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Abstract

Investigation of protein–drug recognition is key to understanding drug selectivity and binding 

affinity. In combination, the binding/unbinding free energy landscape and intermolecular 

interactions can be used to understand drug binding/unbinding mechanisms. This information 

is vital for the development of drugs with improved efficacy and explanation of mutation 

effects. This study investigated the dissociation processes of ritonavir unbinding from HIV 

protease (HIVp). Analyzing unbinding trajectories modeled by accelerated molecular dynamics 

(MD) simulations, three distinct pathways, pathways A─C, were characterized. Using a reduced 

dimensionality strategy with the principal component analysis, we carried out short classical MD 

runs with explicit water to sample local fluctuation during ritonavir dissociation and applied 

the milestoning theory to construct an unbinding free energy landscape. We found that each 

pathway showed similar values of binding free energy, albeit pathway A accounts for over 50% 

of dissociation trajectories. Interestingly, residue–residue correlation network analysis showed 

that in pathway A, a broad correlation network outside the flap region governs protein motions 

during ritonavir unbinding, which includes residues with reported mutation effects. However, the 

other two pathways showed limited correlation networks where no reported mutated residues 

were involved, explaining the favorability of pathway A. Guided by the free energy profile, we 

investigated each energy barrier and minimum, demonstrating that hydrogen bonding governed 
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movement of the flap regions, directly impacting the calculated energy. Our study provided a new 

strategy to estimate ligand binding free energy and demonstrated the importance of the transient 

interactions during ligand–protein dissociation pathways in understanding drug unbinding.

Graphical Abstract

INTRODUCTION

Drug development relies heavily on a thorough understanding of how proteins and drugs 

interact.1 Knowledge of protein–drug interactions, both in bound and transient states, 

enables researchers to strategically develop drugs, thus improving their ability to selectively 

bind to proteins of interest.2-4 The dynamic nature of molecular interactions results in 

a complex environment in which many transient states occur over the course of drug 

binding and dissociation.5 These transient states arise within an energy landscape in which 

different conformations correspond to different energy states. Various unbinding pathways 

often emerge as the system explores these energy minima and transition states during the 

unbinding process.6 Protein–drug interactions often differ between binding and unbinding 

pathways that contribute to their binding affinity; however, these intermediate processes are 

left unstudied by traditional approaches. Further, residues mutations, both in or outside the 

binding pocket, may induce structural and dynamic changes of proteins, which may have a 

substantial influence on protein–ligand interactions which impact drug potency, efficacy, and 

selectivity.7,8 Because of this, thoroughly investigating protein–drug interactions can provide 

explanations for drug resistance associated with protein mutations, both natural and induced.
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Understanding the thermodynamic and kinetic properties of drug binding and unbinding is 

of fundamental importance for determining the efficacy of a drug.9 The dissociation rate 

constant, 1/koff, can be used directly to estimate the drug residence time.10 Residence time 

is a key indicator used in accessing drug efficacy, as drugs are only effective when bound 

to their respective target.11 Experiments measured thermodynamic and kinetic properties 

of protein–drug binding such as rate constants (kon and koff) and binding affinity (ΔG). 

While these important values are used to guide drug design, solely the measurements do 

not interpret and illustrate the complete picture of structure-kinetics and/or structure–affinity 

relationships in protein–ligand systems. To achieve a complete and thorough understanding 

of drug binding, computational methods can be used to illustrate and connect structural 

interactions with thermodynamics, kinetics, and mechanisms of molecular processes. With 

these measured properties we can strategically plan a drug development process to improve 

both specificity and efficiency. This is of extreme interest in current drug development 

in which druggable targets have been identified, including human immunodeficiency virus 

(HIV).

HIV is a potentially life-threatening virus that attacks the human immune system and, when 

left untreated, results in acquired immunodeficiency syndrome (AIDS). A few viral proteins 

have been utilized for AIDS treatments, such as HIV-1 protease (HIVp).12 However, as the 

viral proteins constantly mutate, the development of drugs to kill HIV has proved difficult. 

