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Abstract

Properties of Knotoids and Z-Tangles

by

Larsen Drew Linov

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Ian Agol, Chair

In addition to classical knot theory, low-dimensional topology is also concerned with a variety
of alternative classes of knot-like objects, including knotoids, braids, and string links. In this
thesis we explore several of these theories as well as certain connections between them. While
our results cover several different types of structures, they nonetheless build on each other.

The theory of knotoids is an extension of classical knot theory whereby knot diagrams are
allowed to have two endpoints instead of being a closed loop. One of the most important
knotoid invariants is the height h, which measures how far a knotoid is from being a classical
knot. After defining the signed versions h+ and h− of the height, we prove that together
they determine the unsigned height by the simple formula h++h− = h, and we demonstrate
a few applications.

String links, which are tangles that have been normalized with respect to the locations of
the endpoints of the strands, come with a natural monoid operation that generalizes both
connected summation of knots and composition of braids. Previous work on strings links has
shown that the string link monoids are cancellative up to multiplication with units. Here
we strengthen that result by proving the freeness of unit multiplication on either side, thus
answering a question of Blair–Burke–Koytcheff and implying full cancellativity of the string
link monoids. In the same section, we prove a weaker version of the well-known cosmetic
crossing conjecture and explore applications of knotoids to braid groups.

We also study an infinite version of string links, which we call Z-tangles. These Z-tangles are
interesting in part because a version of Birman–Hilden theory applies to Z-tangles as they
relate to knotoids. Specifically, there is a natural forgetful function from the set of knotoids
to the set of Z-tangles up to isotopy. We give several pieces of evidence for the conjectural
injectivity of this Birman–Hilden map, most notably by using some of the results of earlier
chapters to identify classes of knotoids that will each be uniquely determined by their image.



i

Contents

Contents i

1 Introduction 1
1.1 Background and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Conventions and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Objects in Question 5
2.1 Z-Tangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Knotoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Z-Braids and N-Braids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Spanning Disks and Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Other Important Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Heights and Sign Sequences 22
3.1 Self-Intersecting Spanning Disks . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Disjoint Spanning Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Additivity of Signed Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Behavior of Attainable Sequences . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Bounds on Signed Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Low Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Braids and Tangles 43
4.1 Cosmetic Braids on Tangles . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Symmetric Braids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Decomposing Ribbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Birman–Hilden Theory 52
5.1 The Affine Index Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Diffeomorphisms Moving the Boundary . . . . . . . . . . . . . . . . . . . . . 53
5.3 The Knot-Type Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Products with Knot-Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



ii

5.5 Extremal Spanning Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6 Height Conditions for Injectivity . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Points of Comparison 65
6.1 The Image of the Birman–Hilden Map . . . . . . . . . . . . . . . . . . . . . 65
6.2 Annular Knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Weak Isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 Planar Knotoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 70



iii

Acknowledgments

I am very lucky to have been supported, both academically and personally, by so many
excellent people during my time in grad school. My years in Berkeley have been incredibly
rewarding, and it has been a group effort the entire way.

First I’d like to thank my advisor, Ian Agol, for his deep knowledge and generous patience.
I’m thankful also to Mom, Dad, Shayna, and my broader family for always believing in

me and always being there for me.
I am indebted to Roy Zhao, James Dix, James Rowan, and every other member of my

awesome cohort for all that they’ve done to lift me up over the years.
Thanks also to my fellow topologists at Berkeley, to my sports teammates, to my of-

ficemates, my MGSA collaborators, the math department staff, and many others who have
given me comfort, guidance, and purpose.



1

Chapter 1

Introduction

1.1 Background and Context

Knot theory has been an area of earnest study since even before topology emerged as a rec-
ognized subfield of math, with the Tait conjectures ([51]) and the Alexander polynomial ([3])
marking advancements in an increasingly formalized theory of knots. Originally inspired by
artwork, physics, and of course the practical uses of tying ropes in daily life, the mathemat-
ical idea of a knot as a closed loop in three-dimensional space has in turn generated various
offshoots and generalizations, among them tangles, braids ([5]), spatial graphs ([15]), and
virtual knots ([29]).

One such type of knot-like object, dating to 1990, is a string link. String links, which
are tangles for which the ambient 3-ball has a designated “top” and “bottom” and for which
each strand has one endpoint on each side, were defined in [26] (Definition 1.1) by Habegger
and Lin in order to tackle Milnor’s problem of classifying links up to the equivalence relation
of link-homotopy ([41], page 194). (We will define string links more formally in Chapter 2.)
The utility of string links for studying classical links is due to the fact that that the set of
string links (with a fixed number of strings) forms a monoid with stacking as the binary
operation. Since string links capture a lot of general behavior in knot theory, recent efforts
have explored the properties of the string link monoids, such as primality, centrality, and
cancellativity ([13, 8, 48]).

More recently, in [49] (Section 2.1), Turaev introduced knotoids in order to better com-
pute the Seifert genera and knot groups of classical knots. A knotoid is, in brief, a path
between two points on a sphere, with extra restrictions and information where the path
self-intersects, considered up to ambient isotopy and Reidemeister moves. Like virtual knots
([22]), knotoids can be considered to be an extension of standard knot theory in that there
is a natural injection from the set of (oriented) knot classes to the set of knotoids. They
are closely related to spatial graphs ([49], Section 5.1) and strongly invertible knots ([7],
Theorem 1.1) in addition to finding applications in biology (see, e.g., [6, 21]). Much of the
work previously done on knotoids relates to the height invariant (e.g. [23, 33]), which is a
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geometric measure of how far a knotoid is from being a classical knot.
Meanwhile, in the broader area of geometric topology, one of the other major topics

of interest besides knot theory is the theory of mapping class groups of surfaces. (Given
a topological space, the associated mapping class group is the group of connected compo-
nents of the group of automorphisms of the space, if the latter set is given an appropriate
topology—see [19], Section 2.1.) In a series of papers in the 1970s ([11, 9, 10], see also
[39]), Birman and Hilden investigated the relationship between the mapping class groups
of two surfaces when one covers the other. Specifically, in order to ease the computation
of one mapping class group after already knowing the other, they unpacked a sequence of
intermediate group homomorphisms and found sufficient conditions for the most difficult
intermediate map to be injective. While we will not actually use classical Birman–Hilden
theory in this thesis, we will define a knotoid invariant analogous to the aforementioned map
and call it the “Birman–Hilden map.”

We also note a general theme in geometric topology of generalizing problems to non-
compact contexts. A salient example of this is the very active subject of “big mapping class
groups”, that is, mapping class groups of surfaces whose fundamental groups are not finitely
generated ([4]). While research on big mapping class groups usually disregards surfaces with
non-compact boundary, such surfaces are nonetheless still occasionally studied ([17]), for
example in the version of the infinite-stranded braid group defined by [18]. Going back to
three dimensions, in the realm of knot theory there is also interest in links of infinitely many
components, especially those coming as preimages of links in nontrivial 3-manifolds (see,
e.g., [16, 47]).

1.2 Overview

This thesis is organized as follows:
The present chapter is a minimal introduction, deferring much of the preliminary material

to Chapter 2. However, Section 1.3 is included here to preemptively clarify potential sources
of ambiguity.

Chapter 2 lays the groundwork for the rest of the document, containing a relatively
thorough account of the objects and operations that will appear later on. It includes most
of the formal definitions that we will use, including definitions for knotoids, Z-tangles and
annular 1-tangles, string links, Z-braids and N-braids, height, and the Birman–Hilden map
for knotoids. At the same time, Chapter 2 also touches on basic facts about these objects,
providing proofs where appropriate. The later chapters also include a few definitions of their
own, but only when the concept in question will appear only briefly.

The bulk of our results are contained in Chapters 3 through 5.
Chapter 3, which roughly matches the material previously published as [36], focuses on

signed heights of knotoids and annular 1-tangles. It states and proves the additive relation-
ship between signed and unsigned heights, and it gives simple lower bounds on the signed
heights, which in turn can improve lower bounds on the unsigned height of a knotoid. Fi-
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nally, this chapter includes a categorization, and some degree of classification, of knotoids
with height up to 2.

Chapter 4 is more eclectic, with some parts that aren’t strictly related to the others,
but the chapter does follow a somewhat consistent theme. It starts by identifying a family
of string link invariants that, taken together, distinguish distinct units in the string link
monoids. This is used to address a question appearing in [12]. A special case of that problem
can be stated in terms of group actions by mapping class groups on certain sets of isotopy
classes of tangles; as a tangent, we also address a slightly different version of that problem
in which the tangles are not string links but other types of 2-tangles. The latter problem is
related to the cosmetic crossing conjecture, but there is no obvious way to use our results to
prove the standard version of the conjecture. Next, Section 4.2 proves a pair of similar facts
about self-similarity in Z-braids and N-braids, respectively. The first is proved using basic
hyperbolic geometry and is used as a lemma later on; in contrast, the statement for N-braids
does not get applied in this thesis but is included as an example of an external application of
knotoids and the Birman–Hilden map. In the last section of Chapter 4, some of the lemmas
from the previous sections are used to prove a geometric fact about the monoid structure of
a subset of Z-tangles.

Chapter 5 mainly contains a collection of partial results backing up the conjecture that
the Birman–Hilden map is injective. In particular, most of the work in this chapter goes
toward finding restrictions on the heights and signed heights of possible counterexamples to
injectivity. To this end we rely heavily on the results of Section 4.1 and the strategies in
Section 2 of [44].

Finally, Chapter 6 acts as something of an appendix, containing tangential information
that has been moved away from the main chapters to maintain a more even flow. It can
also be considered as a sister chapter to Chapter 5, since that is the chapter to which it is
most related. The ideas in Chapter 6 have not been studied to their limits, so it includes
questions available as directions for future research.

1.3 Conventions and Terminology

Throughout this document, manifolds will be oriented and smooth, often with boundary and
corners. Maps between manifolds will usually be smooth, or sometimes piecewise-smooth.
In our contexts, corners and piecewise-smooth maps between manifolds will typically be
smoothable in a canonical-enough way, so without causing any significant ambiguity we
will take some liberty in treating the two conventions as interchangeable. For example,
“diffeomorphisms” will sometimes not be smooth but merely piecewise-smooth; thus in the
case of smooth manifolds with corners, diffeomorphisms will not generally be required to
send corners to corners.

Some of the manifolds we will work with are non-compact manifolds with boundary. In
this context there are two competing meanings of the word “proper”, so to prevent ambiguity
we will use the following terms instead: A map is end-proper if the preimage of any compact
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set is compact, and an embedding of manifolds f : M → M ′ is ∂-proper if f−1(∂M ′) = ∂M
and f(M) is transverse to ∂M ′. If a ∂-proper embedding is also end-proper, we will call it
biproper.

In an abuse of notation, we will frequently conflate an embedding map with its image
when doing so would not create confusion.

When we write S1 we will always specifically mean R/Z, as opposed to {(x, y) ∈ R2 |
x2 + y2 = 1} or any other manifestation of a circle. To discuss specific elements we will
sometimes, for example, write “0” to refer to the the class containing 0.

The symbol I will always be the closed interval [−1, 1]. It should not be confused with
I, which will be defined later on.

The word “knot” will most often be used to mean an isotopy class of oriented knots in
S3, but we will not be strict in this convention. When we discuss a specific representative
of a knot or an unoriented knot we will usually make it clear that we are doing so. We will
treat isotopy classes of knots in S3 as interchangeable with isotopy classes of 1-tangles in a
3-ball, according to the standard correspondence.
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Chapter 2

The Objects in Question

In this chapter we will set the stage for the later chapters by laying out definitions for most
of the objects, functions, operations, and invariants that will be under consideration.

2.1 Z-Tangles
Recall that I denotes the interval [−1, 1].

Definition 2.1.1. A Z-tangle is a biproper embedding Z × I → R × I2 with (n,±1) 7→
(n,±1, 0) for all n ∈ Z.

See Figure 2.1 for an example. We will denote the set of all Z-tangles by A. Note that a
Z-tangle is like a tangle in the sense that R× I2 is the same as a 3-ball with two boundary
points removed. Because of our restrictions on the locations of the endpoints of each strand,
it can be even better to think of Z-tangles as string links (which will be defined later in this
section) of infinite size.

When discussing R × I2, we will refer to the three coordinates as x, y, and z, in that
order, as is standard for subsets of R3.

Isotopy and Translations

We will use the language of group actions to discuss isotopy between Z-tangles: Let I be
the set of boundary-fixing automorphisms of R× I2. There is a natural action of I on A by
(ι, ℓ) 7→ ι◦ℓ. We claim that two Z-tangles are in the same orbit if and only if they are related
by boundary-fixing ambient isotopy. The boundary-fixing automorphism group of a 3-ball is
path-connected (see point (1) in the appendix of [27]), as is the space of embeddings of a disk
into a ball (see point (5)). The ambient space R×I2 for a Z-tangle can be decomposed along
disks into a sequence of 3-balls, and R × I2 itself is close enough to a 3-ball that the space
of embeddings for each disk is also path-connected, so it follows that any boundary-fixing
automorphism is isotopic to the identity.
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Figure 2.1: A generic Z-tangle, shown only in part because it extends infinitely to the left
and right. The z direction points out of the page toward the viewer.

There is also an action of Z on A on by translation: For m ∈ Z and (x, y, z) ∈ R × I2,
write τm(x, y, z) = (x +m, y, z). Then for m ∈ Z and ℓ ∈ A, define τmℓ ∈ A (by abuse of
notation) by

(τmℓ)(n, t) 7→ τm(ℓ(n−m, t)).

We can construct an action of Z on I similarly, and we will formally denote it with the
redundant expression (m, ι) 7→ τmιτ−m. Together, the three actions (of I on A, Z on A, and
Z on I) are related by the equation

(τmιτ−m) ◦ (τmℓ) = τm(ι ◦ ℓ) (2.1)

for all m ∈ Z, ι ∈ I, and ℓ ∈ A. We can also express this by saying we have an action of
I ⋊τ Z on A. In the semidirect product, the visual tautology τmιτ−m = τmιτ−m holds, so
our notation is justified.

We will sometimes write just τ as shorthand for τ 1.
As a consequence of eq. (2.1), Z naturally acts on the orbit set A/I and the fixed set IZ

naturally acts on the fixed set AZ.
We can express the relationships between A, I, and Z in the following commutative

diagram. Below, p and q are the natural quotient maps A↠ A/I and AZ ↠ AZ/IZ.
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AZ p−1((A/I)Z) A

AZ/IZ

p(AZ) (A/I)Z A/I

⊂

q

⊂

p

Bh

⊂ ⊂

(2.2)

Each element in the diagram can be described in words as follows:

• A is the set of Z-tangles.

• A/I is the set of isotopy classes of Z-tangles.

• p−1((A/I)Z) is the set of Z-tangles that are translation-invariant up to isotopy, i.e.,
those that are isotopic to all of their own translates.

• (A/I)Z is the set of translation-invariant isotopy classes of Z-tangles.

• AZ is the set of translation-invariant Z-tangles.

• AZ/IZ is the set of classes of translation-invariant Z-tangles under translation-invariant
isotopy. Later we will see how AZ/IZ is related to the set of knotoids.

• p(AZ) is the set of isotopy classes that have a translation-invariant representative.

• Bh sends each class of translation-invariant Z-tangles up to translation-invariant iso-
topy to the (potentially) broader class up to general isotopy.

String Links

String links are a class of tangle-like objects defined in [26] for the purposes of studying link
homotopy. We will give a definition here that shows their relationship to Z-tangles.

Definition 2.1.2. For k ∈ N, a string link with k strings is a ∂-proper embedding {1, . . . , k}×
I → R× I2 with (n,±1) 7→ (n,±1, 0) for all n ∈ {1, . . . , k}.1

The main distinguishing feature of a string link, in the context of tangles, is the corre-
spondence between the “top” endpoints and “bottom” endpoints, reflected by the strings
themselves.

1Some sources use a more general definition of “string link”. In those sources, the objects herein would
be called pure string links.
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Figure 2.2: A knotoid diagram representing a “bifoil” knotoid. (As usual, we use the page
as a proxy for S2, considering there to be a “point at infinity”.)

Like Z-tangles, string links are considered up to the action of I. Unlike Z-tangles, string
links carry no natural notion of translation.

Of course, given a Z-tangle ℓ and a k ∈ N, we can create a string link with k strings by
restricting ℓ to {1, . . . , k} × I and forgetting the other strands. More generally, given ℓ and
a subset of Z with k elements, there is a canonical-up-to-isotopy way to get a string link
with k strands from the k strands in the subset: Everything can be pushed horizontally by
varying amounts until each of the k strands has the correct endpoints.

2.2 Knotoids

There are several equivalent ways of defining knotoids, each with their own advantages. The
traditional definitions are by knotoid diagrams and simple theta-curves, but later on we
will mostly use the definition with annular 1-tangles. Here we will describe the different
constructions and the relationships between them.

Diagrammatic Knotoids

Definition 2.2.1 (Turaev [49], Section 2.1). A knotoid diagram consists of: (a) an immersion
of [0, 1] into S2 with no self-intersections except for transverse double points away from the
endpoints and (b) over/under crossing information at the self-intersections. A knotoid is
an equivalence class of knotoid diagrams under ambient isotopy of S2 and the Reidemeister
moves performed away from the endpoints.

Note that knotoid diagrams are oriented. The images of 0 and 1 under the immersion of
[0, 1] are called the tail and the head, respectively.
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Figure 2.3: A slip knot. If the loop on the right is released, it becomes a mere unknot.

Simple Theta-Curves and Slip Knots

Definition 2.2.2 ([49], Section 5.1). The theta graph Θ is the graph with two vertices, v0
and v1, and three oriented edges e0, e+, and e− from v0 to v1. A theta-curve is an embedding
of Θ into S3. It is called simple if the image of e+ ∪ e− is an unknot.

Turaev defined a way of constructing simple theta-curves from knotoids: Given a knotoid
diagram K, consider the ambient S2 as being the “equator” of S3 in the standard way. Our
theta-curve will map v0 and v1 to the tail and head of K, respectively. Add e+ and e− on
either side of S2, each connecting v0 to v1 in an unknotted way, with e+ “above” and e−
“below” S2. Then consider the (possibly self-intersecting) path in S2 defined by K. Let
us embed e0 into S3 in such a way that it coincides with K everywhere except for in a
neighborhood of each crossing, where it is “pushed off” in the appropriate direction.

Theorem 2.2.3 (Turaev [49], Section 5.1). The construction above provides a well-defined
bijection between the set of knotoids and the set of isotopy classes of simple theta-curves.

Knotoids and simple theta-curves can be viewed as mathematically capturing the real-life
concept of a slip knot, which is essentially an unknot with a segment pulled away and held in
place while the rest can move only in a restricted region. See, for example, Figure 2.3: If the
rightmost dotted ray is ignored and the other two are used to extend the diagram to the point
at infinity, then we have an unknot in S3; however, if we consider only isotopies that leave the
three dotted rays fixed, then we have a nontrivial object equivalent in structure to a simple
theta-curve. (In the case shown, it corresponds to a bifoil knotoid.) This equivalence works
because the ambient S3 for a simple theta-curve can always be reparameterized relative to
the position of v0 and the initial directions of the three edges.
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Annular 1-Tangles

Definition 2.2.4. An annular 1-tangle is a ∂-proper embedding of I into the solid torus
S1 × I2 that (a) maps ±1 to (0,±1, 0) and (b) has winding number 0 around the S1 factor.

The name “annular 1-tangle” is, of course, in reference to annular knots. Let A be the
set of annular 1-tangles. Let I be the set of boundary-fixing diffeomorphisms of S1 × I2.

Of course, we can canonically identify A with AZ and I with IZ. Specifically, for ℓ ∈ A
and n ∈ Z, there is a unique lift of ℓ to a map I → R× I2 that maps ±1 to (n,±1), so we
let s(ℓ) ∈ AZ be the translation-invariant Z-tangle that restricts to {n} × I as the nth lift.
Similarly, each element of I lifts to an automorphism of R × I2, and there is a unique lift
that restricts to the identity on the boundary. We can extend the diagram in Equation (2.2)
to the commutative diagram below.

A AZ p−1((A/I)Z) A

A/I AZ/IZ

p(AZ) (A/I)Z A/I

s

q

⊂

q

⊂

ps∗

Bh

⊂ ⊂

(2.3)

A correspondence between knotoids and objects similar to annular 1-tangles is noted in,
for example, [48] (page 2). We will make that explicit here by showing that there is a natural
way of equating A/I with classes of simple theta-curves:

{knotoids}
[49]∼= {simple theta-curves}/isotopy

?∼= A/I ∼= AZ/IZ

We can identify S3 with the quotient of S1 × I2 by the relation (x1, y, z) ∼ (x2, y, z)
for all x1, x2 ∈ S1 and (y, z) ∈ ∂I2. Given some ℓ ∈ A, let us construct a simple theta-
curve θℓ̄ as follows: The composition of ℓ with the quotient map S1 × I2 → S3 above
defines the embedding of e0. Then we define e+ (resp. e−) to coincide with the image of
{(x, y, z) ∈ S1 × ∂I2 | z > 0} (resp. z < 0) under the quotient map. By [27] (point (9) in
the appendix), the isotopy class of the resulting theta-curve is invariant under the action of
I on ℓ, so we have a well-defined map A/I → {simple theta-curves}/isotopy.

Proposition 2.2.5. The map A/I → {simple theta-curves}/isotopy above is a bijection.

Proof. For surjectivity, suppose that we are given a simple theta-curve θ. Since θ(e+ ∪ e−)
is an unknot, and since we only care about θ up to isotopy, we can assume that θ behaves
appropriately on e+ and e− for being of the form θℓ. Now let us consider the preimage of
θ(e0) under the quotient S1 × I2 → S3. We want the strand to have the correct endpoints
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and winding number to make an element of A. We can achieve this by isotoping θ in a
neighborhood of v0 and v1, twirling each of them to point in the right directions and then
possibly more to get the correct winding number. Once we have done this, θ is of the form
θℓ.

