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Estimating Two-Dimensional Frequencies by Matrix
Enhancement and Matrix Pencil

Yingbo Hua, Senior Member, IEEE

Abstract—A new method, called the matrix enhancement and
matrix pencil (MEMP) method, is presented for estimating two-
dimensional (2-D) frequencies. The MEMP method first con-
structs an enhanced matrix from the data samples, and then
uses the matrix pencil approach to extract out the 2-D sinusoids
from the principal eigenvectors of the enhanced matrix. The
MEMP method yields the estimates of the 2-D frequencies ef-
ficiently, without solving the roots of a 2-D polynomial or
searching in a 2-D space. It is shown that the MEMP method
can be faster than a 2-D FFT method if the number of the 2-D
sinusoids is much smaller than the data set. Simulation results
are provided to show that the accuracy of the MEMP method
can be very close to the Cramér-Rao lower bound.

1. INTRODUCTION

N many applications, such as synthetic aperture radar

imaging, frequency and wave-number estimation in ar-
ray processing, and nuclear magnetic resonance imaging,
it is often desired to estimate two-dimensional (2-D) fre-
quencies from a 2-D data set. If the data set is very large,
the classical correlogram method (implementanle via 2-D
FFT) can be satisfactory. If the data set is relatively small,
the correlogram method suffers from a resolution limit
called Rayleigh limit. To overcome the Rayleigh limit,
high-resolution techniques such as the 2-D autoregressive
method, 2-D maximum entropy method, and 2-D mini-
mum variance method have been developed from their 1-D
versions. To obtain the estimates of the 2-D frequencies,
searching for spectral peaks in a 2-D space is required by
all those methods. The searching is due to the difficulty
in finding the desired roots of a 2-D polynomial. It causes
a very large amount of computations, and hence limits the
estimation accuracy given a fixed amount of computa-
tions. Tutorial discussions on those methods are available
in [1] and [17].

The computational difficulty of searching in a 2-D space
also exists with other methods in [9]-[11]. This is again
due to the bottleneck: 2-D polynomial. A recently pub-
lished method [12] for estimating 2-D freguency, al-
though computationally efficient, only applies to the sin-
gle 2-D sinusoid case.

A computationally efficient method for estimating mul-
tiple 2-D frequencies is available in the work by Kung et
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al. [2]. This method, called the state space method, does
not require searching in a 2-D space. It exploits the struc-
ture inherent in the original data matrix. The 2-D fre-
quencies are computed by solving an eigenvalue problem.
However, the state space method does not work for the
case where more than one 2-D sinusoids share a common
1-D sinusoidal component. Furthermore, this method
yields two sets of estimated 1-D frequencies rather than a
set of estimated 2-D frequencies. How to pair the two sets
of estimated 1-D frequencies into a set of estimated 2-D
frequencies was not mentioned in [2].

Another 2-D frequency estimation method, called the
matrix approximation method, was proposed by Shaw-
Kumaresan in [3]. Similar to the state space method in
[2], the matrix approximation method is based on the in-
herent structure of the original data matrix. The difference
is, however, that the matrix approximation method tries
to reconstruct such a matrix, subject to the constraint of
the known data structure, that approximates the original
data matrix in a least square (LS) sense. Like those of [2],
the authors of [3] did not address the problem arising from
multiple 2-D frequencies having a common 1-D fre-
quency component. The pairing issue was also not ad-
dressed in [3].

In this paper, we will follow an approach similar to
those in [2] and [3] to exploit the structure inherent in the
original data. However, instead of relying on the original
data matrix, we will form an enhanced matrix from the
original data. The enhanced matrix is formed in such a
way that the matrix pencil approach in [4] can be applied
to efficiently estimate the 2-D frequencies. The resulting
method will be called the matrix enhancement and matrix
pencil (MEMP) method.

In Section II, the 2-D frequency estimation problem will
be formulated. A basic structure inherent in the original
data matrix will be reviewed. It will be pointed out why
the methods in [2] and [3] fail to work.

In Section III, the idea of matrix enhancement will be
introduced, and the structure of an enhanced matrix will
be studied. It will be shown that the number of 2-D si-
nusoids can be obtained from the rank of the enhanced
matrix, and the 2-D frequencies can be obtained from the
principal eigenvectors of the enhanced matrix.

In Section IV, the matrix pencil approach will be ap-
plied to efficiently estimate the 2-D frequencies from the
principal eigenvectors of the enhanced matrix. The pair-
ing issue will also be addressed.

1053-587X/92$03.00 © 1992 IEEE



2268 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 9, SEPTEMBER 1992

In Section V, the noisy data will be assumed when the
MEMP method is summarized into a step-by-step algo-
rithm. For the case where the data set is very large and
the noise covariance sequence is known except a scalar,
an asymptotically consistent version will also he given.

x(0; 0)
x(1; 0)

x(0; 1)
x(1; 1)

XM~ 1;0) x(M—~1;1) +-

In Section VI, an estimated order of computations re-
quired by the MEMP method will be derived It will be
shown that the MEMP method can be faster than a typical
2-D FFT method if the number of 2-D sinusoids is much
smaller than the data size.

In Section VII, simulation results will be provided to
show the noise robustness of the MEMP mettod. It will
be seen that the accuracy of the MEMP method can be
very close to the Cramér-Rao lower bound (CRB). A set
of equations useful for computing the CRB will be given
in Appendix A.

II. PROBLEM FORMULATION

We assume that the noiseless 2-D data sariples have
the following structure:
1

x(m; m) = 25 riexp (joi + j2nfum + j2ufun)  (2.1)

where0 <m < M - 1,and 0 < n < N — 1. Equation
(2.1) implies that x(m; n) consists of I 2-D sinusoids at
the (distinct) 2-D frequencies {( fi;, fa); i =1, - -+, I}.
{roi=1,---,I}and {¢;i =1, -+, I} are the
(nonzero) amplitudes and phases, respectively. In the
noisy case, we write x'(m; n) = x(m; n) + w(m. n), where
w(m; n) is the 2-D noise sequence. In this paper, the prime
will be used to denote the noisy quantities.

