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Abstract

Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and
Ion Beam Cancer Therapy

by

Lucas Nathan Brouwer

Doctor of Philosophy in Engineering - Nuclear Engineering

University of California, Berkeley

Professor Karl van Bibber, Chair

Advances in superconducting magnet technology have historically enabled the construc-
tion of new, higher energy hadron colliders. Looking forward to the needs of a potential
future collider, a significant increase in magnet field and performance is required. Such a
task requires an open mind to the investigation of new design concepts for high field mag-
nets. Part I of this thesis will present an investigation of the Canted-Cosine-Theta (CCT)
design for high field Nb3Sn magnets. New analytic and finite element methods for analysis
of CCT magnets will be given, along with a discussion on optimization of the design for high
field. The design, fabrication, and successful test of the 2.5 T NbTi dipole CCT1 will be
presented as a proof-of-principle step towards a high field Nb3Sn magnet. Finally, the design
and initial steps in the fabrication of the 16 T Nb3Sn dipole CCT2 will be described.

Part II of this thesis will investigate the CCT concept extended to a curved magnet
for use in an ion beam therapy gantry. The introduction of superconducting technology
in this field shows promise to reduce the weight and cost of gantries, as well as open the
door to new beam optics solutions with high energy acceptance. An analytic approach
developed for modeling curved CCT magnets will be presented, followed by a design study
of a superconducting magnet for a proton therapy gantry. Finally, a new magnet concept
called the “Alternating Gradient CCT” (AG-CCT) will be introduced. This concept will
be shown to be a practical magnet solution for achieving the alternating quadrupole fields
desired for an achromatic gantry, allowing for the consideration of treatment with minimal
field changes in the superconducting magnets.

The primary motivation of this thesis is to share new developments for Canted-Cosine-
Theta superconducting magnets, with the hope this design will improve technology for high
energy physics and ion beam cancer therapy.
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between adjacent paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Two views of the conductor path for a CCT dipole layer are shown. . . . . . . . 18
2.4 Two views of the conductor path for a CCT quadrupole layer are shown. . . . . 19
2.5 A schematic showing the configuration for canceling undesired fields using a pair

of CCT layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 A CAD assembly of a pair of CCT layers is shown with angles and current di-

rections as diagrammed in Figure 2.5. The green splice box on the left connects
(splices) layer 1 and layer 2 on the return end. . . . . . . . . . . . . . . . . . . . 20

2.7 The LHC “2-in-1” dual bore dipole magnet is shown. (Fig. from [2]) . . . . . . 29
2.8 Displaced harmonics are calculated at Rref in the z = x+iy system due to current

sheet located at r′ = R in the z′ = x′ + iy′ system. . . . . . . . . . . . . . . . . 30
2.9 Streamlines for the uncorrected (a) and corrected (b) 2-in-1 CCT dipole are shown. 35
2.10 The 2D streamlines for the transverse field generated by a single CCT dipole

layer of radial thickness are shown. . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.11 The 2D streamlines for the transverse field generated by a four layer CCT dipole

magnet are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.12 Conductor volume element showing the Frenet-Serret frame (β(θ), γ(θ), r(θ)) fol-

lowing the center of the conductor path. . . . . . . . . . . . . . . . . . . . . . . 42
2.13 Comparison of Equation 2.76 with finite element results for a single 4.4 T layer:

a1=28 mm, a2=43 mm, α=20 deg, w=7.34 mm, and I0=16.1 kA. . . . . . . . . 44
2.14 Comparison of Equation 2.76 with finite element results for a four layer 18 T

dipole: inner radius of 28 mm, 15.35 mm layer radial thickness, 0.55 mm spacing
between layers, w=7.34 mm, α=20 deg, and I0=16.1 kA. . . . . . . . . . . . . . 45

2.15 Comparison of Equation 2.82 with finite element results for a single 4.4 T layer:
a1=28 mm, a2=43 mm, α=20 deg, w=7.34 mm, and I0=16.1 kA. . . . . . . . . 46

2.16 Comparison of Equation 2.84 with finite element results for a four layer 18 T
dipole: inner radius of 28 mm, 15.35 mm layer radial thickness, 0.55 mm spacing
between layers, w=7.34 mm, α=20 deg, and I0=16.1 kA. . . . . . . . . . . . . . 47

2.17 The conductor and mandrel forming the minimum symmetry region for one CCT
layer is shown together and then separated. This symmetry can be repeated
axially to form a CCT layer in a laminated fashion. . . . . . . . . . . . . . . . . 48

2.18 Two adjacent mandrel laminations are shown with a displacement and then
mated. These laminations are identical and the conductor channels match per-
fectly end to end, representing the periodic symmetry in the winding path. . . . 48

2.19 The 2D axial symmetry of a traditional cosine-theta dipole “cross section” (a) is
shown compared to the 3D periodic symmetry region of the CCT “lamination” (b). 49

2.20 A periodic symmetry region is shown meshed around the conductor of a CCT
dipole. The outer axial faces of this region are used for the specification of the
periodic field and current conditions. . . . . . . . . . . . . . . . . . . . . . . . . 50



vii

2.21 A two layer symmetry region of conductor and mandrels is shown. The constraint
equations between lamination face nodes are shown graphically for the conductor
of layer two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 A single CCT dipole turn discretized into eight node brick elements is shown. . 54
3.2 An example of a .cond file “layer1.cond” is shown for importing the first two

8-node brick element conductors into Opera3D. . . . . . . . . . . . . . . . . . . 55
3.3 The method for generating the 180 degree symmetry region from the brick element

path is illustrated for a CCT dipole conductor layer. . . . . . . . . . . . . . . . 56
3.4 An example of two guesses and the interpolated zero force value for δz is shown.

Each case represents a solution of the ANSYS model with the “single-strain”
condition using the respective value for δz. . . . . . . . . . . . . . . . . . . . . . 58

3.5 ANSYS stress results for a single conductor layer are shown using the ANSYS
viewer in the global cylindrical frame (r, θ, z). The stress results are also shown
converted to a local conductor frame (t, r, b) and plotted in the program ParaView
as a single continuous conductor turn. . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 A single CCT layer is shown with the total physical length Ltot, end length Le,
and magnetic length Lm indicated. . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Normalized behavior of the pitch, number of turns, and end length is shown as a
function of tilt angle for a single layer of fixed total length. . . . . . . . . . . . . 68

4.3 The fractional geometric end and straight-section length is shown as a function
of tilt angle for a single layer of fixed total length. It is seen that the effect of a
smaller tilt angle is to convert straight-section length into end length. . . . . . . 68

4.4 Dipole harmonics along the axis of the magnet (z) are shown for a single layer.
The zoomed region shows the location of the max and plateau field. . . . . . . . 69

4.5 The normalized behavior of the magnetic length Lm, plateau field Bplat, and
integrated field Bint are shown for a single layer of fixed total length. There
exists a single alpha which maximizes the integrated field. For a given conductor
and rib thickness, this optimum angle is a function of layer radius r and total
length Ltot (see Figure 4.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 The optimial tilt angle that maximizes the integrated dipole field is shown as a
function of total physical length and radius. . . . . . . . . . . . . . . . . . . . . 71

4.7 The factor relating the radius to the length of a single CCT turn Cl is shown for
varying tilt angle α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.8 The normalized conductor use as a function of tilt angle for a 2.2 m CCT layer
is shown added to Figure 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.9 Equation 4.20 is shown plotted given a typical Nb3Sn short-sample current density
curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 The load lines for the conductor layers of an ungraded (a) and graded (b) eight
layer CCT dipole are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



viii

4.11 The ungraded (a) and graded (b) conductor cross sections are shown for the eight
layer Nb3Sn dipole design CCT2. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.12 A fit [52] of the Nb3Sn strand current density for HD3 coil-2 is shown. . . . . . 78
4.13 The conductor cost of one meter of magnetic length for varying dipole fields is

shown for a 100 mm bore CCT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.14 The scaling of conductor cost as function of number of layers for the ungraded

case is shown for a selection of clear bore diameters. . . . . . . . . . . . . . . . . 81

5.1 An exploded view of CCT1 with an external key, bladder, and shell loading
structure is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 The two conductor layers of CCT1 are shown. . . . . . . . . . . . . . . . . . . . 84
5.3 A cross section of CCT1’s mandrels is shown. . . . . . . . . . . . . . . . . . . . 85
5.4 A cross section of the key and bladder outer structure considered for variable

loading of CCT1 is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5 The dipole harmonic (B1) along the length of CCT1 is shown. The equivalent

dipole step function at the central field of 2.52 T is shown with the magnetic
length Lm indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 The sextupole (b3) and dodecapole (b5) harmonics are shown along the length of
CCT1. The harmonics are calculated in Opera3D at 2/3 of the clear bore. . . . 88

5.7 The solenoidal field (Bz) is shown along the length of CCT1. . . . . . . . . . . . 89
5.8 The load line for CCT1 is shown for current density in the superconductor. . . . 90
5.9 The Lorentz force density directed towards the mandrel ribs is shown for CCT1.

The results displayed were calculated at the center of the conductor using Opera3D. 91
5.10 The Lorentz force density directed in the radial direction is shown for CCT1. The

results displayed were calculated at the center of the conductor using Opera3D. 92
5.11 The 3D periodic symmetry region used for structural calculations in ANSYS is

shown for layer 1 of CCT1 and for both layers assembled into a key, bladder, and
shell structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.12 The Lorentz force induced azimuthal stress (difference between cooldown and
operation) for the conductor of CCT1 is compared to results from a model with
the inner mandrel spar removed (no interception) and to the predicted azimuthal
stress within an equivalent sector coil. The stress in the CCT model with inter-
ception is seen reduced to near the single turn level. . . . . . . . . . . . . . . . . 95

5.13 Operating azimuthal conductor stress in MPa is shown for CCT1 conductor and
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.14 Azimuthal stress in MPa is shown for CCT1 without an external structure for
cooldown (a) and operation (b). Without an external structure providing rigidity
the coil pack is susceptible to bending under the azimuthally asymmetric Lorentz
force loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.15 The CNC machining of an aluminum winding mandrel for CCT1 is shown. . . . 98
5.16 The anodized mandrels for layer 1 and layer 2 of CCT1 are shown. The mandrels

were wound with conductor by hand with no additional applied tension. . . . . 98



ix

5.17 Layer 1 and layer 2 of CCT1 are shown assembled one inside the other and
then into an outer aluminum shell. The bottom left image shows the continuous
transition between layers that was later replaced with a splice outside the magnet. 99

5.18 The straight-section sextupole (b3) is shown as function of magnet current for
the six current ramps of CCT1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.19 The straight-section b5 and b7 harmonics are shown as function of magnet current
for the six current ramps of CCT1. . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.20 The measured sextupole harmonic (b3) as a function of axial position through
one end of CCT1 is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.21 Training quenches during the test of CCT1 are shown. . . . . . . . . . . . . . . 103

6.1 The eight graded conductor layers and mandrels of CCT2 are shown. . . . . . . 105
6.2 The eight conductor layers of CCT2 are shown. . . . . . . . . . . . . . . . . . . 106
6.3 The dipole harmonic (B1) along the length of CCT2 is shown. The equivalent

dipole step function at the central field of 15.87 T is shown with the magnetic
length Lm indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 The axial variation of the on-axis solenoidal field of CCT2 is shown. . . . . . . . 109
6.5 The sextupole (b3) and dodecapole (b5) harmonics are shown along the length of

CCT2. The harmonics are calculated in Opera3D at 2/3 of the clear bore. . . . 110
6.6 The load lines for CCT2 are shown for current density in the superconductor. . 111
6.7 The dipole along the length of CCT2 with the Bi2112 insert is shown. . . . . . . 113
6.8 The coupled load lines for the hybrid configuration of CCT2 are shown for current

density in the strand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.9 The 3D symmetry region of CCT2 is shown in ANSYS without (a) and with (b)

the HTS insert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.10 Local conductor stress is shown plotted around a single turn for the innermost

layer of the eight layers of Nb3Sn. . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.11 Local conductor stress is shown plotted around a single turn for the innermost

Bi2212 and Nb3Sn layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.12 (a) Radial displacement in mm is shown for the Nb3Sn outer. (b) The bending

of the coil pack to a non-circular, elliptical shape is seen leading to high stress
(in MPa) concentrated on the edge of the inner mandrel. . . . . . . . . . . . . . 118

6.13 The effect of extending the spar of the innermost layer (reducing the clear bore)
on the maximum longitudinal conductor and spar stress is shown for the Nb3Sn
layers. Increasing this spar reduces coilpack bending at the cost of clear bore. . 118

6.14 The 5 turn mandrel is shown wound with Nb3Sn cable and then put through the
heat treatment reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.15 The 5 turn impregnation tooling is shown along with the results using beeswax. 121
6.16 The dipole harmonic (B1) along the length of the 64 turn model is shown for the

short-sample current of 10.6 kA. . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.17 The load line for the 64 turn NbTi model is shown for current density in the

superconductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



x

6.18 The 64 turn layer 1 and 2 mandrels for the NbTi test are shown. Layer 1 is wound
with insulated NbTi cable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.19 The assembly of coil pack into the outer aluminum shell is shown. . . . . . . . . 127

7.1 A comparison is seen between the depth dose profile of photons and the most
commonly used ions for cancer therapy. (Fig. from [65]) . . . . . . . . . . . . . 129

7.2 The spread-out Bragg peak (SOBP) is shown generated by a single field and by
an opposing set of fields. (Fig. from [69]) . . . . . . . . . . . . . . . . . . . . . . 130

7.3 Active scanning of the tumor volume. (Fig. from [74]) . . . . . . . . . . . . . . 131
7.4 The Heidelberg Ion Therapy Center (HIT). (Fig. from [76]) . . . . . . . . . . . 132
7.5 A schematic of PSI’s proton gantry II is shown with the location of the active

scanning and final bending magnet indictaed. (Fig. from [76]) . . . . . . . . . . 133
7.6 A curved rapid prototype mandrel is shown wound with eight strand supercon-

ducting cable. The red section was created from stacked laminations. . . . . . . 135
7.7 Eddy current losses in a proton therapy mandrel. (Figure courtesy of Heng Pan) 136
7.8 An illustration of the MEVION single room proton system. (Fig. from [98]) . . 137
7.9 An illustration of the NIRS superconducting carbon gantry. (Fig. from [100]) . . 138
7.10 An illustration of the ProNova SC360 superconducting proton gantry. (Fig. from

[99]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.1 Bipolar coordinates 0 < η <∞ and 0 ≤ ξ ≤ 2π . . . . . . . . . . . . . . . . . . 141
8.2 The local unit tangent, normal, and binormal vectors (t̂, η̂, b̂) are shown at

location ~p of a parametric path constrained to the surface of a torus. . . . . . . 142
8.3 A path is shown patterned around the bend in integer multiples of the pitch angle

φ0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.4 The concavity of the CCT winding path as a function of the azimuthal toroidal

angle is shown for three different tilt angles. . . . . . . . . . . . . . . . . . . . . 147
8.5 The quadrupole-like toroidal harmonic (n=2) is shown for a fixed bore radius

R and increasing major radius R0. The Legendre polynomials needed for the
fields were evaluated using the DTOR algorithm [108]. As the aspect ratio of the
torus ε = R/R0 tends to zero, the fields are seen approaching those of a straight
cylindrical quadrupole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.1 An illustration of point-to-parallel optics in the horizontal plane. . . . . . . . . . 153
9.2 (a) The two conductor layers optimized for the combined dipole and quadrupole

fields. (b) The contribution of each layer to the transverse field on the midplane
and their sum as function of distance across the bore of the straight-section. . . 154

9.3 The concavity of the CCT winding path as a function of the azimuthal toroidal
angle is shown for layer 1 and layer 2 of the design. . . . . . . . . . . . . . . . . 155

9.4 Comparison of analytic (blue) and finite element (red) perpendicular rib thick-
ness between channels is shown as a function of toroidal azimuthal angle for the
winding of layer 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



xi

9.5 (a) The path of integration through the dipole. (b) The dipole harmonic as a
function of distance along the path. . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.6 The distribution of the field at the conductor is shown for layer 1. . . . . . . . . 158
9.7 The load line and short sample is shown for the design. . . . . . . . . . . . . . . 159
9.8 Results for tracking through the CCT layers are shown. . . . . . . . . . . . . . . 161
9.9 The coordinate system for the Lorentz force results is shown. . . . . . . . . . . . 163
9.10 The Lorentz forces of a single straight-section turn are shown as a function of

azimuthal angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.11 The Lorentz forces along the length of each layer are shown as a function of bend

angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.12 An illustration of the primary actions of the Lorentz forces along the bend of the

magnet is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.13 The ANSYS model and locations of applied boundary conditions are shown. . . 165
9.14 The net displacement (in mm) is shown along the length, and the displacement

along ρ (in mm) is shown for a central cross section. . . . . . . . . . . . . . . . . 166
9.15 The von Mises stress (in MPa) is shown along the length and for a central cross

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.16 The net displacement (in mm) is shown along the length, and the displacement

along ρ (in mm) is shown for a central cross section. . . . . . . . . . . . . . . . . 167
9.17 The von Mises stress (in MPa) is shown along the length and for a central cross

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.1 A single alternating focusing quadrupole layer is shown with five sections (FDFDF).
The transition scheme between sections of opposite axial period is enlarged with
the current direction indicated. This scheme allows for the coil to be generated
with one continuous winding, where the relative integral strength of the sections
can be tuned by adjusting the number and location of transition points. . . . . . 171

10.2 A diagram of the proton gantry is shown with the three locally achromatic AG-
CCT bending sections (B1, B2, and B3) indicated. . . . . . . . . . . . . . . . . 172

10.3 Several proton depth ranges covered by the 25% momentum acceptance of the
gantry are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.4 The desired SCOFF fields from Table 10.1 are shown for the 75 degree bends B1
and B2 (a) and the 90 degree bend B3 (b). . . . . . . . . . . . . . . . . . . . . . 174

10.5 The four CCT layer approach to the bending sections is shown. . . . . . . . . . 174
10.6 (a) A slice of the coils for the 75 degree bend. The inner two layers were designed

to produce a quadrupole field and the outer two a dipole field. (b) The vertical
field on the midplane produced by the windings. . . . . . . . . . . . . . . . . . . 176

10.7 The dipole and alternating quadrupole contributions from the CCT dipole and
AG-CCT layers are shown as a function of bending angle for the 75 degree bend
(a) and 90 degree bend (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10.8 The short-sample in the superconductor is shown for both the AG-CCT and CCT
dipole layers of the 75 degree bend (B1,B2). . . . . . . . . . . . . . . . . . . . . 178



xii

10.9 The short-sample in the superconductor is shown for both the AG-CCT and CCT
dipole layers of the 90 degree bend (B3). . . . . . . . . . . . . . . . . . . . . . . 178

A.1 (a) A coil configuration is shown cut through the center of the straight-section
(away from the ends). (b) The complex plane used for the harmonic expression
of the transverse fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.2 The typical form of the dipole harmonic B1 along the length of a CCT magnet
is shown with the location straight-section dipole field BSS

1 indicated. . . . . . . 193
A.3 The integrated dipole field is represented as a step function of height BSS

1 and
magnetic length Lm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

C.1 The load lines for each layer of the 2 layer magnet are shown for the ungraded
case (a) and the graded case (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 199

C.2 The load lines for each layer of the 4 layer magnet are shown for the ungraded
case (a) and the graded case (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 201

C.3 The load lines for each layer of the 6 layer magnet are shown for the ungraded
case (a) and the graded case (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 203

C.4 The load lines for each layer of the 8 layer magnet are shown for the ungraded
case (a) and the graded case (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 205



xiii

List of Tables

1.1 Superconducting Magnets for Hadron Colliders . . . . . . . . . . . . . . . . . . 2
1.2 High Field Nb3Sn R&D Accelerator Magnets . . . . . . . . . . . . . . . . . . . . 9

2.1 Key Analytic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Inductance of Fabricated CCT Magnets . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Uncorrected 2-in-1 Harmonic Comparison . . . . . . . . . . . . . . . . . . . . . 34
2.4 Corrected 2-in-1 Harmonic Comparison . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 CCT Layer Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 CCT Magnet Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Assumptions for the CCT Designs . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Assumption for Nb3Sn Strand Cost . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Short-Sample Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Conductor Cost Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 SSC Outer NbTi Cable Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 CCT1 Mandrel Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 CCT1 Conductor Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 CCT1: Straight-Section Harmonics from Opera3D (in units of B1) . . . . . . . . 88
5.5 CCT1: Integrated Harmonics from Opera3D (in units) . . . . . . . . . . . . . . 89
5.6 CCT1 Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.7 CCT1 Axial Boundary Condition Results . . . . . . . . . . . . . . . . . . . . . . 94
5.8 CCT1 Electrical Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 60/61 RRP Nb3Sn Wire (HD3 Coil-2) . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Rutherford Cables for CCT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3 CCT2 Nb3Sn Mandrel Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4 CCT2 Conductor Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.5 CCT2: Straight-Section Harmonics from Opera3D (in units of B1) . . . . . . . . 108
6.6 CCT2: Integrated Harmonics from Opera3D (in units) . . . . . . . . . . . . . . 110
6.7 Grading Savings for CCT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.8 Bi2212 and Nb3Sn Mandrel Properties . . . . . . . . . . . . . . . . . . . . . . . 112
6.9 The Two ANSYS Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



xiv

6.10 Max/Min Local Stress Without the HTS Insert . . . . . . . . . . . . . . . . . . 116
6.11 Max/Min Local Stress With the HTS Insert . . . . . . . . . . . . . . . . . . . . 117
6.12 CCT2 5-Turn Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.13 SSC Inner NbTi Strand Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.14 CCT2 64-Turn Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.15 CCT2 64-Turn Electrical Measurements . . . . . . . . . . . . . . . . . . . . . . 126

9.1 Proton Gantry Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2 CCT Gantry Magnet Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . 152
9.3 Straight-Section Cylindrical Harmonics . . . . . . . . . . . . . . . . . . . . . . . 154
9.4 Gantry Magnet Rib Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.5 SSC Inner NbTi Strand Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.6 Radial Buildup (in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.7 Conductor Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.8 Estimated Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10.1 Desired SCOFF Model Fields for the AG-CCT Bends . . . . . . . . . . . . . . . 173
10.2 Winding Mandrel Geometry (in mm) . . . . . . . . . . . . . . . . . . . . . . . . 175
10.3 Post Particle Tracking: AG-CCT Split . . . . . . . . . . . . . . . . . . . . . . . 175
10.4 Short Sample at the Maximum Operating Point . . . . . . . . . . . . . . . . . . 179

C.1 Load Line Calculation for Two Layers . . . . . . . . . . . . . . . . . . . . . . . 199
C.2 Two Layer Conductor Use: Ungraded . . . . . . . . . . . . . . . . . . . . . . . 200
C.3 Two Layer Conductor Use: Graded . . . . . . . . . . . . . . . . . . . . . . . . . 200
C.4 Two Layer Conductor Cost Summary . . . . . . . . . . . . . . . . . . . . . . . . 200
C.5 Two Layer Short-Sample Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
C.6 Load Line Calculation for Four Layers . . . . . . . . . . . . . . . . . . . . . . . 201
C.7 Four Layer Conductor Use: Ungraded . . . . . . . . . . . . . . . . . . . . . . . 202
C.8 Four Layer Conductor Use: Graded . . . . . . . . . . . . . . . . . . . . . . . . . 202
C.9 Four Layer Conductor Cost Summary . . . . . . . . . . . . . . . . . . . . . . . . 202
C.10 Four Layer Short-Sample Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
C.11 Load Line Calculation for Six Layers . . . . . . . . . . . . . . . . . . . . . . . . 203
C.12 Six Layer Conductor Use: Ungraded . . . . . . . . . . . . . . . . . . . . . . . . 204
C.13 Six Layer Conductor Use: Graded . . . . . . . . . . . . . . . . . . . . . . . . . 204
C.14 Six Layer Conductor Cost Summary . . . . . . . . . . . . . . . . . . . . . . . . 204
C.15 Six Layer Short-Sample Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
C.16 Load Line Calculation for Eight Layers . . . . . . . . . . . . . . . . . . . . . . . 205
C.17 Eight Layer Conductor Use: Ungraded . . . . . . . . . . . . . . . . . . . . . . . 206
C.18 Eight Layer Conductor Use: Graded . . . . . . . . . . . . . . . . . . . . . . . . 206
C.19 Eight Layer Conductor Cost Summary . . . . . . . . . . . . . . . . . . . . . . . 206
C.20 Eight Layer Short-Sample Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 206



xv

Acknowledgments

I would first like to thank Professor Karl van Bibber for serving as an advisor to this
project and as the chair of the thesis committee. I am grateful for your enthusiastic support
of the research, assistance with departmental requirements, and for your thorough editing
of the thesis. I would also like to thank Professors Jonathan Wurtele, Peter Hosemann, and
Ka-Ngo Leung for serving on the committee and for their valuable feedback.

The majority of the work for this project was carried out at Lawrence Berkeley National
Laboratory (LBNL), the support of which made this thesis possible. I would like to thank
Shlomo Caspi and David Robin of LBNL for serving as advisors to the project and having
a positive impact on my time as a graduate student both at and away from the lab. I thank
Shlomo for inviting me to the superconducting magnet group, for teaching me superconduct-
ing magnet design, for sharing your experience building high field magnets, for always being
open to the next idea, for being an innovator in the field, for your generosity away from the
lab, and for your friendship. I thank Dave for first inviting me up to the lab to join the
gantry group, for teaching accelerator physics, for sharing your passion to bring ion beam
cancer therapy to those in need, for an endless supply of optimism, and for your friendship.

I would like to thank and acknowledge the many others at the lab who contributed to this
work. Thank you to Ray Hafalia, Tom Lipton, and Nick Heys for fabrication of the mandrels
and assembly of the magnets. Thank you to Jim Swanson for winding all the CCT coils by
hand. Thank you to Dan Dietderich and Ian Pong for all things conductor. Thank you
to Helene Felice, Etienne Rochepault, and Diego Arbelaez for help with ANSYS modeling.
Thank you to Xiarong Wang, Maxim Marchevsky, and Marcos Turqueti for running the test
of CCT1 at the LBNL test facility and performing the magnetic and electrical measurements.
Thank you to Paul Bish and John Pucci for cryogenic support during the CCT1 test. Thank
you to Arno Godeke for developments in HTS CCT magnets and the aluminum bronze
mandrel material. Thank you to Weishi Wan, Changchun Sun, Andy Sessler, and Dave
Robin for sharing the accelerator physics side of gantry design. Thank you to our colleagues
at PSI, Marco Schippers and Alex Gerbershagen, for their valuable input in gantry design
and operation. Finally, thank you to Soren Prestemon and Steve Gourlay for supporting
this work during their time as group leaders of the Superconducting Magnet Group.

This work was supported by the National Science Foundation’s Graduate Research Fel-
lowship Program (GRFP).



1

Part I

CCT Magnets for High Energy
Physics



2

Chapter 1

Introduction and Motivation

1.1 Motivation for high field accelerator magnets

Following the first use of superconducting main ring dipoles in the Tevatron in the 1980’s,
the push for higher field accelerator magnets has been driven by the needs of the next hadron
collider. Figure 1.1 and Table 1.1 show the progression of these superconducting colliders [1,
2], culminating in the construction and operation of the Large Hadron Collider (LHC). The
8.3 T magnets of this machine have pushed niobium-titanium (NbTi) superconductor to its
performance limit, requiring the change to a new superconducting material if higher fields
are desired.

Table 1.1: Superconducting Magnets for Hadron Colliders

First Beam Design Field Aperture (mm) Conductor Number
Tevatron 1983 4.3 T 76.2 NbTi 774
HERA 1991 5.0 T 75 NbTi 416
SSC* N/A 6.6 T 50 NbTi N/A
RHIC 2000 3.5 T 80 NbTi 264
LHC 2008 8.3 T 56 NbTi 1276

HL-LHC 2025
140 T/m 150 Nb3Sn 40

11 T 60 Nb3Sn 40

The conductor considered for the next generation of high field magnets is niobium-tin
(Nb3Sn). Development of Nb3Sn accelerator magnets has been largely driven by the needs
of a luminosity upgrade of the LHC. This project requires close to eighty 11-12 T Nb3Sn
magnets, which are scheduled for installation in the machine in 2023 [3, 4]. These will be
the first Nb3Sn magnets operating in an accelerator, and the result of over 20 years of Nb3Sn
magnet development within the US LHC Accelerator Research Program (LARP) and the
High Luminosity LHC (HL-LHC) project [5, 6].
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Figure 1.1: Superconducting hadron colliders.

The demand for high field Nb3Sn accelerator magnets beyond the luminosity upgrade
of the LHC is driven by the prospect of a future hadron collider. An investigation of the
feasibility and cost of such a machine has begun as part of the Future Circular Collider
(FCC) Study [4, 7, 8, 9]. The goal of the FCC study is to produce a conceptual design for
a future machine by 2018. One option being considered is a 100 TeV pp collider with either
16 T dipoles in a 100 km ring or 20 T dipoles in a 80 km ring (see Fig 1.2). The approval
of such a machine would generate large demand for Nb3Sn magnets with 4-8 T higher field
than those developed for the HL-LHC.

Advancing Nb3Sn magnet technology to the 16-20 T field level desired for a future collider
is an extremely challenging undertaking. One of the most difficult aspects of high field
superconducting magnet design is managing the Lorentz forces within the magnet (which
scale with the square of the magnetic field). Section 1.3 will describe how the combination of
rapidly increasing Lorentz forces and strain-sensitive Nb3Sn conductor appears to limit the
traditional magnet design to a field near 14-15 T. This design is the called the “cosine-theta”,
and has been used for all superconducting accelerator magnets operating in hadron colliders
to date (including the planned HL-LHC upgrade).

Several other high field Nb3Sn magnet design concepts have been proposed and tested,
such as the “common-coil”, “block”, and “stress-managed block” (see [10] for an overview
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Figure 1.2: Future pp collider options within the FCC study. (Fig. from [4])

of magnet options for the FCC). As of yet, there is no magnet that has shown performance
at FCC field levels. Given the long length of time before a potential collider may be built, it
is important to keep “all options on the table” and to pursue new ideas showing promise to
overcome the challenges of traditional designs. One such idea is the “Canted-Cosine-Theta”
(CCT) design, not yet investigated for high field, which shows the potential to overcome
the Lorentz force issue. Part I of this thesis will present analysis of the CCT design and
a proof-of-principle test, laying the ground work necessary for a test of its performance at
very high field. Section 1.2 will present an introduction to the CCT design, followed by an
explanation of its perceived advantages for high field in Section 1.3. The history of the CCT
concept and scope of the thesis will then be presented in Section 1.4.

1.2 Introduction to the CCT concept

The Canted-Cosine-Theta (CCT) concept is based on pairs of conductor layers wound and
powered such that their transverse field components sum and axial (solenoidal) field com-
ponents cancel. Figure 1.3 shows two layers of conductor windings of opposite tilt for the
generation of a dipole field. When powered so the current flows in the direction indicated
in the figure, the dipole field contribution from the individual layers sum and the solenoid
contributions cancel. As will be described in mathematical detail in Chapter 2, this CCT
approach can also be used to produce higher order cylindrical harmonics (quadrupole, sex-
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tupole, etc.) or a mix of several harmonics as desired for a combined function magnet.

Figure 1.3: Two layers of CCT dipole conductor windings are shown powered such that their
transverse fields sum and solenoidal fields cancel.

CCT magnets are constructed using a winding mandrel approach. A mandrel for each
conductor layer is created by machining a continuous channel into a thick walled metal
cylinder, leaving behind ribs and a spar (Fig. 1.4). The mandrel for each layer is wound
with cabled conductor, put through the heat treatment reaction (if Nb3Sn conductor is
used), and then epoxy impregnated. After this, the cylindrical layers can be nested one
inside the other to create a multi-layer CCT magnet in a modular process. Aside from
positioning the conductor for reaction and impregnation, these mandrels provide structural
support against the operating Lorentz forces. The ribs between individual conductor turns
prevent the accumulation of forces and the spars provide rigidity to reduce coilpack bending.
Section 1.3 will present this structural support as a key advantage for high field dipoles,
where traditional magnet designs are challenged by the combination of large Lorentz forces
and strain sensitive Nb3Sn.

1.3 Motivation for high field Nb3Sn CCT dipoles

Lorentz forces and conductor motion

The conductor of a superconducting magnet carries current in the magnetic field it generates,
experiencing a Lorentz force density ~f = ~j × ~B. This force is proportional to the current
density and field within the conductor and can be seen plotted for an idealized 2D dipole
current distribution in Figure 1.5. It is seen that the primary effect of the Lorentz forces
within a dipole magnet is to compress the coil from the pole down towards the midplane.
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Figure 1.4: A CCT winding mandrel is shown. Rectangular channels are machined into
a metallic cylinder to produce a mandrel with ribs and a spar. These channels position
Rutherford cable for field quality, and the spars and ribs provide structural support at the
single conductor turn level.

These forces can cause movement of the conductor during energization of the magnet which
has negative effects. Friction or cracking resulting from movement releases energy which
raises the temperature of the superconductor and can cause the magnet to quench.

Because the heat capacity of metals is extremely low at cryogenic temperatures, it takes
very little deposited energy (in the millijoule to microjoule range) to raise the temperature
to the point where a quench is induced. An in-depth study modeling these friction induced
quenches, which is also correlated to data from Nb3Sn accelerator magnet tests, can be found
in [11]. Movement of the conductor is also undesirable due to the generation of magnetic
field errors. To achieve accelerator level field quality the location of each conductor has
to be controlled to the sub-millimeter level. For these reasons, to limit quenches and field
errors, an important aspect of superconducting magnet design is the prevention of conductor
motion due to Lorentz forces.

Pre-stress to prevent conductor motion

To prevent conductor movement due to Lorentz forces, traditional superconducting magnet
designs use an external structure to compress the conductor before energization of the mag-
net. This squeezing during assembly is called “pre-stress” and its primary function is to put
all the conductor in the magnet into compression before current is applied. Then, as the
magnet is energized, the Lorentz forces unload into this compression. If the initial pre-stress
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(a) (b) (c)

Figure 1.5: (a) The magnetic field generated by an idealized 2D dipole current density. (b)
The direction and magnitude of the resultant Lorentz forces within the winding. (c) The
primary effect of the Lorentz forces in a dipole is to compress the coil from the pole down to
the midplane, which is illustrated on a traditional cosine-theta dipole magnet cross section.

is large enough, the unloading effect of the Lorentz force will be taken up by the pre-stress
and prevent any part of the conductor from going into tension. In particular, having enough
pre-stress to keep the entire coil in compression prevents the conductor from breaking away
from the structure in the pole region (see Fig. 1.5c). Examples of conductor pre-stress and
unloading under Lorentz forces can be seen in Figure 1.6, where the stress in the pole region
is shown as a function of magnet current for the main dipoles in each of the superconducting
hadron collider projects. It is seen that all have been designed with sufficient pre-stress
(value at “After-cooldown”) such that at the maximum current and Lorentz force (value at
“100% Fnom”) the conductor does not unload into tension.

Pre-stress is critical to traditional superconducting magnet design, and has been used
for the main dipoles in every superconducting hadron collider to date (Tevatron [13], HERA
[14], SSC - design only [15, 16], RHIC [17], and the LHC [18]). Pre-stress is traditionally
applied using large presses and steel collars, as shown in Figure 1.7, and more recently using
an innovative key, bladder, and shell structure developed in the US LARP program [19].
The amount of pre-stress required is dependent on two things: the order of the Lorentz
force in individual conductors (scaling with B2), and how the forces from these individual
conductors accumulate within the magnet (unique to the geometry and design of the magnet).
In traditional magnet designs there is a tendency for the Lorentz forces to accumulate down
from the pole region to midplane, requiring a pre-stress of the order of the sum of the
contributions of all conductor turns in that region. As will be discussed, a key advantage of
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Figure 1.6: The azimuthal stress at the pole region of the superconducting magnet is shown
as the current (and Lorentz force) increases towards the nominal operating value for each
of the superconducting hadron colliders. The initial compression “After cool-down” is the
applied pre-stress. The conductor at the pole is seen unloading towards tension as the magnet
is energized, but the applied pre-stress is chosen such that the coil never goes into tension
and remains in compression at the nominal current. (Fig. from [12])

the CCT design is the introduction of ribs between individual conductors that prevent the
accumulation of Lorentz forces and eliminate the need for a large pre-stress.

Limits of pre-stress for Nb3Sn

To date, all superconducting magnets in hadron colliders have used NbTi conductor. The
capabilities of this material have been pushed to the limit in the 8 T LHC dipole magnets,
beyond which requires a change to a conductor that can carry high current densities above
8 T. Currently, the best conductor option for the next generation of high field accelerator
magnets is Nb3Sn. This conductor is inherently more difficult to work with than NbTi due
to requiring a heat treatment reaction to be made superconducting. This reaction causes
the material to lose its ductility and become brittle. For this reason, most Nb3Sn accelerator
magnet coils are wound (while still ductile) and then put through the heat treatment reaction.