Now, for injectivity, suppose we have ℓ and ℓ
′
such that θℓ is isotopic to θ

ℓ
′ . Then there

is a diffeomorphism φ : S3 → S3 relating θℓ to θℓ′ . The restriction of φ to θℓ(e+ ∪ e−) is the
identity. Consider the derivatives of φ at each point on this unknot. The derivatives in the
normal direction define a framing for both arcs, and the stipulation that ℓ and ℓ

′
each have

zero winding number implies that the framing is the same as it would be if the derivatives
were all the identity maps on their respective tangent spaces. Therefore we can perturb φ in
a neighborhood of that circle, without affecting the property that φ sends θℓ to θℓ′ , to make
it so that the derivatives at each point on the circle are all the identity maps. Therefore, φ
lifts to a boundary-preserving diffeomorphism of S1 × I2.

The relationship between an isotopy class of annular 1-tangles and the corresponding
knotoid can be understood fairly easily without involving simple theta-curves: Given a ℓ ∈ A,
we can form a diagram of ℓ by composing ℓ with the natural projection S1 × I2 → S1 × I
that forgets the z (third) coordinate to obtain a path on an annulus. The path will start
at (0,−1) and end at (0, 1). When ℓ is in general position, the path on the annulus will be
immersed and only self-intersect transversely with no triple points. We can then create a
knotoid diagram by adding crossing information (where greater z values are “over” lesser z
values) and placing S1×I onto S2 in an orientation-preserving way that sends each boundary
component to a single point and is otherwise a diffeomorphism.

2.3 Z-Braids and N-Braids

Definition 2.3.1. A Z-braid is an automorphism of R × I that (a) fixes the boundary
pointwise and (b) preserves Z×{0} as a set. A Z-braid is pure if it fixes Z×{0} pointwise.

Let B denote the topological group of pure Z-braids. Let us write b1 ∼ b2 whenever
b1 and b2 are in the same component, that is, if b1 and b2 are isotopic through elements
of B. Thus the quotient group B/∼ is essentially a pure mapping class group. It differs
from standard mapping class groups, even big mapping class groups, in that the surface in
question doesn’t have compact boundary. (See [17].) We we denote the quotient function
B 7→ B/∼ simply with b 7→ [b].

As in the case of Z-tangles, there is an action of Z on B by translation, which we will
also denote by τ . The translation action descends to an action on B/∼. On the level of
isotopy classes, applying τ is the same as a conjugating by a certain non-pure Z-braid.

When dealing with Z-braids, we will use the coordinates x and z, in that order, for points
in R× I.

Later we will also allude to a similar concept on an annulus: An annular 1-braid is an
automorphism of S1 × I that (a) fixes (S1 × {−1, 1}) ∪ {(0, 0)} pointwise and (b) induces
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the trivial automorphism on the relative first homology group H1(S
1 × I, ∂ ∪ {(0, 0)}). Let

B be the group of annular 1-braids. We can identify B with the fixed set BZ. By capping
each boundary component, we have a map from B to the set of pure (orientation-preserving)
automorphisms of a thrice-punctured sphere. On the level of isotopy classes, this map is a
group isomorphism. Therefore, B actually has only one component, so the annular 1-braid
group is trivial.

If we replace Z in Definition 2.3.1 with N, we obtain objects equivalent to those studied
in [18]:

Definition 2.3.2. A N-braid is an automorphism of R × I that (a) fixes the boundary
pointwise and (b) preserves N×{0} as a set. A N-braid is pure if it fixes N×{0} pointwise.

Isotopy between N-braids is allowed to move points outside of (R × {±1}) ∪ (N × {0}).
The set of pure N-braids up to isotopy naturally carries an operation τ−1 that forgets the
first strand and shifts all of the others left by 1:

(τ−1b)(x, z) = τ−1(b(x+ 1, z))

Despite the notation, this τ−1 is non-invertible. Just like the τ for Z-tangles, τ−1 descends
to isotopy classes.

The Alexander Method

For each n ∈ Z, let γn = {n} × [−1, 0] and δn = {n} × [0, 1]. Using the γn and δn, we will
see that an “Alexander method” holds for Z-braids. For each b ∈ B, the image b(γn) of each
γn under b is an embedded path with the same endpoints as γn.

Proposition 2.3.3. Suppose b ∈ B has the property that, for all n, b(γn) is homotopic to γn
through an endpoint-fixing family of paths that otherwise avoid Z × {0}. Then b is isotopic
to the identity.

Proof. Our proof is similar to the proof of Lemma 2.5 in [19], but we have to be careful
about the lack of compactness. For every individual n, the homotopy from b(γn) to γn can
be promoted to an isotopy ([19], cf. Proposition 1.10, Section 1.2.7).

We will define a sequence (bi), i ∈ {0} ∪ N, of elements of B as well as chosen isotopies
between them. In particular, each bi will leave γn fixed for n ∈ Z with |n| ≤ i. Furthermore,
any compact subset of R × I will, for large i, remain fixed by the chosen isotopy from bi−1

to bi throughout the isotopy.
Let us start by isotoping b to a new b0 ∈ B such that b0 fixes γ0 pointwise. Now, as a

recursive step, for any i ∈ N, once we have fixed bi−1, let us define a new bi ∈ B and our
isotopy from bi−1 to bi: Consider that bi−1(γi) is homotopic to γi and disjoint from all γn
for |n| ≤ i. Since removing those γn is algebraically equivalent to deleting a 1-cell, bi−1(γi)
is homotopic to γi in the surface formed by deleting those γn. Then it is also isotopic in
the surface with those paths cut out. We can make the same argument about cutting along
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vertical lines slightly to either side of the left- and right-most points of bi−1(γi). Therefore,
let us choose an isotopy from bi−1 to a new pure Z-braid that fixes γi in such a way that the
isotopy doesn’t affect anything more than slightly to the left or right of bi−1(γi). Following
this up with another isotopy to deal with γ−1, we obtain our bi and chosen isotopy from bi−1

to bi.
The paths γn together form an end-properly embedded subset of R× I, and any compact

region in R × I only contains parts of finitely many of the γn. Any automorphism b must
preserve this property. Therefore, our chosen sequence of isotopies has the desired property
that any given compact region will eventually stay fixed. Hence we are allowed to take the
infinite concatenation of the isotopies to get an isotopy from b to a new b∞ ∈ B that fixes
γn for all n ∈ Z.

Now we will find an isotopy from b∞ to the identity using a similar strategy as above
but applied to the δn. The complement of all of the γn is an infinite disk. Holding all of
the γn fixed, let us isotope b∞ to a new braid that also fixes δ0. Then we can move δ±1 into
position, followed by everything in between using the usual Alexander lemma ([19], Lemma
2.1). Continuing with δ±2, and so on, we get the desired isotopy.

2.4 Spanning Disks and Height

Here we will define objects called “spanning disks” in the separate contexts of both Z-tangles
and annular 1-tangles.

Z-Tangles
Definition 2.4.1. A spanning disk for a Z-tangle ℓ ∈ A is a ∂-properly embedded disk
D ⊂ R× I2 with the following properties:

• The composite map
∂D ⊂ ∂(R× I2) = R× ∂I2 ↠ ∂I2,

where the last arrow is the projection onto the second factor, is a diffeomorphism.2

• The intersections between D and ℓ are transverse and occur away from the boundary.

Given a Z-tangle ℓ and a spanning disk D, we can cut R × I2 along D to get a space
with two components. Let R+(D) be the component of (R × I2) \D in which the x values
are bounded below, and let R−(D) be the one in which the x values are bounded above.
The height of the pair (ℓ,D), written H(ℓ,D), is defined to be the number of intersections
between ℓ and D. Each such intersection is signed, because D has a canonical orientation:
An intersection of ℓ with D is positive if ℓ is oriented into R+(D), and it is negative otherwise.
(See Figure 2.4) The positive (resp. negative) height of (ℓ,D), denoted H+(ℓ,D) (resp. H−),
is the number of positive (resp. negative) intersections.

2Here, of course, we aren’t using “diffeomorphism” in the strictest possible sense. Recall Section 1.3.
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Figure 2.4: A positive intersection between ℓ and a spanning disk D.

Given just ℓ, the height h(ℓ) is the minimum of H(ℓ,D) over all choices of D. Of course,
h is invariant under the action of I. We define the positive and negative heights similarly.
Usually we will only care about the heights of Z-tangles ℓ satisfying p(ℓ) ∈ (A/I)Z.

Note that any spanning disk D can have its boundary pushed (without affecting anything
near ℓ or outside a neighborhood of ∂(R× I2) in such a way that, after the movement, ∂D
will constitute the intersection between ∂(R × I2) and some plane in R3 parallel to the z
axis. To be even more rigid, we could make it so that the x values of the points of ∂D on
R× {±1} × I are half-integers.

Annular 1-Tangles

The concepts of spanning disks and height transfer from Z-tangles to annular 1-tangles with
few modifications.

Definition 2.4.2. A spanning disk for an annular 1-tangle ℓ ∈ A is a ∂-properly embedded
disk D ⊂ S1 × I2 with the following properties:

• The composite map
∂D ⊂ ∂(S1 × I2) = S1 × ∂I2 ↠ ∂I2,

where the last arrow is the projection onto the second factor, is a diffeomorphism.

• The intersections between D and ℓ are transverse and occur away from the boundary.

Given an annular 1-tangle ℓ and a spanning disk D, the height of the pair (ℓ,D), written
H(ℓ,D), is defined to be the number of intersections between ℓ andD. Each such intersection
is signed, because D has a canonical orientation: For D of the form {pt}×I2, an intersection
of ℓ with D is positive if ℓ is oriented in such a way that higher t values correspond with
higher x values, and it is negative otherwise; for spanning disks of other forms we extend
the previous definition continuously. The positive (resp. negative) height of (ℓ,D), denoted
H+(ℓ,D) (resp. H−), is the number of positive (resp. negative) intersections.

Since the intersections between ℓ and D each correspond to a point on I, we can also
consider the order of the types of intersections. A sign sequence is a finite sequence with
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values in {+,−}. We define Seq(ℓ,D) to be the sign sequence with H(ℓ,D) terms expressing
the signs of the intersections in order from −1 to 1.

Given just ℓ, the height h(ℓ) is the minimum of H(ℓ,D) over all choices of D. Of course,
h is invariant under the action of I. We define the positive and negative heights similarly. A
sign sequence will be called attainable for ℓ if it is of the form Seq(ℓ,D) for some spanning
disk D.

As in the case of Z-tangles, for the purposes of height and attainable sign sequences a
spanning disk D can always be taken to have D ∩ (S1 × {±1} × I) = {1

2
} × {±1} × I.

Knotoids

The original definition of height appeared in [49] (Section 4.3) under the name complexity
and was applied to diagrammatic knotoids. The height of a knotoid can be defined in a
manner very similar to the height of an annular 1-tangle, using shortcuts (see below) in
place of spanning disks.

Definition 2.4.3 ([49], Section 2.2). A shortcut for a knotoid diagram K is an embedded
path in S2 from the tail to the head that intersects K transversely and does not intersect
the crossings.

We can define the height of a knotoid diagram K to be the minimum of the heights of
(K, a) over all shortcuts a for K. However, the height of a knotoid diagram is not invariant
under the Reidemeister moves. Therefore the height of a knotoid (that is, not just of a
knotoid diagram) is defined as the minimum of the heights of of all representative diagrams.
For this reason, annular 1-tangles and simple theta-curves are easier to work with than
knotoids for the purposes of talking about height.

Although [49] only addresses unsigned heights, intersections between a knotoid diagram
and a shortcut can still be considered to be signed, leading to concepts of signed heights and
attainable sign sequences for knotoids, depending on the exact convention used to specify
signs of shortcut intersections.

It is a straightforward exercise to convince oneself that the height of a knotoid coin-
cides with the height of the corresponding class of annular 1-tangles under the equivalence
described in Section 2.2. The same goes for attainable sign sequences.

2.5 Other Important Functions

The Birman–Hilden Map

The forgetful map Bh in eq. (2.2) can be viewed as an invariant of annular 1-tangles when
composed with the bijection s∗ in eq. (2.3). See Figure 2.6. We will call it the Birman–Hilden
map in reference to the Birman–Hilden theory of mapping class groups (see [11, 9, 10], also
[39] for an exposition).
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Figure 2.5: A shortcut for a bifoil knotoid diagram. The sign sequence of this diagram and
shortcut is (−).

Figure 2.6: A knotoid diagram (left) and corresponding translation-invariant Z-tangle
(right).

We will address the Birman–Hilden invariant more in later chapters.

Basic Involutions

Several operations defined for knotoids in [49] (Section 3.2) easily transfer to annular 1-
tangles and Z-tangles:

For a Z-tangle ℓ ∈ A or annular 1-tangle ℓ ∈ A, the mirror image mir(ℓ) ∈ A or
mir(ℓ) ∈ A is obtained by flipping the z direction. That is, for example, if ℓ(n, t) = (x, y, z)
for some n, t, x, y, and z, then mir(ℓ)(n, t) = (x, y,−z). The symmetry operation, denoted
ℓ 7→ sym(ℓ) and ℓ 7→ sym(ℓ), flips in the x direction. Specifically, for Z-tangles, if ℓ is as
above then sym(ℓ)(−n, t) = (−x, y, z). Rotation is the composition of symmetry and mirror
image reflection. Lastly, the reverse of a Z-tangle or annular 1-tangle is obtained by flipping
in the x and y directions, using the equation rot(ℓ)(−n,−t) = (−x,−y, z).

It is clear that these operations, together with their various compositions, constitute eight
mutually-commuting involutions on A and A (including one trivial one). Height, but not
signed height, is invariant under these involutions.

The two versions of each involution (for Z-tangles and annular 1-tangles) are related by
composition with s. They also descend to A/I and A/I and factor through Bh.



CHAPTER 2. THE OBJECTS IN QUESTION 17

Figure 2.7: From left to right, a diagram for “bifoil” knotoid k, rev(k), mir(k), sym(k), and
rot(k). Only the first two are equal as knotoids.

Diffeomorphisms

Let J be the set of orientation-preserving diffeomorphisms from R × I2 to itself that fix
Z × {±1} × {0} pointwise. Then I is a normal subgroup of J and the action of I on A
extends to an action of J in a natural way. Furthermore, the translation action of Z on I
extends to an action on J . All together, we have an action of J ⋊τ Z on A. This gives us
actions of J /I on A/I and of JZ on AZ.

Similarly, let J be the set of orientation-preserving diffeomorphisms of S1 × I2 that (a)
fix {0}×{±1}×{0} pointwise and (b) induce the trivial automorphism on the relative first
homology group H1(S

1 × I2, {0}× {±1}× {0}). Then I is a normal subgroup of J and the
action of I on A can be extended to J . As a result we have an action of J /I on A/I.

We can canonically identify J with JZ, and under this identification the action of J on
A matches that of JZ on AZ.

The action of J /I and J /I on A/I and A/I can be though of as extending the basic
involutions above. In particular, the basic involutions can be viewed as coming from par-
ticular automorphisms of R× I2 or S1 × I2 that don’t follow all of the conditions for being
in J or J . In the case of A/I, the action of J /I together with the basic involutions can
all be considered to be special cases of a single action by J ⋊ (Z/2Z)3. Unlike the basic
involutions, the actions of J and J don’t preserve height.

Spanning Disk Framings

For a given annular 1-tangle ℓ ∈ A and a spanning disk D, the algebraic intersection number
between ℓ and D is an integer that only depends on D. An equivalence class of spanning
disks for ℓ with the same algebraic intersection number can be called a spanning disk framing
for ℓ. The counterpart concept for knotoids also appears in [42] (Section 2.2.3) under the
name coframed knotoids and is related to the Morse knotoids of [25] (Definition 2).

Of course, a disk-framed annular 1-tangle could simply be thought of as an annular 1-
tangle paired with an arbitrary integer. However, another way to recover the same concept
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would be to alter the definition of annular 1-tangles to remove the winding number condition.
Doing so would have multiple benefits: Besides slightly simplifying the definition of annular
1-tangles, it would allow us to define heights and sign sequences using only spanning disks
of the form {1/2} × I2. Furthermore, the action of J ⋊ (Z/2Z)3 naturally carries over to
these disk-framed annular 1-tangles, and this extension is nontrivial in that a single element
of J ⋊ (Z/2Z)3 applied to two different framings of the same annular 1-tangle can give back
two framed annular 1-tangles that are distinct even after forgetting their framings.

Oriented Knots

An important subclass of annular 1-tangles and of Z-tangles, originally defined for knotoids
in [49] (Section 3.3), are those that are knot-type. For every oriented knot isotopy class κ
we can easily construct a well-defined element κ• of A/I as follows: Start with the annular
1-tangle defined by ℓ(t) = (0, t, 0), then tie κ into a small neighborhood of the strand. An
element of A/I is knot-type if it can be constructed as κ• in this way. We will similarly call
a specific annular 1-tangle knot-type if it represents a knot-type class. An annular 1-tangle
that is not knot-type is proper. Of course, each knot-type annular 1-tangle has height 0, and
the converse is true as well: If ℓ has height 0, then consider a spanning disk D realizing the
height. Cutting S1 × I2 along D results in a long knot interpretable as an oriented knot.
The class of ℓ is obtainable from this same oriented knot, because an isotopy can put D into
the position of {1/2} × I2.

On the other side, a Z-tangle ℓ ∈ A is knot-type is there is a knot-type ℓ ∈ A with
p(ℓ) = p(s(ℓ)). We can also apply the term knot-type to p(ℓ). Every knot-type Z-tangle has
height 0, but the converse does not hold. We will see in Section 6.1 that even some elements
of (A/I)Z with height 0 are not knot-type.

Two distinct isotopy classes of oriented knots have distinct corresponding knot-type iso-
topy classes of annular 1-tangles. One easy way to see this is by the over- and underpass
closures defined in terms of diagrammatic knotoids in [49] (Section 3.3). From a simple
theta-curve θ, we can obtain two oriented knots from θ(e0 ∪ e+) and θ(e0 ∪ e−) by using
the orientations provided by e0. Thus from an annular 1-tangle ℓ, the over- and underpass
closures, respectively, are the well-defined oriented knots obtained in those ways from θℓ.
For a knot-type q(ℓ) = κ• ∈ A, the over- and under-pass closures of ℓ recover κ.

Multiplication

Given Z-tangles ℓ1 and ℓ2, we define their product ℓ1ℓ2 by stacking them, with ℓ1 compressed
into R× [−1, 0]× I and ℓ2 compressed into R× [0, 1]× I. In symbols, we have the following
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three formulae for the x, y, and z coordinates of (ℓ1ℓ2)(n, t):

(ℓ1ℓ2)(n, t)x =

{
ℓ1(n, 2t+ 1)x −1 ≤ t ≤ 0

ℓ2(n, 2t− 1)x 0 ≤ t ≤ 1

(ℓ1ℓ2)(n, t)y =

{
(ℓ1(n, 2t+ 1)y − 1)/2 −1 ≤ t ≤ 0

(ℓ2(n, 2t− 1)y + 1)/2 0 ≤ t ≤ 1

(ℓ1ℓ2)(n, t)z =

{
ℓ1(n, 2t+ 1)z −1 ≤ t ≤ 0

ℓ2(n, 2t− 1)z 0 ≤ t ≤ 1

Using the same set of formulae, we can also define multiplication the set of string links
with k strings in a way that coincides with the definitions in [26] (page 397) and [12] (page
3), and on A in a way that coincides with the definition in [49] (Section 4.1). It is straightfor-
ward to check that multiplication is well-defined for AZ, A/I, A/I, etc. The multiplication
operations on A and AZ are compatible with s, and for two oriented knots κ1 and κ2 we
have (κ1κ2)

• = κ•1κ
•
2.

As binary operations on A/I and A/I, multiplication is a monoid, with the knot-type
annular 1-tangle and Z-tangle corresponding to the unknot serving as respective identities.
In A/I, the action of Z is a monoid homomorphism.

A prime annular 1-tangle is one that cannot be written as a nontrivial product. A
number of fundamental results about multiplication of knotoids show up in [49] (Section
4.2); their equivalents for annular 1-tangles are as follows: Every annular 1-tangle has a
unique decomposition of the form

κ•ℓ1ℓ2 · · · ℓn,

where each ℓi is a proper prime annular 1-tangle. A knot-type annular 1-tangle is prime if
and only if the corresponding knot is prime. Two distinct prime annular 1-tangles commute
if and only if one or both is knot-type.

Definition 2.5.1. A decomposing annulus for an annular 1-tangle ℓ is a ∂-properly embedded
surface Q ⊂ S1 × I2 with the following properties:

• Q is diffeomorphic to S1 × I.

• ∂Q = S1 × {0} × {−1, 1}.

• Q is transverse to ℓ.

• Q intersects ℓ only once.

An annular 1-tangle ℓ can be written as a product (on the nose, not just up to isotopy) if
and only if S1×{0}×I is a decomposing annulus for ℓ. More generally, if Q is a decomposing
annulus for an annular 1-tangle ℓ, then there are annular 1-tangles ℓ1, ℓ2 ∈ A and ι ∈ I such
that ℓ = ι ◦ (ℓ1ℓ2) and Q = ι(S1 × {0} × I). The factor annular 1-tangles ℓ1, ℓ2 are uniquely
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determined up to isotopy, because the only choice in choosing the decomposition amounts to
picking an element of B, but as we saw in Section 2.3, the annular 1-braid group is trivial.