The basic problem here is to estimate {( f};, %); { = 1,
«++, I} fromx'(m; n). r; and ¢; can be straightforwardly
estimated once the 2-D frequencies are obtained since
x(m; n) is a linear function of the complex am plitudes r,
exp (j¢,). Estimating r; and ¢; will not be addressed. But
in Appendix B, a simple algorithm for this task will be
given.

To make notations simpler, we rewrite (2.1) into

I
x(m ) = 2 ayle]
2

2.2)

where
yi = exp (j2=fy) 2.3)
7 = exp (j27fy) 2.4
a; = r;exp (joy). (2.5
{a;;i=1, -, 1} are the complex amplitudes, and {(y;,
z);i =1, -+, I} the 2-D poles. Since the 2-D fre-

quencies can be obtained uniquely from the 2-D poles

(i.e., fiy = (1/27) Im (log (y)) and f5; = (1/27) Im (log

(z))), we will concentrate on the estimation of the 2-D

poles.
The original (noiseless) data matrix is defined as fol-
lows:
- x(O; N -1
s x(I; N -1
( ) 2.6)
xM - 1;,N—-1)
Using (2.2) in (2.6) yields
X = YAZ 2.7
where
[ 1 1 N 1
v=|". o 2.8)
L R 7 A
A = diag [ay, a5, - " * , )] 2.9
[ 1 Z v z’]‘/*l
1 z, - 2!
zZ= : : 2.10)
L1 IR Z/IV—l

From (2.7)-(2.10), we know that the rank of X is no larger
than /, i.e., rank (X) < I. Due to the Vandermond struc-
ture in Y and Z, it can be shown that X has the rank 7 if
and only if (iff) the two sets of the 1-D poles: {y;; i = 1,
-+« ,I}and {z;i =1, - - -, I} both contain distinct
(nonzero) elements, provided M = Iand N = . It was a
basic condition under which the state space method [2]
and the matrix approximation method [3] were developed.
But the rank of X is less than I if either one of the pole
sets does not contain distinct elements. Note that the as-
sumption (y;, z;) # (Y, z;) does not necessarily mean that
yi # y;and z; # z;. It is the ill condition (insufficient rank)
of X that causes the two methods to fail.

It is important to note that a) if rank (X) is less than /,
{ysi=1,++-,I}and {z;i =1, - -, I} cannot be
both obtained from the principal left or right singular vec-
tors of X; and b) the principal singular vectors of X do
not contain sufficient information to carry out the pairing
between y; and z;.

In the next section, we will form an enhanced matrix
from the 2-D data so that the above problems can be
solved.

III. MATRIX ENHANCEMENT

The idea of the matrix enhancement can be seen from
two simple examples as follows.
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Example 1: A row vector cannot have a rank larger than
one. However, if this vector is partitioned into two (over-
lapped or nonoverlapped) subvectors and the two subvec-
tors are stacked into a two-row matrix, then the resulting
matrix may have a rank larger than one.

Example 2: If an m-row matrix has the rank r, the ma-
trix obtained from a similar partition-and-stacking pro-
cess may have a rank larger than r.

We see that the rank condition of a matrix can be en-
hanced by a partition-and-stacking process. (This idea is
similar, from a mathematical point of view, to the ideas
of moving window [19] for a uniform linear array prob-
lem and focusing [20] for a wide-band wave direction
finding problem.)

Note that in this and the next sections, only the noise-
less data samples will be considered. The noise effects
will be discussed in Sections V and VIIL.

A. Enhanced Matrix X,

An enhanced matrix useful for the 2-D frequency esti-
mation problem is defined through a partition-and-stack-
ing process as follows:

Xo Xi © Xy-k
X X © Xy
X, - 1 2 M—K+1 3.1
X¢ 1 Xk © Xy
where
x(m; 0) x(m; 1) -+ x(m; N — L)
x(m; 1) x(m;2) +-- x(m; N—L + 1)

(m; L — 1) x(m; L) - -+ x(m; N — 1)

(3.2)

X, is an K X (M — K + 1) Hankel block matrix, and X,
isan L X (N — L + 1) Hankel matrix. Each column of
X,, is a windowed segment of the sequence {x(in; 0), x(m;
1), -+, x(m; N — 1)} with the window length L. Each
column of X, is a windowed segment of the matrix se-
quence {X,, X;, * - -, Xy _} with the window length X.
In fact, X, is a generalized version of X. If L = 1 and K
= M, X,, becomes the mth row of X, and X, becomes X.
We call X, the enhanced matrix because
rank (X,) = I = rank (X) (3.3)
in some important cases. The second relation in (3.3) has
been discussed in Section II. The first relation in (3.3)
will be discussed as follows.
Using (2.2) in (3.2), X,, becomes

X, = Z,AY;Z; 3.4)

2269

where A is the diagonal matrix of {a; i =1, - -+, [} as
defined in (2.9), and
[ 1 1 . 1
z z cet Z
z, =" " 3.5)
Lght gt gt
Y, = diag (¥, y2, =" " > YD) (3.6)
1z 2y r
1 z 2t
Zp = : : 3.7)
L1 z *-- Z?’*L
Then, using (3.4) in (3.1), X, becomes
Xe = ELAER (38)
where
/3
Z/ Y
g =" (3.9)
Z,y;"
Eg = [Zg, YyZg, - - -, Y KZg). (3.10)

From (3.8), we know that rank (X,) = I iff rank (E;) =
rank (Ep) = I

B. Conditions on K and L

Now we need to find the conditions on the free param-
eters K and L under which rank (E;) = rank (Eg) = [
Since the structures of E, and Ej are similar, only E; is
considered for the moment. Obviously, the rank of E; de-
pends on the two parameters K and L. We will show that
rank (E;) = I if

K=1 and L= 1L (3.1hH)
To show this, we need to introduce the permutation (shuf-
fling) matrix:

P’
pia+ 1L
p'(1 + (K — DL)
)
P2+ 1L

e (3.12)
P’ + (K - DL

P
pi(L+ L)

| P + (K~ DL) |
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where p(i) is the KL X 1 vector with one at the ith po-
sition and zero everywhere else. The superscript 7 denotes
the transposition. Left multiplying E; by P (i.e., shuffling
the rows of E;) yields E;» = PE; which can be shown to
be

Y,
Y,Z
E,=| " (3.13)
Yy, z5!
where
1 1 1
nooy
y, =" 2 o (3.14)
yE oy e it
Z, = diag (zy, 25, * " * , 2))- (3.15)

Note that the position of z; in E; is like that of y; in E;p,
and the position of y; in E; is like that of z; in E; . Since
Z, is a submatrix of E;, and Y; is a submatrix of E;p (a
shuffled version of E;),

M
rank (E;) = rank . (3.16)
Y,
Since {(y;, z); i = 1,2, - - -, I} are distinct, the I col-
umns of [%f] are linearly independent provided L = [ and
K = I (so that Z; and Y; each have no less than / rows).
Hence, the sufficient condition (3.11) is proven.