The performance of post reaction Nb3Sn is strain sensitive due to its brittle nature. Strain
causes degradation of the conductor’s ability to carry current, which is recoverable up to a
limit where the damage becomes permanent. Of critical importance to high field magnet
design is the performance of cabled Nb3Sn conductor under transverse pressure, which is



CHAPTER 1. INTRODUCTION AND MOTIVATION 9

(a) (b)

Figure 1.7: (a) A cross section of the LHC main dipole with the location of the collars
indicated. (b) A 15 m pneumatic press at CERN capable of applying 21 tons/m of force to
the coil assembly. Presses like this were used in combination with the collars to pre-stress the
LHC main dipole coils before being assembled into the iron yoke and additional structure.
(Fig. from [20])

the direction aligned with azimuthal Lorentz forces (see Fig. 1.5c) and thus also the applied
pre-stress. Through a combination of cable measurements [21, 22, 23] and magnet tests,
for example the LARP TQSO3 variable pre-stress experiment [24], it is generally accepted
that the limit of pre-stress that can be applied to Nb3Sn without significant degradation
is between 150 and 200 MPa. Today’s high field Nb3Sn R&D magnets are designed with a
peak conductor stress nearing this limit. Table 1.2 lists this peak conductor stress for several
of today’s high field R&D accelerator magnets. It is seen that the traditional approaches to
high field accelerator magnet design have reached the conductor stress limit, and it would
desirable to have a new and fundamentally different magnet concept for Nb3Sn that is not
stress limited.

Table 1.2: High Field Nb3Sn R&D Accelerator Magnets

Function Aperture (mm) Max Cond. Field (T) Max Cond. Stress (MPa)
QXF Quadrupole 150 12.1 180
FNAL 11T Dipole 60 11+ 160
FRESCA2 Dipole 100 13.2 150
HD2 Dipole 36 15.8 180

Peak conductor stress in the design of several of today’s high field Nb3Sn R&D magnets is
given [25, 26, 27, 28, 29].
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Reduction of conductor stress in the CCT design

The CCT is a new design concept for high field accelerator magnets that shows promise to
overcome the stress limitations of the traditional designs. In the CCT, each conductor turn
sits in its own channel machined into a metal winding mandrel (Fig. 1.4) such that it is
separated from the adjacent turn by a metallic rib. These ribs between turns “intercept”
the Lorentz forces and transfer them to the mandrel, preventing accumulation of Lorentz
forces across multiple turns. This leads to an order of magnitude reduction in the peak
conductor stress, and because the turns are individually supported there is minimal need for
pre-stress. Figure 1.8 illustrates stress interception in the CCT compared to accumulation
in a traditional cosine-theta design. While the CCT has many other features that will be
discussed in further detail, the fundamental motivation for investigating the CCT design
for high field Nb3Sn dipoles is the promise to overcome the conductor stress limitations of
today’s technology.

Figure 1.8: A comparison of Lorentz force interception in a CCT vs. accumulation in a
traditional cosine-theta design.

1.4 History of the CCT and scope of the thesis

In the first published record of the design in 1970, Donald Meyer proposed the tilted winding
concept for a high energy physics dipole magnet [30]. Professor Meyer, from the Physics
Department of the University of Michigan, worked in collaboration with high energy physics
experiments at Fermilab and suggested this tilted winding approach for the simplicity of its
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construction and desirable field quality. Following this lone publication the idea lay dormant
for many years until the early 2000’s. At this time there was investigation by both industry
and national laboratories into the tilted winding concept, likely without knowledge of Meyer’s
original publication. This research was focused primarily on the magnetic properties of the
design, with a key development being the formulation for tilted windings capable of producing
higher order harmonics or combined function fields [31, 32, 33, 34, 35, 36, 37, 38, 39, 40].

Previous work was focused on low field applications using NbTi conductor in the single
strand form. There are two published superconducting magnet test results, both of which
had maximum fields of less than 2 T [35, 37]. The scope of the high energy physics portion
of this thesis is to investigate and develop the CCT concept for high field Nb3Sn magnets.
This involves developing the level of understanding, modeling capabilities, and construction
methods required for a 16-18 T dipole magnet. Of particular importance for high field CCT
design is structural analysis, for which there is no previously published research. A key
component of the development is to design, build, and test a superconducting CCT magnet
in a configuration that scales to high field. This may use NbTi conductor, but would be the
first to test key aspects of a high field CCT. In particular, this prototype would implement
Rutherford cables for high current density and machined mandrels for stress interception,
serving as a proof-of-principle test before making the investment in a high field Nb3Sn CCT
dipole.

Part I of this thesis presents an investigation of the CCT design for high field accelerator
magnets. Chapter 2 begins with the development of an analytic formulation for the design.
In Chapter 3 methods for finite element modeling are presented, followed by a discussion of
design optimization for high field in Chapter 4. The design, fabrication, and test of CCT1
(a 2.5 T proof-of-principle dipole) is then presented in Chapter 5. Finally, Chapter 6 details
the design of the 16 T Nb3Sn dipole CCT2 and reports on initial steps taken in a program
towards the test of a 16 T CCT magnet.
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Chapter 2

Analytic Modeling

2.1 Goals and overview

This chapter develops new analytic formulations capable of accurately predicting the relation
between CCT windings and the fields they create. Of particular interest is to use these
relations to solve the so called “inverse problem”, to gain the capability to generate a set
of CCT windings based on a desired field. A formulation will be developed that generalizes
CCT windings to a parametric path, averages them into a current density, and relates this
current density to the magnetic field in the bore. It will be shown that this process can be
used in reverse order to generate CCT windings that produce single, or a combination of
multiple, field harmonics (e.g. dipole, quadrupole, sextupole, etc.). This allows for excellent
field quality to be obtained using simple winding formulas, avoiding numerical optimization
of conductor position common to the design of traditional superconducting magnets (see, for
example, the program ROXIE [41]).

One benefit of an analytic formulation is the ability to gain insight into the effect of
free parameters (design choices), which will be used to develop an approach to CCT design
optimization in Chapter 4. The formulation is also useful for the generation of the geometry
of the conductor winding. This will be used to pass the conductor geometry to finite element
codes for magnetic and structural analysis, to be further discussed in Chapter 3, and to CAD
software as needed for the construction of the magnet itself. This chapter will focus on the
development of the analytic formulation for the CCT design starting with a single layer and
moving on to a multi-layer CCT magnet.

The magnetic field to winding relation will first be developed for a current sheet model
general to any desired multipole. Then a magnetic vector potential based on current sheets
will be introduced to find expressions for the fields, stored energy, and inductance of a multi-
layer CCT magnet. This same approach will then be applied to the cancellation of cross-talk
in a dual bore CCT magnet as desired for high energy hadron colliders. After this, the
focus will shift to expressions for a multi-layer CCT dipole using a cable of non-zero radial
thickness. The Lorentz force induced pressure (approximate stress) within such a dipole will
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be derived. Finally, any approximations made will be discussed with a focus on situations
where finite element methods should be used for increased accuracy.

Following this development, the straight-section symmetry of the CCT will be intro-
duced. This symmetry is 3D and axially periodic, which is significantly different from the
straight-section symmetry of traditional designs. This difference requires the development
of new boundary conditions. Magnetic boundary conditions for the symmetry region will be
specified. Three different axial boundary conditions for structural modeling using the CCT
symmetry will also be presented, with a discussion of test configurations to which they are
applicable. Methods for implementing these boundary conditions in finite element modeling
will be developed in Chapter 3. A summary of key developments in this chapter and their
location can be found in Table 2.1.

Table 2.1: Key Analytic Results

Winding Path

Generalized Eqn: 2.9, 2.11
Dipole Eqn: 2.15

Quadrupole Eqn: 2.18
Combined Function Eqn: 2.20

Current
Single Sheet Eqn: 2.6, 2.12
Multi-Sheet Eqn: 2.21

Vec. Potential Multi-Sheet Eqn: 2.23, 2.24

Magnetic Field
Current Sheet Eqn: 2.25, 2.26
Thick Winding Sec: 2.5

2-in-1 Sec: 2.4
Force, Pressure Thick Winding Sec: 2.6
Stored Energy Multi-Sheet Eqn: 2.50, 2.51
Inductance Multi-Sheet Eqn: 2.51

3D Symmetry
Magnetic B.C. Eqn: 2.86

Mechanical B.C. Eqn: 2.87, 2.89, 2.89
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2.2 Winding path to field relation for a CCT layer

Definition of the parametric path

The starting point for the definition of a CCT layer is a parametric path constrained to the
surface of a cylinder as shown in Figure 2.1. This path can be parameterized in terms of the
azimuthal angle by position

~p(θ) = rr̂ + pz(θ)ẑ, (2.1)

where r is the radius of the cylinder, θ is the azimuthal angle, and pz(θ) is yet undefined
function of θ which describes the axial movement of the path. It is useful to define a local
reference frame at location ~p(θ) such that t̂ is tangential to the path, r̂ is in the radial
direction, and b̂ completes the orthogonal system (Fig. 2.1). Vectors in these directions are
given by

~t(θ) =
d~p

dθ
= rθ̂ + p′z(θ)ẑ (2.2)

~b(θ) = ~t× r̂ = p′z(θ)θ̂ − rẑ. (2.3)

Figure 2.1: The local unit tangent, radial, and binormal vectors (t̂, r̂, b̂) are shown at point
~p of a parametric path constrained to the surface of a cylinder.

A periodic function for pz(θ)

It is seen that the choice of the axial position function pz(θ) is sufficient to define both
the path and all local coordinate frame directions. It is desirable for the path to contain a
symmetry such that it can be repeated axially to create a uniform region away from the start
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and end points of repetition. This is accomplished by requiring the axial distance between
adjacent repetitions of the path be a constant for all points (independent of θ), meaning

|pz(θ + 2π)− pz(θ)| = w, (2.4)

where the pitch w is defined as the constant axial distance between paths (Fig. 2.2). It can
be shown that the perpendicular distance between adjacent paths δ(θ) (in the direction of
b̂) is approximated by

δ(θ) = wẑ · b̂ =
wr

|~t |
=

w√
1 + p′z(θ)

2/r2
. (2.5)

Figure 2.2: A path is shown patterned axially in integer multiples of the pitch length w. This
periodic symmetry condition requires the pitch length be constant for all azimuthal angles,
and is represented in the figure by the vector wẑ pointing axially between adjacent paths.

A pitch averaged current density

If the path ~p(θ) represents a continuous line current of magnitude I0, the perpendicular
spacing (Eqn. 2.5) can be used to average the line currents into a 2D cylindrical current
sheet with current density

~j(θ) =
I0t̂

δ(θ)
= I0

~t

|~t |
|~t |
wr

=
I0
wr
~t =

I0
w

(
θ̂ +

p′z(θ)

r
ẑ

)
. (2.6)

The current consists of two components: a constant azimuthal portion (generating solenoidal
fields) dependent on the pitch, and an axial portion varying with azimuthal angle (generating
transverse fields) determined by p′z(θ). Because the axial current’s azimuthal variation is
completely determined by p′z(θ), this current expression can be used to derive an axial path
expression pz(θ) to produce the desired transverse fields.
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Relation of current density to magnetic field

It is well known that a cylindrical sheet of axial current at fixed radius r with azimuthal
variation jz(θ) = j0nz cos(nθ) produces a pure “nth” order cylindrical field harmonic within
the bore (for example see [42]). The relation between the magnitude of the current j0nz and
the generated field harmonic Bn is given by

Bn = −µ0j0nz
2

(
Rref

r

)n−1
, (2.7)

where r is the radius of the current sheet and Rref is the reference radius for the harmonic
description (see Appendix A). To produce cylindrical harmonics with a CCT, the axial
component of the pitch averaged current density in Equation 2.6 is related to the ideal
cos(nθ) current,

I0
wr

p′z(θ) = j0nz cos(nθ). (2.8)

It is seen that the yet undetermined function of the parametric path pz(θ) is easily related
to the desired harmonic through integration such that

pz(θ) =
wr

I0

j0nz
n

sin(nθ) +
w

2π
θ, (2.9)

where second term in the equation is required to satisfy the specified condition of a continuous
path with axial periodicity of pitch length w (see Eqn. 2.4).

Equation 2.9 combined with the definition of the parametric path in Equation 2.1, using
the parametric variable 0 ≤ θ ≤ 2πnt, can be used to draw a continuous CCT winding path
with nt turns to generate cylindrical harmonics far from the end effects of the windings.
There are three parameters needed for a CCT layer at a fixed radius: I0, j0nz, and w. In
practice it is advantageous to relate the free parameters (design choices) to the physical
properties of the path itself. This can be done by defining a midplane tilt angle α, such that

tan(α) ≡
~t · θ̂
~t · ẑ

∣∣∣∣∣
θ=0

=
I0

wj0nz
, (2.10)

where the assumption that the radius is much larger than the pitch (r � w) is made. With
this assumption the path can be written in terms of two free physical parameters, the tilt
angle α and the axial pitch length w,

pz(θ) =
r cot(α)

n
sin(nθ) +

w

2π
θ. (2.11)

The current density for this path is then given by

~j(θ) =
I0
w

(
θ̂ +

p′z(θ)

r
ẑ

)
=
I0
w

(
θ̂ +

[
cot(α) cos(nθ) +

w

2πr

]
ẑ
)
. (2.12)
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It is important to note a single layer contains three distinct currents: a constant az-
imuthal current which generates a solenoidal field inside the winding, a cos(nθ) axial current
which produces transverse harmonics, and a constant axial current which produces an az-
imuthal field outside the winding. As will be shown, the CCT uses multiple layers to cancel
the solenoidal field within the bore and leave only the desired transverse harmonics. The
magnitude of the harmonic generated by a single layer using the path in Equation 2.11 is
then given by

Bn = −µ0I0
2w

cot(α)

(
Rref

r

)n−1
. (2.13)

In practice it is simpler to describe the field independently of the reference radius used
in the harmonic representation. This is done by normalizing the coefficient to the reference
radius,

B∗n =
Bn

Rn−1
ref

= −µ0I0
2w

cot(α)
1

rn−1
, (2.14)

which corresponds to a polynomial fit of the midplane field using B∗nr
n−1. In this case the

dipole field is given by B∗1 , the quadrupole gradient by B∗2 , and so on.

Example 1: a dipole layer (n=1)

The path for a CCT dipole layer is given by the n = 1 case of Equation 2.11 with Equation
2.1,

~p(θ) = rr̂ +
[
r cot(α) sin(θ) +

w

2π
θ
]
ẑ, (2.15)

producing a dipole field within the bore of magnitude

B1 = −µ0I0
2w

cot(α). (2.16)

A solenoidal field is also produced, given by

Bz = µ0jθ =
µ0I0
w

. (2.17)

Seventy-five turns of this path for a radius of 25 mm, tilt angle α of 20 deg, and pitch w of
6.96 mm are shown in Figure 2.3.
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Figure 2.3: Two views of the conductor path for a CCT dipole layer are shown.

Example 2: a quadrupole layer (n=2)

The path for a CCT quadrupole layer is given by the n = 2 case of Equation 2.11 with
Equation 2.1,

~p(θ) = rr̂ +

[
r cot(α)

2
sin(2θ) +

w

2π
θ

]
ẑ, (2.18)

producing a quadrupole field within the bore with gradient

B∗2 = −µ0I0
2w

cot(α)

r
. (2.19)

Seventy-five turns of this path for a radius of 25 mm, tilt angle α of 20 deg, and pitch w of
7.163 mm are shown in Figure 2.4.

Example 3: A combined function dipole and quadrupole layer

The path for a combined function CCT layer is best described using the ratio of the desired
harmonics. For example, a dipole with a quadrupole component added can be written as

~p(θ) = rr̂ +

[
r cot(α) sin(θ) +

B∗2r

2B∗1
r cot(α) sin(2θ) +

w

2π
θ

]
ẑ, (2.20)

where B∗2/B∗1 is the ratio of the desired quadrupole gradient to main dipole. Here special
attention has to be paid to the meaning of the tilt angle α as Equation 2.10 is not as straight
forward for multiple current components.
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Figure 2.4: Two views of the conductor path for a CCT quadrupole layer are shown.

Extension to a multi-layer magnet

As seen in Equation 2.12, the CCT has two currents that do not produce desired transverse
harmonics. The constant azimuthal current produces a solenoidal field inside of the windings,
and the constant axial current produces an azimuthal field outside of the windings. A multi-
layer approach is used to cancel these undesirable fields. This approach uses pairs of CCT
layers where the sign of the tilt angle and direction of current is changed between layers (see
Figures 2.5 and 2.6). In this configuration the transverse harmonics produced by each layer
sum, while the solenoidal and azimuthal fields cancel (to be shown in Section 2.3).
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Figure 2.5: A schematic showing the configuration for canceling undesired fields using a pair
of CCT layers.

Figure 2.6: A CAD assembly of a pair of CCT layers is shown with angles and current
directions as diagrammed in Figure 2.5. The green splice box on the left connects (splices)
layer 1 and layer 2 on the return end.
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2.3 A vector potential model for a multi-layer CCT:

fields, stored energy, and inductance

Section 2.2 averaged the current path of a single CCT layer into a current sheet density, which
was then used to find the winding to field relation. Here the current sheet model will be
extended to a multi-layer CCT magnet by finding the associated magnetic vector potential.
Expressions for the magnetic field, stored energy, and inductance of a “n” harmonic CCT
magnet will be derived from this potential.

Finding the vector potential

As seen in Equation 2.12, the equivalent sheet current for a CCT layer is described by
three components. These are: a constant azimuthal current, a cos(nθ) axial current, and a
constant axial current. If the assumption of alternating tilt angle and current between layers
is made, the sheet current density for the “ith” layer of a CCT magnet is

~ji(θ) =
I0
w

(
(−1)i−1θ̂ +

[
cot(α) cos(nθ) + (−1)i−1

w

2πai

]
ẑ

)
, (2.21)

where ai is the fixed radius of the layer. The variable r, which previously denoted the radius
of the current layer, will now be used for the location at which the field is calculated.

Appendix B derives a magnetic vector potential for a sheet current density containing each
of the three current components found in the CCT. By comparison, the current coefficients
in Equations B.12, B.17, and B.22 for a CCT layer are given by

j0θ = (−1)i−1
I0
w

j0zn = cot(α)
I0
w

j0z = (−1)i−1
I0

2πai
. (2.22)

The vector potential resulting from the “ith” CCT layer is then defined by an azimuthal
component

~Aθi(r) =
µ0I0
2w

(−1)i−1

{
r r < ai
a2i
r

r > ai
, (2.23)

and axial component

~Azi(r, θ) =
µ0I0
2w

cot(α)ai
n

(
r
ai

)n
cos(nθ)− (−1)i−1w

π
log(ai) r < ai

cot(α)ai
n

(
r
ai

)−n
cos(nθ)− (−1)i−1w

π
log(r) r > ai

. (2.24)
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The net vector potential for a multi-layer CCT magnet can be found by a summation of the
contribution from individual layers (i.e. a sum over “i”).

Multi-layer magnetic fields

The magnetic field generated by a single layer is found using ~B = ∇× ~A, Equation 2.23, and
Equation 2.24. A single CCT layer generates three fields: a solenoidal field inside, transverse
harmonics inside, and a constant azimuthal field outside. The field generated by the “ith”
layer ~Bi is given by

~Bi(r, θ) ≡
(
r̂ θ̂ ẑ

)Bri

Bθi

Bzi

 , (2.25)

where

Bri

Bθi

Bzi

 = −µ0I0
2w


cot(α)

(
r
ai

)n−1
sin(nθ)

cot(α)
(
r
ai

)n−1
cos(nθ)

2(−1)i

 r < ai (2.26)

and

Bri

Bθi

Bzi

 = −µ0I0
2w


cot(α)

(
r
ai

)−n−1
sin(nθ)

− cot(α)
(
r
ai

)−n−1
cos(nθ) + (−1)i w

πr

0

 r > ai. (2.27)

Field in the bore

The magnetic field in the bore of a CCT magnet of N total layers is then

Br

Bθ

Bz

 = −µ0I0
2w


cot(α) sin(nθ)

N∑
i=1

(
r
ai

)n−1
cot(α) cos(nθ)

N∑
i=1

(
r
ai

)n−1
−
[
1− (−1)N

]

 r < a1, (2.28)

leaving just the “n” harmonic if an even number of layers is used to cancel the solenoid.

Stored energy and inductance

Relation to the vector potential

The stored energy is related to the vector potential and current density by the volume integral
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E =
1

2

∫
( ~A · ~J) dτ. (2.29)

For the case of a cylindrical sheet of current density at fixed radius r = a, the stored energy
per unit of axial length is given by an integration over θ only

E ′ =
a

2

∫
( ~A ·~j) dθ, (2.30)

where ~j is the linear current density. For a multi-layer magnet with N total layers, the total
stored energy can be described by

E ′net =
1

2

(
I1 I2 · · · IN

)

L1,1 L1,2 · · · L1,j

L2,1 L2,2 · · · L2,j
...

...
. . .

...
Li,1 Li,2 · · · LN,N



I1
I2
...
IN

 , (2.31)

where Ii is the current in the “ith” layer, Lii are the self inductances, and Lij are the mutual
inductances. This section will show the contribution of each current component to the stored
energy of a multi-layer CCT magnet. Finally, as a check of the accuracy, this formulation
will be compared to inductance measurements performed on fabricated CCT magnets (CCT1
and CCT2).

Stored energy in the solenoid component

The vector potential due the solenoidal current for a single CCT layer is given in Equation
2.23. For the calculation of the stored energy, the net vector potential at the location of each
layer will be found. For a multi-layer CCT magnet of N total layers located at constant
increasing radii a1, ..., ai=N−1, ai=N with current Ii, the vector potential generated by the
solenoidal current of the layer located at aj at the location of the layer i is given by

~Aθij =
µ0Ij
2w

{
(−1)j−1ai if i < j

(−1)j−1
a2j
ai

if i > j
, (2.32)

making the net vector potential at the location of the “ith” layer ~Aθ1(net)


~Aθ1(net)
~Aθ2(net)

...
~AθN(net)

 =


c1,1 c1,2 · · · c1,j
c2,1 c2,2 · · · c2,j

...
...

. . .
...

ci,1 ci,2 · · · cN,N



I1
I2
...
IN

 ci,j =
µ0

2w
(−1)j−1

{
ai if i < j
a2j
ai

if i > j
. (2.33)

The stored energy per unit of axial length is given by the combination of Equations 2.21,
2.30, and 2.33. For the case of the solenoidal component of current and vector potential, the
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energy E ′θij due to the vector potential generated by layer j due to the current density at
layer i is

E ′θij =
ai
2

Ii
w

(−1)i−12π ~Aθij. (2.34)

Then, the energy relation is given by


E ′θ1(net)
E ′θ2(net)

...
E ′θN(net)

 =


c1,1 c1,2 · · · c1,j
c2,1 c2,2 · · · c2,j

...
...

. . .
...

ci,1 ci,2 · · · cN,N



I1
I2
...
IN

 ci,j = Ii
µ0π

2w2
(−1)i+j−2

{
a2i if i < j

a2j if i > j
.

(2.35)
The net stored energy from the solenoidal component in a CCT magnet is then

E ′θ(net) =
1

2

(
I1 I2 · · · IN

)

L1,1 L1,2 · · · L1,j

L2,1 L2,2 · · · L2,j
...

...
. . .

...
Li,1 Li,2 · · · LN,N



I1
I2
...
IN

 (2.36)

Li,j =
µ0π

w2
(−1)i+j−2

{
a2i if i < j

a2j if i > j
, (2.37)

where Lij are the self and mutual terms in the inductance matrix.

Stored energy in the harmonic component

The vector potential due the harmonic current for a single CCT layer is given by the first
term in Equation 2.24. For the calculation of the stored energy, the net vector potential at
the location of each layer will be found. For a multi-layer CCT magnet of N total layers
located at constant increasing radii a1, ..., ai=N−1, ai=N with current Ii, the harmonic vector
potential generated by a layer located at aj at the location of the layer i is given by

~Azij =
µ0Ij
2w

aj
n

cot(α)


(
ai
aj

)n
cos(nθ) ai < aj(

ai
aj

)−n
cos(nθ) ai > aj

, (2.38)

making the net vector potential at the location of the “ith” layer ~Az1(net)
~Az1(net)
~Az2(net)

...
~AzN(net)

 =


c1,1 c1,2 · · · c1,j
c2,1 c2,2 · · · c2,j

...
...

. . .
...

ci,1 ci,2 · · · cN,N



I1
I2
...
IN

 (2.39)
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ci,j =
µ0

2w

aj
n

cot(α)


(
ai
aj

)n
cos(nθ) if i < j(

ai
aj

)−n
cos(nθ) if i > j

.

The stored energy per unit of axial length is given by the combination of Equations 2.21,
2.30, and 2.39. For the case of the harmonic component of current and vector potential, the
energy E ′zij due to the vector potential generated by layer j due to the current density at
layer i is

E ′zij =
µ0πIiIj

2w2
cot2(α)

aiaj
2n


(
ai
aj

)n
if i < j(

ai
aj

)−n
if i > j

. (2.40)

Then, the energy relation is given by
E ′z1(net)
E ′z2(net)

...
E ′zN(net)

 =


c1,1 c1,2 · · · c1,j
c2,1 c2,2 · · · c2,j

...
...

. . .
...

ci,1 ci,2 · · · cN,N



I1
I2
...
IN

 (2.41)

ci,j =
µ0πIi
2w2

cot2(α)
aiaj
2n


(
ai
aj

)n
if i < j(

ai
aj

)−n
if i > j

.

The net stored energy from the harmonic component in a CCT magnet is then

E ′z(net) =
1

2

(
I1 I2 · · · IN

)

L1,1 L1,2 · · · L1,j

L2,1 L2,2 · · · L2,j
...

...
. . .

...
Li,1 Li,2 · · · LN,N



I1
I2
...
IN

 (2.42)

Li,j =
µ0π

2w2
cot2(α)

aiaj
n


(
ai
aj

)n
if i < j(

ai
aj

)−n
if i > j

, (2.43)

where Lij are the self and mutual terms in the inductance matrix.

Stored energy in the constant axial component

The vector potential due the constant axial current for a single CCT layer is given by the
second term in Equation 2.24. For the calculation of the stored energy, the net vector
potential at the location of each layer will be found. For a multi-layer CCT magnet of N
total layers located at constant increasing radii a1, ..., ai=N−1, ai=N with current Ii, the vector
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potential generated by the constant axial current of the layer located at aj at the location
of the layer i is given by

~Azc(r, θ) = −µ0Ij
2π

(−1)j−1

{
log(aj) i < j

log(ai) i > j
. (2.44)

making the net vector potential at the location of the “ith” layer ~Azc1(net)


~Azc1(net)
~Azc2(net)

...
~AzcN(net)

 =


c1,1 c1,2 · · · c1,j
c2,1 c2,2 · · · c2,j

...
...

. . .
...

ci,1 ci,2 · · · cN,N



I1
I2
...
IN

 ci,j = −µ0

2π
(−1)j−1

{
log(aj) i < j

log(ai) i > j
.

(2.45)
The stored energy per unit of axial length is given by the combination of Equations 2.21,
2.30, and 2.45. For the case of the constant axial component of current and vector potential,
the energy E ′zcij due to the vector potential generated by layer j due to the current density
at layer i is

E ′zcij = (−1)i−1
Ii
2
~Azcij. (2.46)

Then, the energy relation is given by


E ′zc1(net)
E ′zc2(net)

...
E ′zcN(net)

 =


c1,1 c1,2 · · · c1,j
c2,1 c2,2 · · · c2,j

...
...

. . .
...

ci,1 ci,2 · · · cN,N



I1
I2
...
IN

 ci,j =
µ0Ii
4π

(−1)i+j−1

{
log(aj) i < j

log(ai) i > j
.

(2.47)
The net stored energy from the constant axial component in a CCT magnet is then

E ′zc(net) =
1

2

(
I1 I2 · · · IN

)

L1,1 L1,2 · · · L1,j

L2,1 L2,2 · · · L2,j
...

...
. . .

...
Li,1 Li,2 · · · LN,N



I1
I2
...
IN

 (2.48)

Li,j =
µ0

2π
(−1)i+j−1

{
log(aj) i < j

log(ai) i > j
, (2.49)

where Lij are the self and mutual terms in the inductance matrix. It is seen that this
formulation is poorly defined for a single layer which results in taking the logarithm of a
unit of distance (the issue is associated with the axial current not returning). With a second
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layer added to return the current, the two layers solution reduces to the expected expression
for a simple coaxial cable.

Net stored energy and inductance

It can be shown that E ′θ(net), E
′
z(net), and E ′zc(net) are the only terms generated by the volume

integral in Equation 2.30. The net stored energy is then simply given by the sum of these
terms. Because ITL1I + ITL2I = IT (L1 + L2)I, the total inductance matrix can be found
from the sum of the inductance matrices generated by each component. In practice, for
a typical even layer CCT magnet, the harmonic energy makes up almost all of the total,
with the small remaining portion (about 2%) coming from the solenoid. The constant axial
contribution is included in the previous formulation for completeness, but can be ignored
in almost all cases. With this assumption, the net stored energy and inductance per unit
length for a multi-layer CCT magnet is given by

E ′net =
1

2

(
I1 I2 · · · IN

)

L1,1 L1,2 · · · L1,j

L2,1 L2,2 · · · L2,j
...

...
. . .

...
Li,1 Li,2 · · · LN,N



I1
I2
...
IN

 , (2.50)

Li,j =
µ0π

2w2
cot2(α)

aiaj
n


(
ai
aj

)n(
ai
aj

)−n +
µ0π

w2
(−1)i+j−2

{
a2i if i < j

a2j if i > j
. (2.51)

Comparison to measured inductance of fabricated CCT magnets
at LBNL

Table 2.2 shows a comparison between the analytic and measured inductance for two CCT
magnets built at Lawrence Berkeley National Laboratory. The straight-section inductance
per length for each CCT magnet was approximated by the total measured inductance di-
vided by the magnetic length of the coil (see Appendix A for the definition of magnetic
length). This approximation allowed for a comparison with the formulation (which does
not include the effect of the ends of the magnet). The magnetic length Lm, inductance per
meter L, and total inductance Ltot are given in the table. Given the approximation of end
effects, reasonable agreement is seen between the formulation and measured results. More
information on the design of these magnets and the electrical measurements can be found in
Chapters 5 and 6.
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Table 2.2: Inductance of Fabricated CCT Magnets

Predicted Measured
Magnet Config. Lm (m) L (mH/m) Ltot (mH) Ltot (mH)

CCT1
Layer 1 0.593 0.490 0.291 N/A
Layer 2 0.547 0.729 0.399 N/A

Layer 1,2 series 0.570 1.95 1.11 1.19

CCT2-64turn
Layer 1 0.4881 1.242 0.606 0.6
Layer 2 0.4881 1.919 0.937 1.0

Layer 1,2 series 0.4881 4.690 2.289 2.4

2.4 Correction of cross-talk in 2-in-1 CCT magnets

High energy hadron colliders typically require a dual bore “2-in-1” magnet with equal and
opposite dipole fields. An example of such a design is shown for the LHC in Figure 2.7. This
allows for two beams to be stored, traveling in opposite directions in their respective bores,
which are then crossed to produce collisions in interaction regions. A key consideration in
the design of 2-in-1 magnets is the contribution of the fringe fields from one bore to another
referred to as “cross-talk”. Because the orientation of the fields is reversed between bores,
this cross-talk contributes positively to each bore and boosts the net field. The challenge is
to preserve field quality which will be spoiled by the cross-talk if it is not considered and
corrected in the magnetic design.

It has been shown in Section 2.2 that the CCT is an effective method for producing
combined function fields. A formulation will be developed that uses this capability to control
the field quality in a 2-in-1 CCT design. This approach differs from the LHC in that it uses
the winding path itself to correct the cross-talk rather than an iron yoke. The flexibility
of this method will be shown, with the capability to produce pure or combined function
harmonics of excellent field quality in both bores of a 2-in-1 CCT magnet. This process will
make use of the harmonics described in Appendix A, but will use slightly different notation
necessary to distinguish between the field and current in two bores. For this reason, the
formulation for the 2-in-1 CCT will be presented in a section that is self-complete, redefining
expressions as necessary.

Field harmonics inside a cos(kθ) current sheet

The field outside and inside a sheet of linear axial current density j = j0k cos(kθ) located at
radius R is

~Bin(z) = By + iBx = −µ0j0k
2

( z
R

)k−1
(2.52)

~Bout(z) = By + iBx =
µ0j0k

2

( z
R

)−k−1
, (2.53)
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Figure 2.7: The LHC “2-in-1” dual bore dipole magnet is shown. (Fig. from [2])

where the coordinate system z = x+ iy can be seen defined in Figure A.1. The field within
the bore is typically represented using the harmonics

~B(z) = By + iBx = [Bn + iAn]

(
z

Rref

)n−1
, (2.54)

where Rref is the reference radius. The normal (non-skew) field coefficients produced in the
bore of the current sheet are then given by

Bn = −µ0j0n
2

(
Rref

R

)n−1
. (2.55)

Displaced field harmonics

To determine the harmonics about a point displaced a distance a along the midplane
(Fig. 2.8), the field outside a current sheet of j = j0k cos(kθ) located at r′ = R is rewritten
in the displaced coordinate system as

~Bout =
µ0j0k

2

(
z′

R

)−k−1
=
µ0j0k

2

(
z + a

R

)−k−1
. (2.56)
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Binomial expansion of (z + a)−k−1 leads to

~B(z) =
µ0j0k

2

(
R

a

)k+1 ∞∑
m=1

(
−k − 1

m− 1

)(z
a

)m−1
. (2.57)

Figure 2.8: Displaced harmonics are calculated at Rref in the z = x + iy system due to
current sheet located at r′ = R in the z′ = x′ + iy′ system.

Equating with the standard field series representation (Eqn. 2.54), the harmonic coeffi-
cients in the displaced expansion are

Bn =
µ0j0k

2

(
−k − 1

n− 1

)(
R

a

)k+1(
Rref

a

)n−1
=
µ0j0k

2

(
Rref

R

)n−1(−k − 1

n− 1

)(
R

a

)k+n
.

(2.58)
Or in the case of negative displacement (−a),

Bn =
µ0j0k

2
(−1)k+n

(
−k − 1

n− 1

)(
R

a

)k+1(
Rref

a

)n−1
=

µ0j0k
2

(−1)k+n
(
Rref

R

)n−1(−k − 1

n− 1

)(
R

a

)k+n
. (2.59)

Dual bore harmonics

For two bores with a midplane displacement distance of a and current densities of jL =
jLk cos(kθ) and jR = jRm cos(mθ) around the left and right bore respectively, the harmonics
in each bore using a reference radius of Rref are the sum of those contributed by the local
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current (inside: Eqn. 2.55) and the current of the other bore (outside: Eqn. 2.58 or 2.59). If
BnL and BnR are the harmonics in the left and right bores,

BnL = −µ0

2

(
Rref

R

)n−1 [
jL(k=n) −

∞∑
m=1

jRm

(
−m− 1

n− 1

)(
−R
a

)m+n
]

(2.60)

BnR = −µ0

2

(
Rref

R

)n−1 [
jR(m=n) −

∞∑
k=1

jLk

(
−k − 1

n− 1

)(
R

a

)k+n]
. (2.61)

Matrix Form

With this definition, the currents to produce desired multipoles can be found using

BL1

BL2
...

BLn

BR1

BR2
...

BRn


= −µ0

2

(
MLR Ifn−1

Ifn−1 MRL

)


jR1

jR2
...

jRm
jL1
jL2
...
jLk


(2.62)

MLR =


a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...
...

. . .
...

an,1 an,2 · · · an,m

 an,m = −
(
−m− 1

n− 1

)(
−R
a

)m+n

fn−1 (2.63)

MRL =


c1,1 c1,2 · · · c1,k
c2,1 c2,2 · · · c2,k

...
...

. . .
...

cn,1 cn,2 · · · cn,k

 cn,k = −
(
−k − 1

n− 1

)(
R

a

)k+n
fn−1 (2.64)

where f =
(
Rref
R

)n−1
is the bore fraction of the reference radius and I is the identity

matrix. If an equal number of currents (up to kmax = mmax) are used in both bores, the
current coefficients to produce desired multipoles up to BL(n=kmax) and BR(n=mmax) can be
calculated. This allows the exact multipoles up to the order of current (kmax = mmax) to
be specified. Multipoles n > kmax are still produced as a result of the series, but are left
unspecified. The order of current necessary (kmax = mmax) is practically determined by
comparison of the field quality specifications to the non-specified multipoles (Bn>kmax).
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Relation to CCT winding coefficients

As described in Section 2.2, the parametric path for a CCT winding can be related to a
sheet current density. The method for producing a 2-in-1 CCT is to first use the analytic
formulation developed for the 2-in-1 to calculate the desired sheet currents for the left-hand
jL1 . . . jLk=kmax and right-hand jR1 . . . jRm=mmax bores. Then, these sheet currents can be
used to derive the parametric path for a CCT layer according to

~p(θ) = Rr̂ +

[
R cot(α)

kmax∑
k=1

jLk
jL1

sin(kθ)

k
+
w

2π
θ

]
ẑ (2.65)

for the left-hand bore winding, and

~p(θ) = Rr̂ +

[
R cot(α)

mmax∑
m=1

jRm
jR1

sin(mθ)

m
+
w

2π
θ

]
ẑ (2.66)

for the right-hand bore winding. Here the left-hand bore winding will be shifted to be
centered about -a/2 and the right-hand winding about +a/2 as seen in Figure 2.8.

