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Abstract

In this report we present the theoretical development of a method through which a user
can evaluate di�ering platoon control strategies and determine each strategy's worst case
behavior under bounded parametric variations. The usefulness of the approach is that a
platoon designer can determine how robust her design strategy is in the face of system un-
certainties. The general approach is similar to an optimal control design and has applicability
to complex, nonlinear systems. The method allows for an arbitrary number of uncertain pa-
rameters, unmodeled system components and system inputs. The end result of the iterative
procedure is a lower bound for the worst case platoon performance.

keywords: performance, platooning, safety, AHS, collision

1



Nomenclature

A vehicle frontal area (m2)
ab braking deceleration (m=s2)
ah tire hysteresis (N/m)
CD aerodynamic drag coe�cient
CD;un percent uncertainty in aerodynamic drag coe�cient
CRa correction factor for aerodynamic drag uncertainty bounds
CRD correction factor for aerodynamic drag drafting e�ects
CRr correction factor for rolling resistance uncertainty bounds
eff drivetrain e�ectiveness, percent
eun percent uncertainty in engine e�ectiveness
F total force acting on a car (N)
Fa aerodynamic drag force (N)
Fb brake force acting at the tire-road interface (N)
Fb;m maximum brake force available at the tire-road interface (N)
Fe engine force acting at the tire-road interface (N)
Fe;m maximum engine force available at the tire-road interface (N)
Fg gravitational force due to road grade (N)
Fr rolling resistance force (N)
fr coe�cient of rolling resistance
fr;un percent uncertainty in coe�cient of rolling resistance
Go road roughness
GR gear ratio reduction from engine shaft to wheel axle
g gravitational acceleration (m/s2)
h axle height (tire radius, wheelbase) (m)
Li length of car i (m)
M vehicle mass (kg)
Mun percent uncertainty in vehicle mass
PC(v) power curve function for engine torque (N�m)
Tb brake torque (N�m)
Tb;m maximum brake torque (N�m)
Te engine torque (N�m)
Te;m maximum engine torque (N�m)
TR road traction (available coe�. of friction)
v velocity of vehicle (m/s)
vw velocity of wind (m/s)
� brake input
�i space between front of car i and back of car i� 1 (m)
�i;d desired spacing between car i and car i� 1 (m)
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� road grade (rad)
� braking coe�cient of friction
�un percent uncertainty in braking coe�cient of friction
� density of air (kg/m3)
�b brake time lag (sec)
�e engine time lag (sec)
� engine input
! engine speed (RPM)
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EXECUTIVE SUMMARY

This report is the �nal one for project MOU-244. This project has been aimed at the
problem of platoon performance in the face of uncertainties. The basic ideas that motivated
the research stemmed from the realization that, in order to evaluate a platoon's performance,
one needs to have some idea of what \good" means in a platooning scenario. Does \good"
mean a platoon in which the possibilities of intra-platoon collisions is minimized or does
it mean one in which the deviation of each car from it's desired position is minimized.
The two goals are not, in general, independent. This reection on platooning quality led
to the concept of a performance index that takes into account the various factors that
might inuence platoon \goodness," such as acceleration levels, collision frequency, collision
magnitude, station-keeping ability, etc.

Once one has an index to evaluate platoons, one is then led to ask whether a platoon that
is \good" for nominal conditions, remains \good" if the system changes. Tires can wear,
engines can lose e�ectiveness and a host of other parameters can shift over time. In addition,
every possible system dynamics isn't contained in any simulation model and the question
arises as to how un-modeled dynamics might a�ect the overall system. It is this question
that this research report addresses. In the following pages, we present an iterative method
that works to determine a lower bound for the performance of a general, nonlinear system,
when unmodeled dynamics and parametric variations are present. Applying the method to
a platoon should let the user know how \bad" the platoon's performance can get and what
the parametric variations are that would lead to this performance state.
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1 Introduction

The number of vehicles on roads has been steadily increasing over the last several decades, a
situation that looks unlikely to change in the near future. In order to alleviate the congestion
associated with this growth, various strategies are being proposed with the aim of increasing
overall vehicular throughput. One particular approach, part of the IVHS (Intelligent Vehicle
Highway Systems) e�ort, would place vehicles in platoons that are guided by on-board
computers. Platoons are de�ned as a group of closely-spaced vehicles, an example of which
is shown in Figure 1. This platoon consists of three vehicles and a lead car with the origin
of the Cartesian coordinate frame associated with each vehicle located at the vehicle's rear.
Each vehicle is of length Li and is spaced �i meters behind the preceding vehicle. The lead
car, a �ctitious vehicle that is used in the simulation as a guide for the entire platoon, is
assumed to follow desired accleration (or velocity) trajectories perfectly while each of the
following vehicles attempts to maintain a desired spacing of �i;d meters between itself and
the preceding vehicle. A platoon is thus a higher level dynamical construct, composed of
smaller dynamical units (the individual vehicles). These platoons are envisioned as traveling
along one or more special highway lanes that have been specially designated for platoon
activity. When a vehicle enters a platoon lane, control of the car is handed over from the
driver to the car's on-board computer.

