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Article

Global atlas of predicted functional domains
in Legionella pneumophila Dot/Icm
translocated effectors
Deepak T Patel 1, Peter J Stogios2, Lukasz Jaroszewski3, Malene L Urbanus 4, Mayya Sedova 3,

Cameron Semper1, Cathy Le 1, Abraham Takkouche3, Keita Ichii3, Julie Innabi 3, Dhruvin H Patel 1,

Alexander W Ensminger 4,5✉, Adam Godzik 3✉ & Alexei Savchenko 1,2✉

Abstract

Legionella pneumophila utilizes the Dot/Icm type IVB secretion
system to deliver hundreds of effector proteins inside eukaryotic
cells to ensure intracellular replication. Our understanding of the
molecular functions of the largest pathogenic arsenal known to the
bacterial world remains incomplete. By leveraging advancements in
3D protein structure prediction, we provide a comprehensive
structural analysis of 368 L. pneumophila effectors, representing a
global atlas of predicted functional domains summarized in a
database (https://pathogens3d.org/legionella-pneumophila). Our
analysis identified 157 types of diverse functional domains in 287
effectors, including 159 effectors with no prior functional annota-
tions. Furthermore, we identified 35 cryptic domains in 30 effector
models that have no similarity with experimentally structurally
characterized proteins, thus, hinting at novel functionalities. Using
this analysis, we demonstrate the activity of thirteen functional
domains, including three cryptic domains, predicted in L. pneumo-
phila effectors to cause growth defects in the Saccharomyces cere-
visiae model system. This illustrates an emerging strategy of
exploring synergies between predictions and targeted experimental
approaches in elucidating novel effector activities involved in
infection.
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Introduction

The Gram-negative bacterium, Legionella pneumophila, is an
intracellular pathogen of freshwater protozoa (Abu Kwaik et al,
1998). The ubiquitous presence of this bacterium in human-made and
natural freshwater reservoirs often leads to the accidental infection of
humans from the inhalation of contaminated aerosolized water
particles (Blatt et al, 1993; Muder et al, 1986). This can lead to a
severe, life-threatening form of pneumonia, called Legionnaires’
disease, or a self-resolving, flu-like illness, known as Pontiac fever
(Cordes and Fraser, 1980; Cunha et al, 2016).

Upon being phagocytosed by the eukaryotic host cell, L.
pneumophila remodels the phagosome into a replication-
permissive compartment - termed the Legionella-containing
vacuole (LCV) (Horwitz and Maxfield, 1984; Roy et al, 1998;
Tilney et al, 2001). The establishment of the LCV is dependent on
the delivery of specific proteins, called “effectors”, into the host cell,
which is mediated by the Dot/Icm (defective in organelle
trafficking/intracellular multiplication) type IVB secretion system
(T4SS)—an essential molecular syringe-like complex that is
conserved in all species of Legionella (Berger and Isberg, 1993;
Ensminger and Isberg, 2009; Marra et al, 1992; Ninio and Roy,
2007; Segal and Shuman, 1997). The Dot/Icm effectors are involved
in the manipulation of a wide variety of host cellular processes,
including vesicle trafficking, protein translation, autophagy,
vacuolar function, and the cytoskeleton to avoid lysosomal fusion
and for the formation of the LCV (Horwitz and Maxfield, 1984;
Lockwood et al, 2022; Mondino et al, 2020b; Shames, 2023;
Swanson and Isberg, 1995; Tilney et al, 2001).

Over 360 Dot/Icm-translocated effectors have been identified in
L. pneumophila through a variety of methods, including large-scale
experimental screens (Huang et al, 2011; Zhu et al, 2011) and
machine-learning approaches (Burstein et al, 2009). This represents
the largest arsenal of bacterial effectors described to date, with
effectors representing over 10% of the L. pneumophila proteome.
Across the entire Legionella genus, the number of effectors is
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staggering, with over 18,000 unique effector-coding sequences
(Gomez-Valero et al, 2019). This extensive arsenal of host-
manipulating factors in Legionella species is attributed to the rapid
evolution necessary for the successful survival and colonization of
diverse protozoan species in the natural habitat of Legionella
(Amaro et al, 2015; Gomez-Valero and Buchrieser, 2019; O’Connor
et al, 2011; O’Connor et al, 2012; Park et al, 2020). The ability of L.
pneumophila and other Legionella species to infect human
macrophages suggests that the effector arsenal targets conserved
eukaryotic cellular processes. This hypothesis underscores how
understanding the functions of individual L. pneumophila effectors
could illuminate basic eukaryotic cellular processes and evolutio-
narily conserved pathways required for intracellular bacterial
pathogenesis. The size of this arsenal, however, presents its own
experimental challenges: significant functional redundancy has
been observed between effectors (O’Connor et al, 2011; O’Connor
et al, 2012; Park et al, 2020), limiting the effectiveness of traditional
forward genetic approaches to defining effector function. Conse-
quently, a significant number of L. pneumophila effectors remain
functionally uncharacterized (Lockwood et al, 2022; Mondino et al,
2020b; O’Connor et al, 2012).

Insights into the molecular functions of L. pneumophila effectors
have resulted primarily from primary sequence analysis and the
detection of motifs and domains associated with known activities
(Burstein et al, 2016; Gomez-Valero et al, 2019; Nachmias et al,
2019). A global evaluation of primary sequences revealed the
prevalence of eukaryotic-like motifs/domains in L. pneumophila
effectors, defined as predominantly (more than 75%) found in
eukaryotic species (Gomez-Valero et al, 2019). This observation led
to the hypothesis that Legionella acquired genes through horizontal
gene transfer during co-evolution with its eukaryotic hosts, co-
opting eukaryotic genes as effectors for host manipulation (Cazalet
et al, 2004; de Felipe et al, 2005; Lurie-Weinberger et al, 2010).
Consequently, the presence of eukaryotic-like domains or sequence
similarity (over 20%) to eukaryotic proteins in Legionella has been
used to predict effector function (Gomez-Valero et al, 2019). This
predictive method proved particularly successful for effectors
sharing significant similarity with functional domains associated
with eukaryotic-specific processes, such as protein ubiquitination
and phosphorylation (Bruckert and Abu Kwaik, 2016; Ensminger
and Isberg, 2010; Kubori et al, 2008; Lee et al, 2020; Lee and
Machner, 2018; Michard et al, 2015; Moss et al, 2019; Qiu and Luo,
2017; Quaile et al, 2015).

However, functional annotation of Legionella effectors based on
their primary sequence analysis has limitations since a large
proportion of these proteins do not share significant amino acid
similarity with functionally characterized proteins (Gomez-Valero
and Buchrieser, 2019; Mondino et al, 2020a). Consequently,
experimental determination of effector three-dimensional (3D)
structures—primarily using X-ray crystallography, nuclear mag-
netic resonance spectroscopy, and, as of recently, cryogenic electron
microscopy—proved to be instrumental in revealing otherwise
cryptic domains and other molecular features indicative of their
activity. For example, the structure of Lpg2511/SidC revealed the
presence of an N-terminal domain with a unique fold, featuring a
conserved amino acid arrangement similar to the Cys-His-Asp
catalytic triad found in cysteine proteases (Hsu et al, 2014).
Subsequent biochemical analysis showed that the catalytic triad in
Lpg2511/SidC is involved in ubiquitin ligase activity via a non-

canonical catalytic mechanism distinct from eukaryotic E3 enzymes
(Hsu et al, 2014). Likewise, the crystal structure of Lpg2147/MavC
revealed a domain similar in structure to ubiquitin-like protein-
specific deaminase domains found in effectors of other bacterial
pathogens (Samba-Louaka et al, 2009; Valleau et al, 2018). This
discovery facilitated the demonstration that Lpg2147/MavC can
deaminate human ubiquitin at Gln40 (Gan et al, 2020; Valleau et al,
2018) and catalyze the transglutamination of Ub via its Gln40 to
Lys92 of the human UBE2N ubiquitin-conjugating enzyme (Gan
et al, 2020; Mu et al, 2020). These examples underscore the
advantages of molecular structural information for characterizing
the activity of an effector in the host cell. Yet, the experimental
determination of effector protein structures face numerous
technical challenges (Benjin and Ling, 2020; McPherson and
Gavira, 2014; Montelione et al, 2000); thus, the structural
characterization of the L. pneumophila effector arsenal remains
largely incomplete where more than 40% lack experimental
structures and have no functional annotations associated with
them in the UniProt database (https://www.uniprot.org). Recently,
new neural network (NN) and large language model (LLM)-based
computational approaches, such as AlphaFold2 (Jumper et al,
2021), RoseTTAFold (Baek et al, 2021), and Evolutionary-scale
modeling (ESM) Fold (Lin et al, 2023), have dramatically improved
the accuracy of protein 3D structure prediction from primary
sequences. These methods approach the accuracy of experimentally
derived molecular structures for single proteins (Bertoline et al,
2023; Janes and Beltrao, 2024; Perrakis and Sixma, 2021), though
they still face challenges in predicting multiple conformations,
metal, co-factor, or ligand binding, as well as protein–protein
interactions. Nevertheless, these methods allow for the analysis of
structural models of large, previously uncharacterized protein
families (Pinheiro et al, 2021) and entire proteomes (Tunyasuvu-
nakool et al, 2021). Given that a large portion of the L. pneumophila
effector arsenal remains both structurally and functionally
uncharacterized, we conducted a global analysis of structural
models generated by AI-based algorithms, particularly AlphaFold2,
of all reported L. pneumophila effectors. We analyzed them for the
presence of globular domains and functionally relevant structural
motifs, which we then validated by leveraging the growth defect
phenotype caused by the ectopic expression of effectors in the
Saccharomyces cerevisiae model system. This approach allowed for
the dramatic expansion of our functional predictions for the L.
pneumophila effectorome, including newly predicted cysteine
proteases, metalloproteases, kinases, ɑ/β hydrolases, ADP-ribosyl-
transferases, and glycosyltransferases. We also identified 30
effectors containing new, cryptic domains with no detectable
structural similarity to any experimentally characterized 3D
structure.

Results

L. pneumophila effectors carry an extensive repertoire of
predicted functional domains

To cast a wide net for this study, we compiled a list of L.
pneumophila proteins from previously reported genome-wide
evaluations of their translocation in a Dot/Icm-dependent manner
into the host cell (Burstein et al, 2009; Huang et al, 2011; Zhu et al,
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2011). This approach identified 368 L. pneumophila effector
proteins (Dataset EV1) with 227 of them described by the UniProt
database (https://www.uniprot.org) as “uncharacterized” or as
“domain of unknown function (DUF)-containing” proteins and
another 43 with a name, but no functional annotations.

A search using BlastP (Altschul et al, 1997) against the Protein Data
Bank (PDB) repository showed that at the time of this analysis (see
Methods), the 3D molecular structures of 41 L. pneumophila effectors
had been experimentally characterized (Dataset EV1) to their complete
or almost complete length (i.e. structure covered more than 90% of
primary sequence with more than 90% identical residues). For an
additional 44 effectors, molecular structures were available for a
portion of the protein (i.e. structures covering less than 90% of primary
sequence with more than 90% sequence identity) (Dataset EV2). Of
the remaining 283 effectors, 61 shared strong sequence similarity with
structurally characterized proteins (Dataset EV1), leaving 222 effectors
with no meaningful structural annotations. Consequently, more than
half of the overall L. pneumophila effector repertoire showed no strong
primary sequence similarity with any structurally characterized
proteins. We hypothesized that the gap in structural annotations can
be now filled by high-quality structural predictions that can be used as
a starting point for their functional characterization.

We analyzed Alphafold2 structural prediction models of all L.
pneumophila effector proteins currently lacking structural coverage
along with their primary sequences to identify potential function-
ally distinct domains (see the Methods section). Each of the
predicted domains was classified based on their structural or
sequence similarity to known domains in the ECOD (Cheng et al,
2014) and InterPro (Blum et al, 2021) databases, respectively; and,
where applicable, previously reported experimental data. Predicted
representatives of established functional domain families identified
in effector protein models were further analyzed for the presence of
known functionally relevant molecular motifs.

Including the AlphaFold2 models dramatically increased the
number of predicted domain types identified in L. pneumophila
effectors, as compared to previous analyses (Burstein et al, 2016;
Gomez-Valero et al, 2019; Gomez-Valero et al, 2011) and public
databases, such as UniProt (https://www.uniprot.org) (Fig. 1). We
identified at least one distinct ECOD-classified domain type or
structural motif in the models of 286 L. pneumophila effectors, with
a maximum of six domains and motifs identified in the case of two
effectors (Dataset EV2). For 82 effectors, we could not assign any
specific ECOD-classified domain type to the predicted 3D
structure. The models of these effectors were either unstructured
(disordered), consisted of structural elements, such as ɑ-helical
bundles and/or transmembrane helices with no significant
structural similarity to a specific ECOD domain, or showed a
unique and potentially novel fold. To facilitate the follow-up
functional characterization of identified functional domains, we
have captured our analysis on a publicly accessible web page:
https://pathogens3d.org/legionella-pneumophila.