The situation is slightly different in the context of Z-tangles:

Definition 2.5.2. A decomposing ribbon for a Z-tangle ℓ is a biproperly embedded surface
Q ⊂ R× I2 with the following properties:

• Q is diffeomorphic to R× I.

• ∂Q = R× {0} × {−1, 1}.

• Q is transverse to ℓ.

• Q intersects each strand of ℓ only once.

As with annular 1-tangles, a Z-tangle ℓ can be written as a product if and only if R×{0}×
I is a decomposing ribbon for ℓ. Also, ifQ is a decomposing ribbon for a Z-tangle ℓ, then there
are Z-tangles ℓ1, ℓ2 ∈ A and ι ∈ I such that ℓ = ι ◦ (ℓ1ℓ2) and Q = ι(R×{0}× I). However,
a decomposing ribbon does not uniquely determine the factor Z-tangles. In Section 4.3 we
will show that we can make such a statement in the restricted context of (A/I)Z.

Lifting

Definition 2.5.3. For a Z-tangle ℓ ∈ A and some k ∈ N, we define the kth lift of ℓ to be the
Z-tangle ℓ/k formed by ignoring all strands of ℓ not corresponding to a multiple of k and
then compressing the remaining ones in the x direction by a factor of k. In formulae, the
components of ℓ/k are as follows:

(ℓ/k)(n, t)x = ℓ(kn, t)x/k

(ℓ/k)(n, t)y = ℓ(kn, t)y

(ℓ/k)(n, t)z = ℓ(kn, t)z

Lifting is, of course, compatible with multiplication of Z-tangles and induces operations
on isotopy classes as well. Therefore we will be comfortable writing, for example, p(ℓ)/k ∈
AI . The lift of a translation-invariant Z-tangle is also translation-invariant.

Lifting satisfies a formula ℓ/(k1k2) = (ℓ/k1)/k2 for ℓ ∈ A and k1, k2 ∈ N. For a fixed
ℓ ∈ AZ, the sequence (p(ℓ/k)) stabilizes for large k in a knot-type isotopy class of Z-tangles
corresponding to the oriented knot formed just by considering what happens with a single
strand of ℓ. We will call this knot p(ℓ)/∞.

The lifting operations on AZ induce corresponding operations on A (and, by extension,
A/I). The formulae used in Definition 2.5.3 do not carry over, since division by natural
numbers is not defined in S1. Instead, the best way to think about a the kth lift of an
annular 1-tangle ℓ is as the result of choosing a lift (in the standard topological sense) of ℓ



CHAPTER 2. THE OBJECTS IN QUESTION 21

Figure 2.8: A Z-tangle ℓ (top) and its lifts ℓ/2 (middle) and ℓ/3 (bottom). Note that
for illustration purposes the diagrams here are skewed and the three images have different
horizontal scales. Thus the pictures don’t reflect the fact that each nth strand of each Z-
tangle starts at (n,−1, 0) and ends at (n, 1, 0).

to the k-fold cover R/(kZ) × I2 ↠ R/Z × I2 = S1 × I2 and then reidentifying identifying
R/(kZ) with S1.

A similar construction is studied in [7]: In terms of annular 1-tangles, from some ℓ ∈ A we
can create an unoriented knot (the double branched cover of ℓ) by taking the entire preimage
of ℓ in R/(2Z)× I2 and then embedding R/(2Z)× I2 into S3 as in Section 2.2.

In the world of knotoids, lifting has established uses; for example, in [24] (Definition
15), the parity bracket polynomial of a knotoid could equivalently be defined as the bracket
polynomial of the 2nd lift of the knotoid.
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Chapter 3

Heights and Sign Sequences

This chapter focuses on the signed heights of annular 1-tangles. The first goal of the chapter
is Theorem 3.3.1.

3.1 Self-Intersecting Spanning Disks

The lemma in this section shows that loosening the definition of a spanning disk to allow
certain self-intersections would not reduce the height of an annular 1-tangle or Z-tangle.

Definition 3.1.1. A generalized spanning disk for an annular 1-tangle ℓ ∈ A is a piecewise-
smooth map d : D2 → S1 × I2 with the following properties:

• The preimage of ∂(S1 × I2) under d is ∂(D2).

• The composite map

∂D2 → ∂(S1 × I2) = S1 × ∂(I2) ↠ ∂(I2),

where the first arrow is the restriction of d and last arrow is the projection onto the
second factor, is a diffeomorphism.

• The intersections between (the images of) d and ℓ are transverse and occur away from
both the boundary and the self-intersection points of d.

• The self-intersections of d avoid a neighborhood of the boundary.

Notice that intersections between ℓ and d are signed, just as if d(D2) were a typical
(i.e. non-generalized) spanning disk: Using the orientatability of the domain D2 and the
orientation of the ambient S1× I2, there are two consistent ways to assign coorientations for
all regular points in D2 for the purposes of determining the signs of intersections with ℓ; we
will use the assignment that, around the boundary, looks like it should for a spanning disk.

The definition of generalized spanning disks carries over to Z-tangles as well, with R× I2
in place of S2 × I2.
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Lemma 3.1.2. If d is a generalized spanning disk for ℓ, then d has at least h(ℓ) intersections
with ℓ, at least h+(ℓ) of which are positive and at least h−(ℓ) of which are negative.

The equivalent statement also holds for a Z-tangle ℓ ∈ A and a generalized spanning disk
d ⊂ R× I2.

Proof. We will just prove the statement for an annular 1-tangle ℓ, since our proof carries
over to the case of Z-tangles without modification.

Given the generalized spanning disk d, any small perturbation of d performed entirely
away from the boundary and away from the intersections between d and ℓ gives us a new
generalized spanning disk with the same number of intersections of each sign with ℓ. There-
fore, we can take d to be in general position, requiring that its self-intersections satisfy the
hypotheses of Dehn’s lemma as stated in [14] (page 193).

The version of Dehn’s lemma that appears in the exposition in [14] (page 193) is slightly
more specific in its stated conclusion than the original in [43]; this stronger version, applied
to d, asserts that there exists a resolution of the self-intersections of d such that the resulting
surface has zero genus and hence consists only of a disk and possibly some 2-spheres. The
resolution, of course, can be performed by modifying the image of d in just a small neigh-
borhood of the singular set; since the intersections between ℓ and d avoid the singular set,
we can take the resolutions to not interfere with the intersections with ℓ. Let D be the disk
component of such a resolution, which must have the same boundary as d.

Now, every point of intersection between D and ℓ also existed on d, so the number of
intersections between d and ℓ is at leastH(ℓ,D), which in turn is at least h(ℓ) by the definition
of h. Note that the process of resolving self-intersections does not respect orientation, so a
point of intersection between D and ℓ, considered as such, might not have the same sign as it
does when considered as an intersection between d and ℓ. However, since d and D have the
same boundary, they are homologous, which implies that the overall algebraic intersection
numbers of ℓ with each of d and D must be equal. Hence, the number of positive (resp.
negative) intersections of d with ℓ equals H±(ℓ,D), which is at least h±(ℓ).

One immediate application of Lemma 3.1.2 is to the Birman–Hilden map:

Lemma 3.1.3. For any ℓ ∈ A, we have h(s(ℓ)) = h(ℓ). Furthermore, the two equations
h±(s(ℓ)) = h±(ℓ) hold as well.

Proof. Given ℓ ∈ A, let ℓ = s(ℓ).
Clearly we have h(ℓ) ≤ h(ℓ) and h±(ℓ) ≤ h±(ℓ): Any spanning disk D for ℓ can be lifted

to R× I2 to create a spanning disk D for ℓ with H±(ℓ,D) = H±(ℓ,D).
Conversely, suppose we are given a spanning diskD for ℓ. Then we can let d : D2 → S1×I2

be the map obtained by composing an arbitrary identificationD2 = D with ℓ and the covering
map R × I2 → S1 × I2. This d is an immersion, possibly with some self-intersections on
its interior. The number of positive (resp. negative) intersections between d and ℓ equals
H+(ℓ,D) (resp. H−). The self-intersections of d correspond to intersections between D
and translates of D by (nonzero) integers. By doing small perturbations, we can take D to
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be in general position with respect to integer translation. Under this assumption, the self-
intersections of d will avoid ℓ and therefore d will be a generalized spanning disk. Now we
can apply Lemma 3.1.2 to the generalized spanning disk d, obtaining H±(ℓ,D) = H±(ℓ,D).
Therefore, h(ℓ) ≥ h(ℓ) and h±(ℓ) ≥ h±(ℓ).

Therefore, on the level of isotopy classes, for q(ℓ) ∈ A/I we have h(Bh(s∗(ℓ))) = h(q(ℓ)).

3.2 Disjoint Spanning Disks

When a pair of spanning disks for a single annular 1-tangle are disjoint from each other, we
can observe restrictions on their heights:

Lemma 3.2.1. If D1 and D2 are disjoint spanning disks for an annular 1-tangle ℓ ∈ A and
if H(ℓ,D1) ≥ H(ℓ,D2), then H±(ℓ,D1) ≥ H±(ℓ,D2).

Note that the equivalent statement for Z-tangles does not hold.

Proof. Because D1 and D2 are disjoint, D1 ∪D2 partitions S1 × I2 into two 3-balls. Let Σ
denote D1 ∪ (−D2), that is, the oriented copy of D1 ∪D2 that uses the original orientation
of D1 for that component and the opposite of the original orientation of D2 for the D2

component. Then Σ is nullhomologous as a 2-chain in S1 × I2 rel boundary, the oriented
boundary of one of the 3-balls.

The endpoints of ℓ, (0,±1, 0), are each either inside or outside of Σ. The algebraic
intersection number of ℓ with Σ must be 0, 1, or −1. In symbols, we can write

−1 ≤ H+(D1)−H−(D1)−H+(D2) +H−(D2) ≤ 1. (3.1)

(Here we have suppressed ℓ in the notation.)
By assumption, we have

H+(D1) +H−(D1) ≥ H+(D2) +H−(D2). (3.2)

Combining (3.2) with each inequality in (3.1), we obtain 2H+(D1) − 2H+(D2) ≥ −1 and
2H−(D1)− 2H−(D2) ≥ −1. Therefore, H±(D1) ≥ H±(D2), as desired.

The next fact provides opportunities to apply Lemma 3.2.1.

Lemma 3.2.2. If D and D
′
are spanning disks for an annular 1-tangle ℓ and D realizes the

height of ℓ, then there is a sequence of spanning disks

D
′
= D0, D1, . . . , Dk = D

such that consecutive disks are disjoint and the sequence (H(ℓ,Di)) is nonincreasing in i.
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Proof. We can choose a D1 that is just a copy of D
′
pushed slightly to one side and such that

D and D1 intersect transversely. Then the intersections consist of a system C1 of disjoint
circles and arcs ∂-properly embedded in both D and D1. We can also require in our choice
of D1 that none of the intersection curves meet ℓ. For each i ≥ 1, once we have chosen Di

we will form Di+1 in such a way that Di+1 has fewer total components of intersection with
D than does Di. Let Ci be the system of intersections between Di and D.

Case 1: Ci is empty.
If Ci is empty, then D is disjoint with Di, so we set k = i + 1 and Dk = D. Because D

realizes the height of ℓ, H(Di) ≥ H(D).

Case 2: Ci has an arc, but no circles.
If Ci contains an arc, but no circles, we can find an arc Γ that is innermost on D. By

innermost arc, we mean one for which we there is a disk E in D bounded by Γ such that E
does not containing any arcs of Ci besides Γ. In particular, this means that ∂E \Γ is disjoint

from D
′
. Consider the arc of ∂D

′
that corresponds to the same portions of ∂(I2) as ∂E \ Γ.

Then the disk E ′ in Di bounded by this arc and Γ cannot contain any other arcs of Ci, since
their boundaries would have to be intersection points of ∂E \Γ with D

′
. Therefore, Γ is also

innermost in Di. In particular, E ∩Di = E ′ ∩D = Γ.
Since (D − E) ∪ E ′ is a spanning disk, its height is at least H(D). Therefore, E ′ has at

least as many intersections with ℓ as does E. Now letDi+1 be the result of slightly perturbing
(Di − E ′) ∪ E to be disjoint from Di and from E. Then Di+1 has fewer intersection curves
than Di with D, and we have H(Di+1) ≤ H(Di).

Case 3: Ci contains a circle.
If there is at least one circle, there is an innermost circle C in D. Then C bounds a disk

E ⊂ D with E ∩ Di = C. Let E ′ denote the disk in Di bounded by C. In contrast with
Case 2, C is not necessarily innermost in Di, so E

′ ∩D might be more than just C.
By Lemma 3.1.2, ℓ has at least as many intersections with (D − E) ∪ E ′ as with D,

so it intersects E ′ at least as many times as E. Therefore, we can proceed as in Case 2.
Let Di+1 = (Di − E ′) ∪ E, and perturb it so that it is disjoint from Di and E. Then
H(Di+1) ≤ H(Di), and we have reduced the number of intersection curves with D.

This covers all the cases, so we are done.

Lemma 3.2.1 immediately implies that Lemma 3.2.2 can be strengthened as follows.

Lemma 3.2.3. If D and D
′
are spanning disks for an annular 1-tangle ℓ and D realizes the

height of ℓ, then there is a sequence of spanning disks

D
′
= D0, D1, . . . , Dk = D

such that consecutive disks are disjoint and the sequences (H±(ℓ,Di)) are both nonincreasing.
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3.3 Additivity of Signed Heights

Theorem 3.3.1. For each annular 1-tangle ℓ, h(ℓ) = h+(ℓ) + h−(ℓ).

Proof. Given an annular 1-tangle ℓ, a spanning disk D realizing the height, and any other
spanning disk D

′
, Lemma 3.2.3 implies that D has no greater positive or negative height

than D
′
. Therefore, D realizes the signed heights, and so we have

h(ℓ) = H(ℓ,D) = H+(ℓ,D) +H−(ℓ,D) = h+(ℓ) + h−(ℓ).

Theorem 3.3.1 reduces questions about the height of an annular 1-tangle to questions
about its signed heights, which form a height pair (h+(ℓ), h−(ℓ)). This will make it easier to
compute the heights of some annular 1-tangles. The theorem also implies that all minimal
attainable sequences for an annular 1-tangle are rearrangements of each other.

Theorem 3.3.1 contrasts with the case of crossing numbers of classical knots: Little ([37],
page 774) conjectured that any two minimal diagrams of the same knot would have the
same writhe (i.e. the number of positive crossings minus the number of negative ones). This
conjecture would have followed from a stronger conjecture that signed crossing numbers de-
termine the unsigned crossing number. However, there is a counterexample to both versions
with crossing number 10 and signed crossing numbers 9 and 0.

Lemma 3.2.3 can also provide more detailed information about the set of attainable sign
sequences for an annular 1-tangle. A left shift move of size k on a sign sequence S is the result
of deleting k appearances of (−,+) as a consecutive subsequence of S and then inserting
k copies of (+,−). Similarly, a right shift move deletes copies (+,−) and adds copies of
(−,+). The deletions and insertions all happen at the same time. For example, a nontrivial
shift move on (−,−,+,+) must be a left shift of size 1, deleting the second and third entries.
The possible results after inserting (+,−) are (+,−,−,+), (−,+,−,+), and (−,+,+,−).
Right and left shift moves undo each other.

Lemma 3.3.2. If D1 and D2 are disjoint spanning disks for an annular 1-tangle ℓ and
H(θ,D1) = H(ℓ,D2), then Seq(ℓ,D1) and Seq(ℓ,D2) differ by a shift move.

Proof. Let Σ be the sphere D1 ∪ (−D2) as in the proof of Lemma 3.2.1. Without loss of
generality (up to relabeling D1 and D2), we can assume that (0,−1, 0) is in the ball “outside”
of Σ. In the overall sequence of intersections of ℓ with Σ, the signs of the intersections
alternate: The odd- and even-index intersections are negative and positive, respectively.
Because H(ℓ,D1) = H(ℓ,D2), the total number of intersections is even. Each odd-even pair
of consecutive intersections has type (+D2,+D1), (−D1,−D2), (−D1,+D1), or (+D2,−D2).
The sign sequences for D1 and D2 are obtained just by picking out the corresponding entries
from the overall sequence of intersections with Σ. Where we see (+D2,+D1) or (−D1,−D2)
in the overall sequence, we will get a + or a −, respectively, regardless of which spanning
disk we consider. The other pairs will either show up as (−,+) in Seq(ℓ,D1) only or as
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(+,−) in Seq(ℓ,D2) only. Therefore, Seq(ℓ,D2) is obtained from Seq(ℓ,D1) by a left shift
move.

Lemma 3.3.2 can be applied to annular 1-tangle invariants as follows.

Theorem 3.3.3. If S and S ′ are two minimal attainable sequences for some ℓ ∈ A, there is
a sequence of minimal attainable sequences

S = S0, S1 . . . , Sk = S ′

such that each Si+1 differs from Si by a shift move.

Proof. Suppose D and D
′
are both spanning disks realizing the height of ℓ. Then in the

sequence (Di) of spanning disks obtained from Lemma 3.2.3, each Di realizes the height of ℓ.

Therefore, applying Lemma 3.3.2 to the sequence (Di) implies that Seq(ℓ,D) and Seq(ℓ,D
′
)

are connected among minimal attainable sequences by shift moves.

We will see later on how Theorem 3.3.3 can be used to distinguish distinct annular
1-tangles and knotoids.

3.4 Behavior of Attainable Sequences

Signed Heights under the Basic Involutions

The signed heights of annular 1-tangles behave in straightforward ways under the basic
involutions.

Proposition 3.4.1. For all ℓ ∈ A, we have

h±(ℓ) = h±(rev(ℓ)) = h±(mir(ℓ)) = h∓(sym(ℓ)) = h∓(rot(ℓ)).

More specifically, we can say the following.

Proposition 3.4.2. If S is an attainable sign sequence for ℓ, then,

1. rev(S) is attainable for rev(ℓ),

2. S is attainable for mir(ℓ),

3. −S is attainable for sym(ℓ), and

4. −S is attainable for rot(ℓ).

where −S is the result of switching all terms + ↔ − in S and rev(S) is the result of reversing
the order.
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Proof. Given a spanning disk D for ℓ, any time we transform ℓ by inverting any of the three
coordinates x, y, z, we can do the same to D to get a new spanning disk for the new annular
1-tangle. Recall that hte orientation for D is always determined by how it sits in S1 × I2.
Flipping all z values in the whole picture does not change the sign of any intersection or
the order they come in. Flipping all x values preserves the orientation of ℓ, but effectively
changes the orientation of D, so it flips the signs of all intersections. Flipping all y (and t)
values essentially changes the orientation of ℓ and also the order in which the intersections
appear. These moves together generate the various basic involutions, so the behaviour of
signed heights and sign sequences can easily be extrapolated.

Proposition 3.4.1, together with Theorem 3.3.1, has implications for unsigned heights of
annular 1-tangles, such as for rotatable annular 1-tangles, which are addressed in [7]. An
annular 1-tangle ℓ is rotatable if it is isotopic to rot(ℓ).

Corollary 3.4.3. Every rotatable ℓ ∈ A has even height.

Multiplication and Concatenation

In this section we relate the set of attainable sign sequences for a product to the attainable
sequences of its factors.

Proposition 3.4.4. For any ℓ1 and ℓ2, if S1 is an attainable sign sequence for ℓ1 and S2 is
attainable for ℓ2, then the concatenation S1S2 is attainable for ℓ1ℓ2.

Proof. Given spanning disks D1 and D2 for ℓ1 and ℓ2, as noted in Section 2.4 we can assume
Di ∩ (S1 × {±1} × I) = {1

2
} × {±1} × I for i = 1, 2. Then when we form the product

ℓ1ℓ2, we can insert D1 and ℓ2 into their corresponding places, and together they will form
a “product spanning disk” for ℓ2ℓ2. The sign sequence for the product spanning disk is the
concatenation of the sign sequences for the two spanning disks.

Note that, as a special case of the statement above, if S is any attainable sequence for an
annular 1-tangle ℓ, then the result of appending + or − to either end of S is also attainable
for ℓ, because for any spanning disk D for ℓ we can strech the part near y = 1 or y = −1 in
either direction to create a new intersection with ℓ.

The next theorem is a converse for Proposition 3.4.4.

Theorem 3.4.5. Any minimal attainable sequence for ℓ1ℓ2 is the concatenation of minimal
attainable sequences for ℓ1 and ℓ2.

We will prove Theorem 3.4.5 using a modification of original argument appearing in [49]
for Corollary 3.4.7 below.

Corollary 3.4.6. For two annular 1-tangles ℓ1 and ℓ2, h±(ℓ1ℓ2) = h±(ℓ1) + h±(ℓ2).
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Corollary 3.4.7 (Turaev [49], Theorem 4.3). For two knotoids k1 and k2, the complex-
ity/height of k1k2 equals the sums of the complexities/heights of k1 and k2.

Lemma 3.4.8. Suppose that ℓ is an annular 1-tangle and Φ is a compact oriented surface
(not necessarily connected) ∂-propertly embedded in S1 × I2 such that ℓ intersects Φ trans-
versely, only one component of Φ has nonempty boundary, and that component is a spanning
disk whose orientation as a spanning disk matches its orientation as part of Φ. Then the
sequence Seq(ℓ,Φ) of signs of intersections of ℓ with Φ is attainable for ℓ.

Proof. Let D be the disk component of Φ.

Case 1: Every closed component of Φ is a sphere.
If Φ = D, then of course Seq(ℓ,Φ) = Seq(ℓ,D) is attainable.
If Φ is not connected, some spherical component Φ1 of Φ must be “outermost” in the

sense that no other sphere separates it from ∂(S1 × I2), and hence from D. If the positive
side of Φ1 is the one facing outward, then we can choose an embedded path from Φ1 to the
positive side of D such that the path does not otherwise intersect Φ or ℓ. Then we can
incorporate Φ1 into D in an orientation-respecting way by adding an annulus to connect Φ1

to D and deleting disks in D and Φ1 around the path’s endpoints. If instead the negative side
of Φ1 was facing outward, we can do the same but with the negative side of D. Doing this
several times replaces Φ with a spanning disk and realizes the sign sequence as attainable.