Equipping vehicles with platooning capabilities would theoretically increase throughput
on highways since increased tracking accuracy and reduced reaction time over that of human
drivers could permit much smaller vehicle to vehicle spacings than is possible for vehicles
under human control. Along with this increase in performance, however, must come a high
level of safety. Popular acceptance of the platooning approach will certainly be strongly
inuenced by the public's perception of the platooning activity as a safe one. Control strate-
gies must therefore be developed and tested for all forseeable circumstances that could arise
during platooning operations. What one needs, in addition to knowing the performance
during nominal operations, is a knowledge of the system's worst case performance. Only by
suitably weighing both these factors can a reasonable decision be made as to what platoon
con�guration is ultimately deployed.

To determine the worst case performance of a platoon over all conditions would require
changing each uncertain parameter in every vehicle in combination with every other uncertain
parameter, every vehicle make, and and all possible input trajectories, an approach that
is clearly computationally prohibitive. To ameliorate this situation, an algorithm will be
utilized in this paper which leads to worst case performance scenarios without requiring
such extensive simulations.

The basis of our approach was developed by Tierno et al. [6]. In [6], the authors present
an approach for determining the worst case performance of general nonlinear control systems.
The approach can be viewed as an extension of classical optimal control procedures. This
algorithm �nds a lower bound for a given nonlinear, noisy system and a desired trajectory
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with a feedback controller and a description of the desired performance for a tracking control
problem. The method for determining the lower bound is similar to that used in computing
a � lower bound for linear systems.

In this paper, we will clarify the notation and extend the presentation of [6] for a general
nonlinear control system with an arbitrary number of uncertain parameters, unmodeled
components, and inputs. We will then implement the algorithm to �nd the inputs and
parametric uncertainties that produce a lower bound for the worst case performance for
a platoon simulation in order to demonstrate the method's utility in platoon performance
evaluation.

2 Problem Statement

We will consider a nonlinear system for which x = fx1; : : : ; xnxg is the vector of states,
� = f�1; : : : ; �ndg is a vector of uncertain parameters, u = fu1; : : : ; unug represents the
vector of time-varying inputs signals which perturb the system, v = fv1; : : : ; vnvg is the
vector of time-varying unmodeled dynamics components, and y is the system performance
measure. The number of states, uncertain parameters, inputs, and unmodeled components
are nx, nd, nu, and nv, respectively. The performance measure, y, will be maximized over
its 2-norm, kyk2 or simply kyk. The system equations are given by:

_x = f(x;u;v; �; t) (1)

y = g(x;u;v; �; t) (2)

z = h(x;u;v; �; t) (3)

Figure 2 shows a schematic representation of this system.
The following restrictions are imposed are imposed on the problem. The uncertain pa-

rameters will be real and have a maximum absolute value of 1. The inputs will be bounded in
the 2-norm. The 2-induced norm of the unmodeled dynamics block will likewise be bounded.
Our performance measure will be maximized over its 2-norm. All signals are assumed to be
real. The constraints are as follows:

j�ij � 1 for i = 1; : : : ; nd (4)

kujk � 1 for j = 1; : : : ; nu (5)

kzkk � kvkk for k = 1; : : : ; nv (6)

Unfortunately, the constraints as formulated above will manifest themselves (in the next
section) as �nal state inequality constraints and complicate the problem beyond a reason-
able level. By restricting the disturbances to have norm equal to 1, and restricting the

6



perturbations to be norm preserving (as opposed to norm reducing) the problem becomes

j�ij � 1 for i = 1; : : : ; nd (7)

kujk = 1 for j = 1; : : : ; nu (8)

kzkk = kvkk for k = 1; : : : ; nv (9)

Certainly, if this restricted problem exhibits poor worst-case performance, then so does the
original problem. The optimization problem for the worst case performance is summarized
as:

�i�1
i=1;:::;nd

max
kujk=1
j=1;:::;nu

kyk
kzkk=kvkk
k=1;:::;nv (10)

i.e. , subject to the constraints (1{ 3), �nd the worst performance of the system (maximum
2 norm of y; kyk).

3 Worst Case Performance Necessary Conditions

The optimization problem given above is, in general, non-convex in nature. We will therefore
�nd a lower bound for the worst case performance by determining the signals which produce
a local extremum for this problem. Our problem will be cast in the form of the following
theorem:

Theorem 1 [2] For a dynamical system described by the equations:

_x = f(x;u; t); x(0) given; to � t � tf (11)

a performance index of the form

J =
Z tf

to

L(x;u; t)dt (12)

and restrictions on the �nal state

G(x(tf )) = c; (13)

if the signal uo achieves an extremum of J, then there exists a vector of constants � and a

solution to the two point boundary value problem:

_x = f(xo;uo; t) (14)

_� = �
�

@f
@xo

�T
��

�
@L
@xo

�T
(15)

0 =
�

@L
@uo

�T
+
�

@f
@uo

�T
� (16)

with the boundary conditions:

xo(0) given (17)
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�(tf ) =
�

@G
@xo(tf )