HIVp is a symmetrical homodimeric protein responsible for the cleavage of premature 

viral proteins.13 This cleavage is responsible for the formation of mature, infectious HIV 

particles.14 HIVp serves as a prominent model system in scientific research and drug 

development15 (Figure 1A). The well-defined three-dimensional structure of HIVp allows 

insight into its molecular functions, facilitating the modeling and optimization of inhibitors 

in rational drug design.16 Protease inhibitors, which comprise a class of antiretroviral 

drugs, work by obstructing HIVp and inhibiting its function. One unique feature of HIVp 

is the well-documented characteristic flap movement, opening and closing, which serves 

as a gate to govern natural substrate and drug binding/unbinding.17,18 Understanding the 

flap movement is crucial for designing effective inhibitors.19 Many HIVp inhibitors work 

by binding to the enzyme’s active site and stabilizing the closed state.20-22 This closed 

state prevents the flaps from opening, thus inhibiting the enzyme’s catalytic activity. This 

prevents the formation of infectious viral segments, thereby limiting the progression of HIV 

infection. Studying the dynamics of flap movement and different drug binding/unbinding 

pathways with the flap dynamics provides insights into the molecular mechanisms of 

HIVp inhibitor binding and aids in better developing antiretroviral drugs incorporating this 

dynamic process.23 The mechanism of action of these HIVp inhibitors serves as a model for 

understanding enzyme inhibition, contributing to a broader knowledge applicable to other 

enzymatic systems.

Ritonavir is a common HIVp inhibitor that is used in the treatment of HIV24 (Figure 

1B). Ritonavir noncovalently binds to HIVp and stabilizes the closed state. Experimental 

techniques (i.e., X-ray crystallography) determine 3-dimension structures that allow 

observation of ritonavir bound to HIVp.25 However, crystal structures lack movement and do 

not give insights into all of the interactions that occur during the unbinding of ritonavir from 

HIVp. This is particularly important when flap mobility is key in drug-unbinding. While 

Vig et al. Page 3

Biochemistry. Author manuscript; available in PMC 2025 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nuclear magnetic resonance (NMR) spectroscopy can provide quantitative information 

on protein dynamics, NMR has limitations in revealing all atomistic details during drug 

binding/unbinding. Understanding these dynamic interactions is crucial, as HIVp mutations, 

which affect flap mobility, have been shown to increase resistance to ritonavir.26 Insights 

into ritonavir’s dynamic interactions with HIVp may help to explain this resistance.

Molecular dynamics (MD) simulations model movements of protein–drug complexes over 

time, providing insights into the interactions and structural changes associated with drug 

association/dissociation.27 MD allows for the visualization of unbinding pathways and can 

handle large, complex systems, making it ideal for understanding dynamic processes and 

resistance mechanisms. In conventional molecular dynamics (cMD) simulations, the time 

that it takes for a drug to dissociate from a protein can vary greatly. For strong binders, 

dissociation might take milliseconds to hours. As cMD typically only simulates nanoseconds 

to microseconds of realtime dynamics, observing spontaneous dissociation within this period 

is highly unlikely unless additional techniques are used to speed up the process. Enhanced 

sampling techniques have been widely used to investigate ligand binding kinetics.28 For 

example, using accelerated molecular dynamics (aMD) has allowed efficient conformational 

sampling of HIVp by reducing energy barriers which resultingly increases the occurrence of 

rare events.29,30 In combination with a reseeding approach, aMD can be used to collectively 

study rare dissociation events in great numbers. Earlier studies using this approach have 

shown that ritonavir dissociates from the binding pocket via three distinct pathways.31 

Though past simulations have shown the presence of multiple pathways, additional analysis 

and constructing a ligand unbinding free energy landscape further provide quantitative 

data to understand protein–drug recognition and the probability differences between each 

pathway. Popular analyses such as molecular mechanics Poisson–Boltzmann surface area 

(MM-PBSA) provide insights into molecular interaction energy and solvation effects.32 

However, changes of entropy and free energy during ligand binding/unbinding, the vital 

assessment of molecular flexibility, are difficult to calculate via traditional techniques. As 

HIVp is known to function largely through flap movements, accurately describing protein 

flexibility is crucial in fully understanding ligand binding and protein function.

