Neyman 1.75 6.77 42.03
SMLE.RSIHR 1.52 4.13 12.76
SMLE.Urn 4.80 16.87 58.12
SMLE.Baldi 38.75 46.84 57.74
EW1995.Neyman 2.93 10.03 42.99
EW1995.RSIHR 3.23 7.33 18.82
EW1995.Urn 6.65 22.08 171.28
EW1995.Baldi 35.03 47.57 67.13

Table 5.26: AZT trial reassessment with reduced sample size: selection bias under H1 : β1 = 1.330 for
various designs in 10,000 simulated trials evaluating p = (0.917, 0.745) and n = n needed for 90% power.

bias values have decreased due to the reduced sample sizes, the relative performances of the designs to each

other remains consistent: CRD’s selection bias is consistent at 0 by definition. EW1995.Urn again had the

worst-case selection bias of 171.28. The lowest selection bias after CRD is provided by SMLE.RSIHR, with

a minimum value of 1.52, the lowest average of 4.13, and the lowest maximum of 12.76, showing to be less

predictable than PBD. RSIHR targeted by other designs also did well. ERADE again showed higher than

average predictability, with average selection bias ranging from 45 to 64.

Expected Number of Failures

Table 5.27 displays the expected number of failures when reducing the sample size to be just sufficient for

90% power.

The range of the number of failures is 7 under ERADE.Urn, to 59 under ERADE.Neyman. ERADE.Urn

yielded the least expected number of failures at 26.86, and EW1995.Neyman yielded the highest number

of failures of 36.99. It also nearly had the highest maximum number of failures at 58, second only to

ERADE.Neyman design. The poor performance of Neyman design, resulting in approximately 30% of

enrolled subjects experiencing vertical transmission regardless of RAR design, is not surprising due to its

tendency to place more subjects in the inferior arm (the control arm C, in this case) (See Table 5.23).

While indeed the absolute value of the expected number of failures has decreased since the original

analysis due to decreased sample size, closer inspection yields that the range in the percentage of subjects

experiencing failure has widened. For example, under CRD, the expected number of failures ranges from
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Expected Number of Failures
Min Mean Max

CRD 16.00 33.01 52.00
PBD 16.00 33.04 52.00
ERADE.Neyman 17.00 36.03 59.00
ERADE.RSIHR 14.00 31.25 53.00
ERADE.Urn 7.00 26.86 49.00
ERADE.Baldi 11.00 29.83 47.00
DBCD.Neyman 18.00 36.54 57.00
DBCD.RSIHR 14.00 31.72 50.00
DBCD.Urn 10.00 27.26 51.00
DBCD.Baldi 8.00 30.67 50.00
SMLE.Neyman 15.00 36.54 55.00
SMLE.RSIHR 16.00 32.07 53.00
SMLE.Urn 10.00 27.96 55.00
SMLE.Baldi 14.00 30.64 50.00
EW1995.Neyman 16.00 36.99 58.00
EW1995.RSIHR 14.00 32.29 54.00
EW1995.Urn 8.00 28.25 51.00
EW1995.Baldi 13.00 29.80 48.00

Table 5.27: AZT trial reassessment with reduced sample size: expected number of failures under
H1 : β1 = 1.330 for various designs across 10,000 simulated trials evaluating p = (0.917, 0.745) and
n = n needed for 90% power.

16 to 52 (8% to 27% of 195 subjects), compared to 48 to 110 (10% to 13% of 477 subjects)of the original

analysis. The largest range difference is seen in DBCD.Baldi, with percentage of subjects experiencing

vertical transmission ranging from 8.18 to 18.66 (range of 10.48) in the original analysis, and widening to

3.54 to 22.12 (range of 18.58) in the reduced sample size analysis. The smallest increase in range of percentage

of failures was 2.71 for EW1995.Baldi, with 7.55% to 20.75% experiencing failures in the original analyses’

simulated trials, to 5.91% to 21.82% experiencing failures in the reduced sample size analyses’ simulated

trials. The increased range in percentage of failures when reducing sample size is not surprising, since the

reduced sample size is associated with greater variability in the sequential estimation of parameters needed

to calculate the probability of assignment to the AZT arm in the RAR designs.

Bias

Table 5.28 displays bias under the null hypothesis across 10,000 simulated trials.

Reduced sample size has resulted in the magnitude of bias under the null hypothesis increasing. For

example, the range of bias in the original analysis with n = 477 was -0.740 to 0.729 (See Table 5.12). With

sample size reduced to 195 for CRD, the range of bias was -1.344 to 1.430. For ERADE.Baldi design,

the average bias was -0.014 when sample size was n = 477, with a minimum and maximum bias of -1.054

and 0.841. With a reduced sample size of 218, the average bias for ERADE.Baldi design was -0.017, with

a minimum and maximum bias of -1.461 and 1.326, respectively. On average, ERADE.RSIHR and CRD
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Bias E(β̂1 − β1)
Min Mean Max

CRD -1.344 0.000 1.430
PBD -1.562 -0.001 1.442
ERADE.Neyman -17.545 0.002 1.822
ERADE.RSIHR -1.376 0.000 1.357
ERADE.Urn -1.461 -0.002 1.326
ERADE.Baldi -1.641 -0.017 1.540
DBCD.Neyman -1.721 0.004 1.556
DBCD.RSIHR -1.439 0.000 1.275
DBCD.Urn -1.324 -0.002 1.229
DBCD.Baldi -1.857 -0.020 1.305
SMLE.Neyman -1.975 -0.002 2.067
SMLE.RSIHR -1.251 -0.002 1.408
SMLE.Urn -1.301 -0.004 1.261
SMLE.Baldi -1.669 -0.017 1.279
EW1995.Neyman -1.941 0.002 1.332
EW1995.RSIHR -1.220 -0.001 1.390
EW1995.Urn -1.448 0.002 1.104
EW1995.Baldi -1.502 -0.019 1.263

Table 5.28: AZT trial reassessment with reduced sample size: bias of the treatment effect estimate
(E(β̂1−β1)) under H0 : β1 = 0 for various designs across 10,000 simulated trials evaluating p = (0.917, 0.745)
and n = n needed for 90% power.

perform best in the reduced sample size analysis, with an average bias of 0.0004 and 0.0005 (shown as 0.000

in Table 5.28), respectively. ERADE.Neyman has the worst magnitude of bias in the negative direction

of -17.545. SMLE.Neyman has the worst magnitude of bias in the positive direction of 2.067. The largest

bias on average in magnitude was seen in EW1995.Baldi, with an average bias of -0.019, followed closely

by ERADE.Baldi with an average bias of -0.017. In the positive direction, Neyman allocation targeted by

DBCD had the largest average bias of 0.004.

Relative Bias

Table 5.29 shows relative bias across 10,000 simulated trials for the designs evaluated.

Whilst the original analysis with n = 477 had minimum relative biases always greater than -100, meaning

none of the designs concluded that the placebo arm had a higher probability of success, with a reduced sample

size, that simulated guarantee is no longer in place. In fact, in their worst-case scenarios, each of the designs

with reduced sample sizes led to a belief that the placebo arm had a higher probability of success. PBD had

the lowest magnitude for minimum relative bias of -102.61.

DBCD.Baldi had the lowest average relative bias of 1.32, followed closely by EW1995.Baldi with an

average of 1.77, and ERADE.Baldi, with an average of 1.87. CRD had an average relative bias of 3.91. Note

that CRD, PBD, all RAR’s targeting Neyman allocation, and most designs targeting RSIHR allocation,

had very high maximum relative biases exceeding 1000. While PBD had the lowest magnitude of minimum
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Relative Bias E( β̂1−β1

β1
)× 100

Min Mean Max
CRD -112.19 3.91 1338.07
PBD -102.61 4.15 1352.95
ERADE.Neyman -119.65 47.33 1250.22
ERADE.RSIHR -124.23 4.12 1391.40
ERADE.Urn -108.36 3.83 250.67
ERADE.Baldi -186.26 1.87 172.48
DBCD.Neyman -111.67 41.10 1254.49
DBCD.RSIHR -128.02 3.13 206.62
DBCD.Urn -112.90 3.49 175.56
DBCD.Baldi -143.87 1.32 163.23
SMLE.Neyman -105.39 25.62 1287.64
SMLE.RSIHR -122.24 3.58 193.26
SMLE.Urn -105.55 3.59 157.48
SMLE.Baldi -131.97 2.19 150.51
EW1995.Neyman -116.66 45.20 1248.72
EW1995.RSIHR -110.15 3.28 195.59
EW1995.Urn -103.01 3.12 153.63
EW1995.Baldi -129.25 1.77 147.13

Table 5.29: AZT trial reassessment with reduced sample size: relative bias of the treatment effect estimate

(E( β̂1−β1

β1
)× 100) under H1 : β1 = 1.330 for various designs across 10,000 simulated trials evaluating

p = (0.917, 0.745) and n = n needed for 90% power.

relative bias, it also had the largest magnitude of maximum relative bias, at 1352.95. This aligns with an

estimate of β̂1 = 3.130, whilst the true β1 = 1.330146, indicating an overestimation of the effect of the AZT

treatment.

Type I error and Power

Table 5.30 display Type I error and power. Note how power always exceeds 90%, which is expected since the

sample size necessary to achieve 90% power had been deduced through simulation and was passed through

to this round of analysis. The interesting thing here that was hard to simulate was the ability of each design

to control Type I Error.

We can compare with Table 5.16 and see that with the larger sample size of n = 477, CRD controlled

Type I error at 0.0493, whilst reducing its sample size to 195 had led to loss of this control and a Type I error

rate of 0.0510. Interestingly, Type I error for PBD moved in the opposite direction, decreasing from 0.0502 to

0.0477. Amongst the RAR designs, reducing the sample size had led to Type I error rates greater than 0.05

for ERADE.Baldi, DBCD.Neyman, DBCD.RSIHR, DBCD.Baldi, EW1995.Neyman, and EW1995.Urn. The

other RAR designs were able to control Type I error below 0.05. Note that many of the RAR designs actually

witnessed an improvement in Type I error rate relative to that yielded by the larger study. For example,

ERADE.Baldi’s Type I error decreased from 0.0513 to 0.0504, and SMLE.RSIHR’s value decreased from

0.0525 to 0.0475. Surprisingly, the proportion of average bias in the reduced sample size analysis relative to
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Type I error Power
CRD 0.0510 0.9073
PBD 0.0477 0.9065
ERADE.Neyman 0.0490 0.9001
ERADE.RSIHR 0.0474 0.9007
ERADE.Urn 0.0472 0.9028
ERADE.Baldi 0.0504 0.9002
DBCD.Neyman 0.0518 0.9036
DBCD.RSIHR 0.0526 0.9003
DBCD.Urn 0.0495 0.9038
DBCD.Baldi 0.0511 0.9051
SMLE.Neyman 0.0484 0.9039
SMLE.RSIHR 0.0475 0.9034
SMLE.Urn 0.0479 0.9032
SMLE.Baldi 0.0483 0.9090
EW1995.Neyman 0.0521 0.9051
EW1995.RSIHR 0.0448 0.9105
EW1995.Urn 0.0512 0.9044
EW1995.Baldi 0.0480 0.9010

Table 5.30: AZT trial reassessment with reduced sample size: Type I error and power for various designs
across 10,000 simulated trials evaluating p = (0.917, 0.745) and n = n needed for 90% power.

the average bias in the full sample size analysis was not predictive of the change in direction of Type I error.

This speaks to the FDA’s requirements of using simulation to show how Type I error is expected to behave

in RAR trials.

Individual Desirability Function Definitions

The approach to defining individual desirability functions for the 11 design components discussed in Chapter 4

are similar in this reduced sample size analysis. For example, to determine the individual desirability function

for bias under the null hypothesis, we anchor a value of 0 bias and map it to the individual desirability score

of d = 0. We also see that from the simulated studies that the maximum witnessed bias was 2.0669, which

we believe to be far too large. A maximum threshold of 0.5 is set, and anything above that should receive an

individual desirability score of 0. The negative bias values are mapped to scores below 1, determined using

the (1/11*1, 1/11*2, ...1/11*5)th percentiles of bias witnessed in the simulated trials. The positive bias

values are mapped to scores above 1, determined using the (1/11*6, 1/11*7..., 1/11*9)th percentiles of bias

witnessed in the simulated trials. (The 1/11*10 and 1/11*11th percentiles were greater than the threshold of

0.5). The thought process behind decision-making for the other nominal-the-better components are similar

and will not be described in detail. Table 5.31 summarizes the selected values that map to specific individual

desirability scores for NTB components treatment group size imbalance, bias, and relative bias.