In line with previous global analyses of L. pneumophila effector
primary sequences (Burstein et al, 2016; Gomez-Valero et al, 2019), the
analysis of effector models confirmed the presence of a significant
number of so-called tandem repeat motifs, including armadillo (ARM)
identified in 27 models, ankyrin (ANK) identified in 24 models, or
leucine-rich repeats (LRR) identified in nine models (Dataset EV2;
Fig. 1), all of which are typically associated with protein–protein
interactions. Interestingly, ANK and ARM repeats were usually found

in effector models that also contained other domains. In contrast, LRR
domains were the only functional element identified in effector models
(Dataset EV2). While the presence of most of these structural motifs
was also predicted in previous reports using primary sequence-based
tools (Burstein et al, 2016; Cazalet et al, 2004), including the 3Dmodels
as a starting point significantly expanded the number of effectors
predicted to contain these structural elements (Dataset EV2; Fig. 1).

The overall repertoire of distinct domains identified in the analyzed
effector models included 157 structurally diverse domain types
associated with known enzymatic activities, protein–protein and
protein–nucleic acid interaction functions, as well as eukaryotic-
specific post-translational modification cascades (Dataset EV2). Effec-
tor regions that corresponded to identified structural domains
matched the regions modeled with high confidence. In contrast, only
2.4% of residues modeled with a confidence above 70 are outside of
identified structural motifs and domains. Of the domain categories
present in multiple effectors, the cysteine protease domain represents
the most abundant globular domain type—identified in 37 effector
models (Fig. 1). The next largest group are protein kinase domains—
found in 17 effector models (Fig. 1). Overall, a total of 66 domain types
were identified in more than one effector model, while 91 of the
predicted domain types were present only in a single L. pneumophila
effector model (Dataset EV2). We interpret this as an indication of
high functional diversity across the L. pneumophila effector repertoire.
Finally, our analysis identified 35 predicted domains that showed no
strong structural similarity to experimentally characterized protein
structures, thus, suggesting potential novel structural folds (Data-
set EV2). Our analysis also identified a significant number of
previously unrecognized domains, including cryptic domains that
appear to share no structural similarity with experimentally defined
structures. In particular, 199 of the 270 effector proteins annotated in
the UniProt database (https://www.uniprot.org) as uncharacterized
(“uncharacterized”, “domain of unknown function (DUF)-containing”
proteins, and proteins with names, but no functional annotations), we
have identified a domain that allowed us to provide at least a partial
functional annotation. Furthermore, in the case of 15 effector models,
we identified cryptic folds in uncharacterized domains, which were the
only domains in these proteins, hence we could not assign functions
based on structural similarity to a known protein.

Notably, while some models lacking defined secondary structure
represented cases of the AlphaFold2 algorithm’s failure to generate a
high-confidence model, most appear to be confidently predicted to be
intrinsically disordered, which included both full-length disordered
proteins as well as disordered regions interspaced with structured
domains. The prevalence of disordered regions in L. pneumophila
effector models was notably higher than in the rest of L. pneumophila
proteome. According to UniProt (https://www.uniprot.org), 24% (90
out of 368) of effectors contain at least one disordered region, while the
prevalence of such regions in non-effector proteins is only 4.8%. The
higher value for effectors is more typical of eukaryotic proteomes
(Basile et al, 2019) and may constitute another “eukaryotic-like”
feature of L. pneumophila effectors.

Predicted cysteine protease domains in L. pneumophila
effectors show functional diversity

Representatives of the cysteine protease domain have been
characterized across all kingdoms of life and have been the subject
of extensive analysis due to their critical roles in diverse biological
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processes, including protein degradation, cell signaling, and the
immune response (Lopez-Otin and Bond, 2008; Verma et al, 2016).
These enzymatic domains contain a conserved cysteine residue
typically paired with histidine and an aspartate, or asparagine,

residue arranged into a catalytic triad (Rawat et al, 2021).
Some cysteine proteases contain a catalytic dyad formed by
cysteine and histidine residues (Rawat et al, 2021). The active site
containing these catalytic residues is usually located in a cleft

Figure 1. Functional domain occurrences from 368 L. pneumophila effector models.

The number of occurrences of different ECOD domain types: blue bars—identified using FATCAT in 3D models built with AlphaFold (this study), red bars—identified with
remote homology recognition program HHPred, yellow bars—identified by close homology detected with BlastP. As expected, domain-type occurrences identified by
homology are a subset of those identified in 3D models.

Molecular Systems Biology Deepak T Patel et al
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between the two lobes of the ɑ/β domain (Hofer et al, 2020; Verma
et al, 2016).

The presence and function of cysteine protease domains have
been previously reported for 15 L. pneumophila effectors, and the
3D structures of several of these cysteine protease domains have
been experimentally defined (Table 1). Expanding on these
previous studies, our analysis of effector structural models
suggested the presence of cysteine protease domains in 21
additional effectors (Fig. 2A,B; Table 1). In 11 of these, we were
able to identify an active site cavity with cysteine, aspartate, and
histidine residues arranged in a potential catalytic triad (Table 1).
In five effector models, the putative catalytic site featured an
asparagine instead of a catalytic aspartate residue (Table 1).

For the Lpg1949/Lem16, Lpg2538, and Lpg2907/MavW models,
the predicted cysteine protease domains showed similarity to
members of the YopJ effector family (Appendix Fig. S1A). The
members of this family - found in human pathogens such as
Yersinia species, and in several plant pathogens—have only been
associated with the type 3 secretion system (T3SS) (Lewis et al,
2011; Ma and Ma, 2016; Meinzer et al, 2012; Orth et al, 2000; Xia
et al, 2021). The cysteine protease domain in YopJ effectors
demonstrates acetyltransferase activity, which is activated by the
eukaryote-specific co-factor inositol hexakisphosphate (IP6) (Mittal
et al, 2010). This co-factor binds to a conserved, positively charged
pocket on the effector surface (Mittal et al, 2010). Along with the
identification of active site pockets consisting of either a Cys-His-
Asp/Glu triad or Cys-His dyad (Mukherjee et al, 2006; Orth et al,
2000; Tomar et al, 2023; Zhang et al, 2017), the analysis of the
corresponding predicted domains in Lpg1949/Lem16, Lpg2538,
and Lpg2907/MavW (Appendix Fig. S1A) suggested the presence of
a positively charged pocket typical of IP6 binding (Appendix
Fig. S1B). Furthermore, Lpg1949/Lem16 functions as an acetyl-
transferase rather than a protease (Hermanns et al, 2020); however,
the host substrate and biological significance of this effector during
infection remain to be determined. Accordingly, based on our
analysis, we hypothesize that along with Lpg1949/Lem16, Lpg2538
and Lpg2907/MavW may also demonstrate YopJ-like acetyltrans-
ferase activity; therefore, potentially expanding the YopJ enzyme
family to effectors translocated by the L. pneumophila T4SS.

Previous studies have identified Lpg0227/LotD, Lpg2248/LotA,
Lpg1621/LotB, and Lpg2529/LotC as novel bacterial deubiquiti-
nases, which, due to their primary sequence and structural
similarity to eukaryotic ovarian-tumor deubiquitinases (Kang
et al, 2023; Kubori et al, 2018; Schubert et al, 2020), have been
termed the Legionella OTU-like DUBs (Lot-DUBS). Typically, Lot-
DUBs harbor a catalytic triad consisting of Cys-His-Asp residues.
Based on structural similarity, our analysis suggested that a similar
domain may also be present in Lpg2952/Ceg35. However, the
Lpg2952/Ceg35 model did not reveal any suitable candidates for the
catalytic residues typical of Lot-DUB enzymes (Appendix Fig. S2A,B)
and a previous study was not able to demonstrate DUB activity for
Lpg2952/Ceg35 (Hermanns et al, 2020), raising the possibility that
the activity of Lpg2952/Ceg35 may have deviated from Lot-DUBs.

The cysteine protease domains in the structural models of
Lpg1355/SidG, Lpg1387, Lpg1797, and Lpg1909 share structural
features with the NlpC/P60 cysteine endopeptidase family, which
include known peptidoglycan (PG) degraders (Griffin et al, 2023;
Hersch et al, 2020). Notably, the structurally characterized effector
TseH from Vibrio cholerae translocated by type 6 secretion system

(T6SS) (Altindis et al, 2015; Hersch et al, 2020) also belongs to this
protein family. While the specific enzymatic activity of TseH
remains enigmatic, the TseH structure features two lobes that form
a pocket housing glutamate, histidine, and cysteine residues shown
to be essential for its activity (Hersch et al, 2020). Similarly, we
identified a histidine and a cysteine at similar positions and
additional conserved residues in the interlobar pocket of Lpg1355/
SidG, Lpg1387, Lpg1797, and Lpg1909 models potentially

Table 1. The effector models that have a cysteine protease domain and the
coordinates of previously published or predicted catalytic residues.

Effector
Potential, or previously described,
catalytic residues Reference

Lpg0056 Cys19-His182-Asp200 This Study

Lpg0126/CegC2 Cys21-His228-Asn226 This Study

Lpg0160/RavD Cys12-His94-Ser111 (Wan et al, 2019b)

Lpg0196/RavF Cys320-His32-Ser89 This Study

Lpg0227/Ceg7/
LotD

Cys13-His256-Asp6 (Kang et al, 2023)

Lpg0234/SidE Cys117-His64-Asp80 (Sheedlo et al, 2015)

Lpg0284/Ceg10 Cys159-His192-Asp204 This Study

Lpg0285/Lem2 Cys84-His121-Asp133 This Study

Lpg0403/LegA7 Cys73-His217-Asp55-Asn232 This Study

Lpg0944/RavJ Cys101-His138-Asp170 (Urbanus et al, 2016)

Lpg1110/Lem5 Cys109-His137-Asp148 This Study

Lpg1120/Lem6 Cys23-His205-Asn228 This Study

Lpg1148/LupA Cys-252-His183-Asp207 (Urbanus et al, 2016)

Lpg1355/SidG Cys623-His57-Asp158-Glu162 This Study

Lpg1387 Cys403-His38-Ser104 This Study

Lpg1621/Ceg23/
LotB

Cys29-His270-Asp29 (Ma et al, 2020)

Lpg1683/RavZ Cys258-His176-Asp197 (Horenkamp et al, 2015)

Lpg1797/RvfA Cys314-His45-Ser102 This Study

Lpg1909 Cys166-His22 This Study

Lpg1949/Lem16 Cys174-His105-Asp124 This Study

Lpg1965/LirE/
PieC

Cys449-His549-Asp568 This Study

Lpg1966/LirF/
PieD

Cys296-His396-Glu416 This Study

Lpg2143 Cys138-His259-Asp274 This Study

Lpg2147/MavC Cys74-His231-Gln252 (Valleau et al, 2018)

Lpg2148/MvcA Cys83-His244-Gln265 (Valleau et al, 2018)

Lpg2153/SdeC Cys118-His64-Asp80 (Sheedlo et al, 2015)

Lpg2156/SdeB Cys123-His69-Asp85 (Sheedlo et al, 2015)

Lpg2157/SdeA Cys118-His64-Asp80-Asn114 (Sheedlo et al, 2015)

Lpg2215/LegA2 Cys33-His145-Asn162 This Study

Lpg2248/LotA/
Lem21

Domain 1 (residues 1-294): Cys13-
His237-Asn239 and Domain 2
(residues 296-544): Cys303-Asn296-
His535

(Takekawa et al, 2022;
Warren et al, 2023)

Lpg2433/Ceg30 Cys26-His205-Asp229-Asn226 This Study

Lpg2529/LotC/
Lem27

Cys24-His304-Asp17 (Shin et al, 2020)

Lpg2538 Cys299-His231 This Study

Lpg2586 Cys106-His291-Asn320-Gln100 This Study

Lpg2907/MavW Cys263-His192-Asp215 This Study

Lpg2952/Ceg35 No functional residues could be
assigned

This Study
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important for corresponding effector activity (Fig. 2B; Appendix
Fig. S3). In contrast, we were unable to assign an appropriate third
residue in the Lpg1909 model to match the catalytic triad found in
TseH or other structurally characterized cysteine proteases,
suggesting that this effector potentially relies on a Cys166-His22
dyad for catalysis (Appendix Fig. S3).

Finally, Lpg2586, also identified as a T4SS effector containing a
potential cysteine protease domain, shares high sequence similarity
(~30%) with another L. pneumophila effector, Lpg2622. Lpg2622 has
been associated with the L. pneumophila type II secretion system
(T2SS) and was characterized as a member of the C1 peptidase family
(Gong et al, 2018). Like Lpg2622 (PDB: 6A0N), Lpg2586 also contains
a unique hairpin-turn-helix motif–shown to be essential for Lpg2622
protease activity and an N-terminal β-sheet–shown to be involved in
regulating the activity of Lpg2622 (Appendix Fig. S4A,B) (Gong et al,
2018). Our analysis also suggested that residues Cys106, His291,
Asn320, and Gln100 in Lpg2586 may be important for catalysis based
on the role of equivalent residues demonstrated for Lpg2622
(Appendix Fig. S4A; Table 1).