A key metric for understanding the thermodynamics of the complex is the free energy 

profile, also termed the potential of mean force (PMF). Here the PMF refers to the free 

energy of a system as a function of a defined coordinate. It is commonly seen for ligands 

to move back and forth in the binding pocket, as is the case with ritonavir (Figure S1). 

Therefore, providing a defined coordinate which can accurately describe the molecular 

movement during drug unbinding is not straightforward. For example, the use of a simple 

center of mass distance or root-mean-square deviation (rmsd) of ligand position may not 

be adequate to depict ligand binding or unbinding. As a result, reduced dimensionality 

using principal component analysis has been utilized to better define a ligand unbinding 

coordinate.33

In this study, we calculated the free energy profile for unbinding of ritonavir from HIVp. 

We investigated 3 major unbinding pathways and used the binding kinetics toolkit (BKiT) 

package to define the ritonavir unbinding coordinate and construct PMF using many short 

cMD and the milestoning theory.34,35 The exact drug–protein interactions from local energy 
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minima are of extreme interest, as they would affect drug-binding kinetics, even though the 

absolute binding free energy is the same despite the unique unbinding pathways. Protein–

drug conformations existing at minima stabilize the HIVp–ritonavir complex. By connecting 

local free energy minima and barriers to key unbinding events, we can verify the free energy 

profiles and explain how hydrogen bonding in flap regions impacts free energy. Energy 

wells are directly attributed to hydrogen bonding between ritonavir and HIVp, stabilizing 

the bound complex. Further, side chain correlation studies provide insight into total protein 

movement and cohesiveness unique to each of the three pathways. Understanding protein 

movement and ligand–protein interactions at transient states can help us optimize drugs with 

desired kinetic properties36,37 as well as provide insight into the cause of mutation-related 

drug resistance.

MATERIALS/EXPERIMENTAL DETAILS

Molecular Systems.

Ritonavir–HIVp dissociation trajectories sampled by aMD were taken from published work 

that used Amber14SB for protein and GAFF for ligand.31 The initial frame of aMD was 

taken from 100 ns cMD runs, which used the protein data bank entry 1HXW as the 

initial bound state, with a single protonation state applied for Asp25. AMD allows for the 

sampling of rare dissociation events by adding a continuous non-negative bias or “boost” 

potential. Both dihedral and total potential energy boosts were applied. Boost factors were 

calculated based on 100 ns bound state ritonavir–HIVp cMD simulations. Reseeding was 

used to generate multiple MD simulation production runs from one initial conformation. 

AMD, when combined with reseeding, results in the capturing of many ritonavir unbinding 

events. In order to better sample these unbinding events, we selected frames from the aMD 

dissociation trajectories as the initial frames for short MD runs. Initial frames for short MD 

runs were taken every 100 ps for the majority of the simulation. As ligand leaves the binding 

pocket, we decrease the interval of initial frame selection to once every 20 ps to better 

cover the PC space. Initial frames varied between pathways to account for differences in 

the simulation length. The breakdown of initial frames is detailed in Table S1. We ran 10 

replicas of short MD runs for each initial frame. Explicit solvent was used. All short MD 

runs were 100 ps long unbiased cMD with the TIP3P water model, Amber14SB for protein, 

and GAFF for ritonavir at 298 K. Frames in short MD runs were saved every 100 fs. By 

using many short MD runs, we are able to (1) sample transitions between unbinding indexes 

and (2) validate proposed dissociation pathways.

