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The endless cycle of idea and action,
Endless invention, endless experiment,

Brings knowledge of motion, but not of stillness.

~~ T. S. Eliot
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Richard A. Muller
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ABSTRACT

We have pérformed a partial wave analysis of the reactions Kp~ E—K+,
XK p > EOKO, and K n -~ E—KO.' We used about 3000 events with beam momenta

ranging from 1.2 to 2.7 GeV/c, obtained in the Berkeley 72 in. bubble cham-
ber. We preéent new data for the reaction K n - EfKo at 2.1 and 2.64 GeV/c.

14

The total cross sections at these momenta are 69t5 Ub and 36T§Oub respec-
" tively. The polarization was measured from the sequentiél weak decays

> Ar, A > pr . By assuming that the parts of fhe invariant amplitudés
that are due to bar&on exchange factorize into fumctions that depend only
on s = (total center of mass energy)2 and u = (4-momentum of exchanged
baryon)z, we generate powerful constraints on the partial wave amplitudes.
~ Using these éonstraints we have done an energy depeﬁdent fit to the déta.
We conclude from the fit that the data can be explained in terms of iso-
topic.spin 0 baryon exchange, with smail but iméorﬁant contributions from
isotopic spin 1 baryon exchange and direct channel resonance production.
Only knowm Y* resonances were included in the direct channel. The baryon
exchange partial waves move in counter-clockwise circles in the Argand

diagram, suggesting that they may have a 'dual" interpretation as reson-

ant partial waves.



I. INTRODUCTION

This study is an attempt to understand the'reacfion K-N +~ 5 K in
‘terms of baryon exchange and direct channel resonance production. In
particular we would like to answer the following questions:

Are the kno&n-resonances, i.e. Y* resonances that have been studied
in the elastic channel énd in thé total cross-section data, Suffiéient
to expléin all.the data when combined with a reasonable parameterization
for tﬁe "background'? if not, is there sufficient evidence to indicate
the existence of one or more new resonances?

Can we understand the "background" in térms of particle (baryon)
exchange? If.so, can we 1éarn anything abouf bafyon:exchangé amplitudes
from a étudy'of our background?

iﬁ our énalysis we used about 3000 events with béam moﬁenta rangiﬁg
from 1.2 to 2.7 GeV/c, obtained in the Berkeley 72"‘bubb1e chaunber.l-4
At three momenta -~ 1.5, 2;1, and 2.6 GeV/c - Qe.have,data for éll'tﬁree
.of the. following reaétioﬁs:

_K+

&3]

(1) Kp~
(2) K p > 5°K° |

(3) K d ~ EK° + spectator proton

{1l

The approach we decided upon was an energy dependent partial wave
analysis. In a partial wave analysis one expresses the éotal amplitude
for the reaction in terms of '"'partial waves" which are complex functions
of energy cofresponding to definite spins and parities. This is the
natural approach for studying direct channel resonances since a resonance

has definite spin and parity and, therefore, contributes to only one



partial wave. Furthermore, the enefgyidependence of a resonance is
adequately represented by'a simple Breit-Wigner function witﬁ only two
or three parametéré:
Partial wave anaiysis:ig not, however, the usual way to study
particle ekchange émpiitudes, which can contribute to many partial
waves. Unfortunately (for the éxperimenter) there is nd‘canonical
way to study pa;ticle éxchange émplitudes, One way is to take a de-
tailed theoretical model, such as a Born term with absorption or a
Regge exchange model,'and attempt to fit it to thé data.s_7 >What we
tried to do instead was to develop a parameterization for the exchange
émplitude théh,is consistent with a siméle physical piéture of pérticle
exchange. Our parametérs are the set of bartial wavés at soﬁe reference
energy, and therefore'partial wave anélysis is as appropriate forvthé
particie exchange térms as it is for fﬁéyresonant ferms. |
The Z K reaction has several intereéting and unusual features:
(a) We gét a'good measurement of the polarizétion of the Z
from its cascade decay: = - Aw, A »> pm .

(b) Meson exchange; which dominates many otﬁer reactions, is
."forbidden" in ours because it would involve a strangeness
2 meson, and no suEh mesoﬁ is known.8

(c) The existenée of a strong "backward peak" in‘the differen-
tial cross sections.at all energies above 1.2 GeV/c indicates
that baryon exchange is important. Theée are both experi-

mental and theoretical reasons to believe that the baryon

exchange amplitude is confined to the lower partial waves (J ¢ %).
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(d) The‘knoﬁn resonances in our energy region are confined to the
higher partial waves, and are therefore distinct from the
baryon exchange partial waves. This separation is important
in viéw of recent theoretical work on the "duality" principle.
(We discuss this point in greater detail in section IV.)

(e) The existénce of data for all three of the above reactions
enables us to determine the isdtopic spin décbmposition of
“the reactidn amplitudes.’ By making‘the deéomposition in the
q-channel we can detefmine the isotopic spin'of the exchanged
baryons.

The remainder of thié paper is organized as follows:

Section II. A summary of tﬁe'formalism ofypartial wave
analyéis and isotopic spin decompositio@ as
applied to our reactions.

Section III. Preliminary analysis of the deﬁterium'data
at 2.1 and 2.64 GeV/c. (The reduction of the
rest of the data has been deséribed else-
where.)lw4 )

Section IV. Qualitative features of the data.

Section V. Model of baryon exchange and resonant partial

waves. Description of the fitting program.

Results of the fit.