Identification of three additional metalloprotease domain-
containing effectors in the L. pneumophila arsenal

Metalloproteases are important components of multiple biological
processes in eukaryotes. These enzymes facilitate the degradation of
extracellular membrane proteins, glycoproteins, growth factors,
cytoskeletal proteins, and cytokines—which, in turn, regulate
apoptotic, cellular differentiation, and proliferation pathways (de
Almeida et al, 2022; Parks et al, 2004; Sternlicht and Werb, 2001).
When compared to cysteine proteases, metalloproteases have
several distinct structural features essential for their functionality.
Typically, these enzymes contain an ɑ-helical pro-domain that

regulates the protease activity and a catalytic domain consisting of
roughly five β-strands and three ɑ-helices (Laronha and Caldeira,
2020). The catalytic pocket of metalloproteases is made of an ɑ-
helix harboring a highly conserved sequence motif: His-Glu-X-X-
His-X, where “X” represents any amino acid (Laronha and
Caldeira, 2020; Sternlicht and Werb, 2001). The histidine residues
in this motif are required for the coordination of a divalent cation,
typically a Zn2+, that is involved in peptide bond hydrolysis (Ra and
Parks, 2007).

Only two L. pneumophila effectors (Lpg0969/RavK and
Lpg2999/LegP) have been identified as metalloproteases based on
primary sequence analysis (de Felipe et al, 2005; Liu et al, 2017).
Lpg0969/RavK was shown to cleave actin to prevent the formation
of actin polymers when ectopically expressed in HEK293T cells and
during L. pneumophila infection. However, the biological signifi-
cance of this cleavage remains unclear (Liu et al, 2017). While
neither the host target of Lpg2999/LegP nor its function as a
canonical metalloprotease has been experimentally validated, our
analysis confirms the presence of the catalytic motif (Appendix
Fig. S5A). Furthermore, our analysis suggested three additional
effectors (Lpg0041, Lpg1667, and Lpg2461) harbor a metallopro-
tease catalytic domain (Fig. 2C; Appendix Fig. S5B; Table 2). The
models of these three effectors contain the His-Glu-X-X-His-X
motif typical of the metalloprotease fold (Fig. 2C; Appendix
Fig. S5A,B; Table 2). Notably, among the five metalloprotease
domain-containing effector models, only Lpg0041 and Lpg1667
contained an additional structural element. The Lpg0041 model
contains an additional C-terminal structural element composed of
the three tandem beta-sandwiches, whereas Lpg1667 is predicted to
contain a single β-sandwich spanning residues 57 to 176. We
hypothesize that these structural elements contribute to the
recognition of the host substrate by these effectors.

Figure 2. Revelation of two previously unrecognized cysteine protease and metalloprotease effectors that are known to cause yeast toxicity.

(A, B) Structural alignment of the cysteine protease domain of Lpg1290/Lem8 (cyan, residues 244–457) with Rtx-toxin (gray, residues 3309–3562) (Lee et al, 2019),
followed by the alignment of the cysteine protease domain model of Lpg1355/SidG (cyan, residues 16–195+ 563–665) with TseH effector (gray, residues 21–223) from
Vibrio cholera (Hersch et al, 2020). Furthermore, in the case of Lpg1355/SidG, an adjacent ɑ-helix in the predicted catalytic pocket harbors two residues, Asp158 and
Glu162, orientated in a position that suggests an involvement in the biochemical activity of this effector. (C) Model of Lpg2461 (yellow, residues 1–212) structurally aligned
with IrrE from Deinococcus derserti (residues 1–281) (Vujicic-Zagar et al, 2009). Below is a close view of the potential catalytic residues (cyan or yellow sticks) of each
effector model determined by their top structural hit (gray sticks) from our FATCAT analysis. (D) Yeast toxicity panel of FLAG-tagged constructs of Lpg1290/Lem8,
Lpg1355/SidG, and their respective mutants, followed by the HA-tagged constructs of Lpg2461 and its mutant. Expression of these constructs are found in Appendix
Figs. S10, 11. In the case of Lpg1290/Lem8, a Cys280Ala mutation was tested instead of the Cys280Ser mutation used in a previous study. Serial dilutions were spotted on
SD media containing either dextrose (repressing) or galactose (inducing). A representative experiment of three independent replicates is shown.
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Expansion of the repertoire of L. pneumophila
effector kinases

Kinases are important mediators of multiple biological functions,
such as signal transduction, protein function modulation, and
modification of small molecules, including lipids and carbohydrates
(Fabbro et al, 2015; Oruganty et al, 2016; Pereira et al, 2011; Rauch
et al, 2011). There are multiple molecular folds associated with this
biochemical activity, but the most prevalent is the protein kinase
fold that adopts a bi-lobed structure comprised of a smaller, all β-
strand N-terminal domain and a larger C-terminal mixed ɑ/β
domain, with the two domains connected via a short, linear region
called the hinge (Arter et al, 2022). The ATP binding site is
localized close to the hinge in the cavity formed between the two
lobes, with its adenine ring nestled in a hydrophobic pocket and
forming hydrogen bonds between its purine nitrogens and residues
in the hinge (Arter et al, 2022). In accordance with the catalytic
mechanism, the substrate binding site is also found in this cavity,
placing it in proximity to the ATP γ-phosphate (Arter et al, 2022).
Other salient features of the Protein Kinase fold include the
“catalytic loop”, which harbors aspartate residues that coordinate
Mg2+ ions interacting with ATP phosphate oxygens; a glycine-rich
loop (also called the “P-loop”) that interacts with the ATP
phosphate oxygens; and an “activation segment” containing an
Asp-Phe-Gly (DFG) sequence and often a tyrosine residue, both of
which are important in the regulation of kinase activity as the
activation segment is often disordered in the non-phosphorylated
state (Arter et al, 2022; Leipe et al, 2003; Nolen et al, 2004;
Reinhardt and Leonard, 2023). ATP-grasp is another common
molecular fold associated with kinases, which usually act on small
molecules (Fawaz et al, 2011). This fold is founded on two ɑ/β
domains that bind ATP in the interdomain cleft (Fawaz et al, 2011).
We identified 17 effector kinases in L. pneumophila, with 15 of
these falling into the ECOD T group “Protein Kinase” and two into
the ECOD T group “ATP-grasp” (Tables 3 and 4).

Four L. pneumophila effector kinases, Lpg0208/LegK4, Lpg1924/
LegK7, Lpg2603, and Lpg2975/MavQ, have been structurally
characterized (Flayhan et al, 2015; Hsieh et al, 2021; Lee et al,
2020; Sreelatha et al, 2020). Two additional effectors, Lpg1483/
LegK1 and Lpg2137/LegK2, although lacking structural character-
ization, were predicted to harbor a kinase domain through primary
sequence analysis and have been shown to exhibit kinase activity
(Ge et al, 2009; Hervet et al, 2011; Michard et al, 2015). In addition,
L. pneumophila has also been shown to repurpose kinase-like folds
for novel biochemical activities – as shown in the case of Lpg2155/

SidJ and its paralog Lpg2508/SdjA. Lpg2155/SidJ harbors most of
the classical structural and functional features of a kinase, but
instead catalyzes the polyglutamylation of the SidE effector family
(Adams et al, 2021; Bhogaraju et al, 2019; Black et al, 2019),
whereas Lpg2508/SdjA glutamylates and deglutamylates members
of the SidE family (Osinski et al, 2021; Song et al, 2021).

Our analysis suggested that 9 additional effectors contain
domains falling into the ECOD T group “Protein Kinase” category.
Except for Lpg1684, Lpg1924/LegK7, and Lpg1925, all these
predicted domains contain the essential structural and catalytic
motifs characteristic of kinase enzymatic activity (Table 3;
Appendix Fig. S6). Comparative analysis of the effector kinase
models with experimentally characterized kinase structures in the
PDB suggested that the models of Lpg1483/LegK1 (Ge et al, 2009),
Lpg2050 and Lpg2556/LegK3 contain the necessary features of
protein kinases (Fig. 3A; Appendix Fig. S6A), while the models of
Lpg1316/RavT, Lpg1317/RavW, Lpg2322/AnkK/LegA5 are more
structurally similar to kinases targeting lipids (Fig. 3B; Appendix
Fig. S6B). Consistent with these predictions, Lpg2322/AnkK/LegA5
has been experimentally shown to be a phosphatidylinositol
3-kinase (PI3K) (Ledvina et al, 2018).

In the remaining effector models of the protein kinase category,
we observed significant variation from the canonical motifs
established for functional kinases, particularly in the composition
of the activation loop and P-loop. Instead of the activation loop
DFG motif found in canonical kinases, the models of Lpg1316/
RavT, Lpg1408/LicA, and Lpg2322/AnkK/LegA5 featured DHE
(residues 206–208), DWE (residues 262–264), and DHD (residues
201–203) sequences, respectively. The P-loop in the Lpg1316/RavT
model contained a stretch of three serine residues (residues 77–79),
while typical kinases contain at least one glycine at these positions.
Lpg1316/RavT shares 45% of sequence identity with Lpg1317/
RavW and is predicted to adopt a very similar structure.

The kinase domain identified in the Lpg2050 model is very
similar to the structure of the Shigella effector OspG (Grishin et al,
2014b; Pruneda et al, 2014) or the E. coli effector NleH (Grishin
et al, 2014a), both of which require interaction with other proteins
to trigger their protein kinase activities (Fig. 3A). The models of
Lpg1684 and Lpg1925 show similarity to “ATP-grasp” kinases. In
this fold, the ATP binding site is composed of multiple charged
residues, including Glu/Asp and Lys/Arg that interact with
magnesium ions or the phosphate oxygens of ATP (Fawaz et al,
2011) (Table 4). Both of these effector kinase models contain such
charged residues and are most similar in structure to the kinases
targeting protein substrates (Appendix Fig. S6C).

Structural elements beyond the “core” kinase domain often
contribute to the recognition and positioning of kinase substrates
or regulation of kinase activity (Pereira et al, 2011). Specifically,
interactions between the effector kinase Lpg1924/LegK7 and host
protein Mps one binder kinase activator 1A (MOB1A) involve the
N-terminal α-helical domain in addition to the “core” kinase
domain (Lee et al, 2020). Therefore, we examined the structural
models of effectors with predicted kinase domains for the presence
of such additional structural elements. Lpg0208/LegK4, Lpg1483/
LegK1, Lpg2322/AnkK/LegA5, Lpg2508/SdjA, and Lpg2556/LegK3
are predicted to harbor their kinase domains in the N-terminal
portion of the protein, followed by ɑ-helical bundles; this region in
Lpg0208/LegK4 may adopt an ARM fold (Dataset EV2). The
Lpg2137/LegK2 model also features the kinase followed by an ɑ-

Table 2. Summary of the predicted and previously published catalytic
motifs of the metalloprotease domain-containing effectors identified by
the 3D model analysis.

Effector
Potential, or previously described,
catalytic residues Reference

Lpg0041 His350-Glu351-Ile352-Gly353-His354 This Study

Lpg0969/RavK His95-Glu96-Thr97-Gly98-His99 (Liu et al, 2017)

Lpg1667 His342-Glu343-Leu344-Gly345-
His346

This Study

Lpg2461 His129-Glu130-Val131-Cys132-His133 This Study

Lpg2999/LegP His166-Glu167-Ile168-Gly169-His170 This Study
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helical bundle, plus a small ɑ/β domain preceding the kinase
domain at the N-terminus. This N-terminal domain is predicted to
pack against the β-lobe of the kinase. The model of ATP-grasp
effector kinase Lpg1925 also reveals a multi-domain composition,
with an ɑ/β structure at its N-terminus, the kinase domain,
including an ɑ-helical insert followed by a long ɑ-helical hairpin
that packs against the kinase domain, another ɑ/β domain, and
finally an ɑ-helical bundle.

ɑ/β hydrolase domains are recurring in L.
pneumophila effectors

The specific activities of ɑ/β hydrolases can vary widely between
members of this superfamily (Kourist et al, 2010; Nardini and Dijkstra,
1999). The general structure of ɑ/β hydrolases comprises a central six-
stranded central β-sheet surrounded by α-helices, with the ligand
binding site found at the “top” of the β-sheet where the C-terminal
ends of each β-strand align. Members of this family typically harbor a
catalytic triad formed of a serine residue fulfilling the role of the
catalytic nucleophile, a histidine and an acidic residue (almost always
an aspartate), localized to loops between β-strands. An important
distinguishing feature of some ɑ/β hydrolases is the presence of a “lid”
subdomain inserted into the central β-sheet, which varies in size and
structural features (Kourist et al, 2010; Nardini and Dijkstra, 1999).
This subdomain often forms part of the ligand binding cleft and can
create solvent-excluded pockets for binding hydrophobic compounds

such as lipids. A subgroup, called SGNH hydrolases, share a common
three-layer α/β/α structure and unites a group of enzymes with diverse
specific activities, including carbohydrate esterase, thioesterase,
protease, arylesterase, and lysophospholipase (Anderson et al, 2022).