Constructing the Unbinding Free Energy Profile.

Defining Unbinding Coordinates.—To project high dimensional trajectories into low 

dimensional spaces, Cartesian coordinates are taken from aMD and stored in a matrix 

consisting of the x,y,z coordinates of each α carbon of HIVp and each heavy atom of 

ritonavir. This matrix is then projected onto the principal component (PC) space. Only 

the first two PCs (PC1 and PC2) are generated. PC space encapsulates the key motions 

of ritonavir into a smaller subset of the principal components. This results in a series of 

positions that represent the primary motions ritonavir undergoes during dissociation from 

HIVp. A score plot is made of PC1 vs PC2 and a smooth path is generated by taking 
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a continual average of frames before and after 100 steps of each frame. Loops are then 

removed from the smoothed path, and milestones are placed with a width of 4 Å. Each 

milestone represents an unbinding index, a key position of ritonavir during dissociation from 

HIVp.

Defining Representative Frames.—Representative clusters for the unbinding index 

are then defined as projected frames that fall within 1.5 Å of a milestone. For any given 

unbinding index, we keep at most 10 configurations that fall closest to the milestone. These 

frames are saved for the validation of unbinding trends associated with each milestone. A 

trajectory can then be created by using one representative frame for each milestone. For 

milestones with multiple frames per representative cluster, we selected the frame nearest 

to the average in the PC1/PC2 space as the representative frame. For milestones with no 

representative clusters, we use a representative frame from the neighboring milestone.

Construction of the Transition Matrix.—Transitions between the unbinding indexes 

are computed by analyzing the system behavior in numerous short MDs. We provide two 

methods of constructing transition matrix, PC based or ligand rmsd based. For the PC 

based method, unbinding indexes are found, as previously described. The system movement 

in each short MD is examined and judged to see whether it crossed any two consecutive 

unbinding indexes. If a transition occurs, two neighbor unbinding indexes and frames are 

recorded to compute the time needed in such a transition. BKiT counts numerous transitions 

and computes the average lifetime (τi) and its standard deviation (στ, i) of each transition. 

This data then is used to construct a transition matrix, which quantifies the probability of 

transition in or out of each unbinding index. The ligand rmsd based method uses the same 

protocol for constructing the transition matrix instead using ligand rmsd as initial unbinding 

indexes.

Constructing the Unbinding Free Energy Profile.—The free energy profile, also 

termed the PMF, provides quantitative free energy values using the unbinding index as 

a reaction coordinate. This allows us to examine energy trends relative to each stage 

of ritonavir’s dissociation. Free energy of each unbinding index can be calculated by 

F = − KBT ln(qiti) where qi is the stationary flux of each unbinding index (i) and ti is the 

averaged lifetime of unbinding index (i). Stationary flux quantifies the number of transitions 

into any given unbinding index per unit time as computed from the transition matrix. Bkit 

computes the stationary flux by solving the eigenvalues of the transition kernel. Eigenvalues 

equal to 1, the highest possible value, represent the stationary flux. The binding free 

energy is estimated as the difference of the lowest energy (bound state) and highest energy 

(unbound state or max energy barrier) on the free energy landscape. The mean first passage 

time (MFPT) of index n can be estimated by MFPT = ∑qiti ∕ qn, where residence time is 

estimated when the index n shows that the ligand already unbinds from the pocket.

Examining Ligand–Protein Interactions and Stability Factors.

Hydrogen Bond Analysis.—The unbinding free energy is largely determined by 

interactions within the protein. For instance, each hydrogen bond between the ligand 

and protein may contribute up to a few kcal/mol to interaction energy.38 To hydrolyze 
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the peptide bond in premature protein, Asp25/124 establishes hydrogen bonding with the 

peptide backbone in the substrate, whereas Ile50/149 stabilizes the substrate with a water 

bridge.39 To better understand which residues may form H-bonds with ritonavir during 

ligand dissociation, we analyzed and plotted H-bond versus time by using the CPPTRAJ 

program.40 The criteria for H-bonding are (1) the distance between donor D and acceptor A 

< 3 Å, and (2) the D-H-A angle, where H is the shared hydrogen, at least 150°. Hydrogen 

bonds were also collected using the VMD hydrogen bond plug-in, following the same 

parameters.