�T
�: (18)

Furthermore, if these conditions are met we will have

�(to) =
@J

@xo(0)
: (19)

The next task is to transform the worst-case performance problem (10) into the standard
form as given by Theorem 1. This requires several steps, including an augmentation of the
state-space. The procedure is described below. De�ne L to be

L =
1

2
yTy (20)

The performance index then becomes

J =
Z tf

to

Ldt =
1

2
kyk2 (21)

Optimizing J is thus the same as optimizing kyk
We will now extend the states of the nonlinear system. First, create a state to track the

parameters, x� = fx�1 ; : : : ; x�ndg:

_x�i = 0; x�i(t0) = �i for i = 1; : : : ; nd (22)

Next, add a state for the input signals, xu = fxu1 ; : : : ; xunug, described by the following
di�erential equations:

_xuj =
1

2
uTj uj; xuj (to) = 0 for j = 1; : : : ; nu (23)

From Equation 23, kujk = 1 if and only if xuj (tf ) = 1=2 for all j. (Integrate both sides of

the di�erential in Equation 23 to get: xuj (tf)�xuj (to) =
R tf
to _xujdt =

R tf
to

1
2
uTj uj dt =

1
2
kujk

2.)
Lastly, include a state for the unmodeled dynamics, x� = fx�1

; : : : ; x�nv
g, described by the

following di�erential equations:

_x�k
=

1

2
(zTk zk � vTk vk); x�k

(to) = 0 for k = 1; : : : ; nv (24)

From the preceding, kvkk = kzkk if and only if x�k
(tf ) = 0 for all k. (Integrate both sides of

the di�erential in Equation 24 to get: x�k
(tf)�x�k

(to) =
R tf
to _xukdt =

R tf
to

1
2
(zTk zk�vTk vk)dt =

1
2
(kzkk

2 � kvkk
2).)

We will denote this new system as

_X = F(X;U;t) (25)
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where
X = fx;x�;xu;x�g; U = fu;vg (26)

and F is given by the following di�erential equations:

_xl = fl(x;u;v; �; t) = fl(X;U;t) for l = 1; : : : ; nx (27)

_x�i = 0 for i = 1; : : : ; nd (28)

_xuj =
1

2
uTj uj for j = 1; : : : ; nu (29)

_x�k
=

1

2
(zTk zk � vTk vk) for k = 1; : : : ; nu (30)

with the initial conditions:

x(to) = xo; x�(to) = �; xu(to) = 0; x�(to) = 0 (31)

where

y = g(x;u;v; �; t) = g(X;U;t) (32)

z = h(x;u;v; �; t) = h(X;U;t) (33)

This system is now in the form of the dynamical system presented in Theorem 1 with the
performance index (12)

J =
1

2
kyk2 (34)

and restrictions on the �nal states (13)

xuj (tf) =
1

2
for j = 1; : : : ; nu (35)

x�k
(tf) = 0 for k = 1; : : : ; nv (36)

From Theorem 1, if the signals u and v and the parameters � achieve an extremum of
J, then there exists � = f�x; ��; �u; ��g satisfying the two-point boundary problem. The
�rst set of these equations (15) comprise what we will refer to as the cosystem. Substituting
x� = � (22), we obtain

_� = �

 
@F

@X

!T

��

 
@L

@X

!T

= �

2
66664

@f
@x

@f

@�
0 0

0 0 0 0

0 0 0 0

z
T @h
@x

z
T @h

@�
0 0

3
77775

T 2
6664
�x

��

�u

��

3
7775�

h
yT @g

@x
yT @g

@�
0 0

iT
(37)
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or,

_�x = �
�
@f
@x

�T
�x �

�
z
T @h
@x

�T
�� �

�
yT @g

@x

�T
(38)

= �

2
66664

�
@f1
@x1

�T
� � �

�
@fnx
@x1

�T
...

...�
@f1
@xnx

�T
� � �

�
@fnx
@xnx

�T

3
77775�x �

2
66664

�
@h1
@x1

�T
z1 � � �

�
@hnv
@x1

�T
znv

...
...�

@h1
@xnx

�T
z1 � � �

�
@hnv
@xnx

�T
znv

3
77775�� �

2
66664

�
@g

@x1

�T
y

...�
@g

@xnx

�T
y

3
77775

_�� = �
�
@f

@�

�T
�x �

�
z
T @h

@�

�T
�� �

�
yT @g

@�

�T
(39)

= �

2
666664

�
@f1
@�1

�T
� � �

�
@fnx
@�1

�T
...