Our analysis indicated that nine L. pneumophila effector models
contained the ɑ/β hydrolase domain (ECOD T group “alpha/beta-
hydrolases”), and three effector models contained domains
reminiscent of SGNH hydrolases (ECOD T group “SGNH
hydrolase”) (Table 5). Only three of these effectors - Lpg1642/
SidB, Lpg1907, and Lpg2911 - have been previously reported to
possess an ɑ/β hydrolase domain (Gomez-Valero et al, 2011;
Gomez-Valero et al, 2014; Luo and Isberg, 2004). In addition, the
structure of Lpg2422/Lem25 has been experimentally determined
(PDB 4M0M), confirming the presence of this domain. However, to
the best of our knowledge, none of these effector proteins have been
experimentally characterized to possess hydrolase activity. Along
the same lines, we did not find any previous reports describing
Legionella effectors possessing the SGNH hydrolase domain.

The ɑ/β hydrolase domains of six effectors (Lpg1108/RavL,
Lpg1642/SidB, Lpg1907, Lpg2391/SdbC, Lpg2422/Lem25, Lpg2911)
contain potential serine-aspartate-histidine catalytic triads, while
the domains predicted in Lpg0275/SdbA, Lpg1959, and Lpg2482/
SdbB feature potential cysteine-aspartate-histidine triads
(Fig. 3C–E; Appendix Fig. S7A). Our analysis indicates a diversity
of lid subdomain structures among these putative ɑ/β hydrolases,
while the models of Lpg1108/RavL, Lpg2391/SdbC, and Lpg2422/
Lem25 lack the lid subdomain. Lpg2911 shares significant similarity
(33% identity) with human cathepsin A (PDB 4AZ0) (Ruf et al,
2012), which suggests that it may possess carboxypeptidase activity.
The remaining 8 putative ɑ/β hydrolases show very low sequence
identity with structurally and functionally characterized proteins.
Some of the predicted features that may provide a cue to the
function of these effectors include a long, deep, hydrophobic cleft in
the model of Lpg1642/SidB that is reminiscent of the ligand binding
site in the monoacylglycerol lipase from Palaeococcus ferrophilus

Table 3. A summarization of kinase domain-containing effectors from L. pneumophila identified from predicted models and their putative, or previously
identified, catalytic residues.

Effector Potential, or previously described, catalytic residues Reference

Lys/Asp - Glu pair DFG motif

Lpg0208/LegK4 Lys110-Glu125 Asp219-Phe220-Gly221 (Flayhan et al, 2015)

Lpg1316/RavT Lys93-Glu103 Asp203-His204-Glu205 This Study

Lpg1317/RavW Lys62-Glu73 Asp169-His170-Glu171 This Study

Lpg1408/LicA Arg101-Glu116 Asp259-Trp260-Glu261 This Study

Lpg1483/LegK1 Lys121-Glu137 Asp244-Phe245-Gly246 (Ge et al, 2009)

Lpg1924/LegK7 Arg209-Glu219 Asp324-Arg325-Lys326 (Lee et al, 2020)

Lpg2050 Lys57-Glu87 Asp178-Leu179-Asp180 This Study

Lpg2137/LegK2 Lys112-Glu128 Asp223-Ala224-Gly225 (Hervet et al, 2011; Michard et al, 2015)

Lpg2155/SidJ Lys367-Glu381 Asp542-Leu543-Gly544 (Adams et al, 2021; Osinski et al, 2021)

Lpg2322/AnkK/LegA5 Lys43-Glu56 Asp201-His202-Asp203 This Study

Lpg2508/SdjA Lys305-Glu319 Asp480-Leu481-Gly482 This Study

Lpg2556/LegK3 Lys87-Glu110 Asp207-Tyr208-Gly209 This Study

Lpg2603/Lem28/SdmB Lys114-(missing) Asp225-Leu226-Asp227 (Sreelatha et al, 2020)

Lpg2975/MavQ Lys46-(missing) Asp160-Phe161-Asp162 (Hsieh et al, 2021)

Table 4. The identification of two ATP-grasp kinase domain-containing
effectors from L. pneumophila and their predicted catalytic residues from
this study.

Effector
Potential, or previously described, catalytic
residues Reference

Lpg1684 Arg145-Arg234-Glu244-Asp331-Glu363 This Study

Lpg1925 Lys229-Lys273-Asn388-Asp401 This Study
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(PDB 6QE2) (Labar et al, 2021), and the model of Lpg2391/SdbC
also possesses a similarly broad, wide, and deep cleft.

Lpg0788 and Lpg2587 contained the serine-glycine-asparagine-
histidine tetrad typical for the catalytic site of the SGNH-type
hydrolase enzymes (Appendix Fig S7B; Table 5). Notably, while the
model of Lpg1354 adopts the ɑ/β hydrolase fold, the histidine in the
catalytic site is replaced by an aspartate residue, which brings into
question whether this enzyme functions as a hydrolase. SGNH
hydrolases are further subcategorized into GDSL esterases based on
the presence of the corresponding sequence motifs in the
N-terminal portion of the protein (Anderson et al, 2022).
Accordingly, we identified such motifs for all three of these
effectors: residues 71-74 (GSDI) in Lpg0788; residues 8 to 12
(GDSTL) in Lpg1354; and 36 to 39 (GDSY) in Lpg2587. However,
reliable prediction of the specific activity for effectors in this group
is obscured by low similarity to characterized proteins.

Predicted ADP-ribosyltransferase domains extend
beyond LarT1, Ceg3, and the SidE family in the L.
pneumophila effector arsenal

Adenosine diphosphate-ribosyltransferases, commonly referred to
as ADP-ribosyltransferases, are a group of enzymes with crucial

roles in various eukaryotic cellular processes (Luscher et al, 2018).
These enzymes catalyze the transfer of ADP-ribose moieties from
nicotinamide adenine dinucleotide (NAD+) onto target proteins
(Mikolcevic et al, 2021; Suskiewicz et al, 2023). This post-
translational modification can modulate protein activity, localiza-
tion, and interactions within the cell (Suskiewicz et al, 2023).
Similar domains have also been characterized as part of bacterial
toxins and pathogenic factors, which harness this activity to disrupt
critical host cell processes (Dean, 2011; Simon et al, 2014).

In L. pneumophila, ADP-ribosyltransferase domains have been
characterized primarily as part of the paralogous SidE effector
family (Lpg0234/SidE, Lpg2153/SdeC, Lpg2156/SdeB, and
Lpg2157/SdeA). These effectors utilize their ADP-
ribosyltransferase to ADP-ribosylate (ADPR) the Arg42 residue
of ubiquitin, which is then conjugated onto the host substrate by
the effector’s phosphodiesterase (PDE) domain, forming a host
protein-phosphoribosylate-ubiquitin complex (Bhogaraju et al,
2016; Dong et al, 2018; Kalayil et al, 2018; Kotewicz et al, 2017;
Qiu et al, 2016), as part of a two-step unorthodox ubiquitination
mechanism. In addition to the SidE effector family, ADP-
ribosyltransferase domains were also identified in Lpg0080/Ceg3
and Lpg0181. Lpg0080/Ceg3 is an ADP-ribosyltransferase involved
in the modification of the Arg236 of the human adenine nucleotide

Figure 3. Mutagenesis analysis of predicted kinase and α/β hydrolase domains in L. pneumophila effector repertoire.

(A, B) Model of Lpg2050 (purple, residues 1–205) aligned with the structure of the T3SS effector NleH (gray, residues 128-293) (Grishin et al, 2014a). Structural overlay of
Lpg2322/AnkK/LegA5’s (purple) predicted kinase domain (residues 1–314) onto the lipid kinase domain of Lpg2975/MavQ (gray, residues 1–375) (Hsieh et al, 2021).
Putative catalytic residues are shown in the zoomed view. (C–E) Alignments of the effectors possessing α/β hydrolase domains (green) to the top structural hit (gray)
from the FATCAT server, followed by the inset view of the putative catalytic residues. (F) The corresponding yeast panel pinpointing potential residues important for the
function of these domains in causing yeast toxicity. Effector proteins and their mutants were expressed with an N-terminal FLAG tag (Appendix Fig. S10).
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translocase 2 (ANT2) - which is a membrane-spanning protein
required for the exchange of ADP and ATP across the
mitochondria inner membrane (Kubori et al, 2022). The modifica-
tion of ANT2 has also been shown to be reversed by the
metaeffector Lpg0081 (Kubori et al, 2022). Lpg0181 targets a
conserved Arg residue located in the NAD+ binding pocket of the
120 kDa glutamate dehydrogenase enzyme family present in both
fungi and the protist hosts of Legionella (Black et al, 2021).

Based on our analysis, the models of two additional effectors -
Lpg0796 and Lpg2523/Lem26 - also contain domains similar to an
ADP-ribosyltransferase fold (Table 6). A previous study suggested
that Lpg2523/Lem26 contains a C-terminal PDE domain based on
primary sequence similarity to SdeA (Wan et al, 2019a). However,
this study failed to demonstrate Lpg2523/Lem26’s ability to
hydrolyze ADPR-Ubiquitin, suggesting that this PDE domain
may have different substrate specificity (Wan et al, 2019a).
Furthermore, the N-terminal domain (residues 5–328) of
Lpg2523/Lem26 has limited primary sequence identity to

Lpg0080/Ceg3 (Kubori et al, 2022). Our analysis of the Lpg2523/
Lem26 model revealed that apart from structural similarity to the
PDE domain of SdeA, the N-terminal domain is reminiscent of the
T3SS effector ExoT from Pseudomonas aeruginosa (Karlberg et al,
2018) and protein-arginine ADP-ribosyltransferase Tre1 (Ting
et al, 2018) that was characterized as part of the T6SS arsenal in the
insect pathogen, Serratia proteamaculans (Fig. 4A). In line with this
analysis, the N-terminal domain of the Lpg2523/Lem26 model
features several functionally relevant elements identified in these
bacterial effectors, including a catalytic triad consisting of an
Arg222-Ser257-Glu294 residues, an ADP-ribosylating turn-turn
(ARTT) loop harboring the Glu292-X-Glu294 motif essential for
catalysis, followed by a β-sheet involved in the binding and
stabilization of NAD+ (Fig. 4A). Overall, the structural analysis of
the N-terminal domain of Lpg2523/Lem26 corroborates with the
ADP-ribosyltransferase fold prediction.

The analysis of the predicted ADP-ribosyltransferase domain in
the Lpg0796 model suggested a structural resemblance to Tse6—a
T6SS effector from P. aeruginosa (Appendix Fig. S8). Tse6 is an
effector that is structurally similar to the catalytic domain of ADP-
ribosyltransferase toxins released by human bacterial pathogens—
such as the diphtheria toxin from Corynebacterium diphtheriae and
Exotoxin A from P. aeruginosa (Whitney et al, 2015). However,
despite having this enzymatic domain, Tse6 has diverged in
function by acting as a NAD(P)+ glycohydrolase (Whitney et al,
2015). Our structural analysis of the Lpg0796 model suggests that it
possesses a similar conserved β-sheet core involved in NAD+
binding. However, we were not able to identify corresponding
residues in the β-sheet core that could contribute to the interaction
of this co-factor. Furthermore, the ability of Tse6 to hydrolyze
NAD(P)+ is facilitated by Asp396 in an activation loop - a
structural element that is absent in Lpg0796 (Whitney et al, 2015)
(Appendix Fig. S8). Taken together, we suggest that Lpg0796 lacks
catalytically important residues typical of ADP-ribosyltransferases
and NAD(P)+ glycohydrolases, suggesting a possible diversification
of its biochemical activity.

Five additional L. pneumophila effectors contain potential
glycosyltransferase domains

Glycosyltransferases (GT) facilitate the transfer of a glycosidic
sugar moiety from a donor co-substrate to an acceptor co-substrate,
such as nucleic acids, lipids, and proteins (Zhang et al, 2020). Based
on the features of their primary sequence, glycosyltransferases form

Table 5. α/β-Hydrolase domain-containing effectors from L. pneumophila
and their potential catalytic residues that were identified in this study.

Effector

Potential, or previously
described, catalytic
residues GDSL motif Reference

Lpg0275/
SdbA

His470-Cys300-Asp406 N/A This Study

Lpg1108/RavL His235-Ser125-Asp206 N/A This Study

Lpg1642/SidB His378-Ser190-Asp302 N/A This Study

Lpg1907 His378-Ser239-Asp296 N/A This Study

Lpg1959 His529-Cys321-Asp449 N/A This Study

Lpg2391/SdbC His339-Ser188-Asp270 N/A This Study

Lpg2422/
Lem25

His235-Ser144-Glu203 N/A This Study

Lpg2482/
SdbB

His351-Cys187-Asp273 N/A This Study

Lpg2911 His399-Ser165-Asp341 N/A This Study

Lpg0788 His343-Ser73-Asp340 Gly71-Asp72-
Ser73-Leu74

This Study

Lpg1354 Glu242-Ser10-Ala239 Gly8-Asp9-
Ser10-Leu11

This Study

Lpg2587 His344-Ser17-Asp341 Gly15-Asp16-
Ser17-Leu18

This Study

Table 6. The predicted and previously identified catalytic residues of L. pneumophila ADP-ribosyltransferase domain-containing effectors from this study
and previous ones.