In this case the main harmonic produced is assumed to be a dipole (jL1 and jR1). For
a quadrupole 2-in-1 the path would be normalized to jL2 and jR2, and for an arbitrary “n”
main harmonic it would be normalized to jLn and jRn. For this reason it is useful to define
normalized winding coefficients

j∗Lk =
jLk
jLn

j∗Rm =
jRm
jRn

, (2.67)

where “n” represents the main harmonic.

Considerations for powering multi-layer 2-in-1 CCT’s

The windings around each bore of the 2-in-1 are built up in pairs of layers with alternating
tilt angle and current (as previously described). Care must taken that the CCT layers are
generated and powered to correctly represent the current density solution from Equation
2.62. To satisfy this, the CCT path is generated using the current density solution and
Equations 2.65 and 2.66, with the tilt angle and current alternating between layers. A
special consideration is the direction of the current in the windings due to the sign of the
current being normalized out of the winding equation. For example, in a reversed dipole
2-in-1 the left-hand CCT needs to be powered opposite of the right. If the right-hand CCT
is powered with layer 1 positive and layer 2 negative, the left-hand must have layer 1 negative
and layer 2 positive.
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Example 1: a 2-in-1 CCT dipole

The fields from a two layer, dual bore dipole generated using the 2-in-1 CCT winding relation
were examined. Radii of 50 mm and 60 mm were chosen for layer 1 and layer 2 respectively.
A tilt angle of 19 degrees and pitch of 7.627 mm was used for the CCT path, and a spacing
between bore centers of 140 mm was specified for an example with dramatic cross-talk. The
number of conductor turns for each layer was 350. Two cases were considered: one where no
cross-talk was corrected, and one where the cross-talk was corrected up to the b9 harmonic.
CCT windings were generated for each of these cases using a combination of the solution of
Equation 2.62 and the winding relations in Equations 2.65 and 2.66. The field harmonics from
these windings were then calculated in the commercial software Opera3D [43] and compared
to the predictions of the formulation. The methods used for the modeling in Opera3D can
be found described in Chapter 3. For both cases a reference radius of 30 mm was used for
the harmonic calculation, and a pure dipole (positive in the left bore and negative in the
right bore) with all other harmonics zero (BL2 · · ·BLmmax = 0.0, BR2 · · ·BRmax = 0.0) was
specified.

No correction

A dual bore dipole with no correction has only one component of current density kmax =
mmax = 1. The 2-in-1 solution is then trivial and reduces the winding equation to the single
bore CCT dipole path specified in Equation 2.15. As expected, a large amount of cross-talk
between bores can be seen in the results shown in Table 2.3 and Figure 2.9. Desired field
quality is of the order of several units of field error, making this uncorrected case far from
acceptable.

Corrected up to b9

The results for the case of the 2-in-1 CCT dipole corrected up to b9 are shown in Table 2.4
and Figure 2.9. It is seen that by adding combined function currents, the field error can be
brought below one unit for all the non-dipole harmonics up to b9. This is an example of how
the cross-talk in a dual bore dipole can be effectively managed using the CCT’s capability
to produce combined function fields.
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Table 2.3: Uncorrected 2-in-1 Harmonic Comparison

Layer 1 Layer 2 Formulation Opera3D
n j∗L(k=n) j∗R(m=n) j∗L(k=n) j∗R(m=n) bLn bRn bLn bRn
1 1 1 1 1 104 104 104 104

2 0 0 0 0 577.11 -577.10 576.9 -576.73
3 0 0 0 0 185.50 185.50 185.26 185.27
4 0 0 0 0 53.00 -53.00 53.00 -52.96
5 0 0 0 0 14.20 14.20 14.23 14.23
6 0 0 0 0 3.65 -3.65 3.66 -3.64
7 0 0 0 0 .91 .91 0.90 0.89
8 0 0 0 0 .22 -.22 0.23 -0.22
9 0 0 0 0 0.05 0.05 0.06 0.06

The current winding coefficients (normalized to the dipole: n = 1 in Equation 2.67) and cal-
culated harmonics (in units) are shown for an example CCT 2-in-1 dipole with no correction.
The calculated harmonics are normalized to B1 of their own bore.

Table 2.4: Corrected 2-in-1 Harmonic Comparison

Layer 1 Layer 2 Formulation Opera3D
n j∗L(k=n) j∗R(m=n) j∗L(k=n) j∗R(m=n) bLn bRn bLn bRn
1 1 1 1 1 104 104 104 104

2 -0.0856 0.0856 -0.1371 0.1371 0 0 -0.652 -0.652
3 -0.0446 -0.04461 -0.0819 -0.0819 0 0 -0.398 -0.398
4 -0.0205 0.0205 -0.0425 0.0425 0 0 -0.074 -0.074
5 -0.0088 -0.0088 -0.0201 -0.0201 0 0 0.013 0.013
6 -0.0036 0.0036 -0.0086 0.0086 0 0 -0.024 -0.024
7 -0.0014 -0.0014 -0.0033 -0.0033 0 0 -0.024 -0.024
8 -0.0005 0.0005 -0.0010 0.0010 0 0 0.007 0.007
9 -0.0002 -0.0002 -0.0002 -0.0002 0 0 0.011 0.011

The current winding coefficients (normalized to the dipole: n = 1 in Equation 2.67) and
calculated harmonics (in units) are shown for an example CCT 2-in-1 dipole with correction
currents added up to b9. The calculated harmonics are normalized to B1 of their own bore.
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(a) (b)

Figure 2.9: Streamlines for the uncorrected (a) and corrected (b) 2-in-1 CCT dipole are
shown.
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2.5 Fields in a multi-layer thick winding CCT dipole

magnet

Field due to a single, thick CCT dipole layer

The derivation of the path for a single CCT layer was presented in Section 2.2 with the
assumption the conductor has little or no radial thickness (thin wire averaged into a thin
current sheet). This description will now be extended to a CCT dipole layer of some radial
thickness as would be needed to model the fields generated by a Rutherford cable. The inner
edge of the conductor is defined at r = a1 and the outer at r = a2. The total magnetic field
produced is the sum of the fields produced by each of the three current density terms in
Equation 2.12.

Field produced by the cos(θ) current jz = I0cot(α)
w

cos(θ)

For a thin winding at fixed radius a with linear current density jz(θ) = j0zcos(nθ) the field
generated is ∣∣∣∣ Br

Bθ

∣∣∣∣ =
−µ0j0z

2

(r
a

)n−1 ∣∣∣∣ sin(nθ)
cos(nθ)

∣∣∣∣ r < a1

inside the winding, and∣∣∣∣ Br

Bθ

∣∣∣∣ =
∓µ0j0z

2

(r
a

)−n−1 ∣∣∣∣ sin(nθ)
cos(nθ)

∣∣∣∣ r > a2

outside the winding [44]. For a thick dipole winding (n = 1) starting at r = a1 and extending
to r = a2 the linear current density j0z is replaced by J0zda, where J0z is the current per area.
The field contribution from a thin sheet is integrated radially to find the field generated by
a conductor with radial thickness. The integrals are∣∣∣∣ Br

Bθ

∣∣∣∣ =
−µ0J0z

2

∫ a2

a1

da

∣∣∣∣ sin(θ)
cos(θ)

∣∣∣∣ r < a1

∣∣∣∣ Br

Bθ

∣∣∣∣ =
µ0J0z

2

[
−
∫ a2

r

dR∓
∫ r

a1

(r
a

)−2
da

] ∣∣∣∣ sin(θ)
cos(θ)

∣∣∣∣ a1 < r < a2

∣∣∣∣ Br

Bθ

∣∣∣∣ =
∓µ0J0z

2

∫ a2

a1

(r
a

)−2
da

∣∣∣∣ sin(θ)
cos(θ)

∣∣∣∣ r > a2

for the three regions of interest. Performing the integration results in fields of∣∣∣∣ Br

Bθ

∣∣∣∣ =
−µ0I0cot(α)

2w

∣∣∣∣ sin(θ)
cos(θ)

∣∣∣∣ r < a1
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∣∣∣∣ Br

Bθ

∣∣∣∣ =
−µ0I0cot(α)

2w(a2 − a1)

[
a2 ∓

a31
3r2

+

(
−1± 1

3

)
r

] ∣∣∣∣ sin(θ)
cos(θ)

∣∣∣∣ a1 < r < a2

∣∣∣∣ Br

Bθ

∣∣∣∣ = ∓ µ0I0cot(α)

2w(a2 − a1)
a32 − a31

3r2

∣∣∣∣ sin(θ)
cos(θ)

∣∣∣∣ r > a2

where the substitution of the CCT dipole current density J0z = I0cot(α)
w(a2−a1) has been made.

Field produced by the constant axial current jz = I0
2πr

Ampere’s law
∫
B · dl = µ0Ienc, with an enclosed current of

Ienc =

∫ 2π

0

∫ r

a1

jz
a2 − a1

rdrdθ = 2π

∫ r

a1

I0
2πr(a2 − a1)

rdrdθ = I0
(r − a1)
a2 − a1

, (2.68)

can be used to find the azimuthal field resulting from the CCT’s constant axial current. This
field is

Bθ =


0 : r < a1
µ0I0
2πr

r−a1
a2−a1 : a1 < r < a2

µ0I0
2πr

: r > a2

which outside of the winding is equivalent to the field from a single wire carrying current I0
at the center of the bore.

Field produced by the constant azimuthal current jθ = I0
w

For an infinite solenoid with inner and outer radii of a1 and a2, the field is

Bz =

{
µ0Jθ(a2 − a1) : r < a1

0 : r > a2

where Jθ is the averaged azimuthal current density (in current per area). The field within
the conductor of this solenoid can be approximated with a linear fall off from the inner to
outer radius. Incorporating this with the CCT’s azimuthal current density leads to solenoidal
fields of

Bz =


µ0I0
w

: r < a1
µ0I0
w

a2−r
a2−a1 : a1 < r < a2

0 : r > a2

in the three regions of interest.
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Total field produced by a single, thick CCT dipole layer

The total field generated by a thick CCT dipole layer is the sum of the contribution from
each of the three current components. This can be written as∣∣∣∣∣∣

Br

Bθ

Bz

∣∣∣∣∣∣ = −µ0I0cot(α)

2w

∣∣∣∣∣∣
sin(θ)
cos(θ)
−2tan(α)

∣∣∣∣∣∣ r < a1

∣∣∣∣∣∣
Br

Bθ

Bz

∣∣∣∣∣∣ = −µ0I0cot(α)

2w

∣∣∣∣∣∣
frsin(θ)

fθcos(θ)− fθ2wtan(α)π

−2fztan(α)

∣∣∣∣∣∣ a1 < r < a2

∣∣∣∣∣∣
Br

Bθ

Bz

∣∣∣∣∣∣ = −µ0I0cot(α)

2w

∣∣∣∣∣∣
f or sin(θ)

f oθ cos(θ)−
wtan(α)
πr

0

∣∣∣∣∣∣ r > a2

where radial form factors

fr(r, a1, a2) ≡
a2−

a31
3r2
− 2

3
r

a2−a1

fθ(r, a1, a2) ≡
a2+

a31
3r2
− 4

3
r

a2−a1

fθ2(r, a1, a2) ≡ r−a1
r(a2−a1)

fz(r, a1, a2) ≡ a2−r
a2−a1

f or (r, a1, a2) ≡ a32−a31
3r2(a2−a1)

f oθ (r, a1, a2) ≡ − a32−a31
3r2(a2−a1) (2.69)

have been defined. Figure 2.10 shows this formulation plotted for a CCT dipole layer.

Multi-layer current density

A CCT dipole uses multiple layers to cancel the undesirable solenoidal field produced in the
bore of a single layer. For this purpose a total of N layers can be defined with the sign of
the midplane angle α and the current I0 changed for every other layer. In this case the path
of the “ith” layer becomes

~pi(θ) = ricos(θ)̂i+ risin(θ)ĵ +

(
(−1)i−1ricot(α)sin(θ) +

wθ

2π

)
k̂ (2.70)

where α represents |α|. This leads to a current density in the “ith” layer of
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Figure 2.10: The 2D streamlines for the transverse field generated by a single CCT dipole
layer of radial thickness are shown.

∣∣∣∣∣∣
jri
jθi
jzi

∣∣∣∣∣∣ =
I0
w

∣∣∣∣∣∣
0

(−1)i−1

cot(α)cos(θ) + (−1)i−1 w
2πr

∣∣∣∣∣∣ .
Muli-layer thick coil fields

A radial thickness for each of the N conductor layers is defined such that the inner radii are
given by a11, a12, · · · , a1i, · · · a1N−1, a1N and the outer radii a21, a22, · · · , a2i, · · · a2N−1, a2N .
With these definitions the field produced by the “ith” CCT layer is given by∣∣∣∣∣∣

Br

Bθ

Bz

∣∣∣∣∣∣ = −µ0I0cot(α)

2w

∣∣∣∣∣∣
sin(θ)
cos(θ)

−2(−1)i−1tan(α)

∣∣∣∣∣∣ r < a1i

∣∣∣∣∣∣
Br

Bθ

Bz

∣∣∣∣∣∣ = −µ0I0cot(α)

2w

∣∣∣∣∣∣
fr(r, a1i, a2i)sin(θ)

fθ(r, a1i, a2i)cos(θ)− (−1)i−1wtan(α)
πr

r−a1i
a2i−a1i

−2(−1)i−1tan(α) a2i−r
a2i−a1i

∣∣∣∣∣∣ a1i < r < a2i
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∣∣∣∣∣∣
Br

Bθ

Bz

∣∣∣∣∣∣ = −µ0I0cot(α)

2w

∣∣∣∣∣∣
f or (r, a1i, a2i)sin(θ)

f oθ (r, a1i, a2i)cos(θ)− (−1)i−1wtan(α)
πr

0

∣∣∣∣∣∣ r > a2i.

Field inside the bore r < rbore

Using superposition, the field inside the bore is the summation over all N layers for the case
of r < ai1. This leads to∣∣∣∣∣∣

Brbore

Bθbore

Bzbore

∣∣∣∣∣∣ = −µ0I0cot(α)

2w

∣∣∣∣∣∣
Nsin(θ)
Ncos(θ)

−[1− (−1)N ]tan(α)

∣∣∣∣∣∣ .
Note if there are an even number of layers, the solenoidal field completely cancels and is
zero. If there are an uneven number of the layers, the magnitude of the solenoidal field will
be equal to the contribution from a single layer.

Field within an arbitrary layer

Using superposition and ignoring the small field contribution from the pitch to Bθ, the field
within the conductor of the “ith” layer is

∣∣∣∣∣∣
Br

Bθ

Bz

∣∣∣∣∣∣ = −µ0I0cot(α)

2w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
i−1∑
k=1

f or (r, a1k, a2k) + fr(r, a1i, a2i) +
N∑

k=i+1

)
sin(θ)(

i−1∑
k=1

f oθ (r, a1k, a2k) + fθ(r, a1i, a2i) +
N∑

k=i+1

)
cos(θ)

−2

(
(−1)i−1fz(r, a1i, a2i) +

N∑
k=i+1

(−1)k−1

)
tan(α)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which reduces to

∣∣∣∣∣∣
Br

Bθ

Bz

∣∣∣∣∣∣ = −µ0I0cot(α)

2w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
i−1∑
k=1

f or (r, a1k, a2k) + fr(r, a1i, a2i) + (N − i)

)
sin(θ)(

i−1∑
k=1

f oθ (r, a1k, a2k) + fθ(r, a1i, a2i) + (N − i)

)
cos(θ)

−2

(
(−1)i−1fz(r, a1i, a2i) +

1

2

[
(−1)i − (−1)N

])
tan(α)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Figure 2.11: The 2D streamlines for the transverse field generated by a four layer CCT dipole
magnet are shown.

Here the cancellation of the solenoidal field is determined by the number of layers above the
layer of interest (since the solenoidal field outside the layer is assumed zero). This means in
an even layer magnet, even though the solenoidal field within the bore may be zero, this will
not be the case in every layer. This is due to the solenoidal field varying across the winding
combined with the possibility of an odd number of layers above it. The size of this variation
is not proportional to the total number of layers, but only the single “extra” layer above it
that does not cancel. The transverse fields for a four layer CCT dipole are shown plotted in
Figure 2.11.

2.6 Lorentz forces and pressures in a multi-layer thick

winding CCT dipole magnet

Rib Pressure

A Frenet-Serret coordinate system following the central path of the conductor is defined using
coordinates β, γ, and r. As seen in Figure 2.12, β is along the direction of the conductor
path (direction of current), r is in the radial direction, and γ completes the right hand
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system. Note since γ is perpendicular to the conductor path and the radial direction, it is
also perpendicular to the face of the rib next to the conductor.

Dl

r = a2

r = a1

aw

r`

Β
`

Γ
`

Figure 2.12: Conductor volume element showing the Frenet-Serret frame (β(θ), γ(θ), r(θ))
following the center of the conductor path.

Since the β coordinate is defined in the direction of the current, the Lorentz force per
volume in this frame only has r and γ components

~fvol = ~J × ~B = −JBγ r̂ + JBrγ̂. (2.71)

To approximate the pressure in the radial and rib direction the force is taken to be a constant
throughout the conductor volume element (Fig. 2.12) and given by the value at the center
of the (r, β, γ) frame. The pressure is then taken to be this force divided by the respective
area of the face in question so that

pγ =
fγvol

∆l(a2 − a1)
=
fγ∆l(a2 − a1)aw

∆l(a2 − a1)
= fγaw (2.72)

pr =
frvol

aw∆l
=
fr∆l(a2 − a1)aw

aw∆l
= fr(a2 − a1), (2.73)

where pγ is the pressure on the rib, and pr is the pressure in the radial direction. If I0 is the
magnitude of the current in the conductor, J = I0

aw(a2−a1) ,

pγ =
BrI0
a2 − a1

(2.74)
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pr = −BγI0
aw

. (2.75)

Substituting Br for an arbitrary layer, the pressure on the rib due to the Lorentz forces for
“ith” layer is

pγ = − µ0I
2
0cot(α)

2w(a2 − a1)

(
i−1∑
k=1

f or (r, a1k, a2k) + fr(r, a1i, a2i) + (N − i)

)
sin(θ), (2.76)

where the radial form factors f or and fr are given in Equation 2.69.
This pressure is an approximation of the transverse stress on the Rutherford cable in

the situation where the Lorentz forces do not accumulate (are completely captured by the
mandrel ribs) and there is no bending of the structure. Equation 2.76 was compared to
results from a finite element model. This model uses Biot-Savart to calculate the fields from
a segmented CCT conductor path. It then calculates the Lorentz forces on each segment of
the conductor and the approximate pressure based on the width of the Rutherford cable. A
comparison between the results of this model and the formulation for a single 4.5 T CCT
layer can be seen in Figure 2.13. The pressure on the rib is seen increasing from zero on
the midplane (θ=0) to a maximum of around 4.5 MPa at the pole (θ = π/2). A similar
comparison was made for a four layer 18 T dipole (Fig. 2.14). This shows a maximum
transverse cable stress of less than 20 MPa. If this is an accurate approximation for the
CCT (stress interception and no bending), it shows an order of magnitude reduction in
the conductor stress when compared to the traditional design approaches. This reduction
in stress is the primary motivation for an in-depth investigation of the CCT for high field
Nb3Sn dipoles (see Section 1.3).

Radial Pressure

The radial pressure is given by

pr = −BγI0
aw

, (2.77)

which requires a description of the magnetic field in the γ direction. With the β direction
defined by path normal

β̂ =
~n

|n|
=

rθ̂ + (rcot(α)cos(θ) + w
2π

)ẑ√
r2 + (rcot(α)cos(θ) + w

2π
)2
, (2.78)

a unit vector in the γ direction is found to be
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Figure 2.13: Comparison of Equation 2.76 with finite element results for a single 4.4 T layer:
a1=28 mm, a2=43 mm, α=20 deg, w=7.34 mm, and I0=16.1 kA.

γ̂ = β̂ × r̂ =
−rẑ + (rcot(α)cos(θ) + w

2π
)θ̂√

r2 + (rcot(α)cos(θ) + w
2π

)2
. (2.79)

Then, the field in the γ direction can be found using

Bγ = Bθ(θ̂ · γ̂) +Bz(ẑ · γ̂) =
−rBz +Bθ(rcot(α)cos(θ) + w

2π
)√

r2 + (rcot(α)cos(θ) + w
2π

)2
, (2.80)

which for a single layer results in

Bγ = − µ0I0cot(α)

2w
√
r2 + (rcot(α)cos(θ) + w

2π
)2

(
2rfztan(α) + fθcos(θ)(rcot(α)cos(θ) +

w

2π
)
)
.

(2.81)
The radial pressure for a single CCT layer is then

pr =
µ0I

2
0cot(α)

2waw
√
r2 + (rcot(α)cos(θ) + w

2π
)2

(
2rfztan(α) + fθcos(θ)(rcot(α)cos(θ) +

w

2π
)
)
.

(2.82)
This pressure can be seen compared to results from the finite element model in Figure 2.15.
The radial pressure is seen varying opposite of the rib pressure, decreasing from a maximum
at the midplane to a minimum at the pole. The increased magnitude of the pressure is a
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Figure 2.14: Comparison of Equation 2.76 with finite element results for a four layer 18 T
dipole: inner radius of 28 mm, 15.35 mm layer radial thickness, 0.55 mm spacing between
layers, w=7.34 mm, α=20 deg, and I0=16.1 kA.

result of the cable cross section having a thickness in the radial direction that is about eight
times larger than the transverse direction.

This approach can be extended for a multi-layer CCT magnet with field

Bγ = − µ0I0cot(α)

2w
√
r2 + (rcot(α)cos(θ) + w

2π
)2

(
2rtan(α)

[
(−1)i−1fz(r, a1i, a2i) +

1

2

(
(−1)i − (−1)N

)]

+ cos(θ)
(
rcot(α)cos(θ) +

w

2π

)[ i−1∑
k=1

f oθ (r, a1k, a2k) + fθ(r, a1i, a2i) + (N − i)

])
, (2.83)

leading to a radial pressure in the “ith” layer varying as

pr =
µ0I

2
0cot(α)

2waw
√
r2 + (rcot(α)cos(θ) + w

2π
)2

(
2rtan(α)

[
(−1)i−1fz(r, a1i, a2i) +

1

2

(
(−1)i − (−1)N

)]

+ cos(θ)
(
rcot(α)cos(θ) +

w

2π

)[ i−1∑
k=1

f oθ (r, a1k, a2k) + fθ(r, a1i, a2i) + (N − i)

])
. (2.84)

Comparison of the multi-layer radial pressure to the finite element model is seen in Figure
2.16.
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Figure 2.15: Comparison of Equation 2.82 with finite element results for a single 4.4 T layer:
a1=28 mm, a2=43 mm, α=20 deg, w=7.34 mm, and I0=16.1 kA.

2.7 Limitations of the analytic model

The formulation in Sections 2.2, 2.3, 2.4, and 2.5 makes several assumptions. The first is
the region of interest is far enough from the ends of the magnet (in the straight-section).
The second is the pitch is much smaller than the radius, and the third is the average current
density is sufficiently accurate to describe the conductor. It is good practice to verify analytic
representations using finite elements models during the design process, and here special care
should be taken for magnets of very small bore and or short axial length. A critical calculation
in the design of superconducting magnets is the maximum field on the conductor, necessary
for determining the short-sample performance. A calculation of the maximum field at the
conductor requires a specification of the true geometry of current which leads to a rise of
field at the conductor when compared with the bore. In many cases, the pitch averaged
current used in this analytic model is insufficient for this calculation.

The cable pressure in Section 2.6 is only an accurate approximation of the Lorentz force
induced conductor stress in the case where there is no accumulation of force or bending of
the mandrel. In reality the mandrels are not infinitely rigid and bending will occur, making
this formulation the best case scenario. In practice the analytic pressure presented is best
used for understanding the effect of forces within the magnet (general tendencies), and not
to predict the stress state of the conductor. It serves to complement a detailed structural
analysis done using a finite element model (to be discussed in Chapter 3).
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Figure 2.16: Comparison of Equation 2.84 with finite element results for a four layer 18 T
dipole: inner radius of 28 mm, 15.35 mm layer radial thickness, 0.55 mm spacing between
layers, w=7.34 mm, α=20 deg, and I0=16.1 kA.

2.8 The 3D periodic symmetry region of the CCT

The CCT conductor path creates a region of symmetry in the mandrel that is axially peri-
odic. This is a direct result of the periodic constraint placed on the path in Equation 2.4.
The symmetry region mates end-to-end, and with conductor included can be repeated in a
laminated fashion to form a complete CCT layer (Fig. 2.17, Fig. 2.18). A symmetry region
for each layer and a laminated outer structure of the same axial thickness can be combined
to form a symmetry region for the magnet as a whole.

The axial thickness of the laminated region is determined by the pitch of the conductor
path. The pitch is defined as the turn-to-turn axial distance at the midplane and is calculated
using

w =
aw + δrib

sinα
, (2.85)

where aw is the conductor width, δrib is the rib thickness at the midplane, and α is the tilt
angle. This represents the period distance over which the symmetry region repeats, allowing
the entire magnet to be built of this region displaced axially by integer numbers of the pitch.
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Figure 2.17: The conductor and mandrel forming the minimum symmetry region for one
CCT layer is shown together and then separated. This symmetry can be repeated axially to
form a CCT layer in a laminated fashion.

Figure 2.18: Two adjacent mandrel laminations are shown with a displacement and then
mated. These laminations are identical and the conductor channels match perfectly end to
end, representing the periodic symmetry in the winding path.

Comparison to the traditional straight-section symmetry

Traditional magnet designs have a 2D axial symmetry far from the ends (in the straight-
section). This symmetry is typically used for the majority of the magnetic and structural
analysis because of the dramatic reduction of finite element model size compared with the 3D
model. The CCT has a fundamentally different straight-section symmetry consisting of a 3D
periodic region (see Fig. 2.19 for a comparison). This symmetry has a similar advantage of
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drastically reducing finite element model size, but requires the development of new analysis
methods and boundary conditions due to its 3D nature.

(a) (b)

Figure 2.19: The 2D axial symmetry of a traditional cosine-theta dipole “cross section” (a)
is shown compared to the 3D periodic symmetry region of the CCT “lamination” (b).

2.9 Magnetic and structural boundary conditions for

the 3D symmetry

Boundary conditions for magnetic modeling

Magnetic modeling using the symmetry region requires periodic current and field conditions.
These conditions maintain continuity when the region is patterned axially. They are enforced
by requiring the fields and current at like positions on the two axial faces of the region are
equal. Figure 2.20 shows an example symmetry region through a CCT dipole. The conditions
for periodicity are

~B1(x, y, z1) = ~B2(x, y, z2)

~J1(x, y, z1) = ~J2(x, y, z2)

(2.86)
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where ~B and ~J are the magnetic field and current density at face 1 and face 2 as marked
in the figure. These are the outer axial faces of the region (with thickness of a single pitch
length w) such that z2 = z1+w. The application of these conditions to finite element models
will be discussed in Chapter 3.

Figure 2.20: A periodic symmetry region is shown meshed around the conductor of a CCT
dipole. The outer axial faces of this region are used for the specification of the periodic field
and current conditions.

Boundary conditions for structural modeling

The periodic symmetry is enforced by relating the displacement of matching nodes on the
two axial faces of the region. For matching nodes on face 1 and face 2 (Fig. 2.21), the
constraint equations

ux2 − ux1 = 0

uy2 − uy1 = 0

uz2 − uz1 = δz (2.87)

couple the nodes’ transverse displacement (ux, uy) and relate their axial displacement (uz)
to the constant length δz. This parameter allows for a change of axial length between nodes
while still enforcing the periodic requirements of the symmetry region. Three different axial
boundary conditions, set by the choice of δz, have been developed. Two of these model the
extreme behavior of the problem and reproduce 2D plane strain and plane stress solutions
when implemented on a 3D axially symmetric model [45]. The third choice is bounded by
these two and is closer to the expected behavior of the CCT.
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Figure 2.21: A two layer symmetry region of conductor and mandrels is shown. The con-
straint equations between lamination face nodes are shown graphically for the conductor of
layer two.

Condition 1: Generalized Plane Strain

The generalized plane strain condition is implemented by setting δz = 0 for all nodes on
the constrained axial faces. The nodes are allowed to move axially, but required that as a
pair they displace such that the axial length between them remains unchanged. Fixing the
length between axial faces results in the development of large axial stress and force on the
constrained surface during cooldown of the region. This condition is relevant to a highly
unlikely test configuration where the ends of the magnet are held such that it is not allowed
to strain axially, even during cooldown.

Condition 2: Single Strain

The second condition, closest to the expected behavior of CCT, is the choice of a single
length change δz 6= 0 for all constrained nodes. This is similar to Condition 1, but now
the axial length of the region changes by a constant related to thermal contraction during
cooldown. The single value for δz is determined such that the net force on the outer axial
faces (surface between repeated magnet symmetry regions) is zero. This force is calculated
by integrating the stress normal to the surface, and for a single component (CCT layer or
structural element) is given by

Fi =

∫
Si

σndSi, (2.88)
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where Si represents the outer surface of the ith component. For this boundary condition,
δz is chosen such that the sum of Fi over all components is zero (Eqn. 2.89). While net
forces may develop on the faces of individual components, the net force over the entire
magnet symmetry region surface is required to be zero. This condition is relevant to the
test configuration where the magnet is allowed to strain axially, but all components (layers
and structure) are tied together such that they strain the same. This boundary condition is
closest to the expected behavior of a CCT magnet that has been impregnated such that the
layers are all bonded together, or a CCT magnet with sufficient friction between layers that
the strain is tied together at the layer to layer interface.∑

i

Fi = 0 (2.89)

Condition 3: Generalized Plane Stress

The generalized plane stress condition is implemented by choosing a unique δz for each com-
ponent such that the net force on the face of that individual component is zero (Eqn. 2.90).
The value of δz for each component is primarily determined by its thermal contraction. A
CCT layer with the conductor and mandrel bonded is treated as a single component with
the same δz used for both, with δz chosen such that the net normal force on the layer is zero
(Condition 2 for mandrel and conductor).

Fi = 0 for all i components (2.90)

This boundary condition is applicable for a CCT magnet with perfect slip planes between
layers. In this case each layer is allowed to have its own axial strain such that no net axial
force builds up for each individual layer. Methods for the implementation of these boundary
conditions in finite element structural models will be introduced in Chapter 3.



53

Chapter 3

Finite Element Modeling of CCT
Dipoles

3.1 Brick element representation of the conductor

The design of CCT magnets in this thesis assumes conductor in the form of a Rutherford ca-
ble. This cable is made up of individual strands which contain the superconducting material
along with copper for stabilization. To reduce complexity and calculation time, the represen-
tation of the conductor used in this chapter will remain at the cable level. The electrical and
mechanical properties of the strands are averaged across the cross section of the cable, such
that the conductor is modeled by a rectangular cross section of uniform properties following
the CCT path. This continuous conductor is then discretized into eight node brick elements
as needed for finite element calculations.

To produce the brick elements, a rectangular cross section corresponding to the cable
dimensions (described by four points) is placed at discrete intervals along the central path of
the CCT winding. For a dipole, this path is given by Equation 2.15. The orientation of the
cable cross section about the central path is chosen such that the cable height is aligned with
the radial direction. This allows for winding mandrel channels to be machined with a cutter
moving radially inward with respect to a cylindrical surface. The connection of adjacent
cross sections generates the eight node brick elements. The level of discretization can be
controlled by using equal steps dθ of the parametric variable θ, such that ndiv = 2π/dθ is the
number of divisions created per CCT turn. Figure 3.1 shows an example of the conductor
generated for a single CCT dipole turn using 120 eight node brick elements.

3.2 Magnetic modeling in Opera3D

As will be shown in the design of CCT1 and CCT2 (Chapters 5 and 6), CCT magnets can
achieve excellent straight-section and integrated field quality without the use of iron. For
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Figure 3.1: A single CCT dipole turn discretized into eight node brick elements is shown.

this reason it is likely the role of iron in CCT magnets will be limited to the reduction
of stray fields. In this case, field quality and field at the conductor calculations can be
performed without the consideration of iron (which can be added later based on the stray
field specifications of the accelerator). Without the mesh required for calculations using iron,
the Post-Processor of the commercial software Opera3D can be used [43].

The conductor geometry for each CCT layer is imported into the Post-Processor of
Opera3D in 8-node brick element form. Here, the eight nodes of each discretized element
described in Section 3.1 are written to a “.cond” file along with the average current density
of the element. The format of a “.cond” file is shown in Figure 3.2. Here, only the first two
brick elements of a single layer are included in order to show the required header and footer.
The current density corresponds to the power supply current divided by the cross section of
the cable. The current type is set to “1.0” to represent a full 3D treatment of the conductor
geometry. If a value of “-1.0” is used, the current density will be approximated as a line
current at the center of the brick. This may be used to speed up calculations far from the
conductor, or more generally in situations where less accuracy is required.

After setting the units in the Post-Processer, the “.cond” file can be loaded to import the
conductor. Once the conductor for all layers has been imported, the generation of the 3D
magnetic model is complete. This model can be used for calculation of both straight-section
and integrated harmonics, as well as the field at the conductor needed for the determination
of the short-sample limit. It can also be used to calculate the Lorentz forces, providing
the operational loads for the structural analysis. The 3D periodic symmetry and magnetic
boundary conditions (discussed in Sections 2.8 and 2.9) are relevant to straight-section cal-
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Figure 3.2: An example of a .cond file “layer1.cond” is shown for importing the first two
8-node brick element conductors into Opera3D.

culations only (far from ends). This symmetry is useful in reducing computation time for
Opera3D models requiring a mesh (for example, when real iron is included). To implement
the periodic boundary conditions described in Section 2.9, the “PERIODICITY” command
is used. For example, the command

can be used in the Modeler before the generation of the mesh. This forces the potential and
geometry to be the same on both sides of a symmetry model with example axial pitch length
w = 7.2 (consider Figure 2.20 with z1 = 0 and z2 = 7.2).

3.3 Structural modeling in ANSYS

A method for mechanical modeling of the CCT using the commercial software ANSYS [46]
was developed. This method implements the 3D periodic symmetry region and structural
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boundary conditions described in Sections 2.8 and 2.9. Additional information on the struc-
tural modeling of CCT dipoles can be found in [47].

Generation of the model geometry

The first step in the creation of the ANSYS model is the generation of the conductor ge-
ometry. The conductor is modeled with a solid rectangular cross section corresponding to
the height and width of the Rutherford cable used. The central path of this cable for each
conductor layer is generated using Equation 2.15. The rectangular cable cross section is then
placed at discrete intervals along this path. This models the continuous cable using discrete
brick elements (as previously described in Section 3.1). A pitch length is cut out of this path
at the center of the winding, and then sliced at 180 degrees (see Fig. 3.3). This generates the
conductor brick elements of the symmetry region to be used in ANSYS. Only 180 degrees of
region is chosen to reduce the size of the model. This is an approximation, as the 180 degree
symmetry is slightly broken by the axial pitch of the CCT winding.

Figure 3.3: The method for generating the 180 degree symmetry region from the brick
element path is illustrated for a CCT dipole conductor layer.

The eight corners specifying each conductor brick element are generated as keypoints in
ANSYS. The areas of each brick are created from these keypoints followed by the generation
of a volume from the areas. Then, the volumes of adjacent conductors are merged as the
final step in the generation of the conductor geometry. A winding mandrel for each layer is
generated by a cut-out boolean operation between a thick walled cylinder and the conductor.
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Finally, the geometry of any structure outside the CCT layers is generated using a 2D cross
section extruded a pitch length in the axial direction. For example, figure 5.11 shows the
final result of this process in ANSYS for CCT1.

Meshing the geometry

The ANSYS model is meshed using the 20 node volume element type SOLID186. A meshing
process was developed to ensure the two outer axial faces of the model have the exact same
mesh. It is crucial to mesh these faces the same due to the periodic boundary conditions (see
Section 2.9). These conditions are applied between like nodes on these two faces requiring
there be a matching node on each face. The method developed begins by meshing one of
the two faces using the surface element MESH200. This is a “mesh-only” element type in
ANSYS that does not contribute to the solution (no material properties, real constants, etc.).
This surface mesh is then copied to the other axial face using the MSHCOPY command.
Then a VMESH command is used to mesh the volume with SOLID186 elements, where the
“mesh-only” surface elements already created force the generation of a mesh that is the same
on the two outer faces. The conductor bricks are meshed with hexahedral elements, and the
more complex mandrel geometry is meshed using less accurate tetrahedral elements.

Applying the loads

Three load steps are typically considered: assembly, cooldown, and operation. The first is
an “assembly” step where any pre-stress from an outer structure is applied, the second is a
“cooldown” of the model from room temperature to liquid helium (4.2 or 1.9 K), and the
third is the application of the “operation” Lorentz forces due to energization of the magnet.
The first load is dependent on whether an outer pre-loading structure is used, and when
necessary is usually applied by means of an interference between surfaces. The second load
step is applied by first specifying room temperature with the TREF command and then the
temperature to be cooled down to using the BFUNIF,TEMP command.