Section VI. Conclusions.
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. II. FORMALISM

In this section we present the results of applying the conservation

of parity, angular momentum, and isotopic spin to meson-nucleon scatter-

ing. The conventions used are:

Qys My € momentum,'mass, and'energy of incoming meson i
qz; m,, e, . momentum, mass, and energy of outgoing meson i
Py L El momentum, mass, and energy'of incoming baryon ?
'p2, MZ’ E2 ' momentum, mass, and energy of outgoing baryon i %
W . total.center of mass energy A _ %
cos(®) &1 . 62 in center of mass ?
M L (1, + M,)/2 t
E + M [(E; % M) -_(Ethz)]llz' o

i

A. Parity v : ' ' |
The amplitude for scattering from a state X; to a new state X, can |

be expregsed as Xg M X3 where M is a 2 x 2 matrix. Parity conservation

implies that M can. be expanded in terms of two scalar (but not Lorentz

invariant) functions as follows: .
M=f+ igo -
where ; = &1 X az is the normal to the production_plane and g is the
set of Pauli matrices. If the target'baryon is unpolarized, then the

differential cross section and final state polarization are given by

do _ 1 2 2 : ' ,
H—Q—=§TrMTM=[f| + |g] - e
> do4_ l + > * A
p =3 Tr M! oM = 2 Im (fg )n

M is sometimes defiﬁed in terms of amplitudes fl and f2 where



, f, and f, are related to f and g as follows:"
f= fl + f2 cosf
g = f, sing

If we express the transition amplitude in covariant form
<i(p,) [A+3(q) +ap) v, Bl u(p)
2 yARSH 27y 'y 1

we explicitly display the two Lorentz invariant amplitudes A and B.

These are related to the amplitudes f1 and f2 as follows:5

- 1/2 —
f1 = 8ﬂw[(E + Ml) (E + MZ)] [A + (W—M)Bl
£, - e ) (5, MIE oA+ 0+ BB

B. Angular Momentum

The amplitudes f and g can be expressed as a sum of amplitudes of

definite spin and parity as follows:

f=% Jr+n 1@ + 8 T,” @] P,(cosb)
P g 2 2 2
g = i Y [T +(W) - Ty (W1 P' (cosB)
P 2
12
where v
Pl (cosB) = sin 6 P! (cds 6)= sin O sz(cos )
'3 2 —x
d cos 6
T * is the "'partial wave" with orbital angular momentum £ and total

L

angular momentum J = £ * 1/2, Using the relationships that exist .
between the conventional amplitudes f and g, and the invariant ampli-

tudes A and B, we write A and B in terms of the partial waves:

t



= + o ".v +-_+| - wup! -
A=] (W Py W BT, 4+ (W P} - WEDT,

= +|_"1+_+| Tprtym T
B = Z_(E Pieg —E P T,0 + (-ET Py 4+ EP)T,
- * +
where E° and W are the following kinematic functions:

t 4w _1
f py E £ M

E

I+

wie Wil - B
We also refer to the partial wavés using the optical notation L2I,2J
or simply_L2J where L isvS{ P, D, F, . .- etc. fof Z = o, 1, 2, 3,

. « +. I is the total sfchannel isospin, and J is-the total angular

momentum.

c. Legendre Egpansion'Coefficients

The differential cross sections and polarizations for our three

reactions can be expressed in terms of Legendre polyhomials as follows:

%% = f% ) (%%) Py (cos 6)
2=0

d6 _ o v B o1,
Pr 30 T On 221 (z5? By (cos 0)

a

wﬁere Ao ='q/4ﬂ kz, and * is. ¥ divided by py, the initial state center
of mass momentum.,. These expansions were carried out ét our thirteen.
energies, using the method of mpments3 to obtain the coefficients
AL/AO and BL/AO; the results are shown in Figures 9—16vand Tables 2-5.

The AL's and BL's can be expressed in terms of a sum of products of

partial wave amplitudes as follows:9

A

ij %
o =L oy’ Re (T,

T.)
1< 3

o



= 7 gld *
By = L By Im (T, Ty
i<]
. . . 10
The coefficients o and B are given in Tables la and 1b. The data can
be qualitatively understood by looking at the energy dependence of the
Az's and BZ'S’ and using these tables to deduce which partial waves must

be important. (See Section IV below.)

D. Isotopic Spin

The partial wave amplitudes for our three reactions can be decom-
posed into amplitudes having simple properties in either the direct, or

a crossed channel. Using the conventions for the isospinors,

p! (E°\ - K+) —X°
(n " K° KT

{1}

by 11 o 11
T (EK) =5 (T ‘ T2 =5 (T, - T2)
:oo__]; 1 o___l
T (B K—) =5 (T +T2) = -Ty
Zk°) = 7L = - L ¢l 4 opo
T (Z K°) = T 5 (T, + T>)

Here the subscripts refer to the channel in which the isospin is being
evaluated, and the superscripts refer to the total isotopic spin in that

channel.
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Table la. lLegendre Polynomial Coefficients

) A Ay A, A A A Ay ) Mo M M2 M

i
s.p ! 2,000

S P +? D 4.000

P.+S. 0 4.000

+D.D 2 2,000

0 0.800 7.200

P D+, F 6.000
P.D.+DF 7.200 4.800
DD PF 1.714 10,286
O D oF F 3 3.429 .51
D.F 0.514 3.200 14.286

S FeP G 8.000
P FeS G - 8.00¢
P.F DG 10.286 S.714
b.F +P.G ' 2,667 15,333
D F.F G 10.286 8.000 Tos.e
F.F,+D_G 1.143 4.675 18.182
FF_+C.G 4 4.762 4,208 3.030 .
F G, - 0.38} 2.182 ] 6.593 22.848 R

Slcgd’lllg 10.000

PLCQ'SLNQ 10,000

PSGQ.DSHD 13.333 6.667

DGyeP ity : 3.636 16.364

05690F5119 14.286 9.351 6.364 ) ) J

F569°Ds“9 1.818 6.154 22.023
F769~Gfl9 13.333 10.909 9.231 6.527
67690F7II9 0.866 3.237 8.48% . 27.413
69690119}49 s 6,061 5.664 4..Nl 3.427
09119 0.303 1.678 4.615 10.750 32.653

v
SIIIHOPll” 12,000

P1H“0Sll” 12.000

Psll“ﬂ)}l“ 16. 304 7.630

DSNHOPSI“ E 4.615 19.385

°s“1 lof—'sl 1 18,182 10,769 7.049

FSNHODSl“ ’ 2,517 7.630 25.846
F7)|“0('.7I“ 18.182 12.587 10.182 7.049
CTJl”~F7l” o 1.399 4.308 10,366 31.928