...�
@f1
@�nd

�T
� � �

�
@fnx
@�nd

�T

3
777775�x �

2
666664

�
@h1
@�1

�T
z1 � � �

�
@hnv
@�1

�T
znv

...
...�

@h1
@�nd

�T
z1 � � �

�
@hnv
@�nd

�T
znv

3
777775�� �

2
666664

�
@g

@�1

�T
y

...�
@g

@�nd

�T
y

3
777775

_�u = 0 (40)
_�� = 0 (41)

The second set of equations for the two-point boundary problem (16) will be referred to as
the alignment conditions:

0 =
�
@L
@U

�T
+
�
@F
@U

�T
�

=

2
66666666666666664

�
@g

@u1

�T
y

...�
@g

@unu

�T
y

�
@g

@v1

�T
y

...�
@g

@vnv

�T
y

3
77777777777777775

+

2
66666666666666664

�
@f1
@u1

�T
� � �

�
@fnx
@u1

�T
0 � � � 0 u1 0

...
...

...
...

. . .�
@f1
@unu

�T
� � �

�
@fnx
@unu

�T
0 � � � 0 0 unu

�
@f1
@v1

�T
� � �

�
@fnx
@v1

�T
0 � � � 0 0 � � � 0

...
...

...
...

...
...�

@f1
@vnv

�T
� � �

�
@fnx
@vnv

�T
0 � � � 0 0 � � � 0�

@h1
@u1

�T
z1 � � �

�
@hnv
@u1

�T
znv

...
...�

@h1
@unu

�T
z1 � � �

�
@hnv
@unu

�T
znv

�
@h1
@v1

�T
z1 � v1 � � �

�
@hnv
@v1

�T
znv

...
. . .

...�
@h1
@vnv

�T
z1 � � �

�
@hnv
@vnv

�T
znv � vnv

3
77777777777777775

2
6664
�x

��

�u

��

3
7775 (42)
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The top half of the above alignment conditions are then

0 =
�

@g

@uj

�T
y +

�
@f1
@uj

�T
�x1 + � � �+

�
@fnx
@uj

�T
�xnx + uj�uj

+
�
@h1
@uj

�T
z1��1

+ � � �+
�
@hnv
@uj

�T
znv��nv

for j = 1; : : : ; nu; (43)

and the bottom half of the alignment conditions are

0 =
�

@g

@vk

�T
y +

�
@f1
@vk

�T
�x1 + � � �+

�
@fnx
@vk

�T
�xnx +

�
@h1
@vk

�T
z1��1

+ � � �+
�
@hk�1
@vk

�T
zk�1��k�1

+
��

@hk
@vk

�T
zk � vk

�
��k

+
�
@hk+1
@vk

�T
zk+1��k+1

+ � � �+
�
@hnv
@vk

�T
znv��nv

for k = 1; : : : ; nv (44)

The boundary conditions in Equation 18 become

�xl(tf ) = 0 for l = 1; : : : ; nx (45)

��i(tf ) = 0 for i = 1; : : : ; nd: (46)

The performance index with respect to the parameters (Equation 19, X(0) = fxo; �; 0; 0g)
will be at an extremum if the derivative is 0 or if at an endpoint so that the the initial states
of the cosystem satisfy

��i(to) = 0; or

8><
>:

�i = �1
and

��i(to) < 0
or

8><
>:

�i = 1
and

��i(to) > 0
for i = 1; : : : ; nd: (47)

4 Algorithm for Lower Bound of Worst Case Perfor-

mance

Now that we've laid out the two point boundary value problem we have to solve it, a not
inconsiderable task given the nonlinear nature of the equations. One method of determining a
solution is to consider the new system and cosystem equations as representing two dynamical
systems interconnected in a feedback loop (see Figure 3). The output of the new system
will be used to calculate the terms of the cosystem. The cosystem will then be simulated
backwards in time. Using the alignment conditions, the output of the cosystem is then
related to the input of the new system for use in the next simulation. Also, the parameters
for the next simulation of the new system are determined from the initial conditions of
the cosystem using a power algorithm for �nding the lower bound of � for linear systems.
Iteratively applying this sequence of steps, the inputs and parameters are updated to obtain
worst case performance measures. When an extremum is reached, we're located at a lower
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bound for the worst case performance. The above steps will be discussed in more detail in
what follows.

The �rst step of the algorithm is to simulate the new system (25{ 33) using the given
initial conditions (31) and inputs that satisfy the constraints of Section 2. Using the relation-
ships for f ; g; and h and the trajectories y and z generated from the new system, calculate

the terms
�
@f
@x

�T
;
�
z
T @h
@x

�T
;
�
yT @g

@x

�T
;
�
@f

@�

�T
;
�
z
T @h

@�

�T
; and

�
yT @g

@�

�T
in Equation 37 for

the cosystem and then simulate the cosystem backwards in time.