The necessary condition for E; to be of the full rank /
is that the number of rows of E; is no less than [, i.e.,
rank (E;) = I only if

KL = I (3.17)

If K and L satisfy the necessary condition (3.17) but
not the sufficient condition (3.11), rank (E;) may or may
not be equal to [.

Due to the similarity between E; and Ej, it can be sim-
ilarly shown that rank (Eg) = I if

M—-K+1=1 and N-L+1=1 (3.18)

or only if
M-K+DHDWN—-L+1)=1 (3.19)
Since rank (X,) = [ iff rank (E;) = rank (Eg) = I,
combining (3.11) with (3.18) yields that rank (X,) = [if

M—-—I+1=2K=1 and N-I+1=L=1
(3.20)
and combining (3.17) with (3.19) yields that rank (X,) =
I only if

KL=1 and M—-K+1)N-L+1)=1 (3.21)
If I is unknown but less than a number I,,, K and L
must satisfy the sufficient condition (3.20) so that / can

be estimated from the singular values of X,. In the sequel
(except in Section V), however, the number I will be as-
sumed to be known.

C. Eigenstructure of X,

Before we apply the matrix pencil approach, in the next
section, to extract the 2-D poles from X,, we need to study
the eigen structure of X,. The singular value decomposi-
tion (SVD) [5] of X, has the form

min
X, = 'Zl ou vl

v vt +uczL,v?

where the superscript  denotes the conjugate transpose;
min = min (KL, (M — K + 1)(N — L + 1)) which is the
smaller dimension of X,; U;, L, and V, contain the 7 prin-
cipal components; and U,, £,, and V, contain the remain-
ing nonprincipal components. Specifically,

(3.22)

U, = [uy, up, **+ , uj (3.22a)
L, = diag [0y, 02, -, 0]] (3.22b)
Vi=1[vi, 00 -+, vl (3.22¢)
U, = [u;+1, Uryqs " * 5 Uminl (3.22d)
L, = diag [0/, 0712, " * 5 Omin]  (3.22€)
V. =111, V12, " Uil (3.22f)
where 0, = 0, = * -+ = oy,. For the noiseless case, o;
>0fori =1, --,I and g, = 0 fori > I, and hence

L, is zero. Comparing (3.22) with (3.8) yields that if rank
(X)) =1,

range (X,) = range (E;) = range (U)) (3.23)

and
(3.24)

Since U, L U, and V; L V, where L denotes that the
left is (columnwise) orthogonal to the right, E; 1 U, and
E# 1 V,. The above properties can be used to estimate
the 2-D frequencies as follows. Note that only U, will be
used to produce the 2-D frequencies in the sequel al-
though V; can be used similarly. It seems that using both
of the two matrices might yield better estimates, but such
attempt has not been successful.

From the expression of E; in (3.9), we know that the
ith column of E; is

e, =y, Qg

range (X%) = range (EX) = range (V).

(3.25)

where ® denotes the Kronecker product, and y;; and z;;
are the ith column of ¥, and Z;, respectively. Because of
(3.25), we define a similar vector:

e =y Xz (3.26)

where
yo=10Ly -y (3.27)
L = [17 Z, ", ZL_I]T (328)
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(3.29)

exp (j27f3). (3.30)

Clearly, e, is a function of the 2-D frequency variable ( fi,
£5). So, we may also write e;( fi, f») in place of ¢; to em-
phasize the relationship. It can be shown that if K and L
satisfy the sufficient condition (3.20), e, belongs to span

{eL1, e, " e} iff (fy, £2) = (fii» fu), and more
importantly

y = exp (j27f)

Z

e L U, (3.31)

iff (fi, ) = (fu fo). This suggests that {(fi;. fu); § =
1, - -+, I} can be found from the peak positions of the

2-D frequency spectrum:
1

(3.32)

2 lufeh I
i=I+1

Estimating the 2-D frequencies by searching for the
peaks of the 2-D spectrum of (3.32) is very costly in com-
putation. The above approach is similar to the idea of
MUSIC [11]. In the next section, we will use the matrix
pencil approach to estimate the 2-D frequencies from the
principal singular vectors of X, (i.e., using Uyg).

IV. MaTtrIx PENCIL
The matrix pencil approach can be stated as construct-
ing two matrices in such a way that the desired numbers
(e.g., poles) are the rank reducing numbers (i.e , the gen-
eralized eigenvalues or G.E.s) of the corresponding ma-
trix pencil.

A. Extracting y;
We have shown that if the condition (3.20) is satisfied,
range (U,) = range (E,), and hence
U =ET 4.1)

where T is an unique / X I nonsingular matrix. (Note that
both U, and E; have I independent columns.) Knowing
the structure of E; shown in (3.9), we define

U, = U, with the last L rows deleted 4.2)
U, = U, with the first L rows deleted 4.3)
Using (4.1) and (3.9), we can write
U =ET 4.4)
U, = E\Y,T .5)
where
E, = E,; with the last L rows deleted. 4.6)

Then, it is clear that the matrix pencil U, — AU, becomes
Uz - )\U] = E](Yd - )\I)T (47)

where I is an identity matrix of proper dimension. Since
Y, is the diagonal matrix of the poles { y; i = 1, - -+,

227

1}, (4.7) shows (see [4]) that the poles {ysi=1+""+,
I} are the rank reducing numbers of the matrix pencil U,
— AU (i.e., the rank of the matrix pencil decreases by
one iff A = y,), if E; and T are of the full rank I.