Case 2: General Case.
Each closed component of Φ is separating in S1 × I2, and as in Case 1 each component

has a clear inside and outside based on ∂(S1 × I2), regardless of their orientations. Call
a spherical component of Φ trivial if it intersects ℓ twice and if ℓ is unknotted inside the
sphere. Let F be the set of closed components that are not trivial spheres. If F is nonempty,
consider an innermost element Φ1 of F . Inside of Φ1 are some number of segments of ℓ. Some
of these segments could have trivial spheres attached. Let us delete Φ1 and replace it with
several trivial spheres: One sphere is added for each segment of ℓ inside Φ1, surrounding
the segment and all preexisting trivial spheres on that segment. The new spheres can be
oriented appropriately so that we have not changed Seq(ℓ,Φ). Repeating this process renders
F empty and reduces us to Case 1.

Lemma 3.4.9. For any annular 1-tangle ℓ1 and a knot-type ℓ0 representing κ•, a sign se-
quence is attainable for ℓ0ℓ1 if and only if it is attainable for ℓ1.

Proof. For convenience, let us write ℓ = ℓ0ℓ1. It is immediate that any attainable sequence
for ℓ1 is attainable for ℓ.

For the other direction, suppose we have a spanning disk D for ℓ. Pick a ball Ω in the
interior of S1 × I2 such that ∂Ω intersects D transversely and the restriction of ℓ to Ω is κ
in the form of a 1-tangle. If ℓ intersects D inside Ω, we can push these intersections to the
outside: Choose a subinterval of ℓ ∩ Ω containing the intersections with D as well as one of
the two endpoints, then delete from Ω a regular neighborhood of that interval. Therefore we
can choose Ω so that ℓ ∩D ∩ Ω is empty.
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Let v0 and v1 be the intersections of ℓ with ∂Ω, assigned such that ℓ is oriented from v0
to v1. Each component of D ∩ Ω is a genus-0 surface (with boundary) properly embedded
in Ω, and each component of D ∩ ∂Ω is an oriented circle with winding number 0, 1, or −1
around ∂Ω−{v0, v1}. Suppose there is at least one circle with winding number 0. Then there
is an innermost such circle. We can cut D along this circle and fill in two disks on either
side of ∂Ω to obtain a new spanning surface consisting of a disk and a sphere. Doing these
repeatedly, we obtain a surface Φ as in Lemma 3.4.8 (specifically, as in Case 1) such that
Seq(ℓ,Φ) = Seq(ℓ,D) and and such that every component of Φ ∩ ∂Ω has winding number
±1. There might now be some spherical components of Φ contained entirely within Ω, but
they do not intersect ℓ.

Now, let us label the components of Φ ∩ Ω as E1, . . . , En. Each separates Ω into two
regions, and each is disjoint from the others and from ℓ. The components of Φ ∩ ∂Ω, all
concentric circles, have an order based on how they are arranged from v0 to v1 and so can
be indexed 1, . . . ,m. For each i, let wn(i) be the winding number of the ith circle and let
c(i) be the index of its component in Φ ∩ Ω. For each j ∈ {1, . . . , n}, the sum of the wn(i)
over all i with c(i) = j must be 0, because ℓ does not intersect Ej. For similar reasons, for
all j and all i1 and i2 with i1 < i2 and c(i1) = c(i2) ̸= j, the sum of the wn(i) over all i with
c(i) = j and i1 < i < i2 is also 0.

Now, to show that Seq(ℓ,Φ) is attainable for ℓ1, we will create a spanning of ℓ1 by deleting
and replacing the interior of Ω. Let Ω′ be a standard 3-ball, and choose an orientation-
respecting identification ∂Ω′ ∼= ∂Ω. Let λ be an unknotted strand properly embedded in Ω′

from v0 to v1. Now consider a partition of the components of Φ ∩ ∂Ω into pairs such that
(a) paired components have opposite winding numbers, (b) paired components come from
the same component of Φ ∩ Ω, and (c) for i1 < i2 < i3 < i4, we do not have i1 paired to i3
and i2 to i4. (A simple induction argument shows this is possible.) Now, we connect each
pair of components with an unknotted annulus disjoint from λ and disjoint from the other
annuli. See Figure 3.1.

Now we glue Ω′ along ∂Ω to the closure of the complement of Ω to obtain a spanning
surface Φ

′
for ℓ1, with Seq(ℓ1,Φ

′
) = Seq(ℓ,D). Because we replaced each component of Φ∩Ω

with several annuli, we have not created any higher-genus components by replacing Φ with
Φ

′
. Therefore Φ

′
is a union of a disk with spheres, and so by Lemma 3.4.8, Seq(ℓ,D) is

attainable for ℓ1.

Proof of Theorem 3.4.5. Given a spanning disk D for a product ℓ = ℓ1ℓ2 realizing its height,
we wish for there to be decomposing annulus Q expressing ℓ as ℓ1ℓ2 and also expressing D
as a product spanning disk. By Lemma 3.4.9, we may assume that ℓ1 and ℓ2 each have no
knot-type factors. (Without this assumption, the desired decomposing annulus would not
necessarily exist.)

By construction, there is a decomposing annulus Q coming from ℓ as a product of ℓ1
and ℓ2. Necessarily, the two vertices of ℓ lie on opposite sides of Q, and ℓ intersects Q once
transversely. We can choose Q such that D intersects Q transversely as well. Then the
intersection of D and Q consists of a line segment and possibly several circles. If the number
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Figure 3.1: A cross section of Ω′. We can obtain Ω′ by rotating around the center axis, which
represents ℓ

′
. In this example, Φ ∩Ω had three components, indicated by the three types of

curved arrow.

of circles is 0, then Q cuts D into two disks which are spanning disks for ℓ1 and ℓ2, so we
are done.

If there are some circles, we can pick one which is innermost in D. This bounds a disk
E in D which does not otherwise intersect D or Q. The circle is also nullhomologous on Q
and separates Q into a pair of pants Q1 and a disk Q2. Let Ω denote the ball in S1× I2 with
boundary Q2 ∪ E.

The intersection of ℓ with Q could be on either Q1 or Q2, but regardless, ℓ cannot intersect
E more times than it intersects Q2, by Lemma 3.1.2. Therefore, ℓ either intersects Q1 once
without intersecting Q2 or E, or it intersects Q2 and E once each but not Q1. In the latter
case there is a 1-tangle inside of Ω, but by our assumption of no knot-type factors, the tangle
is unknotted.

Let Q
′
be the sphere formed by pushing Q2 through Ω and past E, so Q

′
is a slight

perturbation of Q1 ∪E and there are fewer circular intersections of D with Q
′
than with Q.

Since Ω either does not intersect ℓ or contains only an unknotted segment between Q2 and

E, (ℓ,Q
′
) is isotopic to (ℓ,Q), so Q

′
still decomposes ℓ as ℓ1ℓ2.

Repeating the above steps yields an annulus intersecting ℓ once and D in only an interval,
so it decomposes (ℓ,D) as a product of (ℓ1, D1) and (ℓ2, D2), as desired. Then Seq(ℓ,D) is the
concatenation of Seq(ℓ1, D1) with Seq(ℓ2, D2). Since Seq(ℓ1ℓ2, D) is minimal, each Seq(ℓi, Di)
is also minimal.

Signed Heights under Lifting

It is straightforward, but slightly complicated, to compute how attainable sign sequences
behave with respect to lifting: For an annular 1-tangle ℓ and spanning disk D, there are k
lifts of D to a shortcut for ℓ/k. The total number of positive (resp. negative) intersections of
ℓ/k with all such lifts is equal to H+(ℓ,D) (resp. H−(ℓ,D)). Of course, that amount must
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be at least k times the minimal number of positive/negative intersections with each of the k
lifts of D. Therefore we have the result below.

Proposition 3.4.10. For all ℓ ∈ A and k, kh±(ℓ/k) ≤ h±(ℓ).

Furthermore, we can obtain attainable sign sequences for ℓ/k from attainable sequences
for ℓ in the following way. Given a sign sequence S of length H, for each i ∈ {0, . . . , H} let
PSS(i) be the sum of the terms of S from indices 1 to i. For i ∈ {1, . . . , H}, let PSMS(i) be
the maximum of PSS(i − 1) and PSS(i). Then for m ∈ Z/kZ, let (S)m be the subsequence
of S consisting of only the terms from indices i with PSMS(i) ≡ m (mod k). Given ℓ and

D, we can label the k lifts of D as D
1
, . . . , D

n
in such a way that they increment left in

S1× I2, and (0,−1, 0) sits between D
n
and D

1
. Then the ith intersection of ℓ with D lifts to

an intersection of ℓ/k with D
PSM(i)

, so for each m, Seq(ℓ/k,D
m
) = Seq(ℓ,D)m. This implies

the following.

Proposition 3.4.11. For every attainable sequence S for ℓ, each (S)m is attainable for ℓ/k.

3.5 Bounds on Signed Height

This section addresses lower bounds for signed heights, which of course are typically more
difficult to find than upper bounds.

In this section we will usually use knotoids instead of annular 1-tangles in order to be
able to use crossings.

The signed heights of a knotoid can be bounded individually by some polynomial in-
variants, in particular the Turaev polynomial ⟨⟨k⟩⟩◦ of [49] (Section 8.1) and the index
polynomial Fk of [30] (Definition 3.1). For a nonzero Laurent polynomial π(t) ∈ Z[t±1], we
will write deg+(π) for max{maxdeg(π), 0} and deg−(π) for max{−mindeg(π), 0}. We also
set deg±(0) = 0. For a Laurent polynomial in multiple variables, the signed degree in a
specific variable will be denoted by (for example) deg±t .

Writhes

Given a crossing c in a knotoid diagram K, there is a unique resolution of c that respects
orientation. This resolution creates an oriented diagram with two components, a loop K0

and an interval K1 with the same endpoints as K. The winding number of K0 around
the twice-punctured sphere is called the intersection index of c, denoted Ind(c) ([30], page
3, under the notation i). The index is equal to the intersection number of K0 with any
shortcut, or with K1. Note that the index of a crossing doesn’t depend on any over/under
information. If a crossing has index n, it will be called an n-crossing.

Definition 3.5.1. For nonzero n, the n-writhe Jn(K) of K is half the sum of the signs of
the n-crossings.
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Theorem 3.5.2 (Kim–Im–Lee [30], Theorem 2.4). For nonzero n, the n-writhe is a knotoid
invariant.

Remark. Our convention differs from [30] (Definition 2.2) by a factor of 2; they omit the
word “half” in Definition 3.5.1. Under our convention, the n-writhe is still an integer: Any
knotoid diagram can be turned into a diagram for the trivial knotoid by switching the signs
of crossings such that each “late” strand passes over each “early” strand. Each such switch
changes the n-writhe by an integer, and the n-writhe of the trivial knotoid is 0, so all n-
writhes of all knotoids are integers. However, what we say here does not apply in general to
virtual knotoids, which are considered in [30] alongside classical knotoids.

The following are immediate consequences of the definition of n-writhe:

Proposition 3.5.3. For a knotoid k, we have the following:

1. Jn(rev(k)) = Jn(k)

2. Jn(mir(k)) = −Jn(k)

3. Jn(sym(k)) = −J−n(k)

4. Jn(rot(k)) = J−n(k)

Proposition 3.5.4. For knotoids k1 and k2, Jn(k1k2) = Jn(k1) + Jn(k2).

The n-writhes of a knotoid can be encoded in the coefficients of a polynomial. The index
polynomial ([30], Definition 3.1, under the notation F ) for k is

IPk(t) =
∑
n̸=0

Jn(k)(t
n − 1) ∈ Z[t, t−1].

This is closely related to its similarly-named predecessor, the affine index polynomial of [23]
(Definition 12, under the notation P ), defined by

AIPk(t) =
∑
c

sign(c)(twt(c) − 1),

where wt(c) is sign(c) ssgn(c) Ind(c), and ssgn(c) is as shown in Figure 3.2. Note that wt(c)
differs from Ind(c) only by sign. The affine index polynomial satisfies AIPk(t) = AIPk(t

−1)
for all k ([23], Theorem 4.10), so it is related to the index polynomial by the formula

AIPk(t) = IPk(t) + IPk(t
−1). (3.3)

The degree of the affine index polynomial was shown to be a lower bound for the height of
a knotoid in [23] (Theorem 4.12). Because of the relationship in eq. (3.3), this is equivalent to
Proposition 3.12 of [30]. Proposition 3.5.6, together with Theorem 3.3.1, is an improvement
on this bound in the case that deg+(IPk) and deg−(IPk) are both positive.
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Figure 3.2: Sequential signs of crossings.

Proposition 3.5.5. Any attainable sequence for k must have a consecutive subsequence
adding up to deg+(IPk), and a consecutive subsequence adding up to − deg−(IPk).

In the theorem above, of course, we treat + terms as +1 and − as −1.

Proof. For nonzero n, if Jn(k) ̸= 0, any diagram K for k must have an n-crossing c. Then
given any shortcut a for K, the segment of K starting and ending at c has, algebraically, n
intersections with a, so the signs in the corresponding segment of Seq(K, a) add up to n.

Proposition 3.5.6. For a knotoid k, h±(k) ≥ deg±(IPk).

Proof. If Jn(k) ̸= 0, then as above, in any attainable sign sequence for k there is a consecutive
subsequence with sum n. Therefore, for positive n there must be at least n appearances
of +, and for negative n there are at least −n appearances of −. This proves that the
positive/negative height of k is bounded below by the positive/negative degree of IPk.

Theorem 3.5.7. If k is a knotoid such that the bounds in Proposition 3.5.6 are equalities,
then k has a unique minimal attainable sign sequence.

Proof. Suppose that h±(k) = deg±(IPk). A minimal attainable sign sequence contains
h+(k) copies of + and h−(k) copies of −, and by Proposition 3.5.5, the terms of the same
sign must all be consecutive. Therefore, any minimal attainable sign sequence is one of
(+, . . . ,+,−, . . . ,−) or (−, . . . ,−,+, . . . ,+). Call these two sequences S1 and S2, respec-
tively. To show that only one of these can be attainable, we consider several cases.

Case 1: h+(k) or h−(k) is 0.
If one of the signed heights is zero, then all of the terms are the same sign, and S1 = S2.

Case 2: h+(k), h−(k) > 1.
In this case, S1 and S2 are not related by a shift move. There are no other minimal

attainable sequences, so by Theorem 3.3.3, they cannot both be attainable.

Case 3: h+(k) or h−(k) is 1 and neither is 0.
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Supposing that S1 and S2 are both attainable, they are the only minimal attainable
sequences. By Lemma 3.2.3, there are disjoint spanning disks D1 and D2 for a ℓ ∈ A
corresponding to k such that Seq(ℓ,Di) = Si for i = 1, 2.

Since D1 and D2 are both minimal, by Theorem 3.3.1 they correspond to the same
spanning disk framing for ℓ. Together they bound a thickened disk Ω in S1 × I2 that does
not include (0,±1, 0). There are h(ℓ) segments of ℓ in Ω, one entering and leaving by D1,
one entering and leaving by D2, and the rest crossing from one side to the other. Without
loss of generality, we can assume that ℓ intersects D2 before D1. Then h−(ℓ) must be 1, and
the intersections come in the order

(−D2,+D2, . . . ,+D1,−D1),

where the “. . .” consists of h+(ℓ)− 1 consecutive copies of (+D1,+D2).
By isotopy (possibly moving the boundary of S1×I2, but leaving (0,±1, 0) fixed through-

out and without changing the sign sequences), we can assume both D1 and D2 are simulta-
neously planes in S1, both parallel to the z direction ([27], point (9) in the appendix). By
then adjusting ℓ to be in general position with respect to the projection to S1 × I, we can
obtain a diagram K for k with two shortcuts a1 and a2 corresponding to D1 and D2 that
are disjoint on their interiors.

Since any crossing c of K lies either in the region of S2 corresponding to Ω or in its
complement, the loop on K from c to c has an even total number of intersections with a1
and a2. Therefore, if that loop includes the negative intersection with a1, it also includes at
least one positive a1 intersection, so if we measure the index of c by intersections of the loop
with a1, the index is nonnegative.

Since all crossings have nonnegative index, all negative writhes are 0, contradicting the
assumption that h−(k) = deg−(IPk). This proves Theorem 3.5.7.

The Turaev Polynomial

A state of a diagram K is a function from the set of crossings to {−,+}. For each state
ξ, the ξ-smoothing of K is given by smoothing each crossing according to Figure 3.3. The
sum of ξ(c) over all crossings is denoted tot(ξ), and the number of embedded circles in the
diagram after smoothing by ξ is circ(ξ). (There is also one embedded interval, which is not
counted.) The bracket polynomial of K ([49], Section 7.1) is then

⟨K⟩ =
∑
s

αtot(ξ)(−α2 − α−2)circ(ξ) ∈ Z[α, α−1].

The bracket polynomial is invariant under Reidemeister moves I’, II, and III, so it is a
“framed knotoid” invariant. A Reidemeister I move changes the bracket polynomial by a
factor of −α−3, so the normalized bracket polynomial defined by

⟨K⟩◦ = (−α)−3wr(K)⟨K⟩
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Figure 3.3: Smoothings for the bracket polynomial.

in [49] is an unframed invariant.
There is also a two-variable version of the bracket polynomial, called the extended bracket

polynomial in [49] (Section 8.1) or the Turaev polynomial as in [34] (Section 2.2). For a
diagram K and shortcut a, let a(K) denote the algebraic height

H+(K, a)−H−(K, a),

and for any state, let a(ξ) be the algebraic height of the interval component of the ξ-
smoothing of K, with its natural orientation. Then the Turaev polynomial of (K, a) is

⟨⟨K, a⟩⟩ =
∑
s

αtot(ξ)ua(ξ)(−α2 − α−2)circ(ξ) ∈ Z[α±1, u±1].

The normalized version

⟨⟨K, a⟩⟩◦ = (−α)−3wr(K)u−a(K)⟨⟨K, a⟩⟩

is a knotoid invariant and always takes values in Z[α±2, u±2].
The height of a knotoid satisfies 2h(k) ≥ deg+u (⟨⟨k⟩⟩◦) + deg−u (⟨⟨k⟩⟩◦) ([49], Section 8.3).

Proposition 3.5.8 below does not improve this bound on the overall height but is the equiv-
alent statement for the signed heights.

Proposition 3.5.8. For a knotoid k, 2h±(k) ≥ deg∓u (⟨⟨k⟩⟩◦).

Proof. Fix a diagram K representing a knotoid k and a shortcut a for K. For any state ξ,
the ξ-smoothing of K only has as many intersections with a as K does. In particular, the
interval component of the smoothing has no more than

H+(K, a) +H−(K, a)

positive or negative intersections with a, so we have

−2H+(K, a) ≤ a(ξ)− a(K) ≤ 2H−(K, a).

Therefore, the u exponents of ⟨⟨k⟩⟩◦ are no more than 2h−(k) and no less than −2h+(k).
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A categorification of the Turaev polynomial, the triply-graded winding homology, is de-
fined in [34]. The corresponding Poincaré polynomial is denoted Wk(t, α, u) and satisfies

Wk(−1, α, u) = ⟨⟨k⟩⟩◦

for every k. The winding homology is the homology of a chain complex in which each
generator is given a u-grading a(ξ)−a(K) for some state ξ, so in addition to Proposition 3.5.8
we can also say that

2h±(k) ≥ deg∓u (Wk(t, α, u)).

3.6 Low Heights

As we saw before, annular 1-tangles with height 0 are, up to isotopy, naturally in one-to-
one correspondence with oriented knots. We can also make some general statements about
annular 1-tangles with height 1 or 2.

Height One

Lemma 3.2.3 allows us to characterize annular 1-tangles of height 1 using 2-tangles. Suppose
we are given a 2-tangle T in the 3-ball [−1

2
, 1
2
] × I2 connecting (0,−1, 0) to (1

2
, 0, 0) and

(−1
2
, 0, 0) to (0, 1, 0). Then we can form an annular 1-tangle ℓT by placing [−11

2
, 1
2
]× I2 into

S1× I2 in the natural way, effectively gluing the two sides {±1
2
}× I2. This annular 1-tangle

clearly has h+(ℓT ) ≤ 1 and h−(ℓT ) = 0. Let T be the set of isotopy classes of such tangles T
that also satisfy the requirements (a) no ball inside [−1

2
, 1
2
]×I2 contains a nontrivial 1-tangle

and (b) T is not isotopic to the trivial tangle formed by two straight line segments.
An annular 1-tangle of height 1 is prime if and only if it has no knot-type factor. Height-1

annular 1-tangles each have height pair (1, 0) or (0, 1), and the two types are in bijective
correspondence via rotation.

Theorem 3.6.1. The map [T ] 7→ q(ℓT ) is a bijection from T to the set of prime elements
of A/I that have height pair (1, 0).

Proof. Given [T ] ∈ T , it is immediate that ℓT is an element of A with h+(ℓT ) ≤ 1 and
h−(ℓT ) = 0. It is also clear that the isotopy class of ℓT depends only on the isotopy class of
T . We have to show that h+(ℓT ) = 1, that the class of ℓT is prime, and that the map is both
injective and surjective.