G it =il 1 16.364 13.706 12.308 10, 366 7.256

91 9
1811 Ggl“ 0,699 2.517 5.989 12,985 . 37,809

-
9711
H“H“'l”l“ 6 7.343 7.049 6.417 5.410 3.781

H“Xu 0.252 1.37) 3.620 7.638 15.549 43.570

Sllll.PlJls 14.000

st © 14,000

PS‘U'USJU 19.385 8.615

LR LPRALE T . 5.600 22.400
Delyy*Fed) s 22.028 12.218 7.754

Fl 3o0dy g 3.231 9.122 29,647

F7IU‘GT’U . 22.844 14,359 11.19% 7.602
2.24 36.4n9
G7IUOF.’J”‘ 1.958 5.390 12.243

. 7.70
Ggl”ﬂigJu 22.028 15.664 13.476 11.130 2

’ . 204 42.910
IloluﬁJgJ” 1.142 3.3 7.365 15.20

TR RS N 19.385 16.448 15.208 _ 13.640 11.403 1.922
073 . .27 .083 49,253

L sehids 0.587 2.073 4.728 : :!: 1: o s
IUIHOJUJ” 7 8.615 . 8.397 7.881 . . . .
s 0.215 1.161 3.001 . 6.062 11,158 20.914 $5.492
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Table lb. Legendre Polynomial Coefficients »

L 8 3 ., 8 LS " By L) ' " Pz M3
S XN 2.000
5,PP, by 2.000
PlPJ-SlD) 2.000
-P by 1.600 2.400
S, Ug-P Fe 2.000 )
PIDS.SIFS 2.000
P(Dg-DyFe 3.600 0.400
Dsos-PSFs 1.429 2.5N1
-DF 1.543 1.600 2.857
5's.
%P6, 2.000 o
P F45,G, _ ‘ 2,000
PyF1-DsG, 3.429 0.571
DF,-P G, 1.333 2.667
DGF,-F G, 5.143 0.667 0.19%
FF-DG, 1.333 1.636 3.030
-F,G, 1.524 1.458 1.758 3.263
slchP‘u9 . 2.000°
P 6g-5 1l 2.000
P {Gg=D3Hy - 3,333 0.667
DGy-P Ho 1.273 2727
D Gg-FeHg 4.762 0.935 0.308
FCg-Dyllg 1.212 1.641 3147
F,Cg Gty 6.667 0.909 0.308 . o7
C,Gg-Fllg 1.299 1.457 1.818 s.a7
~Ggity 1.515 1.399 1.538 1.920 3.628
T R 2.000 v . -
P T 2,000
Pl DL 3.273 0.727
LNTI W 1.231 2.769
TR 4,545 1.077 0.378
Felty=Dgly, 1.133 1.636 3.231
TN N 6.061 1.1;9 U.435 0.19
6Tty 1.166 1.436 1.851 3.548
Gl -llgl,,  8.182 1.142 0.410 0.185 0.081
Wit -Gl 1.282 (1.385 1.569 1.984 .78
RN I 1.510 1.371 1.448 1.637 2.073 3.961
S5 Pds 2.000
L IR 2.000
- . 3 D
LN T8 I 3.231 o oTe
Dy ,5°Pd s 1.200 2.800
. . .4
DI yFed g 4.4006 1.164 0.431
. . : .62 4
Fel y-0gd 5 1.077 1.629 3.2
P!
Folis6d s 5.711 1.430 0.600 0.253
R 1.077 1.412 x_.:m :.un
- . .64 0. .140 .
Gyly5-iigd )5 7.343 1.566 . 0.642 . 309 von 1 oo
- 142 1. ’ .$78 . .
AL - 0 so: : 44 0.127 0.060
Hlgelydyy 94692 R . 0.2 . . .
- " 1.348 1.464 1.678 2,137 'R
s s 1.213 ! ‘ 4.269
1.508 1.355 1400 1.51$ 1.735 2.218 .

s
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III. DATA PROCESSING

The film of 2.1 and_2.64 GeV/c K on deuterium was scanned for all
one-prong events (a spectator proton does nbt-count as a prbng) with
either one or two associétédvvées. These events were meésured on a
Franckenstein measuring machine and kinemafically fitted with the program
SIOUX. Failing events were re—ééanned and remeaéured at least once, aﬁd
up to four times. For our finél sample we chose those events with a
visible speétatof and moméntﬁm iess than 300 Me?/c. _wé have 93 éuchievents
at 2.1 GeV/c, aﬁd 46 at 2.64:GéV/c. V(Events with high ﬁoﬁentum spectaférs

are presumabiyvdue to interactions off the entire deuteron rather  than off

the neutron.)

At 2.1 GeV/c threekscans wére carried oﬁé. About 25% of the évents
were scanned twice, énd about lOZ were scanned three‘times. The scaﬁning
efficiencies were estimated ffom the fofmﬁlare = Néb/Nb’ where e, is the
effiéiency for scan fa, N, is the number:of events found éﬁbboth scans

#a and #b, and Ny is the number of events found on scan #b. The scanning

efficiencies estimated in this way were 83%, 55%, and 837 for-scans 1, 2,
and 3 respectively. The overall scanning efficiency for the three scans
combined is 86%.

There are two scanning biases (which presumably reflect in the above

efficiencies) which could affect our production distributions. The first

is due to the loss of Z's that decay forward in the laboratory. Weighting

factors to correct for such as loss (and for the loss of shortZ and A

decays) were calculated for the reaction K p + E_K+.3 By studying the

effect of removing these weights on the Legendre expansion coefficients
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(see‘Figufe l) wévdetérminedvthat With\bur limiféd statistics such lossés
éid not éignificanfly Bias §urbdata. |