B. Extracting z;

In order to extract the other set of poles {z;; i = 1,
-« -, I}, we need to exploit the structure of E;pin (3.13).
We define

Uyp = PU; (4.8)
U,p = U,p with the last K rows deleted 4.9
U,p = U,p with the first K rows deleted. (4.10)

Using (4.1) in (4.8), we have U;p = PE, T = E;»T. Using
this result and (3.13) in both (4.9) and (4.10), we can
write

Up = EpT @.11)
U,p = EpZ, T 4.12)

where
E,p = E,p with the last K rows deleted.  (4.13)

Then, we can write the matrix pencil U,p — ANU\p as

Uzp - )\UIP = E]p(Zd - )\I) T. (414)
Since Z, is the diagonal matrix of {z;; i = 1, =+, I},
(4.14) shows that {z;i = 1, - - -, I} are the rank reduc-

ing numbers of U,p — NU,p, if E;p and T are of the full
rank I.

C. Conditions on K and L

T has been known to be of the full rank / given K and
L satisfying the condition (3.20). To find the conditions
under which E, and E,p are of the full rank 7, we should
compare the two matrices with E, in (3.9). It can be shown
(similarly as for (3.11)) that rank (E\) =/ if

K—-1=1 and L =1
and rank (E,p) = I if
K=1I and L—-1=1

(4.15)

4.16)

Combining the above two conditions with (3.20), we ob-
tain the overall sufficient condition (for the MEMP method
to work):

M-I+1>K=1+1
4.17)

N-I+1=L-1+1.

On the other hand, the necessary condition for rank (E;)
to be I is that the number of its rows is no less than 7,

i.e.,
KXK-DL=1 (4.18)

Similarly, the necessary condition for rank (E,p) to be I
is

KL—-1) =1 (4.19)
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Combining the necessary conditions (4.18) anc (4.19) and
(3.21) yields the overall necessary condition:

K—-DL=1
KL-1)=1 (4.20)
M-K+DH(N-L+1) =1L
D. Pairing
We have now developed the MEMP method to extract
{ysi=1,-+-,1}and {z;;i =1, -+, 1} separately.

The order of poles in each set is still unknowr . Note that
the y;in { y;;i = 1, - - -, I'} is not necessarily the y; in
the (correct) pairs {(y;, z,); i = 1, - -+ , I} To obtain
the (correct but not necessarily ordered) pairs {( y;, z,); i
=1, - -, I}, we need to pair the two sets [ y;i =1,
-+« ,I}Yand {z;i =1, - - -, I} together correctly. An
optimum pairing approach may be such that a cost func-
tionof {(y;,z);i=1, -+ ,I} is minimized by a choice
among ! (factorial) possibles. The cost function may be
the sum of squared errors between the original data sam-
ples and the reconstructed data samples. Howzver, if [ is
moderately large, I' can be too large to carry out the pair-
ing process. To speed up the pairing process, we suggest
to use the property shown in (3.31). Specifically, we do

the following. Fori = 1, 2, - - - , I, we minimize
min
Wi = 2 lefety P @21

with respect to j, where e, (y;, 7)) = e, (fi;, fo). After
expressing the algorithm in terms of the / principal eigen-
vectors {u; i = 1, --- , I}, i.e., using U,UY =1 —
U,U¥, we can equivalently maximize, for i = 1, 2,
e, I,
1
Jo@ ) = 2 lufe (v, )l 4.22)

with respect to j to find the proper pairing.

The above maximization can be explicitly carried out
as follows.

1) Seti = 1.

2) Compute J (i, j) forj=1,2, -, L

3) Search for the largest value among {J,(i, j); j = 1,
2, - -+, I} to obtain the pairing index (i, j(i): and hence

the pair (y;, zj))-

4) Seti =i+ 1.

5) Compute J, (i, j) forj = 1,2, - -+ ,Itutj # jk)
where k =1,2,---,i— 1.

6) Search for the largest value among {J,(i, j); j = 1,
2, --,Ibutj +# j(k) wherek =1,2,---,1— 1} to
obtain the pairing index (i, j(i)) and hence the pair ( y;,
Zj(1))-

7) Go to Step 4) unless i = [ — 1.

This procedure does not treat the poles { y;; i = 1, 2,
-+, I} equally, i.e., y; is treated more seriously (ear-
lier) than y; , ;. If we have some a priori information about

¥;, then we may be able to order them according to their
priority before the above pairing procedure is applied. If
we know more about z; than y;, then we should inter-
change the order of z; and y; in the above pairing proce-
dure. The overall idea here is to insure that the pole we
have the best confidence with gets the best mate.

V. THE MEMP ALGORITHMS

The MEMP method for estimating 2-D frequencies has
been developed in the previous two sections assuming no
noise. In the following, we will first summarize the
MEMP method into an algorithm which processes the
noisy data. Then, another modified algorithm will be de-
veloped for the case where the data set is large and the
noise covariance sequence is known.

A. Algorithm 1

Step 1: Form the KL X M — K + h)(N — L + 1)
enhanced matrix X, from the noisy data x'(m; n) accord-
ing to (3.1). K and L must satisfy the necessary condition
(4.20). For more reliable and more accurate estimation,
K and L should satisfy the sufficient condition (4.17). (The
effects of K and L on the noise sensitivity will be dis-
cussed in Section VII.)

Step 2: Compute the singular values and left singular
vectors of X.. Estimate the number / of 2-D sinusoids from
the singular values. (e.g., see [6]). Let U; be the matrix
of the I principal left singular vectors (as U; in (3.22a)).

Step 3: Form Uj, U; from U; according to (4.2) and
(4.3). Form U.p from U, according to (4.8). Form Ujp and
U;p from Ujp according to (4.9) and (4.10).

Step 4: Compute the generalized eigenvalues (GE’s) of
Uy, — \Ujand Ujp — NUip. Let {y/;i=1,---,1} be
the first set of GE’s, and {z/; i = 1, * - - , I} the second.
(Several algorithms for the generalized eigenvalue prob-
lem are available in [7] or [13]}-[15]. The simplest is to
use the QZ algorithm [5] to solve the GE’s of | S O
—NUH U, and UHUs, — NUEU,p. The simulation re-
sults shown in Section VII were obtained by using this
algorithm.) ‘

Step 5: Fori = 1,2, - - -, I, maximize the function
shown in (4.22) (using y/ and z/ in place of y; and z, re-
spectively) with respect to j to obtain the correct pairs
{(yinz)si=1,---,1I}.