Percentiles also aided in shaping individual desirability functions for larger-the-better (LTB) and smaller-

the-better (STB) design components. For example, although Type I errors greater than 0.05 might be
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Nominal-the-Better (NTB) Components
Individual

Desirability
Score d

Treatment Group
Size Imbalance

Bias Relative Bias

0.0 -100 -0.455 -186.261
0.2 -55 -0.308 -36.345
0.4 -40 -0.205 -22.483
0.6 -27 -0.119 -12.027
0.8 -7 -0.041 -2.529
1.0 0 0.000 0.000
0.8 11 0.037 6.699
0.6 61 0.115 16.677
0.4 84 0.200 28.918
0.2 101 0.301 47.391
0.0 120 0.500 1391.402

Table 5.31: AZT trial reassessment with reduced sample size: mapping definitions for individual desirability
scores for nominal-the-better (NTB) design components.

immediately given a score of 0, there is some value in differentiating between Type I errors of 0.0504, which

are very close to the 0.05 nominal level, versus Type I errors greater than 0.051. It is also helpful to give

higher rewards Type I errors further away from and less than 0.05. Thus, errors greater than 0.051 are

immediately given a score of 0, and the score of 0.0504 (the largest simulated Type I error smaller than

0.0505) is assigned an individual desirability score of 0.8. The remaining values are determined with the

(1/4*1, 1/4*2, 1/4*3, 1/4*4)th percentiles, resulting in Type I error of 0.0486 being mapped to a score of

0.4, 0.0480 to a score of 0.6 0.0475 to 0.8, and 0.0448 to a score of 1. Similarly, the individual desirability

functions for covariate imbalance for C1, C2, and C3 are defined mapping the the (1/5*0, 1/5*1, 1/5*2,

1/5*3, 1/5*4, and 1/5*5)th percentiles of the observed simulated probabilities of imbalance to individual

desirability scores of (1, 0.8, 0.6, 0.4, 0.2, 0), respectively. The thought process behind decision-making for

the other LTB and STB components are similar and will not be described in detail. Table 5.32 displays the

selected values that map to specific individual desirability scores for LTB (power) and STB (accidental bias,

covariate imbalance, selection bias, expected number of failures, Type I error, and n needed)components.

Overall Desirability Score

The weights for treatment group size imbalance, expected number of failures, covariate imbalance C1, co-

variate imbalance C2, covariate imbalance C3, selection bias, accidental bias factor estimate, bias under the

null hypothesis, relative bias under the alternative hypothesis, Type I error, power, and sample size needed

to obtain 90% power are denoted in the vector

w = (wimbal, wfails, wc1, wc2, wc3, wsb, waccbias, wbias, wrelbias, walpha, wpower, wn).
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Smaller-the-Better (STB) & Larger-the-Better (LTB) Components
Individual
Desirabil-
ity Score

d

Accidental
Bias

Imbalance
C1

Imbalance
C2

Imbalance
C3

Selection
Bias

Expected
No. of

Failures

Type I
Error

Power n
Needed

0 3.487 0.060 0.492 0.222 171.279 59.000 0.0505 0.8999 230
0.2 0.138 0.048 0.354 0.176 47.532 38.000 0.0504 0.900 220
0.4 0.078 0.037 0.240 0.153 33.419 34.000 0.0486 0.901 210
0.6 0.036 0.035 0.162 0.139 14.470 32.000 0.0480 0.904 200
0.8 0.035 0.031 0.110 0.132 7.332 29.000 0.0475 0.905 195
1 0.025 0.000 0.039 0.101 0.000 26.000 0.0448 0.910 189

Table 5.32: AZT trial reassessment with reduced sample size: mapping definitions for individual desirability
scores for smaller-the-better (STB) and larger-the-better (LTB) design components.

We use the same set of weights from the original full sample size analysis that had resulted in selection of the

Baldi allocation targeted by ERADE, and add a weight of 2 to sample size needed for 90% power. Specifically,

we set w = (wimbal = 0, wfails = 3, wc1 = 0, wc2 = 1, wc3 = 1, wsb = 0, waccbias = 3, wbias = 0.5, wrelbias =

2, walpha = 3, wpower = 1, wn = 2). Tables 5.33 - 5.35 reveal the resulting mean overall desirability scores

and probability of overall desirability score equaling zero for each of the designs.
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CRD PBD ERADE.Neyman ERADE.RSIHR ERADE.Urn ERADE.Baldi weight

Treatment Group Size Imbalance 0.814 0.967 0.369 0.834 0.244 0.405 0.000

Expected No. of Failures 0.533 0.530 0.386 0.627 0.823 0.701 0.182

Covariate Imbalance

C1 (N(0,1)) 1.000 1.000 0.347 0.758 0.066 0.513 0.000

C2 (linear time trend) 0.574 1.000 0.361 0.960 0.000 0.838 0.061

C3 (autocorrelated) 0.720 0.802 0.461 1.000 0.000 0.836 0.061

Selection Bias 1.000 0.492 0.224 0.233 0.192 0.174 0.000

Accidental Bias 0.807 0.625 0.378 0.541 0.216 0.656 0.182

Bias 0.380 0.379 0.374 0.378 0.392 0.366 0.030

Relative Bias 0.479 0.480 0.442 0.478 0.485 0.493 0.121

Type I Error 0.000 0.705 0.351 0.806 0.821 0.200 0.182

Power 0.881 0.852 0.200 0.289 0.520 0.215 0.061

N Needed for 90% Power 0.800 0.800 0.967 0.967 0.400 0.240 0.121

Overall Desirability D (mean) 0.000 0.601 0.376 0.607 0.000 0.407

Prob(Overall Desirability D = 0) 1.000 0.156 0.165 0.158 1.000 0.179

Table 5.33: AZT trial reassessment with reduced sample size: mean individual desirability scores for 12 considered design characteristics, mean
overall desirability Score, and probability that overall desirability score is 0, for CRD, PBD, ERADE.Neyman, ERADE.RSIHR, ERADE.Urn, and
ERADE.Baldi designs.
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DBCD.Neyman DBCD.RSIHR DBCD.Urn DBCD.Baldi SMLE.Neyman SMLE.RSIHR weight

Treatment Group Size Imbalance 0.374 0.840 0.207 0.356 0.424 0.812 0.000

Expected No. of Failures 0.366 0.603 0.804 0.658 0.366 0.583 0.182

Covariate Imbalance

C1 (N(0,1)) 0.373 0.804 0.000 0.438 0.656 0.809 0.000

C2 (linear time trend) 0.378 0.825 0.052 0.720 0.408 0.597 0.061

C3 (autocorrelated) 0.358 0.784 0.117 0.543 0.399 0.687 0.061

Selection Bias 0.665 0.729 0.501 0.216 0.817 0.887 0.000

Accidental Bias 0.383 0.639 0.200 0.790 0.346 0.728 0.182

Bias 0.376 0.375 0.395 0.366 0.375 0.380 0.030

Relative Bias 0.440 0.482 0.485 0.496 0.456 0.477 0.121

Type I Error 0.000 0.000 0.297 0.000 0.450 0.789 0.182

Power 0.591 0.230 0.614 0.800 0.629 0.573 0.061

N Needed for 90% Power 0.867 0.867 0.300 0.080 0.800 0.800 0.121

Overall Desirability D (mean) 0.000 0.000 0.301 0.000 0.403 0.606

Prob(Overall Desirability D = 0) 1.000 1.000 0.139 1.000 0.160 0.154

Table 5.34: AZT trial reassessment with reduced sample size: mean individual desirability scores for 12 considered design characteristics, mean overall
desirability Score, and probability that overall desirability score is 0, for DBCD.Neyman DBCD.RSIHR, DBCD.Urn, DBCD.Baldi, SMLE.Neyman,
and SMLE.RSIHR designs.
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SMLE.Urn SMLE.Baldi EW1995.Neyman EW1995.RSIHR EW1995.Urn EW1995.Baldi weight

Treatment Group Size Imbalance 0.262 0.362 0.365 0.836 0.221 0.367 0.000

Expected No. of Failures 0.771 0.658 0.350 0.570 0.761 0.701 0.182

Covariate Imbalance

C1 (N(0,1)) 0.117 0.566 0.340 0.753 0.087 0.513 0.000

C2 (linear time trend) 0.113 0.556 0.357 0.749 0.093 0.617 0.061

C3 (autocorrelated) 0.149 0.590 0.400 0.804 0.150 0.371 0.061

Selection Bias 0.603 0.218 0.730 0.800 0.524 0.217 0.000

Accidental Bias 0.191 0.759 0.352 0.800 0.195 0.718 0.182

Bias 0.394 0.368 0.378 0.381 0.402 0.368 0.030

Relative Bias 0.489 0.499 0.446 0.484 0.488 0.494 0.121

Type I Error 0.621 0.483 0.000 1.000 0.000 0.583 0.182

Power 0.556 0.944 0.800 1.000 0.700 0.333 0.061

N Needed for 90% Power 0.300 0.100 0.800 0.760 0.200 0.200 0.121

Overall Desirability D (mean) 0.358 0.453 0.000 0.675 0.000 0.470

Prob(Overall Desirability D = 0) 0.139 0.169 1.000 0.159 1.000 0.176
.

Table 5.35: AZT trial reassessment with reduced sample size: mean individual desirability scores for 12 considered design characteristics, mean overall
desirability Score, and probability that overall desirability score is 0, for SMLE.Urn, SMLE.Baldi, EW1995.Neyman, EW1995.RSIHR, EW1995.Urn,
and EW1995.Baldi designs



After reducing the sample size to be just sufficient for 90% power and using the weights as defined,

notice how several designs yield a score of 0. This is due to a more stringent treatment of scoring for the

Type I error component. Baldi as targeted by SMLE is no longer the highest overall scorer. With the

reduced sample sizes, we see that RSIHR allocation outperforms the others, especially when targeted by

EW1995, with an overall desirability score of D = 0.675, and probability of overall D being 0 at 0.159.

SMLE.RSIHR and ERADE.RSIHR also do well when compared to the other designs assessed, with overall

desirability scores of approximately D = 0.60. Note that DBCD.RSIHR’s ability to control Type I error

has driven its overall desirability score to D = 0. The higher score of EW1995.RSIHR as compared to

SMLE.RSIHR and ERADE.RSIHR is mainly due to the higher scores of components Type I error and

Power, since EW1995.RSIHR scored perfectly in regards to those two components. PBD also does well,

with similar performance to RSIHR allocation not targeted by EW1995, with an overall desirability score

of D = 0.601 and probability of overall desirability being 0 at 0.156. SMLE.Baldi no longer scores well

with reduced sample size, precisely due to its requirement for a sample size of 225 subjects, second only

to DBCD.Baldi requiring 226. With the number of subjects needed accounting for more than 10% of the

overall score (normalized weight = 0.121), the overall score for SMLE.Baldi was penalized sufficiently to lose

to RSIHR allocation. For example, EW1995.RSIHR required a sample size of 196, and ERADE.RSIHR only

required a sample size of 190 (less than that required by CRD).

We reassess the designs with the other weights evaluated during the original full sample size analysis.

We add weights to treatment group size imbalance and covariate imbalance for covariate C1. Specifically, let

the weight vector be w = (wimbal = 0.5, wfails = 3, wc1 = 2, wc2 = 1, wc3 = 1, wsb = 0, waccbias = 3, wbias =

0.5, wrelbias = 2, walpha = 3, wpower = 1, wn = 2). Recall that this weight vector, without the n needed

component, resulted in selection of PBD during the full sample size analysis. The analysis is repeated with

the reduced sample size, and places high importance on sample size needed to attain 90% power. The detailed

results are not displayed for brevity. To summarize, PBD still performs well, with an overall desirability

score of 0.642 and a probability of overall desirability being 0 of 0.156. Note CRD, which had done well

with this set of weights when n = 477, had an overall desirability score of 0, penalized due to its inability

to control Type I error at the 5% level. EW1995.RSIHR outperforms PBD and the other designs, with an

overall desirability score of 0.686, and a probability of overall desirability being 0 of 0.159. SMLE.RSIHR

and ERADE.RSIHR also score on average greater than 0.6; DBCD.RSIHR again has an average score of 0

due to its higher Type I error. Baldi allocations score in the range of 0.416 to 0.469, except for when utilizing

DBCD, in which Type I error pulls the overall desirability score to 0.