For such a [T ] ∈ T , there is a spanning disk D0 for ℓT such that Seq(ℓT , D0) = (+) and
such that T can be recovered by cutting along D0. Suppose D1 is another spanning disk
for ℓT such that D0 and D1 are disjoint and D1 also has sign sequence (+). Then D0 and
D1 together divide S1 × I2 into two regions, and inside the one that doesn’t contain the
endpoints is a 1-tangle that, by condition (a) of the definition of T , is unknotted. Therefore,
cutting ℓT along D1 gives back a 2-tangle isotopic to T .
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Figure 3.4: The Kinoshita knotoid.

Suppose ℓT has h+ = 0. Then by Lemma 3.2.3 and the previous paragraph, there is
a spanning disk D disjoint from D0 with H(ℓT , D) = 0. Then D0 ∪ D splits ℓT into two
1-tangles, which must both be trivial, contradicting condition (b) of the definition of T .
Therefore, ℓT has height 1.

Now suppose that q(ℓT ) is not prime. Then by additivity of heights, it has a nontrivial
knot-type factor. Therefore, there is a ball in S1 × I2 intersecting ℓT in a single strand
making a prime knot κ in the ball. Then as in the proof of Theorem 2.10 in [35], the ball
can be chosen to avoid {1

2
} × I2. (See the proof of Lemma 5.4.1 below for details.) This

contradicts the definition of T , so we can conclude that q(ℓT ) must actually be prime.
Knowing that ℓT has height 1, Lemma 3.2.3 now implies that no other T ′ with [T ′] ̸= [T ]

has ℓT ′ = ℓT , so the map is injective.
For any prime annular 1-tangle ℓ with positive and negative heights 1 and 0, we can

obtain a [T ] ∈ T with ℓT = ℓ by choosing a spanning disk D for ℓ with height 1 and cutting.
Since ℓ is prime and has height 1, T satisfies conditions (a) and (b).

Height Two

Consider the following two examples of annular 1-tangles with height 2.

Example 3.6.2. The Kinoshita knotoid, shown in Figure 3.4, is an example of a nontrivial
knotoid with trivial overpass and underpass closures (see [31], Figure 1, for the corresponding
theta-curve). The knotoid diagram shown has a shortcut with sign sequence (−,+), and the
index polynomial is t−1 − 2 + t. Therefore, if ℓ is the corresponding annular 1-tangle, then
we have h+(ℓ) = h−(ℓ) = 1 and, by Theorem 3.5.7, (−,+) is the only minimal attainable
sign sequence for ℓ.

The annular 1-tangle ℓ satisfies rev(ℓ) = rot(ℓ). Note that neither the index polynomial
nor the Turaev polynomial distinguishes rot(ℓ) from ℓ. However, by Proposition 3.4.2, the
only minimal attainable sequence for rot(ℓ) is (+,−), so ℓ is not rotatable.

Example 3.6.3. Let ℓ be the annular 1-tangle corresponding to the translation-invariant
Z-tangle ℓ shown in Figure 3.5. As shown in the diagram, ℓ has spanning disks realizing
(+,−) and (−,+) as attainable sign sequences. The index polynomial is 1− t, showing that
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Figure 3.5: A translation-invariant Z-tangle. The corresponding annular 1-tangle has height
pair (1, 1) with (+,−) and (−,+) both attainable. This annular 1-tangle is reversible.

h+(ℓ) = 1. A lower bound of 1 for h−(ℓ) is provided by the Turaev polynomial: the u2

coefficient is −A−2 + 2A−6 − A−10. Therefore, (+,−) and (−,+) are both minimal.
The information above gives us an easy way of showing that ℓ is prime: Since the un-

derpass closure of ℓ is trivial, we know that ℓ has no knot-type factor, so to be composite it
would have to be a product of two proper annular 1-tangles. One would have to have height
pair (1, 0), and the other (0, 1), but then by Theorem 3.4.5, only one of (+,−) or (−,+)
would be attainable for ℓ.

In general, an annular 1-tangle of height 2 falls into one of five categories based on
whether its set of minimal attainable sequences is {(+,+)}, {(−,−)}, {(+,−)}, {(−,+)},
or {(+,−), (−,+)}. We will further divide the last category into two subcategories.

By Lemma 3.2.3, if ℓ is an annular 1-tangle of height 2 and both (+,−) and (−,+) are
attainable sequences, then there are disjoint spanning disks D1 and D2 respectively realizing
those two sequences as attainable.

Theorem 3.6.4. Suppose ℓ is an annular 1-tangle as above. Then exactly one of the follow-
ing is true.

(a) The disks D1 and D2 can be chosen in such a way that both of the intersections of ℓ with
D1 come before the intersections with D2.

(b) The disks D1 and D2 can be chosen in such a way that both of the intersections of ℓ with
D2 come before the intersections with D1.

To prove Theorem 3.6.4, we will use a particular notion of splitting for 2-tangles, analo-
gous to splitting of links: Suppose we have a closed interval I ′ ⊂ R and a 2-tangle in I ′× I2.
In this section, the 2-tangle will be called split if there is an embedded disk in I ′×I2, disjoint
from the strands of the tangle, whose boundary is of the form {x} × ∂(I2).

Lemma 3.6.5. Suppose T is a 2-tangle formed from two other tangles T1 and T2 in the way
shown in Figure 3.6. Then T is split if and only if T1 is split.
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Figure 3.6: A 2-tangle T formed as a sum of two other 2-tangles with particular patterns.
The ambient ball I ′ × I2 for T is the union (I ′1 × I2) ∪ (I ′2 × I2) of the ambient balls for T1
and T2, and the upper bound for I ′1 equals the lower bound for I ′2.

Of course, Lemma 3.6.5 also applies when the the tangles are attached in the other order.

Proof. Of course, if T1 is split then T is also split. Conversely, suppose that T is split. Then
any loop of the form {x} × ∂(I2) for x ∈ I ′1 is nullhomotopic in the complement of T in
I ′ × I2. The punctured surface (I ′1 ∩ I ′2)× I2) \ T is incompressible in (I ′2 × I2) \ T2, because
an essential embedded circle on (I ′1 ∩ I ′2)× I2) \T is clearly not nullhomologous in the larger
space. Therefore, the surface is π1-injective in (I ′2×I2)\T2. Then by Van Kampen’s theorem,
each {x} × ∂(I2) is nullhomotopic in (I ′1 × I2) \ T1. With Dehn’s lemma, this implies that
there is an embedded disk realizing T1 as split.

For an annular 1-tangle ℓ and spanning disk D with Seq(ℓ,D) = (+,−), performing an
ambient isotopy to straighten D and then deleting a regular neighborhood of D creates a
3-tangle of the pattern shown in Figure 3.7. This 3-tangle is well-defined as a function of
ℓ and D only up to isotopy of I ′ × I2 fixing I ′ × ∂(I2), so there can be braiding on the
sides. The strands can be labelled as the first, second, and third strands based on the order
they appear on ℓ. Let ST3

D
be the 2-tangle formed by deleting the first strand, and ST1

D

the 2-tangle formed by deleting the third. We will call D (a)-split if ST3
D

is nonsplit and

ST1
D
is split. Conversely, D will be called (b)-split if ST3

D
is split and ST1

D
is nonsplit. For

spanning disks D with sequence (−,+), we can form ST3
D
and ST1

D
in a similar way, but we

use the opposite convention for (a)- and (b)-splitting: D is (a)-split if ST3
D
is split and ST1

D

is nonsplit.
Note that (a)- and (b)-splitting only apply to pairs (ℓ,D) with h±(ℓ,D) = 1, and no disk

may be both (a)-split and (b)-split.

Lemma 3.6.6. If ℓ is an annular 1-tangle such that condition (a) from Theorem 3.6.4 is
true, then every minimal spanning disk for ℓ is (a)-split. If instead (b) is true, every minimal
spanning disk is (b)-split.

Proof. Suppose that (a) is true of ℓ. Then s(ℓ) can be drawn as in Figure 3.8, and the tangle
T1 must be nonsplit, as otherwise ℓ would have height 0. The 3-tangles coming from D1



CHAPTER 3. HEIGHTS AND SIGN SEQUENCES 41

Figure 3.7: A 3-tangle corresponding to a spanning disk with sign sequence (+,−).

Figure 3.8: An annular 1-tangle for which (a) is true, decomposed into tangles T1 and T2
and drawn as a translation-invariant Z-tangle.

and D2 are each formed by combining one copy of T1 with one copy of T2 in the appropriate
way. By Lemma 3.6.5, and the fact that each ST1

Di
is clearly split, D1 and D2 are both

(a)-split. Furthermore, by another application of Lemma 3.6.5, if D and D
′
are any two

disjoint spanning disks such that one is (a)-split, then the other is (a)-split as well. Then
Lemma 3.2.3 implies that all minimal spanning disks are (a)-split.

The same reasoning shows that if (b) is true of ℓ, then all minimal spanning disks of ℓ
are (b)-split.

Proof of Theorem 3.6.4. First we show that (a) or (b) is true. Suppose we have any choice
of D1 and D2. By the same reasoning as in the proof of Lemma 3.3.2, a positive intersection
of ℓ with D1 must be followed by a negative D1 intersection or positive D2 intersection,
and a negative D2 intersection must be followed by a positive D2 intersection or negative D1

intersection. Therefore, the overall sequence of intersections is either (+D1,−D1,−D2,+D2)
or (−D2,+D2,+D1,−D1).

That (a) and (b) cannot both be true follows from Lemma 3.6.6.

Example 3.6.7. Consider the knotoid k shown in Figure 3.9 and its corresponding ℓ ∈ A.
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Figure 3.9: A knotoid for which (−,+) is the only minimal attainable sign sequence. It is
unlike the Kinoshita knotoid in that its index polynomial is trivial.

The index polynomial is 0, but the Turaev polynomial tells us that the positive and negative
heights are both 1. The spanning disk corresponding to the marked shortcut is neither (a)-
split nor (b)-split, because the corresponding tangles ST3

D
and ST1

D
are both split. Therefore,

ℓ is neither type (a) nor type (b), so (−,+) is its only minimal attainable sequence.

We now have a partition of the set of height-2 annular 1-tangles into six categories: Type
(a), type (b), and four categories for annular 1-tangles that each have only one minimal
attainable sequence. For any ℓ ∈ A with height 2, the rotation rot(ℓ) is in a different
category from ℓ. Together with Corollary 3.4.3, this implies the following corollary.

Corollary 3.6.8. No proper annular 1-tangle with height below 4 is rotatable.

The author does not know if any proper rotatable annular 1-tangles exist. In [7] (The-
orem 1.4) it is shown that a knotoid cannot be rotatable if its double branched cover (see
Section 2.5) is hyperbolic.



43

Chapter 4

Braids and Tangles

4.1 Cosmetic Braids on Tangles

In this section, we address two problems about moving the endpoints of a tangle to create a
(potentially) new tangle.

Cosmetic Braids on String Links

It is a standard fact about string links that pure braids can be thought of as special string
links despite not formally being the same type of object; specifically, pure braids correspond
in some way to string links that have inverses ([26], page 392). The same can be said of the
relationship between Z-braids and Z-tangles. Since we have been formally treating braids
and Z-braids as elements of mapping class groups, we want to establish a convention for
treating braids and Z-braids as string links and Z-tangles, so we will do so with a function
BT.

In the case of Z-braids and Z-tangles, we define BT: B/∼ → A/I as follows: Note that
any b ∈ B, viewed as a boundary-preserving automorphism of R×I, is isotopic to the identity
automorphism. Given a class in B/∼, let us choose a representative b ∈ B and then choose
an isotopy from b to the identity. Let us consider the isotopy to be over times in [−1, 1], where
it is b at time −1 and the identity at time 1. Then we can construct a Z-tangle ℓ whereby
for each (n, t), we set ℓ(n, t)y = 2t− 1 and the x and z coordinates of ℓ(n, t) are determined
by the position of (n, 0) under the isotopy at time t. The isotopy class of the resulting
Z-tangle doesn’t depend on our choices, so BT is well-defined. Furthermore, BT is a monoid
homomorphism. It is fairly clear that BT commutes with τ , that is, BT(τ [b]) = τ(BT([b]))
for all [b].

Note that not every Z-tangle ℓ with ℓ(n, t)y = t for all n, t is isotopic to a Z-tangle coming
from a Z-braid.

For pure braids with finitely many strands, we will still write BT, and the definition
carries over without modification. Below, we write [ℓ] for the isotopy class of a string link ℓ.
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Theorem 4.1.1. For string links ℓ1 and ℓ2, each with k strands, and a nontrivial pure braid
of k strands represented by some b, [ℓ1] BT([b])[ℓ2] is not equal to [ℓ1][ℓ2].

In the special case that ℓ1 or ℓ2 is trivial, [ℓ1] BT([b]) (for example) can be created from
[ℓ1] by composing with a diffeomorphism R × I2 → R × I2 that relabels R × {1} × I and
fixes the other three faces of the boundary pointwise.

Theorem 4.1.1 can be used to affirmatively answer the question on page 13 of [12]: While
Corollary 3.11 in that paper states that the string links K and P are braid-equivalent, the
proof in Corollary 3.10 also implies the slightly stronger fact that the braiding in the braid
equivalence can be taken to only happen on one side. Therefore, in the notation of [12],
we have K#L = K#B#L and P = K#B for some braid B. At this point we can apply
Theorem 4.1.1 to obtain B = 1 and hence K = P .

We expect that Theorem 4.1.1, together with the results and methods in [12] and [48],
can be used to prove the string link monoids are cancellative for all k.

Later we will use this result in the proofs of Theorem 4.3.5 and Theorem 5.6.1 below.

Proof. Suppose we are given a string link ℓ with k strands. For n > 1, we will define an
isomorphism Frk /(Frk)n as follows, where Frk is the free group on k generators and (Frk)n
is the nth term in the lower central series.

Let M denote the complement of ℓ in R× I2, and for i = ±1 let

Qi =M ∩ (R× {i} × I) = (R× {i} × I) \ ({1, . . . , k} × {i} × {0}).

We can consider each Q±1 to have a basepoint at (0,±1,−1) for the purposes of defining
fundamental groups. For M , let us use {0} × I × {−1} as an extended basepoint, since the
fundamental groups of M with all of these basepoints can be mutually identified by freely
travelling along that line segment. Using these basepoints, the inclusion maps Q±1 → M
induce maps π1(Q±1) → π1(M).

In [26] (page 393), it is noted that, by a result of Stallings ([46], Theorem 5.1), for any
string link ℓ with k strings, for all finite n > 1 when we divide by the lower central series
the induced maps π1(Q±1)/π1(Q±1)n → π1(Q±1)/π1(Q±1)n are isomorphisms. (To apply
Theorem 5.1 of [46], the induced maps H1(Qi) → H1(M) must be isomorphisms and the
induced maps H2(Qi) → H2(M) must be surjective; a standard application of the Mayer–
Vietoris theorem shows that H1(M) is freely generated by meridians of the strands and
H2(M) is trivial. Note that we are using p = 0.)

We can cannonically identify Q−1 with Q1, and π1(Q−1) and π1(Q1) with Frk. Given ℓ
and n, let Ison(ℓ) be the composite isomorphism

Frk
(Frk)n

→ π1(Q1)

π1(Q1)n
→ π1(M)

π1(M)n
→ π1(Q−1)

π1(Q−1)n
→ Frk

(Frk)n
.

Of course, Ison(ℓ) will equal Ison(ι ◦ ℓ) for all ι ∈ I. Thus the maps Ison can be considered
to form a family of string links invariants. These invariants are all functorial, satisfying
Ison(ℓ1ℓ2) = Ison(ℓ1) Ison(ℓ2) for all ℓ1, ℓ2.
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Figure 4.1: On the left, two oriented knots cl+(T ) and cl−(T ) constructed as closures of a
2-tangle T . On the right, two new 2-tangles tw+(T ) and tw−(T ) constructed from T .

Under the assumptions of our theorem, suppose we have a string link ℓ representing
BT([b]). It will suffice to show that there is some n for which Ison(ℓ1ℓℓ2) is not equal to
Ison(ℓ1ℓ2), which, by functoriality, is equivalent to the nontriviality of Ison(ℓ).

Since ℓ comes from a braid, the Ison(ℓ) are all quotients of the isomorphism on π1(Q±1) ∼=
Frk induced by b. Since b is nontrivial, the isomorphism on Frk is also nontrivial, because
if some γi acted upon nontrivially by b then the standard generator in Frk corresponding
to γi will be mapped to a nontrivial conjugate of itself. Therefore, there is a g ∈ Frk with
b∗(g) ̸= g.

A theorem of Magnus ([38], Theorem VIII) holds that free groups are residually nilpo-
tent, and hence every nontrivial element is contained in only finitely many terms of the lower
central series (see also [45], Theorem 6.1.10). Therefore there is some n for which b∗(g)g

−1

represents a nontrivial element of Frk /(Frk)n, which also implies that g and b∗(g) will repre-
sent distinct elements. The isomorphism Ison(ℓ) maps one of these distinct elements to the
other, so it is nontrivial. This completes our proof.

Cosmetic Crossings on 2-Tangles

A well-known conjecture, the cosmetic crossing conjecture, posits that if a crossing change
on an oriented knot can only change the isotopy class of the knot if the switched crossing
was nugatory. Another way of stating the conjecture is as follows: If a 2-tangle T fitting into
the slots in Figure 4.1 (with the two top ends connected and two bottom ends connected)
makes the two oriented knots cl±(T ) on the left equivalent, then T must be horizontally
split, that is, it admits a disk that that doesn’t intersect either strand and has the equator
as its boundary. (The two statements are equivalent because everything outside the slot for
the tangle is just a neighborhood of the crossing.)

The result below is a weaker alternative version of the cosmetic crossing conjecture:
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Theorem 4.1.2. Suppose that T is a 2-tangle with the top two ends are connected and the
bottom two ends connected, and that the two 2-tangles tw+(T ) and tw−(T ) formed from T
as in the right side of Figure 4.1 are equivalent. Then T is horizontally split.

A proof of the standard conjecture would easily extend to this weaker version, because
the knots cl+(T ) and cl−(T ) can be formed from tw+(T ) and tw−(T ), respectively, via the
same closure. Therefore, it is easy to see that whenever tw+(T ) and tw−(T ) are equivalent
to each other, cl+(T ) and cl−(T ) are as well.

Proof. We will rely on Theorem 1 from [40].
By the assumption that tw+(T ) and tw−(T ) are equivalent, there is a boundary-fixing

diffeomorphism φ1 : B
3 → B3 that sends tw+(T ) to tw−(T ). There is also a simple diffeo-

morphism φ2 : B
3 → B3 that, like φ1, sends tw+(T ) to tw−(T ) but whose restriction to ∂B3

acts as a Dehn twist around the equator. On the interior of B3, φ2 acts as a Dehn twist
around a disk in the sense of [40] (page 1333).

Now let us consider φ−1
2 ◦φ1 : B

3 → B3. This composition sends tw+(T ) to itself and the
restriction to ∂B3 is again a Dehn twist around the equator. In ∂B3, the diffeomorphism
leaves a neighborhood of the four endpoints of T fixed pointwise. To φ−1

2 ◦ φ1 we can
associate a pair of integers, one for each component of T , expressing the “framing change”,
as follows: Consider the vector bundle whose base space is T (that is, the space of points on
the two strands) and whose fiber at each point is the quotient of the 3-dimensional tangent
space in B3 by the 1-dimensional tangent space in T . The derivative of φ−1

2 ◦ φ1 induces an
automorphism of this vector bundle that restricts to the identity on the endpoints. Therefore
there is some total integral amount of twisting on each strand. Note that, for each individual
strand, it is possible to isotope φ2 (allowing the boundary to move) to the identity without
moving a neighborhood of the endpoints of that chosen strand. Therefore, for each strand,
φ−1
2 ◦ φ1 will have the same framing change as a boundary-fixing isotopy from a 1-tangle to

itself, which is 0.
The fact that the framing changes are both 0 implies that φ−1

2 ◦ φ1 can be perturbed in
a neighborhood of T , without moving ∂B3 to an automorphism φ : B3 → B3 that fixes a
regular neighborhood of the two strands pointwise. Let M be the complement in B3 of the
regular neighborhood chosen above. The restriction of φ to M is a diffeomorphism whose
further restriction to ∂M is a Dehn twist. Now we can apply Theorem 1 of [40] to φ and M .
The theorem guarantees the existence of a disk in M whose boundary is the equator, which
therefore renders tw±(T ) horizontally split. The disk can then pushed inward toward T , so
T must be horizontally split as well.

4.2 Symmetric Braids

This section is on both Z-braids and N-braids, in particular the question of which such braids
are equivalent up to isotopy to their translates.
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Symmetric Z-Braids

Recall from Section 2.3 that B is the set of automorphisms of R× I that fix both ∂(R× I)
and Z×{0} pointwise. Note that every (strictly) translation-invariant element of B is in the
same class as the identity: As we showed in Section 2.3, B is path-connected, and therefore
every element of BZ is isotopic to the identity. We can posit something stronger by showing
that (B/∼)Z is trivial.

Theorem 4.2.1. There is no nontrivial element of B/∼ that is fixed by translation.

Proof. Suppose that we have a b ∈ B with b ∼ τb. Our goal is to show b ∼ id. In order to
invoke hyperbolic geometry, we will treat b as a pure automorphism of (R×(−1, 1))\(Z×{0}),
which covers the thrice-punctured sphere (S1 × (−1, 1)) \ {(0, 0)}. In this covering, the
upstairs surface fails to be a hyperbolic surface in the strict sense ([19], page 21) because it
does not have finite area, but the thrice-punctured sphere is hyperbolic.

Recall that b determines paths b(γn), where γn = {n} × [−1, 0]. Abusing notation, we
will also use b(γn) to refer merely to the part of b(γn) in (R× (−1, 1))\ (Z×{0}). The image
of each such path in (S1 × (−1, 1)) \ {(0, 0)} is an immersed curve bγn. By the assumption
of b ∼ τb, all of the bγn are homotopic (through end-proper paths). Let β be the geodesic
representative of this homotopy class.