Pairwise Side Chain Correlation.—Side chain correlation values were measured using 

T-Analyst.41 The Pearson correlation formula was used to compute the pairwise correlations. 

To ensure accuracy and avoid computational errors arising from discontinuity margins (±180 

or 360°/0°), we transformed the side-chain rotation angles into Cartesian coordinates using 

eqs 1-3.

rxy = ∑i = 1
n (xi − x)(yi − y)

∑i = 1
n (xi − x)2 ∑i = 1

n (yi − y)2

(1)

x = arctan sin (x1) + sin (x2) + … + sin (xn)
cos (x1) + cos (x2) + … + cos (xn)

(2)

xi − x = arctan sin (xi)cos (x) − sin (x)cos (xi)
cos (xi)cos (x) + sin (xi)sin (x)

(3)

rxy: dihedral Pearson correlation, x : mean of dihedral angles, xi: side chain dihedral angles.

Residues that shared a correlation value above 0.50 were labeled positively correlated with 

negatively correlated values falling below −0.50. A positive correlation between two side 

chains suggests that they rotate similarly during MD simulation. As tail regions show high 

movement, there are increased odds of capturing correlation by chance. For this reason, 

correlation pairs including tail regions have been negated. For residues in which multiple 

dihedrals showed correlation, the dihedral with the highest correlation value was reported.

RESULTS AND DISCUSSION

This section begins by reporting ritonavir unbinding free energy landscape for distinct 

unbinding pathways sampled by aMD runs.31 Pathway A describes unbinding between the 

flap region and the loop region. Pathway B describes surface-level diffusion through the 

flap region. Pathway C describes surface-level diffusion through the interface region. Of 

these studies, pathway A accounted for over 50% of dissociation trajectories. We showed 
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that ritonavir’s navigation through HIVp in each pathway and drug–protein interactions 

associated with each pathway differ greatly. We used two unbinding coordinates to present 

the unbinding index for constructing PMF. The investigation of residue–residue correlation 

and the implications of mutation effects are also discussed.

Computed Unbinding Free Energy Landscape.

Using PC Space to Compute Free Energy Landscape and Residence Time.—
Using a coordinate to precisely describe ligand unbinding from the protein pocket is crucial 

in PMF calculations. Only when the unbinding coordinate can be reasonably described, 

which include key movements of protein side chains and ligand functional groups, the free 

energy barriers and minima shown in the computed free energy landscape can accurately 

associate with ligand dissociation processes and explain binding kinetics. As demonstrated 

in Figure S3, we first performed principal component analysis (PCA) and project the 

Cartesian coordinate representation with high-dimensional ligand–protein motions (3N-6 

degrees of freedom, where N is the number of atoms) to only two-dimension (2D) space 

using the first 2 PC modes (degrees of freedom). We used the BKiT package to assign 

milestones in the 2D-PC space, and construct PMF using various short 100 ps classical MD 

runs.

As illustrated in Figure 2, the calculations revealed a rugged ritonavir unbinding free energy 

landscape, where the free energy barriers and minima shown in the landscape associate 

with important molecular movements, as discussed in the next subsection. Unbinding free 

energies and residence time of ritonavir–HIVp were also approximated from the PMF (Table 

1, left column). PC modes represent fundamental motions during ritonavir dissociation, 

where pathways A and B share similar unbinding free energy values, −9.4 and −9.5 kcal/

mol, respectively. Pathway C is less energetically favorable, with an unbinding free energy 

of −6.1 kcal/mol. Pathways A and B demonstrate a gradual increase in energy as the 

unbinding progresses (Figure 2A,B), while pathway C shows a large and shallow free energy 

well during ligand unbinding (Figure 2C). It should be mentioned that the free energy 

profiles for each pathway lack a clear plateau which would typically be expected.42,43 