.The second and poteﬁfially more serious biés comes from the loés of
é&enté with ﬁo visiglé diffefehce between gﬁé.incident K éﬁd‘the 2
v&iféctions. (A séanner.ﬁbuld callvsuch.aﬁ evengva V;éﬁe¥prong.)_ Sﬁéh a
Biaé WOﬁld fesult in a deplétion of eventé in the cosb ; -1 direction.
Thiéibias prééuméblyv&ould not be aé serious invthe subsefvof e?eﬁts
that had either a visible K° decay (thch péints back to the produétion.l
vertex) of'a viéible speéfatorkproton: We compaféd the.angular distribu-
tians of these subseté,‘and ﬁe did not see any significant differences.
The statistiés after the cuts Qere vef&vpoor,_hoﬁéver, and we decided to
iﬂcreaée~o;r érror eétimates‘in order to account for ‘a possible Bias.‘
‘If the EZ's 'in the region -1 < cosB < -0.8 were detected with only 1/3
efficiency, our total cross sections would be about one standard devia~
fion greater than the present estimate, and the calculated Legendré'
coefficients AL/AO and BL/AO would be shifted by approximateiy one stan-
dard deviation‘(see Figure 2). To account for the possible bias we
doubled the upper errors for the total cross sections and we doubled ali
the errors for the Legendre coefficients. | |

The total cross sections are presented in the following table:

Lab. Events with Path Missed A»nm°® Avg. Wt. for Decay  Total Cross

Mom. Visible A  Length- _Correction and Scanning Losses Section
2.1 93 2.71 ev/ub  1.53 1.3 697 2%
2.64 46 2.84 ev/ub  1.53 1.45 36 0ub

5
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The differential cross sections and polarization distributions are

shown in Figures 3 and 4.

complete distribution function for the sequential decay Z » Am, A > p7m .

The polarizations were calculated by using the
3
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IV. THE DATA

A. Qualitative Features

Figures 3 - 7 show the differential cross section and polarization

distributions for our reactions at selected energies. Except for the

deuterium data, these distributions have been published previously.

The major features of the data are summarized below:

1.

Ay

(1) and

and B

only AQ'

A strong peak in_the backward direction in reactions (l) and
(3), at all beém moﬁenta'ébove 1.22'CeV/c..
Tﬁé 5ack§af& peak éharpené cbnéidefébly éﬁ thé higher energies.
At 2.64 GeV/c there are rapid undulatioﬁs in the differential
cross séétioh. (Al fhrpugh A8 are all more Fhan two ‘standard
deviatioﬁé froﬁ zero.j |
Thevfotal‘cross-séctioh‘in feaction (2), K_ﬁ -+ Z°K° is
considerably smaller than.thaf for the éther two reactions.
Iﬁe.shape of the distributioﬁé in reac?ion (2)-varies
raﬁialy with enefgy.
There is significant polarization present at most energies.
The bolarization in the region of the backward peak is low,
and there ié a region (0.0 < cos 86 < 0.8 where the polarizatiqn
is consistent with -1. | B
= g/4w AZ is shown in Figure 8 and Table 6. In both reactions

(2) it peaks at about 1.7 GeV/c andfthen‘falls off. The Al's

Q'S are shown in Figures 9 - 16 and Tables 2 - 5. 1In reaction (1)

s aﬁd Bz's through £ = 3 are significantly different from zero

at the lower energies. A6 is 3-1/2 standard deviations from zero at



FIGURE 5

=~ x* differential crussw-sections from 1.22
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—
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to 1.70 GeV/e
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Figure . Production distritutions for K p—»ElK+ from 1.7 to

2.6l GeV/c, The 70lid curves are calculalted from
Lezondre function moments of the distributions with
Lpax = 7s 65 8, and B at the respective momenta.

Dashed curves corresnonding to Lmax-3 are alsr plotted,



do/ df)

P

do/dQ (ub/sr)

-20-

K— p_)EO KO

(a) 1.7 GeV/c (b) 2.1 GeV/c  {c) 2.6 GeV/c

T T

XBL685-2637

#igure 7. Production distributions for K"p~o££9 KO from 1.7 to
2.6l GeV/c. The solid curves are calculated from
Legendre function moments of the distributions with °
Lmax=5; the dashed curves correspond to L.,=3.
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2.0 GeV/c, and as prev1ously noted, A8 appears to be present at 2. 64 GeV/c.
In reactions (2) and (3) the statistics are poor but A5 is necessary for
a good fit to the angular distributions in reaction (2), and in reaction

(3) coefficients up to £ = 3 are necessary.

B. Qnalitarive Interpretation

Figure-17 shows che.baryon exchange diagrams for our three.reactions.
(Meson exchange would invclne a strangeness 2 meson;bwedshail neglect this
possibility ) Ve have indicated the quantum numbers of the exchanged
particle by labeling 1t either a A or a.Z%} aithough excited states of
these particles could also be exchanged. | | ‘

The dataarenmst simply interpreted as being.dominatedkby the ex—
-change of an isotopic spin 0 baryon, with snaller (but important)icontri;
buticns from i=1 exchange and rescnances. The large backward peak could
be generated from a u-channel pole, and its sharpening with energy could
vbe partlally due to its functional dependence onum= (pz—ql) Since I=0
baryon exchange is forbidden in reaction 2, the amplitude for ~0K0 wonld
consist of the smaller Iél exchange and resonances--hence the smaller cross
sectiqn. The rapid variation with energy in the differential cross section
of reactien 2 would be accounted for by the relatively large contribution
ofvthe resonances. Likewise the high order Legendre expansion coefficients
needed above 2.1 GeV/c would be due to the presence of one or more J > %
resonances.present at the higher energies.

C. Duality
The concept of "duality has recently receiVed a good deal of

attention.12 In its strongest form the duality principle says that
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Fig. 17. Baryon Exchange Diagrams
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the amplitﬁdes for particlé exchange and for resonant production are one
and the same, and that if.you add together particle exchangé amélitudes
and resonance represehted by Breit-Wigner functions, you are engaged in
"double counting". Since the previous qualitative discussion and the
detailed fit in the next section seem to ignore this principle, some
discussion is appropriate here. | | |

The established resonances in the regiqn we are stuinng ére all
in the ﬁigher‘paftial anes, J > %u .Op-the other hand, baryon exchange
forces have a limited range; typically that of an inverse Baryon mass.
At our highest.beam mbméntumb(2.7 GeV/c)‘thé incident.éenﬁer 6f mass -
momentum is écm 1 GéV/c. Semi-classicaliy we ﬁould eiééé£>the baryon

exchange force to contribute only to the lower partial waves, up to

o I
L% Pcm Tmax ~ 1 'MB £1

i.e., P'wavé. In othef thedries,.such as a Reggé_exchange theory, the
cut-dff is n&t as clear since there are ﬁnkndwn residué:factors. How;
ever, since the prominent ''baryon-exchange' featufg of our data, the
backward peak, is well fit by the first ﬁhree Legendfe expansion co-
efficienté, we shall assume that the part of the barydn exchange ampli-
" tude that produces this peak is confined to thellower partial waves,

D and lower.