The application of the Lorentz force loads is more complicated. First the centroid location
of each ANSYS conductor mesh element is exported. These locations are imported into the
Opera3D magnetic model so the Lorentz force at each centroid can be calculated. This
Lorentz force is then exported from the Opera3D model back to the ANSYS model where
force at each element’s centroid is distributed equally on that element’s nodes. It is typical to
solve the ANSYS model in the order of these load steps to simulate the magnet at each point
from assembly to operation. This results in three solutions corresponding to the following:
assembly loads; assembly and cooldown loads; and assembly, cooldown, and operation loads.
This incremental loading method has been previously applied to other magnet designs such
as the LARP quadrupoles [48].
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Applying the boundary conditions

The 180 degree symmetry of the model is specified by fixing the azimuthal displacement
of all the nodes at the poles (± 90 degrees). The model is further constrained by fixing
the displacement of a single node at the midplane (0 degrees) in the axial and azimuthal
directions. The periodic boundary condition is applied to each pair of matching nodes on the
axial faces using the constraint in Equation 2.87. A script is used to find the node numbers
of the two matching nodes (based on having the same transverse positions), after which the
constraint equation is applied. The value of δz used is determined by the choice of one of
the three axial boundary conditions discussed in Section 2.9.

The axial boundary condition most frequently used is the “single-strain” condition, which
applies a single δz value to the entire model. As described in Section 2.9, the value of δz
is chosen such that the net axial force is zero on the outer faces of the entire model. The
correct value for this parameter can be determined by solving the ANSYS model with two
guesses for δz and using the net force results to interpolate the zero net force value. An
example of this process is shown in Figure 3.4. To calculate the net axial force the nodes on
the outer face of the region are selected and a FSUM command is used.

Figure 3.4: An example of two guesses and the interpolated zero force value for δz is shown.
Each case represents a solution of the ANSYS model with the “single-strain” condition using
the respective value for δz.
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Stress and strain results in a local cable frame

It is valuable to have a method for viewing the conductor stress results in a coordinate system
local to the conductor path, allowing for the determination of the tangential, transverse, and
radial stress within the cable. This requires post-processing beyond what is contained in
ANSYS due to no global coordinate system being aligned with the 3D path of the conductor.
A method was developed to export the conductor stress and strain from ANSYS, convert the
results to the local conductor frame, and display them in the open source software ParaView
[49].

The definitions for the local tangential t̂ and transverse b̂ directions are found in Equations
2.2 and 2.3, and illustrated in Figure 2.1. For a CCT dipole layer, Equation 2.15, the
tangential, radial, and transverse direction unit vectors in cartesian coordinates are given by

t̂ =
− sin θx̂+ cos θŷ +

[
cotα cos θ + w

2πr

]
ẑ√

1 +
[
cotα cos θ + w

2πr

]2
r̂ = cos θx̂+ sin θŷ

b̂ =

[
cotα cos θ + w

2πr

]
[− sin θx̂+ cos θŷ]− ẑ√

1 +
[
cotα cos θ + w

2πr

]2 , (3.1)

where the sign of the tilt angle α alternates between layers in a multi-layer CCT dipole
magnet. These unit vectors can be used to transform stress and strain results from the
global cartesian coordinate system x, y, z to the local system t, r, b using

σtrb = Q · σxyz ·QT

εtrb = Q · εxyz ·QT , (3.2)

where σxyz is the Cauchy stress tensor in the cartesian frame, εxyz is the strain tensor in the
cartesian frame, and Q is the transformation matrix to the local frame given by Equation
3.1 and

Q =

tx ty tz
rx ry rz
bx by bz

 . (3.3)

To calculate the local stress and strain tensors (Eqn. 3.4 and 3.5) the conductor element
nodes are first selected in ANSYS and a NLIST command is used to export the node loca-
tions to a data file. Then a PRNSOL command is used with the relevant option to export
the nodal ANSYS solution results (stress or strain tensor for each node) in the cartesian
coordinate system. A script is then run that calculates the values of r, θ for each node and
evaluates Equations 3.1 and 3.3 to find Q for each node. Finally, the nodal ANSYS results
are transformed into the local conductor coordinate frame for each node using Equation 3.2.
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σtrb =

σtt σtr σtb
σrt σrr σrb
σbt σbr σbb

 (3.4)

εtrb =

εtt εtr εtb
εrt εrr εrb
εbt εbr εbb

 (3.5)

Figure 3.5 shows an example of this process for a single conductor layer. Three images
show the conductor stress displayed in the global cylindrical coordinate system in the ANSYS
postprocessor. This stress is then shown converted to a local frame and displayed in the
program ParaView with the approximate 180 degree symmetry expanded to a full turn.
This allows the determination of the tangential σt, radial σr, and transverse σb stress at all
points along the conductor path. Because of the 3D path of the cable, all three cylindrical
coordinates are only aligned with the local frame at the pole location (θ = ±90 degrees)
where t = θ, r = r, and b = z. This allows for a convenient check of the transformation
results in the pole region where σt = σθ, σr = σr, and σb = σz.
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Figure 3.5: ANSYS stress results for a single conductor layer are shown using the ANSYS
viewer in the global cylindrical frame (r, θ, z). The stress results are also shown converted to
a local conductor frame (t, r, b) and plotted in the program ParaView as a single continuous
conductor turn.
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Chapter 4

Design Choices and Optimization for
High Field CCT Dipoles

4.1 Goals and overview

This chapter seeks to present important considerations for the design of high field CCT
dipoles. Rather than developing a fixed step by step optimization process, the goal is to
identify and discuss key design choices such that the reader gains an understanding of what
drives the scaling and efficiency of the CCT design. Section 4.2 begins the chapter with a
discussion of the efficiency of the CCT for producing dipole fields. Next, Section 4.3 develops
the formulation for the amount of conductor used in a single layer and a multi-layer magnet.
Section 4.4 presents a set of design parameters for the CCT. The choice of the key free
parameters is discussed in detail in Sections 4.5, 4.6, and 4.7. During this discussion, a
method for grading the outer layers of a multi-layer CCT magnet will be presented to reduce
the amount of conductor and coilpack size needed to reach a desired dipole field. Finally,
Section 4.8 presents a cost comparison study between graded and ungraded Nb3Sn CCT
dipole designs ranging from two to eight layers (11-17 T).

4.2 Efficiency of a CCT layer: comparison to an ideal

cosine-theta

A CCT layer has two sources of inefficiency when considering the production of a dipole
field. The first is associated with the generation of undesired fields which are canceled
between layers (namely the solenoid), and the second is associated with the reduction in
current density due to mandrel ribs between turns at the midplane. The inefficiency can
be quantified by comparing a CCT dipole layer to an ideal cosine-theta current density of
the same thickness. The dipole field produced by an ideal density Jz = Jeng cos(θ) of radial
thickness bw is
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B1 =
µ0Jengbw

2
. (4.1)

The magnitude of the dipole is dependent only on the current density and radial thick-
ness, and is independent of the radius at which the layer is located. This is an important
characteristic of dipole windings that is often misunderstood. It can be shown the dipole
produced by a CCT layer of cable width aw, cable height bw, and engineering current density
Jeng = I0/awbw is given by

B1CCT =
µ0Jengbw

2
εcct. (4.2)

The efficiency εcct then determines the difference between the dipole field generated by a
CCT and an ideal cosine-theta layer. This efficiency can be written as

εcct =
cos(α)

1 + δ/aw
, (4.3)

where δ is the rib thickness between turns at the midplane and α is the tilt angle. The pitch
relation to these parameters, as would be needed for the generation of a dipole path using
Equation 2.15, is

w =
aw + δ

sin(α)
. (4.4)

Assuming a small variation in the choice Rutherford cable widths aw, the two design
choices that affect εcct are the tilt angle and midplane rib thickness. It is seen the effect
of the tilt angle is non-linear and behaves as cosα. This means the inefficiency associated
with the angle can be kept below 5% with a choice of less than 18 degrees (additional
considerations for the choice of an optimal tilt angle will be further discussed in Section 4.5).
Despite how it may appear after a first glance at the CCT design, the key contribution to
the inefficiency comes from the midplane rib and not from tilting the windings. Experience
at LBNL has shown a midplane rib of not less than 15 thousandths of an inch (0.381 mm)
is necessary to avoid breakage of the rib during machining of the mandrel channels. With
the typical width of a Rutherford cable aw being near 2 mm, the effect of using a 0.381 mm
midplane rib is the reduction of efficiency by 15-20%. With both the effect of the midplane
rib and tilt angle considered, typical values for εcct are around 80%.

Eliminating the midplane rib entirely has been identified as an area for future research.
In this case, a δ of zero is used so adjacent turns are touching at the midplane. Moving to
zero rib would eliminate the breakage issues below 15 thousandths of an inch, but would
require the rib be introduced away from the midplane in a way that does not create a sharp
edge with the potential to damage the conductor. Care would also have to be taken to
prevent turn-to-turn electrical shorts where adjacent turns are touching. This is an area of
future study that has the potential to boost the efficiency of a CCT layer to a point where
it is more than 95% efficient with respect to an ideal cosine-theta current distribution.
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4.3 Conductor length

A key consideration in the design of superconducting magnets is the amount of superconduc-
tor used. For high field Nb3Sn dipole magnets, the cost of the Nb3Sn superconductor itself
is a significant if not dominant fraction of the total magnet cost [50]. When the potential
demand for several thousand high field dipoles for a future hadron collider is considered, it
is of extreme importance to minimize the amount of conductor (and thus cost) needed to
reach the desired dipole field.

Path length of a CCT turn

Section 2.2 describes a CCT turn using a parametric path confined to the surface of a
cylinder. If this surface is at fixed radius r, the length of a parametric path is given by

l =

∫
ds, (4.5)

where in cylindrical coordinates

ds =
√
dr2 + r2dθ2 + dz2 =

√
r2 +

(
dz

dθ

)2

dθ. (4.6)

Using the path previously derived for a dipole layer (Equation 2.15),

ds = r

√
1 +

(
cot(α) cos(θ) +

w

2πr

)2
dθ. (4.7)

The length of a single turn is then given by

lturn = r

∫ 2π

0

√
1 +

(
cot(α) cos(θ) +

w

2πr

)2
dθ ≈ r

∫ 2π

0

√
1 + cot2(α) cos2(θ)dθ, (4.8)

which can be expressed in terms of elliptic integrals. It is seen that the conductor length
of a single turn is linearly proportional to the radius and a constant determined by the tilt
angle

lturn(r, α) = Cl(α)r Cl(α) ≈
∫ 2π

0

√
1 +

(
cos(θ)

tan(α)

)2

dθ. (4.9)

Path length of a CCT layer

A CCT layer is different from traditional designs in that it has no variation of the conductor
path along the length of the magnet. The conductor in the straight-section and end region
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is formed by the same expression for a single turn patterned axially. In this case, the total
conductor length of a CCT dipole layer is simply given by

llay(r, α, nturns) = lturnnturns = rCl(α)nturns (4.10)

where nturns is the total number of turns making up the layer.
In some cases it is desirable to know the conductor length based on the geometric prop-

erties of the layer. In particular it is convenient to know the amount of conductor used per
magnetic length. For a CCT layer with sufficient straight-section, the magnetic length Lm
is given by the distance between the first and last turn on the midplane (see Figure 4.1).
This makes the number of turns for a given magnetic length nturns = Lm/w. Considering
the definition of the pitch in Equation 4.4, the path length for a CCT layer as a function of
radius, tilt angle, and magnetic length can be written as

llay(r, α, Lm) =
Lmlturn
w

=
Lm

aw + δ
r sinαCl(α). (4.11)

Length of strand in a multi-layer CCT magnet

The parametric path length of a CCT layer given in Equations 4.10 and 4.11 is representative
of the length of Rutherford cable used. Given the assumption each layer has the same number
of turns, the total cable path length per magnetic length for a multi-layer dipole magnet of
nlay layers is

lcable
Lm

=

nlay∑
i=1

lturn(i)

w
, (4.12)

where lturn(i) is the single turn length of the “ith” layer. Given that the layers in a multi-
layer magnet may be graded by changing the number of strands, the overall strand length
used per magnetic length is

lstrand
Lm

=

nlay∑
i=1

lturn(i)ns(i)

w
(4.13)

where ns(i) is the number of strands in the cable of the “ith” layer.

4.4 Design parameters

A set of design parameters can be seen in Table 4.1 for a CCT layer and in Table 4.2 for a
CCT magnet. The central radius r, cable width aw, midplane rib δ, and tilt angle α define
the pitch and parametric path for the center of the layer’s Rutherford cable according to
Equation 2.15. Here the choice has been made to replace the pitch w with the cable width
aw and the midplane rib δ (Equation 4.4). This provides a more physically intuitive set
of parameters. To complete the description of a layer, either the number of turns nturns,
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magnetic length Lm, or the tip-to-tip physical length Ltot can be specified. In this case the
tip-to-tip physical length Ltot was chosen to better correspond to accelerator specifications.

Table 4.1: CCT Layer Parameters

Parameter Type Criteria
r fixed set by specification of clear bore then radial buildup
aw fixed set by typical Rutherford cable
δ fixed set by machining limit
Ltot fixed set by specification of physical length
bspar fixed set by fabrication, bending stiffness
bw semi-free key design choice, but must be practically windable
α free key design choice

Assumptions about which parameters are set by magnet specifications are seen in the
tables. It is assumed the clear bore of the magnet will be specified. This combined with a
radial buildup of spar thicknesses bspar and cable heights bw set the central radii r for each
layer. It is also assumed the physical length available for the magnet in the accelerator Ltot
will be a fixed specification. There are also some parameters which are fixed by practical
considerations. For example, the width of the Rutherford cable aw is fixed as two strand
diameters with some compaction factor. There is also a practical restriction on the cable
height bw related to the hard way bend radius in the pole region. If the layer radius is too
small or the cable height is too large, the hard way bend can result in damage to the cable
during winding. The minimum thickness of the midplane rib δ is also practically restricted
based on machining experience at LBNL (previously discussed in Section 4.2).

Table 4.2: CCT Magnet Parameters

Parameter Type Criteria
I0 semi-free may not exceed short-sample limit
nlay free key design choice

With the assumption a certain number of parameters are fixed by the magnet specifica-
tions and practical considerations, only several key design choices remain. With the power
supply current I0 fixed by the short-sample, these free parameters are the tilt angle α, cable
height bw (corresponding to the number of strands), and number of layers nlay. Section 4.5
will examine the choice of the tilt angle α in detail, and show for a fixed physical Ltot there is
an optimal angle to maximize the integrated dipole field. The other two free parameters are
closely coupled. There is a trade-off between the cable height bw of the innermost layer and
number of layers nlay needed to reach a desired dipole field. This trade-off will be discussed
in detail in Section 4.6.
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4.5 Choice of midplane tilt angle α

The tilt angle α is a key design choice for a CCT magnet. This section will examine the
effect of the tilt angle on magnet geometry, conductor use, and integrated dipole field. It
will be shown that an “optimal” tilt angle exists which maximizes the integrated dipole field
for a fixed magnet length.

Geometric effects

The geometric total length Ltot, end length Le, and magnetic length Lm of a single layer
are defined in Figure 4.1. The number of turns nturns to make the total length Ltot can
be determined from the pitch w and the end length Le(α, r), both of which are non-linear
functions of the midplane tilt angle α.

Figure 4.1: A single CCT layer is shown with the total physical length Ltot, end length Le,
and magnetic length Lm indicated.

As the tilt angle decreases, both the end length

Le =
r

tanα
(4.14)

and pitch (Equation 4.4) increase. If the total physical length Ltot is kept constant, this
results in a smaller number of turns nturns and decreased magnetic length Lm = wnturns. In
summary, the geometric effect of changing α for a fixed magnet length Ltot is to determine
the end and straight-section fractions of the total magnet length. Reducing the tilt angle
converts straight-section length into end length. Figure 4.2 and 4.3 illustrate this behavior
for a typical CCT layer with a total length of 2.2 m.
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Figure 4.2: Normalized behavior of the pitch, number of turns, and end length is shown as
a function of tilt angle for a single layer of fixed total length.

Figure 4.3: The fractional geometric end and straight-section length is shown as a function
of tilt angle for a single layer of fixed total length. It is seen that the effect of a smaller tilt
angle is to convert straight-section length into end length.
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Magnetic effects

The form of dipole harmonics produced along the axis of a single layer is shown in Figure
4.4. As described in Appendix A, the field is expressed in harmonic field units of the central
dipole field. For a long layer, the transfer function (load line) for the central dipole field is
a function of the tilt angle and is given by

Tp =
µ0 cosα

2(aw + δ)
such that Bplat = TpI0. (4.15)

Figure 4.4: Dipole harmonics along the axis of the magnet (z) are shown for a single layer.
The zoomed region shows the location of the max and plateau field.

Bplat is representative of the field produced by a layer free of end effects. End effects on the
dipole field are quantified by the integrated field

Bint =

∫
B1(z)dz. (4.16)

The integrated dipole field can be represented by a step function of value Bplat and width

Lm =

∫
B1(z)dz

Bplat

, (4.17)

which is referred to as the magnetic length of the magnet.
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For a layer sufficiently long that the ends have a negligible effect on the central field,
the magnetic length is equivalent to the geometric straight-section length (see Figure 4.1).
In this case Lm = wnturns, making the choice of midplane tilt angle α a trade-off between
plateau field Bplat and magnetic length Lm. The integrated dipole is the product of the two,
so for a given total length Ltot, radius r, and current I0 there exists an optimum tilt angle
which maximizes the integrated field (Fig. 4.5).

Figure 4.5: The normalized behavior of the magnetic length Lm, plateau field Bplat, and
integrated field Bint are shown for a single layer of fixed total length. There exists a single
alpha which maximizes the integrated field. For a given conductor and rib thickness, this
optimum angle is a function of layer radius r and total length Ltot (see Figure 4.6).

This optimal angle is a function of the total physical length Ltot and radius r of the layer.
Figure 4.6 shows the optimal angles for a selection of layer lengths and radii. The general
trend of increasing optimal angle for decreasing total physical length and increasing radius
is shown. It is seen that for CCT dipole magnets 10 to 15 meters long, as would be desired
for a future hadron collider, the optimal tilt angle is between 10 to 20 degrees. As discussed
in Section 4.2, this range of tilt angles contributes very little (< 5%) to the inefficiency of
the CCT design.
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Figure 4.6: The optimial tilt angle that maximizes the integrated dipole field is shown as a
function of total physical length and radius.

Conductor usage

The conductor path length for a single layer is also non-linearly dependent on the midplane
tilt angle α. The factor Cl can be used to relate the length of a single turn to its radius as
seen in Equation 4.9. This factor is dependent only on the tilt angle, with the dependence
shown in Figure 4.7. As expected, the behavior is seen diverging as α tends to zero and
approaching that of a circle (2π) as α increases. Of greater importance is the amount of
conductor used in a layer for a given fixed physical length, which can be estimated using
Equation 4.11.

Figure 4.8 adds the layer’s conductor use to the example of the optimal tilt angle shown
in Figure 4.5. It is seen that increasing the tilt angle also increases the total amount of
conductor in the layer for a fixed physical length. This increase behaves fairly linearly in
the region near the optimal tilt angle. The ultimate choice for the tilt angle is a trade-off
between maximizing the integrated dipole by choosing the optimal angle, and reducing of
the amount of conductor by decreasing the angle past this point.
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Figure 4.7: The factor relating the radius to the length of a single CCT turn Cl is shown for
varying tilt angle α.

Figure 4.8: The normalized conductor use as a function of tilt angle for a 2.2 m CCT layer
is shown added to Figure 4.5.
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4.6 Choice of cable height (strand number) for the

innermost layer

Equation 4.2 can be rewritten in terms of the current I0 such that the dipole field from a
single CCT layer is

B1CCT =
µ0I0
2aw

εcct. (4.18)

Once again it is seen that field produced by a dipole layer is independent of the layer’s
radius. It is also important to note that when the current is considered, the dipole field is
also independent of the cable height bw of the layer (which will be used for current density
grading in Section 4.7). If the same pitch w, tilt angle α, and power supply I0 are used for
all layers in a multi-layer CCT magnet, each layer contributes the same magnitude dipole
field.

This means the net dipole field in the bore of a multi-layer CCT can be written as

B1net =
µ0I0
2aw

εcctnlay, (4.19)

where I0 is the power supply current and nlay is the number of layers. The short-sample
limit of the conductor has not yet been considered. This limit requires I0 < Jess(Bcond)awbw,
where Jess(Bcond) is the engineering short-sample current density based on the properties
of the superconductor. The short-sample current density is a function of the field at the
conductor Bcond, the maximum value of which is found in the first layer. This means the
height and width of the cable used in the first layer set the short-sample current I0, and thus
the individual dipole field contribution for all layers. Because the width of the cable aw is
fixed at slightly less than two times the strand diameter, the relevant design choice is the
cable height bw. This means to reach a desired dipole field there is a trade-off between the
height bw of the innermost layer and the total number of layers nlay.

One way to illustrate this trade-off is by making the simple assumption the field in the
bore determines the short-sample of the first layer. In reality there will be a rise in field at
the windings which requires a numerical calculation. For the sake of simple analytic scaling
this will be disregarded (Section 4.8 will show scaling with the rise of field at the conductor
numerically calculated). With this assumption, the trade-off between bw for the innermost
layer and nlay for a desired net dipole field B1net is given by

bw(B1net) =
2B1net

µ0εcctnlayJess(B1net)
. (4.20)

This relation is shown in Figure 4.9 assuming a typical Nb3Sn short-sample current
density. The solid lines represent the case of a CCT with perfect efficiency εCCT = 1 which
bounds the achievable field. This perfect case corresponds to the tilt angle and midplane rib
thickness going to zero (see Section 4.2). The markers correspond to typical CCT designs
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with an efficiency of εCCT ≈ 0.8. The clear trade-off between number of layers and the cable
height of the innermost layer is seen. From this perspective it is desirable to use the largest
possible cable for the innermost layer. This reduces the number of layers to reach a desired
dipole field which corresponds to a reduction in conductor, stored energy, inductance, and
complexity. The maximum size that can be used is determined by the practicality of winding
the cable around the hard way bend in the pole region of the first layer. The bend radius is
directly related to the clear bore, allowing the use of a larger cable for increased bore size.

Figure 4.9: Equation 4.20 is shown plotted given a typical Nb3Sn short-sample current
density curve.

4.7 Current grading by reducing strand number

As was discussed in Section 4.6, the power supply current I0 is set by the short-sample current
density and the radial thickness of the innermost conductor layer. Once the power supply
current is set, the dipole field contribution is the same for all layers as seen in Equation
4.18. This contribution is independent of the radial thickness bw of the layer. In simple
terms, the power supply current I0 determines the field produced by a dipole layer and the
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radial height of the cable bw determines the short-sample. The power supply current is set
based on the innermost layer where the field at the conductor is the highest. The field at
the conductor falls off radially, meaning the maximum field at the outer layers will be lower
than the innermost. If all layers use the same size cable (which was chosen based on the
maximum field at the inner layer), the current density in the outer layers will be well below
the short-sample limit.

To bring the outer layers closer to the short-sample limit, the current density is increased
by reducing the cable height bw. In practice this means the number of strands in the outer
layers is reduced in proportion to the drop in field at the conductor. Figure 4.10 shows an
example of grading that was performed for the eight layer Nb3Sn dipole CCT2 (design details
in Chapter 6). The current density in the superconductor within the strand is shown. In (a)
all layers use 23 strands like the innermost layer, whereas in (b) the number of strands in
the outer layers is reduced to bring the load lines closer to the short-sample limit. Because
the power supply current does not change (the number of the strands in the innermost layer
remains fixed), the bore dipole field is unaffected by the grading.

(a) (b)

Figure 4.10: The load lines for the conductor layers of an ungraded (a) and graded (b) eight
layer CCT dipole are shown.

Grading saves conductor and reduces the total diameter of the magnet (see, for example,
the cross section comparison for CCT2 in Figure 4.11), while still reaching the same dipole
field in the bore. These savings are increased for a large number of layers. In the eight layer
example shown, 44% less conductor was used after grading. It is important to note in this
particular case the field at the conductor of all layers remained above 10 T, so the use of
NbTi for the outer layers was not considered. The CCT design is well suited for this style of
grading due to the use of a winding mandrel for each individual layer. With this approach,
the channel height of each layer is easily adjusted to accommodate a cable with a different
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number of strands. The stress interception provided by the mandrels in the CCT design is
also of key importance, as it allows for aggressive grading that is not limited by conductor
stress. Grading of a traditional magnet design (with accumulation of Lorentz forces) rapidly
increases conductor stress, leaving very little room for grading before the stress limits of
strain-sensitive Nb3Sn are reached [51].

(a) (b)

Figure 4.11: The ungraded (a) and graded (b) conductor cross sections are shown for the
eight layer Nb3Sn dipole design CCT2.

The method for grading a CCT dipole begins with the innermost layer and works outward.
The maximum number of strands is chosen for the first layer such that the cable remains
practically windable around the hard way bend in the pole region. This minimizes the total
number of layers as discussed in Section 4.6. After this, the field at the following pair of
layers is calculated (using Opera3D, for example). The number of strands in this pair is then
reduced to bring the current density to the short-sample point. This process is repeated,
working outwards, until all pairs of CCT layers have been graded. It is important to update
the magnetic model as the number of strands is changed, as the location of the outer layers
will move radially inward as the layers beneath them are graded. CCT2 was graded in pairs
of layers to limit the number of unique cables needed to four. For maximum savings, the
grading process can be performed on an individual layer basis. An example of grading by
individual layer will be presented in Section 4.8.
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4.8 A cost study of the CCT design for high field

The design of a future hadron collider will require the selection of a main dipole field. Should
Nb3Sn be used, it is thought this selection will be in the 10-16 T range [8, 4]. The goal of
this study is to better understand the characteristics of CCT designs in this dipole field
range, with an ultimate focus on the conductor cost. This focus is due to the cost of the
superconductor itself being a significant if not dominant fraction of the total magnet cost
for a Nb3Sn CCT [50]. In reality, both the cost and performance of Nb3Sn is expected to
change before the date at which such a collider may be built. The value of this study lies not
necessarily in the resultant numbers, but rather in understanding how CCT design scales to
high field.

Assumptions

The assumptions for magnet designs used in this study are shown in Table 4.3. A large bore
was chosen to allow for the potential inclusion of an HTS insert, but for the interested reader
a method for scaling the final results to different bore sizes will be presented. All assumed
parameters are based on practical experience with CCT design and construction at LBNL.
Conservative values were used in all cases except the choice of the conductor. Here the “best
of the best” Nb3Sn, based on extracted strand measurements of HD3 coil-2, was selected.

Table 4.3: Assumptions for the CCT Designs

1. 100 mm clear bore diameter space for HTS insert, winding practicality
2. 22 strand cable for layer 1 test windings show this near the hard way bend limit
3. 4 mm radial spar thickness ANSYS results on coilpack bending (Chapter 5)
4. 0.8 mm strand (HD3 coil 2) “best of the best” Nb3Sn (Fig. 4.12)
5. 15 mil midplane rib CCT1/CCT2 experience (Chapter 5, 6)
6. 0.125 mm insulation CCT1/CCT2 experience (Chapter 5, 6)
7. 15 deg tilt angle optimal angle for 10 m magnetic length
8. 4.2 K operation 1.9 K will add additional margin
9. all layers have same nturns same magnetic length for every layer

Table 4.4: Assumption for Nb3Sn Strand Cost

35 kg billet 70,000 ($)
0.8 mm strand 7910 (m/billet)
0.8 mm strand = 8.85 ($/m)

The cost of Nb3Sn conductor is expected to drop if demand is increased (as would be
the case for a Nb3Sn hadron collider). To avoid speculating on this subject, a conservative
estimate for the current cost of Nb3Sn strand was assumed [53]. This assumption is seen
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Figure 4.12: A fit [52] of the Nb3Sn strand current density for HD3 coil-2 is shown.

in Table 4.4. The results of this study are easily scaled in a linear fashion to represent a
different cost per meter for the Nb3Sn strand. Equation 4.13 can be used to determine the
total strand length in a multi-layer CCT magnet. Based on the assumption of strand cost,
the conductor cost per meter of magnetic length is then given by

8.85($/m)

nlay∑
i=1

lturn(i) ∗ ns(i)
w

. (4.21)

Method

Based on the assumptions, a magnetic model was generated for four CCT dipole designs
using 2, 4, 6, and 8 layers. These designs initially used a 22 strand cable for all layers, which
corresponds to a cable height of around 10 mm. This thickness was selected based on a clear
bore of 100 mm and experience winding CCT coils at LBNL. The maximum field at the
conductor was calculated for each design in Opera3D, and then short-sample current and
fields were determined. Each model was then graded by adjusting the number of strands in
the outer layers according to the method described in Section 4.7. This process resulted in
eight total designs, four ungraded and four graded, which produce between 11 and 17 tesla
at short-sample. The total Nb3Sn strand used per meter of magnetic length was compared
between the eight cases. By associating the conductor cost with length of strand, the cost
scaling by number of layers and dipole field was estimated for both the ungraded and graded
cases.
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Results

The reader interested in detailed results for each of the designs is referred to Appendix C. In
this appendix the maximum field at each conductor layer, load lines, layer radii, number of
strands, and conductor usage can be found for all eight designs. In this section, the focus will
remain on a comparison between the key results and the scaling. Table 4.5 gives a summary
of the short-sample results. Here there is no difference between the graded and ungraded
cases, due to the number of strands in the innermost layer remaining the same. It is seen
that when the short-sample limit of the conductor is considered, the increase in field from
adding an additional pair of layers slowly tapers off. For example, an increase from two to
four layers gains 3 T, while an increase from six to eight layers only gains 1 T.

Table 4.5: Short-Sample Summary

nlay Bore Dipole Max Field at Cond. Current
2 11.29 T 12.75 T 20.55 kA
4 14.25 T 14.95 T 12.94 kA
6 15.82 T 16.26 T 9.52 kA
8 16.81 T 17.19 T 7.58 kA

Table 4.6 summarizes the length and cost of the conductor for all eight designs. The net
cost of each case is also shown plotted as a function of bore dipole in Figure 4.13. It is seen
that the benefits of grading start small and grow rapidly as the number of layers is increased.
This is a result of an increased reduction in the number of strands and radii when grading
the outermost layers.

Table 4.6: Conductor Cost Summary

Ungraded Graded
nlay Lcable/Lm Lstrand/Lm $/m of Lm Lcable/Lm Lstrand/Lm $/m of Lm

2 251 5520 48.9 k$/m 250 4940 43.7 k$/m
4 603 13.26 k 117.4 k$/m 585 9.58 k 84.8 k$/m
6 1055 23.2 k 205.5 k$/m 991 13.8 k 122.1 k$/m
8 1609 35.39 k 313.2 k$/m 1462 17.7 k 156.8 k$/m

A second observation is the large increase in expense for the last 1-2 T of the very high
field designs. Increasing the dipole field requires adding additional layers, which has already
been shown to have diminishing returns at higher field. Another issue is the increased
conductor use due to the additional layers being at larger radii (especially for the ungraded
case). With these effects combined, it is clear from the figure these last 1-2 tesla are very
expensive. This cost has several implications for the choice of operating dipole field for a
future collider. The first is the non-linear increase in cost associated with a higher dipole
field should be considered in the context of the net cost (including the tunnel, etc.) and
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performance of the accelerator. The second implication is the importance of being able to
operate the magnet with as small a short-sample margin as possible. The choice of margin
determines to how much of the expensive last few tesla are needed. The necessary margin is
then a key consideration for very high field magnets. This requirement is unknown for the
CCT, and for this reason there is a series of Nb3Sn CCT dipole tests planned at LBNL to
determine the performance of the design at high field (Chapter 6).

Figure 4.13: The conductor cost of one meter of magnetic length for varying dipole fields is
shown for a 100 mm bore CCT.

A bore size dependent model for the ungraded results

The clear bore of a dipole magnet is a key specification that was not taken into consideration
in the previous cost study (all eight designs had a 100 mm bore). To account for this, a
scaling of the conductor cost with bore size was developed for an ungraded CCT magnet.
An analytic scaling for the graded case was not considered due to the number of strands per
layer being dependent on a numerical, not analytic, field at the conductor calculation. For a
multi-layer CCT dipole with clear bore radius rbore and radial mandrel spar thickness bspar
between all layers, the central radius of the “ith” layer is
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r(i) = rbore + ibspar + (i− 1/2)bw, (4.22)

where bw is the radial width of the cable (ungraded means this is the same for all layers).
The conductor costs for an ungraded CCT magnet of nlay total layers is then

cost/m of Lm = 8.85($/m)
Clns
w

nlay∑
i=1

[rbore + ibspar + (i− 1/2)bw], (4.23)

which simplifies to

cost/m of Lm = 8.85($/m)
Clns
w

(
nlayrbore +

1

2
nlay(nlay + 1)bspar +

1

2
n2
laybw

)
. (4.24)

Equation 4.24 is shown plotted in Figure 4.14 as a function of the number of layers, using
the same parameters (with the exception of clear bore) as the cost study. The conductor
cost of each of the eight 100 mm clear bore designs are shown in solid markers. As expected,
the markers for the ungraded case lie on the 100 mm scaling relation. This scaling can be
used to determine the conductor savings by going to a smaller bore size, which increases in
significance for a large number of layers (high field).

Figure 4.14: The scaling of conductor cost as function of number of layers for the ungraded
case is shown for a selection of clear bore diameters.
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Chapter 5

CCT1: a 2.5T NbTi
Proof-of-Principle Dipole

5.1 Introduction and goals

CCT1 is a 2.5 T superconducting CCT dipole magnet that was built and tested at Lawrence
Berkeley National Laboratory (LBNL) as a first step towards a high field Nb3Sn dipole.
While CCT1 was designed for relatively low field using NbTi conductor, key aspects for a high
field CCT magnet (such as Rutherford cables and winding mandrels for stress interception)
were implemented. CCT1 is the first published test of a CCT dipole built in a configuration
that scales to high field, serving as a proof-of-principle step before moving on to the increased
complexity and cost associated with a Nb3Sn magnet. As with the design and construction
of any first prototype, many lessons were learned along the way. In most cases magnetic
and structural modeling techniques were developed for CCT1 as needed during the design.
The development of these tools will have a lasting impact by being easily adaptable for the
analysis of future CCT designs.

Overall, bringing CCT1 from the conceptual stage to the construction and test of a real
superconducting magnet has been an invaluable experience that will continue to guide the
CCT magnet program at LBNL. This chapter will present this process by following the
design, construction, and test of CCT1. It will begin with a report on the magnetic and
structural design of the magnet. Then the manufacturing of winding mandrels, winding of
the coil, and final preparation for the test will be discussed. The test configuration and
plan will be described and the test results for the short-sample performance and field quality
of CCT1 will be given. Finally, a perspective on the test results and their impact in both
the fields of High Energy Physics and Ion Beam Cancer Therapy will be given. Additional
information on the design, construction, and test of CCT1 can be found in the following
references [47, 54, 55, 56].
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5.2 Design

CCT1 is a two layer CCT dipole designed to reach 2.5 T in a 50 mm clear bore using
NbTi conductor. A winding mandrel approach was taken, with each CCT layer consisting of
cabled conductor wound into channels machined into a thick-walled cylinder. These mandrels
serve to position the conductor for field quality and provide structural support against the
operating Lorentz forces. The two CCT layers nest one inside the other, and are then
assembled into an external structure which provides pre-stress or additional support against
the Lorentz forces. Two external structures were modeled during the design: a complex key,
bladder, and shell structure (as seen in the Figure 5.1) and a simple shell structure.

Figure 5.1: An exploded view of CCT1 with an external key, bladder, and shell loading
structure is shown.

NbTi conductor remaining from the SSC project was chosen for use in CCT1. The “SSC
outer” strand was cabled into an eight strand Rutherford cable whose properties can be seen
in Table 5.1. The cable was then insulated with a 0.15 mm thick braid of S-glass insulation.
A central path for 78 turns of this cable was generated using the CCT dipole Equation 2.15.
A tilt angle of 15 degrees, pitch of 7.604 mm, and central radii of 30 mm for layer 1 and
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36.59 mm for layer 2 was used (see Fig. 5.2). The mandrel channels for the cable were chosen
with a slightly oversized cross section of 3.02 by 1.59 mm. Combined with the pitch and tilt
angle this resulted in a minimum rib thickness between turns of 0.381 mm at the midplane.

Table 5.1: SSC Outer NbTi Cable Parameters

Filament Diameter 6.0 µm
Strand Diameter 0.648 mm
Strand Jc (5T, 4.2K) 2750 A/mm2

Strand Cu/SC 1.8
No. Strands 8
Cable Width, bare 2.72 mm
Cable Width, ins. 3.02 mm
Cable Thickness, bare 1.07 mm
Cable Thickness, ins. 1.37 mm

Figure 5.2: The two conductor layers of CCT1 are shown.