This is due to incomplete sampling of the unbound state. As the interaction energy is 

close to zero, a complete sampling of the free energy barrier would require thorough 

sampling of surface interactions to account for entropic penalty. This level of sampling 

is computationally expensive but offers little additional insight into drug discovery. For 

example, under our current sampling conditions, it is estimated to take about 92 h with 

10 nodes (1GPU + 1CPU) running simultaneously to complete short cMDs for all three 

dissociation trajectories. Capturing the unbound state would greatly increase this run time. 

As we focus primarily on local free energy minimia and barriers and mechanistic insights of 

unbinding prior to the fully unbound state, our margin of error of total unbinding free energy 

falls within an acceptable range of experimental values. PMF calculations are relatively 

inexpensive, taking approximately one h per pathway on a single GPU to construct a 

transition matrix, making this a practical method for computation of local energy trends.

Using Ligand rmsd to Compute Free Energy Landscape and Residence Time.
—While the PMF using the 2D PC space to present the unbinding coordinate provides 
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valuable insights into HIVp and ritonavir movement during ritonavir unbinding, the 

absolute binding free energies from all 3 pathways were underestimated, compared with 

the experimental binding free energy of ~−13.7 kcal/mol. The respective residence times 

also differed from the experimental value of 463 s. As detailed in a published work, the 

differences between the computed and experimental values mainly came from skipping data 

points when counting transitions between milestone indexes presented by straight lines in 

the 2D space44 (Figure S7). In addition, missing coverage of molecular motions using the 

first 2 PC modes. The combined coverage of the first 2 PC modes for ritonavir unbinding 

from HIVp under pathway A was 56%, where 44% of the motions were not considered in 

the 2D space. Pathways B and C had 69.8% and 60.9% coverage, respectively. Therefore, to 

avoid skipping data points when using a line in the 2D space, we used ligand rmsd to present 

ritonavir unbinding with 0.1 Å intervals to present milestones. This one-dimensional (1D) 

milestone index can ensure that every transition between two adjacent milestones is counted, 

and no data point is skipped. The computed binding free energy with the 1D milestone 

index under pathway A, B, and C are −14.1, −15.4, and −14.9 kcal/mol, respectively (Table 

1, middle column), which are in good agreement with experimental measurement. The 

computed drug residence times for ritonavir dissociation from HIV protease under pathways 

A, B, and C are 2.5 41.6, and 29.6 s, respectively, which are in the ballpark of experimental 

residence time, ~463 s. It is important to note that experimental residence times are an 

ensemble, while the computational residence time for each pathway is constructed from one 

pathway. This leads to an inherent degree of error, particularly for pathways that happened 

rarely. Once again, due to the low cost of these calculations and the complexity in estimating 

drug residence times, the moderate accuracy of our residence time calculations provides 

useful insight. While use of 1D to present milestones can accurately reproduce experimental 

binding free energy and residence time, using ligand rmsd cannot accurately describe HIVp 

and ritonavir motions during ligand unbinding (Figures S1 and S2). Ritonavir exhibits a 

back-and-forth motion during dissociation. By this, we mean that ritonavir may away from 

a stable local free energy minimum slightly before returning to its previous position. This 

is not atypical of drugs during dissociation. rmsd does not provide a spatial component as 

it only measures absolute distance. Because of this motion, several different conformations 

may all have the same rmsd value (Figure 3). Using the rmsd to create a free energy 

landscape results in a plot without clear peaks, leaving us unable to further evaluate the 

mechanism using local minima and maxima. Using PCA allows us to estimate the relative 

energy, although the total unbinding free energy was underestimated. Nevertheless, this 

correction validates that the error sources came from the use of milestones presented by lines 

in the 2D PC space, which inevitably skip transition counts.