An analysis with the third of weights, letting w = (wimbal = 1, wfails = 3, wc1 = 2, wc2 = 0, wc3 = 0, wsb =

1, waccbias = 2, wbias = 0.5, wrelbias = 3, walpha = 3, wpower = 2, wn = 2) is repeated with the reduced sample
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size scenario. Recall when n = 477, the CRD design yielded the highest overall desirability score with this

set of weights. The performance of EW1995.RSIHR is again highest relative to the other designs, with an

overall desirability score of 0.671 and probability of overall desirability being 0 of 0.159. RSIHR allocation

targeted by ERADE and SMLE, and PBD again perform well.

In conclusion, RSIHR allocation targeted by EW1995 performed best with individual desirability func-

tions defined in Tables 5.31 and 5.32, and weights defined in Tables 5.33 to 5.35. The other weight vectors

utilized in the original full sample size analysis consistently pointed to EW1995.RSIHR as the highest scoring

design. One of the main differentiations for this design was its ability to attain 90% power with relatively

fewer subjects, n = 190, specifically. This is less than 40% of the sample size of 477 during the interim

analysis of the original trial after which the trial was stopped early for overwhelming efficacy.

5.4 Discussion

In the redesigning of an HIV clinical trial evaluating the efficacy of zidovudine (AZT) in the prevention of

vertical HIV transmission, a preliminary analysis utilizing the full sample size of n = 477 subjects concluded

that among 18 evaluated designs, permuted block design with a block size of 8 had the overall highest quality

with respect to the design components considered. In a sensitivity analysis, we found that placing less weight

on treatment group size imbalance led to the favoring of the DBCD design targeting Baldi allocation, yet

placing more weight on controlling selection bias and probability of covariate imbalance for covariate type C1

resulted in the favoring of the design actually used in the trial: complete randomized design. One quality of

the original trial was that it was highly overpowered, aiding in early termination at the end of a first interim

look at the data in favor of zidovudine (AZT) treatment. Two potential factors could be contributors to the

overpowering, which equated to enrolling more subjects than necessary to decisively reject the null hypothesis

of no treatment effect. The first is an underestimation of the effect size, and the second is an underestimation

of the proportions of pregnancies which would be considered evaluable for the trial.

When reducing the sample size to one just sufficient for 90% power, the design quality assessment frame-

work identified the lack of control of Type I error as a dealbreaker for several of the assessed designs, and

concluded that RSIHR allocation targeted by the EW1995 design resulted in the design with the overall

best quality. This selection proved robust to the weights inspected in the preliminary analysis with the full

sample size.

The evaluation of a clinical trial as assessed by desirability functions is sensitive to the definition of

individual desirability functions that score the design components of interest (as demonstrated in Section

4.3.3, where two different definitions of the individual desirability function for total response were considered),
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and the weights of these design components in the final scoring of the design (as demonstrated in this

chapter). The sensitivity of design selection to weights of design components underscores the importance of

identifying the design components important to a design’s quality, and understanding the true preferences

of stakeholders and accurately reflecting them in the scoring process of each design.
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Epilogue

The evaluation of a clinical trial using desirability functions is sensitive to both the definition of individual

desirability functions that score the design components of interest, and the weights of these design components

in the final scoring of the design. Sensitivity analysis for weights was discussed in Chapter 5, underscoring

the importance of understanding the true preferences of stakeholders and accurately reflecting them in the

scoring process of each design.

Although this work focused primarily on a subset of clinical trial design characteristics that contribute

to a trial’s overall quality, the framework presented in Chapter 4 is flexible to the needs of the clinical trial

stakeholders. There are many design components that can be included in the overall desirability function of a

design. For example, in this work, we did not discuss components with binary values. The design evaluation

framework can potentially include logistical aspects of a design such as time to completion, financial cost,

and ease of implementation. Future expansion on the framework can also include design formats other

than randomization sequences – one could simulate results of trials with more than two treatment arms,

interim analyses with various stopping rules, platform designs where treatment arms can be dropped or

added throughout the trial, wedge designs which allow random and sequential crossover of clusters from

one treatment arm to another until all subjects have been exposed to the treatment, clustered randomized

trials, and many others. The framework can also be extended towards not just selection of a design, but

selection of a primary endpoint. For example, in deciding whether a primary endpoint should be binary

(e.g. “proportion of subjects in each treatment arm achieving at least a 30% reduction in intact parathyroid

hormone (iPTH)”) or continuous (e.g. “mean percent change in intact parathyroid hormone (iPTH) from

baseline to week 26”), desirability scores could be calculated for the designs evaluating these endpoints, with

significant weight given to the power component of the design.

The applications of the desirability function framework in this dissertation confirmed some strengths and

weaknesses of the evaluated designs. Complete Randomized Design (CRD)’s strengths are: a) randomness

of treatment assignment resulting in zero selection bias; b) low probability of normally distributed covariate

imbalance; c) fewer subjects needed to attain desired powerer; and d) when sample size is sufficiently large,
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treatment group size imbalance is usually small; small treatment group size imbalances are an important

factor in controlling against accidental bias. CRD’s weaknesses include: a) inability to prevent time trends

in responses or in covariates (covariate C2), resulting in potential misinterpretation of the treatment effect;

and b) exclusion of ethical considerations such as minimizing the expected number or failures in the trial.

Forced balance designs and biased coin designs perform well in: a) balancing the size of the two groups in a

trial; b) balancing covariates of different types (e.g. normally distributed or having a linear time trend); c)

letting time trends influencing the response do so equally; d) and attaining desired power. Their weaknesses

may include predictability of treatment assignments when the block size or current treatment group sizes

can be guessed. There is a trade-off in forced balance designs between predictability due to small block sizes

and stronger protection against chronological bias.

Response-adaptive randomization (RAR) designs aim to assign subjects to a trial in line with a specific

target allocation. Variability in the estimate of the allocation proportion is an undesirable quality in RAR

designs because the variability negatively decreases the power of the design. The variability of the probability

of the next subject being assigned to a specific arm (ϕ) throughout a study is a component that can be

included in the overall desirability function. The ERADE design has minimal variability in treatment

assignment probability ϕ. Other RAR designs SMLE, DBCD, and EW1995 have varying levels depending

on tuning parameters selected by the user. SMLE has shown consistently throughout this work to be the

least predictable of the RAR designs considered. The target allocation targeted by RAR designs plays a big

role on the design’s performance with respect to the components discussed in this work. Designs targeting

RSIHR and Urn allocations have fewer expected number of failures – their tendency to assign consecutive

subjects to the better-performing arm leads to significantly less hedging to time trends in either the response

variable or confounding covariates. Designs that target Neyman allocation have higher power than RAR

designs that target other allocations, but also are more likely to have more extreme bias in the treatment

effect estimate. RAR designs have shown varying performance relative to balancing covariates.

The comparison of designs using desirability functions in this work highlights some challenges of RAR de-

signs: although RAR designs target an allocation scheme that often fulfills an inferential or ethical objective,

the variability of their performances require us to study and understand their properties before implemen-

tation. We can investigate their theoretical properties or conduct a detailed simulation. Certain scenarios

are well-suited for RAR designs; others are best studied with traditional designs like CRD and PBD. The

contraceptive study of Application 1 in Chapter 4 included no time trends in the response variable, but

still led to selection of the Random Block Design with blocks filled with Truncated Binomial Design. The

scleroderma study of Application 2 in Chapter 4 incorporated a time trend, which led to the selection of

Permuted Block Design. The scleroderma study of Application 3 in Chapter 4 removed the time trend and
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selected RSIHR2 allocation. In the AIDS application of Chapter 5, Permuted Block Design and Complete

Randomized Design ranked highest amongst designs evaluated, until less weight was placed on protecting

against covariate imbalance, which resulted in the selection of the Baldi allocation targeted by DBCD. The

reduction of sample size in the AIDS application resulted in a robust performance and selection of RSIHR

allocation targeted by EW1995 design in the presence of various weight settings. The varying performances

of the designs in these different applications underline the importance of simulation when considering RAR

designs. We recommend RAR designs when ethical objectives are an important part of a trial, and caution

users to carefully consider RAR designs should time trends or limited financial or logistic resources be a

concern. Baldi allocation is always worth considering as it is able to simultaneously incorporate inferential

and ethical objectives.

The flexibility of the desirability function framework in assessing clinical trial design is highly attractive

and can incorporate the preferences of stakeholders from different key functions. Weaknesses of the proposed

desirability function framework in evaluation of clinical trial design include the subjective nature of defining

individual desirability function shapes and design characteristic weights. Users of the framework should

clearly understand their preferences prior to exploring simulation results, to avoid cherry-picking function

shapes and weights that point to their pre-established preferences. Although the Delphi method discussed

in Chapter 4 is recommended, it may be difficult in practice for stakeholders to come to a consensus of

individual desirability function definitions and weights.

We encourage readers to explore our Shiny application at https://priscillakyen.shinyapps.io/

DesignEvaluation_beta/. This online tool allows users to answer some questions about their clinical

trial (e.g. is your outcome binary or continuous?, what level of Type I error can you accept?, what is your

anticipated treatment effect size?, is there any reason to suspect time trends?) and to select design candi-

dates. The website then simulates trials with these designs and asks users about their preferences regarding

the design characteristics discussed in Chapter 4 (individual desirability function shape parameters) and

their relative importance (weight parameters) before outputting overall desirability scores and the estimated

probability that the overall desirability score of a design is zero. Visual plots help users understand how

they have defined their individual desirability functions, and the interface is immediately reactive to weight

specifications, so that simple sensitivity analyses on weights can be performed. The final scores can help

users select the best design to fulfill their objectives. The website has limitations: it currently only includes

two-arm trials and a limited number of randomization designs. Furthermore, the Shiny app tends to run

slower through the R server than the same app runs locally on a laptop with 8GB installed memory (RAM),

with a 64-bit operating system and an i7 processor @2.10 GHz. Also, the Shiny app only allows one user to

access a single function within the program at a time. Given that a simulation comparing five trials could
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take over an hour (depending on the sample size), this is something that would be hard to scale up. In spite

of its limitations, the website still is a valuable tool to help users understand the impact of design choice on

design characteristics and potentially the overall interpretation of the results. This Shiny app could be more

useful to the community if it could implement more outcome types (e.g. time-to-event) and clinical trial

designs (e.g. platform designs, crossover designs, stratification factors, early stopping rules, etc.). Although

there is room for improvement, the desirability framework presented in this work is now food for thought

and is flexible enough to be modified to suit one’s needs during clinical trial design selection.
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Appendix A

R Code

#FUNCTION THAT SOLVES FOR TOTAL SAMPLE SIZE NEEDED TO DETECT A SPECIFIED EFFECT SIZE (u1-

↪→ u2) FOR A GIVEN TYPE I ERROR AND POWER

Solve.N <- function(u1, u2, var1, var2, alpha, power){

n.e <- n.c <- (((qnorm(1-alpha/2) + qnorm(power))^2*(var1 + var2))/(u1-u2)^2)

N = n.e + n.c

resultvec <- c(N, u1, u2, var1, var2)

return(resultvec)

}

#FUNCTION THAT SOLVES FOR R = nE/nC

Solve.R <- function(u1, u2, var1, var2, corr){

cov12 <- corr*sqrt(var1)*sqrt(var2)

f <- function(R) ( u1*var2*R^2 - u1*cov12*R^(3/2) + u2*cov12*sqrt(R) - u2*var1)

R <- uniroot(f, lower=0.000001, upper=100000)$root

result <- c(u1, u2, var1, var2, corr, R)

return(result)

}
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Appendix B

Website Manual

Introduction

A Shiny app utilizing the framework of Chapter 4 is available at https://priscillakyen.shinyapps.io/

DesignEvaluation_beta/. The goal of this website is to allow users to simulate different clinical trial designs
to assess their strengths and weaknesses, and to provide users a framework in which they can quantitatively
define their preferences and select a design that fulfills their research objectives. We begin with some notation
that is used throughout the manual, followed by Website Instructions, Summary of Designs, and Evaluated
Characteristics of Designs. Note that in this manual, blue text and Equation numbers can be clicked on to
take you to relevant sections of the manual.