Next, compute the terms
�
@f
@u

�T
�x;

�
z
T @h
@u

�T
;
�
yT @g

@u

�T
;
�
@f
@v

�T
�x;

�
z
T @h
@v

�T
; and

�
yT @g

@v

�T
in the alignment conditions (42) using the �x obtained from simulating the cosystem. From
the �rst set of alignment conditions in Equation 43, we can set uj�uj equal to a known vector
if we use the old values of ��k

and the other terms just calculated. Taking the 2-norm of
both sides of this equality, we can solve for uj and �uj using the facts that �uj is a scalar
and kujk = 1 :

�uj = �
� @g

@uj

�T
y +

�
@f1
@uj

�T
�x1 + � � �+

�
@fnx
@uj

�T
�xnx

+
�
@h1
@uj

�T
z1��1

+ � � �+
�
@hnv
@uj

�T
znv��nv

 (48)

uj = �
��

@g

@uj

�T
y +

�
@f1
@uj

�T
�x1 + � � �+

�
@fnx
@uj

�T
�xnx

+
�
@h1
@uj

�T
z1��1

+ � � �+
�
@hnv
@uj

�T
znv��nv

�
=�uj (49)

for j = 1; : : : ; nu

From the second set of alignment conditions in Equation 44, we can determine the vector

d =
��

@hk
@vk

�T
zk � vk

�
��k

since the other terms in this equation are known and assuming we

use the old values of ��m for all m except m = k. Let this vector d be of in�nite magnitude

(since ��k
is unknown) passing through the origin with slope

��
@hk
@vk

�T
zk � vk

�
. Adding the

vector components
�
@hk
@vk

�T
zk and �vk and then multiplying by ��k

will produce a point on

d. Since kvkk and
�
@hk
@vk

�T
zk are known, we can draw the vector c =

�
@hk
@vk

�T
zk and, using this

point as a circle center, draw a circle of radius kvkk (the magnitude of vk). The intersection
of this circle with the vector d yields a solution for vk and ��k

. De�ning c = fc1; c2; : : :g as
the circle center and d = fd1; d2; : : :g as the vector:

c =
�
@hk
@vk

�T
zk (50)

d =
�

@g

@vk

�T
y +

�
@f1
@vk

�T
�x1 + � � �+

�
@fnx
@vk

�T
�xnx +

�
@h1
@vk

�T
z1��1

+ � � �+
�
@hk�1
@vk

�T
zk�1��k�1

+0 +
�
@hk+1
@vk

�T
zk+1��k+1

+ � � �+
�
@hnv
@vk

�T
znv��nv

: (51)
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Figure 4 is a pictorial representation of these equations in two dimensions. The two points
of intersection p for the vector and circle are found by solving

c0T c0p2 � 2dT c0p+ (dTd� kvkk
2) = 0 (52)

where c0 = c=c1. Then, ��k
= d1

p
and vk = d=��k

+ c (Whether or not one should choose
�uj positive or negative, or which root to choose for p is not immediately obvious. We have
observed through simulation of a simple mass-spring-damper dynamical system that either
choice for both variables has approached the expected optimum.)

Finally, update the parameters according to the following rule:

�i = �i + a��i(to) (53)

�i =

8><
>:
�1 �i < �1
�i �1 � �i � 1
1 �i > 1

for i = 1; : : : ; nd (54)

where a is the constant one selects to change the rate at which the parameters are updated.
(For linear systems, a can be set large to reduce the number of iterations before convergence.
For nonlinear systems, however, a large value for a could cause problems when solving for
a local extremum.) Repeat the above procedure until the updated values for u;v; �;�u;��

are almost equal to the previous values, i. e. convergence has been achieved to within a
predetermined error limit.

To summarize, the algorithm steps are:

1. Simulate the new system with initials conditions and current inputs and parameters.

2. Calculate the partial derivative terms for the cosystem using the trajectories generated
from the new system.

3. Simulate the cosystem backwards in time with the given �nal conditions.

4. Update u;v;�u; and �� using the alignment conditions.

5. Update the parameters using the algorithm rule.

6. Repeat until the updated inputs and parameters are almost equal to their previous
values.

5 Algorithm Implementation Issues

To begin, one must choose the initial conditions, inputs, and parameters. We suggest choos-
ing v = 0; � = 0; and �� = 0. Set the time steps to be used, choose random values for u
at each time step, and normalize u so that kujk = 1 for j = 1; : : : ; nu.
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The new system extended states xu and x� (Equations 29{ 30) do not a�ect the other
states and are not used while implementing the algorithm; they are only included for deriving
the cosystem and alignment conditions. Therefore, these states do not need to be simulated.
Also, since _x� = 0 (28), these states do not need to be simulated. As a result, the remaining
states are just the states of the original dynamic system (27); the original system can be
simulated instead of the entire new system.

Because of the complexity of some nonlinear systems, analytically determining the partial
derivatives of the cosystem (37) and alignment conditions (42) may be di�cult. To circum-
vent this problem, one can calculate the linearized model ( _X = AX+BU; Y = CX+DU)
of the nonlinear system at each time step. The partials are then easily obtained.