Thermodynamic Investigation of Free Energy Landscape.—By examining the free 

energy landscape, we are able to illustrate the relative stability of different HIVp–ritonavir 

conformations and provide insights into how and why the transitions occur between the 

free energy minima and barriers. Here we aim to examine conformations associated with 

these energy minima and barriers to learn the governing key interactions that occur during 

ritonavir dissociation. We showed that these interactions are different between dissociation 

pathways and also influence the overall movement of HIVp. Further, by being able to 
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connect energy data to existing interactions, we validate both the unbinding pathway and the 

free energy landscape.

Free Energy Landscpe under Pathway A.—The unbinding free energy landscape 

identifies three major energy wells and three major energy barriers over the course of 

ritonavir’s dissociation from HIVp via pathway A (Figure 4). The computed free energy 

landscape correctly captured the interactions of the crystal-bound state at energy minimum 

A (Figure 5A). Upon visual analysis, it was concluded that the computed free energy 

landscape can correctly capture the crystal bound state. By visualizing ritonavir–HIVp 

interactions at energy minima A, we found hydrogen bonds between ritonavir and Asp25 

and Asp 29, in addition to pi-stacking between ritonavir and Arg107. As the system 

progressed, interactions between ritonavir and HIVp were broken, giving us energy barrier 

B (Figure 5B). As ritonavir approaches Thr 80, a strong hydrogen bond of 1.8 Å between 

the hydroxyl groups of ritonavir and Thr 80 was formed, which further attracted ritonavir to 

the loop region of Thr 80 (Figure 5C). More interactions were followed by such hydrogen 

bonds. Gly 150 and Ile 149 formed hydrogen bonds with ritonavir as well. Nonpolar 

attraction between Ile 146 and ritonavir was also observed. Flap regions of HIVp opened, 

exposed ritonavir to solvent, and reduced contact with ritonavir, giving energy barrier D 

(Figure 5D). Nonpolar attraction was the major interaction between ritonavir and HIVp. As 

ritonavir keeps moving to the left side of HIVp, the flap region on the right side closed, 

resulting in a slightly lower energy barrier compared to barrier D (Figure 5E). Once ritonavir 

moved to the gap between flap and loop region, a local energy minimum was observed 

at energy well F (Figure 5F). As ritonavir kept moving along unbinding pathway A, it 

temporarily formed a hydrogen bond with Lys 154, resulting in a tiny energy minimum at G 

(Figure 4G), prior to ritonavir’s complete dissociation.

Free Energy Landscape under Pathway B.—We further constructed the free energy 

landscape of ritonavir unbinding from HIVp under pathway B (Figure 6). Once again, the 

computed free energy landscape correctly captured the interactions of the crystal bound 

state at energy minimum A (Figure 7A). These hydrogen bonds were broken at energy 

barrier B (Figure 7B). Since pathway B involves ligand diffusion on the flap region, minimal 

interactions between ritonavir and the loop region were observed. At energy minimum C, 

ritonavir formed hydrogen bond with Asp 128, Gly 51 and Gly 148 (Figure 7C). Energy well 

D was observed with a hydrogen bond between ritonavir and Asp 128, Ile 149 (Figure 7D). 

As flap regions opened widely and exposed ritonavir to solvent, reduced contact between 

ritonavir and HIVp and broken hydrogen bonds, a steep energy barrier showed up from D 

to E, where minimal contact between ritonavir and HIVp was presented at energy barrier E 

(Figure 7E). As ritonavir moved along the flap region, it encountered Lys 142 and formed a 

transient hydrogen bond, giving a small energy well, F (Figure 7F).