Notation:

nE number of subjects in experimental arm (group E)
nC number of subjects in control arm (group C)
nE(j) number of subjects in experimental arm (group E) at the time of the jth patient
nC(j) number of subjects in control arm (group C) at the time of the jth patient
n total sample size = nE + nC
YEj response of subject j in experimental arm (group E)
YCj response of subject j in control arm (group C)
fE number of failures in experimental arm (group E)
fC number of failures in control arm (group C)
α alpha-level: probability of rejecting a null hypothesis when in fact the null hypothesis is true
Tj experimental arm indicator variable for subject j (j = 1, . . . , n): 1 if in experimental arm,

0 if in control arm
iter the number of iterations performed in a simulation, with each iteration completing one trial
dk individual desirability score for the kth value of a characteristic (k = 1, . . . , iter)
L lower limit of a desirability function
U upper limit of a desirability function
T target value of a desirablity function (NTB variables only)
r scale parameter for individual desirability functions (STB and LTB only)
r1, r2 scale parameters for individual desirability functions (NTB only)
wi weight for characteristic i (i = 1, . . . ,m) in calculation of D
D overall desirability score for a design
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Website Instructions

In order to find the design best suited to your needs, the website guides you through 3 tabs:

Step 1. See design characteristics.

Step 2. Individual Desirability Functions.

Step 3. Overall Desirability Functions.

Figure B.1

You can navigate between these tabs without losing your work. The goal of the first tab is for the pro-
gram to understand what you anticipate or expect from the data, followed by an automated simulation that
provides performance results of each design under evaluation with regards to certain design characteristics.

The goal of the second tab is to provide you with performance summaries of the various designs so that
you can reflect on how you value different realizations of different characteristics. The program will walk
you through how to shape individual desirability functions for each characteristic. If a certain characteristic
is of zero interest to you, you can leave it at its default values, and tell the program in the third step that
you do not care to include the performance of each design in regard to this characteristic in its final evaluation.

In the third and last tab, you are asked to rate how important each characteristic is to you, on a scale
between 0 and 3. The overall desirability scores will then be calculated taking into account these ratings.

Step 1.

1. Is your outcome binary or continuous?
If your outcome can take on two values (Yes vs. No), select Binary.
If your outcome can take on a range of values, select Continuous. Note that the RAR designs on this website
cannot handle negative values.

2. Please select the design(s) of interest.
See Summary of Designs for background on the designs listed.

The designs in the left two columns are not adaptive. The designs in the right column are response-
adaptive randomization (RAR) designs. Upon clicking one of these RARs, you will be asked to select a
target allocation (Neyman, RSIHR, Urn, and Baldi for binary responses, or Neyman, RSIHR, RSIHR2, BB,
BM for continuous responses).

The short names of the designs you selected are displayed before the start of the next question. In
this example, we have selected Complete Randomization, Permuted Block Design, and Doubly Biased Coin
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Figure B.2

204



Design targeting RSIHR allocation. The abbreviations for the designs are listed as “CRD”, “PBD”, and
“DBCD.RSIHR”.

3. How many iterations would you like to run?
Each iteration of a simulation represents one simulated study. All the designs you selected will be evaluated
in each iteration. If you are just setting up your study for the first time, use a small number of iterations
(i.e. 10) for a preliminary look at results. When you are more certain about your simulation setup, you
can set the number of iterations to a larger number (i.e. 1000 or 10000) to get more accurate estimates of
characteristics that are measured as an average across all simulated studies. For example, the probability of
covariate imbalance exceeding 0.3 is calculated as the number of iterations in which the design resulted in a
covariate imbalance greater than 0.3 divided by the total number of iterations.

4. Do you know your total sample size N?
If you are unsure, say “No” and the program will walk you through how to calculate the required sample
size for a specified Type I error and Power. Note that this calculation is for non-adaptive designs.

Figure B.3

1. What is the maximum Type I error you are willing to tolerate (your alpha-level?) Note: All calculations
on this website perform two-sided tests.
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Type I error is the probability of rejecting the null hypothesis (e.g.: H0: no treatment difference) in favor
of the alternative hypothesis (e.g.: H1: there is a treatment difference), when in fact the null hypothesis is
true. Typically, controlling the Type I error at an alpha-level of 0.05 is standard. The lower the Type I error
you are willing to accept, the more subjects you will need in your trial.

2. What is the desired power?
Power is the probability of rejecting the null hypothesis when the alternative hypothesis is actually true.
Typically, power in the design stage of selecting a clinical trial design is set to at least 0.80. Do not request
a power greater than 0.99. The higher the power you require, the more subjects you will need in your trial.

3. What is the mean outcome for those in experimental arm E? Treatment E will receive the investiga-
tional treatment.
This and the following question, which asks for the mean outcome for those in treatment arm C, ask what
you expect the average responses in the experimental arm (E) and control arm (C) to be. These are µE and
µC , respectively. The smaller the difference between these two means, the smaller the effect size, and thus
the more subjects you will need in the trial.

4. What is the variance of the outcome for those in treatment E?
This and the following question ask how much variance you expect to see in the responses of the experimental
arm (E) and the control arm (C). These are σ2

E and σ2
C , respectively. The larger the variance, the more

uncertainty there is when estimating the true mean of the outcome, and thus the more subjects you will
need in the trial.

Let YE ∼ N(µE , σ
2
E), YC ∼ N(µC , σ

2
C); YE ⊥⊥ YC . When you click on “Calculate Total Sample Size”,

the equation below is used to calculate the sample size needed.

n = nE + nC = 2
(z1−α/2 + z1−β̃)2(σ2

E + σ2
C)

(µE − µC)2
. (B.1)

In this example, a total sample size of 355 subjects is needed.
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Figure B.4

1. What is the total sample size N?
Input the total sample size nE + nC = n here.

2. What is the maximum Type I error, alpha, when deciding when the treatment is effective?
Type I error is the probability of rejecting the null hypothesis (e.g.: H0: no treatment difference) in favor
of the alternative hypothesis (e.g.: H1: there is a treatment difference), when in fact the null hypothesis is
true. Typically, controlling the Type I error at an alpha-level of 0.05 is standard. In this program, when the
p-value of the coefficient of the treatment effect (β̂1) is less than the specified alpha, the null hypothesis is
rejected.

3. What is the mean outcome for those in treatment E?
This and the following question, which asks for the mean outcome for those in treatment arm C, ask what
you expect the average responses in the experimental arm (E) and control arm (B) to be. These are µE and
µC , respectively.

4. What is the variance of the outcome for those in treatment E?
This and the following question ask how much variance you expect to see in the responses of the experimental
arm (E) and the control arm (C). These are σ2

E and σ2
C , respectively.
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Figure B.5

1. Are smaller values of the response considered better?
The purpose of this question is so that the program may later know how to evaluate the total response
ȲEnE + ȲCnC . Also, if you select “Yes” to this question, you will be further asked 2 below.

2. Do you suspect that correlation may exist between the responses of the two groups due to some
common exposure (e.g. all patients treated at the same hospital?)
If you select “No”, the program will generate independent responses.
If you select “Yes”, the program will subsequently ask: “What is the level of correlation (range: (0,1]?)”
Please input a value ranging between 0 and 1. This value can be estimated from pilot data or drawn from
previous literature. The program will then generate correlated responses as follows:

A set of outcomes of length n is simulated for each treatment group, where the outcome is simulated
as such:

� Independently generate a vector Z1 ∼ N(0, 1) of length n and a second vector Z2 ∼ N(0, 1)
also of length n.

� Let Z3 = ρZ1 +
√

1− ρ2Z2.

� Then n outcomes for treatment group E are calculated as YE = µE +
√
σ2
EZ1, while the n

outcomes for treatment group C are calculated as YC = µC +
√
σ2
CZ3.

It will furthermore add to the list of designs you have selected for evaluation. If you have not selected
any RAR designs, the program will automatically consider DBCD targeting R.corr. If you have selected any
RAR designs, the program will target R.corr with the RAR designs you selected.

3. This question pertains only if smaller values of the outcome are considered better. What is the max-
imum acceptable value of the outcome? Values above this will be counted as failures.
When responses are considered “smaller-the-better”, we ask for a maximum acceptable threshold of the
value. Any responses above this threshold will be counted as a failure. The total number of failures in each
treatment arm are summed and compared at the end of the analysis.

For the next several questions, consider the following. Let X be
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X =



1 T1

1 T2

...
...

1 Tj
...

...
1 Tn


, β =

[
β0

β1

]
. (B.2)

Z =



Z1linEC Z1linE Z1linC Z1stepEC Z1stepE Z1stepC Z1logEC Z1logE Z1logC

Z2linEC Z2linE Z2linC Z2stepEC Z2stepE Z2stepC Z2logEC Z2logE Z2logC

...
...

...
...

...
...

...
...

...
ZjlinEC ZjlinE ZjlinC ZjstepEC ZjstepE ZjstepC ZjlogEC ZjlogE ZjlogC

...
...

...
...

...
...

...
...

...
ZnlinEC ZnlinE ZnlinC ZnstepEC ZnstepE ZnstepC ZnlogEC ZnlogE ZnlogC


. (B.3)

Let βTIME =

βTIME = (βlinEC, βlinE, βlinC, βstepEC, βstepE, βstepC, βlogEC, βlogE, βlogC)T . (B.4)

For continuous responses, the true response is defined as:

E(Y |j, h) = Xβ +ZβTIME . (B.5)

The naive and adjusted analyses are defined as:

Naive: E(Y |j, h) = Xβ̂, (B.6)

Adjusted: E(Y |j, h) = Xβ̂ +Z ˆβTIME . (B.7)

Figure B.6

1. What is the expected mean outcome for those in control arm C at baseline (time = 0)?

If you believe that the responses in both treatment arms are free from time trends, your response will
be the same as in Question 3 shown in Figure B.4 (What is the expected mean outcome for those in control
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arm C?). If there is a potential time trend, input the expected outcome of a subject in the control arm at
the very start of the trial.

2. What is the value of the treatment effect under the null hypothesis?
Typically, this is 0.
H0 : β1 = 0
H1 : β1 6= 0

3. After accounting for other covariates you intend to account for, what is the expected treatment effect
between the two arms?...
This is asking what you expect β1 to equal; how much you expect the experimental treatment to alter the
response for the experimental arm relative to the control arm. Here are two examples:

Binary:
H0 : pE − pC = 0
H1 : pE − pC 6= 0. Specifically, pE = 0.7, pC = 0.4. Then, the probability of success for a subject in the
control arm (C) is:

p = Probability(Y = 1|j, h = 1) = 0.4 =
exp(β0 + β1 × 0)

1 + exp(β0 + β1 × 0)
.

Then, β0 = ln( 0.4
0.6 ) = −0.405. The probability of success for a subject in the experimental arm (E) is:

p = Probability(Y = 1|j, h = 1) = 0.7 =
exp(ln( 0.4

0.6 ) + β1 × 1)

1 + exp(ln( 0.4
0.6 ) + β1 × 1)

.

Then, for this question, input β1 = ln(( 0.7
0.3 )/ 0.4

0.6 ) = 1.253.
Continuous:

H0 : µE − µC = 0
H)1 : µE − µC 6= 0. Specifically, µE = 127, µC = 132. Then, the expected response for a subject in the
control arm (C) is: E(Y ) = 132 = β0 +β1× 0, resulting in β0 = 132. The expected response for a subject in
the experimental arm (E) is: E(Y ) = 127 = 132 + β1 × 1, resulting in the response for this question being
β1 = −5.

4. Show me the probability that covariate imbalance exceeds: (e.g. 0.4)
The program calculates this by observing the proportion of simulated trials where the covariate imbalance
as defined previously exceeds the value you specify.