Step 6: Compute ( fy;, f>;)' from (y;, z;)' by using (2.3)
and (2.4).

B. Algorithm 2

If the data set is very large and the noise covariance
sequence is known, then the noise can be filtered out at
the covariance level as follows.

Let R be the covariance matrix of the noisy enhanced
matrix X}, i.e.,

1

R =-xXx"

G.D
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wherec =M - K+ H)N—-L+ 1). If (M — K) and
(N — L) are very large, then

R, = R, + 7R, (5.2)

where R, is the covariance matrix of the noiseless matrix
X, ie.,
1 H
R, = ZXeXE (5.3)
and yR,, is the noise covariance matrix, and v is a scalar.
Note that yR,, is a known function, although not given
here, of the 2-D covariance sequence of the 2-D noise
sequence w (m; n).

Assume R,, is known. Then the effect of yR,, on the
estimation accuracy can be removed (completely if M —
K and M — L are infinitely large and the noise is station-
ary and ergodic) by using the following algorithm.

Step 1: Same as in algorithm 1. But then compute R;
and its transformed version:

R, = R}'*R.R, (5.4)
Step 2: Compute the eigendecomposition of R;,, i.e.,
KL
R, = X Nujul (5.5)
Estimate / from the eigenvalues A\, = A}, = -+ =

Nk~ (The information criteria shown in [8] can be ap-
plied.) Note that asymptotically, \;, > v for i = 1,
ce-,Land N, =~fori=1+1,1+2, - KL Let
U, be the matrix of the I principal eigenvectors of R/,.
Then, compute

U, = RY*U.,. (5.6)

Steps 3-6: Same as in algorithm 1 but use L'}, in place
of U;.

C. Remarks

If the noise is white, then it is easy to show that R,, =
I and hence algorithm 2 is equivalent to algorithm 1.

In some applications, not both M and N are very large,
but one of them is. In this case, algorithm 2 is still appli-
cable.

Finally, we mention that the MEMP method also ap-
plies to damped 2-D sinusoids since the data structure we
have exploited so far is shown in (2.2). Given that all the
poles y; and z; are on the unit circle for the undamped 2-D
sinusoids, the enhanced matrix X, can be replaced by a
further enhanced matrix X,,:

X, = [X,, P.X]] (5.7

where * denotes the complex conjunction, and P, is a per-
mutation matrix defined by

(5.8)
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In the noiseless case,
range (X,,) = range (X,) = range (Ep) 5.9

so that the MEMP method based on either X,, or X, yields
the same results. But in the noisy case, using X,, enhances
the robustness to noise in a similar way as using the for-
ward-and-backward linear prediction equations in [16] or
as using the forward-and-backward matrix pencil in [4].
The simulation results shown in Section VII were ob-
tained by using X,,.

VI. CoMPUTATIONAL ORDER OF THE MEMP METHOD

In the following, we will first derive an estimate of the
order of real multiplications needed by each major com-
putational part of the MEMP algorithm 1 for 2-D fre-
quency estimation. The real data is assumed although the
notations for complex data are used. Then, we will com-
pare the computational order of the MEMP method against
that of a 2-D FFT method.

The major computations required by the MEMP algo-
rithm 1 are a) computing the singular values and the left
singular vectors of X, which has the dimension KL X (M
— K + )(N — L + 1); b) computing the generalized
eigenvalues (GE’s) of the matrix pencils U, — AU, and
U,p — ANUjp both of which have the dimension KL X [;
and ¢) computing all necessary J,(i, j) to pair { y;} and

{z:}.

A. Computational Order of Major Part a)

According to the Chan SVD [5], computing the singu-
lar values and left singular vectors of X, requires

KL*M — K+ h(N - L+ 1)+ JK’L* (6.1)

multiplications, where (M — K + 1)(N — L + 1) > KL.

However, the computational order shown in (6.1) can
be reduced in the following approach is used to perform
major part a):

al) compute R, = X, X" (in a fast way); and a2) compute
the eigenvalues and eigenvectors of R,.

Note that the left singular vectors of X, are the eigenvec-
tors of X,X", and the singular values of X, are the square
roots of the eigenvalues of X,X". (The numerical accu-
racy affected by the above approach is often negligible
compared to the noise effects.)

A direct computation of X, X h requires

%KL(KL + )M -K+1H(N—-L+1) (6.2

multiplications, which is in an order similar to that shown
in (6.1).

To compute X, X faster, we need to observe that the
(i, jo)th element of the (i,,, j,,)th block of X, X% (see (3.1)
is
M-K-1N-L-1
) 2 . 2 | X K ) X% i+ i+ )

6.3)
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wherel <i,<K,1<j,<K, 1=<i <l andl =
i, < L. We can see that (almost) each multiplication in
(6.3) is shared in computing several elements of X, X7 In
fact, this is due to the Hankel structure in X,. The distinct
multiplications required in computing X, X " are

6.4)
where m, n, t,,, and t, take the following sets of integers:
{t, =0, {m=0,1, M-1;{,=01,

x(m; n)x*(m — t,; n — t,)

L-Lifn=tp 41, N = 1}

and

{t.=1,2,---, K- 1;

{m=t,t,+1, -, M—1

{t,=0,1, -+ ,L - 1;

{n=t,t,+1, -+, N—1}};

{t,=-CL -1, -L+2), , — L

{n=0,1, , N +1, — 1}}}}.
Note that, for example, {t, = 1,2, -+, K- 1, {m =

t, + 1, -+, M — 1}} means that for each value of

t,, taken from {1, 2, -, K — 1}, m takes all values
from {¢,, t, + 1, M — 1}. The Hermitian property
of X, X" and its diagonal blocks has been considered to
obtain the above result.

Now, the minimum number of multiplicatioas required
to compute X, X # can be calculated as follows:

M—-1L-1N-1
DIEDINDIN
m=01=0 n=1,
K-1 M-1 L-1N-1 -1 N+itn— .
> z[zzu D> 1} (6.5)
tm=1m=tm { tn=0n=t, tw=-(L-1) n=0

which can be simplified as follows, assuming that K >>
I,L>1,M—-—K>> 1landN-L>>1,

(oo

We can see that (6.6) is much smaller than (6.2).