3/2 .
Therefore, in our particular situation, duality poses no problem..
We have one amplitude, whose lower partial waves behave like "Baryon

“exchange" partial waves, and whose high partial waves behave like

resonances. If it happens that the baryon exchange partial waves move
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;
in counter-clockwise circles in the Argand plot with increasing energy, '
then the duality principle says we can also interpret these partial waves
12 : -
as resonant. |
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V. MODEL

A. Baryon Exchange Amplitude

Partial wave analysis 1s particularly well suited to the study of
-resonances, since a resonance has definite'épin and parity and thereforg
contributes to oniy one partial wave. Non-resonant partial waves are
usually considered "background'" and are often parameterized by simplé
polynomials. In our three reactions, however, the background seems to
be confined.to'the lower partial waves, and it'has,pr6§Erties (see
Section Iﬁ)ﬂthat indicate it is due to baryon exchange. We can make
use of this knowledge to develop a parameterization for our '"background"
which is particularly suitable for our reactions.

Suppqsebour rgaétions were dominéted By a single émpiitﬁde A reﬁ—

resented by the baryon exchange diagram beldw:

9 Py
Natural variables to describe such a process are s = (pl + ql) =7W2,”and
u = pex2 = (p1 - q2)2. (u is the square of the 4-momentum of the exchanged

baryon.) Let us assume the amplitude A factorizes:

A(s,u) = S(s) U(uw)

We believe that this is a reasonable assumption to make for a baryon
exchange awmrlitude. The simple Born-Approximation baryon exchange model
has this feature for spin~1/2 exchange, even if several baryons are

5, . : a(u) :
exchanged. Aside from a factor of s » 80 do simple Regge-exchange
models.13 A simple meson exchange amplitude does not have this feature

(it factorizes into a function of s times a function of t = (pl—pz)z)
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and neither does a resonant amplitude (which factorizes into a function
of s times a function of coée).

The factorization assumption generates powerful constraints on the
energy deﬁendehce of the partial waves. To see how this comes about, let
us ignore the complications of spin for the moment, and write the partial

wave expansion of A(s,u),

LMAX
A(s,u) = ] T (s) P (x)
L=0

where x = cos 9 = known function of s and u.

According to our factorization assumptibn,
U(u) = A(s,u)/S(s) = ZTL (s) PL(x)[S(S)

U(u) is independent of the energy W = /s, Evaluating U(u) at two

energies specified by s, and Sy»

L o
S(s;) LTy (s9) Py (?(51’ w) = S(s ) ) T (s,) P (X(s , u)

By using the orthogonality of the Legendre polynomials, we can solve for

TL(sl):
_ S(s1)
Ti(s) = 5resy LZ R (810 59) Tulsp)
where

1
RLL' T+ %9 f+ PL(X(Sl’ u)) PL(X(SZ, u)) dx

-1
x(s,u) is given explicity by x = (-u + Mi - - 2E E )/2p1ql
_ 2 2 _ 2., 2
where E; = (s + M] +m )/2W Py = [S - (M1 + ml) ] [s - (M1 - ml) ]
_ 2 2 2 2 2
E2 = (S + m, - Mz)/ZW P, =

[S_(m2+M2) ] ° [S_(mz—Mz)]
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is a known function of S1s Sy» and the particle masses.“

The important feature is that aside from an overall normalization
that is indendent of L, the partial waves at any energy may be cal-
culated from the partial waves at any other energy, by multiplication
by a known matrix. In other words, given a set of partial waves at
energy W, the factorizatioﬁ assumption completely determines their

relative energy dependences.

If we include the complications of spin we can still deduce a
matrix reléfionship, bué the defivation‘is complicétéd, ;ﬁ& éf ieast
one arbitrary parameter'mqst be inciﬁded.l4. For the detéils, see the
Appendix; |

The matrix naéﬁre 6f the.relatiénship is sigﬁificant. It is a
éohsequence of calling u rather than cos0 the important variable. Had
we parameterized the individual partial waves with poi&nomials, for
‘example, the iowwenergy 8 wave would be related only to S waves at
other energies. In our formalism it is related to S, P, and D waves
at other‘enérgies.

By using the R matrix to give the relative energy dependences of
the lower partial waves, Qe can construct the total normalized‘amplitude
K(s,u) = A(s;u)/lA(s,u)l given a set of partial wéves at any one energy.
If our reaction were completely -dominated by baryon exchange we could do
an energy depéndént fit to thelshape pérameters, AL/AO and BL/AO, using
the sgt of partial waves at any one energy as our Variables; (The shape
parameters depend on K(s,u) rather than on A(s,u).)

In order to include resonances in the fit, and to add together I=0
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and I=1 baryon exchanges, it is necessary to make some assumption about
the functional form of S(s). We have found that aﬁy function of the
fdllowing general form works well:

S(s)=g* (threshold term)a-(high'energy fall off)-exp (i(c+ds+esz))

Here g is a constant. "Threshold term" is any term that vanishes at

threshold, such as p,, or (s-s ). "High energy fall off" is a

threshold

term that causes the amplitude to go to zero at high energy. Such a
term is reasonable in view of a compilatioh by Morrison15 which shows

that single particle exchange amplitudes (except for Pomeron exchange)

lab)
Regge s-b, or a simple e_bS all work equally well in the fit. - The

fall off like (P b where b > 0. A term such as Morrison's, or a
final term in the expression for.S(s), a quadratic phase term, was
necessary. We did not get,goqd fits leaving the phase of S(s) constant

or linear in s. We also tried the following functional forms for S(s):

A+Bs+Cs2

A+Bp2+Cp22

S(s)
S(s)

where A, B, and C are complex numbers, and
S(s) (A+Bs+Cs2)-exp(i(D+Es+Fs2))

S(s)

2 .. 2
(A.+Bp2+Cp2 )'exp(1(D+Ep2+Fp2 )

where A, B, C, D, E, and F are real constants. None of the above
pardameterizations gave godd fits.