Figure B.7

If time trends are not a concern during the design phase of your study, input 0 for all 9 boxes in this 3X3
grid. If the 3X3 grid is filled with all 0’s, this is the last question of Step 1. You can click on “Show me my
Design!” to see summaries of characteristics of the designs under evaluation.
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Otherwise, input the value of βTIME, which is the coefficient for a time trend covariate ZTIME. The
definition of ZTIME depends on whether you believe patient enrollment is uniform (the rate of patient
enrollment is consistent throughout the trial), or whether you would like to simulate varying enrollment
patterns throughout the trial.

If enrollment into the trial is uniform,

ZjlinEC = (j − 1), ZjlinE = (jE − 1), ZjlinC = (jC − 1),
ZjlogEC = log(j), ZjlogE = log(jE), ZjlogC = log(jC), and
ZjstepEC = 1(j > t), ZjstepE = 1(jE > t), ZjstepC = 1(jC > t).

For example, with uniform enrollment is a linear time trend, βTIME is the expected change in response
for each sequential enrolled subject affected by the trend. For example, if n = 128 and you expect a
linear trend in both E & C, a value of βTIME = 1/127 in the first element of the 3X3 grid would indicate
E(Y ) = µETj + µC(1 − Tj) + (1/127)(j − 1), indicating that the 128th enrolled subject has an expected
response 1 unit higher than that of the 1st enrolled subject, and the expected responses for the subjects
between them increase with a linear pattern. With a log trend affecting the experimental arm only, a value
of βTIME = 1/log(64) in the “E only” column of the “logarithmic” row would indicate that the 64th enrolled
subject of the experimental arm would have an expected response 1 unit higher than that of the 1st enrolled
subject, and the expected responses for the subjects between them increase with a logarithmic pattern. With
a stepwise trend affecting the control arm only, a value of βTIME = 1 and t = 33 would indicate that after
33 subjects have enrolled into the control arm, the expected response shifts upwards by 1 unit.

On the other hand, if enrollment into the trial is not uniform, measurement time of the response plays a
role in the definition of Z. Let G ∈ [EC,E,C] represent whether the time trend affects both the experimental
and control groups, the experimental group only, or the control group only.

ZjlinG = mj ,
ZjlogG = log(mj), and
ZjstepG = 1(mj ≥ step×M).

Figure B.8

1. Would you like to assume that the patients subject to a time trend are enrolled within the trial
uniformly over time? If not, you will be able to specify varying Poisson rates to model enrollment.
Select “Yes, the patients subject to a time trend will be enrolled fairly uniformly over time.” if you expect
subjects to be recruited and enrolled at a consistent rate from the beginning of the trial until the required
sample size is met. If you select “Yes”, this will be the last question of Step 1, and you can click on “Show
me my Design!” to see summaries of characteristics of the designs under evaluation.

Otherwise, select “No, I would like to specify different rates of enrollment for different periods of the
trial.”

1. Expected Proportion of Total Sample Size Enrolled Per Month [0-1].
Input the proportion of total sample size you expect to enroll per month during the Ramp Up, Steady
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Figure B.9

Enrollment, and Plateauing Enrollment Periods. If you only have 2 Periods, input 0 for Period 3.

In this example, Period 1: Ramp Up has a value of 0.02 input. This means that 2% of the total sample
size n is expected to be enrolled into the trial each month during Period 1. Similarly, 7% and 2.5% of n is
expected to be enrolled per month during Period 2: Steady Enrollment and Period 3: Plateauing Enrollment,
respectively.

2. Proportion of Trial Time [0-1].
In this example, Period 1: Ramp Up has a value of 0.15 input here. This means that 15% of the total
recruitment or trial time is enrolling subjects at the Ramp Up Rate (0.02n/month in this example). Similarly,
the value of 0.60 input for Steady Enrollment indicates that 60% of te total recruitment or trial time is
enrolling subjects at the Ramp Up Rate (0.07n/month in this example). Lastly, the proportion of time at
the Plateauing Enrollment rate is 1-proportion of trial time in ramp up period - proportion of trial time in
steady enrollment period = 1-0.15-0.6=0.25 in this example. This means that the last 25% of the trial time
enrolls at the Plateauing Enrollment rate of 0.025n/month.

3. When will the primary endpoint (outcome) be measured for each subject, in months after subject
enrollment?
Input here when the response for each subject will be measured, in months after enrollment.

While questions 1 and 2 helped the program simulate enrollment times, the important variable in assess-
ing the impact of time trends are ZTIME, which is the measurement time. For example, if the first patient
(j = 1) is enrolled at time = 0, their response is measured at 6 months. If the 40th patient (j = 40) is
enrolled at month 6, then their response is measured at 12 months.

After answering this, you will have completed the questions of Step 1. Click on “Show me my Design!”
to see summaries of characteristics of the designs under evaluation.
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After clicking “Show me my Design”, two progress bars will indicate where in the simulation the program
is.

Figure B.10

Interpretation of Results:
See Evaluated Characteristics of Designs for more background regarding the characteristics summarized in
this section.
Simulated Recruitment

This output is displayed only if you indicated that patients will not be recruited at a consistent rate through-

Figure B.11

out the recruitment period.

Characteristics of Treatment Allocation

� patientsinE mean: the number of patients placed in the experimental arm E averaged across all simu-
lated trials (i.e. number of iterations).

� patientsinE sd: the standard deviation of the number of patients placed in the experimental arm E
across all simulated trials.
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� proportioninE: The proportion of subjects placed in the experimental arm (nE/n) averaged across all
simulated trials.

� mintrtimb: minimum treatment imbalance (nE − nC) witnessed across all simulated trials.

� meantrtimb: the average treatment imbalance (nE − nC) across all simulated trials.

� mediantrtimb: the median treatment imbalance (nE − nC) across all simulated trials.

� maxtrtimb: the maximum treatment imbalance (nE − nC) witnessed across all simulated trials.

Characteristics of Outcome

� meanuE h0: the average response in the experimental arm in simulated trials where the null hypothesis
is true.

� meanuE h1: the average response in the experimental arm in simulated trials where the alternative
hypothesis is true.

� meanuC h0: the average response in the control arm in simulated trials where the null hypothesis is
true.

� meanuC h1: the average response in the control arm in simulated trials where the alternative hypothesis
is true.

Summary of Failures

� number failures h1 mean: the average number of failures in the experimental arm across simulated
trials where the alternative hypothesis is true.

� number failures h1 sd: the standard deviation of the number of failures in the experimental arm across
simulated trials where the alternative hypothesis is true.

Simple T-test Results (Estimating Treatment Effect Only)

� esttrtdiff h1 mean: the difference in means ȲE − ȲC of the two treatment groups averaged across all
simulated trials.

� esttrtdiff h1 sd: the standard deviation of the difference in means sd(ȲE − ȲC) of the two treatment
groups across all simulated trials.

� esttrtdiffMSE h1: the mean squared error of the difference in means of the two treatment groups across
all simulated trials. The mean squared error is defined as bias2 +variance: ((ȲE− ȲC)− (µE−µC))2 +
sd(ȲE − Ȳ 2

C).

� typeIerror h0: the proportion of times the null hypothesis is rejected in all simulated trials, where the
null hypothesis is true.

� power h1: the proportion of times the null hypothesis is rejected in all simulated trials, where the
alternative hypothesis is true.

Summary of Imbalance of 3 Different Covariates
See the section on Covariate Imbalance.

� probcovimb1 h0: Probability(
∣∣Z1E − Z1C

∣∣ > ε) =
∑iter
i=1 1(|Z1Ei−Z1Ci |>ε)

iter , where each iteration simu-
lates a study where the null hypothesis is true.

� probcovimb2 h0: Probability(
∣∣Z2E − Z2C

∣∣ > ε) =
∑iter
i=1 1(|Z2Ei−Z2Ci |>ε)

iter , where each iteration simu-
lates a study where the null hypothesis is true.
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� probcovimb3 h0: Probability(
∣∣Z3E − Z3C

∣∣ > ε) =
∑iter
i=1 1(|Z3Ei−Z3Ci |>ε)

iter , where each iteration simu-
lates a study where the null hypothesis is true.

� probcovimb1 h1, probcovimb2 h1,

� probcovimb3 h1: same as above, except each iteration simulates a study where the alternative hypoth-
esis is true.

Summary of Accidental Bias Factor

� minaccbias: the minimum accidental bias factor estimate across all simulated trials.

� meanaccbias: the average accidental bias factor estimate across all simulated trials.

� maxaccbias: the maximum accidental bias factor estimate across all simulated trials.

Summary of Selection Bias

� minselbias h1: the minimum selection bias as measured by the predictability ρpred of a randomization
sequence across all simulated trials.

� meanselbias h1: the average selection bias as measured by the predictability ρpred of a randomization
sequence across all simulated trials.

� maxselbias h1: the maximum selection bias as measured by the predictability ρpred of a randomization
sequence across all simulated trials.

Summary of Chronological Bias
The summary for a single design looks like the table shown in Figure B.12.

Figure B.12

The tables are shown in the order a shown in the “Designs selected are:” at the top of this page (Step 1).
Here, the designs selected were CRD, PBD, and DBCD.RSIHR, so 3 tables like the one shown in Figure
B.12 would appear.

Remember the true model is as shown in Equation B.5.
The four rows in the table are:

� biased H0: naive analysis (Equation B.6) when the null hypothesis is true

� notbiased H0: adjusted analysis (Equation B.7) when the null hypothesis is true

� biased H1: naive analysis (Equation B.6) when the alternative hypothesis is true
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� notbiased H1: adjusted analysis (Equation B.7) when the alternative hypothesis is true

The columns are:

� 1 tecoeff: Average estimate of the treatment effect β̂1 across all simulated trials

� 2 tecoeffse: Standard error of the treatment effect estimate β̂1 across all simulated trials

� 3 tecoeffsd: Standard deviation of the treatment effect estimate β̂1 across all simulated trials

� 4 sd se: Ratio of 2/3

� 5 bias: β̂1 − β

� 6 relative bias: β̂1−β
β × 100

� 7 msetrteffect: mean squared error of the treatment effect estimate: 52 + 32

� 8 size: empirical test size = proportion of times H0 is rejected. For H0 this is Type I error. For H1

this is power.

� 9 ci: empirical coverage = proportion of times the 95% confidence interval for the treatment effect
includes the true value β1.

Click “Next” to proceed to Step 2. Individual Desirability Functions.

Step 2.

There are two types of desirability scores: individual and overall. In this step, individual desirability functions
are defined. The characteristics under evaluation are given an “individual desirability score” between 0 and
1 using these individual desirability functions. A desirability score of 0 indicates “completely unacceptable”,
while a desirability score of 1 represents “the ultimate in satisfaction and quality, where an improvement
beyond this point would have no additional meaningful value”. A table with guided interpretations of
desirability scores is provided in Table B.1. Later, these scores are combined into a single overall score for
each design.
An overall rating system using the overall desirability was provided as shown in Table B.1.

Desirability
Score

Interpretation

1.00 The ultimate in satisfaction and quality, where an improvement
beyond this point would have no additional meaningful value

[0.80, 1.00) Acceptable and excellent (represents unusual quality or perfor-
mance well beyond anything commercially available)

[0.63, 0.80) Acceptable and good (represents an improvement over the best
commercial quality)

[0.40, 0.63) Acceptable but poor (quality is acceptable to the specification
limits but improvement is desired)

[0.30, 0.40) Borderline (if specification exists, then some of the product quality
lies exactly on the specification maximum or minimum)

(0.00, 0.30) Unacceptable (materials of this quality would lead to failure)
0.00 Completely unacceptable

Table B.1: Interpretations of desirability scores.
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This website allows you to construct an individual desirability function in two ways: using a scale method,
or using a mapping method. An example of each of these methods is shown in Figure B.13.

Scale Method:
Individual desirability functions are shaped my scale parameters. For the characteristic under evaluation,
there are

� smaller-the-better: the smaller the value of the characteristic, the better (e.g. Type I error)

� larger-the-better: the larger the value of the characteristic, the better (e.g. power)

� nominal-the-better: a target value is best, while values less than or greater than this target indicate
diminishing of quality (e.g. treatment group size imbalance with a target value of 0).