The radial thickness of the thick-walled cylinders used for the winding mandrels was
chosen to leave an inner wall thickness (spar) of approximately 3 mm after machining the
channels. A 0.25 mm radial gap was left between the OD of mandrel 1 and the ID of mandrel
2 for a G10 sheet to serve as a slip plane during the assembly of layer 1 into layer 2 (see
Table 5.2 and Figure 5.3). A 6061 aluminum alloy was chosen as the mandrel material for its
availability and ease of machining. It is important to note aluminum is incompatible with
the heat treatment for Nb3Sn (around 6500 C), which will require a change to a mandrel
material with a higher melting point for future Nb3Sn CCT magnets.

Conductor use

The amount of conductor used in the two layers of CCT1 can be seen in Table 5.3.
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Figure 5.3: A cross section of CCT1’s mandrels is shown.

Table 5.2: CCT1 Mandrel Properties

Lay Min. Rib (mm) Spar (mm) Ri (mm) Ro (mm) Channel (mm) Length (mm)
1 0.381 3.08 25.40 31.50 1.59/3.02 841.13
2 0.381 3.33 31.75 38.10 1.59/3.02 841.13

Table 5.3: CCT1 Conductor Use

Layer # turns L-one-channel (m) L-all-channel (m) # strands L-strand (m)
1 78 .4987 38.90 8 311.2
2 78 .6086 47.47 8 379.8

total 86.4 m 691 m

Outer structure

The first option considered for the outer structure of CCT1 is a key, bladder, and shell
loading structure (Fig. 5.1 and 5.4) that was developed at LBNL for Nb3Sn magnets [19].
This structure inflates bladders between the yoke and loading pads during the assembly of
the magnet. Keys are inserted and the bladders deflated such that a variable pre-stress is
applied to the conductor layers based on the thickness of the key. For traditional Nb3Sn
high field magnets, precise control of pre-stress is desired to prevent conductor movement
and reduce training. A key motivation for the CCT design, as described in Section 1.3, is to
reduce or eliminate the required pre-stress for high field magnets containing strain-sensitive
Nb3Sn.
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A complex key and bladder loading structure is not a requirement for a low field and NbTi
magnet such as CCT1. This structure was instead considered for the flexibility it provides
to study and potentially test CCT1 with different values of pre-stress. This allows for an
investigation of pre-stress in CCT dipole magnets, studying the key motivation for developing
the CCT concept for high field. While this option was studied and may potentially be used
for future high field CCT Nb3Sn dipoles, the decision was made to test CCT1 in a simpler
configuration where the two layers were assembled into an aluminum shell of 20 mm radial
wall thickness.

Figure 5.4: A cross section of the key and bladder outer structure considered for variable
loading of CCT1 is shown.

5.3 Magnetic modeling

A magnetic model for CCT1 was generated in Opera3D using the method described in
Section 3.2. While iron was considered in some studies, for example with a key and bladder
outer structure, the results shown in this section correspond to the iron free configuration in
which CCT1 was tested. As will be described in Section 5.5, layer 2 was manufactured with 6
less turns (72 instead of 78) due to a mix-up with the CAD model sent to the machine shop.
The results presented in this section are representative of the design, with 78 turns in each
layer, while any modeling predictions for the test results found in Section 5.6 were calculated
based on the magnet as it was manufactured. The field harmonic representation used in this
section for both local and integrated harmonics can be found described in Appendix A.
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Integrated dipole field and magnetic length

The magnetic length of a dipole magnet is defined as the length of a step function of the
integrated dipole field. Figure 5.5 shows the dipole harmonic along the length of CCT1
calculated at 2/3 of the bore radius using Opera3D and a current of 4050 A. This data was
fit and then integrated axially (along z) through the magnet to find an integrated dipole of
1485.6 Tmm. A magnetic length of 590.4 mm was calculated for CCT1 by simply dividing
this value by the central dipole field of 2.516 T.

Figure 5.5: The dipole harmonic (B1) along the length of CCT1 is shown. The equivalent
dipole step function at the central field of 2.52 T is shown with the magnetic length Lm
indicated.

Harmonic content in straight-section

The field errors in the straight-section of CCT1 were calculated at the axial center of the
magnet using the Opera3D model. Table 5.4 shows the results of this calculation up to the
9th harmonic. It is seen that CCT1 has excellent predicted field quality, < 1 unit of field
error, at 66.66% of the 25.4 mm clear bore radius.
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Table 5.4: CCT1: Straight-Section Harmonics from Opera3D (in units of B1)

Ref. (mm) % of Apert. b2 b3 b4 b5 b6 b7 b8 b9

16.93 66.6% -0.03 -0.25 <0.01 0.06 <0.01 -0.01 <0.01 <0.01

Harmonic content through the ends of the magnet

The ends break the symmetry of the magnet inducing axial variation of the higher order
harmonics. To reduce the negative effects of this behavior on the beam, it is desirable that
the higher order harmonics integrate to zero through the ends of the magnet. For a typical
accelerator magnet this requires a difficult and time-consuming optimization of the conductor
path in the end region. The CCT design has the advantageous property of the higher order
harmonics naturally integrating to zero through the ends (see Figure 5.6 for example). This
is due to the ends of a CCT dipole being of “Lambertson” type. The reference [57] explains
the characteristics of a Lambertson end and why it is ideal for achieving zero integrated
higher order harmonics.

Figure 5.6: The sextupole (b3) and dodecapole (b5) harmonics are shown along the length
of CCT1. The harmonics are calculated in Opera3D at 2/3 of the clear bore.

To describe the higher order field error through the ends of a dipole magnet, integrated
harmonics are defined

b̄n =

∫
Bn(z)dz

BSS
1 Lm

, (5.1)

where BSS
1 is the dipole harmonic in the straight-section and Lm is the magnetic length.

Calculated values of b̄n for CCT1 are shown in Table 5.5. The natural field quality of CCT1,
with no optimization of the ends, is shown by the low values for these integrated harmonics.
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Table 5.5: CCT1: Integrated Harmonics from Opera3D (in units)

Ref. (mm) % of Apert. b̄2 b̄3 b̄4 b̄5 b̄6 b̄7 b̄8 b̄9
16.93 66.6% -1.11 -0.83 -0.29 -0.09 -0.09 -0.06 -0.02 -0.01

Solenoidal Field

The solenoidal field along the length of CCT1 can be seen in Figure 5.7. As a result of
cancellation between oppositely tilted and powered layers, the value of the solenoidal field in
the center (straight-section) of the magnet is only 0.003 T. Axial variation of the solenoidal
field through the ends of the magnet results in a region where the solenoidal field does not
cancel. As seen in the figure, this variation tends toward integrating to zero.

Figure 5.7: The solenoidal field (Bz) is shown along the length of CCT1.

Field at the conductor and short-sample

The field at the conductor of CCT1 was calculated in the Opera3D model, and found to
be a maximum at the pole in the end region. Because the test of CCT1 includes no iron,
this provides a linear load line for the field at the conductor. Figure 5.8 shows the short-
sample limit for CCT1 based on this load line and a Bottura fit [58] for the NbTi conductor
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properties in Table 5.1. The expected short-sample fields are 2.5 T in the bore and 3.1 T at
the conductor, corresponding to a short-sample magnet current of 4050 A.

Figure 5.8: The load line for CCT1 is shown for current density in the superconductor.

Stored energy and inductance

Using the analytic formulation in Section 2.3, the predicted inductance matrix for CCT1 is

LCCT1

[
mH

m

]
=

(
0.490 0.366
0.366 0.729

)
, (5.2)

resulting in a total inductance of 1.95 mH/m. The stored energy of CCT1 at the short-sample
current of 4050 A in both layers is then 16.0 kJ/m. The predicted inductance of CCT1
was compared to electrical measurements performed on the magnet (found in Table 5.8).
Good agreement was found between the predicted and measured value. This comparison is
summarized in Table 5.6.

5.4 Structural modeling

Two different test configurations were considered during the structural modeling of CCT1.
The first included the use of a complex key and bladder external loading structure, and the
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Table 5.6: CCT1 Inductance

Predicted Measured
Lm (m) L (mH/m) Ltot (mH) Ltot (mH)

Layer 1 0.593 0.490 0.291 N/A
Layer 2 0.547 0.729 0.399 N/A

Layer 1,2 series 0.570 1.95 1.11 1.19

second only the two layers themselves (no external structure). One goal for the structural
modeling of CCT1 was to study the stress interception properties of the CCT, and as a
result better understand what kind of external structure is best suited to the CCT design.
An additional goal was to study the effect of different boundary conditions and develop
the necessary methods for structural analysis. To accomplish this, ANSYS models for both
configurations were generated by the process described in Section 3.3. These models were
solved with different loads and boundary conditions to study stress interception in CCT1
and the importance of external structure.

Figure 5.9: The Lorentz force density directed towards the mandrel ribs is shown for CCT1.
The results displayed were calculated at the center of the conductor using Opera3D.

Lorentz forces in CCT1

The Lorentz forces in a CCT dipole magnet are azimuthally asymmetric and can be described
by two components. The first component is normal to the ribs between adjacent turns, and



CHAPTER 5. CCT1: A 2.5T NBTI PROOF-OF-PRINCIPLE DIPOLE 92

the second is oriented in the radial direction normal to the cylindrical mandrel surface. The
Lorentz force density in these two directions for CCT1 is shown in Figures 5.9 and 5.10. It
is seen that the Lorentz force intercepted by the ribs (perpendicular to the conductor path
and radial direction) vary from a minimum of zero at the midplane to a maximum at the
poles. A beneficial feature of the CCT design is the size of the mandrel ribs are inherently
dimensioned similar to the magnitude of the forces they intercept. They start thin at the
midplane and reach their thickest point in the pole region. As seen in the figure, there is
an inversion of the force on the ribs for an oppositely canted layer. This results in an axial
shearing force between the two layers with a maximum in the pole region.

Figure 5.10: The Lorentz force density directed in the radial direction is shown for CCT1.
The results displayed were calculated at the center of the conductor using Opera3D.

The radial Lorentz force in layer 1 of CCT1 can be seen varying opposite of the force in
the rib direction. The radial force starts at a maximum on the midplane and decreases to
a minimum in the pole region. These forces act to move the conductor out of the channel.
For each layer the radial forces are partially captured by the spar of the layer above it or the
external structure in the case of the final layer. As will be seen in the structural analysis, the
asymmetry of both the rib and radial forces leads to bending of the coilpack (CCT layers)
from a circular to an elliptical shape. This can induce both high stress concentrations and
field errors. A key consideration for the outer structure of a CCT dipole is its role in
preventing this Lorentz force induced bending by providing pre-stress and rigidity.
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Generation of the ANSYS model

The ANSYS models were created using the periodic CCT symmetry region assuming 180
degree symmetry, as described in Section 3.3, and seen for CCT1 in Figure 5.11. The
geometry was generated from keypoints and meshed using the SOLID186 element type. A
mesh copy operation was used to ensure the outer axial faces of the region were identically
meshed. This created pairs of matching nodes for the constraint equations implementing
the boundary conditions. The contact surfaces between the conductor and mandrel of each
layer were bonded, and all the constant radius contact surfaces were allowed to slide with
no friction.

Figure 5.11: The 3D periodic symmetry region used for structural calculations in ANSYS
is shown for layer 1 of CCT1 and for both layers assembled into a key, bladder, and shell
structure.

Three load steps were solved for each of three axial boundary conditions studied. First
the assembly load was produced by applying an interference between the keys and the pad
(to simulate bladder pressure). A second load step was then solved with a cooldown of
the model to 4.3 K. The third and final load step was solved with the operating Lorentz
forces applied to the conductor elements. This was done by calculating the Lorentz force
at the centroid location of each ANSYS conductor mesh element using Opera3D and then
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distributing it equally on the nodes of the element. For all reported results a key interference
of 0.1 mm was applied for the assembly, and the Lorentz force loads were calculated using a
current of 5 kA.

Investigation of all three axial boundary conditions for CCT1

Table 5.7 shows the values of δz used to implement each of the three axial boundary conditions
described in Section 2.9 for CCT1 and the resultant normal forces. Fz is the normal stress
integrated over an entire 360 degree face, and the axial length change δz is normalized by
the pitch length. The plane stress results are rounded to show zero force across individual
components and zero net force across the conductor and mandrel in each bonded layer.
The behavior of CCT1 is expected to be closest to the “Single Strain” boundary condition
where all components share the same axial length change. This is due to the planned epoxy
impregnation of the coil pack, and the structural support at the ends of the magnet tying
the motion of multiple components together. Outside of Table 5.7 all presented results were
calculated with the “Single Strain” boundary condition.

Table 5.7: CCT1 Axial Boundary Condition Results

0.1 mm Key Interference Cooldown to 4.3 K Operation at 5 kA
δz/w (µε) Fz(kN) δz/w (µε) Fz(kN) δz/w (µε) Fz(kN)

Generalized
Plane Strain

L1 Mandrel 0 -3 0 202 0 272
L1 Conductor 0 0 0 33 0 34
L2 Mandrel 0 -6 0 266 0 272
L2 Conductor 0 -1 0 38 0 40
Pad 0 -9 0 6028 0 6022
Yoke 0 -17 0 21683 0 21681
Shell 0 39 0 1898 0 1902∑

Fz = 3
∑
Fz = 30148

∑
Fz = 30223

Single Strain

L1 Mandrel -0.3 -3 -2307 80 -2308 85
L1 Conductor -0.3 0 -2307 6 -2308 8
L2 Mandrel -0.3 -6 -2307 104 -2308 109
L2 Conductor -0.3 -1 -2307 7 -2308 9
Pad -0.3 -10 -2307 2674 -2308 2667
Yoke -0.3 -19 -2307 -3852 -2308 -3863
Shell -0.3 39 -2307 980 -2308 984∑

Fz = 0
∑
Fz = −1

∑
Fz = −1

Generalized
Plane Stress

L1 Mandrel 36 0 -3694 10 -3807 10
L1 Conductor 36 0 -3694 -10 -3807 -10
L2 Mandrel 71 0 -3698 10 -3793 10
L2 Conductor 71 0 -3698 -10 -3793 -10
Pad 5 0 -4160 0 -4155 0
Yoke 1 0 -1963 0 -1962 0
Shell -85 0 -4593 0 -4612 0
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Stress interception in CCT1

The effectiveness of mandrels to prevent the accumulation of Lorentz force induced stress
was studied by means of a comparison. A second ANSYS model identical to CCT1 was
generated with the mandrel spar of layer 1 removed. In this model the ribs between turns
no longer provide internal structural support, behaving similar to wedges in a traditional
sector coil design. The stress distribution within layer 1 of this sparless model was compared
to CCT1 and an analytic calculation of the accumulated stress in an equivalent sector coil
[59]. The results of this comparison are shown in Figure 5.12. The ANSYS result shown

Figure 5.12: The Lorentz force induced azimuthal stress (difference between cooldown and
operation) for the conductor of CCT1 is compared to results from a model with the inner
mandrel spar removed (no interception) and to the predicted azimuthal stress within an
equivalent sector coil. The stress in the CCT model with interception is seen reduced to
near the single turn level.

is the difference in azimuthal conductor stress between the cooldown and operation load
steps, representing the effect of the Lorentz forces on the model. The conductor in high field
accelerator dipoles is typically pre-stressed with an outer structure (during assembly and
cooldown) such that no part of the coil goes into tension during operation. It is seen that
the ANSYS model with no internal interception of Lorentz forces (spar removed) behaves
similar to a sector coil and requires a pre-stress of 50 MPa. The ANSYS results with the
spar included show the stresses intercepted and reduced to the integration of the Lorentz
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force over individual turns (0 - 8 MPa) as opposed to the integration over the coil pack (0 -
50 MPa).

CCT1 operating stress

The stress during operation for the conductor and structure of CCT1 is shown in Figure
5.13. Due to the interception of forces, the operating conductor stress is dominated by the
pre-stress applied during assembly and cooldown. Even with a minimum assembly bladder
preload (0.1 mm key interference), the coil is still pre-stressed beyond the requirement. The
majority of this develops during cooldown and is applied asymmetrically to the coil by the
aluminum mandrels. While this pre-stress is excessive for CCT1, the external structure was
still considered for the test as a step towards high field Nb3Sn CCT magnets where it may
be necessary.

Figure 5.13: Operating azimuthal conductor stress in MPa is shown for CCT1 conductor
and structure.

CCT1 stress without an outer structure

For CCT1, the low required pre-stress suggests the consideration of testing without an outer
structure. The shell based structure of the CCT1 ANSYS model was removed, and the two
remaining mandrels and conductor layers were bonded to reflect the epoxy impregnation.
Conductor stress after cooldown and operation are shown in Figure 5.14.

Even without an external structure, a pre-stress develops on the coil during cooldown
due to the difference in thermal contraction between the aluminum mandrels and conductor
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(a)
(b)

Figure 5.14: Azimuthal stress in MPa is shown for CCT1 without an external structure for
cooldown (a) and operation (b). Without an external structure providing rigidity the coil
pack is susceptible to bending under the azimuthally asymmetric Lorentz force loads.

windings. During operation, stress concentrations and tension appear due to the bending
of aluminum mandrels under the Lorentz force loads (Fig. 5.14). In addition to applying
any necessary pre-stress to the coil, an external structure can be incorporated into the CCT
design to oppose the radial Lorentz forces and prevent bending of the coil pack. Given
the low pre-stress requirements in the CCT due to Lorentz force interception, future design
studies may be more focused toward removal of external structure by improving the rigidity
of the internal structure and the pre-stress it provides.

5.5 Fabrication

The two winding mandrels for CCT1 were fabricated by CNC machining of 6061 aluminum
alloy tubes (Fig. 5.15). The continuous rectangular channel (3.02 x 1.60 mm) forming the
CCT path was created by many passes of a 1.60 mm diameter ball-end mill. At all times
this mill was kept oriented radially with respect to the cylindrical surface. The cut depth for
each pass was set to a conservative 0.13 mm for the machining of layer 1. This resulted in a
machine cutting time of 18 hours. Based on the experience with layer 1, the single pass cut
depth was increased to 0.254 mm for layer 2. This increase, combined with a slightly longer
conductor path, led to a machining time of 10 hours. As a result of a mix-up in the CAD
model transferred to the machine shop, layer 2 was machined to have only 72 turns and not
the 78 turns in the design.

Following the machining, both winding mandrels were anodized in Cal Berkeley colors
with a choice of gold for layer 1 and blue for layer 2 (Fig. 5.16). This was done to pro-
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Figure 5.15: The CNC machining of an aluminum winding mandrel for CCT1 is shown.

vide additional protection against electrical shorts between the mandrel and the insulated
conductor. After being anodized, each layer was wound by hand with insulated cable. A
continuous winding between layer 1 and layer 2 was first attempted. In this scheme layer
1 was wound and then inserted into layer 2, after which a special transition within the
mandrels themselves brought the conductor from layer 1 to layer 2 with no break or splice
necessary (Fig. 5.17). It proved difficult to insert layer 1 into layer 2 with a tight fit and the
continuous transition. During the attempt, the insulation of the conductor of layer 1 was
damaged, but this was not realized until after the winding of layer 2 had been completed.

Figure 5.16: The anodized mandrels for layer 1 and layer 2 of CCT1 are shown. The mandrels
were wound with conductor by hand with no additional applied tension.
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As a result of the damage caused during assembly with a continuous transition, it was
decided to break the conductor between layers and rewind layer 1. The transition was cut
and the two layers were separated from each other. Then the conductor of layer 1 was
removed (because of the insulation damage) and then rewound with new insulation. After
this, layer 1 was reinserted into layer 2 with 0.05 mm sheets of G10 between them acting as
a slip plane (Fig. 5.17). After assembling the layers together a splice was made outside the
magnet to connect the conductor of layer 1 to layer 2. Experience with CCT1 has shown it
is desirable to keep R&D CCT magnets as modular as possible by isolating the fabrication
and winding of individual layers (with a final assembly of the layers together at the end).

Figure 5.17: Layer 1 and layer 2 of CCT1 are shown assembled one inside the other and
then into an outer aluminum shell. The bottom left image shows the continuous transition
between layers that was later replaced with a splice outside the magnet.

After the assembly of layer 1 into layer 2, both layers were inserted into a 20 mm thick
aluminum shell (Fig. 5.17). Similar to the assembly of layer 1 and layer 2, G10 sheets were
used between layer 2 and shell to provide a slip plane while pushing one into the other.
While the initial design of CCT1 considered a complex external loading structure, a simple
shell was chosen to reduce cost and expedite the test. Epoxy impregnation of the magnet
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(to prevent conductor motion) was considered and then decided against. The low forces in
the CCT combined with the added benefit of liquid helium bathing the conductor were the
primary factors in this decision. There was interest in impregnating CCT1 after the test and
performing a second test to study the merits of impregnation, but this was decided against
due to funding constraints.

A set of electrical tests were performed on CCT1 after the fabrication and assembly of
the magnet. Measurements of the inductance Ls, capacitance Cs, and resistance Rs were
taken in series mode. The measured values as a function of frequency can be seen in Table
5.8. These AC values are influenced by eddy currents induced in the aluminum mandrels
and shell. A fit for the DC value of inductance was performed, leading to a value of 1.19
mH. This value was used for comparison with the analytic model for inductance of CCT1 in
Table 5.6.

Table 5.8: CCT1 Electrical Measurements

Freq. Ls (µH) Q Cs (mF) Rs (mΩ)
20 Hz 456.9 0.005 -138.7 1080
30 Hz 336.7 0.06 -83.6 1090
100 Hz 156.7 0.09 -16.16 1150
1 kHz 35.9 0.18 -0.7059 1290
10 kHz 17.04 0.61 -0.0149 1760
30 kHz 12.15 1.05 -0.00232 2180
100 kHz 10.1 1.99 -0.0002516 3170
300 kHz 8.69 2.66 -0.0000324 6150

5.6 Test results

CCT1 was tested at a temperature of 4.2 K at LBNL’s Superconducting Magnet Test Facility.
Several tests were performed with goals of determining the short-sample performance and
field quality of the magnet. A 26 mm long rotating field coil of 18.2 mm radius (72%
of the clear bore) was used for magnetic measurements. After being cooled down to 4.2
K, the magnet current was ramped towards the calculated short-sample limit of 4050 A.
During these ramps the rotating field coil was used to measure the field harmonics in the
straight-section of the magnet. The results of these measurements for the first three allowed
harmonics (b3, b5, and b7) are shown in Figures 5.18 and 5.19. All other measured harmonics
up to b9 were less than two units.

Some variation of the harmonics with magnet current is seen with the largest occurring
for the sextupole (b3). A possible explanation for this behavior is radial movement of the
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Figure 5.18: The straight-section sextupole (b3) is shown as function of magnet current for
the six current ramps of CCT1.

Figure 5.19: The straight-section b5 and b7 harmonics are shown as function of magnet
current for the six current ramps of CCT1.

conductor in the channel due to the Lorentz forces. The conductor of CCT1 was not epoxy
impregnated, and the channels provide little restraint in the radial direction. A calcula-
tion was made to determine the sensitivity of b3 field errors to radial displacement of the
conductor at either the pole or the midplane. A radial displacement δr was applied to the
conductor in the Opera3D model, varying as δr = εmax cos θ, such that there is a maximum
displacement εmax at the pole. A linear relationship between εmax and b3 was observed,
with layer 1 providing 46.1 units/mm and layer 2 providing 25.4 units/mm of max radial
displacement. The b3 harmonic observed in CCT1 would then correspond to 0.1-0.2 mm
of radial displacement, which is well within what would be expected of an unimpregnated
coil free to move within the channel. This level of sextupole field error is higher than the
acceptable limit for a typical accelerator. It is hoped that the planned epoxy impregnation
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of future CCT magnets will prevent conductor movement and eliminate the sextupole field
error.

In addition to the straight-section harmonics measured during the current ramps, one scan
of the harmonics through the end of CCT1 was made at a fixed current. Figure 5.20 shows the
measured sextupole as a function of axial distance through the end. A comparison between
the measured and predicted harmonics is made. The tendency of CCT end harmonics to
integrate to zero is seen in both the prediction and the measurement.

Figure 5.20: The measured sextupole harmonic (b3) as a function of axial position through
one end of CCT1 is shown.

Six quenches were observed in CCT1 before nearly reaching the calculated short-sample
limit (Fig. 5.21). Of these six, only two occurred inside the magnet itself with the other four
quenches occurring in the leads. The quenches occurring outside of the coil are not thought
to be indicative of the performance of the magnet but rather the result of minimal mechanical
support of the leads after leaving the magnet. The final quench (in the coil) was observed at
96% of the calculated short-sample limit with an extremely high quench propagation velocity.
One possible explanation for this is a distributed quench in the homogeneous field region
of layer 1 due to reaching the short-sample limit of the conductor. Several more current
ramps were planned to check the repeatability of the maximum quench current, but a lack
of helium stopped the test at this point.
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Figure 5.21: Training quenches during the test of CCT1 are shown.

5.7 Perspective on test results

While being low field and NbTi, CCT1 provides the first published test results of a super-
conducting CCT dipole in a configuration that scales to high field. The magnet reached
96% of the calculated short-sample limit with only one previous quench in the coil. The field
quality of the CCT design was shown by both straight-section and integrated harmonic mea-
surements. As a result of these measurements, the importance of conductor radial restraint
(or the use of epoxy impregnation) for field quality in future CCT magnets was realized.
Ultimately, the goal of establishing a successful proof-of-principle test before moving on to
a high field Nb3Sn dipole was accomplished.

As a result of the successful test of CCT1, the LBNL Superconducting Magnet Program
began a staged program towards the test of a 16 T Nb3Sn dipole. The details of this design
will be presented in Chapter 6. The test results also had implications for curved CCT
magnets for use in Ion Beam Cancer Therapy gantries. Performance of a CCT magnet was
shown at the field level (2-3 T) desired for a proton gantry magnet. As a result of the interest
this generated, a design study for a curved CCT proton gantry magnet was completed. This
study will be presented in Chapter 9.
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Chapter 6

CCT2: a 16T Nb3Sn Dipole Design

6.1 Introduction and goals

CCT2 is a superconducting Nb3Sn dipole magnet designed to produce a short-sample bore
field of 16 T, which can be boosted to 18 T with the inclusion of a Bi2212 HTS insert. Staged
tests of CCT2 are planned at LBNL as part of the high field base program, with the goal
of investigating the performance of the CCT design at a field relevant to a future hadron
collider. The Nb3Sn CCT program was started following the successful proof-of-principle
test of CCT1 to take the next steps towards this goal.

This chapter will present the design of CCT2 and progress towards the construction of the
magnet. Magnetic and structural analysis will be shown for configurations with and without
the HTS insert. A method for current grading of the outer layers to reduce the amount of
conductor needed will be described. The winding mandrel approach developed for CCT1
will be shown extended to a Nb3Sn CCT, with the introduction of a new mandrel material,
reaction tooling, and epoxy impregnation technique. The reaction and impregnation of a five
turn Nb3Sn CCT layer testing this process will be described. Finally, a report will be given
on the progress towards fabrication, winding, and assembly of the first two layers. These two
layers will be tested with NbTi as the first step in a staged plan towards 16 T. Additional
information on the design, test plan, and initial fabrication of CCT2 can be found in the
following references [60, 61].

6.2 Design

CCT2 is an eight layer CCT dipole designed to reach 16 T in a 90 mm clear bore using Nb3Sn
conductor (Fig. 6.1). A winding mandrel approach was taken, with each CCT layer consisting
of cabled conductor wound into channels machined into a thick-walled cylinder. These
mandrels serve to position the conductor for field quality and provide structural support
against the operating Lorentz forces. The eight CCT layers nest one inside the other, and
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are then assembled into an external shell structure which provides additional support against
the Lorentz forces.

Figure 6.1: The eight graded conductor layers and mandrels of CCT2 are shown.

Table 6.1: 60/61 RRP Nb3Sn Wire (HD3 Coil-2)

Diameter 0.8 mm
Jc (12T,4.2K) 3554 A/mm2

Jc (15T,4.2K) 1935 A/mm2

Non-Cu frac. 0.606

The same Nb3Sn strand was considered for all eight conductor layers. The critical current
used is based on a fit [52] of extracted strand measurements performed on HD3 coil-2 Ta-
alloyed 60/61 RRP Nb3Sn strand. This fit is representative of the highest Jc Nb3Sn strand
currently available. The properties of HD3 coil-2 strand are given in Table 6.1, with the
only difference being an assumed non-copper fraction of 49% for CCT2. Each pair of layers
in CCT2 uses a Rutherford cable with the number of these strands adjusted based on the
maximum field on the conductor of that layer. This “grades” the conductor, and increases
the current density of the outer layers where the field is lower (explained in detail in Section
4.7). As a result of this grading, four different size Rutherford cables are used. The number
of strands in each cable and the approximate height and width of the mandrel channels for
the insulated cable are given in Table 6.2.
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Table 6.2: Rutherford Cables for CCT2

Layer # Strands Channel (mm)
1,2 23 2.0/10.4
3,4 17 2.0/7.69
5,6 12 2.0/5.43
7,8 9 2.0/4.07

All eight conductor layers were chosen with a tilt angle of 19 degrees and pitch of 7.627
mm. This results in a minimum rib thickness at the center of the cable of 0.483 mm. The rib
thickness of CCT2 was increased with respect to CCT1 because of an increased “key-stone”
effect on the ribs when placing a larger rectangular conductor on a curved surface. It was
found that the minimum rib thickness at the ID of the cable of CCT2 was close to 0.381
mm due to the key-stone effect. The number of turns in all eight layers was chosen to be
132 to produce a magnetic length of nearly 1 m. These eight conductor layers can be seen
in Figure 6.2.

Figure 6.2: The eight conductor layers of CCT2 are shown.

The radial thickness of the thick-walled cylinders used for the winding mandrels was
chosen to leave an inner wall thickness (spar) of 9 mm for the first layer, and 4 mm for layers
2-8. The increased spar thickness for layer 1 was chosen to reduce Lorentz force induced
bending which will be further discussed in the section on structural modeling. The 954
aluminum bronze alloy was chosen as the mandrel material. This bronze was chosen for its
availability, strength, ease of machining, and compatibility with the Nb3Sn heat treatment
reaction. The mandrel dimensions for all eight layers of CCT2 can be found in Table 6.3,
and a picture of a fabricated aluminum bronze mandrel for the first layer can be seen in
Figure 1.4. The amount of conductor used in CCT2 can be found in Table 6.4.
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Table 6.3: CCT2 Nb3Sn Mandrel Properties

Lay Spar (mm) Ri (mm) Ro (mm) Channel (mm) Length (m)
1 9.0 45.0 64.4 2.0/10.4 1.2
2 4.0 64.4 78.8 2.0/10.4 1.2
3 4.0 78.8 90.4 2.0/7.69 1.2
4 4.0 90.4 102.1 2.0/7.69 1.2
5 4.0 102.1 111.6 2.0/5.43 1.2
6 4.0 111.6 121.0 2.0/5.43 1.2
7 4.0 121.0 129.0 2.0/4.07 1.2
8 4.0 129.0 137.1 2.0/4.07 1.2

Table 6.4: CCT2 Conductor Use

Layer # turns L-one-channel (m) L-all-channel (m) # strands L-strand (m)
1 132 .807 106.5 23 2450
2 132 1.00 132.5 23 3046
3 132 1.18 156.0 17 2650
4 132 1.34 177.0 17 3008
5 132 1.48 196.0 12 2351
6 132 1.61 212.9 12 2555
7 132 1.73 228.7 9 2057
8 132 1.84 243.2 9 2189

total 1.45 km 20.3 km

6.3 Magnetic modeling

A magnetic model for CCT2 was generated in Opera3D using the method described in Section
3.2. The field harmonic representation used in this section for both local and integrated
harmonics can be found described in Appendix A.

Integrated dipole field and magnetic length

The magnetic length of a dipole magnet is defined as the length of a step function of the
integrated dipole field. Figure 6.3 shows the dipole harmonic along the length of CCT2
calculated at 2/3 of the bore radius using Opera3D and a current of 8100 A. This data was
fit and then integrated axially through the magnet to find an integrated dipole of 1.567x104

T mm. A magnetic length of 0.987 m was calculated for CCT2 by simply dividing this value
by the central dipole field of 15.87 T. Each CCT layer is seen contributing equally to both
the dipole field and magnetic length.
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Figure 6.3: The dipole harmonic (B1) along the length of CCT2 is shown. The equivalent
dipole step function at the central field of 15.87 T is shown with the magnetic length Lm
indicated.

Harmonic content in straight-section

The field errors in the straight-section of CCT2 were calculated at the axial center of the
magnet using the Opera3D model. Table 6.5 shows the results of this calculation up to the
9th harmonic. CCT2 has excellent predicted field quality, < 1 unit of field error, at 67% of
the 45 mm clear bore radius.

Table 6.5: CCT2: Straight-Section Harmonics from Opera3D (in units of B1)

Ref. (mm) % of Apert. b2 b3 b4 b5 b6 b7 b8 b9

30.0 66.6% -.05 -.22 <0.01 <0.01 <0.01 -.01 <0.01 .01

Solenoidal Field

The on-axis solenoidal field along the length of CCT2 can be seen in Figure 6.4. As a result of
cancellation between oppositely tilted and powered layers, the value of the solenoidal field in
the center of the magnet should approach zero (for example, see the solenoidal field of CCT1
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in Figure 5.7). For the case of CCT2, the length of the magnet is not large enough such that
the solenoidal field completely cancels in the straight-section. The length of CCT2 was kept
short to test the performance of a high field CCT dipole without the cost of fabricating a
long magnet or the need for a long cryostat. For a long length CCT2, as would be desired
for a hadron collider, this solenoidal field would cancel in the straight-section of the magnet.

Figure 6.4: The axial variation of the on-axis solenoidal field of CCT2 is shown.

Harmonic content through the ends of the magnet

The ends break the symmetry of the magnet inducing axial variation of the higher order
harmonics. To reduce the negative effects of this behavior on the beam, it is desirable that
the higher order harmonics integrate to zero through the ends of the magnet. For a typical
accelerator magnet this requires a difficult and time consuming optimization of the conductor
path in the end region. The CCT design has the advantageous property of the higher order
harmonics naturally integrating to zero through the ends (see Figure 6.5). This is due to
the ends of a CCT dipole being of “Lambertson” type. The reference [57] explains the
characteristics of a Lambertson end and why it is ideal for achieving zero integrated higher
order harmonics.
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Figure 6.5: The sextupole (b3) and dodecapole (b5) harmonics are shown along the length
of CCT2. The harmonics are calculated in Opera3D at 2/3 of the clear bore.

To describe the higher order field error through the ends of a dipole magnet, integrated
harmonics are defined

b̄n =

∫
Bn(z)dz

BSS
1 Lm

, (6.1)

where BSS
1 is the dipole harmonic in the straight-section and Lm is the magnetic length.

Calculated values of b̄n for CCT2 are shown in Table 6.6. The natural field quality of CCT2,
with no optimization of the ends, is shown by the low values for these integrated harmonics.

Table 6.6: CCT2: Integrated Harmonics from Opera3D (in units)

Ref. (mm) % of Apert. b̄2 b̄3 b̄4 b̄5 b̄6 b̄7 b̄8 b̄9
30.0 66.6% -0.40 -0.18 -0.05 -0.02 -.01 -0.02 <0.01 0.01

Field at the conductor and short-sample

The field at the conductor of CCT2 was calculated in the Opera3D model, and found to
be a maximum at the pole of layer 1 in the end region. Because the planned test of CCT2
includes no iron, this provides a linear load line for the field at the conductor. Figure 6.6
shows the field at the conductor load line for each layer in CCT2, and a selection of Nb3Sn
critical current densities from the LNBL HD series dipoles and the LARP HQ quadrupoles.
The short-sample limit was based on a fit [52] of the highest critical current of those shown.
This “best of the best” critical current density is based on extracted strand measurements
of HD3 coil-2 conductor. With this selection, the expected short-sample fields are 15.85 T in
the bore and 16.15 T at the conductor. These correspond to a short-sample magnet current
of 8100 A.
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Figure 6.6: The load lines for CCT2 are shown for current density in the superconductor.

Stored energy and inductance

Using the analytic formulation in Section 2.3, the predicted inductance matrix for CCT2 is

LCCT2

[
mH

m

]
=



1.24 0.76 1.24 0.76 1.24 0.76 1.24 0.76
0.76 1.92 1.18 1.92 1.18 1.92 1.18 1.92
1.24 1.18 2.66 1.64 2.66 1.64 2.66 1.64
0.76 1.92 1.64 3.42 2.11 3.42 2.11 3.42
1.24 1.18 2.66 2.11 4.20 2.59 4.20 2.59
0.76 1.92 1.64 3.42 2.59 4.96 3.06 4.96
1.24 1.18 2.66 2.11 4.20 3.06 5.71 3.52
0.76 1.92 1.64 3.42 2.59 4.96 3.52 6.46


, (6.2)

resulting in a total inductance of 147.09 mH/m. It is seen that the mutual inductance
between the large number of layers is the majority contribution to the total inductance. The
stored energy of CCT2 at the short-sample current of 8100 A in all eight layers is then 4.83
MJ/m. In Section 6.8 the measured inductance of a short, 64 turn magnet comprised of
layers 1 and 2 of CCT2 will be compared to this prediction.
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The advantages of grading

Section 4.7 describes the process by which the current density of a CCT magnet can be
graded. This method was applied to reach the final graded design of CCT2. A comparison
was made between this design and a case where no grading was performed. This corresponds
to a version of CCT2 that uses the same cable for all layers (23 strands). The difference in
conductor use, stored energy, and inductance can be seen in Table 6.7.