B. Resonant Partial Waves

The higher partial waves were parameterized as Breit-Wigner

functions with the masses and widths of established resonances. Only
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the partial widths into our channel were free parameters. The form

used for the Breit-Wigner was:16’17
| ny1/2
Wy Ty)
T= —5— :
(Wo™=W") = Wy Tooe
| W qq + M,
I'.,= partial width into ZK =T (—9)'¢£L)22+1 ( 0 )2
2 0 "W’ Tq, 2+

Fl'(the pértial widfh for fhe elastic chénnel) and Ptot ﬁereltake# to
bebconstanfsvbecause 6u£vénérgies are well abéve éhe elastic chanﬁéif
threshold. WO is the mass of the résonance, and qb is.the final state
center;of-ﬁass maﬁéﬂtum aﬁ resonance; M is é mass characteristic of -
the inveréé range of thé interaction. The fit is insénsitive‘to the
choice of:M; we used M = 2mﬂ. We did not find it necessary to iﬁclude
backgroﬁﬁa contributions in anywof the resonant partial waves. Reso-.
nancés neér threshold are'sensitive to thé parameterizafion of the
energy dependence of the width, but just above threshold. they are not.

" For examélé, when we set the paftial widths equal to.éonstaﬁts the
amount of thé Y;(1830) put in by our fitting program changed considerQ‘
‘ably, but the amount of the Yi(2030) was virtually‘unaltered.'l

The fit included the following-resonances:18

Resonance ' Width (MeV) Assumed Partial Wave
* - . S v
.Y0(1815) 75 - " F5
(1830) , - 80 . ' D5
(1864) , 39 I F7
(2100) - © 140 : G7
(2350) s _ 210 o G9 or H9
Yl(1915) - 60 - F5
(2030) 120 o ©F7 _
(2455) ' 120 ' G9 (best fit)
(2250) ' 200 ' H9 (best fit)

(2595) : 140 - I1ll(best fit)

i
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C. The Fitting Program

The ptogfam used to fit AO’ AL/AO and BL/AO for our three reactions

contained approximately 35 free parameters. These parameters were:

1. Sl; Pl’ P3, D3 partial waves for I=0 and I=1 exchanges at any
one energy WO' (The fit is independent of WO.)19 From these -
.the relative amplitudes and phaées ofvche lower partia1:Waves
at all energies could be calculated. (8 complex numbers, 16
ﬁarémeters) | | |

2, Parameterization of.fs for I=0 and I=1 exchange; (See Appendic
and footndce 14.) (2 parameters) | '

3. Parameterization of S(s) for I=0 and I;itexchange. Thefe are 4
parameters for each exchange. (See page 42.v The parameters g
and ¢ are included in 1 above. 8 parameters;)

4. Resonant partialiwidths. (6—;0 ba:ametefs)

5.. bS cqmplex part;al wave for Im0 egchange above 2.4_GeV/cf' (See

page 46. 2 parameters)

The program used the equations derived in the Appendix (on the basis
.~ of the factorization assumption for the two Lorentz invariant amplitudes)
to calculate the partial waves and Legendre egpansicn coefficients, AL
and BL, at each of our beam settings.20 We forﬁed the chi—squéred

function:

ex ex ' L ex
2 Ag -~ 2 . ,ag - a 2 bg - b 2
X =1 6—%KBE§Q__7 + (Aga exz )T+ ( gbzexz )

" where ag = AQ/AO and bl = BQ/A0 are the shape parameters, the superscript

"ex" refers to the experimental data points, and the sum ran over all

ey
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of our beam settings, over %=1 to 8, and over all three reactions when
we had data for them. This x2 was minimized‘by numérical minimizing'
prc;gram21 which employed a ravine following searéh routine. When a
solution was_found we checked that the high order Legendre coefficients
L > 8, which were not explicitly included in the fit, ﬁere compatible
with.zero;

D. QResults of the Fit

1ab $ 211 GeV/c, assuming

We first fit the data in the region‘1.2 é P
that no rééonancés wéré éresent. (The data above 2.1 were not included
because bf thelﬁresepce of high Legendre coefficients, L 5 4,.which
couid not be due to the lower partial waves.) The'soiution'accountedb
qualitatiQely for some of the generél.features of tﬁe data, especiélly
the rise in Az; but it.certainly did nét fit the reactioﬁ in detail.
When the'résdnanceé listed on page 43bwere included, a good fit was
obtained, with a xz of 281 for 2§6 data points.22

‘We restarted the fittiﬁg program, with random valués for the para-
meters, approximately 15 times. The next best solution found had a xz
of 303. This fit had features very similar to those of Ehe best fit;
the amount and behavior of all the partial waves, resonant and non-
resonant, was similar. |

The spins and parities of the known resonances which might con~
tribute to our reactions above 2.1 CeV/Q have not yet been determined.

. '
In order to include the high energy data in our fit it was necessary

to try various combinations of spins and parities for these resonances.

The best fit was obtained with the combinations listed on page 43. In
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I ) i : . .
addition we noticed that at 2.64 GeV/c the I=0 baryon exchange partial
wéves Si; Pl’ P3, and D3 were of compaf#bie.magnifude. Guessing thét.
our.cut—off at D3 was too iow,.wé.tried including a DS I=d e#chanéé
partial wave above 2.4 GeV/c; the XZ was redﬁced by-about 15. The final
fit Had a &2 of 371 for 365 data points (solid 1iﬁe'in'Figureé 8 to 16).