To compute the eigenvalues and eigenvectors of R,, the
number of multiplications required (based on the sym-
metric QR algorithm [5] and KL >> 1) is in the order of

5K°L3. (6.7)

Combining (6.6) and (6.7) yields that al) and a2) can
be carried out by using

2KL <M - g) (N - %) + 5K°L°

multiplications.

It is clear that if K >> 1 and L >> 1, (6.8) is much
smaller than (6.1). Equation (6.8) is the estimated order
of multiplications required by the major part a).

(6.6)

(6.8)
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B. Computational Order of Major Part b)

The computational order of the major part b) can be
estimated as follows. If the GE’s of the matrix pencils U,
— U, and U,p — AU,p are computed by using the 0Z
algorithm [5] on the I X [ matrix pencils vy, -
NUU, and U Usp — )\U]pUlP, then it requires 1°KL
multiplications for each of U U, and UtpUsp, and [I(I +
1)/21KL multlphcatlons for each of (Hermitian) U U,
and U%U,p, and 5I° multiplications [5] (assuming /
>> 1) for computing the GE’s of each / X I matrix pen-
cil. Hence, the computational order of the major part b)
is

3I°KL + 10I° = 3I°KL
provided K > I >> land L > I >> 1.

6.9)

C. Computational Order of Major Part c)

For each (i, j), we need (K — 1) (L — 1) complex mul-
tiplications to obtain e, ( y;, z;) from y;; and z;; (see (3.26)),
and I(KL + 1) comp]ex multiplications to obtain J,(i, j)
from {u;t =1, 2, , I} and e, (y;, 7)) (see (4.22)).

Since J,(i, j) must be computed for I + (I — 1) +
I-2)+ - +2= I(I + 1) — 1 different values of
(i, j), we need

(%I(I + 1) - DK -DAIL -1 + KL + 1))

~ 1PKL (6.10)
complex multiplications to obtain all necessary J;(i, j)
from {y;; and z;;; i = 1, 2, , 1}, assuming that /
>> 1,K>> 1,and L >> 1.

It takes /(K — 2) complex multiplications to obtain
{yui=1,2, JIY from {y;i=1,2, -+, 1},
and I(L — 2) complex multiplications to obtain {z;;; i =
1, 2, , 1} from {z;;i = 1, 2, I} The above
computations are negligible compared to 21 KL in (6.10).
Hence, (6.10) is the order of complex multiplications
needed by the major part c).

D. Computational Order of the MEMP Method

Combining (6.8)—(6.10) yields the order of (real) mul-
tiplications required by the MEMP algorithm 1:

L 3
2KL <M — g) <N - 5) + 5K3L* + 3I°KL + 3 KL

~ 2KL <M - g) <N — %) + 5K°L3

provided K > I >> 1, L > 1>> 1, M >> 1, and N
>> 1. (Note that as an engineering approximation, the
“‘much larger’”’ notation >> means at least ten times
larger.) We see that the computational order for the major
part a) is dominant in the overall computational order of
the MEMP method. We also can see that if M >> K and
N >> L, the dominant computation is to obtain the co-
variance matrix R, (or R, in the noisy case).

6.11)
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E. Comparison to 2-D FFT Method

We consider a 2-D FFT method which typically re-
quires [18]

3(log, MN)MN (6.12)

multiplications to produce a 2-D frequency spectrum.
Note that (6.12) does not include the amount of compu-
tations required to search for I 2-D (peak) frequencies. It
is clear that if / is much smaller than M and N, then K and
L of the MEMP method (see (4.17)) can also be much
smaller than M and N, and hence (6.11) can be smaller
than (6.12). In fact, the ratio of the computational order
of the MEMP method over the 2-D FFT method is, as-
suming that ] << I < K<< Mand1 << I < L << N,

4K,
log, MN'
This means that if the number of 2-D sinusoids is much

smaller than the data size, the MEMP method can be faster
than the 2-D FFT method.

(6.13)

VII. SIMULATION RESULTS

The MEMP method has been developed based on the
noiseless data. Without noise, the MEMP method yields
the exact 2-D frequencies. When the data is noisy, the
estimated 2-D frequencies have bias and variance. To
evaluate the noise sensitivity of the MEMP method, the
Monte Carlo simulation has been carried out. We have
found that the estimation accuracy of the MEMP method
can be very close to the CRB when K and L are not close
to their boundary values shown in (4.17). A set of equa-
tions useful for computing the CRB will be given in Ap-
pendix A. A typical example of our simulation results is
as follows.

A set of 20 X 20 data samples are

3
x'(m; n) = _Zl exp (j2wfiym + j2wfon) + w(m; n)

7.1

where 0 < m < 19,and 0 < n < 19, and w(m; n) is the
white noise sequence, and

(fir, o) = (0.26, 0.24) (7.2)
(fiz, f2) = (0.24, 0.24) (7.3)
(fi3, fr3) = (0.24, 0.26). (7.4)

This data set consists of three 2-D sinusoids which are too
close to each other to be resolved by 2-D FFT since the
Rayleigh limit for a 20 X 20 data set is 0.05. The three
2-D sinusoids can neither be resolved by the state space
method [2] or the matrix approximation method [3] since
the first two 2-D frequencies have the second 1-D fre-
quency component in common and the last two 2-D fre-
quencies have the first 1-D frequency component in com-
mon.

Although other methods as in [1], [9]-[11] can be ap-
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£2

i i
0.24 0.26
£1

Fig. 1. Two hundred independent estimates of three 2-D frequencies. K
=L = 3. SNR = 20 dB.

£2

i i
0.24 0.26
£1

Fig. 2. Two hundred independent estimates of three 2-D frequencies. K
=L = 4. SNR = 20 dB.

plied to this data set to estimate the three 2-D frequencies,
they are too costly in computation. The simulation com-
parison of the MEMP method against those methods has
not been obtained.