We will show now that β is embedded. Suppose otherwise. Consider the family of lifts
βn to (R× (−1, 1)) \ (Z×{0}). Each βn is homotopic to b(γn) and is a translate of β0. Since
β has a self-intersection, there is a pair of (not necessarily distinct) lifts that intersect each
other (or self-intersect in the case of identical lifts). We can take these two lifts to be β0 and
βm for some m. In any intermediate (thereby finite) cover of the thrice-punctured sphere,
the images of β0 and βm will still intersect. However, since b(γ0) and b(γm) are embedded
and disjoint and bounded in the second dimension, their images in the intermediate k-fold
cover are also embedded and disjoint for large values of k. This contradicts Proposition 1.6
or Corollary 1.9 of [19]. (Those are stated for closed curves but hold equally well for arcs.)
Therefore, β is embedded.

Because β is embedded, it is the unique embedded geodesic between its endpoints in
the thrice-punctured sphere. Thus each b(γn) is homotopic to γn. Therefore, by Proposi-
tion 2.3.3, b is isotopic to the identity.

In contrast, there are Z-tangles ℓ that look like braids in the sense that they satisfy
ℓ(n, t)y = t for all n and t, and for which p(ℓ) ∈ (A/I)Z, but which are not isotopic to the
trivial Z-tangle. For example, the Z-tangle in Section 6.1 is isotopic to a Z-tangle satisfying
the equation above, but in Section 6.1 we also show that that isotopy class of Z-tangles is
nontrivial.

Symmetric N-Braids

The following result is the closest statement to Theorem 4.2.1 that can be made for N-braids.
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Theorem 4.2.2. There is no nontrivial isotopy class of pure N-braids that is fixed by τ−1.

We will use a proof that applies the Birman–Hilden map and relies on standard results
about knotoids.

Proof. Suppose b is a pure N-braid with b ∼ τ−1b. Up to isotopy through N-braids, we can
assume without loss of generality that b restricts to the identity on the set {x ≤ 0}.

Both b and τ−1b fix {x ≤ −1} pointwise, and nothing of interest happens in {x ≤ −1},
so there exist isotopies realizing b ∼ τ−1b that fix {x ≤ −1} throughout the time interval.
Let us fix such an isotopy ε0 : [0, 1] → {N-braids} from τ−1b to b.

Note that, by our assumption that b fixes {x ≤ 0} pointwise, b is not just a pure N-braid
but also a pure Z-braid. Then for n ∈ {0} ∪ N, let us define a new N-braid bn by bn = τnb.
Thus (τ−1)nbn = b for all n.

The definition of BT extends naturally to N-braids: As in the original definition, there
are isotopies from b to the identity that, while not necessarily fixing the marked points, fix
∂(R× I) throughout the time interval, and each such isotopy can be used to interpret b as
a tangle (in this case, as a N-tangle).

In order to apply BT, we will choose a specific isotopy

ε : [−1, 1] → {∂-fixing automorphisms of R× I}

from b to the identity by adapting the “combed” form for standard pure braid groups ([1],
page 395). First we will define the restriction of ε to the time interval [−1, 1). Then we will
check that our isotopy on [−1, 1) limits to the identity and thus extends as desired to I.

For each n ∈ {0} ∪ N, let us set ε(1 − 21−n) = bn. Now, for each n ∈ N, let εn be the
same as e0 but reparameterized to occur in the time interval [1 − 22−n, 1 − 21−n] ⊂ [−1, 1]
and shifted via conjugation to the right by n (thus each εn is a boundary-fixing isotopy from
bn−1 to bn). Then we can legally define ε’s behavior on all of [−1, 1) by stipulating that its
restriction to each [1− 22−n, 1− 21−n] equals εn.

It remains to show that setting ε(1) to be the identity will make ε continuous on I.
According to the compact-open topology, for any compact subset of R × I the restrictions
of ε to the subset must uniformly converge to the inclusion map into R× I. Note that each
εn keeps {x ≤ n− 1} fixed. For any compact region of R× I, there is a maximal value of x.
If n is a natural number for which n− 1 is greater than that maximal value, then ε will act
as the identity on the compact region after time 1− 22−n. Therefore, the limit of ε as time
approaches 1 exists and is equal to the identity. This finishes our definition of ε.

Now, abusing notation, let BT(b) denote the specific N-tangle formed from b via the
isotopy ε.

Since b is an automorphism of R × I, it has an inverse b−1. Let BT(b−1) denote the
result of flipping BT(b) in the y (and t) direction. As the notation suggests, BT(b−1) is a
N-tangle realization for b−1. Then the product BT(b−1) BT(b) is a N-tangle isotopic to the
trivial N-tangle. (A specific element of I realizing this relationship can be read off from the
previously chosen boundary-fixing isotopy of R× I between b and the identity. Specifically,
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we can use the y values as proxies for the time values of the isotopy by identifying each of
[0, 1] and [−1, 0] with [−1, 1] appropriately.) Therefore it admits a family of spanning disks
Dn corresponding to the spanning disks {n+ 1

2
}× I2 for the trivial N-tangle. (To illustrate,

if we use the aforementioned element of I to determine the family, then the intersection of
each Dn with {y = 0} will look like b({n + 1

2
} × I).) In particular, the spanning disks all

have height 0, and the union of the spanning disks is biproperly embedded in R× I2.
Note that our BT(b) is fully determined up to isotopy as a N-tangle just by the path

b(γ1). The resulting N-tangle is essentially constructed by a stacked sequence of blocks that
are mutually identical up to shifting in the x direction and shifting and scaling in the y
direction. (See Figure 4.2, upper half.) Outside of these blocks, BT(b) behaves in the same
way as the trivial N-tangle. With an ambient isotopy that skews all of the blocks to put
them all at the same level as each other in the y direction, we obtain a new N-tangle whose
strands are all Z-translates of each other. Therefore this new N-tangle can be extended to
a translation-invariant Z-tangle ℓ ∈ AZ as in the lower half of Figure 4.2. Let ℓ−1 denote
the mirror image of ℓ, obtainable also by skewing and extending BT(b−1). (Note that any
Z-tangle can by flipped in the y direction, but only in the case of Z-tangles coming about
by BT will the product be isotopic to the identity.)

Consider how the spanning disks (Dn) behave under the isotopy from BT(b−1) BT(b)
to the N-tangle obtained from ℓ−1ℓ by forgetting the nonpositively indexed strands. By
properness, there is some n for which the isotoped copy of Dn sits entirely to the right of
the rightmost point of the 0th strand of ℓ−1ℓ. Therefore, there is a spanning disk of height 0
for ℓ−1ℓ. By Lemma 3.1.3, this implies that s−1(ℓ−1ℓ) = s−1(ℓ−1)s−1(ℓ) has height 0. Next,
Corollary 3.4.7 implies that s−1(ℓ) has height 0, so it is knot-type (see Section 2.5). The
oriented knot in question will be equal to p(ℓ)/∞ (see Section 2.5), which can be seen to be
trivial from the fact that the y coordinates of the strands of BT(b) are monotone in t.

Now we know that s−1(ℓ) is isotopic to the trivial annular 1-tangle, so ℓ is isotopic to the
trivial annular 1-tangle. Since the isotopy class of BT(b) is obtainable by forgetting strands
of ℓ, it follows that BT(b) is the trivial N-tangle. This implies that the first strand does not
braid nontrivially around the other strands, since each strand can be read as representing
an element of the fundamental group of the complement of the other strands, and that
complement retracts onto the part of the complement in R× {−1} × I. Therefore, b(γ1) is
isotopic to γ1, and this determines the rest of b up to isotopy, as we argued earlier. Hence,
we are done.

4.3 Decomposing Ribbons

This section builds toward Theorem 4.3.5, which addresses the geometric aspects of the
stacking operation for (A/I)Z as a monoid. The result does not generalize to A/I.

First, we observe that Z-braids are determined by their finite sub-braids:



CHAPTER 4. BRAIDS AND TANGLES 50

Figure 4.2: Creating a symmetric Z-tangle ℓ ∈ AZ from a N-braid that is symmetric up to
isotopy.

Lemma 4.3.1. Suppose [b] ∈ B/∼ is a nontrivial Z-braid. Then there is a finite subset
of Z such that the finite-stranded braid obtained by forgetting all other strands of [b] is also
nontrivial.

Proof. For such a b, by Proposition 2.3.3, there is a n such that b(γn) is not homotopic to
γn. Fix a k ∈ N such that k is greater than the maximum absolute value of all x coordinates
of points on b(γn).

We claim that there is no based homotopy from b(γn) to γn even if the homotopy is allowed
to pass through punctures besides those indexed −k, . . . , k. Supposing such a homotopy
existed, we could choose an identification of the open intervals (k,∞) and (k, k + 1) and
apply it to the homotopy to get a new homotopy that occurs entirely within the space with
−k − 1 < x < k + 1.

Therefore the corresponding braid with 2k + 1 strands is nontrivial.

We can use Lemma 4.3.1 to extend Theorem 4.1.1 to the context of Z-braids:

Corollary 4.3.2. For Z-tangles ℓ1 and ℓ2 and a nontrivial class of Z-braids [b] ∈ B/∼,
p(ℓ1) BT([b])p(ℓ2) is not equal to p(ℓ1)p(ℓ2).
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Proof. Under the stated assumptions, Lemma 4.3.1 implies that there is a finite subset of
Z such that the braid obtained from [b] by forgetting all other strands is nontrivial. Then
by Theorem 4.1.1, the string links coming from p(ℓ1) BT([b])p(ℓ2) and p(ℓ1)p(ℓ2) using that
same subset are distinct. Therefore p(ℓ1) BT([b])p(ℓ2) and p(ℓ1)p(ℓ2) are not equal.

Since BT is a monoid homomorphism, the behavior of the expression when either p(ℓi)
is set to be trivial can be described as a group action. That is, we can define left- and
right actions, respectively, of B/∼ on A/I by ([b], p(ℓ)) 7→ BT([b])p(ℓ) and (p(ℓ), [b]) 7→
p(ℓ) BT([b]).

Corollary 4.3.3. The two braiding actions above are free.

Proof. This follows immediately from Corollary 4.3.2.

Lemma 4.3.4. For all p(ℓ) ∈ (A/I)Z and [b] ∈ B/∼, if BT([b])p(ℓ) or p(ℓ) BT([b]) is in
(A/I)Z then [b] is the identity.

Proof. Suppose we have ℓ and b with p(ℓ) = τp(ℓ) and BT([b])p(ℓ) = τ(BT([b])p(ℓ)). Then
we have the following equalities:

BT([b])p(ℓ) = τ BT([b])p(ℓ) = (τ BT([b]))(τp(ℓ)) = BT(τ [b])p(ℓ)

Above, the first equality is by assumption, the second expresses the fact that τ is a monoid
homomorphism, and the third uses the fact that τ commutes with BT and the assumption
that p(ℓ) = τp(ℓ).

By Corollary 4.3.3, it follows that [b] = τ [b] and therefore that [b] is the identity, by
Theorem 4.2.1.

The same reasoning works in the case that p(ℓ) BT([b]) = τ(p(ℓ) BT([b])).

Theorem 4.3.5. Suppose Q is a decomposing ribbon for some Z-tangle ℓ ∈ A with p(ℓ) ∈
(A/I)Z. Suppose furthermore that ℓ1, ℓ2, ℓ

′
1, ℓ

′
2 ∈ A and ι, ι′ ∈ I satisfy ℓ = ι ◦ (ℓ1ℓ2) =

ι′ ◦ (ℓ′1ℓ′2) and Q = ι(R × {0} × I) = ι′(R × {0} × I). If p(ℓ1), p(ℓ2), p(ℓ
′
1), p(ℓ

′
2) ∈ (A/I)Z,

then p(ℓ1) = p(ℓ′1) and p(ℓ2) = p(ℓ′2).

Theorem 4.3.5 says that in the context of Z-tangles that are translation-invariant up to
isotopy, a valid decomposing ribbon (that is, one for which each side can be interpreted as
representing a translation-invariant class) expresses a Z-tangle as a specific product. Note
that the product of elements of A/I not in (A/I)Z can still itself be in (A/I)Z.

Proof. Under the hypotheses of the theorem, there is a diffeomorphism of R× I2 that sends
ℓ1 to ℓ′1 and is the identity on (R × I × {±1}) ∪ (R × {−1} × I). The restriction of the
homeomorphism to R×{1}× I defines a Z-braid, which, when acting on p(ℓ1) on the right,
returns p(ℓ′1). Then by Lemma 4.3.4, the braid is trivial. Therefore, ℓ1 and ℓ′1 are isotopic.
For the same reasons but with left action, we can say also that ℓ2 is isotopic to ℓ′2.
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Chapter 5

Birman–Hilden Theory

In this chapter we focus on the Birman–Hilden map Bh, in particular the question of whether
it is injective. An affirmative answer would signify that knotoids could be thought of as a
subtype of Z-tangles up to isotopy. With this question in mind, we will give a number of
sufficient conditions on pairs of distinct elements q(ℓ1), q(ℓ2) of AZ/IZ that ensure that they
have distinct images under Bh.

As we saw in Lemma 3.1.3, height is an example of an invariant that is remembered by
Bh, since h ◦ Bh = h ◦ s−1

∗ . The same is true of the signed heights. Thus, for two annular
1-tangles to have the same image under the Birman–Hilden map they must have the same
signed heights.

If A is given a topology whereby isotopies are the same as paths in A, then A/I is the
set of path components and similarly AZ/IZ is the set of path components of AZ. Thus, to
say that the map Bh: AZ/IZ → p(AZ) is injective is equivalent to saying that the inclusion
AZ → A induces an injection on π0. One might hope that the inclusion of any component
of AZ into the corresponding component of A is, say, a homotopy equivalence; however, this
will not be true in general. For example, if ℓ is a nontrivial knot-type Z-tangle and ι is an
isotopy from ℓ to itself resulting from locally performing a nontrivial symmetry on a single
strand, then ι is not connected to any element of IZ through any 1-dimensional family of
isotopies fixing ℓ.

We will address the question of surjectivity of the Birman–Hilden map (that is, whether
p(AZ) is a proper subset of (A/I)Z) in Section 6.1.

5.1 The Affine Index Polynomial

Recall that the affine index polynomial from Section 3.5 and [23] is an easy-to-compute
invariant of annular 1-tangles. In this section we will show that the affine index polynomial
of an annular 1-tangle ℓ ∈ A is determined by p(s(ℓ)) = Bh(s∗(q(ℓ))).

For a Z-tangle ℓ ∈ A, any finite set of strands can be turned into an oriented link:
Considering R × I2 as a subset of R3, for each x ∈ Z with a corresponding strand under
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consideration let us close the strand with an arc from (x, 1, 0) to (x,−1, 0) in {x}× (R2 \I2).
(It does not matter whether the new arc goes over or under R × I2.) The resulting link
is, of course, an isotopy invariant of ℓ. Given ℓ ∈ A and any k ∈ N, it is straightforward
to check from the definition of the affine index polynomial that the t±k coefficient of AIP
for the knotoid corresponding to q(ℓ) equals the linking number of the link coming from
two components of s(ℓ). (Alternatively, we could use two adjacent components of s(ℓ)/k.)
Therefore, the affine index polynomial factors through the Birman–Hilden map.

In contrast, it is not obvious one way or the other that the same property holds of the
index polynomial from [30].

5.2 Diffeomorphisms Moving the Boundary

Recall from Section 2.5 that there is a superset J of I acting on A, with a subset JZ acting
on AZ.

Proposition 5.2.1. If ℓ1, ℓ2 ∈ AZ are translation-invariant Z-tangles in the same orbit
under J and if q(ℓ1) is uniquely determined by its image under Bh, then so is q(ℓ2).

Proof. By assumption, there is a η ∈ JZ such that η ◦ ℓ1 = ℓ2, and for all ι1 ∈ I and ℓ3 ∈ AZ
with ι1 ◦ ℓ1 = ℓ3, there exists a ι′1 ∈ IZ with ι′1 ◦ ℓ1 = ℓ3.

Suppose, for some ι′2 ∈ I and ℓ4 ∈ AZ, that ι2 ◦ ℓ2 = ℓ4. Then we have ι2 ◦ η ◦ ℓ1 = ℓ4 and
hence η−1 ◦ ι2 ◦ η ◦ ℓ1 = η−1 ◦ ℓ4. Setting ι1 = η−1 ◦ ι2 ◦ η and ℓ3 = η−1 ◦ ℓ4, we see that there
is a ι′1 ∈ IZ with ι′1 ◦ ℓ1 = η−1 ◦ ℓ4. Then η ◦ ι′1 ◦ ℓ1 = ℓ4, and hence η ◦ ι′1 ◦ η−1 ◦ ℓ2 = ℓ4, so
q(ℓ2) = q(ℓ4).

The utility of Proposition 5.2.1 comes from the fact that the orbits involved are very large.
For instance, a cursory check shows that, of the 31 knotoids (taken up to basic involutions)
listed in Figure 1 of [32], over half correspond to elements of AZ that are all in the same
orbit of J , which is also the orbit containing the trivial Z-tangle.

5.3 The Knot-Type Case

Using Lemma 3.1.3, we can make a quick conclusion about the Birman–Hilden invariant
behaves in the knot-type case.

Theorem 5.3.1. If ℓ ∈ AZ has height 0, then q(ℓ) is uniquely determined by its image under
Bh.

Proof. Given ℓ as above, suppose that some other ℓ′ ∈ AZ has p(ℓ′) = p(ℓ). Then ℓ′ also has
height 0. By Lemma 3.1.3, s−1(ℓ) and s−1(ℓ′) also have height 0. Therefore, q(s−1(ℓ)) and
q(s−1(ℓ′)) correspond to knot-type knotoids κ• and (κ′)•. The knots κ and κ′ are recoverable
from p(ℓ)/∞ and p(ℓ′)/∞. Therefore, κ = κ′, so we have q(ℓ) = s∗(κ

•) = s∗((κ
′)•) =

q(ℓ′).
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5.4 Products with Knot-Types

We would like to be able to say generally that whenever two translation-invariant Z-tangles
both are not counterexamples to injectivity of Bh, their product is not a counterexample
either. In this section, we will prove this statement under the extra condition that one of
the Z-tangles is knot-type. Later in this chapter, the result will be useful for dealing with
the set of annular 1-tangles of height 2.

Lemma 5.4.1. Given ℓ ∈ AZ, if there exists a ball Ω in R × I2 for which ℓ ∩ Ω has one
component and the oriented knot κ determined by ℓ∩Ω ⊂ Ω is prime, then κ• is a factor of
q(s−1(ℓ)).

The lemma above remains true if we remove the word “prime”. For simplicity, we will
only prove the prime case, since that is the only case we will need later.

Proof. Our proof strategy is adapted from the proof of Theorem 2.10 in [35].
Choose a minimal spanning disk ∆0 for ℓ, which by Lemma 3.1.3 can also be chosen to

be disjoint from its Z-translates ∆i, i ∈ Z. Let ∆ ⊂ R × I2 denote the union of all of the
∆i. Since the knot inside Ω is the only property of Ω that matters, we can choose Ω such
that (a) ∂Ω is transverse to ∆, (b) ∂Ω ∩∆ ∩ ℓ is empty, and (c) the number of components
of ∂Ω ∩∆ is minimal over all choices of Ω.

Consider a component circle of ∂Ω∩∆. Within ∂Ω, the circle either bounds two disks that
each intersect ℓ once or bounds a disk disjoint from ℓ and another that intersects ℓ twice.
Therefore, the disk in ∆ bounded by the same circle intersects ℓ at most once, because
otherwise we could swap the disks and apply Lemma 3.1.2 to obtain a contradiction to the
minimality of the components of ∆.

Suppose that there is at least one component of ∂Ω ∩∆, and suppose that at least one
bounds a disk on ∆ (or equivalently on ∂Ω) disjoint from ℓ. Then let C be an innermost
(on ∆) such circle, which must also be innermost among all components of ∂Ω ∩∆. Then
the disks on ∂Ω and ∆ bounded by C and disjoint from ℓ form a sphere that in turn bounds
an empty ball, contradicting the assumption that Ω was chosen to minimize the number of
intersection circles with ∆. Therefore any component of ∂Ω ∩∆ loops once around ℓ in Ω.

By the supposition that ∂Ω ∩∆ is nonempty, Ω ∩∆ is nonempty as well. Suppose that
some component is a disk. Then that disk must intersect ℓ in exactly one point. Therefore
the disk expresses κ as a connected sum of two knots, one of which must be trivial by our
assumption of primality. We are then able to push Ω through the side of the disk with the
trivial knot, thus reducing the size of the intersection of Ω with ∆. This contradicts our
minimality assumption, so no component of Ω ∩∆ is a disk.

Now consider a component of Ω ∩ ∆, which has at least two 1-dimensional boundary
components. Each circular component has an unsigned linking number of 1 with ℓ. Therefore,
the disks in ∆ bounded by all but the “outer” component on ∆ intersect ℓ once. The outer
circle bounds a disk in ∂Ω that intersects ℓ once, and each component of ∆ is supposed to
realize the height of ℓ, so by Lemma 3.1.2, the disk in ∆ enclosed by the outer circle only
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intersects ℓ once. This disk includes the intersections associated to the other circles, so there
can only be one other circle. Therefore each component of Ω ∩∆ is simply an annulus that
doesn’t intersect ℓ anywhere.

Consider any such annulus E. By a standard application of Dehn’s lemma, the side of E
in Ω on which the strand of ℓ lies is a thickened knot in Ω. The knot is a factor of κ, so E
either follows ℓ or contains κ inside, following ∂Ω. In either case we can reduce the amount
of intersection between Ω and ∆ by making the appropriate modification as in [35] in the
proof of Theorem 2.10, obtaining a contradiction.