A Saclay-kutherford collaboration.has recently published23 data for

reactions (1) and (2) in the region 1.26 < P < 1.84 GeV/c. When we

lab
used their data in our fit, including all our data below 2.4 GeV/c, we

obtained a xz of 525 for 504 data points. The parameters of the fit were

not signifiéantly altered by the inclusion of the Saclay daté..'Fifting
their data alone yields a x2 of 211 for 208 data points. Including the

JP = 3/27 or 5/2" resonance suggested by the Saclay fit did not substan-

tially imﬁrove our xz. The major differences between our fit.and Saclay's

lie in our treatmenf of ;he lower partial wa#es (éaciay tféa#ed thgmhéé‘
compiex iineér funétibns of the beéﬁ moﬁentum) énd our inélﬁéioniéf all
relevaﬁt resonances. For example, thé S;ciaylgroup did not inclﬁde the
YI(2030)'in‘their fit because of its low elasticity, the absence of
significant A7, and the lack of a bump in the total cross section. In
our fit (see Discussion) the Y;(ZOBO) plays a major fole despite these
features. |

| Argand diagrams for the lower partial waQes are shown in Figure 18.
The amplitudes shown have definite isotopic spin in the u-channel. The
contributions of the resonances to the fit are shown in Table 7. The

errors were estimated by varying the amount of each resonance individ-

ually; the values correspond to an increase of x2 by unity. Also shown

N SR
JRRP

L7
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Partial Wave Amplitudes of Definite
u~channel Isotopic Spin
’ K3
Argand diagrams for X = 372 fit
- Im(T1)/P1ap :
In(Tp)/Pyap
1ek2 ]

3
notations ' one unit (===t )=(1lpab)=
Lot 23 )=(1mb)

FIGURE 18



2
Contributions of Rescnances to X = 372 Fii

Table 7.
Resonance JF -iT; at resonance XS T; =0 _ Contritution to Ay for =" x*
| Yp(1815) . 5/2% 0,28 & 3xv102 373 - 0,23 x 10f3
(1830)  5/2= 0,21 1 .02 515 0.13
(186h)' 7/2%  -0.18 £ ,06 381 0.11
(2100) 7/2°  0.10 .05 375 0.0L
(2350)  9/2% 0,15 t .12 380 0.12
17(1918)  5/2" 0426 t .07 385 0.21
(2030) 7/2% 0,73 % .05 560 2,10
(2250)  9/2" 0,20 & .05 391 0419
(2h55)  9/27  <0.12 # .05 376 0408
(2595) 11/2°  0.37 & .10 388 0.08

I~

‘87"
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is.the effect on the>x2 when the amount of that resonaﬁce is reduced to
zero without permitting the other parameters fo vary.
E. Discussion

The fit supports the qﬁalitative interpretation given in section IV.
As can be seen in the Argaﬁd blots, the feactions aré dominated by I=0
baryon exchangé; At low energies the baryon exchange amplitude is con-
fined mostly.tb the Sl and Pl waves, but at the high energies P3, D3,vand
finally D5 become important. The large S1 énd P1 waves move counter-
clockwise in fhe complex planévas the energy increases. If we invoke
the du&lity principle12 to intérpret these lower partial waves as reson-
. ances, we would need at least fggguﬁew resonances: SOl’ Sil’ POl’ and
P11 Where the subscripts refer to 2I and 2J where I is the isotopic spin
in the s~channel. | Resonances of bofh s-channel.isospinsv are necessary
in order to keep the isbspin 1 baryon éxchange aﬁplitude small through
partial cancellation. (See page 7.)

' The I=0 baryon exchaﬁge amplitudé falls off at.ﬁigh énergy as

)—1.5

(Plab . This is consiétent with the fall-off found by Morrisom for

other baryon-exchange processes.ls (He found the exponent to vary

between -1.5 and ~2.0.) The I=1 baryon exchange amplitude falls off as

1ab)—4'7§'however, we do not consider our determination reliable be-

cause of the weakness of I=1 exchange in our reactions.

(r

The baryon exchange amplitude contributes significantly to the
polarization, as can be seen from the contribution it makes ‘to the BL's
(dashed line in Figures 9-16). It is not surprising that the polarization
does ﬂot come entirely from interferences with the resonances since, as

we noted previously, the polarization distribution varies slowly with



-50~

energy. The fact that the polariiation in the backward peak is small
is related to the fact that the S, and P, I=0 exchange partial waves
are almost relatively real., By this we meah that Ré(Sl/Pl) > Im(sl/Pl)
at all of our beam settings. This fact can aiso be seen in the Argand
plots by.noticing that thevphases of the Sl'and Pl partial waves differ
by appro#imately 180°. It is interesting to note that for both Born-
approximation andvRegge.exchange amplitudes; the partial waves are
.relatively real as long as onlyoneparticle is exohanged.

Although the lower partial waves dominate, resonanoe prodoction in
the higher.partial waves is important at all ehergies. At out.highest
energy we are able to obtain a good fit by assigning the spins and
parities listed on page 43 to the known resonances that might contribute
in that region but this high energy data is not good enough for us to
be able to claim that we have determined those spins and parities We

have not tried ail combinations which might give a good fit.

Only two resonances are essential to the fit: the YO(1830) and the

Yl(2030). The amounts of these resonances put in by the fit are relatively

small, and their effect is primarily on the lower Legendre coefficients
through interferences with the lower partial waves. For example, there

is not enough Y (2030) to generate a significant A6’ although this reson-

ance contributes substantially to the shape of A3 through its interference

with the Sl baryon exchange partial wave.
: * %
The inclusion of the YO(1815) and the Y0(2100) have little effect
on the fit. 1In an earlier paper3 we interpreted the peak in A0 near

*
1.7 GeV/c in reaction (1) and (2) as evidence for the YOLZIOO) in those
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reactions. vThe present fit does not compietely account for the peaks
in AO, howevér; it is possible thét the peaks are just stétisticél
fluctuations,* In the region of the Yg(ZIOO), if we include the Saclay
total.cross section data,vour fits are about 2 standard deviations low
in reaction (1)-and about 2 standar& deviations low in reaction (2).
vTﬁe Saclay-Rutherford collaboratibn23 1ikeﬁiée éonclUdéd that tﬁe
Y;(ZIOO) does not make an important contribution to =K.