Table 6.7: Grading Savings for CCT2

Ungraded Graded % difference
Total Nb3Sn Strand 36.29 km 20.31 km 44.0

Stored Energy 5.41 MJ/m 4.83 MJ/m 10.7
Inductance 165.0 mH/m 147.1 mH/m 10.7

6.4 Inclusion of a Bi2212 HTS insert to reach 18 T

The addition of a high temperature superconducting (HTS) insert inside of the eight Nb3Sn
layers was considered to boost the bore dipole field from 16 T to 18 T. This boost in field
comes with the cost of reducing the clear bore from 90 mm to 40 mm. The insert is comprised
of four CCT layers wound with Rutherford cables made from Bi2212 strand. The reduction
in conductor stress offered by the CCT design is especially advantageous for a HTS insert due
to Bi2212 being more strain sensitive than Nb3Sn. A summary of CCT insert development
at LBNL using Bi2212 conductor can be found in the following reference [62].

Table 6.8: Bi2212 and Nb3Sn Mandrel Properties

Lay Spar (mm) Ri (mm) Ro (mm) Channel (mm) Length (m)
1 8.0 20.0 31.2 1.8/3.2 1.2
2 3.0 31.2 37.4 1.8/3.2 1.2
3 3.0 37.4 43.6 1.8/3.2 1.2
4 3.0 43.6 49.8 1.8/3.2 1.2
5 4.2 49.8 64.4 2.0/10.4 1.2
6 4.0 64.4 78.8 2.0/10.4 1.2
7 4.0 78.8 90.4 2.0/7.69 1.2
8 4.0 90.4 102.1 2.0/7.69 1.2
9 4.0 102.1 111.6 2.0/5.43 1.2
10 4.0 111.6 121.0 2.0/5.43 1.2
11 4.0 121.0 129.0 2.0/4.07 1.2
12 4.0 129.0 137.1 2.0/4.07 1.2
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This insert uses the same winding mandrel approach as CCT1 and CCT2, with use of
954 aluminum bronze as the mandrel material. A 0.8 mm diameter Bi2212 strand with a
100 atm overpressure reaction was considered. This represents the “best of best” measured
current density in OST Bi2112 strands [63]. An eight strand Rutherford cable was chosen,
corresponding to channel dimensions of 1.8 mm width and 3.2 mm height. A tilt angle of
16.617 degrees and minimum rib thickness of 0.381 mm was used to match the pitch length
of the outer Nb3Sn layers. This allows for the magnetic length of the insert and outer to be
matched with 132 turns. The increased spar thickness of the first Nb3Sn mandrel, added to
reduce coilpack bending, was removed and added instead to the mandrel of the first HTS
layer. The resultant winding mandrel specifications for all 12 layers are shown in Table 6.8.

Figure 6.7: The dipole along the length of CCT2 with the Bi2112 insert is shown.

The dipole field profile of the hybrid HTS and Nb3Sn dipole is shown in Figure 6.7 for
the maximum current of 2.62 kA in the HTS layers and 7.58 kA in the Nb3Sn layers. The
contribution to the magnetic length is the same for each individual layer in both the HTS
insert and the Nb3Sn outer. This was accomplished by matching the pitch and using a fixed
132 turns for all twelve layers. The load lines are coupled because changing the current in
the HTS insert changes the maximum field at the Nb3Sn outer and vice versa. In this case
there is a set of currents at the short-sample limit for both materials which maximizes the
field in the bore. The maximum operating point for this design is 2.62 kA in the HTS and
7.58 kA in the Nb3Sn, which can be seen as the end of each load line in Figure 6.8. In this
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case the maximum field is 18.0 at the first layer of HTS, 16.5 T at the first layer of Nb3Sn,
and 17.7 T in the bore.

Figure 6.8: The coupled load lines for the hybrid configuration of CCT2 are shown for current
density in the strand.

6.5 Structural modeling

Two ANSYS models were created using the CCT’s 3D periodic axial symmetry with the
method described in Section 3.3 and the “Single Strain” boundary condition described in
Section 2.9. The first model is made up of the eight layers of Nb3Sn and a 25 mm outer
aluminum shell. The second model includes the addition of the four layer HTS insert inside
the Nb3Sn model (Fig. 6.9). The Nb3Sn and HTS layers each require their own operating
current and axial boundary condition. These can be found in Table 6.9 and correspond to
the short-sample limit. The Lorentz force loads were calculated in Opera3D and then applied
to the ANSYS model. All contact surfaces between components are treated as bonded to
reflect an epoxy impregnation of the entire structure.
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Table 6.9: The Two ANSYS Models

Config. I Nb3Sn (kA) I Bi2212 (kA) Bpeak (T) δz/w (µε)
Lay 5-12 8.1 N/A 16.15 -3655
Lay 1-12 7.58 2.62 18.02 -3638

(a)
(b)

Figure 6.9: The 3D symmetry region of CCT2 is shown in ANSYS without (a) and with (b)
the HTS insert.

Results for the 16 T Nb3Sn outer (no HTS insert)

The conductor stress from the ANSYS solution without the HTS insert was transformed to
a local cable coordinate system to find the longitudinal and transverse conductor stress for
each layer. The method for this transformation is described in Section 3.3. A summary of
the maximum and minimum values for each component is shown in Table 6.10. The highest
values are found in the innermost layer. Figure 6.10 shows the three stress components
plotted around a single turn for this layer. Maximum and minimum local conductor stress
σt (along the path), σr (radial), and σb (perpendicular to the rib) are given.

Results for the 18 T hybrid configuration (with insert)

The maximum and minimum local conductor stresses for this configuration are shown in
Table 6.11. The highest stress for each material is again found in the innermost layer as



CHAPTER 6. CCT2: A 16T NB3SN DIPOLE DESIGN 116

Table 6.10: Max/Min Local Stress Without the HTS Insert

Layer Type σt (MPa) σr (MPa) σb (MPa)
1 Nb3Sn 102/-45 28/-51 72/-76
2 Nb3Sn 83/-46 20/-54 40/-67
3 Nb3Sn 47/-42 12/-56 39/-60
4 Nb3Sn 50/-41 7/-56 24/-57
5 Nb3Sn 53/-39 12/-53 24/-50
6 Nb3Sn 52/-35 12/-51 12/-45
7 Nb3Sn 52/-32 20/-43 13/-33
8 Nb3Sn 43/-30 8/-29 11/-26

Figure 6.10: Local conductor stress is shown plotted around a single turn for the innermost
layer of the eight layers of Nb3Sn.

positive tension (σt) localized to the pole region. This value is 74 MPa in the Bi2212 and
41 MPa in the Nb3Sn. The variation of the local stress components around these innermost
turns is shown in Figure 6.11.

Bending stress and innermost spar thickness

A primary effect of the Lorentz forces is to bend the circular coilpack into an elliptical
shape. This can lead to large conductor displacement and localized stress (as seen in Figure
6.12). Two strategies for reducing bending induced stress have been considered. The first
and simpler solution is adding to the rigidity of the coilpack by increasing the thickness of
the innermost spar at the cost of clear bore. The second approach is adding an outer key,
bladder, and shell type structure to directionally pre-stress the coilpack on the midplane
[19]. An increased spar thickness was studied first to see if a satisfactory solution could be
found without adding the size and complexity of an external loading structure.

Figure 6.13 shows the results of increasing the innermost spar in the eight layer Nb3Sn
ANSYS model. The maximum longitudinal conductor stress in the local frame σt and man-
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Table 6.11: Max/Min Local Stress With the HTS Insert

Layer Type σt (MPa) σr (MPa) σb (MPa)
1 Bi2212 74/-35 43/-48 60/-59
2 Bi2212 76/-36 41/-38 43/-47
3 Bi2212 51/-29 36/-32 46/-46
4 Bi2212 59/-32 35/-32 35/-42
5 Nb3Sn 41/-28 27/-29 36/-48
6 Nb3Sn 48/-31 14/-30 25/-50
7 Nb3Sn 37/-33 5/-34 25/-48
8 Nb3Sn 37/-32 8/-36 17/-49
9 Nb3Sn 52/-34 9/-37 16/-44
10 Nb3Sn 52/-30 7/-37 10/-42
11 Nb3Sn 54/-30 16/-32 12/-33
12 Nb3Sn 47/-23 7/-22 10/-28

Figure 6.11: Local conductor stress is shown plotted around a single turn for the innermost
Bi2212 and Nb3Sn layer.

drel azimuthal stress σθ are shown as functions of the clear bore remaining after increasing
the spar. It is seen that the conductor stress can be reduced to as low as 50 MPa by control-
ling the bending. As a compromise between available clear bore for an insert and conductor
stress, an inner spar thickness of 9 mm was chosen for the design. The high stress in the in-
nermost mandrel may require the use of an alternative material other than aluminum bronze
or the replacement of the “extra” 5 mm of innermost spar with a high yield strength material
bore tube.
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(a) (b)

Figure 6.12: (a) Radial displacement in mm is shown for the Nb3Sn outer. (b) The bending
of the coil pack to a non-circular, elliptical shape is seen leading to high stress (in MPa)
concentrated on the edge of the inner mandrel.

Figure 6.13: The effect of extending the spar of the innermost layer (reducing the clear
bore) on the maximum longitudinal conductor and spar stress is shown for the Nb3Sn layers.
Increasing this spar reduces coilpack bending at the cost of clear bore.
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6.6 The LBNL fabrication and test plan towards 16 T

Following the successful test of CCT1, a program was put in place at LBNL to move towards
the test of the 16 T CCT2 design. This program will seek to incrementally test the CCT
design for high field using Nb3Sn conductor. A short, 64 turn version of Layers 1 and 2
of CCT2 will be fabricated and tested first with NbTi at 5 T and then Nb3Sn at 10 T. If
these tests are successful, the program will move on to full length Nb3Sn layers. The plan
is to incrementally add two layers to each test such that two layers are tested at 10 T, four
layers at 13 T, six layers at 15 T, and 8 layers at 16 T. The 64 turn, 5 T NbTi magnet has
been constructed and assembled with a test planned in May 2015. Construction has begun
on the Nb3Sn version of this short model, with a test at 10 T planned for fall 2015. The
schedule for fabrication and test of the long Nb3Sn layers will be determined following the
short model tests.

6.7 A 5 turn Nb3Sn reaction and impregnation test

Nb3Sn CCT magnets require a heat treatment reaction of the conductor and epoxy impreg-
nation. Nb3Sn is a material that is too brittle to be drawn into a strand. This is overcome
by keeping the tin and niobium separated within the strand so it can be drawn in a ductile
state. After this, the strand can be made superconducting using a heat treatment reaction.
During this reaction the tin diffuses into the niobium and the brittle superconducting Nb3Sn
state is formed. For dipole magnets it is typical to wind the cable while it is ductile and
then put the whole coil through reaction. This avoids damaging the brittle conductor during
winding, and is referred to as a “wind and react” process.

A 5 turn Nb3Sn CCT layer was built to develop the “wind and react” process for a CCT
(Fig. 6.14). A mandrel was created out of 954 alloy aluminum bronze material with the
dimensions of the first layer of CCT2 (Table 6.3). Channels for the leads and five conductor
turns were machined, and then wound with Nb3Sn cable with a sleeved S-glass insulation. A
perforated 304 stainless steel sheet 0.46 mm thick was attached over the outer surface of the
mandrel using stainless steel hose clamps. This sheet was attached to prevent the conductor
from moving radially outward in the channels during the heat treatment. The layer was
inserted into the oven and put through the standard Nb3Sn heat treatment. For this, the
temperature of the oven was controlled at 210 0C for 80 hours, then 400 0C for 50 hours,
and finally 650 0C for 50 hours.

The mandrel, screen, and clamps were all in good mechanical condition following the
reaction. Upon removing the clamps, a slight movement of the conductor outward radially
was observed. The measured length changes of the inner diameter, outer diameter, and axial
length of the mandrel due to the reaction were all less than 0.1 mm. The length change of
the conductor due to the reaction was determined by measuring the leads. The distance to
the end of the mandrel for the two leads before and after the reaction can be seen in Table
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Figure 6.14: The 5 turn mandrel is shown wound with Nb3Sn cable and then put through
the heat treatment reaction.

Table 6.12: CCT2 5-Turn Reaction

Pre-Reaction Post-Reaction Change
Lead In (mm) 52.55 47.45 -5.11

Lead Out (mm) 57.40 52.32 -5.08
Resistance to Mandrel open 300 Ω

6.12. A length contraction of approximately 5.1 mm was measured for both. The resistance
between the coil and the mandrel was also measured before and after the reaction. This
changed from open to approximately 300 Ohms. The increased conductivity through the
insulation was thought to be due to a buildup of carbon.

Following the reaction test, the 5 turn model was also used for the development of an
impregnation process. Tooling was designed to impregnate the 5 turn model using a shrink
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Figure 6.15: The 5 turn impregnation tooling is shown along with the results using beeswax.

tube technique (Fig. 6.15). In this scheme a shrink tubing is contracted onto the OD of
the mandrel to form the outer barrier, with two end caps sealing this tubing and providing
an epoxy inlet and reservoir. The epoxy then flows in through the inlet, up through the
winding channels, and into the reservoir. In addition, a glass and then teflon sheet was
placed between the OD of the mandrel and shrink tubing to provide additional wicking. It
was decided the first test of this process would be performed using beeswax instead of epoxy.
This would allow for the beeswax to be melted out if additional impregnation tests were
desired.

Figure 6.15 shows the results of the beeswax impregnation test. The channels were
examined for voids in the wax, and the fill was found to be uniform and complete. It
appeared the wax traveled through the channel from one lead to the other, completely filling
the space around the insulated cable as it went. There is the possibility the wax followed
the glass sheet on the OD of the coil and then wicked down into the channels. Further tests
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without a glass sheet could be performed to better determine the path of the flow. The
resistance between the coil and mandrel was re-measured, and found to have dropped from
300 to 210 Ohms. The cause of the drop in coil to mandrel resistance during reaction and
impregnation is not well understood, and was determined to be an area for future study.
Overall, the test reaction and impregnation of the 5 turn model was considered a success,
and the process developed is being considered for the reaction and epoxy impregnation of
future Nb3Sn CCT layers.

6.8 A 64 turn model of layers 1 and 2: 5 T NbTi

Design and short-sample

As described in Section 6.6 the first planned test in the CCT program at LBNL is a NbTi
short model of the first two layers of CCT2. The exact same mandrels and channel dimensions
of CCT2 were used with the only difference being a scale down in number of turns from 132
to 64. A shorter model was chosen to reduce cost, and also because of machining length
limitations of the in-house CNC machine. The choice of 64 turns results in a very short
straight-section of about 20 mm in length (Fig. 6.16). This is the minimum length that
can be considered for straight-section field quality measurements due to the length of the
rotating field probe that will be used during the test.

A 23 strand cable was made out of the SSC-inner NbTi strand to match the dimensions
of the Nb3Sn cable to be used in the future. The properties of this strand can be seen in
Table 6.13. The resulting cable dimensions were 1.35 by 10.05 mm before insulation, and
1.60 by 10.30 mm after a 5 mil thick sleeve of glass insulation was added. The short-sample
limit for this two layer NbTi magnet is 5.94 T at the conductor and 5.26 T in the bore. This
corresponds to a magnet current of 10.6 kA. The load line for the 64 turn model can be seen
in Figure 6.17.

Table 6.13: SSC Inner NbTi Strand Parameters

Filament Diameter 6.0 µm
Strand Diameter 0.808 mm
Strand Jc (5T, 4.2K) 2750 A/mm2

Strand Cu/SC 1.3

Fabrication and assembly

The mandrels for the 64 turn model were CNC machined out of 954 alloy aluminum bronze
similar to CCT1 and the 5 turn model (Fig. 6.18). These layers were wound with the
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Figure 6.16: The dipole harmonic (B1) along the length of the 64 turn model is shown for
the short-sample current of 10.6 kA.

insulated NbTi Rutherford cable by hand. As a result of the experience with CCT1, the
layers were wound separately. A splicing of the two layers together was planned after the
epoxy impregnation. Layer 1 was assembled inside of layer 2 with G10 sheets acting as slip
planes and insulation between the layers.

A set of electrical tests were performed after the fabrication and assembly of the two
layers. Measurements of the inductance Ls, capacitance Cs, and resistance Rs were taken in
series mode. The measured values as a function of frequency can be seen in Table 6.15. A
fit for the DC value of inductance was performed, leading to a value of 0.6 mH for layer 1
only, 1.0 mH for layer 2 only, and 2.4 mH with the layers connected. These values were used
for comparison with the analytic model for inductance of the 64 turn model in Table 6.14.

Table 6.14: CCT2 64-Turn Inductance

Predicted Measured
Lm (m) L (mH/m) Ltot (mH) Ltot (mH)

Layer 1 0.488 1.242 0.606 0.6
Layer 2 0.488 1.919 0.937 1.0

Layer 1,2 series 0.488 4.690 2.289 2.4

After the electrical measurements, two G10 half shells were attached to the OD of layer
2 with a gap left between the shells at both poles for a quench antenna system (Fig. 6.19).
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Figure 6.17: The load line for the 64 turn NbTi model is shown for current density in the
superconductor.

After attaching the G10 half shells, the whole assembly was inserted into a 20 mm aluminum
shell. In this case the G10 half shells provided the slip plane and insulation between layer
2 and the outer shell. The resistance between the coils and the mandrels was monitored
during the assembly, with some variation seen. The final resistance between both coils to
their respective mandrels was greater than 1.2 MΩ after assembly of the coilpack into the
shell. The plan is to impregnate this entire assembly with epoxy using the tooling developed
for the 5 turn model. In this case the shell, instead of a shrink tubing, will provide the outer
barrier. Following the impregnation, the magnet’s performance will be tested at 4.2 K in
May 2015.
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Figure 6.18: The 64 turn layer 1 and 2 mandrels for the NbTi test are shown. Layer 1 is
wound with insulated NbTi cable.
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Table 6.15: CCT2 64-Turn Electrical Measurements

Freq. Ls (µH) Q Cs (mF) Rs (mΩ)

Layer 1 Only

20 Hz 452.3 0.36 -139.5 158.8
30 Hz 369.4 0.4 -76.2 175.16
100 Hz 126.6 0.32 -20.17 243.3
1 kHz 33.3 0.57 -0.7605 366.6
10 kHz 7.602 0.6 -0.03332 793.4
30 kHz 4.93 0.97 -0.0057 955.5
100 kHz 3.83 1.87 -0.00066175 1287
300 kHz 3.345 3.21 -0.0000841 1965

Layer 2 Only

20 Hz 700.7 0.43 -90.4 204.8
30 Hz 587.2 0.48 -47.9 228.4
100 Hz 257.5 0.48 -9.84 334.1
1 kHz 47.5 0.44 -0.53321 674.3
10 kHz 8.31 0.5 -0.0348 1040
30 kHz 6.45 1.03 -0.00436 1180
100 kHz 5.36 2.11 -0.0004725 1600
300 kHz 4.79 3.55 -0.00005879 2540

Layer 1,2 Series

20 Hz 1640 0.49 -39.7 421
30 Hz 1310 0.5 -21.4 491
100 Hz 433.5 0.38 -5.84 725.5
1 kHz 66.21 0.36 -0.3825 1150
10 kHz 14.69 0.5 -0.01725 1840
40 kHz 9.37 1.04 -0.00169 2270
100 kHz 8.14 1.75 -0.0003111 2920
300 kHz 7.47 2.71 -0.000037 5200
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Figure 6.19: The assembly of coil pack into the outer aluminum shell is shown.
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Part II

CCT Magnets for Ion Beam Cancer
Therapy Gantries
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Chapter 7

Introduction and Motivation

7.1 Ion beam cancer therapy

The energy loss of an ion traveling through matter is characterized by a peak immediately
before the stopping point. This phenomenon is referred to as the Bragg peak, and results
in a region of localized energy deposition with a sharp cut-off (Fig. 7.1). The use of this
phenomenon for cancer therapy was first suggested by Robert Wilson in 1942 [64]. He
proposed the Bragg peak of protons be used to create a region of high ionization density
(which corresponds to biological damage) localized to the volume of the cancer tumor. This
proposal was the result of the advancement of accelerator technology at that time, as the
proton energy needed to penetrate 4-30 cm into the body (70-220 MeV) was about to be
achieved.

Figure 7.1: A comparison is seen between the depth dose profile of photons and the most
commonly used ions for cancer therapy. (Fig. from [65])



CHAPTER 7. INTRODUCTION AND MOTIVATION 130

The initial radiobiology experiments confirming Wilson’s proposal were performed by
Cornelius Tobias at the University of California, Berkeley. Following these experiments, the
first patients were treated in 1954 using the 184” synchrocyclotron at Lawrence Berkeley
National Laboratory under the supervision of John Lawrence. Berkeley lab would go on to
treat over 2,500 patients with protons and heavier ions before ending in 1992 for financial
reasons. Following the initial experience at Berkeley, other physics laboratories began treat-
ing patients. In the late 1950’s and early 1960’s patients were treated at the Gustav Werner
Institute in Uppsala Sweden and at the 160 MeV Harvard Cyclotron in collaboration with
Massachusetts General Hospital. The number of physics labs treating patients continued to
increase, but it was not until 1990 that the first dedicated hospital facility was developed
at Loma Linda [66]. This facility pioneered the delivery of one source beam to multiple
treatment rooms and the use of a gantry to treat patients from multiple directions.

The development of ion beam therapy in Japan occurred in parallel with the US and
Europe, starting in the late 1970’s at the National Institute of Radiological Sciences (NIRS)
in Chiba. The development of facilities in Japan has uniquely included a strong focus
on treatment with carbon ions. The NIRS facilities provide the majority of the world’s
experience with carbon, having treated over 8000 patients with carbon ions since 1994. A
recent review of the Japanese experience using carbon ions, including a comparison of the
efficacy to protons and x-rays, can be found in the following reference [67]. Today there
are approximately 60 ion treatment facilities in operation worldwide, and around 110,000
patients have received therapy with ions since the first treatments in the 1950’s [68]. There
has been increasing demand for ion beam cancer therapy, especially in a hospital-based
environment. For example, the number of hospital-based centers has increased from 15 to
40 over the last 15 years.

Figure 7.2: The spread-out Bragg peak (SOBP) is shown generated by a single field and by
an opposing set of fields. (Fig. from [69])

One of the key treatment planning and technological challenges in the early years was how
to manipulate the beam to deliver dose to the full tumor volume. The Bragg peak is typically
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only a few millimeters in depth, and the beam cross section from the accelerator only a few
millimeters wide. A typical tumor volume is much larger, requiring some manipulation of
the beam to treat. The depth of the tumor is covered by using a spread-out Bragg peak
(SOBP). With this technique a uniform dose along the length of the beam is achieved by the
accumulation of a number of individual Bragg peaks whose depth and intensity are adjusted
[70] (Fig. 7.2). In the transverse plane the tumor is covered by first increasing the size of the
beam using scattering foils placed in the beam path. The enlarged beam is then collimated
to a patient and field specific cross-sectional shape, and compensated to match the edge of
the SOBP to the edge of target volume. This technique, referred to as “passive scattering”,
was developed first and has been used in the majority of treatment facilities to date.

A more advanced treatment that has been developed is called “active scanning”. This
technique does not change the size of the beam, but rather uses fast scanning magnets
and beam energy changes to scan the pencil beam over the volume of the tumor. The
scanning magnets provide control over the transverse placement of the beam and the depth
of the Bragg peak is adjusted by changing the energy. This gives precise control over dose
deposition, and allows for treatment planning which “paints” the tumor volume with a large
number of individual beam spots (Fig. 7.3). This method was first proposed in the 1970’s
[71], and was pioneered at GSI in Germany and at the Paul Scherrer Institute (PSI) in
Switzerland in the early 1990’s [72, 73]. The precise control available with active scanning
allows for improved dose delivery when compared with passive scattering. In particular, the
dose to the healthy tissue in front of the tumor can be reduced. Active scanning also provides
increased flexibility as no patient specific collimators or compensators are needed. Active
scanning is a fairly recent development that is not yet widespread. Given its advantages
and successful demonstration, it is expected that active scanning will be used in future
state-of-the-art facilities.

Figure 7.3: Active scanning of the tumor volume. (Fig. from [74])
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The treatment capabilities of a facility are enhanced by the use of a rotating beamline
called a gantry. This gantry allows for the beam to be positioned in different directions
such that the treatment can be performed from multiple angles. A typical treatment facility
consists of an accelerator (cyclotron or synchrotron) feeding multiple treatment rooms, one
of which may contain a gantry. An example of the recently built Heidelberg Ion Therapy
Center (HIT) is shown in Figure 7.4, with the scale of the active scanning gantry (which can
treat using heavier ions such as carbon) shown. The cost of a gantry is typically around 25%
of the facility and is driven by the large rotating weight on a precise medical device [65].
Proton gantries typically weight approximately 100 tons, with carbon gantries weighing up
to 600 tons. A large portion of this weight in active scanning gantries is due to the final
bending dipole magnet. For example, the final bending magnet of the HIT carbon gantry is
90 tons, which is 65% of the weight of all rotating beamline components. The final bending
magnet has increased weight because of the large aperture. This aperture is needed due to
the scanning magnets being upstream in the commonly used “Pavlovic” beam optics layout
(Fig. 7.5 and Reference [75]). There is a strong push for the development of lighter, more
compact gantries to make treatment facilities more affordable. A large reduction in weight
of the post-scanning bending magnet would be a significant step in this direction.

Figure 7.4: The Heidelberg Ion Therapy Center (HIT). (Fig. from [76])

Present day state-of-the-art treatment combines the use of gantries and active scanning
(i.e. PSI gantry II for protons and HIT gantry for carbon). This combination provides precise
control over the beam and also allows for treatment from multiple directions. A recent joint
DOE, NIH, and NCI workshop gathered over 60 world experts and charged them with
determining the desired characteristics of a future state-of-the-art beam therapy center and
the R&D effort needed before such a facility could be built. The final report of this workshop
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can be found in the following reference [77]. The workshop concluded a future facility will
have the capability to treat with multiple ion species, use only active scanning, and have
at least one gantry. A key component of the recommended R&D effort was developments
in gantries and beamlines, with the potential advantage of superconductivity specifically
mentioned.

Figure 7.5: A schematic of PSI’s proton gantry II is shown with the location of the active
scanning and final bending magnet indictaed. (Fig. from [76])

Superconducting magnet technology has two potential advantages for a gantry magnet
system. The first is a large reduction in weight. The magnetic field produced by a super-
conducting magnet is coil-dominated, allowing for the consideration of iron for magnetic
shielding only. When compared with resistive magnets relying on the use of a large iron
yoke for field generation, superconducting gantry magnets can be up to an order of mag-
nitude lighter. A second advantage of superconducting magnets is the ability to produce
much higher fields, opening up the possibility for new and improved beam optics solutions.
In particular, the high gradients offered by superconducting quadrupole magnets have been
investigated for achromatic gantries [78, 79, 80, 81]. Such gantries have a large beam energy
acceptance, showing promise to treat patients with minimal changes in gantry magnet field.

The introduction of superconducting technology in ion therapy gantries does not come
without challenges. The large aperture and high degree of curvature present difficulties to
traditional superconducting magnet design in terms of field quality, management of Lorentz
forces, and magnet fabrication. In addition, a rotating cryogenic system will be required.
This system will need to provide sufficient cooling during treatment, which typically includes
fast ramping of the magnetic field (up to 0.5 T/s) for beam depth changes. This is a
challenging requirement, as field ramping produces AC losses in the conductor and additional
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losses in the structure due to eddy currents. Finally, a superconducting system will have to be
proven reliable and safe for operation in a medical environment. Patient safety is of upmost
concern and will need to be considered in all aspects of design, testing, and certification.

Part II of this thesis will focus on the Canted-Cosine-Theta (CCT) design for supercon-
ducting gantry magnets. As will be described in Section 7.2, the CCT design has many
advantages for this unique application. Section 7.3 will describe the previous work on su-
perconducting gantries, and present the scope of the thesis research. Chapter 8 will present
an extension of the CCT concept and modeling developed for high field Nb3Sn magnets
in Part I to curved CCT magnets. In Chapter 9, the magnetic and structural design of a
superconducting CCT magnet for the final bending section of a scanning proton gantry will
be described. This design assumes similar optics to today’s state-of-the-art gantries, but is
an order of magnitude lighter. Chapter 10 will introduce a new superconducting magnet
concept called the “Left-Right CCT” (LR-CCT), along with its application to a high mo-
mentum acceptance gantry in the form of an “Alternating-Gradient CCT” (AG-CCT). This
concept implements both the weight reduction and improved optics advantages of supercon-
ductivity previously discussed. Finally, for the reader interested in more information on ion
beam cancer therapy, the following textbooks are recommended [76, 82, 83, 84].

7.2 Motivation for a superconducting CCT gantry

magnet

As described in Section 7.1, the final bending magnet is a significant contribution to the
weight of gantries with active upstream scanning. This magnet has a unique combination of
requirements. It must be large aperture, curved over a large angle, produce combined func-
tion fields, and be capable of changing field quickly to accommodate beam energy variation
(60-220 MeV for protons) during treatment scanning. This is a challenging set of require-
ments for a superconducting magnet. The highly curved geometry makes both the magnetic
design and practical winding of the superconducting coils difficult. The fast field ramping
leads to losses in the conductor and magnet structure which can produce a significant heat
load to the cryogenic system [85]. Finally, the large bore and bend angle lead to increased
net Lorentz forces. These forces can affect field quality and short-sample performance if not
managed by the magnet’s structure.

The CCT design is well suited to this set of requirements. The concept can be extended
to a curved magnet to produce the combined function fields desired for the gantry optics
(usually a dipole with a small quadrupole component) [34, 86, 87, 88]. Good field quality
can be achieved by careful control of the modulation of the conductor winding path with
no external iron necessary. To control the placement of conductor in the curved geometry,
the winding mandrel approach developed at LBNL can be extended to a curved magnet.
Figure 7.6 show a rapid prototyping model of a curved mandrel used for a winding test. The
mandrel channels position the conductor for field quality, and the mandrel ribs and spar
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manage the Lorentz forces (previously discussed in Section 1.3).

Figure 7.6: A curved rapid prototype mandrel is shown wound with eight strand supercon-
ducting cable. The red section was created from stacked laminations.

A practical difficulty associated with the winding of a curved magnet is the tendency of
the conductor on the inner edge of the torus to pull off under tension and form a chord across
the bend. This problem is inherent to traditional magnet designs that use a 2D cross section
extended along the length. With the right choice of parameters, the 3D winding of the CCT
remains against the surface of the torus under tension. This allows for the conductor to be
wound into the mandrel channels by hand with no additional tooling. The winding mandrel
of a curved CCT magnet can also be laminated with slightly tapered laminations in integer
numbers of its minimum symmetry [89]. This opens up new manufacturing techniques (such
as 3D printing) for the construction of curved mandrels. A laminated approach will also
drastically reduce the eddy current losses in the mandrel during field ramping. Figure 7.7
shows an example of the reduction in losses that can be achieved by laminating an aluminum
mandrel for proton therapy. It is seen that the ability to laminate the winding mandrel is
essential for treatment requiring fast ramping of the magnet.

An alternative approach to solving the AC heat load problem is to eliminate or minimize
the need for field ramping during treatment. This can be accomplished by the design of a
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Figure 7.7: Eddy current losses in a proton therapy mandrel. (Figure courtesy of Heng Pan)

gantry with achromatic beam optics. This allows for a range of beam energies to be trans-
ported through the gantry without changing the fields of the superconducting magnets. An
ideal situation would be one in which the allowable range of energy, quantified as the “mo-
mentum acceptance”, can cover the depth of the tumor being treated. In this situation the
superconducting magnets require one setting and remain unchanged during each treatment
field (no ramping or losses). Recent work has shown a gantry using a novel CCT magnet
concept, called the “Alternating Gradient CCT” (AG-CCT), can achieve a momentum ac-
ceptance close to this ideal case [80]. This is strong motivation for the study of AG-CCT
magnets, as the elimination of ramping losses removes one of the key challenges associated
with superconducting gantry magnets.

7.3 History, previous work, and scope of thesis

Superconductivity was first introduced into the field of ion beam cancer therapy to reduce
the size of proton cyclotrons used for the initial acceleration. The impact of size, or “foot
print”, of the facility and the associated cost is becoming increasingly important as ion
beam therapy moves to hospital-based centers. This is especially true if the industry trend
continues towards low barrier to entry facilities that are small, cost-effective, and perhaps
have only a single treatment room. With this motivation, there has been a similar push to
reduce the size and cost of gantries using superconducting technology.

While there have been many studies in both industry and research laboratories [78, 79,
86, 87, 90, 91, 92, 93], to date only three superconducting designs have been built. The
first is a novel design from industry that uses a compact superconducting synchrocyclotron
mounted on the gantry itself (Fig. 7.8). This single room proton system, called the MEVION
S250, treated its first patient in 2013 and is currently being installed in five additional
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hospitals in the US [94]. The second is the superconducting carbon gantry in the final stages
of construction at NIRS in Chiba, Japan [95, 96, 97]. This gantry implements upstream
scanning and uses superconducting combined function bending magnets (Fig. 7.9). The
weight of this gantry (300 tons) is about half of the resistive scanning carbon gantry at
the HIT facility. Successful commissioning of this facility, planned for late 2015, will be an
important first demonstration of the use of superconducting magnets with upstream active
scanning.

Figure 7.8: An illustration of the MEVION single room proton system. (Fig. from [98])

The use of superconducting magnets for compact, low cost proton gantries is of increasing
interest to industry. The approximately 25 ton SC360 design from ProNova solutions appears
to be the first such gantry to enter the marketplace. This design is a slightly achromatic
double bend system with post-gantry active scanning [99] (Fig. 7.10). The first SC360 has
been partially installed in the Provision Center for Proton Therapy in Knoxville Tennessee.
Commissioning of the superconducting gantry is expected in late 2015. The success of
this project will be an important confirmation of the financial benefits of superconducting
gantries for low cost solutions, as the ProNova business model is built around these perceived
advantages.

As ion beam cancer therapy continues to grow, the line between research-based facilities
seeking to develop and implement new technology and those seeking low barrier to entry
solutions may become more defined. Superconductivity could play a large role in both
fields. The reduced weight of superconducting gantries shows promise to lower the barrier to
entry cost of compact proton facilities, while also opening the door to new research facilities
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Figure 7.9: An illustration of the NIRS superconducting carbon gantry. (Fig. from [100])

using heavier ions such as carbon. The use of the alternating, high gradient quadrupole
fields offered by superconducting magnets for achromatic gantries may also allow for the
development of new treatment modes. While the future is never certain and many challenges
lie ahead, superconductivity appears poised to have a large impact in the field of ion beam
cancer therapy. It is my hope that this development opens the door to treatment for more
patients who can benefit from this therapy.

The CCT concept was initially proposed for a Tevatron dipole in 1970. The history of the
development of concept for high energy physics was previously described in Section 1.4. The
first published record of the concept for a curved, combined function magnet was by Carl
Goodzeit in 2007 [34], although the application for ion beam therapy was unmentioned. In
2009 Lawrence Berkeley National Laboratory began a three year LDRD funded study focused
on developing technology for carbon therapy gantries. During this study, the CCT concept
was identified as an advantageous design for a final bend superconducting gantry magnet
in a carbon gantry with upstream scanning. The study of such a magnet was performed
with a strong focus on the integration of magnetic design and beam optics. This resulted
in a superconducting, combined function CCT design which minimized the carbon beam
distortion at the patient location [86, 87].

The overall scope of the ion beam therapy portion of this thesis is to investigate and
develop the CCT concept for proton therapy gantries. A new approach to the design of
curved CCT magnets will be presented, followed by two magnet design studies. The first
study seeks to extend the previous work at LBNL, which was focused on a final bending
magnet for an upstream scanning carbon gantry, to a proton therapy gantry. The primary
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Figure 7.10: An illustration of the ProNova SC360 superconducting proton gantry. (Fig.
from [99])

focus will be on the design of the magnet rather than a detailed study of the beam optics.
A previously unstudied aspect of this design will be an examination of the behavior and
effect of the Lorentz forces within the magnet. The second study is motivated by the goal
of investigating new CCT magnet concepts for achromatic proton gantries. The preliminary
design of one such concept, called the Alternating Gradient CCT (AG-CCT), will be given.
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Chapter 8

Modeling of Curved CCT Magnets

8.1 Introduction and goals

Chapter 2 presented developments for analytic modeling of cylindrical CCT magnets. This
chapter seeks to extend this analytic approach to a curved CCT magnet as desired for an ion
therapy gantry. This is not without difficulty, as many of the assumptions behind traditional
field representation for accelerator magnets are broken by the curved geometry. There are
two potential dangers when working in a curved system, each with its own appeal. The
first is to stay completely true to the curved geometry, even when this overcomplicates the
mathematical approach and makes it too complex to be useful or provide understanding.
The second is to oversimplify the problem by drawing too heavily on the familiar expressions
for straight magnets, failing to recognize the point at which they are no longer an appropriate
approximation. This chapter will seek to present a healthy balance between the two, with
the goal of demonstrating both approaches can be useful. It is important to not lose sight
of the fact the final field “quality” is a desired effect on beam behavior. The hope is the
formulation developed does not distract from this goal, but rather makes it easier to achieve.