Effector Potential, or previously described, catalytic residues Reference

Lpg0234/SidE Arg766-Ser820-Glu860-Ser861-Glu862 (Qiu et al, 2016)

Lpg0080/Ceg3 Arg44-Ser94-Glu141-Lys142-Glu143 (Kubori et al, 2022)

Lpg0181 Arg37-Ser86-Glu135-Lys136-Glu137 (Black et al, 2021)

Lpg0796 No functional residues could be assigned This Study

Lpg2153/SdeC Arg763-Ser817-Glu857-Asp858-Glu858 (Kotewicz et al, 2017; Qiu et al, 2016)

Lpg2156/SdeB Arg763-Ser817-Glu857-Asp858-Glu858 (Qiu et al, 2016)

Lpg2157/SdeA Arg766-Ser820-Glu860-Ser861-Glu862 (Bhogaraju et al, 2016; Qiu et al, 2016)

Lpg2523/Lem26 Arg222-Ser257-Glu292-Arg293-Glu294 This Study
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more than a hundred distinct families and adopt one of the three
different structural folds, known as GT-A, GT-B, and GT-C (Rosen
et al, 2004). Enzymes classified as GT-A possess a Rossman-like
fold with a conserved aspartate-X-aspartate motif required for the
coordination of divalent cations and transferase activity (Persson
et al, 2001; Taujale et al, 2020). In the case of the GT-B domain, two
Rossman-like folds form a central cleft, serving as the site for
catalysis (Breton et al, 2006). Furthermore, GT-B enzymes do not
require divalent cations for catalysis, thus, lacking the aspartate-X-
aspartate motif (Both et al, 2011; Li et al, 2007). Instead, a single
negatively-charged (aspartate or glutamate) residue, typically found
in the N-terminal Rossman-like fold, has been demonstrated to be
essential for catalysis (Breton et al, 2006; Rini et al, 2009). The
C-terminal Rossman-like fold is involved in the recognition and
binding to the donor co-substrate (Breton et al, 2006). GT-C fold-
containing enzymes have a single Roseman-like fold connected to
multiple transmembrane helices and use lipid-linked sugars as the
donor co-substrate (Alexander and Locher, 2023; Rini et al, 2009).

Several L. pneumophila effectors have been demonstrated to be
GT-A and GT-B glycosyltransferases, including the members of the
Lgt effector family (Lpg1368/Lgt1, Lpg2862/Lgt2, and Lpg1488/
Lgt3). The GT-A domain of Lpg1368/Lgt1 is involved in the
glycosylation of the human elongation initiation factor A1, which
causes protein translation to be inhibited (Belyi et al, 2009; Belyi
et al, 2008; Lu et al, 2010). Lpg1978/SetA also contains a GT-A

domain that was shown to have activity against the human
transcription factor EB, histones H3.1 and H4 (Beck et al, 2020;
Jank et al, 2012). Another GT-A domain-containing effector is
Lpp0356/LtpM, which has an atypical active site architecture,
consisting of an aspartate-X-asparagine motif required for catalysis
(Levanova et al, 2019). The substrate specificity of this effector
remains unknown; however, it has been postulated that LptM is
involved in hijacking the microtubule vesicle trafficking pathway
(Levanova et al, 2019). Lpg2504/SidI is an effector with a GT-B fold
that acts as a mannosyltransferase on host ribosomes, resulting in
the inhibition of protein translation and the activation of host stress
response kinases that promote the transcription of genes involved
in cell death (Joseph et al, 2020; Subramanian et al, 2023).

We identified potential glycosyltransferase domains in five
additional effectors: Lpg0275/SdbA, Lpg0402/LegA9, Lpg0770,
Lpg1151, and Lpg1961 (Fig. 4C–E; Appendix Fig. S9). Lpg1961
has a structural resemblance to the GT-A domain containing
PaToxG toxin from the insect and human bacterial pathogen,
Photorhabdus asymbiotica (Costa et al, 2009; Jank et al, 2013). The
model includes an active site strikingly similar to PaToxG (Jank
et al, 2013) and contains a typical aspartate-X-aspartate motif,
including several residues possibly involved in the interaction and
transfer of the donor co-substrate (Fig. 4E). Lpg0275/SdbA,
Lpg0402/LegA9, Lpg0770, and Lpg1151 are likely members of the
GT-B family with two Rossman-like folds indicative of

Figure 4. The predicted ADP-ribosyltransferase domain of Lpg2523/Lem26 and glycosyltransferase domains of Lpg0275/SdbA, Lpg0402/LegA9, and Lpg1961 are
linked to yeast toxicity.

(A, B) Model of Lpg2523/Lem26’s ADP-ribosyltransferase domain (residues 1–324) (gold) overlayed onto the structurally characterized ADP-ribosyltransferase effector
Tre1 from S. proteamaculans (residues 8–192, gray) (Ting et al, 2018). Residues potentially involved in the catalysis of this predicted ADP-ribosyltransferase domain are
also shown in the zoomed-in panel. In the following panel, Glu294 of the ExE motif and His545 of the predicted phosphodiesterase domain were tested for their roles in
causing yeast toxicity. The expression of Lpg2523/Lem26 and its mutants are found in Appendix Fig. S11. (C–F) Representation of the glycosyltransferase domain models
(pink) from Lpg0275/SdbA (residues 511–1050), Lpg0402 (residues 1–399), and Lpg1961 (residues 27–328) aligned with their top structural hit from the FATCAT analysis.
Predicted residues involved in catalysis were assessed in the yeast toxicity panel. The expression level of each construct is found in Appendix Fig. S10.
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glycosyltransferase activity (Fig. 4C,D; Appendix Fig. S9). These
effectors likely harbor potential catalytic residues in their
N-terminal Rossman-like fold and use their C-terminal fold for
nucleotide binding, which is consistent with the functionality of
most GT-B enzymes (Table 7).

Predicted functional domains of L. pneumophila effectors
manifest in the yeast model system

The ectopic expression of individual L. pneumophila effector
proteins in Saccharomyces cerevisiae often leads to growth defects.
This phenomenon has been exploited for the elucidation of the
biochemical activity of several effectors in L. pneumophila (Belyi
et al, 2012; Bhogaraju et al, 2016; Campodonico et al, 2005; de
Felipe et al, 2008; Fu et al, 2022; Gaspar and Machner, 2014; Guo
et al, 2014; Heidtman et al, 2009; Qiu et al, 2016; Shohdy et al, 2005;
Urbanus et al, 2016; Viner et al, 2012), but for most effectors, the
structural basis of this “yeast toxicity” remains undefined.
Identification of potential functional domains in the 3D models
of these uncharacterized effectors provided us with the opportunity
to experimentally test the role of these domains in the observed
yeast growth defect phenotype.

Our analysis identified predicted functional domains in eleven L.
pneumophila effectors previously demonstrated to inhibit yeast
growth. Correspondingly, we probed the role of individual residues
within these predicted domains by site-directed mutagenesis. The
expression of Lpg1290/Lem8 was used as a control for this
experiment (Fig. 2A,D). The toxicity of this effector to yeast was
linked to its cysteine protease domain (Fig. 2A) and was shown to
be alleviated by Cys280Ser, His391Ala, or Asp412Ala substitutions
of catalytic triad residues in a previous study (Song et al, 2022).

The first effector we tested was Lpg0275/SdbA, where the model
suggested the presence of two distinct functional domains connected
by a flexible linker (Fig. EV1A,B). Residues 1 to 510 of Lpg0275/SdbA
are predicted to form an ɑ/β hydrolase domain, while residues 511 to
1050 are predicted to form a domain adopting a fold reminiscent of
GT-B glycosyltransferases (Figs. 3C and 4C). To test if each of these
predicted domains contributed to toxicity in yeast, we expressed the
corresponding fragments of Lpg0275/SdbA individually in yeast, along

with the variants carrying substitutions in putative catalytic residues in
each of the predicted domains. Based on our results, the individual
expression of each of the two predicted domains in Lpg0275/SdbA
causes toxicity in yeast (Figs. 3C,F and 4C,F), suggesting that both
domain activities contribute to this phenotype. The Cys300Ala
substitution of the ɑ/β hydrolase domain had a minimal reduction
in toxicity compared to the wild-type expression (Fig. 3C,F). The lysine
substitution of Glu963 also partially alleviated the growth defect
caused by the expression of the Lpg0275/SdbA [511–1050] fragment
(Fig. 4C,F). Notably, the alanine substitution of this residue was
insufficient to alleviate the toxicity of this fragment. In agreement with
these results, the Glu963Lys mutation in the context of full-length
Lpg0275/SdbA also partially alleviated toxicity, whereas the double
substitution of Cys300Ala and Glu963Lys restored the growth of yeast
comparable to that of the FLAG-only yeast control (Fig. EV1C).

Next, we targeted potential catalytic residues in the GT domains
predicted in Lpg0402 and Lpg1961 (Fig. 4D,E). In Lpg0402, we
identified Asp19 and Glu92 as residues that correspond to the
catalytically important residues in experimentally characterized
members of this protein family (Fig. 4D). Additionally, our analysis
also suggested that Lpg0402 Asp49/Asp51 or Asp163/Asp165 pairs
can form catalytically important Asp-X-Asp motif typically found
in GT-A enzymes. The yeast toxicity assay suggests that the alanine
substitution of Asp19 completely alleviates the toxicity of Lpg0402
which agrees with the suggested role of this residue in the predicted
GT-B domain of this effector (Fig. 4F). In contrast, Lpg0402
variants carrying Asp49Gln/Asp51Gln or Asp163Gln/Asp165Gln
double mutations had a yeast toxicity profile comparable to the
wildtype effector (Fig. 4F).

Similarly, our analysis of the Lpg1961 model suggested residues
Asp152 and Asp154 as candidates for the Asp-X-Asp motif
essential for the catalytic activity of its predicted GT-A domain
(Fig. 4E). The double substitution of these residues to asparagine
led to complete alleviation of toxicity, thus, corroborating our
structural prediction analysis and suggested role of this predicted
domain in the observed phenotype (Fig. 4F).

We next tested the role of the ɑ/β hydrolase domains predicted
in the Lpg1959 and Lpg2482/SdbB effectors (Fig. 3D,E). In the case
of Lpg1959, we predicted that the residues Cys321, Asp346, and

Table 7. List of effectors with a glycosyltransferase domain and their catalytic residues determined from our 3D modeling analysis in this study or
functionally characterized in previous studies.

Effector Potential, or previously described, catalytic residues Reference

Lpg0275/SdbA Glu963 This Study

Lpp0365/LptM Asp140-Thr141-Asn142 (Levanova et al, 2019)

Lpg0402/LegA9 Asp19 or Glu92 This Study

Lpg0770 Thr118, Thr170, Glu171, or Asp172 This Study

Lpg1151 Glu142 or Asp144 This Study

Lpg1386/Lgt1 Asp246-Ile247-Asp248 (Belyi et al, 2006)

Lpg1488/Lgt3 Asp292-Ile293-Asp294 (Belyi et al, 2008)

Lpg1961 Asp152-Thr153-Asp154 This Study

Lpg1978/SetA Asp134-Ser135-Asp136 (Beck et al, 2020)

Lpg2504/SidI Arg453-Glu482-Lys600-D724 (Joseph et al, 2020; Machtens et al, 2023; Subramanian et al, 2023)

Lpg2862/Lgt2 Asp398-Ala399-Asp340 (Belyi et al, 2008)

The effectors are either from L. pneumophila (Lpg) or L. pneumophila Paris strain (Lpp).
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His529 to fulfill the role of a catalytic triad (Fig. 3D). In support of
this, alanine substitution of either Cys321 or His529 resulted in the
recovery of yeast growth, clearly implicating the activity of this
predicted functional domain to toxicity (Fig. 3F). Similarly, alanine
substitution of either Cys107 or Asp273 identified as potential
catalytic residues in Lpg2482/SdbB also resulted in the alleviation of
toxicity (Fig. 3F).

Our analysis suggested the presence of a kinase domain in Lpg2050
and Lpg2322/AnkK/LegA5 (Fig. 3A,B). Our analysis suggested that Lys57
is catalytically important for Lpg2050 (Fig. 3A) and its substitution to
methionine alleviated toxicity (Fig. 3F). A previous study used primary
sequence analysis to suggest that His178 makes part of the kinase
activation loop of Lpg2322/AnkK/LegA5 (Ledvina et al, 2018). Our
analysis suggested that Asp176 might also form part of the kinase
activation loop (Fig. 3B), a hypothesis supported by our observation that
an Asp176Ala substitution led to the abrogation of Lpg2322/AnkK/LegA5
toxicity in yeast (Fig. 3F).