Simulating the cosystem backwards in time, t = tf ! to, is analogous to simulating the
following system forward in time, t = to ! tf

_�
0

x =
�
@f
@x
(tf � t)

�T
�0
x +

�
z(tf � t)t @h

@x
(tf � t)

�T
�� +

�
y(tf � t)T @g

@x
(tf � t)

�T
(55)

_�
0

� =
�
@f

@�
(tf � t)

�T
�0
x +

�
z(tf � t)T @h

@�
(tf � t)

�T
�� +

�
y(tf � t)T @g

@�
(tf � t)

�T
(56)

( _�u = 0 and _�� = 0 do not have to be simulated.) Then, �x(t) = �0
x(tf � t) and ��(t) =

�0
�(tf � t).
Since the inputs are restricted to the 2-norm with no other requirements, the algorithm

may produce seemingly random inputs that might be outside expected frequency ranges, not
scaled appropriately, or beyond required limits. By �ltering the inputs generated from the
alignment conditions before using them in new system, these problems can be avoided. This
may involve passing the inputs through saturation blocks and adding a �lter prior to the
nonlinear system. Adding a �lter, however, increases the number of states and complexity of
determining the linearized model at every time step. If a linear �lter is employed as shown
in Figure 5 (� will be considered as an input for ease in the derivation) where the linear state
equations for the �lter are

_xf = Afxf +Bfu (57)

u2 = Cfxf +Dfu; (58)

and the linearized system equations are

_xs = Asxs +Bs

2
64
�

u2

v

3
75 = Asxs +

h
Bsd Bsu Bsv

i 264
�

u2

v

3
75 (59)

"
y
z

#
= Csxs +Ds

2
64
�

u2

v

3
75 =

"
Csy

Csz

#
xs +

"
Dsyd Dsyu Dsyv

Dszd Dszu Dszv

# 264
�

u2

v

3
75 ; (60)
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then the state equations for the nonlinear system with �lter become

_x =

"
_xs
_xf

#
=

"
As BsuCf

0 Af

# "
xs

xf

#
+

"
Bsd BsuDf Bsv

0 Bf 0

# 264 �

u

v

3
75 (61)

"
y
z

#
=

"
Csy DsyuCf

Csz DszuCf

# "
xs

xf

#
+

"
Dsyd DsyuDf Dsyv

Dszd DszuDf Dszv

# 264 �

u

v

3
75 : (62)

The partial derivatives can easily obtained, i. e.

@f

@x
=

"
As BsuCf

0 Af

#
;

@f

@�
=

"
Bsd

0

#
; � � �

.

6 Results for a Simple Dynamic System

To verify the previous developments, the simple mass-spring-damper dynamic system shown
in Figure 6 has been utilized. The equations of motion for the system are given by:"

_x1
_x2

#
=

"
0 1

�k=m �b=m

# "
x1
x2

#
+

"
0

1=m

#
u (63)

y = x1 (64)

where x1 is the mass position, x2 is the mass velocity, u is a disturbance force input, y is
our performance measure { mass position error, and m, k, and b are the mass, spring, and
damper constants, respectively. We considered parametric uncertainties in m and k. The
parameters chosen for this problem were:

b = damping coe�cient = 15 kg=s
k = spring constant = 100 N=m
m = mass = 10 kg
wk = uncertainty weighting for k = 0:30
wm = uncertainty weighting for m = 0:30
! = natural frequency of system = 3:16rad=sec

The high- and low-pass �lter speci�cations were chosen to be:

Filter Pole (rad/s) Zero (rad/s) Gain at 0 rad/s

high-pass speed �!=100 -!=96 0.3125
low-pass grade �10 � ! |{ 1.000
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The interconnection of the unmodeled dynamics input and output with the mass-spring
damper system is shown in Figure 7. The input signal u passes through a high-pass, �rst-
order linear �lter to produce the unmodeled dynamics input z. The unmodeled dynamics
output v is �ltered through a �rst-order low-pass �lter and adds to the input.

In less than �ve iterations, � = [�m �k] reached its �nal value of [1 � 1]. Figure 8 shows
the inputs and output after 25 iterations. These results correspond to a lightly damped
system with the inputs acting at the system's natural frequency, inputs which produce large
oscillations in the output. The 2-norm of y increased for each iteration, the �nal value
equalling 0.02792. (The 2-norm of y increased after each iteration for the choice of �u

and the root in Equation 52 both negative. For the other choices of �u and the root in
Equation 52, the 2-norm of y approached the same the �nal value but did not necessarily
increase after each iteration.) This result was checked with �-tools [1], which can be used
to determine the lower bound for worst case performance for linear systems; the estimated
lower bound for kyk was about 0.025.

7 Results for a Vehicular Platoon

In the following example we consider a 4-car platoon with lead car. The performance measure
we use for this system is the square root of the sum of the squared spacing errors. The values
of the parameters can be found in Appendix B.1 The parametric uncertainties for the system
are Mun; �un; eun; CD;un; and fr;un for each car, a total of 20 uncertainties. The inputs
are vw; �; TR; la, and, for each car, sensor or communication noise for spacing, velocity,
acceleration, previous car velocity, previous car acceleration, lead car velocity, and lead car
acceleration, giving 32 total inputs. The inputs were bounded in magnitude and �ltered
with �rst-order linear �lters according to the speci�cations listed in Appendix B.3. We did
not consider unmodeled dynamics for this implementation. The time step size for all times
was 0.01 sec. The weighting for updating parameters was set to 1.