Sections 8.2 and 8.3 will describe the toroidal coordinate system and then use these
coordinates to develop the formulation for a CCT winding path on a torus. Methods for
determining the field to winding relation for a curved CCT magnet will be discussed. A
winding path optimization process that has been shown suitable for the design of a gantry
magnet will be presented, along with a method for maintaining positive concavity of the
winding on the inner edge of the torus. In Section 8.4, 2D toroidal harmonics will be derived
to allow for a completely analytic relation between the windings and field. While this relation
has not yet been shown necessary for a gantry magnet, it does provide insight into curvature
induced field distortions. This complete but complicated approach may be necessary for
future applications of curved CCT magnets requiring a higher degree of curvature or field
quality.
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8.2 Toroidal coordinates

The right hand toroidal system of η, ξ, φ is formed by the rotation of bipolar coordinates η
and ξ about the vertical axis (Fig. 8.1). Surfaces of constant η are tori, making this system
the natural choice for problems with boundary conditions on the surface of a torus. The
scale factors for these coordinates are

hη =
a

cosh η − cos ξ

hξ =
a

cosh η − cos ξ
(8.1)

hφ =
a sinh η

cosh η − cos ξ
,

where (±a, 0) are foci of the bipolar system.

Figure 8.1: Bipolar coordinates 0 < η <∞ and 0 ≤ ξ ≤ 2π

8.3 A CCT winding path in toroidal coordinates

Definition of the parametric path

The starting point for the definition of a CCT layer on a curve is a parametric path con-
strained to the surface of a torus (constant η = η0) as shown in Figure 8.2. This path can
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be parameterized in terms of the toroidal angle ξ as

η = η0

ξ = ξ

φ(ξ) = pφ(ξ), (8.2)

where (η, ξ, φ) are the toroidal coordinates as defined in Figure 8.1, and pφ(ξ) is a yet
undefined function of ξ which describes the movement of the path along the bend. It is
useful to define a local reference frame at location ~p(ξ) such that t̂ is tangential to the path,
η̂ is normal to the surface, and b̂ completes the orthogonal system (Fig. 8.2). A vector in
the tangent direction is then found to be

~t(ξ) = ak−1ξ̂ + ak−1 sinh η0p
′
φ(ξ)φ̂, (8.3)

where k ≡ cosh η0 − cos ξ.

Figure 8.2: The local unit tangent, normal, and binormal vectors (t̂, η̂, b̂) are shown at
location ~p of a parametric path constrained to the surface of a torus.

A periodic function for pφ(ξ)

It is seen that the choice of the function pφ(ξ) is sufficient to define both the path and the
tangential direction. It is desirable for the path to contain a symmetry such that it can be
repeated along the bend of the torus (along φ) to create a uniform region away from the



CHAPTER 8. MODELING OF CURVED CCT MAGNETS 143

start and end points of repetition. This is accomplished by requiring the bend angle between
adjacent repetitions of the path be a constant for all points (independent of ξ), meaning

|pφ(ξ + 2π)− pφ(ξ)| = φ0, (8.4)

where the angular pitch φ0 is defined as the constant bend angle between paths (Fig. 8.3).
It can be shown the perpendicular distance between adjacent paths δ(ξ) (in the direction of
b̂) is approximated by

δ(ξ) =
ρ(ξ)φ0φ̂×

(
~t · ξ̂

)
|~t|

= aφ0k
−1 (sinh−2 η0 + p′2φ (ξ)

)−1/2
, (8.5)

where ρ(ξ) = a sinh η0k
−1.

Figure 8.3: A path is shown patterned around the bend in integer multiples of the pitch
angle φ0.

A pitch averaged current density

If the path ~p(ξ) represents a continuous line current of magnitude I0, the perpendicular
spacing δ(ξ) (Eqn. 8.5) can be used to average the line currents into a 2D toroidal current
sheet with current density

~j(ξ) =
I0
|δ|

~t

|~t|
=

I0
ρ(ξ)φ0

~t

~t · ξ̂
=

I0k

aφ0 sinh η0

(
ξ̂ + sinh η0 p

′
φ(ξ)φ̂

)
. (8.6)
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The current consists of two components: an “azimuthal” portion (generating solenoidal
like fields) dependent on the geometry and pitch angle, and an “axial” portion varying
with azimuthal angle (generating transverse fields) determined by p′φ. Because the “axial”
current’s azimuthal variation is determined by pφ, the pitch averaged current density can be
used to relate the axial path expression pφ to the produced transverse fields.

Relation to the midplane rib and tilt angle

In practice it is advantageous to relate the formulation to the physical properties of the path.
This can be done by defining a midplane tilt angle α on the inner edge of the torus, such
that

tanα ≡
~t · ξ̂
~t · φ̂

∣∣∣∣∣
ξ=π

=
1

sinh η0p′φ(ξ)

∣∣∣∣∣
ξ=π

. (8.7)

Substituting this into Equation 8.5, the midplane perpendicular spacing on the inner edge
of the torus can be written as

δ(ξ = π) = aφ0 tanh(η0/2) sinα. (8.8)

This location is chosen as it typically corresponds to smallest perpendicular spacing (or rib
in the case of a winding mandrel) for a curved dipole.

Relation of current density to magnetic field

In Section 2.2, the pitch averaged current density of a CCT layer on a cylinder was related to
the cylindrical multipoles. This allowed for the derivation of a CCT winding path based on
desired transverse multipoles (dipole, quadrupole, etc.). In the curved geometry, a similar
relation can be found between the CCT winding path and a 2D multipole solution for the
magnetic field in toroidal coordinates. Section 8.4 will derive this field expression in terms
of toroidal harmonics. This approach is the most complete treatment of the problem, giving
a one-to-one relation between the windings and the fields.

There are several practical issues with using toroidal harmonics. The first is they contain
associated Legendre functions of half-integer degree (or “toroidal functions”) which are diffi-
cult to evaluate and understand. The practicality of using toroidal harmonics is also limited
by issues with specification of the desired field. Field quality specifications for the desired
beam optics will almost certainly be based on cylindrical harmonics, for which there is no
easy comparison. In other words, if the toroidal harmonics cannot be adequately related to
the desired fields, the ability to produce them is no longer an advantage.

In light of this, a practical method for optimizing the winding path of a curved CCT
magnet was developed. Similar to the cylindrical CCT, a sinusoidal series can be assumed
for the axial variation of the path such that
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η = η0

ξ = ξ

φ(ξ) = Cn sin(nξ) +
φ0

2π
ξ, (8.9)

where φ0 is the angular pitch, Cn are the winding coefficients, and 0 ≤ ξ ≤ 2πk produces k
winding turns. The first step in generating a winding is determining the angular pitch from
the desired tilt angle and midplane spacing on the inner edge of the torus. Using Equation
8.8, this pitch is given by

φ0 =
δ

a tanh(η0/2) sinα
. (8.10)

The midplane spacing is typically chosen based on the smallest allowable mandrel rib (the
conductor width plus approximately 0.381 mm), and the tilt angle is based on maintaining
positive concavity on the inner edge of the bend (to be discussed). A set of sufficiently good
winding coefficients Cn can be found numerically. The figure of merit for this optimization
is a local cylindrical expansion of the fields on a reference radius located at the center of
the bend. If “k” represents the primary desired harmonic for the magnet (i.e. 1=dipole,
2=quadrupole, etc.), the corresponding winding coefficient is fixed as

Cn=k =
cotα

k sinh η0
, (8.11)

which corresponds to a comparison of Equations 8.9 and 8.7 with the assumption only the
Cn=k winding coefficient is non-zero and the pitch is small. Then, initial guesstimations and
a Newton search can be used to optimize the other coefficients (with the series truncated
to some maximum Cn=nmax) until the desired ratio of cylindrical harmonics at the center
of the bend is achieved to some tolerance. Despite using cylindrical field expressions in a
curved system, this process has proven sufficient for the design of CCT gantry magnets.
This process will be used to produce a curved winding path for a combined function proton
therapy gantry magnet in Section 9.2.

Restrictions on the concavity of the path

A practical difficulty associated with the winding of a curved magnet is the tendency of the
conductor on the inner edge of the torus to pull off under tension and form a chord across
the bend. This problem is inherent to traditional magnet designs that use a 2D cross section
extended along the length, requiring special tooling or glue to hold the winding in place.
With some restrictions on the choice of winding parameters, the 3D path of the CCT can
be made to “hug” the inner edge of the torus under winding tension.
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This requirement is satisfied if the second derivative of path along the unit vector normal
to the surface is positive. Using the formulation developed for the parametric path, this
restriction can be written as

a sinh η0
(
1 + [cos ξ cosh η0 − 1] p′2φ (ξ)

)
(cosh η0 − cos ξ)2

> 0. (8.12)

In practice this puts a limitation on how small a tilt angle α can be used for a given geometry.
For example, if only the primary winding coefficient in Equation 8.11 is used in Equation
8.9,

p′φ =
cos kξ

sinh η0 tanα
, (8.13)

making the condition,

a sinh η0

(
1 + [cos ξ cosh η0 − 1]

(
cos kξ

sinh η0 tanα

)2)
(cosh η0 − cos ξ)2

> 0. (8.14)

Figure 8.4 shows Equation 8.14 plotted as a function of ξ for a typical magnet geometry
for proton therapy (primary harmonic is dipole: k=1, major radius of 774 mm and minor
radius of 133 mm: η0 = 2.45, a = 762.48). Three different tilt angles are shown. It is seen
that a negative concavity is most likely to occur at the inner edge of the torus (ξ = π) and
for a smaller tilt angle. If a positive concavity is desired in all locations, the tilt angle must
be chosen greater than 24.5 degrees. If more than one winding coefficient is used, Equation
8.12 must be used with the full derivative of the path (not just the primary coefficient).

8.4 Development of toroidal harmonics

The motivation

There is increasing interest in curved superconducting magnets for both scientific and medical
accelerators. Curved designs are presently needed for the Facility for Antiproton and Ion
Research (FAIR) at GSI [101, 102], for the Nuclotron-based Ion Collider Facility (NICA)
at Dubna [103], and in the medical community for the size and weight reduction of ion
therapy gantries (as will be investigated in this thesis). The design of a high aspect ratio
magnet system, with a large aperture to bending radius ratio, presents challenges in both
field description and conductor placement. It is typical to expand the central magnetic field
of an accelerator magnet in terms of circular multipoles (see Appendix A). This expansion
directly relates to allowable fields from the solution of the potential equation in cylindrical
coordinates with axial symmetry. For a curved magnet this symmetry is no longer valid, as
the curvature requires the 2D potential be axisymmetric about the vertical bending axis.
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Figure 8.4: The concavity of the CCT winding path as a function of the azimuthal toroidal
angle is shown for three different tilt angles.

To account for the effect of curvature, previous analytic work made use of a scalar poten-
tial in local cylindrical coordinates solved by expansion and then truncation of the potential
equation using the inverse aspect ratio of the torus (approximate R-separation) [104, 105].
This section will present the alternate approach of expanding the fields in toroidal harmonics,
which correspond to the solution of the axisymmetric vector potential equation in toroidal
coordinates. The solution of the vector Laplace equation in toroidal coordinates is briefly
outlined and the current relation found for boundary conditions on the surface of a torus.

A vector potential in toroidal coordinates

Assuming axial symmetry ~A = Aφ(η, ξ) with ∇· ~A = 0, the vector Laplacian [106] in toroidal
coordinates is given by

~∇2 ~A =
1

hηhξ

∂

∂η

[
hξ
hηhφ

∂

∂η
(hφAφ)

]
+

1

hηhξ

∂

∂ξ

[
hη
hξhφ

∂

∂ξ
(hφAφ)

]
. (8.15)

Substitution of coordinate dependent scale factors (Eqn. 8.1) produces



CHAPTER 8. MODELING OF CURVED CCT MAGNETS 148

~∇2 ~A =
k2

a2

[
∂2Aφ
∂η2

+
∂2Aφ
∂ξ2

+ coth η
∂Aφ
∂η
− k−1

(
sinh η

∂Aφ
∂η

+ sin ξ
∂Aφ
∂ξ

)
+

Aφ

sinh2 η

]
,

(8.16)
where k ≡ cosh η − cosξ. The technique of R-separation can be employed, using the substi-
tution Aφ(η, ξ) =

√
k u(η, ξ) to reduce Equation 8.16 to

~∇2 ~A =
k5/2

a2

[
∂2u

∂η2
+
∂2u

∂ξ2
+ coth η

∂u

∂η
+

(
1

4
+

1

sinh2 η

)
u

]
. (8.17)

A separable solution u = G(η)H(ξ) can be found for ~∇2 ~A = 0. Assuming sinusoidal behavior
in ξ, H(ξ) = an cos(nξ) + bn sin(nξ), the resultant “radial” equation in η can be formulated
into an associate Legendre equation

(
1− Z2

) d2G
dZ2
− 2Z

dG

dZ
+

[
(n− 1/2)

[
(n− 1/2) + 1

]
− 1

1− Z2

]
G = 0, (8.18)

for which the general solution is associate Legendre functions [107] with argument Z = cosh η.
Combining the separable solution with the R substitution leads to a general solution for the
vector potential of

Aφ = k1/2 [an cos(nξ) + bn sin(nξ)]
[
cnP

1
n−1/2(cosh η) + dnQ

1
n−1/2(cosh η)

]
. (8.19)

Application to boundary conditions on a torus

The form of the vector potential inside and outside a torus surface of constant η = η0 can
be determined. Considering the divergence of the Legendre functions at the limits of η and
choosing a solution symmetric about the midplane leads to

Ainφ = ank
1/2 cos(nξ)Q1

n−1/2(cosh η) bore (η > η0)

Aoutφ = bnk
1/2 cos(nξ)P 1

n−1/2(cosh η) outside (η < η0) (8.20)

where the constants an and bn are determined by the boundary conditions at η = η0. Using
the continuity of the potential, the magnetic boundary conditions, and the Wronskian of the
toroidal functions, the surface current density can be expressed as

Jφ(η0, ξ) = J0nk
3/2 cos(nξ), where (8.21)

J0n =
an

aµ0 sinh η0

n2 − 1/4

P 1
n−1/2(cosh η0)

. (8.22)
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This can be compared to φ component of the pitch averaged current density in Equation
8.6 to find the relation between the CCT winding path and the toroidal harmonics in the
straight-section.

The resultant fields from this solution are given by ~B = ∇ × ~A. The 2D fields in the
toroidal coordinate system are then given by

Bη =
k

a

(
∂Aφ
∂ξ
− k−1 sin ξAφ

)
(8.23)

Bξ =
k

a

(
−∂Aφ
∂η
− Aφ

tanh η
+ k−1 sinh ηAφ

)
. (8.24)

Evaluating these for the vector potential inside and outside of the torus given in Equation
8.20,

Bin
η =

−ank3/2

a

(
n sinnξ +

1

2
k−1 sin ξ cosnξ

)
Q1
n−1/2(cosh η) (8.25)

Bout
η =

−bnk3/2

a

(
n sinnξ +

1

2
k−1 sin ξ cosnξ

)
P 1
n−1/2(cosh η) (8.26)

Bin
ξ =

−ank3/2

a

(
n+ 1

2

tanh η
Q1
n−1/2 −

1

2
sinh ηk−1Q1

n−1/2 −
n+ 1

2

sinh η
Q1
n−3/2

)
cosnξ (8.27)

Bout
ξ =

−bnk3/2

a

(
n+ 1

2

tanh η
P 1
n−1/2 −

1

2
sinh ηk−1P 1

n−1/2 −
n+ 1

2

sinh η
P 1
n−3/2

)
cosnξ. (8.28)

Effects of curvature

The primary effect of curvature is a breaking of the left-right symmetry of the field as the
focus of the coordinates moves away from the center of the bore aperture. This effect scales
with the aspect ratio of the torus

ε = R/R0, (8.29)

where R is the minor (bore) radius and R0 is the major (bend) radius. Figure 8.5 shows the
behavior of the quadrupole-like toroidal harmonic (n=2) in the bore of three different aspect
ratio tori. The Legendre polynomials needed for the fields were evaluated using the DTOR
algorithm [108]. It is seen that the curvature induced distortion of the fields is reduced for
decreasing aspect ratio. As expected, in the limit of the aspect ratio approaching zero the
traditional cylindrical quadrupole fields are recovered. A typical aspect ratio for a proton
gantry magnet is ε = 125/775, making the distortion of a single toroidal harmonic close to
the central figure for this application.
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Figure 8.5: The quadrupole-like toroidal harmonic (n=2) is shown for a fixed bore radius
R and increasing major radius R0. The Legendre polynomials needed for the fields were
evaluated using the DTOR algorithm [108]. As the aspect ratio of the torus ε = R/R0 tends
to zero, the fields are seen approaching those of a straight cylindrical quadrupole.
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Chapter 9

A Curved CCT Design Study for a
Proton Therapy Gantry

9.1 Design criteria and goals

This chapter will study the application of the CCT concept to a superconducting, final
bending magnet for a proton therapy gantry. A magnetic and structural design study will
be presented, with the goal of determining the feasibility and advantages of the CCT for
this application. Gantry beam optics with active scanning performed upstream of this final
bending magnet is assumed. This corresponds to today’s state-of-the-art treatment, as well
as the greatest potential for gantry weight reduction using superconducting technology. A
set of gantry characteristics impacting the design of the final bending magnet are assumed
in Table 9.1. These are not hard requirements, but are instead a set of guidelines for the
generation of magnet parameters representative of the needs of a typical proton gantry with
upstream scanning.

Table 9.1: Proton Gantry Guidelines

Max proton energy 230 MeV
Bending radius 775 mm
Bending angle 90 degrees
Scanning location 0.5 m upstream
Isocenter location 1.0 m downstream
Isocenter field size 20 x 20 cm
Approximate optics point-to-parallel (inf. SAD)

A set of design criteria for the CCT final bending magnet of this study is assumed in
Table 9.2. These criteria are based on the gantry guidelines, as well as what was learned
during the design and fabrication of the 2.5 T dipole CCT1 (see Chapter 5). They provide
the baseline requirements for the magnetic and structural design to be presented in the
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following sections. A small quadrupole field component was added to the main dipole to
allow for point-to-parallel beam optics during scanning (to be further explained in Section
9.2), and criteria limiting the power supply current was added to maintain compatibility
with “dry” conduction cooling based cryogenics. The necessary current and temperature
margin for a superconducting gantry magnet operating in a medical environment is an area
for future study. What was believed to be a conservative requirement of 30-40% current
margin was assumed.

Table 9.2: CCT Gantry Magnet Design Criteria

Criteria Motivation
Clear bore diameter 250 mm desired treatment field
Bending radius 774 mm desired bend
Bending angle 90 degrees desired angle
Dipole field 3.0 T 230 MeV protons, 774 mm bend
Quadrupole field -1.938 T/m first order point-to-parallel optics
Mandrel spar thickness > 3.0 mm CCT1 experience
Minimum mandrel rib > 0.381 mm CCT1 experience
Winding curvature P ′′η > 0 maintain contact on inner bend
Current < 500 A cryocooler operation
Operating current margin 30-40% estimated

9.2 Magnetic design

Desired fields for point-to-parallel optics

The beam optics of a scanning gantry allow for the beam at the patient location to be moved
over the tumor cross-section using horizontal and vertical deflections at the scanning magnet
location (see Fig. 7.3). For a gantry with scanning upstream of the final bend, a “point-
to-parallel” beam optics solution can be considered. Figure 9.1 illustrates point-to-parallel
behavior in the horizontal plane only. These optics map a change in angle or “kick” at the
scanning magnet location to a change in parallel position at the exit of the bending magnet.
This allows for a parallel drift from the end of the bending magnet to the location of the
patient (in this case at the isocenter of the rotation), resulting in an infinite source-to-axis
distance (SAD).

One approach to approximating point-parallel-optics is to require the focusing strength
of the final bending magnet be the same in both the horizontal and vertical plane. This
can be accomplished by changing the edge angles of the bend, or by adding higher order
components to the magnetic field (the weak focusing aspects of sector bends can be found
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Figure 9.1: An illustration of point-to-parallel optics in the horizontal plane.

described in most introductory accelerator physics textbooks e.g. [109, 110]). The combined
function field approach will be considered for this design, as the CCT concept has been
shown to be well suited to the addition of higher order fields. To a first order approximation,
a quadrupole field of gradient

B∗2 = −B1

2ρ
(9.1)

can be combined with the dipole field to produce equal focusing in both planes. Given the
specifications in Table 9.2, the desired quadrupole component for this design has a field
gradient of -1.938 T/m.

An optimized conductor path to produce the desired fields

Section 8.3 discussed methods for optimizing the conductor winding path of a curved CCT
magnet to produce desired fields. For this design, the method of optimizing winding coeffi-
cients for a parametric path in toroidal coordinates was chosen. Here the field is calculated
on a reference radius forming a circle at the middle of the bending angle (φ = 45o), with
the reference circle centered about the bending radius ρ. The figure of merit for the coil
optimization was a local cylindrical expansion of these fields compared to the desired 3.0 T
dipole and -1.938 T/m quadrupole. While these harmonics are not a true 2D solution for
a curved system (such a treatment would require the use of toroidal harmonics), particle
tracking through coils generated by this optimization process has shown sufficient accuracy
in producing the desired beam behavior.

As was previously discussed in Chapter 8, it is important to not lose sight of the fact
the final field “quality” of a magnet system is producing the desired effect on the beam.
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This is especially true in a highly curved system where the assumptions behind traditional
field expressions begin to break down. Figure 9.2 shows the resultant optimized coil path
and straight-section fields for the two layer design. The local harmonic field components
at increasing reference radii for these results are shown in Table 9.3. As a result of the
optimization, the desired straight-section field components are met to within a fraction of
a percent. The quality of this solution for point-to-parallel gantry beam optics will be
examined using particle tracking through the coils in Section 9.4.

(a)

(b)

Figure 9.2: (a) The two conductor layers optimized for the combined dipole and quadrupole
fields. (b) The contribution of each layer to the transverse field on the midplane and their
sum as function of distance across the bore of the straight-section.

Table 9.3: Straight-Section Cylindrical Harmonics

ref. rad. (mm) % of clear bore B∗1 (T) B∗2 (T/m) B∗3 (T/m2 103) B∗4 (T/m3 104)
12.5 10% -3.0005 1.9373 -2.82 -.0575
31.25 25% -3.001 1.9373 -2.44 3.99
82.5 66% -3.0045 1.9369 0.258 32.7
93.75 75% -3.0057 1.9368 1.16 42.5

Positive concavity

An important consideration during the optimization of the coil path is maintaining positive
concavity on the inner edge of the torus. This allows for the winding to be placed without
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additional tooling, due to its tendency to “hug” the ID of the torus under tension and not
pull off to form a chord across the bend. Section 8.2 described the restrictions on the path to
achieve this. For this design, the initial tilt angles which set the primary winding coefficient
and pitch angle were chosen to be 32.14 degrees for layer 1 and 32.89 degrees for layer 2.
These tilt angles were chosen to produce the same pitch angle for both layers. A larger
magnitude was also chosen to produce a coil far from containing negative concavity. For
example, both are much larger than the limiting tilt angle of 24.5 degrees shown in Figure
8.4 for the geometry of layer 1 with the assumption of only a dipole winding coefficient.
Equation 8.12 was evaluated for the set of winding coefficients used for each layer to check
the concavity of this solution. The result is shown in Figure 9.3. While the behavior is slightly
different than the single coefficient case shown previously in Figure 8.4, the concavity of this
solution is far from negative in all areas of the winding.

Figure 9.3: The concavity of the CCT winding path as a function of the azimuthal toroidal
angle is shown for layer 1 and layer 2 of the design.

Minimum rib thickness

A second consideration during coil generation is the minimum perpendicular distance be-
tween conductor channels. The experience machining aluminum and aluminum bronze man-
drels has shown a rib thickness of greater than 15 mils (0.381 mm) is necessary to avoid
breakage. The rib thickness as a function of toroidal azimuthal angle for layer 1 of this
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design is shown in Figure 9.4. An analytic prediction using Equation 8.8 with a 2.0 mm
channel subtracted off is compared to results exported from a finite element model of the
coil. Good agreement is seen, with a minimum rib thickness of 0.48 mm on the midplane of
the inner edge of the torus (ξ = π). The maximum and minimum rib values for both layers
are given in Table 9.4. In this design, both layers have a minimum rib thickness well above
the 15 mil requirement.

Figure 9.4: Comparison of analytic (blue) and finite element (red) perpendicular rib thickness
between channels is shown as a function of toroidal azimuthal angle for the winding of layer
1.

Table 9.4: Gantry Magnet Rib Thickness

Layer δmax (pole) δmin (ID midplane) specification
1 3.32 mm 0.48 mm δmin > 0.381 mm
2 3.30 mm 0.48 mm δmin > 0.381 mm

Integrated harmonics and magnetic length

The desired dipole field profile along the length of the magnet will bend the reference particle
traveling on axis by ninety degrees. For a CCT magnet, the value of the integrated dipole
along the length can be adjusted by adding or removing conductor turns. The number
of turns in this design was adjusted to get as close as possible to the ninety degree bend
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condition. The closest integer number of turns to this condition was found to be 230 turns
per layer. Figure 9.5 shows the calculated dipole field as a function of the distance along the
path of the reference particle for this design. A magnetic length of 1218.45 mm at -3.0 T
was calculated from the integrated dipole field. This value is close to, but slightly less than,
the physical bend length of ρπ/2 = 1215.8 mm.

(a)

(b)

Figure 9.5: (a) The path of integration through the dipole. (b) The dipole harmonic as a
function of distance along the path.

Load lines and shortsample

The field at the conductor of layer 1 was first estimated using a line current Biot-Savart
method. The magnitude of the field at the bottom of the conductor channel was calculated
using a line current placed at the center of the channel. This is an approximation that will
underestimate the field at the conductor, but can be used to study the field profile within the
windings without the long computation times using the full conductor geometry in software
such as Opera3D. The result of this calculation is shown in Figure 9.6. A maximum field at
the conductor is seen near the end poles of the magnet which is typical for dipoles.

The field at the conductor in the end region of the coil was then recalculated using
Opera3D with the full conductor geometry. A maximum field at the conductor of 3.93 T
was found using a net current of 7990 A. Given the lack of iron in the system, this provides a
linear load line for the design (see Fig. 9.7). To provide the necessary margin and reduce the
power supply current to less than 500 A, 23 strands electrically insulated from one another
were chosen as the conductor for both layers. This corresponds to a mandrel channel size
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Figure 9.6: The distribution of the field at the conductor is shown for layer 1.

of approximately 2.0 mm in width and 10.0 mm in height. The strand parameters used for
the short-sample calculation were based on the 0.8 mm diameter SSC Inner NbTi listed in
Table 9.5. As seen in Figure 9.7, this conductor choice results in approximately 30% current
margin. If necessary, additional margin can be gained by increasing the channel height and
adding more strands.

Table 9.5: SSC Inner NbTi Strand Parameters

Filament Diameter 6.0 µm
Strand Diameter 0.808 mm
Strand Jc (5T,4.2K) 2750 A/mm2

Strand Cu/SC 1.3

9.3 Magnet geometry, structure, and weight

Conductor geometry and use

The magnet geometry is based on a two layer approach where each layer consists of a winding
mandrel (cylindrical torus) with channels to guide the conductor. The size of the channels
for both layers is 2.0 x 10.0 mm, corresponding to 23 strands of 0.8 mm diameter, and each
mandrel has a 3.0 mm spar. This makes the total radial thickness of each layer 13 mm. The
radial buildup for both layers is shown in Table 9.6 where the ID of the inner layer results
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Figure 9.7: The load line and short sample is shown for the design.

in a clear bore diameter of 250 mm. The total radial width of the coilpack is 26 mm. With
these parameters, the amount of conductor required for this design is given in Table 9.7.

Table 9.6: Radial Buildup (in mm)

Layer IR-spar IR-cond OR-cond
1 125 128 138
2 138 141 151

Table 9.7: Conductor Use

Layer # turns L-one-channel (m) L-all-channel (m) # strands L-strand (km)
1 230 1.237 284.7 23 6.55
2 230 1.340 308.1 23 7.09

tot 592.8 m 13.64 km

Structure and weight

The two cylindrical CCT magnets fabricated to date, CCT1 and CCT2, both use an alu-
minum outer shell as the only external structure. A similar approach is being considered for



CHAPTER 9. A CURVED CCT DESIGN STUDY FOR A PROTON THERAPY
GANTRY 160

the gantry magnet, using a 20 mm thick aluminum shell outside layer 2. With this assump-
tion, the weight of the mandrels, conductor, and outer shell of the magnet can be estimated.
The use of 954 aluminum bronze alloy for the mandrel material is assumed. Table 9.8 es-
timates this weight assuming a total bend angle of 130 degrees for the mandrels and shell.
This angle is extended larger than 90 degrees to include both end regions of coil windings.

Table 9.8: Estimated Weight

Volume (103cm3) Density (g/cm3) Weight (kg)
Mandrel 1 13.2 7.45 98.1
Mandrel 2 14.6 7.45 108.5
Shell 35.5 2.7 95.9
Channel/Cond. 11.9 8.96 106.2
tot. 75.1 408.8

This estimation does not include contributions from the cryostat and iron necessary for
shielding of the stray field. The use of iron for shielding only should result in a significant
reduction in iron volume when compared with a resistive gantry magnet. Iron shielding is
application specific, with the design tailored to the maximum allowable field in the locations
to be shielded. For this reason, the weight of iron needed for shielding this design was not
speculated.

9.4 Beam tracking

A short beam tracking study was performed to confirm the approximate point-to-parallel
optics. The goal of this study was not to develop an in-depth understanding of the beam
optics, but rather to confirm the magnet design performs close what is desired. To accomplish
this, protons were tracked from the location of the scanning magnets to the isocenter of
the gantry. The horizontal and vertical scanning magnets were approximated at the same
location and assumed to be 0.5 m upstream of the final bending magnet. The isocenter was
assumed to be 1.0 m downstream of the bend.

Twenty five particles were tracked, each starting at the scanning magnet location with
a different initial angle (kick). These kicks were equally spaced between ± 30 mrad. The
particles were then tracked in discrete steps using the equations of motion and a Runge-
Kutta integrator. At each step of the tracking (particle location), the magnetic field for the
equations of motion was calculated from the central path of the coils. The tracking then takes
into account the full 3D coil geometry and the associated 3D fields. This is advantageous,
as it allows for complete treatment of the end fields and any field distortions present. In this
case, no assumptions are needed for fringe field behavior or harmonic representation of the
field.



CHAPTER 9. A CURVED CCT DESIGN STUDY FOR A PROTON THERAPY
GANTRY 161

(a) (b)

Figure 9.8: Results for tracking through the CCT layers are shown.

The results of the tracking are shown in Figure 9.8. Figure (a) shows the path of the
particles projected into the horizontal plane. The kicker location and start of the tracking can
seen in the bottom right of the figure (note the slightly different orientation when compared
with previous figures). The final grid of particles at the isocenter location is shown in Figure
(b). An ideal point-to-parallel system would show a perfect map between initial kick angle
and final isocenter position. Some shift and distortion of the distribution is seen in the
results for the CCT magnet. This could be corrected with a non-linear kick map or by
further optimization of the fields. In a design study including a full treatment of the beam
optics, the fields would be further optimized including the consideration of the distortion of
the beam spot itself. For the example of such a study for a carbon therapy magnet see [86].
In this case the beam behavior was close enough to what is desired that the coil design could
be considered for a study of the Lorentz forces and a structural analysis.

9.5 Lorentz forces

The Lorentz forces of the design were calculated to gain an initial understanding of their
magnitude and direction. The goal was to determine what deformation the Lorentz forces
would create. The results of two different calculations were examined. The first is the
variation of the Lorentz forces around a single turn at the center (straight-section) of the
torus, and the second is the variation of the Lorentz forces along the length of the bend.
One gives an idea of the local forces (deforming the bore), and the other focuses on the
distributed forces (deforming the full torus). The expectation was the forces would deform
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the bore from a circular to an elliptical shape in the straight-section (typical of a dipole
magnet), and straighten the bend of the torus along the length. Following this study, the
forces were applied as loads in an ANSYS model of the design. Section 9.6 will present a
study of boundary conditions for the torus, the Lorentz force induced displacement, and
stress using the ANSYS model.

Method for calculating the Lorentz forces

The level of detail desired for the Lorentz forces in this study is at the order of a single
conductor brick. Calculation of the variation of the forces across the conductor is time
intensive, and would become necessary if an analysis of the conductor stress state was desired
(as was performed for CCT1 and CCT2 using the 3D periodic symmetry). This detailed
conductor stress calculation will be saved for a later study. To calculate the Lorentz forces
desired for this study, the conductor turns were discretized into eight node brick elements
as described in Section 3.1. The net Lorentz force on a single brick can then be estimated
using

~f = I0(~L× ~B), (9.2)

where I0 is the net current, ~L is a vector representative of a line current at the center of the
brick, and ~B is the magnetic field at the center of the brick.

Using a line current Biot-Savart method to calculate the field at the center of the brick is
problematic due to a singularity when the contribution of the brick itself is considered. To
avoid this issue and long calculation times using the full conductor geometry (requiring an
Opera3D model), the field at the center of each brick was estimated as the average of the
field calculated slightly radially above and below the center. This is similar to the calculation
of the force on a current sheet, where the average takes into effect the discontinuity of the
field parallel to the surface required by the magnetic boundary conditions.

Figure 9.9 shows the coordinate system used for the Lorentz force results. The ρ coordi-
nate is along the direction from the central bending axis to the location of calculation, the φ
coordinate is along the bend, and the z coordinate is aligned with the central bending axis.
The location at which the Lorentz force has been calculated will be described by the local
azimuthal angle θ for the straight-section results, and by the bend angle φ for the results
along the length of the torus.

Lorentz forces in the straight-section

Figure 9.10 shows the Lorentz forces in the center (straight-section) of this design as a
function of azimuthal angle. The variation of the three force components are shown, along
with an illustration of the primary Lorentz force actions on a single turn. The behavior is
similar to what is seen for a straight CCT dipole. This is characterized by “radial” forces
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Figure 9.9: The coordinate system for the Lorentz force results is shown.

tending to bend the turn from a circular to elliptical shape at the midplane, and opposite
“axial” forces at the poles. Due to the curved and combined function nature of this design,
the fρ component is unbalanced with a net positive force of 1.8 kN. If this is distributed
along the length it will attempt to straighten out the bend of the torus.

Figure 9.10: The Lorentz forces of a single straight-section turn are shown as a function of
azimuthal angle.

Lorentz forces along the length

Figures 9.11 and 9.12 show the Lorentz forces along the length of this design as a function
of bend angle. Here, the force shown for each bend angle is representative of the net force
within an angular pitch length of φ0 centered about the bend angle. The variation of the
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three force components are shown, along with an illustration of the primary Lorentz force
actions on the bend of the magnet. As expected, the forces along the length attempt to
straighten out the bend. The forces in the end region attempt to collapse the windings
into the bending plane, and the opposite “axial” forces at the poles produce shear between
the two layers. These results give a basic understanding of the Lorentz forces within the
magnet, which can be used during the design of the magnet structure, cryostat, or any other
structural member which will resist these forces.

Figure 9.11: The Lorentz forces along the length of each layer are shown as a function of
bend angle.

Figure 9.12: An illustration of the primary actions of the Lorentz forces along the bend of
the magnet is shown.
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9.6 Structural modeling in ANSYS

An ANSYS model was created to study the displacement and stresses induced during
cooldown and operation of the magnet. Two thick-walled aluminum bronze tubes sized
to the mandrels were generated, followed by an outer aluminum shell of 20 mm radial thick-
ness (Fig. 9.13). A sequential loading of the model was considered, starting with a cooldown
to 4.2 K followed by the application of the Lorentz forces at the maximum operating current.
For the second load step, the Lorentz forces previously calculated in Section 9.5 were applied
to the mandrel tubes. This model does not include the detail of the mandrel channels, due
to the difficulty of meshing and solving a large model with small features (minimum rib on
the order of 0.5 mm). This a non-conservative approximation, as the channels will reduce
the stiffness of the mandrels. A future calculation including the detail of the conductor and
channels could be performed using the concept of the minimum 3D symmetry (see Section
3.3) extended to a curved CCT magnet. Given the relatively low field and use of NbTi con-
ductor, it was decided to focus on a study of the large scale behavior of the curved magnet
rather than a detailed straight-section model including the conductor.

Figure 9.13: The ANSYS model and locations of applied boundary conditions are shown.