We tried to use our partial wave analysis to make an experimental
.determination of the parity of the =. When we assume that the parity
is negative (so that the YI(2030) contributes to the F17 rather than
to the G17 partial wave) we are again able to obtain a good fit to the
low energy data. The fit yields a x2 of 284 for 296 data points, com-
pared to a XZ of 281 assuming\positi?e % parity. We conclude that we
aré unable to determipe the é parity from our fitting procedure. Because

of the indications of SU3 that the = parity is positive, we shall not

discuss the negative parity solutions any further.

*We tried forcing the fit to include substantial YO(2100). When we did
this we got a better fit to A0 but a much worse fit to A3. The fit had

a xz of 460 for 365 data points.
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VI. CONCLUSIONS

The reaction K N + ZK can be understood in terms of the exchange of
one or more isotopic spin 0 béryoné with small but important éontributions
from I =1 exchénge and direct channel resonance production. .The known
resonances are sufficient; there is no evidence for new resoﬁancés. At
iow energieé the baryon exchange amplitﬁde ié mostiy in the Sl.and Pl
partial.Wa§és, énd'thése waves are "almost" relatively real. The baryon
exchange amplitude isvresponsible for most of ﬁhe‘small polarization..
Tﬁe large Sl and P1 partial waves move in.co;ntef—ciockwisé-qircles'in the
éomplex'plahe, suggesting thét they may ﬁévéva "dﬁal" interpretation as
resonant partial waves.

Becausé the dafa does nét ﬁave significant High ordéf LegeﬁAre
coefficients'in thé région of the Y*(1830) and.Y*(2630), we do not claim
to have determined the branching fractions of tﬁese.reéohéhceé‘iﬁtofi>E.
In our data below 2.4 GeV/c these resonaces are seeﬁ oﬁly in tHe‘lowef
coefficients through interferences with the baryon exchange amplitude.
(Perhaps if we had come up with a better parameterization of the function
S(s) the fit would not have included either of these resonances!) Above
2.4 GeV/c there is strong evidence for the contributions of J > 9/2
resonances.

Our approach has been different than that of many phase-shift analyses:
instead of speculating about new resonances we have.concentrated on a care-
ful treatment of our "background'. we think such an approach can make im-

portant contributions to an understanding of exchange mechanisms.

——
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APPENDIX
We outline here the derivation of the R-matrix fofvthe scatpering
of a épin 0 boson off é spinvl/2 baryon. As discussed in sectioﬁ iII,
tﬁere are tﬁb invariant amplitudes A and'B; We assume that both of these

amplitudes factorize:

A(s,u) = 5,(s) Uy (W)
B(s,u) = Sy(s) Ug(u)

Using these equations, and explicitly writing out the partial wave expan-

sion in terms of S, P, and D waves:

U, - A(s,u) /5, (s) [(-w+-3xw’)n3 + (3xwf+wf)P3—w'?l + w+$l]/sA

UB —.B(s,u)/SB(s)

_[(-E+ + 3xE')D3 +v(3xE+—Ef)P3 +EP

L+
1+E,S.1]/sB

is related to x(sz,u) by the following kinematic formula:
'x(sé,u) - a+b F'x(sl,u)
where

a = el(Si)Ez(Sl) - e1(s9)E2(s2)
ql(sz) ﬁz(sz)

b = 33(s1) Pylsy)

The notation used is the same as that in section III. Evaluating‘UAvand
UB at sy and Sy» and then using the fact that they are independent of
energy, we get: | ’ !

5 %1) [ (-7 —_3xW DDL(1) + GxiiH)P,(1)-WIP (1) + Wisi(l)]

1

S ) [(~ W 3aW ~3bW x)D (2) + 3bW x + 3aW + WZ)P (2) W (2)+W281(2)]
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and:
1 + - + - - +
e [(~E;+3xE)D4(1) + (3xE;-E )P,4(1) + El?l(l) + W5, (1]
=1 [(-E++3aE—+3bE_x)Dv(2) + (3bETxt3aET-ED)PL(2) + EP, (2)
552 "2 2 2%/%3 2 2772773 2°1

+

| + Elsl(2)]
The rest is simple, but messy, algebra. We have two equations, each
linear in x. By equating the coefficien;é of x we generate four equa-

tions relating the four partial waves at one energy to the four partial

waves at the second energy. We define the R-matrix by

1
P | 5,02 RS
= R(8,,8,)
o | T5,@ (RS
3 3
\D3] 8, Dyj 8y

Its elements are listed in table A. Notice that R(s,s) is the identity

matrix. The matrix R should satisfy the matrix relation:
.R(sl,sz) = R(sl,s3) R(s3,s2)

We have not proven explicitly that our R matrix satisfies this relation,

but we have checked numerically and found that it does.
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TABLE A

The R-Matrix

Additonal symbéls used: f = SB(Z) SA(l)/SB(l) S (2)

44

43

41
34
33
32
31
24
23
22
21
14
13

12

9

11~

b o] =1 =i =i =1 =
[NCRE SR ORI R

=
RN NN N+

NN

N+ o+

= | o= =

=
NN RN

NS+ Nz+ N2+

nfﬁ-nfh—

NN

+
t

H 4=

=
4

=
o

t=
=

=

= ]
l-'+!—'l NSI

+ - o
R = (—W2 - 3aW2)R4 + (3aW2 + WZ)R33
-t ~g -
R, = (W, - 3aw2)x44 + (3aW2 + wz)R34
_ + - + -
R, = (—E2 + 3aE2)R43 + (3aE2 - E2)R33
- + . - - + — =
Rd = (-E2 + 3aE2)R44 + (3aE2 E )R34
+ + -
£)/-b(W E, + W, E2)
) -+ S
f )/-b(w2 E W, E2)
W E - -+
£g)/ bW, E) + W, E))
Wt B - gt
£ )/ bW 5 E, f W, 2)

+ +
fS - E2 Rb + w2 Rd)/-(w E + E w )

4+ N

+ -
Ra + w2 Rc)/—(w2 E2 + E2 w2)

2)
£ - E, Rb - W, Ry £)/(E, + W,

f )/(E2 w2 + w E

£ -

£)/-(y E} + E W)

f )/ (W E + E 1)
2

£ - E2 R, - w; Rc

£ i+ 4 5

£)/(E, ; W, ;)

)

2)
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