In the simulation each car was represented by a lumped mass that moves in a longitudinal
manner under the inuence of input forces, both internal (engine/brake) and external road
friction, air drag, etc). Each vehicle has a given length and the platoon objective is to
maintain a one meter spacing between each vehicle. The controller [4] uses the velocity and
acceleration of the lead vehicle as well as position, velocity and acceleration of the preceding
vehicle to produce a control input for the controlled car.

After 25 iterations, the maximum value of kyk was found to be 9.425. Figure 10 shows
the inputs which produced the worst performance, and Figure 11 show the resulting velocity
and spacing responses, respectively. The corresponding parametric uncertainties are given
in the following table:
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Parameter Car 1 Car 2 Car 3 Car 4

eun 1 -1 1 -1
�un -1 1 -1 1
Mun -1 1 -1 1
CD;un -1 1 -1 1
fr;un -1 1 -1 1

As can be seen from the spacing response, the platoon performance deteriorates markedly.
The spacing error between Cars 2 and 3 reaches �1 meters near the end of the simulation,
indicating a collision. Recall that the nominal spacing was 1 meter for this simulation and
thus a spacing error of �1 meters implies zero spacing between the vehicles. The spacing
error continues to decrease because this particular simulation did not include a collision
module (which would forbid cars to pass through each other) since the objective was simply
to validate the worst case algorithm.

The spacings between cars 1 and 2 and between cars 3 and 4 becomes large because the
algorithm chose the parametric uncertainties such that cars 1 and 3 would accelerate most
easily (Mun = �1; eun = 1; CD;un = �1; fr;un = �1) and cars 2 and 4 would accelerate
most poorly (Mun = 1; eun = �1; CD;un = 1; fr;un = 1). The �nal parameters were driven
to their limits, a result that makes sense. One would expect the worst case performance
to correspond to some cars being as \good" as possible while others in the platoon are as
\bad" as possible. An example that illustrates this would be to picture a 2 car platoon faced
with an emergency braking maneuver in which the �rst vehicle has superb braking while
the second has very poor brakes. In this case the �rst vehicle would brake strongly and the
second will plow into the �rst, due to its inability to decelerate as fast as the vehicle in front.

The foregoing observation motivates a topic for further research. It would seem that the
outcome of an extreme maneuver will depend strongly on the capabilities of the vehicles in
the platoon and on their particular order within the platoon. It would thus be useful to
investigate the e�ect of ordering within a platoon in order to determine a strategy by which
platoons can most e�ectively be constructed. Certainly the vehicles making up the platoon
will have a range of capabilities, just as current cars do. Rather than having a new car
that wishes to join the platoon simply merge from the rear, it may be desirable to place the
vehicle elsewhere in the platoon as a function of that car's capabilities and the capabilities
of the pre-existing platoon members.

The simulation results show that the current controller performance is unacceptable under
worst case platoon operation. Although the lead car acceleration commands were under
0.2g, spacing errors reached 3 meters and two cars collided during the simulation. This
would suggest the need for further controller design that ensures robustness against the
parametric variations produced by the worst case algorithm. It should be noted that this
example was chosen to allow the worst case algorithm to easily demonstrate di�culties.
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Other simulations would doubtless show less extreme variations. A serious study would
involve many simulations over many road conditions. The results of such a study would
show the same basic result as that already demonstrated - a calculation of parameters that
cause the \worst" response and an indication of the degree of \badness."

8 Conclusions

What is seen from the preceding examples is that the worst case performance algorithm can
successfully supply the platoon designer with a useful tool with which to evaluate platoon
controllers. By identifying the worst combination of system parameters, it allows the designer
to see just how bad the performance of the platoon can be and, when used in conjunction
with knowledgable controller design, permits one to create the platoon that best meets given
performance speci�cations.

In order to improve performance, one would want to examine which platoon parameters
are most inuential in determining the overall performance, creating a sensitivity measure
for each. Once this was done, one would know which parameters should be most accurately
determined and controlled and which could be safely ignored. Once one knew the important
parameter, and also determined the parametric variations that each would involve, one
could approach the controller design problem from a � control design perspective, a control
approach that speci�cally targets robustness issues.

It should be stressed that this procedure should be viewed as part of an overall platoon
design process. Although it will provide a measure of the \worst" performance, this per-
formance will not be encountered often. Most of the time the platoon will operate within
a normal envelope of parametric variations and thus the actual performance will not be far
o� from the ideal. Thus, in order to logically deal with the information given by the worst
case algorithm, one has to put some weighting on how large a performance variation is al-
lowable over a given time interval of operation. These are questions that must be answered
by transportation management authorities.
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A Platoon Modeling Equations

A.1 Powertrain model

The equations for the reduced order engine dynamics [9] are:

Fe;m(�; v) = � � (1� e����) (65)

�e( _�) = 2:0905 � _��0:7033 (66)

where

� = 1:0� 103 � (�0:0053 � v + 2:7404)
� = 1:0� 10�3 � (0:0613 � v + 101:9315)
 = 1:0� 10�3 � (18:8640 � v + 855:0600)