Figs. 1-4 show the estimated frequencies for 200 in-
dependent runs at SNR = 20 dB, which were obtained by
using the MEMP Algorithm 1 and X,,. SNR is defined by

1
SNR = 10 1og,0; 1.5)

where v is the variance of the complex white noise. For
Figs. 1-4, the two parameters (K, L) are equal to (3, 3),
“, 4), (5, 5), and (6, 6), respectively. Due to the sym-
metry of the 2-D data samples, we have chosen K = L.
It is clear from Figs. 1-4 that as K and L increase, the
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Fig. 3. Two hundred independent estimates of three 2-D frequencies. K
=L = 5. SNR = 20 dB.

f2

i )

0.24 0.26
f1

Fig. 4. Two hundred independent estimates of three 2-D frequencies. X
=L = 6. SNR = 20 dB.

estimation accuracy increases (i.e., the three clusters in
each figure become smaller). For K = L = 6, the biases
and deviations are shown with the corresponding CRB’s
in Table 1.

Figs. 5-9 show the estimated frequencies for 200 in-
dependent runs at SNR = 10 dB, which were obtained by
using the MEMP algorithm 1 and X,,. (K, L) are equal to
3, 3), 4, 4), (5, 5), (6, 6), and (7, 7), respectively. In
Fig. 5 where K = L = 3, the 200-run estimated frequen-
cies tend to cluster around the centroid of the three 2-D
frequencies. After we increase K and L from 3 to 4, Fig.
6 shows that the dense cluster in Fig. 5 has been scattered
(and the estimated frequencies start to reorganize them-
selves). When K = L = 5, Fig. 7 shows that the estimated

frequencies start to cluster around each of three correct
2-D frequencies. When K = L = 6, Fig. 8 shows three
denser clusters around each correct position. When K =
L = 7, Fig. 9 shows that the three clusters are further
compressed towards each correct position. The biases and
deviations for K = L = 7 are shown with the correspond-
ing CRB’s in Table II.

From Tables I and II we can see that the estimation
deviations are very close to the corresponding CRB’s.

We also can see from Figs. 1-9 that K and L are like
two tuning parameters which can be adjusted to increase
the estimation accuracy. In fact, when KL > I, there is a
(min — I)-dimensional noise subspace spanned by the
columns of U, and an I-dimensional signal subspace
spanned by the columns of U, (see (3.22)). Intuitively,
the larger the noise subspace is, the more noise compo-
nent is absorbed into the noise subspace and the less noise
component remains in the signal subspace. Since only the
signal subspace is used in the MEMP method, larger noise
subspace implies higher estimation accuracy. We can in-
crease the noise subspace, and hence (intuitively) the es-
timation accuracy, by increasing min or equivalently X
and Lif KL < (M — K + 1)(N — L + 1). This intuitive
thinking explains the simulation results shown in Figs.
1-9. In fact, the above intuitive thinking represents a sig-
nal processing approach, which we call signal processing
via inflating noise subspace (SPINS).

Note that the noise subspace is maximized when KL =
(M~K+1)N—~L+1)orwhenK =5(M + 1)and L
= L(N + 1). Also note that if KL > (M — K + 1)(N —
L + 1), not only the estimation accuracy is reduced (due
to that the noise subspace is reduced) but also the com-
putations are increased. Hence, we should normally
choose K and L such that

IM+D=K=1I+1
{2( ) (7.6)

SN+ 1) =L=1+1.

As long as the computational burden is tolerable, K and
L can be increased, from I + 1 to the maximum values
%(M + 1) and %(N + 1), to reduce the noise effects.

VIII. CONCLUSIONS

We have developed the MEMP method for estimating
2-D frequencies. An enhanced matrix has been introduced
to remove the ill condition of the original data matrix. The
matrix pencil approach has been applied to efficiently ex-
tract out the 2-D frequencies. The MEMP method is com-
putationally efficient mainly because searching in a 2-D
space is not required. An estimated order of the compu-
tations required by the MEMP method has been derived.
We have shown that if the number of 2-D sinusoids is
much smaller than the size of the data set, the MEMP
method can be faster than a 2-D FFT method.

The noise sensitivity of the MEMP method has been
studied by the Monte Carlo simulation. The simulation
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TABLE 1
BIASES AND DEVIATIONS OF 200 INDEPENDENT ESTIMATES OF THREE 2-D FREQUENCIES. THE CRB’S SHOWN
HERE ARE THE CRB’s ON DEVIATIONS. K = L = 6. SNR = 20 dB

Bias Dev CRB Bias Dev CRB

fi x107* x1073 x1073 f x107* x1073 x1073
0.26 0.31 1.05 0.40 0.24 0.01 0.31 0.32
0.24 -0.15 0.50 0.31 0.24 0.05 0.53 0.31
0.24 -0.20 0.31 0.32 0.26 -0.12 0.79 0.40

f2

. i
0.24 0.26
£1

Fig. 5. Two hundred independent estimates of three 2-D frequencies. X
=L =3.SNR = 10dB.

f2

£l

Fig. 6. Two hundred independent estimates of three 2-D frequencies. K
=L = 4. SNR = 10 dB.

results show that the MEMP method is robust to noise and
its accuracy can be very close to the CRB.

Finally, we add that the MEMP method can be ex-
tended to estimate arbitrary dimensional frequencies. Fur-

f1

Fig. 7. Two hundred independent estimates of three 2-D frequencies. K
=L =15.SNR = 10dB.

i i
0.24 0.26
31

Fig. 8. Two hundred independent estimates of three 2-D frequencies. K
=L = 6. SNR = 10 dB.

ther research is under way in this direction. A severe
problem in 3-D frequency estimation associated with ap-
plications such as 3-D radar imaging is data missing in
the collected 3-D data set.
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f2
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0.

0.26

f1

Fig. 9. Two hundred independent estimates of three 2-D frequencies. K
=L =7.SNR = 10dB.