The model of Lpg1355/SidG suggested the presence of a potential
cysteine protease domain, with residues Cys623, Asp158, and His57
forming a canonical catalytic triad (Fig. 2B). The alanine substitution of
Asp158 led to the complete alleviation of toxicity, whereas similar
substitutions of His57 or Cys623 led to a partial alleviation of the yeast
growth defect (Fig. 2D). Our analysis of the Lpg1355/SidG model
suggested that the residues Glu162 and Ser624might also be important for
catalytic activity (Fig. 2B). While the alanine substitution of Glu162 led to
complete alleviation of yeast toxicity, a similar substitution to Ser624 failed
to restore yeast growth (Fig. 2D). Testing the effect of a double His57Ala/
Ser624Ala substitution on the toxicity of Lpg1355/SidG, we observed
partial restoration of growth comparable to the effect observed for the
His57Ala variant. The His57Ala/Cys623Ala double substitution, resulted
in a restoration of yeast growth that appeared stronger than either
His57Ala or Cys623Ala substitutions alone (Fig. 2D).

We identified a predicted domain reminiscent of zincmetalloproteases
in the model of Lpg2461 that included a canonical catalytic motif. An
alanine substitution in one of the residues of this motif (Glu130) resulted
in the complete restoration of yeast growth (Fig. 2C,D).

The model of Lpg2523/Lem26 revealed two distinct domains
connected by a central helical bundle. The N-terminal domain
spanning residues 1 to 337 resembles an ADP-ribosyltransferase
domain (Fig. 4A), while the model of the C-terminal portion of this
effector that spans residues 494 to 779 shares structural similarity
to the PDE domain of the SidE effector family. To test if either
domain contributes to the toxic effect of Lpg2523/Lem26 in yeast,
we targeted Glu294 residue, which is suggested to be part of the
Glu-X-Glu motif in the ARTT loop of the ADP-ribosyltransferase
domain, and His545 as a putative catalytic residue in the PDE
domain. The Glu294Ala (ARTT) substitution abrogated toxicity,
whereas the His54 Ala (PDE) substitution did not (Fig. 4B). These
results suggested that while the function of the PDE domain of
Lpg2523/Lem26 remains enigmatic (Wan et al, 2019a), the
predicted ADP-ribosyltransferase domain is responsible for the
toxicity phenotype in yeast (Fig. 4B).

L. pneumophila effector models contain a significant
number of cryptic domains, some of which are
responsible for toxicity in yeast

A number of predicted structural domains in L. pneumophila
effector models demonstrate no significant structural similarity to

the experimentally defined protein structures deposited to either
the ECOD domain or the PDB databases, when analyzed with
standard structure comparison tools, such as Dali (Holm, 2022)
and FATCAT (Ye and Godzik, 2003). Overall, we identified 35 such
“cryptic” domains in 30 effectors, with models of five effectors—
Lpg1426/VpdC, Lpg1978/SetA, Lpg1925/CegL1, Lpg1963/PieA,
and Lpg1964/PieB— containing two cryptic domains each (Table 8).
Notably, most of the effectors from this category are conserved
across Legionella species, with six effectors also carrying strong
similarity to proteins present in intracellular bacteria from the
Coxiellacae family, such as Aquicella siphonis, Coxiella burnetii, and
Rickettsiella spp (Table 8).

The structures of three effectors—Lpg1083/SidN, Lpg1978/SetA,
and Lpg2504/SidI—with predicted cryptic domains were experimen-
tally determined and deposited in the PDB database (PDB: 7YJI, PDB:
7TOD, and PDB: 8BVP, respectively) during the course of our analysis
(Beck et al, 2022; Gao et al, 2023; Subramanian et al, 2023), confirming
the structural predictions and unique fold assignments. Interestingly,
manual analysis of these effector structures identified potential distant
structural similarities, providing the first indication of their molecular
function (Table 8). In the case of Lpg1978/SetA, the cryptic fold is
present in the C-terminal domain and consists of an ɑ-helical bundle
connected to a β-sheet that forms a positively charged pocket
important for interactions with phosphoinositol-3-phosphate (Beck
et al, 2022). This domain with a cryptic fold is essential for the
localization of Lpg1978/SetA on the surface of the LCV (Beck et al,
2022). The Lpg1083/SidN structure was revealed to be a cryptic
domain where the N-terminal region, described to be “paw-like”, aids
in the localization of the effector to the nucleus (Gao et al, 2023).
Furthermore, Lpg1083/SidN is shown to disrupt the lamina complex,
which leads to the destabilization of the nuclear envelope (Gao et al,
2023). Awaiting structural characterization of the remaining effector
proteins with cryptic predicted structural elements, we used the yeast
toxicity model to investigate their functional relevance in Lpg1154/
RavQ, Lpg1426/VpdC, Lpg1489/RavX, or Lpg2527/LnaB (Li et al,
2022; Urbanus et al, 2016). Detailed analysis of the structural models
combined with primary sequence conservation suggested residues that
may be part of the activity of these proteins (Figs. 5A–D and EV2–5).
Accordingly, we probed their relevance for toxicity using site-directed
mutagenesis (Fig. 5E).

Based on the structural model of Lpg1154/RavQ, residues 59 to
349 form a cryptic α/β domain, with the preceding N-terminal
portion to be disordered (Fig. EV2A). This cryptic domain is
predicted to contain a three-stranded β-sheet with a two-stranded
β-sheet packed onto one face. The other face of the three-stranded
β-sheet is packed against a four-helix bundle, and the model also
contains five other ɑ-helices. The overall shape of the model is a “T”
shape, with the base of the shape formed by an N-terminal ɑ-helix
in one direction and the C-terminal three ɑ-helices in the other
direction (Fig. EV2A). One of the vertices of the “T” shape is lined
up with negatively and positively charged residues at its base and
on its side, respectively (Fig. EV2A). According to the comparative
sequence analysis using the ConSurf server (Ben Chorin et al,
2020), the residues forming this groove show complete conserva-
tion across orthologs found in other Legionella species (Fig. EV2B).
Specifically, a highly conserved histidine residue (His169 in
Lpg1154/RavQ) is positioned at the center of the groove
surrounded by other conserved residues, including Asn141,
Gln151, Asp218, Glu221, and Arg225 (Fig. EV2B). Accordingly,
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we tested all six of these highly conserved residues, identified to be
potentially relevant to Lpg1154/RavQ activity, by mutagenesis.
Substitution of His169 to alanine or arginine led to the complete
alleviation of yeast toxicity (Fig. 5A,E). The substitution of Glu151
and Asn214 to arginine residues partially alleviated the toxicity of
Lpg1154/RavQ (Fig. 5E). In contrast, the substitution of Asp218
and Glu221 to arginine did not rescue yeast growth, suggesting that
these substitutions are not detrimental to RavQ’s activity in yeast
(Fig. 5E). Notably, we also identified orthologs of Lpg1154/RavQ in
more distant members of the Legionellales order; for instance,
Aquicella siphonis from the Coxiellaceae family but also intracel-
lular pathogens from the Chlamydiales order, such as Waddlia
chondrophila or Estrella lausannensis (Appendix Table S1).

The model of Lpg1426/VpdC contained three distinct globular
domains: two cryptic domains (residues 1-299 and 622-677) that
pack onto each other to potentially form a single functional
domain, a lysophospholipase domain (E-Cod T group FabD/
lysophospholipase-like, Patatin Family) spanning residues 299 to
621, followed by a predicted disordered region (residues 678–719),
and a C-terminal helical bundle that corresponds to residues 720 to
853 (Fig. EV3A). A recent report demonstrated that this effector
relies on the C-terminal helical bundle to bind ubiquitin, which, in
turn, results in a conformational change to activate its phospho-
lipase domain to facilitate the conversion of phospholipids into
lysophospholipids (Li et al, 2022). The activity of Lpg1426/VpdC
was shown to be important for LCV expansion during the infection
of U937 human macrophages (Li et al, 2022). Together, the
predicted cryptic domains in Lpg1426/VpdC form a central seven-
stranded β-sheet which is bounded by eight ɑ-helices on one face of
the β-sheet, and a small region containing a two-stranded β-sheet
and one ɑ-helix on the other face (Fig. EV3A). Further analysis of
this cryptic domain suggested distant homology to the Ntox11
domain, a structurally uncharacterized putative toxin domain that
is broadly distributed in bacterial and some eukaryotic pathogens
(Fig. EV3B) (Zhang et al, 2012). Interestingly, the latter group
includes Naegleria fowleri amoeba species, which has been
identified as one of the natural protist hosts of Legionella
(Fig. EV3B) (Boamah et al, 2017; Fields, 1996; Newsome et al,
1985). Our analysis of this cryptic domain in Lpg1426/VpdC
suggests the formation of a negatively-charged groove formed by
highly conserved residues - Arg59, Arg66, E106, E144, Arg184, and
Tyr232—present in Lpg1426/VpdC orthologs encoded by the other
Legionella species (Fig. EV3C,D). Substitutions of Arg66 or Arg184
with glutamate partially attenuated the toxic effect of Lpg1426/
VpdC in yeast; thus, in line with this cryptic domain’s activity
contributing to this phenotype (Fig. 5B,E).

A previous report placed Lpg1489/RavX (Barry et al, 2013)
within a large group of effectors (Lpg0103/VipF, Leg0208/LegK4,
Lpg0437/Ceg14, Lpg1368/Lgt1, Lpg1488/Lgt3, Lpg2504/SidI, and
Lpg2862/Lgt2) shown to manipulate eukaryotic protein translation
(Belyi et al, 2006; Belyi et al, 2008; Fontana et al, 2011; Joseph et al,
2020; Moss et al, 2019; Subramanian et al, 2023; Syriste et al, 2024).
However, the structural and biochemical basis of this process
remains undefined. Our analysis of the structural model of
Lpg1489/RavX suggested the presence of a cryptic domain
encompassing residues 89 to 267. However, the AlphaFold2 model
of Lpg1489/RavX had low (<50%) confidence, which can be likely
explained by the fact that this effector is found only in L.
pneumophila). To overcome the potential limitation of ourT
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modeling approach using Alphafold2, we generated another
structural model using ESMFold, an LLM-based algorithm that
does not rely on multiple sequence alignment for the prediction
(Lin et al, 2023). The ESMFold-generated model of Lpg1489/RavX
was similar to the cryptic domain suggested by Alphafold2 but had
higher confidence (Fig. EV4A), and was thus selected for further
analysis. Interestingly, this model revealed distant structural
similarity to E. coli enterotoxin (PDB: 1lta) (Merritt et al, 1994),
with an RMSD of 3.05 Å over 105 equivalent positions (Fig. EV4B).
However, we were unable to assign equivalent residues to the active
site of enterotoxin. Additionally, since Lpg1489/RavX is only
present in L. pneumophila, and has no detectable homologs at the
structural and primary sequence levels, we then opted to test three
residues—Glu107, Lys254, and Cys262—that resemble a potential
catalytic triad in an exposed pocket (Fig. 5E). Despite these
predictions, individual substitutions of these residues were unable
to alleviate yeast toxicity, suggesting that each is insufficient on its
own to alter the activity of RavX (Fig. 5E).

Lpg2527/LnaB is an effector involved in the activation of the
NF-κB pathway during infection of HEK293T cells and bone
marrow macrophages (Losick et al, 2010). The molecular

mechanism of this activation remains unknown. However, it has
been demonstrated that residues 361 to 410 which are suggested to
form a potential helical bundle, are important for protein–protein
interactions (Losick et al, 2010). The full-length model of Lpg2527/
LnaB features a helical bundle (residues 1–110) that leads into a
compact cryptic domain spanning residues 111 to 333 (Fig. EV5A).
Additional structural elements in the model include a long ɑ-helix
(residues 339–393), a small three-helical bundle backed against the
long helix (residues 397–497), and an extended disordered region to its
C-terminus. The cryptic domain in Lpg2527/LnaB consists of two
helical bundles packed against each other and interrupted by an eighty-
residue insert that appears mostly unstructured except for a small β-
sheet region, packed against the base of the two helical bundles
(Fig. EV5A). Phylogenetic analysis shows that this cryptic domain is
broadly distributed in bacteria and present in over 400 proteins with
different architectures. In L. pneumophila alone, it is found in four
effectors (Lpg2527/LnaB, Lpg0437/SidL, Lpg0208, and Lpg0209)
(Fig. EV5B). Similar sequences are found in other pathogens, such as
Coxiella burnetii, several species of Pseudomonas, and Vibrio, including
several strains of V. cholerae (Appendix Table S2). Within this predicted
domain, we were able to distinguish several highly conserved residues

Figure 5. Cryptic domains in L. pneumophila effectors contribute to the yeast toxicity phenotype.