Let yi be the value of a characteristic. Let U and L be the upper- and lower- bounds of the charac-
teristic’s acceptable values, respectively. Let T is the target value of a nominal-the-better type response.
Shape parameters r, r1, and r2 > 0 are selected by the user. These parameters are used to calculate di, the
individual desirability score of the value of yi.

For Larger the Better (LTB):

di =


0 for yi ≤ L
(yi−LU−L )r for L < yi < U

1 for yi ≥ U
(B.8)

For Smaller the Better (STB):

di =


1 for yi ≤ L
(U−yiU−L )r for L < yi < U

0 for yi ≥ U
(B.9)

For Nominal The Better (NTB):

di =


(yi−LT−L )r1 for L ≤ yi ≤ T
(U−yiU−T )r2 for T < yi ≤ U
0 for yi < L or yi > U

(B.10)

Mapping Method:
The mapping method maps specific individual desirability scores to specific values of a component. Individual
points of the mapping are connected linearly so an individual desirability curve is created.

In Figure B.13a, the scaling method is used with Equation B.9 and scale parameter r = 0.65, L =
0.01, and U = 0.15. This means that any Type I errors below 0.01 will receive an individual desirability
score of 1, and any Type I errors above 0.15 will receive an individual desirability score of 0. It can be
seen that a Type I error of 0.05 yields an individual desirability of approximately 0.8, highly desirable.
In Figure B.13b, a mapping of different Type I errors to different desirability scores yielded this plot. It
can be seen that a Type I error yields a desirability score of 0.8 (highly desirable), and a Type I error of
0.15 yields a desirability score of 0.2 (unacceptable). The mapping that results in this function is Type I
errors of (0, 0.05, 0.06, 0.1, 0.15, 0.21) for individual desirability scores of (1, 0.8, 0.6, 0.4, 0.2, 0), respectively.

The program asks if you would like to use a scale parameter for each assessed component (scale method),
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Figure B.13: Individual Desirability Function: Type I Error.

values to individual desirability mapping for each component (mapping method), or scaling parameters for
some components, and values-to-individual desirability mappings for other components.

Figure B.14

If selecting 1 (a scale parameter for each assessed component), use the drop-down menu to see the
individual desirability functions for each component one at a time. For example, selecting “Treatment
Imbalance” in our example leads to:

1 This is the same summary table as shown at the end of Step 1. It is shown again to help users un-
derstand the range of values each characteristic for each design takes. This may help one’s decision-making
in deciding what type of individual desirability function/curve best reflects their own judgment. Although
summary statistics are shown, the mean is used to calculate the individual desirability score.
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Figure B.15
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2 This is a histogram showing the distribution of treatment imbalance nE − nC for all randomizations
simulated.

3 Since the mean treatment imbalance ranges from negative to positive values in this example, the pro-
gram decides that this characteristic is “nominal-the-better”, with a target value of 0. Here, set the scale
parameters r1 and r2 by clicking on the slider or dragging the dot to an appropriate point on the slider.
The graph in 6 will automatically adjust so you can see if the curve accurately reflects your preferences. For
example, if you prefer nE > nC , you may want to penalize positive values of treatment imbalance less than
negative values of treatment imbalance.

4 Optional: Set your lower (or upper) bounds. Input your lower limit L and upper limit U here for the
desirability function. If you leave these blank, the program will automatically decide for you. Here, the
default values for L and U are the minimum treatment imbalance and maximum treatment imbalance values
witnessed in the simulations. See 5.

5 This displays the L and U the program will use. If you have input values in 4, they will be displayed here.

6 This is the individual desirability function, plotting individual desirability score versus the character-
istic under evaluation.

If selecting 2 from Figure B.14, you will be asked to inform the program which values deserve scores of
1, 0.8, 0.6, 0.4, 0.2, and 0. For STB and LTB characteristics, one value will map to each of these scores.
For NTB characteristics, two values will map to each of these scores (one less than and one greater than the
target value T ). The individual desirability function connects lines between these values. For STB (LTB)
characteristics, values smaller (larger) than the value mapped to an individual desirability score of 1 will
automatically receive a score of 1, and values larger (smaller) than the value mapped to a score of 0 will
receive a score of 0.

1 This is the same summary table as shown at the end of Step 1. It is shown again to help users un-
derstand the range of values each characteristic for each design takes. This may help one’s decision-making
in deciding what type of individual desirability function/curve best reflects their own judgment. Although
summary statistics are shown, the mean is used to calculate the individual desirability score.

2 This is a histogram showing the distribution of p-values of the treatment effect estimate in Equation
B.6-B.7 for all randomizations simulated.

3 This is the mapping process. The program asks the user to input which values of the characteristic
should be assigned individual desirability scores of 1, 0.8, 0.6, 0.4, 0.2, and 0.

4 This is the individual desirability function, plotting individual desirability score versus the character-
istic under evaluation. Note how the desirability scores between the mapped values are connected linearly.

If selecting 3 from Figure B.14, you will be asked to inform the program which characteristics you would
like to build individual desirability methods using the scale method (check the appropriate checkboxes).
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Figure B.16
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You will then be asked to define these characteristics’ individual desirability functions first, followed by the
definitions of characteristics whose individual desirability functions are defined by the mapping method.
See instructions from examples highlighted in Figures B.15-B.16 to understand how to define individual
desirability functions for both the scale and mapping methods.

After defining the individual desirability functions, click on “Calculate Individual Desirabilities Using
These Scale Parameters”, “Calculate Individual Desirabilities Using These Mappings”, or “Calculate Indi-
vidual Desirabilities Using These Scale Parameters & Mappings”.
If you receive a red error message, check to ensure you have informed the program to define individual de-
sirability functions for each of the characteristics. Commonly, the values for the mapping method for “Total
Response” characteristic are forgotten. The program is unable to autofill these for you at this time.

Individual desirability scores are calculated using two different ways. The first is shown here:

Figure B.17

These individual desirability scores are calculated from a single value (the mean) of each characteristic
for each design. In other words, the mean value for each characteristic is used to calculate a single individual
desirability score.

The second is shown here:

Figure B.18
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This displays a distribution of individual desirability scores, which is calculated using the distribution of
values of the characteristic across each iterations. This means that for each characteristic under evaluation,
the number of individual desirability scores calculated is equal to the number of iterations you have informed
the program to simulate. The summary statistics of the distribution of individual desirability scores of each
characteristic is shown, with rows representing:

� 1 min: the minimum

� 2 q 25: the 25th percentile

� 3 mean: the average

� 4 median: the median

� 5 q 75: the 75th percentile

� 6 max: the maximum

individual desirability score calculated from all values of the characteristic (treatment group size imbal-
ance, in this case) realized in iter simulated trials.

Note that certain characteristics are already averaged across all iterations (Total Response, probability
of covariate imbalance, Type I error, Power), so they are excluded from this method.

Click on Next to proceed to Step 3.

Step 3.

In this step, overall desirability functions are calculated. The overall desirability score is calculated as a
weighted geometric mean of the individual desirability scores:

D = (dw1
1 dw2

2 ...dwmm )
1∑m

i=1
wi , (B.11)

where wi is the weight assigned to each individual desirability di, with larger weights indicating more
importance.

In Step 3, the program asks you to rate on a scale between 0 to 3 the relative importance of each
characteristic under evaluation. The resulting overall desirability scores will display below. You can slide
your responses and see how the overall desirability scores change in real time.

First, you will see a table labeled “Individual Desirability Scores Calculated from mean attribute
values”:

223



Figure B.19

Figure B.20

1 This is reiterating what was shown at
the end of Step 2. It is a table of individual
desirability scores for each characteristic,
by design. These scores were calculated
using a single mean value of the character-
istic for each design.

2 This column rescale.w is the standard-
ized weight as decided by your stated level
of importance given to each characteristic.
The weights are standardized so that they
may add to 1. This will update in real-time
as you change your preferences in the slider
inputs above.

3 This table displays the Overall Desir-
ability Scores of the designs using 1 and
Equation B.11.
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Figure B.21

4 This is also a reiteration of what was shown at the end of Step 2. This table summarizes the mean
individual desirability score as calculated from the distribution of values of each characteristic which resulted
from a number of simulated trials equaling the number of iterations requested by the user.
5 This table displays the Overall Desirability Scores of the designs using 4 and Equation B.11.
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Figure B.22

1 This table summarizes the distribution
of overall desirability scores for each design.

2 The rows labeled min, q 25, mean,
median, q 75, and max represent the
minimum, 25th percentile, mean, median,
75th percentile, and maximum overall
desirability scores for each design.

3 “Prob overallD 0”: Probability that the
overall desirability score of the design will
be 0, as estimated by the proportion of sim-
ulated trials where the design yielded an
overall desirability score of 0.
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Summary of Designs

Let Fn = T1, ..., Tn be a set of treatment assignments for n stages of the randomization process.

We denote Treatment E as the experimental treatment, and Treatment C as the control treatment. A set
of treatment assignments for n patients is T1, ..., Tn, where Tj = 1 when patient j is assigned to treatment
arm E, and Tj = 0 when patient j is assigned to treatment arm C. The probability of being assigned to
Treatment E is denoted by Pr(Tj = 1) = E(Tj).

Let Diff n denote the difference in sample size between treatment group E and treatment group C. Specifi-
cally, let Diff n = nE(n)− nC(n).

Complete Randomization Design (CRD)

In Complete Randomization Design (CRD), each patient is enrolled into either treatment arm E or treatment
arm C with probability 1/2. The allocation rule is independent of prior assignments:

E(Tj |Fj−1) = E(Tj) =
1

2
. (B.12)

There are no restrictions imposed upon this design.

Forced Balance Designs

Truncated Binomial Design (TBD)

The Truncated Binomial Design (TBD) (Blackwell and Hodges, 1957) is a forced balance procedure,
meaning that exactly half of n patients will be assigned to each treatment arm. In this allocation rule,
complete randomization is performed until one treatment arm contains half of the pre-determined sample
size; subsequently, all remaining patients will receive the other treatment.

The truncated binomial design allocation rule is defined by:

E(Tj |Fj−1) =
1

2
, if max(nE(j − 1), nC(j − 2)) <

n

2

= 0, if nE(j − 1) =
n

2

= 1, if nC(j − 1) =
n

2
. (B.13)

Random Allocation Rule (RAR)

The Random Allocation Rule (RAR) is also a forced balance procedure, with

E(Tj |Fj−1) =
n
2 − nE(j − 1)

n− (j − 1)
, j = 2, ..., n, (B.14)

and E(T1) = 1/2.
One can think of this allocation rule in terms of an urn model. One samples from an urn with n/2 balls for
treatment group E, and n/2 balls for treatment group C, without replacement.

Permuted Block Design (PBD)

In order to avoid severe treatment size imbalance during the entire course of a trial, clinical trialists often
use “blocks”. Forced balance randomization within blocks is used in order to ensure balance at the end of
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each block. Specifically, in the Permuted Block Design (PBD) (Zelen, 1974), there are M blocks of size B,
where B = n/M . Each block is filled using a forced balanced procedure (e.g. Random Allocation Rule,
Truncated Binomial Design), so that there are M occurrences of balanced allocation during the course of
the trial. The maximum imbalance at any time point is then half a block size, B/2.
Let Rj define the position patient j takes within his block. If we fill blocks using RAR, the allocation rule
is:

E(Tj |Fj−1, B,Rj) =

B
2 −

∑j−1
l=j+1−Rj Tl

B −Rj + 1
. (B.15)

Random Block Design (RBD.RAR, RBD.TBD)

The Random Block Design is a variation of the Permuted Block Design, with the difference lying in its
ability to have multiple block sizes throughout the course of the trial. Block sizes are randomly selected
from a discrete uniform distribution. Let Bmax be the maximum treatment size difference, which is half of
the largest block. The different block sizes, picked at random with probability 1/Bmax after the fulfillment
of a single block, are then 2, 4, 6, ..., 2Bmax. Let Bj be the block size of the block with the jth patient.
Let Rj define the position patient j takes within his block, ranging from 1,...,Bj . Each block can be filled
with any forced balance procedure. If we fill each block using RAR, the allocation rule is:

E(Tj |Fj−1, Bj , Rj) =

Bj
2 −

∑j−1
l=j+1−Rj Tl

Bj −Rj + 1
. (B.16)

This website abbreviates Random Block Design using blocks filled with Truncated Binomial Design as
RBD.TBD, and with Random Allocation Rule as RBD.RAR.