TABLE I1
BIASES AND DEVIATIONS OF 200 INDEPENDENT ESTIMATES OF THREE 2-D FREQUENCIES. THE CRB’S SHOWN
HERE ARE THE CRB’s ON DEVIATIONS. K = L = 7. SNR = 10 dB

Bias Dev CRB Bias Dev CRB
fi x1073 x1072 x1072 £ x1073 x107? x1072
0.26 0.22 0.33 0.13 0.24 0.06 0.11 0.10
0.24 -0.22 0.18 0.10 0.24 -0.29 0.16 0.10
0.24 -0.09 0.13 0.10 0.26 0.29 0.29 0.13
APPENDIX A and
CRB FOR 2-D FREQUENCY ESTIMATION
For the 2-D frequency estimation problem, the CRB is Ti
not readily available in literature. A set of equations which é;
can be easily used to compute the CRB are given in the 6; = (A.6)
following. fu
We write fou
x = vec {x(m; n); m, n A.l . . . . .
b ) } @1 The corresponding 47 X 41 Fisher information matrix
w = vec {w(m; n); m, n} (A.2)  Fis defined as follows [21]:

where vec { } denotes a vector filled with the correspond-
ing elements. Since x'(m, n) = x(m, n) + w(m, n), we
write

’

x'=x+ w. (A.3)

Assume that the noise w is the (complex) white Gaussian,
then the probability density function of x’ is

p(x'e) = m exp (—i lx' — x|2> (A4
where || || denotes the 2-norm, v is the noise variance,
and 6 is the 41 X 1 vector of unknown parameters, i.e.,

6,
§=|: (A.5)

¢ ,
Fy= = (e o] @

where F; is the (i, j)th element of F, E{ } the expecta-
tion, (0@ / d0,) the partial derivative with respect to the ith
element 6; of 6, and log () the natural logarithm. It can
be shown, using (A.4) in (A.7), that

H
FA.=12R6{3_’C_§£]
” "~ %0,

y

(A.8)

where Re [ ] denotes the real part.
Using (2.1) in (A.1), we can show the following:

5—’5 = vec {exp [j(®; + 2nfum + 2xfum]; m, n} (A.9)
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d
37’:_ = vec {jr; exp Lj(@: + 2nfym + 2afum); m, n}
(A.10)
ox .
5],— = vec {j2mmr; exp [j(¢; + 2nfyym + 27fn)); m, n}
1i
(A.11)
0.
&x_ = vec {j2xnr; exp [j(¢; + 2nfym + 2mfun)l; m, n}.
2

(A.12)
By using (A.9)-(A.12), the following can be shown:

H
) Re [ax Bx}

ar; ar;
M-1N-1
=2 2 2 cos(¢; — &
m=0 n=0
+ 2x(fy — fipm + 27(fo — o)) (A.13)
ox" ox
2 Re l:a—r! a—(ﬁj]
M-1N-1
=2r 2 2 sin (¢ — o;
m=0 n=0
+ 2w(fy; — fipm + 2n(fy — f)n)  (A.14)
ax™ ox
2 Re { ari F}J}
M-1N-1
=227 Eo ;0 m sin (¢; — ¢,
+ 2w(fi; — fipm + 27(fo — foyn)  (A.15)
axf ox
2 Re l: 6)‘,- gfgj
M-1N-1
=2r27m Z—:o 20 nsin (¢; — ¢;
+ 27(fy; — fipm + 27(fu — f)n)  (A.16)
axH 3x
2 Re |:Eb—,- a—‘ﬁﬂ
M—-1N-1
= Zr,«rj Z Z COS (¢, - d)]
m=0 n=0
+ 2x(fii — fipm + 27(fy — foym)  (A17)
ox’ 6x]
2Re | — —
© [a@ o,
M-1N-1
= 2rr2m Z—Jo 20 m cos (¢; — &;
+ 2a(fy — fipm + 27(fu — o)) (A.18)
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6x”6_x}
0¢; fy
M-1N-1

= 2rir2w ;0 ;O n cos (¢; — ¢;

2Re[

+ 27 — fiym + 2n(fu — H)n)  (A.19)
axH 6x]
2Re | —/— —
© {afl,v of
M-1N-1
= 2r,r; (2 20 20 m* cos (¢; — &;
+ 27(fy; — fipm + 27(fy — fo)n)  (A.20)
ox* ax}
2Re | —/— —
© {afn ofy
M-1N-1
= 2r,-rj(27r)2 20 .?0 mn cos (¢; — &;
+ 2n(fy — fipm + 27(fy — fo)n)  (A21)
2 Re [M éﬁ}
af Ay
M-1N-1
= 2r,-rj(21r)2 Eo 20 n* cos (¢; — o}

Using (A.13)-(A.22) in (A.8), the 41 X 4/ Fisher infor-
mation F can be straightforwardly formed. The CRB on
the variance of the unbiased estimate of the ith parameter
6, is the ith diagonal element of the inverse F ~! which
can be computed numerically. The CRB’s on the corre-
sponding deviations are the square roots of the diagonal
elements of F~!. The CRB’s listed in Tables I, II are the
CRB’s on deviations.

APPENDIX B
ESTIMATING AMPLITUDES
The signal amplitudes {a;; i = 1, - - -, I} can be sim-
ply obtained (among other ways) as follows. Once {(yi,
z);i =1, -+, I} are known or estimated, E; and Eg
can be reconstructed according to (3.5) and (3.7), respec-
tively. From (3.8), we know that

A =E}X,E}

where the superscript * denotes the Moore-Penrose in-
verse, and

(B.1)

Ef = (E{E)"'E{ (B.2)
E; = ER(ERED)™". (B.3)
{a;i=1, -+, 1} are the diagonal elements of A.

If the noise level is high, and the noise covariance ma-
trix is known (except a scalar), and the data set is large,
then we can do the following. It can be shown, using (5.2)
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and (5.5), that the signal only covariance matrix R, can
be obtained from X as follows:

1
R, = 2 (N = uguy (B.4)
where the notations are defined in (5.5). Equation (B.4)
is the asymptotical result so that the primes are dropped.

In the asymptotical case, v = N, fori =1 -1, -+,
KL. Then, using (3.8) in (5.3), we obtain

1
- E, AE,EHAPE! = R, (B.5)
and hence
1
EAEREZA” = E;/ R(EH™*. (B.6)
Using (3.10), we can write
1 H 1 Mk m H H
S ExER = - Z_)O Y Z ZHymH, (B.7)

Since N — L is assumed to be very large, using 3.7) yields
ZRZE = (N - L + DI (B.8)

where z;’s in Zy are assumed to be distinct. Using (B.8)
in (B.7) leads to

1 H
Hence, combining (B.9) and (B.6) yields
AAY = E} R(EDH™. (B.10)

The absolute amplitudes |g;| are obtained fromn the diag-
onal elements of (B.10), but the phases are los: in (B.10).
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