(A–D) Structural models of the cryptic domains from L. pneumophila effectors that are toxic to yeast when expressed ectopically (gray). Residue boundaries of each cryptic
domain are described in Table 8. Potentially important residues in the cryptic domains that were mutated and tested in (E) were shown in sticks (red). (E) Yeast spot
dilution assay of cryptic domain containing effectors and their respective mutants. The protein expression levels of the mutants tested were analyzed using western blot
(Appendix Fig. S12).
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arranged in a potential catalytic triad (Ser261-His305-Glu309) co-
localized between the base of the helical bundle and the β-sheet
(Fig. EV5C). The substitution of Ser261 to an alanine residue rescued
the yeast toxicity phenotype; however, the expression of the Lpg2527/
LnaB His305Arg variant caused toxicity like the wildtype (Fig. 5D,E).
The Glu309Ala substitution had a dramatic reduction of protein
expressed in yeast cells, thus, resulting in this variant being excluded
from our experimental panel. Other conserved residues in the Lpg2527/
LnaB model that may be part of this putative active site include Thr263
and Tyr304 (Fig. EV5C); however, individual substitutions of these
residues to alanine and arginine, respectively, did not lead to alleviation
of this effector’s toxicity (Fig. 5E).

Discussion

Over ten percent of the L. pneumophila proteome accounts for
effector proteins that are translocated by the Dot/Icm secretion
system into the eukaryotic host. Dissecting the individual functions
of the largest arsenal of secreted pathogenic factors represents a
significant challenge that hampers our understanding of this
pneumonia-causing bacterium’s infection strategy. The recent
dramatic improvements in protein 3D structure prediction have
provided valuable new tools for globally assessing the potential
functional domain repertoire in L. pneumophila effectors.
By combining advanced protein 3D structure modeling with a
model system phenotypic assay, we present an expansive
overview of predicted functional domains in over 360 L.
pneumophila effectors. Our comprehensive analysis has unveiled
a remarkably diverse repertoire of predicted folds and functions.
This range of predicted functional domains not only enriches our
understanding of L. pneumophila pathogenicity, but, more
importantly, provides a foundation for the functional character-
ization of potential novel functional entities within previously
uncharacterized effectors.

Previous large-scale studies of L. pneumophila effectors, based
on primary sequence analysis, highlighted the presence of a
significant number of structural motifs typically present in the
protein of eukaryotic organisms, defined as 75% and above of
protein sequences being encoded in eukaryotic genomes (Burstein
et al, 2016; Gomez-Valero et al, 2019). Among such motifs, so-
called tandem repeat motifs, including the ARM, ANK, and LRRs,
were identified as the most recurrent in L. pneumophila effector
proteins. Primarily recognized for their role in protein–protein
interactions, these structural elements are now acknowledged as
more versatile molecular recognition modules that can also be
involved in protein-lipid and protein-sugar interactions (Islam
et al, 2018). Confirming the prevalence of tandem repeats in L.
pneumophila effectors, the analysis of their predicted 3D models
suggested an even larger presence of these structural elements,
particularly for ARMs. The identification of tandem repeat motifs
in conjunction with other predicted functional domains in an
effector model may indicate their combined role in interactions
with the appropriate host substrate, which, in many cases, awaits
identification and functional characterization. Notably, all nine
effector models with predicted LRRs lacked other functional
determinants. This observation may suggest the unique role of
LRRs as autonomous protein regulator molecules in the effector
arsenal.

Another eukaryotic-like feature of L. pneumophila effectors
revealed by our analysis is the overrepresentation of proteins with
intrinsically disordered regions (IDRs). IDRs have been increas-
ingly recognized as an integral part of a cellular proteome that does
not fold into a specific 3D structure, but rather performs their
function while maintaining a range of alternative conformations
(Wright and Dyson, 1999). IDRs are estimated to be present in over
40% of a given eukaryotic proteome and their role in different
cellular processes is only starting to emerge (Latysheva et al, 2015).
In the case of analyzed L. pneumophila effector models, we
estimated IDRs to be present in at least 24% of these predicted
effector models, as compared to 4.8% estimated for the remainder
of this bacterium’s proteome. While these estimates are based on
sequence-based IDR predictions, they are further supported or even
extended by AlphaFold2 predictions, which are accepted to have
high accuracy for the identification of such regions (Zhao et al,
2023). Notably, eight L. pneumophila effector models do not
contain any recognizable structural elements. While this may be the
result of the Alphafold2 algorithm’s limitation in predicting
structural elements in these effectors, it also raises an intriguing
question of IDR effector potential function during infection and
possible functional mimicry with host cell IDR counterparts. Such
an observation further supports and expands on the previous
hypothesis about the evolutionary importance of interkingdom
horizontal gene transfer for the acquisition of “eukaryotic-like L.
pneumophila effectors (de Felipe et al, 2005; Gomez-Valero et al,
2011); therefore, this may also suggest that these effectors may be
intrinsically disordered to their full length.

Our analysis also highlighted the prominence of transmembrane
helices (TMs) in effector models, thus indicative of membrane
localization to host cell organelles or the LCV. Effectors possessing
such structural elements remain one of the most understudied
categories of the L. pneumophila effector arsenal. TMs were identified
in 62 of the effector models, with the number of them varying from 1 to
11. Notably, in the case of 22 effectors, TM helices were the only
structural element recognized in their model (often accompanied by
only disordered regions or helical bundles). In the remaining effectors
in this category, models contained other recognizable structural
elements or previously unrecognized domains with potential enzymatic
activity, such as cysteine protease or ɑ-β hydrolase functionalities.

Our analysis revealed new members of prominent protein
families, such as kinases and cysteine proteases, of which two
families have been already suggested as having the most
representatives in the L. pneumophila effector arsenal. For protein
kinases, our expands on the list of kinase effectors identified as part
of the global survey of Legionella kinases (Krysinska et al, 2022) by
identifying two additional effectors with potential kinase domains,
specifically Lpg1317/RavW and Lpg1684.

In the case of cysteine proteases, we have doubled the estimated
number of effectors expected to carry such a domain. These
included several effectors with predicted similarity to acetyltrans-
ferase domains previously described in YopJ effectors translocated
by the T3SS. This highlights the phenomenon of shared host
manipulation strategies between bacterial pathogens with drasti-
cally diverse pathogenic lifestyles and effector translocation
systems. At the other end of protein family prominence, we also
identified representatives of protein families that, to our knowledge,
have never been associated with effector arsenals, such as osmotin-
like domains and the RIFT-related alanine racemase family
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(Dataset EV2). The specific roles of such domains in the effectors’
function remain to be determined.

Many of the predicted functional domains that we identified in this
study were accompanied in effector models by additional structural
motifs—such as helical bundles, TMs, or tandem repeats—which may
contribute to their cellular function as localization signals or substrate
binding determinants. The presence of such additional functional
elements could be particularly important for the recruitment of specific
substrates in the host, as was shown for the LegK7 kinase where the α-
helical elements outside of the main enzymatic domain were shown to
be responsible for the recruitment of MOB1A (Lee et al, 2020). Several
effector models with cryptic functional domains also included L.
pneumophila effector-specific substrate recruitment elements. One
such example is the helical insertion domain characterized in the
aforementioned Lpg2147/MavC and Lpg2148/MvcA effectors to
recognize their host targets (Puvar et al, 2020; Valleau et al, 2018).
Our analysis suggests the presence of a similar structural element in
several effector models, including that of Lpg3000, which is conserved
across all sequenced Legionella species (Gomez-Valero et al, 2019).

A significant number of structural domains predicted in L.
pneumophila effector proteins lacked similarity with experimentally
characterized protein structures. In 133 of these effectors, the domains
consisted of multiple α helices assembled in various α-helical bundles.
In 35 effectors, these helical bundles were the only recognized
structural motifs. Such structural motifs appear common in a given
proteome and are particularly challenging for functional annotation
due to the lack of obvious functionally related structural signatures.
However, two recently characterized L. pneumophila effectors provide
an indication of how these structural motifs can be adapted to a
specific function in the host cell: Lpg2829/SidH and Lpg2327/Lug15.
While the arrangement of the helical bundles in Lpg2829/SidH does
not share significant structural similarity with any proteins in the PDB,
this atypical structural architecture enables it to bind to human t-RNA
(Sharma et al, 2023). Lpg2327/Lug15, despite an exclusively α-helical
structure, has been demonstrated to possess E3 ubiquitin ligase activity
(Ma et al, 2023). Given the recurrent prediction of unique α-helical
structures in L. pneumophila effectors, we anticipate more specific
activities to be associated with such structural arrangements.

A subset of L. pneumophila effector models contained cryptic
domain architectures. Notably, some of these proteins shared
significant sequence similarity with effectors encoded by other
bacterial pathogens suggesting shared functionality. During the
revision of this manuscript, recent studies have structurally and
functionally characterized Lpg2527/LnaB. Their data not only
corroborates our analysis, but also found this effector to be a new
structural fold that is part of the ampylase protein family (Fu et al,
2024; Wang et al, 2024). Therefore, effectors with cryptic domains
represent an exciting basis for the discovery of new eukaryotic cell
manipulation mechanisms employed by L. pneumophila (and
potentially other bacterial pathogens).

To conclude, by combining the analysis of both primary
sequence and 3D structural predictions of all reported L.
pneumophila effectors with functional assays, we have converged
on a full catalog of predicted functions. As a proof-of-concept of
our global structural analysis, we precisely pinpoint functional
residues that are essential for several cryptic domains by
experimentally confirming their importance for the activity of the
L. pneumophila effector in yeast cells. Many more still await a full
experimental verification. By putting together all the annotations

and analyses in the interactive web-based database, we provide a
centralized starting point for the functional studies of specific L.
pneumophila effectors with a clear map of predicted and
experimentally characterized functionally relevant 3D elements.

Methods

Reagents and tools table

Reagent/resource Reference or source
Identifier or catalog
number

Experimental models

S. cerevisiae strain
BY4741

American Type Culture
Collection (ATCC)

Cat#201388D-5

Recombinant DNA

pDONR221 Invitrogen Cat#12536017

pDONR221-Dot/Icm
substrate library

Losick et al, (2010) and
Urbanus et al, (2016)

Prof. Dr. Alex
Ensminger, University
of Toronto, Canada

pAG426GAL-FLAG Urbanus et al, (2016) Prof. Dr. Alex
Ensminger, University
of Toronto, Canada

pAG426GAL-FLAG-
Dot/Icm effectors and
their mutants

This study -

pAG416GAL-HA Urbanus et al, (2016) Prof. Dr. Alex
Ensminger, University
of Toronto, Canada

pAG416GAL-HA-Dot/
Icm effectors and their
mutants

This study -

Antibodies

Mouse anti-FLAG Cell Signaling Technology Cat#8146S

Mouse anti-GAPDH Cell Signaling Technology Cat#97166S

Goat anti-Rabbit IgG Abcam Cat#ab6721

Rabbit anti-HA Cell Signaling Technology Cat#3724S

Rabbit anti-Goat IgG Abcam Cat#ab6721

Oligonucleotides and other sequence-based reagents

QuikChange Primers This study Appendix
Tables 3 and 4

Chemicals, Enzymes and other reagents

Ampicillin BioShop Cat#AMP201.100

Dextrose Fisher Scientific Cat#D16-10

Galactose BioShop Cat#GAL500.500

Gateway BP Clonase II
Enzyme Mix

Thermo Fisher Scientific Cat#11789100

Gateway LR Clonase II
Enzyme Mix

Thermo Fisher Scientific Cat#11791020

Immobilon Western
chemiluminescent HRP
substrate

Millipore Sigma Cat#WBKLS0500

Kanamycin BioShop Cat#KAN201.50

PRESTO miniprep
plasmid extraction kit

Geneaid PDH100
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Reagent/resource Reference or source
Identifier or catalog
number

Nitrocellulose
Membrane

Bio-Rad Cat#1620115

Phusion High-Fidelity
DNA Polymerase Kit

New England Biolabs M0530S

Software

AlphaFold https://github.com/
google-deepmind/
alphafold

-

BlastP https://
blast.ncbi.nlm.nih.gov/
Blast.cgi

-

ChimeraX https://
www.cgl.ucsf.edu/
chimerax/

-

Consurf https://consurf.tau.ac.il/
consurf_index.php

-

EMBOSS Needle https://www.ebi.ac.uk/
jdispatcher/psa/
emboss_needle

-

Evolutionary-scale
prediction
Metagenonomic Atlas

https://esmatlas.com/
resources?action=fold

-

FATCAT https://
fatcat.godziklab.org/

-

Foldseek https://
search.foldseek.com/
search

-

HHPred https://
toolkit.tuebingen.mpg.de/
tools/hhpred

-

Other

ChemiDoc Touch Gel
Imaging System

Bio-Rad -

3D modeling of L. pneumophila effectors and assignment
of domain types based on ECOD hierarchy

Primary sequences and 3D structural models of all 368 L.
pneumophila effector proteins were analyzed to assign their domain
architectures and, when possible, predict potential biochemical
functions.