We have deduced that Ω must be disjoint from ∆. Therefore, it is contained in just one
component of the complement of ∆ in R × I2, and that one component is a fundamental
domain for translation by integers. Therefore there is a corresponding ball Ω in S1 × I2

which encloses κ in a strand of s−1(ℓ).

Now it is easy to conclude that κ• is a factor of q(s−1(ℓ)): Let Ω
′ ⊂ S1 × I2 be the union

of Ω with a neighborhood of S1 × {−1} × I and with a neighborhood of the part of s−1(ℓ)

that goes from (0,−1, 0) to Ω. The boundary ∂Ω
′
is a decomposing annulus Q expressing

q(s−1(ℓ)) as a product with κ• as one factor.

We will say that a Z-tangle ℓ is knotless if the intersection of a ball Ω ⊂ R× I2 with ℓ is
trivial as a tangle in Ω whenever the intersection has exactly one component.

Lemma 5.4.2. Given ℓ0, ℓ1, ℓ2 ∈ AZ such that q(s−1(ℓ0)) = κ• for some prime knot κ and
p(ℓ0ℓ1) = p(ℓ0ℓ2), it is also true that p(ℓ1) = p(ℓ2).

Proof. First let us pick an isotopy ι from ℓ0ℓ2 to ℓ0ℓ1.
Since ℓ0 is knot-type, there is a ball Ω1 in S1×I2 for which the intersection with s−1(ℓ0ℓ1)

is κ in the form of a 1-tangle in the ball. Therefore, there is a family of pairwise disjoint
balls Ω1

n for n ∈ Z in R× I2 isolating copies of κ in ℓ0ℓ1. These balls can be chosen so that
each Ω1

n intersects only the nth strand of ℓ0ℓ1 and such that it is the translate of Ω1
0 by n.

A similar family of balls exists for ℓ0ℓ2. For each n, let Ω2
n denote the result of applying ι

to the nth ball in that second family. Therefore the Ω2
n are like the Ω1

n in that they are a
end-properly embedded family of pairwise disjoint balls with each Ω2

n intersecting ℓ0ℓ1 as the
knot κ, but Ω2

n won’t in general be the nth translate of Ω2
0. We can recover p(ℓ1) by replacing

the parts of ℓ0ℓ1 inside each Ω1
n with unknotted 1-tangles, or we can recover p(ℓ2) by doing

the same to each Ω2
n.

Note that the two families of balls can intersect each other in nontrivial ways. We will
retroactively modify {Ω2

n} (so that it no longer comes from a translation-respecting family
of balls for ℓ0ℓ2) to control the intersections. Without rehashing the details, given any m
we can follow similar reasoning to the proof of Lemma 5.4.1 to pick a new Ω2

m that, while
still disjoint from all other Ω2

n, is either disjoint from all Ω1
n or is contained in Ω1

m. This
assignment can be made without unduly enlarging Ω2

m, so we can inductively modify Ω2
n as

above for all n ∈ Z to get a complete new end-properly embedded family of balls.
Now let us consider what happens when we replace that parts of ℓ0ℓ1 inside each Ω2

n with
unknots. For n with Ω2

n contained inside Ω1
n, the presence of Ω2

n insider Ω1
n expresses κ as a
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connected sum of itself with the unknot. Therefore, unknotting the inside of Ω2
n is the same

as unknotting the inside of Ω1
n. For n with Ω2

n disjoint from Ω1
n, let us consider the ball

composed as a union of Ω1
n with Ω2

n and a small regular neighorhood of the strand of ℓ0ℓ1
connecting Ω1

n with Ω2
n. This ball contains a connected sum of two copies of κ, and replacing

either summand with an unknot gives the same result.
Therefore, unknotting the insides of all of the Ω2

n is the same as unknotting the insides
of all of the Ω1

n, so ℓ2 is isotopic to ℓ1.

Theorem 5.4.3. If ℓ0 ∈ AZ has height 0 and ℓ1 ∈ AZ has the property that q(ℓ1) is uniquely
determined by its image under Bh, then q(ℓ0)q(ℓ1) is also uniquely determined by its image
under Bh.

Proof. By induction on the number of prime factors of the oriented knot κ with κ• =
q(s−1(ℓ0)), we can assume that κ is prime. The base case is trivial, since if κ is the unknot
then q(ℓ0) is the identity for AZ/IZ as a monoid, and the induction step works because the
knot-type element of AZ/IZ corresponding to a connected sum of knots is the product of the
knot-type elements corresponding to the individual factors.

Now suppose some ℓ ∈ AZ has Bh(q(ℓ)) = Bh(q(ℓ0)q(ℓ1)), or equivalently p(ℓ) = p(ℓ0ℓ1).
Then we can apply Lemma 5.4.1 to ℓ with κ as the prime oriented knot to deduce that
q(s−1(ℓ)) can be written as κ•q(s−1(ℓ2)) for some ℓ2. Therefore, we have q(ℓ) = q(ℓ0)q(ℓ2),
so we can apply Lemma 5.4.2. This implies that p(ℓ1) = p(ℓ2) and therefore Bh(q(ℓ1)) =
Bh(q(ℓ2)). By our original assumption on ℓ1, it follows that q(ℓ1) = q(ℓ2) and hence q(ℓ) =
q(ℓ0)q(ℓ1), as desired.

5.5 Extremal Spanning Disks

In this chapter, we will use a very specific notion of two spanning disks being isotopic: For
a fixed ℓ ∈ A and two spanning disks D1, D2 for ℓ in S1 × I2, an isotopy from D1 and D2 is
a continuous family of elements of J (all automorphisms of S1 × I2 that don’t necessarily
fix the boundary pointwise), indexed over [0, 1], such that (a) all ambient automorphisms
in the family fix ℓ as a set (but not necessarily pointwise), (b) at all times the result of
applying the ambient automorphism to D1 is still a valid spanning disk, (c) the ambient
automorphism at time 0 is the identity, and (d) the ambient automorphism at time 1 sends
D1 to D2. That is, we allow movement in both the boundaries of the spanning disks and the
exact intersection points of the spanning disks with ℓ, but we do not allow ℓ to move, even
temporarily. Whenever an isotopy from D1 to D2 exists, we will say D1 and D2 are isotopic.
Let Dℓ denote the set of equivalence classes of minimal spanning disks for ℓ up to isotopy.

For ℓ ∈ A we can define isotopy similarly. For ℓ ∈ AZ, we will let Dℓ be the equivalence
classes of minimal spanning disks for ℓ up to both isotopy and integral translation.

There is a natural relation ≤ on Dℓ: For Ψ1,Ψ2 ∈ Dℓ, we will write Ψ1 ≤ Ψ2 if there are
representatives D1 ∈ Ψ1 and D2 ∈ Ψ2 such that (a) D1 and D2 are disjoint, (b) the region
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of ∂(R× I2) bounded by ∂D1 ∪ ∂D2 doesn’t contain any points of Z× {±1} × {0}, and (c)
D2 lies on the side of D1 in which the x values are bounded below.

Lemma 5.5.1. The relation ≤ is a partial order.

Proof. The proof is essentially the same as that of Lemma 2.14 in [44], using the complement
of ℓ as M . We note that because the Di intersect ℓ minimally, they must be incompressible
and are therefore π1-injective.

Below we will look into elements of Dℓ that are extremal under the partial order ≤.
In order to reduce the scope of the problem, we check that we need only consider compact

regions of R× I2:

Lemma 5.5.2. For all ℓ ∈ AZ, there is a compact region of R× I2 such that every element
of Dℓ has a representative in the region.

Proof. For a given ℓ ∈ AZ, pick a fixed minimal spanning disk D for s−1(ℓ) ∈ A, and consider
the preimage ∆ of D in R × I2. Then as in the proof of Theorem 5.4.3, ∆ is a union of
pairwise-disjoint minimal spanning disks ∆i for ℓ, all of which are Z-translates of each other.

We will show that every element of Dℓ has a representative contained in the region of
R× I2 bounded between ∆−k and ∆k, where k = (h(ℓ) + 2)2.

Consider a fixed Ψ ∈ Dℓ. By Theorem 3.3.1, all representatives of all elements of Dℓ

have the same algebraic intersection number with the strands of ℓ, and therefore we can
choose a representative D ∈ Ψ with the same boundary as ∆0. We also can insist for D to
be in general position, thereby intersecting ∆ transversely and away from ℓ, and take it to
minimize the number of components of D ∩∆.

Suppose that D intersects ∆−k or ∆k. Without loss of generality, let us assume that it
intersects ∆k. Let Ck be an innermost (on ∆k) circle of intersection between D and ∆k.
Then the annulus on D on the outside of Ck must intersect ∆i for each i = 1, . . . , k − 1,
and at least one of the circles of intersection is not nullhomologous in the aforementioned
annulus. For each such i, let Ci be an innermost (on ∆i) circle of intersection among those
that are not nullhomologous in the annulus. For each i = 1, . . . , k, let Ei and E

′
i be the disks

on ∆i and D, respectively, bounded by Ci. By Lemma 3.1.2, the number of intersection
points of ℓ with Ei and E

′
i must be equal for each i. It must be that Ek intersects ℓ at least

once, or else E ′
k would not either, and together they would form a sphere through which we

could push D to reduce the number of intersections with ∆. Therefore, each Ei has at least
one intersection with ℓ. For each i, let ni ∈ Z be the index of an arbitrary component of ℓ
intersecting Ei. For i with h(ℓ) ≤ i ≤ k−h(ℓ), the component ni of ℓ must also intersect D,
because otherwise it would have to intersect ∆ more than h(ℓ) times to “escape” the annulus.
Furthermore, for i, j ∈ Z with |i − j| ≥ h(ℓ), ni and nj must be distinct, because no single
component of ℓ can intersect ∆i and ∆j without also intersecting the |i−j|−1 components of
∆ in between. Hence, by our choice of k, at least h(ℓ) + 1 distinct components of ℓ intersect
D, so the total number of intersections of ℓ with D is greater than h(ℓ), a contradiction.
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Therefore, we have shown that every element of Dℓ has a representative contained in the
compact region of R× I2 between ∆−k and ∆k.

Next we prove that, under certain conditions, any pair of elements in the partially ordered
set have a mutual greater element and mutual lesser element:

Lemma 5.5.3. For ℓ ∈ AZ with h−(ℓ) = 0 or h+(ℓ) = 0, given two elements Ψ1,Ψ2 of Dℓ,
there are other elements Ψ− and Ψ+ with Ψ− ≤ Ψ1 ≤ Ψ+ and Ψ− ≤ Ψ2 ≤ Ψ+.

Proof. First we will assume without loss of generality that h−(ℓ) = 0.
For such Ψ1 and Ψ2, let us pick D1 and D2 representing Ψ1 and Ψ2 in such a way that

(a) ∂D1 = ∂D2, (b) D1 and D2 intersect transversely (including on their boundaries) away
from ℓ, and (c) the number of components of intersection is minimal.

Consider the union D1 ∪D2. The complement of D1 ∪D2 in R× I2 has two unbounded
components and some positive number of bounded components. Let R+ = R+(D1 ∪ D2)
denote the closure of the component with the x coordinates unbounded above, and R− =
R−(D1∪D2) the closure of the component with the x components unbounded below. Without
loss of generality, we can assume that the components of D2 ∩ R+ occur away from ∂D1 =
∂D2, since otherwise we could make the assumption true by relabelling Ψ1 and Ψ2. Note
that R+ is a subspace of R+(D1), which has no interesting topology of its own.

Now let us suppose that ∂R+ has positive genus. Then D2 ∩ R+ is compressible as a
surface in R+(D1). Let C0 be a compressing circle on D2 ∩ R+. Then by the definition of
compressibility, the disk E0 in D2 bounded by C0 is not contained entirely in R+. Now look
at the circles of intersection between E0 and D1, and among the circles that are outermost
in D2, pick one that is outermost in D1 and call it C. (This C will not necessarily be
outermost among all circles of intersection between E0 and D1, only among those that are
outermost in D2.) Let E1 and E2, respectively, be the disks in D1 and D2 bounded by C.
Both E1 and E2 have natural orientations inherited from D1 and D2. They each therefore
induce an orientation on C, but our choice of C ensures that the two orientations on C
are opposite. In other words, E1 ∪ E2 is an immersed sphere in R × I2 with a well-defined
orientation. It is nullhomologous, and therefore its net intersection with ℓ is 0. Because
H−(ℓ,D1) = H−(ℓ,D2) = 0, there are no negative intersections of ℓ with E1 or E2, and
therefore neither E1 nor E2 has any intersections with ℓ of any sign. Let us find a circle of
intersection between D2 and E1 that is innermost on E1. (This innermost circle might just
be ∂E1 = C). Then the circle encloses disks E ′

1 and E
′
2 on D1 and D2, respectively. Because

E1 is disjoint from ℓ, so is E ′
1. Also, E ′

1 is disjoint from E ′
2, because the boundary of E ′

1

was innermost in E1. Therefore, E ′
1 ∪ E ′

2 is an embedded sphere in R × I2, which is not
necessarily oriented in a consistent way. The inside of the sphere cannot include any part
of ℓ, since the part would have to enter and leave by E ′

2, but E
′
2 cannot have any negative

intersections with ℓ. Therefore, we can push D2 through the ball to reduce the number of
intersections between D1 and D2, obtaining a contradiction.

We have concluded that ∂R+ has zero genus, and the same reasoning applies to ∂R−.
Let D± be spanning disks formed by pushing R± ∩ (D1 ∪D2) off of D1 ∪D2.
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It remains to show that D± realize the height of ℓ. Whenever ℓ intersects D1 or D2, it
does so positively. Since R+ is on the positive/“right” side of each Di, the parts of each
Di contained in ∂R+ are oriented so that positive intersections point into R+. Therefore,
the intersections between ℓ and D+ are positive, and by the same reasoning we can say
the same of ℓ and D−. Therefore H−(ℓ,D±) = 0. Since each D± has essentially the same
boundary as D1 and D2, they both give the same spanning disk framing to ℓ as D1 and
D2. Therefore, H+(ℓ,D±) = H+(ℓ,D1) = H+(ℓ,D2) = h+(ℓ). This shows that D± are both
minimal. Therefore they represent classes Ψ+ and Ψ− with the desired properties.

Lemma 5.5.4. For ℓ ∈ AZ with h+(ℓ) = h−(ℓ) = 1, if ℓ is knotless then given two elements
Ψ1,Ψ2 of Dℓ, there are other elements Ψ− and Ψ+ with Ψ− ≤ Ψ1 ≤ Ψ+ and Ψ− ≤ Ψ2 ≤ Ψ+.

Proof. We begin as in the proof of Lemma 5.5.3, fixing D1, D2, R+, and R−, and supposing
for the sake of contradiction that ∂R+ or ∂R− has positive genus.

No circle of intersection between D1 and D2 can enclose a disk on either Di that is disjoint
from ℓ: Supposing that such a disk E on some Di exists, we could find an innermost circle
of intersection on E, and the disk E ′ inside that innermost circle would also be disjoint from
ℓ. That new disk E ′ would also be disjoint from the disk E ′′ in the other Di with the same
boundary as E ′. By the fact that both spanning disks in question are minimal, E ′′ is also
disjoint from ℓ. Then we could push one spanning disk through the ball enclosed by E ′∪E ′′,
contradicting the minimal intersection assumption.

By similar reasoning, we can see that no circle of intersection between D1 and D2 can
enclose a disk on either Di that intersects ℓ exactly once: Supposing that such a disk E
on some Di exists, the circles of intersection between D1 and D2 on E must all be nested,
because none of them bounds a disk in E disjoint from ℓ. Therefore there is an innermost
disk E ′ that meets ℓ exactly once. If E ′′ is the disk in the other Di with the same boundary
as E ′, then E ′∪E ′′ is an embedded sphere. By the fact that both spanning disks in question
are minimal, E ′′ also intersects ℓ exactly once. Therefore the ball inside E ′ ∪ E ′′ encloses a
1-tangle. By the assumption that ℓ is knotless, the 1-tangle is trivial, which again implies
that we could cancel an intersection between D1 and D2 by pushing, a contradiction.

Since D1 and D2 each intersect ℓ only twice, the previous two paragraphs imply that for
each i, each component of D1∩D2 as a subset of Di encircles both points of Di∩ℓ. Therefore,
the intersection circles are nested in each Di. This means that each component of D1∩∂R+,
D2 ∩ ∂R+, D1 ∩ ∂R−, or D2 ∩ ∂R− is either a disk or an annulus. Thus the whole surfaces
∂R+ and ∂R− are composed by gluing together disks and annuli (including the unbounded
components) along their boundaries, so ∂R± cannot have nonzero genus. Furthermore, in
the decompositions of ∂R+ and ∂R− into annuli and disks, each surface only has one disk
piece.

Now, as before, let D± be the spanning disks formed by pushing R± ∩ (D1 ∪D2) off of
D1 ∪D2. Because of the nesting of the components of D1 ∩D2 on each of D1 and D2, the
components of each Di ∩ ∂R± that are annuli do not intersect ℓ at all, and those that are
disks intersect ℓ twice. Therefore, D1 and D2 each intersect ℓ exactly twice, so they are
minimal.
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We now have sufficient conditions for Dℓ to have extremal elements.

Lemma 5.5.5. For ℓ ∈ AZ with either (a) h−(ℓ) = 0, (b) h+(ℓ) = 0, or (c) ℓ is knotless
and h+(ℓ) = h−(ℓ) = 1, Dℓ has a greatest element and a least element.

Proof. Suppose we have some ℓ as above. The set Dℓ must be at most countable, because
each element will have a representative that is piecewise-linear with vertices at points with
rational coefficients, as any spanning disk can be approximated in that way. Choose a
counting function N → Dℓ (possibly with repeats), denoted i 7→ Ψi. Fix ∆0, ∆−k, and ∆k

as in Lemma 5.5.2.
We will recursively define two sequences {Di} and {D′

i} of minimal spanning disks for ℓ,
all of which will be between ∆−k and ∆k. First, let D1 be a representative for Ψ1, chosen to
coincide with ∆0 on its boundary and to sit between ∆−k and ∆k as provided by Lemma 5.5.2.
Let D′

1 be equal to D1.
Now, having defined Di and D′

i for some i, we will define Di+1 and D′
i+1 as follows.

Let Ψ′
i ∈ Dℓ be the class of D′

i. Now, depending on the signed heights of ℓ, we will apply
Lemma 5.5.3 or Lemma 5.5.4 to Ψ′

i and Ψi+1. Specifically, we will useD
′
i as our representative

of Ψ′
i, and for our representative of Ψi+1 we will pick an element Di+1 that, together with D

′
i,

fits the description at the start of the proofs of Lemma 5.5.3 and Lemma 5.5.4. The proof
of Lemma 5.5.2 shows that even under those restrictions, we can take Di+1 to sit between
∆−k and ∆k. That allows us to define D′

i+1 to be a a minimal spanning disk lying slightly
to the right of D′

i and Di+1. This D
′
i+1 will still be in the region between ∆−k and ∆k.

We now have a sequence {D′
i}i∈N of mutually disjoint minimal spanning disks for ℓ,

all with isotopic boundaries and all contained between ∆−k and ∆k. We can now apply
Kneser–Haken finiteness as in Theorem 1 of [20]. Let M be the part of the complement of ℓ
in R×I2 that lies between ∆−k and ∆k, and consider the parts of the D′

i inM . Since the D′
i

are minimal spanning disks, the resulting surfaces are incompressible and all have identical
Betti numbers. The theorem ensures that any large subcollection of the D′

i includes two that
are parallel and hence isotopic. Therefore, there are only finitely many Ψ ∈ Dℓ represented
by the D′

i. This implies in turn that there is a Ψ+ ∈ Dℓ represented by infinitely many D′
i.

This Ψ+ will then satisfy Ψi ≤ Ψ+ for all i. Therefore, Ψ+ is a greatest element for Dℓ.
By the same reasoning, Dℓ also has a least element Ψ−.

The last result in this section will be used later for controlling the potential discrepancy
between the diversity of minimal spanning disks of an annular 1-tangle and the (potentially
larger) diversity of minimal spanning disks for the corresponding Z-tangle.

Lemma 5.5.6. For ℓ ∈ AZ satisfying the hypotheses of Lemma 5.5.5, the greatest and least
elements of Dℓ each have representatives that are disjoint from their Z-translates.

Proof. Let Ψ+ denote the greatest element of Dℓ. We will focus on Ψ+, since the proof for
the least element is equivalent.
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Consider a minimal spanning disk for s−1(ℓ) and let ∆ be its preimage in R × I2. As
usual, denote the components of ∆ by ∆i, with the indices i ∈ Z reflecting the relative
positions of the components. Let D be a representative of Ψ+.

If it is possible to choose ∆ and D in such a way that D is disjoint from ∆, then the
desired property applies to D. Therefore, suppose that any choice of ∆ and D intersect.

Let us choose ∆ and D in such a way that (a) the intersections between D and ∆ are
transverse and occur away from ℓ, (b) the boundary of D almost coincides with that of ∆0,
but is pushed slightly in the negative-x direction, (c) the maximum m of all n such that
D intersects ∆n is minimized (subject to the previous conditions), and (d) the number of
intersections between D and ∆m is minimized (subject to the previous conditions).