Biased Coin Designs

Efron’s Biased Coin Design (BCD p)

The Biased Coin Design (Efron, 1971) seeks to balance treatment assignments by allocating patients to the
underrepresented treatment group with a higher probability. The allocation rule is defined as

E(Tj |Fj−1) =


1
2 , if |Diffj−1| = 0,

p, if Diffj−1 < 0,

1− p, if Diffj−1 > 0,

(B.17)

where 0.5 < p <= 1. It can be seen that when p = 1/2, we have complete randomization with the
restriction of a maximal imbalance of n/2. At p = 1, Efron’s biased coin design simplifies to a permuted
block design with a block size of 2, so that every other patient’s allocation assignment is deterministic, and
maximal imbalance for even n being 0. The parameter p thus represents a trade-off between balance and
predictability. Efron’s original paper states:
“The value p = 2/3, which is the author’s personal favourite, will be seen to yield generally good designs...”

Big Stick Design (BSD)

The Big Stick Design (BSD) allows a degree of imbalance up to a magnitude given by a fixed imbalance
tolerance parameter b. The allocation rule is given by:
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E(Tj |Fj−1) =


1
2 , if |Diffj−1| < b,

0, if Diffj−1 = b,

1, if Diffj−1 = −b
(B.18)

Big Stick Design(proportion) (proportionBSD)

The Big Stick Design with Maximum Proportionate Degree of Imbalance replaces the absolute difference
used in the Big Stick Design with an acceptable degree of imbalance, Dj−1/(j − 1). The allocation rule,
then, is:

E(Tj |Fj−1) =


1
2 , if Diffj−1/(j − 1) < prop,

0, if Diffj−1/(j − 1) = prop,

1, if Diffj−1/(j − 1) = −prop,

(B.19)

where prop is a pre-defined acceptable degree of imbalance.

Biased Coin Design with Imbalance Intolerance (BCD2 p)

The Biased Coin Design with Imbalance Intolerance (BCDII(p)) combines the concepts of the big stick
design and Efron’s biased coin design (Chen, 1999). The allocation rule is defined by:

E(Tj |Fj−1) =



1
2 , if Diffj−1 = 0,

0, if Diffj−1 = b,

1, if Diffj−1 = −b,
p, if 0 < Diffj−1 < b,

1− p, if − c < Diffj−1 < 0

. (B.20)

Note that b is the maximum tolerable imbalance, and p is the probability of assigning patients to the
experimental arm E.

Accelerated Biased Coin Design (ABCD a)

The Accelerated Biased Coin Design (ABCD(a)) is a bigger umbrella of which the big stick design, Efron’s
biased coin design, and biased coin design with imbalance intolerance are special cases. Let F be a function
that maps integers to [0,1] such that F (x) is decreasing, and F (−x) = 1−F (x). The allocation rule is then:

E(Tj |Fj−1) = F (Diffj−1),

where

Fa(x) =


|x|a
|x|a+1 , if x ≤ −1,
1
2 , if x = 0,

1
|x|a+1 , if x ≥ 1.

(B.21)

The a parameter controls the degree of randomness, with a = 0 equating complete randomization. As
a→∞, the ABCD is equivalent to the Big Stick Design with b = 2.

Response-Adaptive Randomization (RAR)

Response-Adaptive Randomization (RAR) designs adapt to the responses observed in the study, increasing
or decreasing the probability of a subject being assigned to a given treatment arm. RAR designs target an
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allocation proportion, which depends on pre-stated objectives. Section B provides an overview of target
allocations frequently discussed in literature.

Target Allocations

Target allocation is defined as the ideal proportion nE/(nE + nC). The ideal proportion varies depending
on one’s objectives. The target allocations available in this website are summarized in Table B.2.

Objective Allocation Name Binary Continuous Normal

1. Maximize power for a fixed
sample size

Neyman
√
pEqE√

pEqE+
√
pCqC

σE
σE+σC

2. Minimize expected number
of treatment failures for a fixed
power

RSIHR
√
pE√

pE+
√
pC

√
µCσE√

µCσE+
√
µEσC

3. Minimize treatment failures
and ensure fewer patients are al-
located to inferior treatment

RSIHR2 NA
√
µCσE√

µCσE+
√
µEσC

if (µE < µC and σE
√
µC/σC

√
µE) > 1

or (µE > µC and σE
√
µC/σC

√
µE) < 1;

1/2 otherwise

4. Urn model (good for low-
ering expected number of treat-
ment failures when pE + pC > 1)

Urn qC
qE+qC

NA

5. Minimize patients with re-
sponse greater than c

Biswas Mandal
(BM)

NA

√
Φ(

µC−c
σC

)σE√
Φ(

µC−c
σC

)σE+
√

Φ(
µE−c
σE

)σC

6. Not formally defined Bandyopadhyay
Biswas (BB)

NA Φ(µC−µET )

7. Minimize the maximum eigen-
value of the inverse of Fisher’s in-
formation (E-optimality)

Baldi Antognini
Giovagnoli (Baldi)

see text NA

Table B.2: Summary of Allocations Targeted By RAR Designs.

Neyman Allocation (Neyman)

The Neyman allocation maximizes power for a given sample size N and fixed probabilities of success. The
Neyman allocation can be applied to either binary or continuous responses.

ϕ =

√
pEqE√

pEqE +
√
pCqC

.

This is known as the Neyman allocation. A weakness of this allocation is that when the success
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probabilities on both treatment groups are high (pE + pC > 1), more subjects are assigned to the weaker
treatment arm.

RSIHR Allocation (RSIHR)

While one objective could be to minimize the total sample size in a trial while still achieving sufficient
power, a second objective could be instead to minimize the total number of treatment failures. RSIHR
allocation (named after the initials of the authors on the original paper) seeks to minimize treatment
failures for a fixed power, and is given by:

ϕ =

√
pE√

pE +
√
pC
.

In the continuous case,

ϕ =

√
µCσE√

µCσE +
√
µEσC

.

However, when µE < µC , it is possible for nE
nC

to be less than 1/2. This shows that while power is
maximized for a fixed expected number of treatment failures, this target allocation has the potential to
allocate more patients to the inferior treatment. RSIHR2 seeks to remove this ethical flaw by modifying
the allocation.

Urn Allocation (Urn)
In trials with binary responses, urn allocation can be used when the probability of success is high in both
the experimental and the control arms, specifically, when pE + pC > 1. The target allocation is

ϕ =
qE

qE + qC
.

Urn models such as the randomized play-the-winner (RPW) (Wei et al., 1978) and drop-the-loser (DL) rule
(Ivanova, 2003) are procedures that target the Urn allocation, which is only a property of the procedure
rather than the solution to a specific optimality problem.

Biswas and Mandal Allocation (BM)
Biswas and Mandal (2004) sought to generalize binary optimal allocation in terms of failures to one for
normal responses. This allocation assumes that smaller responses are better and minimizes the total
number of patients with response greater than c, thereby minimizing the number of failures as given by a
threshold. The target allocation is given by

ϕ =

√
Φ(µC−cσC

)σE√
Φ(µC−cσC

)σE +
√

Φ(µE−cσE
)σC

.

The website ascertains your preference for the value of c with the question: “This question pertains only if
smaller values of the outcome are considered better. What is the maximum acceptable value of the
outcome? Values above this will be counted as failures.”

Bandyopadhyay and Biswas Allocation (BB)
Bandyopadhyay and Biswas (2001) proposed a target allocation that does not seek to optimize any formal
objective property. TBB is a scaling factor and is set at 2 in this website as is suggested in the original
paper. The target allocation is given by:

ϕ = Φ(
µC − µE
TBB

).

Baldi Antognini and Giovagnoli (Baldi)
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Baldi Antognini and Giovagnoli (2010) proposed a target allocation that has both ethical and inferential
aims. They seek to minimize the maximum eigenvalue of the inverse of Fisher’s information (E-optimality).
Consider the compound criterion which combines ethical and inferential objectives:

Φw(ϕ) = w

(
ψE(ϕ)

ψ∗E

)
+ (1− w)

(
ψI(ϕ)

ψ∗I

)
,

where w ∈ (0, 1) is a user-defined weight for importance of ethics, 1− w is the weight given to inference,
and ψE(ϕ) = qEϕ+ qC(1− ϕ) is the expected proportion of treatment failures, ψ∗E = min(qE , qC),
ψI(ϕ) = pEqE/ϕ+ pCqC/(1− ϕ) is the variance of the estimated treatment difference, and
ψ∗I = (

√
pEqE +

√
pCqC)2 is the minimum value of ψI(ϕ) for ϕ ∈ (0, 1). The goal is to minimize the

compound criterion. We can see, then, w places more importance on minimizing ψE(ϕ), the expected
proportion of failures, and (1− w) places more importance on ψI(ϕ), which minimizes the variance of the
estimated treatment difference.
The target allocation ϕ is the solution in (0,1) of the following equation

w

1− w
pE − pC

min(qE , qC)

(√pCqC√
pEqE

+ 1
)2

=
(
√
pCqC√
pEqE

− 1)ϕ2 + 2ϕ− 1

(ϕ(1− ϕ))2
.

Response-Adaptive Randomization (RAR) Designs

Eisele & Woodroofe, 1995(EW1995)

Eisele & Woodroofe (1995) presented a response-adaptive randomization (RAR) procedure. If Tj = 1, Xj

is normally distributed with mean µE and variance σ2
E . If Tj = 0, Xj is normally distributed with mean

µC and variance σ2
C .

Let g(x, y) = [1− ( 1
y − 1)x].

Then Eisele & Woodroofe’s procedure is defined by:

φ = g

(
nE(j − 1)

j − 1
, ϕ(θ̂j)target

)
. (B.22)

Doubly-Biased Coin Design (DBCD)

The Doubly Biased Coin Design (DBCD) is a RAR procedure that obtained its name due to its
consideration of both the proportion of enrolled patients assigned to each treatment arm and the estimate
of the target allocation proportion. Biased coin designs are able to reduce experimenter/selection bias.
The procedure aims to fulfill the goal of allocating nE patients to treatment E, such that nE

nE+nC
equals the

target allocation proportion. Treatment E is assigned, then, with a probability less than the current
maximum likelihood estimate (MLE) of the target proportion when the observed proportion is larger than
this estimate. Similarly, Treatment E is assigned with a probability greater than the current MLE of the
target proportion when the observed proportion is larger than this estimate.
In the DBCD, the first 2m0 patients are enrolled with the probability of being assigned to treatment E
equal to probnE = m0−nE

2m0−(j−1) , where j the patient number. After 2m0 patients have been enrolled, the

probability of being assigned to treatment arm E is determined by

φ =

R
R+1 (

R
R+1
nE
N

)γ

R
R+1 (

R
R+1
nE
N

)γ + (1− R
R+1 )(

1− R
R+1

1−nEN
)γ
, (B.23)

where R is recalculated for each enrolling patient using estimates of the means and variances of the
previously enrolled patients, and where γ >= 0 determines the degree of randomness, with γ = 0 being the
most random and γ –¿ ∞ being an almost deterministic procedure. Correlation is held constant and
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assumed known throughout the study.

Sequential Maximum Likelihood Estimation Design (SMLE)

The Sequential Maximum Likelihood Estimation (SMLE) Design sets treatment randomization
probabilities to be equal to the current estimates of the target allocation proportions. It is equivalent to
DBCD with γ = 0. This design can lead to a modest reduction in treatment failures with minimal loss in
power relative to equal randomization designs. However, SMLE has also been shown to be quite variable,
with potential negative effects on power.

Efficient Randomized-Adaptive Design (ERADE)

Efficient Randomized-Adaptive Design (ERADE) (Hu, et al. YEAR) is an extension of the biased-coin
design; it is equivalent to DBCD with γ →∞. ERADE is a RAR procedure that can target any
pre-specified allocation proportion, while still preserving allocation randomness and boasting minimal
variability. The theoretical properties of ERADE echo those of DBCD: both resulting sample proportions
(nE/n) and estimators are strongly consistent and asymptotically normal.