Further work to implement the equations for simulation [10] has reduced the dynamics to a
�rst-order lag, where �e = 0:2 sec, and limiting the engine thrust by the following saturation
function:

Fe;m(v) = � � (1� e���75:0) � (�0:0910 � v + 3:5424) (67)

where

� = 1:0� 103 � (�0:01908 � v + 2:7404)
� = 1:0� 10�3 � (0:22068 � v + 101:9315)
 = 1:0� 10�3 � (67:9104 � v + 855:0600)

Replacing the above saturation function with power curve relationships has shown good
results for various cars. Multiplying the maximum torque from the power curves by the
gear ratios and drivetrain e�ciency and dividing by the wheel base produces the maximum
engine force transmitted through the tires:

Fe;m = PC(v) � eff �GR=h (68)

where

Te;m = PC(!) (given by car manufacturers)
! = v �GR=h

Adding a term for uncertainty in engine e�ectiveness yields:

Fe;m = PC(v) � eff �GR=h � (1 + eun) (69)
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A.2 Brake model

The equations for the brake torque [3] are:

�b � _Tb + Tb = � � Tb;m (70)

where the simpli�ed equation for the maximum brake torque is given by:

Tb;m = � �M � g � h � TR (71)

Including the parametric variations gives:

Tb;m = � � (1 + �un) �M � (1 +Mun) � g � h � TR (72)

A.3 Aerodynamic drag

The force due to aerodynamic drag is [7]:

Fa =
�

2
� CRD � CD � A � (v + vw)

2 � sgn(v + vw) (73)

Including terms in the above equation to account for parametric variations gives:

Fa =
�

2
�CRD � CD � CRa � (1 + CD;un) � A � (v + vw)

2 � sgn(v + vw) (74)

A.4 Rolling Resistance

The force due to rolling resistance is [9]:

Fr =M � g � fr � cos(�) (75)

The simpli�ed relationship for the coe�cient of rolling resistance is [9]:

fr = (4:864� 10�4 �Go � 1:03� 10�8) � v3

+(�0:0952 �Go + 1:1425� 10�6) � v2

+(7:0982 �Go � 3:1010� 10�5) � v + 0:01 (76)

where
4:050� 10�7 (good) � Go � 6:400� 10�6 (poor) for highways

Rewriting the above equation in terms of tire hysteresis, axle height, and uncertainty in
the coe�cient of rolling resistance (which includes changes in Go), the relationship for the
coe�cient of rolling resistance becomes:

fr =
ah
h
� (�7:209� 10�14 � v3 + 7:877� 10�12 � v2

�2:007� 10�10 � v + 7:136� 10�8) � CFr � (1 + fr;un) (77)
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A.5 Gravitational force

The force due to road grade is [4, 9]:

Fg = M � g � sin(�) (78)

Including parametric variations in M gives:

Fg =M � (1 +Mun) � g � sin(�) (79)
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B Simulation Speci�cations

The following is a list of variables and other speci�cations used in platoon simulations and
the worst case performance algorithm.

B.1 Parameters

These values were chosen for a typical mid-sized passenger vehicle employing the V6 engine
model described by Equation 68:

A = 1:75m2 ah = 49; 050 Nm
CD = 0:40 g = 9:81 m=s2

h = 0:35 m M = 1800 kg
� = 0:78 � = 1:23 kg=m3

�b = 0:2 sec �e = 0:2 sec

B.2 Parametric Uncertainties

The following are the weighting bounds chosen for the parametric uncertainties as described
in [8]:

eun = �15%
�un = �25%
Mun = �12%

CD;un = �15%
fr;un = �16%

with the weighting correction factors:

CRa = 1:175
CRr = 1:100

Note that when employing the parametric uncertainty in the worst case performance algo-
rithm, �i is bounded by �1. An uncertainty in a car model equation, e. g. (1 +Mun), will
be changed to a weighting multiplied by �i, e. g. (1 +Mun;w � �M ) where Mun;w = 0:12.

B.3 Input Speci�cations

The bounds chosen for the inputs are [8]:

�10g � la � 7g
�20 m=s � vw � 20m=s
�0:06 rad � � � 0:06 rad

0:52 � TR � 1:01
�0:05 � SNR � 0:05
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where, during one simulation, vw will not vary more than � 10 m/s and � not more than �
0.03 rad.

When implementing in the worst case performance algorithm, the inputs are �ltered using
a low pass, �rst-order �lter. The �lter speci�cations were chosen as follows:

Input Pole (rad/s) Zero (rad/s) Gain at 0 rad/s

lead acceleration -0.628 -628 3.924
wind speed -1.256 -1256 10.0
road grade -0.314 -314 0.03
road traction -0.628 -628 0.245
all sensor noises -314 -0.314 1.0

Since the average value of road traction is 0.765, we will implement TR as an input
bounded by �0:245 with an o�set of 0.765. The wind speed has an o�set of 10 m/s for a
variance from 0 to 20 m/s. The sensor noise inputs are allowed to vary between �1 and are
then weighted by 5%.
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