The 3D models calculated with AlphaFold v2.0 (Jumper et al,
2021) were retrieved from the AlphaFold DB database (Varadi et al,
2022), where available or built locally. For the six longest effectors
(Lpg0090, Lpg0693, Lpg2153, Lpg2156, Lpg2239, and Lpg2490),
which exceeded AlphaFold2 limits, sequences were split into
overlapping fragments, which were then modeled individually. In
the first step, effector regions were assigned to ECOD domains
based on sequence similarity where possible (i.e., BlastP alignment).
If the remaining sequence fragments still exceeded the limits of
AlphaFold2, they were divided into overlapping fragments of 500
or less residues. The fragments were used to build 3D models. In
cases where the initial fragment boundaries appeared to fall within
structural domains, the fragment boundaries were revised, and the
modeling was repeated. This process was repeated until models of
intact domains were built for each fragment. In cases when

AlphaFold2 models had low significance due to lack of sufficient
depth of the multiple sequence alignment, we used EMSfold, an
LLM-based algorithm that does not rely on multiple sequence
alignment for the prediction (Lin et al, 2023).

Next, unstructured regions of the 3D models were removed,
and the structured regions were divided into compact fragments
corresponding to potential structural domains. These putative
domains were then compared to structures of domains of
experimentally characterized proteins retrieved from the ECOD
database version 288 (Cheng et al, 2014) and reduced by
clustering by sequence identity with a 40% cut-off. The structural
comparison was performed using the FATCAT program (Ye and
Godzik, 2003) without allowing for twists in the aligned
structures. The results of FATCAT searches were analyzed, and
the putative domains were assigned to domain types using the
ECOD topology (T) level when possible (132 domain types are
assigned at this level). In cases when structural similarities did not
allow for clear assignment at the topology level, the assignment
was done at the higher ECOD homology (H) level (19 domain
types are assigned at this level). In a few cases, strong sequence
and/or structural similarity made it possible to assign effector
domains to ECOD at the family level (F) (six of the assigned
domain types correspond to ECOD families). In cases when,
according to the FATCAT results, the fragments of effector
models did not correspond to complete ECOD domains, the initial
division of models into potential domains was revised, and
FATCAT searches were repeated. For cases where FATCAT didn’t
find any statistically significant structural matches in the PDB or
ECOD databases, we also utilized the DALI server (Holm, 2022),
but in all cases, no additional similarities were found.

Independently, the primary sequences of the effectors were compared
to primary sequences of entries from the ECOD and PDB databases using
BlastP (Altschul et al, 1997) and HHPred (Gabler et al, 2020) algorithms.
The primary sequence similarities, if significant, were used to verify
structure-based assignments of regions to the ECOD domain topologies
and to resolve some cases where assignments to ECOD topologies were
difficult to make based on structural similarity. The data about the
presence and locations of signal peptides and transmembrane helices were
downloaded from the UniProt database (https://www.uniprot.org).
Regions with at least two consecutive transmembrane helices were labeled
as “transmembrane regions” and included in the annotations of domain
architectures unless it was possible to assign them to specific ECOD
domain types. Long stretches of structural disorder regions were indicated
by the lack of structured domains as predicted with AlphaFold, were
classified as “disordered regions” and also included in the descriptions of
domain architectures.

In addition, AlphaFold2 models were compared to a large
library for predicted protein structures using the FoldSeek server
(van Kempen et al, 2024). While FoldSeek recognition of structural
similarity to the structures from the PDB lagged that of FATCAT
or DALI, FoldSeek matches were used to verify and analyze the
structural level distant homology predictions obtained by HHPred,
as described in the previous paragraph.

In over 120 effector proteins, we found regions modeled by
AlphaFold as a series of helical hairpins or bundles without
unambiguous matches to structurally characterized proteins. If
their primary sequences also did not show any similarity to
experimentally characterized structures, we labeled these fragments
as “helical regions”.
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Identification of eukaryotic-like domains in L.
pneumophila effectors

Microbial protein families and domains with mostly eukaryotic
homologs are regarded as eukaryotic-like domains. They are more
likely to be involved in interference with the signaling and
metabolism of the host’s cell. Here, the eukaryotic-like domains
were identified among effector domains as follows:

1. The sequences of ECOD representatives of a given domain
(clustered by sequence identity with a 40% cut-off) were used to
start BlastP searches against the set of 22,925 representative
proteomes downloaded from the UniProt database (https://
www.uniprot.org).

2. The percentage of significant (e-values <0.001) unique BlastP hits
(presumed homologs) which came from eukaryotic organisms
was calculated for each domain type.

3. Domain types with more than 75% of eukaryotic homologs were
labeled as eukaryotic-like.

According to this criterion, we labeled 29 out of the 153
identified ECOD domain types as eukaryotic-like (Dataset EV2).

Identification of L. pneumophila effector domains present
in effectors from other species

The effector domains with homologs in other species were labeled
as follows:

1. The sequences of all ECOD representatives of a given domain
type (clustered by sequence identity with a 40% cut-off) were used
to start BlastP searches against the SecretEPDB database (An et al,
2017) (the L. pneumophila effectors themselves were excluded
from the set of SecretEPDB sequences).

2. The effector domains with significant (e-values <0.001) BlastP
hits in the SecretEPDB database were labeled as being present in
effectors from species other than L. pneumophila.

With the above procedure, we labeled 46 out of the 153
identified domain types as present in known effectors from other
organisms.

Cloning and DNA manipulations

The pDONR221-effector constructs used in this study were
obtained from the pDONR221-Dot/Icm substrate library from a
previous report (Losick et al, 2010; Urbanus et al, 2016). Point
mutations of each wildtype effector in pDONR221 were introduced
using QuikChange, as previously described (Liu and Naismith,
2008). Primers used for the generation of point mutations can be
found in Appendix Tables S3 and S4. The plasmid DNA of each
construct was obtained using a PRESTO miniprep plasmid
extraction kit and validated by sequencing. All pDONR221
constructs containing the wild-type effectors and their variants
were then cloned into the high-copy vector pAG426GAL-FLAG-
ccdB, or the low-copy vector pAG416GAL-HA-ccdB (Urbanus
et al, 2016) (Lpg2461 and Lpg2523/Lem26), using the Gateway LR
clonase kit.

Yeast spotting assays

All the overexpression constructs were transformed into the S.
cerevisiae BY4741 strain using a previously described lithium
acetate procedure (Salomon and Sessa, 2010). The spotting assays
of all toxic effectors and their respective variants in this study were
performed as previously described with minor modifications
(Salomon and Sessa, 2010). In brief, cultures of yeast-carrying
vectors with toxic effectors and their mutants were grown in a
synthetically defined, selective medium lacking uracil (SD-Ura) and
supplemented with 2% dextrose overnight. Following overnight
growth, cultures were normalized to an OD600 of 1 and used to
make tenfold dilutions. Each effector and its mutants were spotted
on an SD media plate lacking uracil containing either 2% dextrose
(non-inducing) or 2% galactose (inducing). After spotting, plates
were incubated for three days at 30 °C and then imaged. All
spotting assays were performed in triplicate.

Western blot analysis to validate effector
expression in yeast

The expression and solubility of the toxic effectors and their mutants
were performed using western blot analysis with a previously
described methodology where only a few modifications were made
(Salomon and Sessa, 2010; Urbanus et al, 2016). Overnight cultures
(3 ml) in selective SD-Ura and supplemented with 2% dextrose were
spun down and washed three times with ddH2O. Cultures were
diluted to an OD600 of 1 in SD-Ura supplemented with 2% dextrose
or 2% galactose, and then grown overnight. The overnight cultures
were spun down, and the yeast cell pellets were resuspended in 100 µl
of ice-cold lysis buffer (4% v/v 5M NaOH and 0.5% v/v β-
mercaptoethanol) and incubated on ice for 40min. After incubation,
1 µl of 6 N HCl and 50 µl of 3x sample loading buffer (0.05% v/v
bromophenol blue, 30% v/v glycerol, 37.5% v/v 500mM Tris-HCl pH
6.8, 0.15% w/v sodium dodecyl sulfate [SDS], and 500mM
Dithiothreitol) was added to the samples and mixed. Samples were
then boiled at 95 °C for 5 min and centrifuged for 1 min at 12000 × g.
About 20 µl of the sample was analyzed on a 12% SDS-PAGE gel for
immunoblot analysis. Proteins were transferred onto a nitrocellulose
membrane and then blocked with 5% non-fat milk in tris-buffered
saline-0.1% Tween 20 detergent (TBST) buffer for 2 h at room
temperature (RT). After blocking, the membrane was then washed
three times for 15min with tris-buffered saline-0.1% Tween 20
detergent (TBST) buffer, and then incubated overnight at 4 °C with a
primary antibody that was specific for the N-terminal fusion tag of
each overexpression construct (α-FLAG or α-HA) at a dilution of
1:1000 in 5% non-fat milk TBST. Following primary antibody
incubation, the membrane was washed with TBST three times for
15min. After the washing, the membranes were incubated with the
appropriate horse radish peroxidase-conjugated secondary antibody
(Rabbit to mouse IgG or Goat to rabbit IgG) for 1 h at RT. The signal
was detected with an Immobilon Western chemiluminescent HRP
substrate. Immunoblots were visualized using a Bio-Rad ChemiDoc
machine. The loading control western blots were performed with an
α-GADPH antibody at 1:1000 dilution in a 5% non-fat milk TBST
solution. The GADPH westerns were performed as the previously
mentioned procedure.

A blinding was not used for this study.
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Data availability

Analysis of all effector models can be viewed in the following
database: https://pathogens3d.org/legionella-pneumophila. Request
for reagents and plasmids will be fulfilled upon request
by the corresponding author Dr. Alexei Savchenko
(alexei.savchenko@ucalgary.ca).

The source data of this paper are collected in the following
database record: biostudies:S-SCDT-10_1038-S44320-024-00076-z.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00076-z.
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Expanded View Figures

Figure EV1. Both domains of Lpg0275/SdbA are involved in yeast toxicity.

(A) Schematic of the domain organization of Lpg0275/SdbA. The N-terminal domain shown in green corresponds to the hydrolase domain, whereas the pink indicates the
glycosyltransferase domain. (B) Alphafold2 model of Lpg0275/SdbA. The green represents the hydrolase domain, and the pink represents the glycosyltransferase domain.
Below is a zoomed-in view of the predicted catalytic residues of each predicted enzymatic domain. (C) Yeast toxicity panel of strains expressing FLAG-tagged constructs
of full-length wildtype Lpg0275 and its variants.
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Figure EV2. Lpg1154/RavQ forms a unique “T” shape containing a highly
conserved groove that may serve as an active site.

(A) The Lpg1154/RavQ model (residues 59–389, red) shows the base and stalk
that form the “T” shape. (B) An electrostatic potential surface representation of
a potential active site cavity of Lpg1154/RavQ, followed by a zoom-in of the
conserved residues identified in Lpg1154/RavQ and its orthologs from the
Legionella genus, which are arranged in a potential active site.

Molecular Systems Biology Deepak T Patel et al

86 Molecular Systems Biology Volume 21 | Issue 1 | January 2025 | 59 –89 © The Author(s)



Figure EV3. Lpg1426/VpdC has a cryptic domain on the N-terminus that has
structural similarity to the Ntox11 putative toxin found in human pathogenic
amoeba.

(A) Cartoon representation of the Lpg1426/VpdC Alphafold2 model. The
cryptic domain is found on the N-terminus (red), followed by a central
phospholipase domain (white) and the C-terminal helical bundle involved in
interactions with ubiquitin. (B) Structural alignment of the Lpg1426/VpdC
cryptic domain (residues 1–298, red) onto the Ntox11 Alphafold2 model
(residues 285–446, salmon) from N. fowleri. (C) Surface representation of the
electrostatic potential of the Lpg1426/VpdC model that also shows a conserved
negatively-charged pocket (dotted circle) is present in the cryptic domain. (D)
Zoom in on the positively charged region where highly conserved residues
(salmon sticks), which are present in the Legionella orthologs of Lpg1426/VpdC,
form a pocket.
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Figure EV4. Lpg1489/RavX has a central globular cryptic domain sur-
rounded by disordered loops.

(A) Structural alignment of the full-length Lpg1489/RavX models generated by
Alphafold2 (red) and ESMFold (salmon). (B) ESMFold model of the Lpg1489/
RavX cryptic domain (residues 83–263, red) onto the E. coli enterotoxin (PDB:
1LTA, residues 1–181, gray).
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Figure EV5. The cryptic domain of Lpg2527/LnaB is present in other L.
pneumophila effectors, harboring a conserved set of residues that resemble a
potential active site.

(A) Alphafold2 model of Lpg2527/LnaB which highlights the cryptic domain
(red) and the helical bundle that was previously shown to be important in the
activation of the NF-κB pathway (dark gray) (Losick et al, 2010). (B)
Representation of the Lpg2527/LnaB cryptic domain (shown in red) that is
present in other L. pneumophila effectors (Lpg0208/LegK4, Lpg0209, and
Lpg0437/Ceg14/SidL). (C) Zoomed-in image of the putative active site of
Lpg2527/LnaB that is also conserved in its Legionella orthologs and other L.
pneumophila effectors containing this domain.
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