φ =


δρ̂(j − 1) if nE(j − 1)/n > ρ̂(j − 1)

ρ̂(j − 1) if nE(j − 1)/n = ρ̂(j − 1)

1− δ(1− ρ̂(j − 1)) if nE(j − 1)/n < ρ̂(j − 1)

(B.24)

The discrete property of ERADE differentiates it from DBCD, resulting in less variability.

Evaluated Characteristics of Designs

1. Treatment Group Size Imbalance

2. Expected Number of Failures

3. Expected Total Response (continuous responses only)

4. Accidental Bias

5. Covariate Imbalance (Z1)

6. Covariate Imbalance (Z2)

7. Covariate Imbalance (Z3)

8. Selection Bias

9. Relative Bias (Naive)

10. Relative Bias (Adjusted)

11. Type I error in the Presence of Chronological Bias (Naive)

12. Type I error in the Presence of Chronological Bias (Adjusted)

13. Power in the Presence of Chronological Bias (Naive)

14. Power in the Presence of Chronological Bias (Adjusted)

Treatment Group Size Imbalance

Definition: nE − nC .
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Complete randomization and restricted randomization procedures are used for balancing treatment
assignments. Equal allocation amongst treatment groups has two benefits: first, equal allocation caters to
the ethical concept of equipoise that clinical trialists should believe to be true at the start of a trial. Second,
balanced group sizes in clinical trials hedge against accidental bias, the bias in the estimated treatment
effect that is due to the omission of significant confounders from the model. In traditional (non-adaptive)
designs, power typically is maximized when the samples sizes in the treatment arms are the same.
For each design evaluated, then, treatment arm imbalance is assessed at the end of each simulated
iteration. The distribution of treatment arm imbalance for each given design is then assessed.

Expected Number of Failures
Definition: fE + fC .
In recent adaptive designs, the ethical objective of minimizing the number of failures in a trial has been a
characteristic under scrutiny. When the outcome is binary, the outcome is already “success” or “failure”,
making this calculation straight forward. When the outcome is continuous and considered smaller the
better, a failure is defined as any outcome greater than a pre-defined maximum threshold. The program
tallies the number of failures in each simulated clinical trial and stores the distribution. Let iter = the total
number of iterations (the total number of simulated trials), and fEi , fCi be the number of failures in the
experimental and control arms in iteration i, respectively. Then the number of failures across iterations is
stored: 

fE1 fC1

fE2 fC2

...
...

fEi fCi
...

...
fEiter

fCiter


.

The Average Expected Number of Failures of a design is calculated as the average number of failures in the
design over a large number of iterations. Then the

Average Expected Number of Failures =

∑iter
i=1 fEi + fCi

iter
. (B.25)

You will be able to evaluate a design by considering both the entire distribution of expected number of
failures, as well as by just the average expected number of failures. If this characteristic of a design is
important to you, consider using a response-adaptive-randomization design (ERADE, DBCD, SMLE,
EW1995) that targets the RSIHR allocation.

Expected Total Response
Definition: ȲEnE + ȲCnC .
This characteristic is evaluated for continuous responses only. You will be asked if smaller responses are
better, larger responses are better, or responses within a target value are better. If smaller responses are
better, and minimizing the total response is important to you, consider using a response-adaptive
randomization design (ERADE, DBCD, SMLE, EW1995) that targets the RSIHR allocation. For
smaller-the-better responses, you will be asked if you suspect correlation is present between responses of
the experimental and control arms due to some common exposure (e.g. all subjects treated in same
hospital). If correlation is suspected, an additional allocation - R.corr - will also be targeted.

Accidental Bias
Definition:

Accidental Bias Factor Estimate =

(
n

n2 − (e′t)2

)2

ˆλmax, (B.26)

where λmax is the maximum value of the covariance matrix of T. Note that in this overview of accidental
bias, we shall modify notation and allow Tj = 1 for an individual in treatment arm E, and Tj = -1 for an
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individual in treatment arm C, j = 1, ..., n. The covariance matrix of T is:

V arT = Σ =


E[(T1 − ET1)(T1 − ET1)] E[(T1 − ET1)(T2 − ET2)] . . . E[(T1 − ET1)(Tn − ETn)]
E[(T2 − ET2)(T1 − ET1)] E[(T2 − ET2)(T2 − ET2)] . . . E[(T2 − ET2)(Tn − ETn)]

...
...

. . .
...

E[(Tn − ETn)(T1 − ET1)] E[(Tn − ETn)(T2 − ET2)] . . . E[(Tn − ETn)(Tn − ETn)]

 ,
where the expected value of a treatment for patient j is estimated by taking the mean of the patient’s
treatment indicator value (Tj = −1 or 1) across all iterations. Specifically, for patient j and iteration i

(i = 1, ..., iter), ETj =

iter∑
i=1

Tj

iter . This estimate of ETj then allows us to find the estimate Σ̂, which is then
used to find an estimate of the accidental bias factor.

Accidental bias describes the measure of bias in the treatment effect that is introduced due to some
unobserved yet confounding covariate. Specifically, if β is the true value of the coefficient of a confounder,
then the bias of the treatment effect is equal to the accidental bias factor multiplied by β2. See Appendix
or Lachin & Rosenberger (2016) for more details.

As the number of iterations iter →∞, the estimate of the accidental bias factor reaches its theoretical
value. Designs yielding lower accidental bias factor estimates are favorable. In practice, this means the
designs with lower average treatment group imbalance, and with less variability within treatment
assignments for each subject j, are less likely to have treatment effect estimates impacted by unobserved
covariates.

Lachin et al. note that with the exception of truncated binomial design, accidental bias seems to be
negligible for forced balanced designs. However, accidental bias in response-adaptive designs seems to be
an area less studied. Using the accidental bias factor estimate from Equation B.26, this website is able to
compare the impact of unobserved covariates on a broader range of designs.

Covariate Imbalance (Z1, Z2, Z3)
Definition:

Probability(
∣∣ZE − ZC∣∣ > ε) =

∑iter
i=1 1(

∣∣ZEi − ZCi∣∣ > ε)

iter

The setup for the study of covariate imbalance follows that of Lachin and Rosenberger (2016). Three
different patterns are studied to see the probability of imbalance at the end of a trial:
1. Z11, Z12, ..., Z1n are i.i.d. N(0,1).
2. Z21, Z22, ..., Z2n drift linearly over time on the interval (-2,2] + a N(0,1) random variable.
3. Z31, Z32, ..., Z3n are autocorrelated. Specifically, Z3j = Z3j−1 + a N(0,1) random variable, with j =
2,...,n and the first of the series Z31 equaling a N(0,1) random variable.

These three scenarios represent three different types of covariates. The first is standardized normal, and is
a good representation of what one expects from most covariates measured in a study. Different means and
variances can be simulated, but N(0,1) is a representative proxy. The second scenario is representative of a
covariate subject to a linear time trend. This is not to be confused with a linear time trend influencing the
primary outcome of interest Y of a trial. An example of a covariate subject to a linear drift may be
improving average blood pressure in patient population, when blood pressure is not the primary endpoint
of interest. The third scenario is for autocorrelated variables, also known as serially correlated or serially
dependent. This means that a covariate value is not independently and identically distributed, but rather,
depends on the previous value. Returns on stock prices are frequently used as an example of autocorrelated
variables, since past returns seem to influence future performance and returns. Other examples include
annual rainfall, sunspot activity, and the price of agricultural products. In health, autocorrelation is seen
in covariates quantifying exposure to pollutants. For example, asthma symptoms and daily ambient
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particulate matter concentrations are characterized as being related through an autocorrelated lag model.
At the end of each trial, we compute the frequency in which |ZE − Z1C | > ε, where ε can be specified by
the user. The (frequency/total number of iterations) yields the simulated probability of covariate
imbalance for these three scenarios.

Selection Bias
Definition:

ρpred =

n∑
j=1

E

∣∣∣∣[E(Tj |F(j − 1)]− 1

2

∣∣∣∣ .
ρpred is the predictability of a randomization sequence, as measured by the difference between the
conditional probability of treatment assignment and the conditional probability. This is a measure of
third-order selection bias, which occurs when only future patient allocations are concealed, thus giving the
investigator the ability to predict future allocations based on prior assignments. While in today’s clinical
trials, a clinical trial usually targets double-blinded treatment assignment (the individual responsible for
assigning treatments and the analysts do not know who receives which treatment), in reality selection bias
is still a risk that should be considered during the design of a trial. In spite of the double-blinded nature of
many trials, treatment assignment may sometimes still be guessed or even obvious: patients in different
treatment arms may experience different side effects; or sometimes the treatment arms themselves are
unable to be masked (e.g. surgery vs. chemo). In a meta-analysis of randomized clinical trials in which
surgery was an intervention, less than 25 % of the trials concealed treatment allocation. The literature has
shown that systematic baseline imbalances can occur in randomized trials, where selection bias would force
imbalance in covariates influencing patient allocation. Berger (2005) states that randomization is necessary
to ensure that any observed baseline imbalances are random, but it is not sufficient.

If the intervention of your trial is hard to mask (e.g. surgical, behavioural), consider selection bias during
the design of your study. If you are certain that third-order selection bias is not relevant to your trial, you
may ignore this characteristic by telling the program Selection Bias is “Not important at all” by giving it a
score of 0 in Step 3.

Relative Bias
Relative Bias is a useful measure to see the bias of the treatment effect in the simulated trials. One can see
that certain designs yield less biased treatment effect effects. The relative bias is defined as β̂1−β

β × 100.

The naive relative bias is based off of β̂1 from Equation B.6, while the adjusted estimate is based off of β̂1

from Equation B.7.

Type I error in the Presence of Chronological Bias
This is the proportion of times the simulated trials result in a rejection of the null hypothesis when in fact
the null hypothesis is true. The naive Type I error results from an analysis from Equation B.6, whlie the
adjusted Type I error results from analysis from Equation B.7.

Power in the Presence of Chronological Bias Power is the proportion of times the simulated trials
result in the correct rejection of the null hypothesis when indeed the alternative hypothesis is true. The
naive power results from an analysis from Equation B.6, whlie the adjusted power results from analysis
from Equation B.7.
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Accidental Bias Factor
Let us consider the true model to be a standard normal error regression model:

E(Y ) = µe+ αt+ βz,

where e is a vector of ones: e = (1, 1, ..., 1)′, t is the treatment vector given by t = T = (t1, ..., tn)′, and z is
a covariate that is significantly associated with the outcome Y . Note that in this setup, α is the coefficient
for the treatment effect.
Denoting the design matrix X, we see that

X =


1 t1 z1

1 t2 z2

...
...

...
1 tn zn

 , X ′Y =

e′Yt′Y
z′Y

 .
Using ordinary least squares method, if we look at (X ′X)−1X ′Y , then the consistent estimate of α is

E(α̂) =
n(µe′t+ nα+ βz′t)− e′t(nµ+ αe′t)

n−(e′t)2
.

However, if the covariate z is incorrectly excluded from the model,

E(Y ) = µe+ αt,

Denoting the design matrix X, we see that

X =


1 t1
1 t2
...

...
1 tn

 , X ′Y =

[
e′Y
t′Y

]

.

(X ′X)−1 =
1

n2 − (e′t)2

[
n −e′t
−e′t n

]
.
Using ordinary least squares method, if we look at (X ′X)−1X ′Y , then the biased estimate is

α̂ =
nt′Y − (e′t)(e′Y )

n2 − (e′t)2
.

The squared bias term is then

[E(α̂− α)]2 = (
n

n2 − (e′t)2
)2β2(z′t)2

.
The impact of imbalanced treatment group sizes is highlighted by the (e′t) and is clear: larger imbalances
contribute to greater bias in the estimate of the treatment effect. The bias in the estimate of the treatment
effect also increases with the magnitude of the coefficient β for the omitted covariate z. Lastly, accidental
bias depends on the term (z′t)2, which is zero when z is orthogonal to t. The unconditional expectation
can be taken for a fixed vector z, with t being a realization of T and ΣT = V ar(T ):

E(z′T )2 = z′ΣT z,

By Rao, E(z′T )2 cannot exceed the maximum eigenvalue of ΣT (Rao 1973 p62). Due to this inequality,
Efron uses the maximum eigenvalue of ΣT as a criterion to evaluate the degree to which accidental bias
impacts a design.
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