Without knowledge of how the magnet interfaces to the cryostat and the gantry, two
different boundary conditions were studied with the hope of bounding the possible behavior.
The first condition leaves the ends of the magnet free and restricts the nodes at the center to
remain in the 45o plane. This reflects a situation where the ends of the magnet are allowed
to deform under Lorentz forces seeking to straighten the bend. The second condition leaves
the center of the magnet free and restricts the ends to remain in the 0o and 90o planes. This
probes the opposite extreme. For both boundary conditions, the contact surfaces between
all layers were bonded to reflect epoxy impregnation of the entire magnet.
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Boundary condition #1: center fixed in plane

The first boundary condition forces the center of the model to stay in plane. This is accom-
plished by selecting all the nodes at φ = 45o and constraining their displacement in φ with
the condition uφ = 0. Then the nodes at the pole (ρ = ρ0) were reselected and restricted
with uρ = 0, and the nodes at the midplane (z = 0) were reselected and constrained with
uz = 0. Following this, the ANSYS model was solved for a cool down to 4.2 K and then
with the Lorentz force loads. Figure 9.14 shows the Lorentz force induced displacement. As
expected, a straightening of the torus as well as a bending of the central cross section from
a circular to an elliptical shape is seen.

Figure 9.14: The net displacement (in mm) is shown along the length, and the displacement
along ρ (in mm) is shown for a central cross section.

Figure 9.15 shows the Lorentz force induced von Mises stress. It is seen that the stress
is concentrated towards the center of the bend. The highest stress concentrations are found
at the midplane and pole on the inner edge near the bore. This concentration is a result
of bending induced stress due to the deformation of the bore from a circular to an elliptic
shape. The maximum value of near 120 MPa is well below the 220 MPa yield point of 954
aluminum bronze considered for the mandrel material. The effect of the cooldown was also
investigated and found to be minimal. The behavior is characterized by the aluminum shell
shrinking onto the bronze mandrels to apply a slight amount of pre-stress. The maximum
von Mises stress with both the Lorentz forces and cooldown included was 140 MPa.

Boundary condition #2: ends fixed in plane

The second boundary condition restricts the nodes in the end regions to stay in plane. This
is accomplished by selecting all the nodes at φ = 0o and φ = 90o and constraining their
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Figure 9.15: The von Mises stress (in MPa) is shown along the length and for a central cross
section.

displacement in φ with the condition uφ = 0. Then the nodes at the midplane (z = 0) were
reselected and restricted with uz = 0. The ANSYS model was then solved for a cool down
to 4.2 K and again after the application of the Lorentz force loads. Figure 9.16 shows the
Lorentz force induced displacement. This boundary condition prevents the straightening of
the torus previously seen, but does not prevent a bending of the central cross section from
a circular to an elliptical shape.

Figure 9.16: The net displacement (in mm) is shown along the length, and the displacement
along ρ (in mm) is shown for a central cross section.
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Figure 9.15 shows the Lorentz force induced von Mises stress. Similar to the first bound-
ary condition, the highest stress concentrations are found at the midplane and pole on the
inner edge near the bore. This is bending induced stress due to the deformation of the
bore from a circular to an elliptic shape. The maximum value of near 162 MPa is below
the 220 MPa yield point of 954 aluminum bronze considered for the mandrel material. The
effect of the cooldown was also investigated and found to be minimal. The net effect is the
aluminum shell shrinking onto the bronze mandrels to apply a slight amount of pre-stress.
The maximum von Mises stress with both the Lorentz forces and cooldown included was 192
MPa.

Figure 9.17: The von Mises stress (in MPa) is shown along the length and for a central cross
section.

9.7 Conclusion

This design study focused on an initial investigation of the magnetics and structure, with
the goal of better understanding the feasibility of using a curved CCT for a final bending
magnet in a proton therapy gantry. It was shown a two layer design can be optimized to
produce the desired fields, which was verified by particle tracking through the coils. The
short-sample limit of the design was calculated and the feasibility of using existing NbTi
strand was demonstrated. The distribution of the Lorentz forces was determined to better
understand the primary deformations the structure resists. These Lorentz forces were used in
an ANSYS model to study two different boundary conditions expected to bound the behavior.
A reasonable magnitude of displacements and stresses was found for both conditions. This
gives initial confidence a curved winding mandrel approach to the structural design is feasible
for this application.
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The application of this feasibility based study to the needs of a specific gantry will require
a more detailed analysis. One key aspect is the design of the cooling system for the gantry.
This system will need to provide adequate cooling of the magnet during gantry specific
rotation and magnet field ramping during the treatment. Given the rotation and operation
in a hospital environment, it is likely this system will be based on a “dry” conducting cooling
approach. The feasibility of such a system to manage the AC losses in the conductor and
eddy current losses in the magnet structure will need to be demonstrated.
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Chapter 10

The AG-CCT: a New Magnet
Concept for an Achromatic Gantry

10.1 The AG-CCT concept

The AG-CCT concept consists of multiple CCT quadrupole winding sections placed in se-
quence on a curve such that the effective current direction is reversed between sections. This
produces alternating quadrupole field regions along the length of the bend whose individual
integral strengths can be tuned by the location of the current polarity transitions. A simple
transition scheme to reverse the current between sections has been developed to allow for the
use of one continuous winding and power supply. This transition scheme nests the ends of
each section inside the next, resulting in an alternating focusing system that is both compact
and efficient.

The method for changing the current direction between sections makes use of the axial
periodicity of CCT windings. Changing the direction of this period switches the direction
of the axial current and thus the transverse fields. To generate an AG-CCT winding, a
winding path is first optimized to produce quadrupole fields in the straight-section (for
example using the method described in Section 8.3). This winding can then be regenerated
with sections of alternating axial period based on the desired integrated strengths of the
focusing and defocusing regions. Then, a short reverse bend is added to transition between
alternating sections and maintain one continuous winding. Figure 10.1 illustrates the concept
and transition scheme by showing a single quadrupole winding layer split into five sections
(FDFDF). A close up of the coil transition between an F and D section is shown with the
current direction at the transition location indicated.
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Figure 10.1: A single alternating focusing quadrupole layer is shown with five sections
(FDFDF). The transition scheme between sections of opposite axial period is enlarged with
the current direction indicated. This scheme allows for the coil to be generated with one
continuous winding, where the relative integral strength of the sections can be tuned by
adjusting the number and location of transition points.

10.2 Desired magnetic fields for an achromatic proton

gantry

The high gradients offered by superconducting quadrupole magnets have recently been in-
vestigated for use in achromatic gantries [78, 79, 80, 81]. Such gantries have a large beam
energy acceptance, showing promise to treat patients with minimal changes in gantry magnet
field. This study will focus on the needs of one particular gantry design which implements
the AG-CCT concept. While the focus will primarily be on the superconducting magnets
needed for this gantry, a detailed study including the beam optics can be found in the fol-
lowing reference [80]. The beam optics layout implements AG-CCT magnets in three locally
achromatic bending sections (B1, B2, and B3 in Figure 10.2).

The first two bending sections B1 and B2 are identical with a total bending angle of 75
degrees. The final bending section B3 is 90 degrees and has an increased bore size due to
being downstream of the scanning magnets. All sections contain two field components. The
first is a constant dipole field along the length to provide the bending, and the second is an
alternating quadrupole field to increase the momentum acceptance. It has been shown this
optics layout can provide a 25% momentum acceptance, ranging asymmetrically from -5%
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to 20% off momentum. Figure 10.3 shows several proton depth ranges that can be covered
using this acceptance.

Figure 10.2: A diagram of the proton gantry is shown with the three locally achromatic
AG-CCT bending sections (B1, B2, and B3) indicated.

With such a range it is conceivable some tumors could be treated without changing
the magnetic field of the superconducting magnets during each treatment direction. This
has the advantage of eliminating the difficulty associated with losses in the superconductor
and magnet structure during fast field ramping. The design of the magnets in this study
will focus on the highest operating point in Figure 10.3 (Bρ = 1.87 Tm) corresponding to
the maximum current and field in the superconducting magnets. The desired fields will be
specified using the Sharp Cut Off Fringe Field (SCOFF) model. In the SCOFF model, fields
are represented by step functions of the central field with the length adjusted for the desired
integrated harmonic (see the definition of magnetic length in Appendix A).

For a curved magnet it is easiest to specify the magnetic length in terms of the bend
angle assuming a constant bend radius. Table 10.1 and Figure 10.4 show the desired fields
for both bending sections in terms of the SCOFF model. The field magnitudes are based on
the maximum magnet operating current, which takes advantage of the momentum acceptance
of the gantry to be 20% less than the maximum proton energy. While both sections have the
same dipole field, the alternating quadrupole field in the 75 degree bends is approximately
three times as high. This higher gradient is achievable due to the smaller aperture of the 75
degree sections.
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Figure 10.3: Several proton depth ranges covered by the 25% momentum acceptance of the
gantry are shown.

Table 10.1: Desired SCOFF Model Fields for the AG-CCT Bends

B1, B2 (75 ◦) B3 (90 ◦)
Bore aperture (mm) 100 300
Bending radius (m) 1.25 1.25
Bend angle (degree) 75 90
Dipole (T) 1.5 1.5
Gradient (T/m) 48.74 17.43
F Angle (degree) 13.38 10.02
D Angle (degree) 15.80 17.79
F Angle (degree) 16.63 34.39
D Angle (degree) 15.80 17.79
F Angle (degree) 13.38 10.02

10.3 Preliminary design of an AG-CCT magnet

system for the desired fields

A preliminary magnet design study was performed to verify the feasibility of using the AG-
CCT concept for the desired gantry fields presented in Section 10.2. A four layer design
was considered for both the 75 degree and 90 degree bending sections. Each bending sec-
tion contains two AG-CCT quadrupole layers nested inside two outer CCT dipole layers
(Fig. 10.5). The conductor is positioned in grooved winding mandrels which also provide
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(a) (b)

Figure 10.4: The desired SCOFF fields from Table 10.1 are shown for the 75 degree bends
B1 and B2 (a) and the 90 degree bend B3 (b).

structural support. The winding mandrel parameters resulting from this approach are shown
in Table 10.2, where the channel depth was determined by the number of strands per layer
(to be discussed when the short-sample is presented).

Figure 10.5: The four CCT layer approach to the bending sections is shown.
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Table 10.2: Winding Mandrel Geometry (in mm)

75 degree (B1,B2) 90 degree (B3)
Lay Type Ri Ro Wall Channel Ri Ro Wall Channel

1 AG-CCT 50 64.3 14.3 2.0/11.3 150 169 19.0 2.0/16.0
2 AG-CCT 64.3 78.6 14.3 2.0/11.3 169 188 19.0 2.0/16.0
3 CCT dipole 78.6 85.1 6.5 2.0/3.5 188 196.2 8.2 2.0/5.2
4 CCT dipole 85.1 91.6 6.5 2.0/3.5 196.2 204.4 8.2 2.0/5.2

Coil generation and fields

A curved CCT conductor path for each of the bends was optimized using the winding coef-
ficient method described in Section 8.3. The figure of merit for the two inner layers was a
pure quadrupole field, and the figure of merit for the outer two layers was a pure dipole. In
this case a cylindrical expansion of the fields on a reference radius at the center of the bend
was compared to the desired fields. Following the coil winding optimization, a current was
chosen for the dipole and quadrupole layers to match the desired magnitude of the SCOFF
harmonics (see Table 10.1). The quadrupole coils were then broken up into five sections
with alternating current to match the SCOFF model. Here an integer number of turns was
chosen to match the SCOFF model bend angle considering each turn has a constant angular
pitch φ0.

Particle tracking was then performed through the coils. The SCOFF model idealizes the
field profile along the length, meaning a final optimization of the windings was needed to
account for the differences. Similar to the proton final bending magnet study (Section 9.4),
the tracking was performed using the full coil geometry which included all 3D field effects and
fringe fields. This directly coupled the final optimization of the coil to the beam behavior,
eliminating the need for a final field quality specification which is difficult in an alternating
curved system. During the beam tracking study, the sectioning of the quadrupole coils and
the magnitude of the field gradients were adjusted. The final break up and field gradients of
the AG-CCT sections that produced the desired beam behavior is given in Table 10.3.

Table 10.3: Post Particle Tracking: AG-CCT Split

75 degree (B1,B2) 90 degree (B3)
type nturns bend (deg) gradient (T/m) nturns bend (deg) gradient (T/m)

F 62 13.4 50.6 44 10.3 19.7
D 73 15.8 -50.6 79 18.6 -19.7
F 77 16.6 50.6 137 32.2 19.7
D 73 15.8 -50.6 79 18.6 -19.7
F 62 13.4 50.6 44 10.3 19.7

tot. 347 75 383 90
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An example of the resultant straight-section fields are shown for the 75 degree bend in
Figure 10.6. The combined field of a 1.6 T dipole plus a 50.6 T/m quadrupole is seen. The
slight left-right asymmetry of the winding cross section is a result of an effort to produce
left-right symmetric cylindrical multipoles in a curved magnet. The field along the length
of the bends is seen in Figure 10.7. In this figure the fields generated by the dipole and
AG-CCT layers are compared to those of the desired SCOFF model. The CCT fields are
seen approaching the sharp edge model in the integrated sense. The ability of an AG-CCT
section to produce a “flat top” straight-section field is based on the length and bore size of
the section. The smaller bore of the 75 degree bend allows for the production of flat-top
sections over a much smaller angle. This resulted in a better agreement between the SCOFF
and CCT fields when compared to the 90 degree bend.

(a) (b)

Figure 10.6: (a) A slice of the coils for the 75 degree bend. The inner two layers were
designed to produce a quadrupole field and the outer two a dipole field. (b) The vertical
field on the midplane produced by the windings.

Short-sample

An Opera3D model of the dipole and AG-CCT conductor layers for both bends was generated
using the method described in Section 3.2. This model corresponded to optimized coil after
the beam tracking (Table 10.3) and contained the detail of the transitions (short reverse
bends). The field at the conductor of each layer was calculated with the current set at the
maximum operating point. Similar to the previous gantry magnet study, SSC inner NbTi
strand was considered as a baseline for the conductor (Table 9.5). This is a well characterized
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(a) (b)

Figure 10.7: The dipole and alternating quadrupole contributions from the CCT dipole and
AG-CCT layers are shown as a function of bending angle for the 75 degree bend (a) and 90
degree bend (b).

NbTi strand that is readily available. It also has the advantage of using a small filament
diameter which reduces AC losses in the strand during field ramping.

The number of strands used in each layer was chosen to provide a current margin of at
least 20% and keep the current per strand less than 500 A. Here the current is limited to
maintain compatibility with a “dry” cryogenics system. In this case the strands are assumed
to be in series and electrically isolated from one another so that the operating current is
that of a single strand. An efficient method for isolating the strands and creating the many
connections needed between layers is an area of future research, during which an alternate
conductor or approach may be chosen.

Table 10.4 shows the maximum field at the conductor, the chosen number of strands,
the current per strand, and the resulting margin using SSC inner NbTi for each layer. It is
seen that 20% margin can be obtained with a reasonable number of strands. The maximum
required channel depth (sized to 37 strands) is approximately 16 mm. If necessary, additional
margin can be gained by increasing the number of strands. Figures 10.8 and 10.9 show the
operating point of 75 and 90 degree bends. In this case it is important to note the “load
lines” in the figures are coupled because changing the current in the dipole layers changes
the maximum field at the AG-CCT layers and vice versa.
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Figure 10.8: The short-sample in the superconductor is shown for both the AG-CCT and
CCT dipole layers of the 75 degree bend (B1,B2).

Figure 10.9: The short-sample in the superconductor is shown for both the AG-CCT and
CCT dipole layers of the 90 degree bend (B3).
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Table 10.4: Short Sample at the Maximum Operating Point

75 degree (B1,B2) 90 degree bore (B3)
Lay Type I/str. (A) Bmax(T) str. mrg. I/str.(A) Bmax(T) str. mrg.

1 AG-CCT 291.8 5.0 26 24% 220.7 6.03 37 21%
2 AG-CCT 291.8 5.0 26 24% 220.7 6.07 37 21%
3 CCT dipole 477.3 3.93 8 26% 325 5.13 12 26%
4 CCT dipole 477.3 2.86 8 48% 325 4.03 12 45%

10.4 Conclusion and alternative applications

The AG-CCT concept was shown to be an efficient method for producing alternating quadrupole
fields along the bend of a torus. This concept appears to be a practical design for produc-
ing the fields desired by achromatic gantries. The large energy acceptance of these gantries
show promise to greatly reduce the need for fast field ramping, potentially eliminating a key
risk to the introduction of superconducting technology in this area. A preliminary design
study of an AG-CCT magnet system for a proton therapy gantry was presented, showing
the feasibility of the magnetic design.

While this application is focused on alternating quadrupole fields, the concept applies
more generally to any alternating harmonic (dipole, quadrupole, sextupole, etc.) in the
curved or straight geometry. In the general sense this concept is called a Left-Right CCT
magnet (LR-CCT). A compact and efficient method for generating alternating harmonics
should be desired in fields outside of ion beam cancer therapy. One application that ap-
pears promising is the use of a LR-CCT magnet to generate an alternating dipole field for
a “wavelength shifter”. These devices are applied to charged particle beams (typically elec-
trons) to produce intense, high photon-energy synchrotron radiation without any net steering
or displacement of the beam.
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Part III

Conclusion
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Chapter 11

Summary and Future Work

The performance of the Canted-Cosine-Theta (CCT) design for high energy physics and
ion beam cancer therapy will ultimately be determined by a series of magnet tests. Two
programs at Lawrence Berkeley National Laboratory have been established to achieve this.
The first is within the high field base program of the Superconducting Magnet Group of the
Accelerator Technology and Applied Physics Division. A series of staged tests are planned
for the Nb3Sn CCT dipole magnet design CCT2 presented in this thesis. This magnet will
be tested in configurations increasing from 10 to 16 T over the next several years, with the
goal of determining the performance of the CCT at the field level desired for a future hadron
collider.

The application to ion beam cancer therapy will be actively pursued using a recent
grant from DOE’s Accelerator R&D Stewardship Program. This newly established program
seeks to promote the application of accelerator technology developed for high energy physics
to the needs of the general community. In this case, superconducting CCT magnets (in
particular the AG-CCT) have been identified as a way to reduce the weight and cost of ion
beam cancer therapy gantries, and potentially open the door to treatment for more patients
who can benefit from this therapy. This three year grant will be used to build and test a
superconducting AG-CCT magnet system for a proton therapy gantry. The research will be
performed by a collaboration of Lawrence Berkeley National Laboratory, the Paul Scherrer
Institute, and Varian Particle Therapy.

It is my hope the developments of this thesis will contribute to the success of both
projects. In this thesis an analytic approach to the CCT was presented that can be used
for design and optimization in both the straight and curved geometry. New finite element
methods were given with a focus on structural modeling. The design of two dipole magnets
for high energy physics was presented (CCT1 and CCT2). The fabrication and successful
test of the 2.5 T NbTi dipole CCT1 was completed, serving as a proof-of-principle step
towards a high field Nb3Sn magnet. Initial steps were taken in the fabrication of the 16 T
Nb3Sn dipole CCT2 which will be tested as part of LBNL’s high field base program.

Two design studies were performed for ion beam therapy. The first focused on a curved
superconducting CCT to reduce the weight of a final bending magnet in a proton therapy
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gantry with upstream active scanning. This study showed the feasibility of the magnetic
and structural design, which can be adapted to a future study of the cryogenics for a specific
gantry. The second study makes use of a new magnet concept (the AG-CCT) to reduce
the weight and improve the functionality of a proton gantry. This concept produces alter-
nating high gradient fields desired for achromatic (high energy acceptance) beam optics. A
preliminary design study of an AG-CCT magnet system for a proton therapy gantry was
performed, showing the feasibility of the magnetic concept. This study lays the groundwork
for the AG-CCT design that will be built and tested as part of the stewardship program.
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Appendix A

Magnetic Field Representation in
Accelerator Magnets

A.1 Straight-section harmonics

It is typical to express the transverse magnetic field in the center or “straight-section” of a
magnet in terms of harmonics. This straight-section is far from the ends of the magnet in the
region where the current density is independent of axial position (Fig. A.1). Field harmonics
are chosen due to being the standard representation for accelerator physics [109], serving
as a common language between beam dynamics and magnet design. This representation
corresponds to a 2D solution of Laplace’s equation for the magnetic vector potential in a
region of no current, ∇× ~B = ∇× (∇× ~A) = −∇2 ~A = 0, with the choice of Coulomb gauge.
This solution is conveniently expressed in the complex plane as

By(x, y) + iBx(x, y) =
∞∑
n=1

(Bn + iAn)

(
x+ iy

R0

)n−1
, (A.1)

where Bn and An give the magnitude of the harmonics, and R0 is a reference radius typically
chosen to be 2/3 of the magnet’s aperture.

It is common to normalize this expression to the harmonic the magnet is designed to
produce,

By(x, y) + iBx(x, y) = 10−4Bmain

∞∑
n=1

(bn + ian)

(
x+ iy

R0

)n−1
, (A.2)

such that Bmain is B1 for a dipole, B2 for a quadrupole, B3 for a sextupole, and so on. Bmain

corresponds to the magnitude of the field from the design harmonic on the midplane (y = 0)
at the reference radius R0. The 10−4 is chosen as a convenient normalization for field errors.
Here the normal and skew coefficients bn and an represent 100 ppm of the desired harmonic,
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(a)
(b)

Figure A.1: (a) A coil configuration is shown cut through the center of the straight-section
(away from the ends). (b) The complex plane used for the harmonic expression of the
transverse fields.

and are referred to as field “units”. This scales the coefficients to the order of magnitude of
allowed field error. A typical specification for the field quality of an accelerator magnet is
the bore field should contain less than a few units of the non-desired harmonics.

A.2 Integrated harmonics

The ends of the magnet break the 2D symmetry assumed in Section A.1 for the straight-
section harmonics. This leads to variation of the field along the length of the magnet, a
full treatment of which requires the use of 3D harmonics [111]. It is typical to describe the
harmonics along the length in terms of integrated values. For typical accelerator magnets it
is desirable to maximize the integral of the main harmonic and minimize the integral of the
undesired harmonics (referred to as integrated field errors).

Figure A.2 shows the typical form of the dipole field along the length of a CCT magnet
with the location of the straight-section dipole BSS

1 indicated. If z represents the length
along the axial direction, the integrated dipole field is

B1,int =

∫
B1(z)dz. (A.3)

It is typical to represent the integrated dipole field with a step function of value BSS
1 and

width
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Figure A.2: The typical form of the dipole harmonic B1 along the length of a CCT magnet
is shown with the location straight-section dipole field BSS

1 indicated.

Lm =
B1,int

BSS
1

=

∫
B1(z)dz

BSS
1

, (A.4)

which is referred to as the magnetic length of the magnet. This representation can be seen
in Figure A.3.

The higher order harmonics also vary along the length of the magnet. Examples of this
variation can be seen for CCT1 in Figure 5.6 and CCT2 in Figure 6.5. To describe the higher
order field error through the ends of a dipole magnet, normalized integrated harmonics are
defined

b̄n =

∫
Bn(z)dz

BSS
1 Lm

, (A.5)

where BSS
1 is the dipole harmonic in the straight-section and Lm is the magnetic length. For

a dipole magnet it is desirable to minimize these integrated field errors.
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Figure A.3: The integrated dipole field is represented as a step function of height BSS
1 and

magnetic length Lm.



195

Appendix B

Current Sheet Vector Potentials

B.1 The vector potential from integration

The magnetic vector potential resulting from a current distribution can be directly deter-
mined by integration. If primed coordinates are used to represent the location of source
current, the static vector potential ~A is given by

~A(~r) =
µ0

4π

∫ ~J(~r′)

|~r − ~r′|
d3~r′. (B.1)

For a current sheet located at a fixed radius of r′ = a, the integration in cylindrical coordi-
nates becomes

~A(r, θ, z) =
aµ0

4π

∫ ∫ ~j(θ′, z′)

|~r − ~r′|
dθ′dz′, (B.2)

where ~j is the linear current density of the sheet. The integration variables t ≡ θ − θ′ and
s ≡ z − z′ are introduced, such that

|~r − ~r′| =
√
a2 + r2 + s2 − 2ar cos t. (B.3)

B.2 Integration for a current sheet with no axial

variation

For a current sheet with no axial variation located at fixed radius a, the axial integration is
given by

~A =
aµ0

4π

∫ 2π

0

~j(t)dt

∫ ∞
−∞

1√
a2 + r2 + s2 − 2ar cos t

ds, (B.4)
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where the length of the sheet is assumed to be infinite. The axial integration over s can be
performed with C∗ ≡ a2 + r2 − 2ar cos t so that

∫ ∞
−∞

1√
C∗ + s2

ds = 2

∫ ∞
0

1√
C∗ + s2

ds = 2 log(s+
√
C∗ + s2)

∣∣∣∣∞
0

= −2 log(
√
C∗), (B.5)

where the constant terms are discarded. The identity

∞∑
k=1

zk cos kx

k
= log

(
1√

z2 − 2z cosx+ 1

)
|x| < 1 (B.6)

is considered to show that within the bore

∫ ∞
−∞

1√
a2 + r2 + s2 − 2ar cos t

ds = −2 log(a) + 2
∞∑
k=1

(r
a

)k cos kt

k
r < a, (B.7)

and outside the bore

∫ ∞
−∞

1√
a2 + r2 + s2 − 2ar cos t

ds = −2 log(r) + 2
∞∑
k=1

(a
r

)k cos kt

k
r > a. (B.8)

B.3 Potential for a solenoidal current sheet

A constant azimuthal current ~j(θ′, z′) = j0θθ̂
′ can be written in the integration coordinates

as

~j(t) = j0θθ̂
′ = j0θ

[
sin tr̂ + cos tθ̂

]
. (B.9)

The vector potential for this current can then be found using Equations B.4, B.7, and B.8
such that

~A =
aµ0

4π

∫ 2π

0

j0θ

[
sin tr̂ + cos tθ̂

] [
−2 log(a) + 2

∞∑
k=1

(r
a

)k cos kt

k

]
dt r < a (B.10)

inside the bore, and

~A =
aµ0

4π

∫ 2π

0

j0θ

[
sin tr̂ + cos tθ̂

] [
−2 log(r) + 2

∞∑
k=1

(a
r

)k cos kt

k

]
dt r > a (B.11)
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outside the bore. The integration picks out the k = 1 component so that

~A(r) =

{
µ0j0θ

2
rθ̂, r < a

µ0j0θa
2

2r
θ̂, r > a

. (B.12)

It is seen that the potential is continuous at r = a, and the magnetic field (as a check) is the
expected

~B = ∇× ~A =
1

r

(
∂(rAθ)

∂r

)
ẑ =

{
µ0j0θẑ, r < a

0, r > a
. (B.13)

B.4 Potential for a cos(nθ) current sheet

An axial current varying azimuthally as ~j(θ′, z′) = j0zn cos(nθ′)ẑ′ can be written in the
integration coordinates as

~j(t) = j0zn cos(nθ′)ẑ′ = j0zn [cosnθ cosnt− sinnθ sinnt] ẑ. (B.14)

The vector potential for this current can then be found using Equations B.4, B.7, and B.8
such that

~A =
aµ0

4π

∫ 2π

0

j0zn [cosnθ cosnt− sinnθ sinnt]

[
−2 log(a) + 2

∞∑
k=1

(r
a

)k cos kt

k

]
ẑdt r < a

(B.15)
inside the bore, and

~A =
aµ0

4π

∫ 2π

0

j0zn [cosnθ cosnt− sinnθ sinnt]

[
−2 log(r) + 2

∞∑
k=1

(a
r

)k cos kt

k

]
ẑdt r > a

(B.16)
outside the bore. The integration picks out the k = n component so that

~A(r, θ) =

{
µ0j0nz
2n

a
(
r
a

)n
cosnθẑ, r < a

µ0j0nz
2n

a
(
r
a

)−n
cosnθẑ, r > a

. (B.17)

It is seen that the potential is continuous at r = a, and the magnetic field (as a check) is the
expected

~B = ∇× ~A =
1

r

∂Az
∂θ

r̂ − ∂Az
∂r

θ̂ (B.18)
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~B(r, θ) =

−
µ0j0nz

2

(
r
a

)n−1 [
sinnθr̂ + cosnθθ̂

]
, r < a

−µ0j0nz
2

(
r
a

)−n−1 [
sinnθr̂ − cosnθθ̂

]
, r > a

. (B.19)

B.5 Potential for a constant axial current

A constant axial current ~j(θ′, z′) = j0z ẑ
′ can be written in the integration coordinates as

~j = j0z ẑ. The vector potential for this current can then be found using Equations B.4, B.7,
and B.8 such that

~A =
aµ0

4π
j0z ẑ

∫ 2π

0

[
−2 log(a) + 2

∞∑
k=1

(r
a

)k cos kt

k

]
dt r < a (B.20)

inside the bore, and

~A =
aµ0

4π
j0z ẑ

∫ 2π

0

[
−2 log(r) + 2

∞∑
k=1

(a
r

)k cos kt

k

]
dt r > a (B.21)

outside the bore. The vector potential is then

~A(r) =

{
−µ0j0za log(a), r < a

−µ0j0za log(r), r > a
. (B.22)

It is seen that the potential is continuous at r = a, and the magnetic field (as a check) is the
expected

~B = ∇× ~A =
1

r

∂Az
∂θ

r̂ − ∂Az
∂r

θ̂ (B.23)

~B(r) =

{
0, r < a

µ0j0z
a
r
θ̂, r > a

. (B.24)

Substitution of the enclosed current I0 = 2πaj0z leads to the familiar variation of fields
outside of a line current of

~B =
µ0I0
2πr

θ̂. (B.25)
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Appendix C

Cost Study Design Data

C.1 A two layer 11.3 T CCT dipole

Table C.1: Load Line Calculation for Two Layers

Layer Ungraded Graded
ns Bcond ns Bcond

1 22 13.89 22 13.90
2 22 12.57 18 12.79

Results at I0=22.38 kA

(a) (b)

Figure C.1: The load lines for each layer of the 2 layer magnet are shown for the ungraded
case (a) and the graded case (b).
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Table C.2: Two Layer Conductor Use: Ungraded

Ungraded
Layer ns rcond Lturn Lcable/Lm Lstrand/Lm $/m of Lm
1 22 58.525 973.508 112.937 2484.61 21988.8
2 22 71.575 1190.57 138.119 3038.62 26891.8
Tot 251.056 5523.23 48880.6

Table C.3: Two Layer Conductor Use: Graded

Graded
Layer ns rcond Lturn Lcable/Lm Lstrand/Lm $/m of Lm
1 22 58.525 973.508 112.937 2484.61 21988.8
2 18 70.775 1177.27 136.575 2458.35 21756.4
Tot 249.512 4942.97 43745.3

Table C.4: Two Layer Conductor Cost Summary

Ungraded Graded
Lcable/Lm Lstrand/Lm $/m of Lm Lcable/Lm Lstrand/Lm $/m of Lm

251 5520 48.9 k$/m 250 4940 43.7 k$/m

Table C.5: Two Layer Short-Sample Fields

Bore Dipole Cond. Field Current
11.29 T 12.75 T 20.55 kA
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C.2 A four layer 14.3 T CCT dipole

Table C.6: Load Line Calculation for Four Layers

Layer Ungraded Graded
ns Bcond ns Bcond

1 22 15.60 22 15.62
2 22 14.67 19 14.77
3 22 13.16 15 13.56
4 22 11.53 12 12.25

Results at I0=13.5 kA

(a) (b)

Figure C.2: The load lines for each layer of the 4 layer magnet are shown for the ungraded
case (a) and the graded case (b).
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Table C.7: Four Layer Conductor Use: Ungraded

Ungraded
Layer ns rcond Lturn Lcable/Lm Lstrand/Lm $/m of Lm
1 22 58.525 973.508 112.937 2484.61 21988.8
2 22 71.575 1190.57 138.119 3038.62 26891.8
3 22 84.625 1407.64 163.301 3592.62 31794.7
4 22 97.675 1624.71 188.483 4146.63 36697.7
Tot 602.84 13262.5 117373

Table C.8: Four Layer Conductor Use: Graded

Graded
Layer ns rcond Lturn Lcable/Lm Lstrand/Lm $/m of Lm
1 22 58.525 973.508 112.937 2484.61 21988.8
2 19 70.975 1180.59 136.961 2602.26 23030
3 15 82.025 1364.4 158.284 2374.26 21012.2
4 12 91.675 1524.91 176.905 2122.86 18787.3
Tot 585.087 9584 84818.4

Table C.9: Four Layer Conductor Cost Summary

Ungraded Graded
Lcable/Lm Lstrand/Lm $/m of Lm Lcable/Lm Lstrand/Lm $/m of Lm

603 13.26 k 117.4 k$/m 585 9.58 k 84.8 k$/m

Table C.10: Four Layer Short-Sample Fields

Bore Dipole Cond. Field Current
14.25 T 14.95 T 12.94 kA
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C.3 A six layer 15.8 T CCT dipole

Table C.11: Load Line Calculation for Six Layers

lay Ungraded Graded
ns Bcond ns Bcond

1 22 16.74 22 16.74
2 22 16.01 19 16.07
3 22 14.82 15 15.08
4 22 13.57 13 14.05
5 22 12.11 11 13.05
6 22 10.66 9 12.00

Results at I0=9.8 kA

(a) (b)

Figure C.3: The load lines for each layer of the 6 layer magnet are shown for the ungraded
case (a) and the graded case (b).
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Table C.12: Six Layer Conductor Use: Ungraded

Ungraded
Layer ns rcond Lturn Lcable/Lm Lstrand/Lm $/m of Lm
1 22 58.525 973.508 112.937 2484.61 21988.8
2 22 71.575 1190.57 138.119 3038.62 26891.8
3 22 84.625 1407.64 163.301 3592.62 31794.7
4 22 97.675 1624.71 188.483 4146.63 36697.7
5 22 110.725 1841.78 213.666 4700.64 41600.7
6 22 123.775 2058.85 238.848 5254.65 46503.7
Tot 1055.35 23217.8 205477

Table C.13: Six Layer Conductor Use: Graded

Graded
Layer ns rcond Lturn Lcable/Lm Lstrand/Lm $/m of Lm
1 22 58.525 973.508 112.937 2484.61 21988.8
2 19 70.975 1180.59 136.961 2602.26 23030
3 15 82.025 1364.4 158.284 2374.26 21012.2
4 13 91.875 1528.24 177.291 2304.79 20397.4
5 11 100.925 1678.77 194.755 2142.3 18959.4
6 9 109.175 1816 210.675 1896.07 16780.2
Tot 990.902 13804.3 122168

Table C.14: Six Layer Conductor Cost Summary

Ungraded Graded
Lcable/Lm Lstrand/Lm $/m of Lm Lcable/Lm Lstrand/Lm $/m of Lm

1055 23.2 k 205.5 k$/m 991 13.8 k 122.1 k$/m

Table C.15: Six Layer Short-Sample Fields

Bore Dipole Cond. Field Current
15.82 T 16.26 T 9.52 kA
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C.4 A eight layer 16.8 T CCT dipole

Table C.16: Load Line Calculation for Eight Layers

Layer Ungraded Graded
ns Bcond ns Bcond

1 22 17.46 22 17.44
2 22 16.87 19 16.89
3 22 15.96 16 16.07
4 22 14.94 13 15.24
5 22 13.71 11 14.37
6 22 12.57 10 13.46
7 22 11.36 8 12.70
8 22 10.10 7 11.82

Results at I0=7.7 kA

(a) (b)

Figure C.4: The load lines for each layer of the 8 layer magnet are shown for the ungraded
case (a) and the graded case (b).
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Table C.17: Eight Layer Conductor Use: Ungraded

Ungraded
Layer ns rcond Lturn Lcable/Lm Lstrand/Lm $/m of Lm
1 22 58.525 973.508 112.937 2484.61 21988.8
2 22 71.575 1190.57 138.119 3038.62 26891.8
3 22 84.625 1407.64 163.301 3592.62 31794.7
4 22 97.675 1624.71 188.483 4146.63 36697.7
5 22 110.725 1841.78 213.666 4700.64 41600.7
6 22 123.775 2058.85 238.848 5254.65 46503.7
7 22 136.825 2275.92 264.03 5808.66 51406.7
8 22 149.875 2492.99 289.212 6362.67 56309.7
Tot 1608.6 35389.1 313194

Table C.18: Eight Layer Conductor Use: Graded

Graded
Layer ns rcond Lturn Lcable/Lm Lstrand/Lm $/m of Lm
1 22 58.525 973.508 112.937 2484.61 21988.8
2 19 70.975 1180.59 136.961 2602.26 23030
3 16 82.225 1367.72 158.67 2538.72 22467.7
4 13 92.275 1534.89 178.063 2314.82 20486.2
5 11 101.325 1685.42 195.527 2150.79 19034.5
6 10 109.775 1825.98 211.832 2118.32 18747.2
7 8 117.625 1956.55 226.98 1815.84 16070.2
8 7 124.875 2077.15 240.97 1686.79 14928.1
Tot 1461.94 17712.2 156753

Table C.19: Eight Layer Conductor Cost Summary

Ungraded Graded
Lcable/Lm Lstrand/Lm $/m of Lm Lcable/Lm Lstrand/Lm $/m of Lm

1609 35.39 k 313.2 k$/m 1462 17.7 k 156.8 k$/m

Table C.20: Eight Layer Short-Sample Fields

Bore Dipole Cond. Field Current
16.81 T 17.19 T 7.58 kA