Suppose that m ≥ 0. By the reasoning in the proofs of Lemma 5.5.3 and Lemma 5.5.4
applied to D and ∆m, we find another minimal spanning disk ∆′

m that sits slightly to the
right of D ∪∆m. It is contained in the space between ∆m and ∆m+1, so it is disjoint from
all of its integral translates. In particular, the disk ∆′

0 obtained by translating ∆′
m by −m

have boundary just to the right of ∆0. Therefore the union of all ∆′
n would provide a better

alternative choice for ∆, since D is disjoint from ∆′
m, so we have a contradiction. Therefore,

m = −1, since if D intersects ∆ without intersecting ∆0 it must intersect ∆−1.
Now let us apply the constructions in Lemma 5.5.3 and Lemma 5.5.4 to D and ∆−1. This

gives us a minimal spanning disk for ℓ with nearly the same boundary as D (lying to the
left of ∂∆0) but that is disjoint from D and from ∆. By the assumption that D represents
the greatest element of Dℓ, the new disk is isotopic to D. This contradicts our supposition
that D could not be chosen to be disjoint from ∆. Therefore, we are done.

5.6 Height Conditions for Injectivity

This section will show that any pair of Z-tangles constituting a counterexample to injectivity
of the Birman–Hilden map must have total height at least 3 and positive- and negative heights
each at least 1.

Theorem 5.6.1. If ℓ ∈ AZ has h−(ℓ) = 0 or h+(ℓ) = 0, then q(ℓ) is uniquely determined by
its image under Bh.

Proof. Suppose ℓ′ ∈ AZ is another translation-invariant Z-tangle with p(ℓ′) = p(ℓ). Then by
Lemma 3.1.3, ℓ′ has the same signed heights as ℓ.

Since ℓ and ℓ′ are isotopic, there is a bijection between Dℓ and Dℓ′ that respects the
partial orders. By Lemma 5.5.5, Dℓ and Dℓ′ have greatest elements. The maxima must be
mapped to each other under the aforementioned bijection. By Lemma 5.5.6, we can choose
representatives D0 and D′

0 for the maximal classes such that D0 and D′
0 each are disjoint

from their integral translates. By translating D′
0 and then adjusting it in a neighborhood of

its boundary without interfering with ℓ′, we can also require for simplicity that ∂D0 = ∂D′
0.

Then there is a boundary-preserving isotopy ι0 ∈ I that sends ℓ′ to ℓ and D′
0 to D0.
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For every n ∈ N, let Dn and D′
n be the translates of D0 and D′

0, respectively, by n in
the x direction. These new spanning disks, like D0 and D

′
0, represent the maxima of Dℓ and

Dℓ′ . Therefore there is an isotopy ιn = τnι0τ
−n sending D′

n to Dn while sending ℓ′ to ℓ. We
cannot assume that ιn is equal to ι0.

Since D′
1 is a representative of the maximum of Dℓ′ , ι0(D

′
1) will represent the maximum

of Dℓ. Therefore it is isotopic to D1 in the sense used to define D. By retroactively modifying
ι0 we can ensure that ι0(D

′
1) can be isotoped to D1 without moving any points of intersection

with ℓ. Still, this isotopy from ι0(D
′
1) to D1 might see the disk temporarily intersecting D0.

Consider that D0, thought of as a punctured surface in the complement of ℓ in R × I1, is
incompressible because it minimizes height and therefore it is π1-injective. Then we can use
basic obstruction theory to find a homotopy from ι0(D

′
1) to D1 contained entirely in R+(D0),

since the triviality of the higher homotopy groups of R−(D0) allows us to push homotopies
of cells of dimension 1 and 2 back through D0. By Corollary 5.5 of [50], this homotopy can
be promoted to an ambient boundary-preserving isotopy of R+(D0). Composing this isotopy
with ι0, we obtain a boundary-preserving isotopy ι of R×I2 that sends ℓ′ to ℓ, D′

0 to D0, and
D′

1 toD1. Therefore ιmaps R(D′
0, D

′
1) onto R(D0, D1), where R(D0, D1) = R+(D0)∩R−(D1)

and so on.
There are, of course, natural identifications D0

∼= D1 and D′
0
∼= D′

1 by translation. The
isotopy ι induces its own identifications D′

0
∼= D0 and D′

1
∼= D1. Let b be the composition

D0
τ→ D1

ι−1

→ D′
1

τ−1

→ D′
0

ι→ D0.

The restriction of b to D0 ∩ ℓ is the identity. Therefore, b can be thought of as a pure braid
with h(ℓ) strands, depending on an exact identification of D0 with a standard h(ℓ)-punctured
disk. We will first show by contradiction that b cannot represent a nontrivial braid, and then
use the fact that b represents the trivial braid to obtain q(ℓ′) = q(ℓ).

Case 1: Nontrivial braid.
For this part we will assume without loss of generality that h+(ℓ) = 0.
Suppose for the sake of contradiction that the braid represented by b is nontrivial.
The points of ℓ ∩ D1 can naturally be indexed with {1, . . . , h(ℓ)}: Each corresponds

uniquely to a point of s−1(ℓ) ∩D, where D is the spanning disk for s−1(ℓ) corresponding to
D1, and the points of s−1(ℓ)∩D are indexable by the order in which they appear on s−1(ℓ).

Let ℓb denote the tangle of infinitely many strands in R+(D0) obtained (up to boundary-
fixing isotopy) by, for all n ∈ N, inserting a copy of b in braid form into a neighborhood
of Dn.

1 Because b equals the discrepancy between the restrictions of τn−1ιτ 1−n and τnιτ−n

to Dn for each n, the isotopies τnιτ−n together define an identification of the part of ℓ′

in R+(D
′
0) with ℓb. Together with the previous identification, this implies that there is a

diffeomorphism from R+(D0) to itself that sends ℓb to ℓ and restricts to the identity on the
boundary.

1Our precise convention for the method of insertion will not matter.
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Figure 5.1: An illustration of R+(D0) in a case where h(ℓ) = 3. The dotted lines represent
spanning disks Dn for n > 0 and the vertical lines represent strands of ℓ. We have labelled
each strand that intersect D1 according to the first n for which the strand is included in
Tn(ℓ).

For n in {1, . . . , h(ℓ)}, let Tn(ℓ) be the n-tangle in R+(D0) where the n strands are the
components of ℓ∩R+(D0) that include the points of ℓ∩D1 with indices 1, . . . , n. Similarly,
let Tn(ℓb) be the n-tangle in R+(D0) with n components chosen from ℓb in the same way.

Now, for n in {1, . . . , h(ℓ)}, let bn be the pure n-strand braid obtained from b by consid-
ering only the first n strands. Let m be the least n such that bn is nontrivial. Notice that
each Tm(ℓb) differs from Tm(ℓ) by the insertion of m braids, specifically, the braids b1, . . . , bm
at the positions of Dm, . . . , D1, respectively. By the way that we chose m, it follows that
Tm(ℓb) and Tm(ℓ) differ only by the insertion of bm. However, we have also determined that
ℓb ∩R+(D0) and ℓ ∩R+(D0) are isotopic, which implies that Tm(ℓb) and Tm(ℓ) are isotopic.
Then Theorem 4.1.1 implies that bm is trivial. This is a contradiction, so we can move on
to Case 2.

Case 2: Trivial braid.
Since b represents the trivial braid, we can adjust ι retroactively to make it so that b is

the identity on D0. Since ι maps R(D′
0, D

′
1) to R(D0, D1), and those are both fundamental

domains for translation of R × I2, ι lifts to a unique corresponding isotopy ι ∈ I, which
will send s−1(ℓ′) to s−1(ℓ). Therefore, we have q(s−1(ℓ′)) = q(s−1(ℓ)) and hence also q(ℓ′) =
q(ℓ).

Theorem 5.6.2. If ℓ ∈ AZ has h(ℓ) ≤ 2, then q(ℓ) is uniquely determined by its image
under Bh.

Proof. By Theorem 5.6.1, we can assume that h+ = h− = 1, and by Theorem 5.4.3, we can
assume that ℓ is knotless.
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Now we can largely repeat the proof of Theorem 5.6.1. All parts of the proof carry over
without modification except for Case 1, so let us enter that case in our new context.

Under our supposition that b represents a nontrivial braid on two strands, it is simply
the mth power of a full twist for some nonzero m ∈ Z.

Let us look at the 2nd translates D2 and D′
2 of D0 and D′

0. Applying to D2 and D′
2

the same logic that was applied to D1 and D′
1, there is an isotopy of R × I2 that sends ℓ′

to ℓ, D′
0 to D0, and D′

2 to D2. Therefore it maps the 4-stranded tangle ℓ′ ∩ R(D′
0, D

′
2) in

R(D′
0, D

′
2) to the 4-tangle ℓ ∩ R(D0, D2) in R(D0, D2). Like in the proof of Theorem 5.6.1,

let ℓb be the 4-tangle in R(D0, D2) obtained (up to boundary-fixing isotopy) by inserting a
copy of b in braid form into a neighborhood of D1. Again as in the previous proof, ι and
τιτ−1 together define an identification of ℓ′ as a tangle in R(D′

0, D
′
2) with ℓb as a tangle in

R(D0, D2). Together with the previous identification, this implies there is a diffeomorphism
from R(D0, D2) to itself that sends ℓb to ℓ and restricts to the identity on ∂R(D0, D2) \D2.
In other words, there is a braid b′ on D2 such that ℓb

′
is isotopic to ℓb, where ℓ

b′ is the result
of inserting b′ into ℓ at D2.

As an intermediate step, we will show that b′ is trivial: For each of ℓ, ℓb, and ℓb
′
as

4-tangles in R(D0, D2), let us consider the 2-tangle in R(D0, D2) formed just by the the
two strands contacting D2. The first two 2-tangles must be isotopic because the strands in
question avoid D1, and the second and third 2-tangles are isotopic because ℓb and ℓb

′
are

isotopic. Therefore, by transitivity, the 2-tangles obtained from ℓ and ℓb
′
are isotopic. Those

two differ by applying b′ to D2. Since the two strands each contact D2 only once each, we
can apply Theorem 4.1.1, obtaining the triviality of b′.

Now we know that ℓ and ℓb, as tangles in R(D0, D2), are isotopic. Note that we can
actually obtain ℓb up to isotopy just by knowing ℓ ⊂ R(D0, D2) and m, without D1, by
applying a three-dimensional Dehn twist of order m in the sense of [40] to ℓ. Though we
cannot apply Theorem 4.1.2 directly, as the part of ℓ in R(D0, D2) has the wrong number
of components, the proof carries over with minimal modification. Hence there is a disk in
R(D0, D2) with the same boundary as D1 and with no points of intersection with ℓ. This
disk, taken as a spanning disk in R × I2, violates our previous conclusion of h(ℓ) = 2.
Therefore, we have a contradiction, so we can go on to Case 2.
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Chapter 6

Points of Comparison

6.1 The Image of the Birman–Hilden Map

In this section we will show that p(AZ) is a proper subset of (A/I)Z, and hence the inclusion
in Equation (2.3) is not surjective. Let µ be the Z-tangle shown in Figure 6.1.

Theorem 6.1.1. The class p(µ) is in (A/I)Z but not p(AZ).

Proof. It is easy to see that µ is isotopic to τµ, and hence p(µ) is translation-invariant.
Now suppose that there is a ℓ ∈ AZ isotopic to µ. (A natural candidate for such an

isotopy would be some kind of “limit”

· · · ◦ (τ 3ιτ−3) ◦ (τ 2ιτ−2) ◦ (τιτ−1) ◦ ι,

where ι is one of the isotopies sending µ to τµ, but even if ι is chosen to be compactly-
supported there will still be points in R × I2 whose images under the above sequence of
composed isotopies will not stabilize.)

Since µ has height 0, ℓ must also have height 0. Since p(µ)/∞ is unknotted, q(s−1(ℓ))
must be the unknotted annular 1-tangle. Therefore, we can take ℓ to be the trivial Z-tangle.

Figure 6.1: A Z-tangle that is translation-invariant up to isotopy but not isotopic to any
translation-invariant Z-tangle.
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Consider the spanning disks for ℓ of the form {x}× I2 for x ∈ Z+ 1
2
. All such disks have

height 0 and together they constistute a biproper embedding Z×I2 → R×I2. Let ι ∈ I be a
specific isotopy with ι◦ℓ = µ, and let us consider the composition Z×I2 → R×I2 → R×I2.
This is again a biproper embedding consisting of many spanning disks of height 0.

By properness, there is a spanning disk of height 0 contained in the tangled repeating
part of µ. However, the same disk could then be used for the translation-invariant Z-tangle
formed using just that repeating portion. That would then imply that a product of two
bifoils would have height 0, which is a contradiction. Hence, we are done.

Taking the problem one step further, one could also ask whether p(AZ) and (A/I)Z even
have the same cardinality. Since q(AZ) is countable, p(AZ) is as well. We conjecture that
(A/I)Z is uncountable, but we do not yet have a proof of this.

6.2 Annular Knots

The theory of annular 1-tangles can readily be compared to the similar theory of nullhomolo-
gous annular knots (see, for example, [52]). The Birman–Hilden map has natural equivalents
in this other context; in this case the function takes values in the set of isotopy classes of
Z-links, that is, end-proper embeddings S1 × I → R× I2 for which x → ∞ as n → ∞ and
x→ −∞ as n→ −∞.

The Birman–Hilden map for nullhomologous annular knots is not injective. A coun-
terexample is shown in Figure 6.2: One can see that the two annular knots are distinct
by embedding the thickened annulus into R3 as shown; one knot becomes unknotted under
this embedding and the other becomes a trefoil. Meanwhile, the corresponding Z-links are
isotopic via twisting by varying angles at each fiber {pt}× I2. Note that this isotopy can be
performed in finite time with a well-defined image for each point.

6.3 Weak Isotopy

The example µ in Section 6.1 suggest that alongside isotopy we ought to consider several
weaker notions of equivalence between Z-tangles. Three such relations are as follows:

Embedding

Definition 6.3.1. A Z-tangle ℓ embeds in another Z-tangle ℓ′ if there is an embedding
ψ : R× I2 ↪→ R× I2 such that (a) ψ restricts to the identity on ∂(R× I2) and (b) ψ ◦ ℓ = ℓ′.
This embedding is not required to be end-proper.

Of course, if ℓ and ℓ′ are isotopic then they it follows immediately that they embed in
each other.
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Figure 6.2: Two annular knots. These are a counterexample to injectivity of the version of
the Birman–Hilden map for nullhomologous annular knots.

The trivial Z-tangle embeds in µ. To see how, let us first fix a compactly-supported
isotopy ι sending µ to τµ. Then we will define an embedding ψ of the trivial Z-tangle to µ
by defining its restrictions to (−∞, x0]× I2 for each x0 ∈ R. Given x0, let us pick a n ∈ N
such that τnιτ−n fixes all points in (−∞, x0]× I2. Now define ψ : (−∞, x0]× I2 to be

ι−1 ◦ (τι−1τ−1) ◦ · · · ◦ (τnι−1τ−n) ◦ (inclusion (−∞, x0]× I2 ↪→ R× I2).

This definition is consistent over all choices of x0, so there is a well-defined total map ψ
on R × I2 satisfying our requirements. The image of ψ will necessarily be a proper subset
of R × I2 and the complement will be a fractal. Depending on the exact choice of ι, the
complement might locally look light the product of a Cantor set with R2.

Conversely, µ does not embed in the trivial Z-tangle: As in the proof in Section 6.1, the
existence of such an embedding would contradict the existence of a proper family of spanning
disk with height 0 for the trivial Z-tangle. Therefore, embedding is not symmetric.

Conjecturally, the embedding relation should be antisymmetric (on the level of isotopy
classes), that is, if two Z-tangles each embed in each other then they must be isotopic.

Weak Isotopy

The next alternative version of isotopy for Z-tangles is perhaps the most visually intuitive.

Definition 6.3.2. A weak isotopy of Z-tangles a smooth biproper map Z×I×[0, 1] → R×I2
for which the restriction to each time slice Z × I × {pt} defines a Z-tangle. Two Z-tangles
are weakly isotopic if there is a weak isotopy that restricts to both the two Z-tangles at times
0 and 1.
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The smoothness and properness requirements above, which apply to the map as a whole
and not just each intermediate Z-tangle, together ensure that a weak isotopy “looks like an
isotopy” to an observer who only watches a compact region of R× I2.

Unlike embedding, weak isotopy is an equivalence relation. If ℓ and ℓ′ are Z-tangles
for which ℓ embeds in ℓ′, then ℓ and ℓ′ are weakly isotopic. Indeed, given ψ realizing the
embedding, we can construct a weak isotopy from ℓ′ to ℓ by finding a smooth family of
embeddings R × I2 ↪→ R × I2 interpolating between ψ and the identity. Such a smooth
family can be constructed by first finding an isotopy from ψ({0} × I2) to {0} × I2 and
composing this isotopy with ψ, and then progressively working outward to map each space
ψ([−x0, x0]× I2) back to [−x0, x0]× I2.

Weak isotopy classes of Z-tangles can be very diverse. By the reasoning above, the
example µ is weakly isotopic to the trivial Z-tangle by “unzipping” to the right. Similarly,
by zipping to the left, it is also weakly isotopic to a translation-invariant Z-tangle of height
2 corresponding to the product of two bifoils. Furthermore, the same logic implies that this
weak isotopy class also contains the Z-tangle in Figure 2.6, which is like the aforementioned
product except with a full twist incorporated into each zipper loop. These last two Z-tangles
fail to be (strongly) isotopic to each other, as demonstrated by Theorem 5.6.2. Meanwhile,
are also weakly isotopic to Z-tangles that are not translation-invariant even up to isotopy,
since when zipping we can choose a number of twists independently for each individual zip
as it is made. The logic of Theorem 5.6.2 implies that, in the family of height-2 Z-tangles
obtainable from the example of Figure 2.6 by twisting at each position according to some
arbitrary function Z → Z, no two members of the family coming from distinct functions
Z → Z are isotopic. Thus the weak isotopy class includes uncountably many isotopy classes.

Two weakly isotopic Z-tangles need not be related to each other by embedding in either
direction. However, we can also compare weak isotopy to the equivalence relation generated
by embeddings. Evidently, given any finite sequence of Z-tangles for which any adjacent pair
admits one embedding in the other, all of the Z-tangles in the sequence are weakly isotopic.
It is not yet clear whether or not, conversely, any two weakly isotopic Z-tangles are related
by the equivalence relation generated by embeddings.

Finite Isotopy

Lastly, we can compare Z-tangles in terms of their relationships to standard string links.

Definition 6.3.3. Two Z-tangles ℓ and ℓ′ are finitely isotopic if, for every finite subset of
Z, the string links obtained from ℓ and ℓ′ using only those strands are isotopic.

Any pair of weakly isotopic Z-tangles is also finitely isotopic, since the movement of a
fixed finite number of strings over the course of the weak isotopy can be realized for those
strings by a strong isotopy. Verifying that the converse also holds would be an interesting
question for future exploration.
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6.4 Planar Knotoids

The term “knotoid” is sometimes used more generally than the way we use it here; what
we call “knotoids” above might be called “knotoids on S2”. This is in reference to the fact
that S2 appears as the ambient space in the definition of knotoid diagrams, but alternative
ambient surfaces can also be chosen. A common alternative choice is R2, giving rise to
knotoids on R2, also called planar knotoids ([49], Section 10).

In the context of planar knotoids, there are equivalents to A and A, but we will see that
there is no completely straightforward counterpart to Bh.

Fix a genus-2 handlebodyM , two distinct points w0, w1, on ∂M , and an element ζ of the
relative homology group H1(M, {w0, w1}) with ∂ζ = w1 − w0. (Note that any two choices
of M , w0, w1, and ζ are essentially equivalent in that between the two choices of M there
is a diffeomorphism that respects the other choices.) Then let A2 be the set of ∂-proper
embeddings I → M for which −1 and 1 respectively map to w0 and w1 and for which
the embedding represents ζ. By [27] and [28] (Proposition 1), isotopy in A2 coincides with
compositions with boundary-fixing automorphisms of M .

Given a planar knotoid, we can produce an element of A2: After picking a diagram, let
us perform an ambient isotopy of R2 to put the endpoints into a standard position (say,
(0,−1) and (0, 1)), then do another ambient isotopy just in a neighborhood of the endpoints
to normalize winding numbers, then next delete small open disks around the two endpoints
and the point at infinity to get a closed genus-0 surface with three boundary components,
and then finally take the product of that surface with I to define M . The embedding of I
is determined by lifting the knotoid diagram into the thickened surface using the crossing
information. The endpoints w0 and w1 as well as the class ζ can be inferred from the
embedding. None of our choices affect the isotopy class of the resulting element of A2.

Note that the above process doesn’t generalize to knotoids on punctured spheres with
more than one puncture, because the two endpoints give us only two degrees of freedom in
the first homology and also because of the potential for braiding of the endpoints.

Of course, the fundamental group of M is the free group Z ∗ Z. The universal cover M
of M is isomorphic to a copy of a 3-ball minus a Cantor set on the boundary. To define
(Z ∗ Z)-tangles, we will need to pick a fixed (based) homotopy class of representatives of ζ
and a lift w0 ∈ ∂M of w0. Having made these choices, let us define a lift w1 by picking
a representative of the aforementioned homotopy class, lifting it to M in such a way that
it starts at w0, and letting w1 be the other endpoint. The other lifts of w0 and w1 can be
obtained by applying Deck transformations ofM to w0 and w1. Let A2 be the set of biproper
embeddings (Z∗Z)×I →M satisfying (u,−1) 7→ u(w0) and (u, 1) 7→ u(w1) for all u ∈ Z∗Z.
Then there is a Birman–Hilden map from the subset of isotopy classes in A2 for which the
strand represents the chosen homotopy class to the set of isotopy classes in A2.

A planar knotoid can be assigned a triple of unsigned heights, for example as in [2] (page
6). Each of these three unsigned heights has corresponding signed variants, and each satisfies
its own version of Theorem 3.3.1. The proof of Theorem 3.3.1 carries over to this new context
with little modification.
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