Free Energy Landscape under Pathway C.—We further examine the free energy 

landscape of ritonavir unbinding from HIVp under pathway C (Figure 8). The computed 

free energy landscape correctly captured the interactions of the cocrystal bound state of 

ritonavir–HIVp (Figure 9A) and the breaking of these hydrogen bonds at energy barrier 

B (Figure 9B). At the local energy minimum C, ritonavir was mostly attached to the flap 
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region with hydrogen bonds to Ile 50, Ile 149, and Gly 151 (Figure 9C). More interactions 

between ritonavir and interface region of HIVp were observed. At the energy well, D. 

Ritonavir left the flap region and started contacting Arg 8 with two hydrogen bonds, plus 

hydrogen bonds with Asp 129 (Figure 9D). As ritonavir kept moving toward the interface 

region, the attraction between ritonavir and Arg 8 grew strong. Three hydrogen bonds were 

observed between ritonavir and Arg 8 at energy well E (Figure 9E).

Insights provided from Free Energy Plot.—Energy barriers and wells were 

successfully attributed to particular protein–ligand interactions, validating the free energy 

plot specific to each dissociation pathway. These interactions contribute highly to the overall 

unbinding free energy. Hydrogen bonding was seen to have a large impact on movement 

in the flap region. However, visual analysis of protein–ligand interactions did not account 

for the discrepancy in the occurrence between pathway A and the other two pathways. It 

is likely that an additional component, separate from unbinding energy, is impacting the 

dissociation of ritonavir from HIVp.

Analysis of Pathway-Specific Side-Chain Correlation.—Mutation studies have 

shown that single mutations are not impactful on HIVp affinity for substrate, however 

mutation combinations result in drug resistance.45 This indicates that single residue studies 

are not sufficient on their own to understand the ways in which ritonavir can dissociate 

from HIVp. In combination with the previous single residue studies, we ran a side-chain 

correlation analysis specific to each of the three pathways. This gives insight into the 

cohesiveness of the protein in binding to ritonavir. Pathway A exhibited an extensive 

network of highly correlated residues (Table 2).

These residues had high coverage across the majority protein and were not localized to any 

singular region, although they were primarily absent in flap regions (Figure 10). Higher 

amounts of correlated residues were found on the side of HIVp in which ritonavir dissociates 

along in pathway A. Correlation was demonstrated in mirror loop residues ASN83 and 

ASN182, indicating symmetric loop movement during ritonavir dissociation. Pathway A 

demonstrates a highly correlated protein that arranges side-chain movements to interact with 

ritonavir. The flap regions move according to single residue conflicts and are predominantly 

governed by hydrogen bonding as it relates to the PMF. However, in pathway A, the rest of 

the protein exhibits organized motion that helps to shape HIVp and stabilize transient states 

of ritonavir. This correlation network cannot be predicted using free energy alone. These 

findings are supported by known resistance data, as residues appearing in the correlation 

network, ILE84 and Val131, are known to have less favorable interactions in drug resistant 

strains of HIVp.45 It is worth noting that when the correlation threshold is lowered below 

∣0.5∣, this correlation network is far more expansive and encompasses more known resistance 

residues.

Pathway B exhibited a less extensive network of highly correlated residues (Table 3). These 

residues were localized primarily to the interface region and once again were absent in the 

flap regions (Figure 11). Pathway C lacked a correlation network. Only two residue pairs 

in pathway C demonstrated a high positive correlation. Pathway c was absent of negatively 

correlated residues (Table 3).
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These residues did not follow any clear pattern or localization and appear random in nature 

(Figure 12). Neither pathway B nor pathway C had a correlation network involving any 

residues known to impact drug resistance. Single residues give some insight into the total 

energy of each dissociation pathway; however, the exceptionally cohesive motion of the 

protease seems to be the major contributor to pathway A being favored.

CONCLUSIONS

Due to increasing drug resistance from protein mutations, it is increasingly challenging 

to develop drugs with high efficacy when a protein target mutates. Considering drug 

binding kinetics by examining the drug binding/unbinding pathways reveals transient states 

during drug binding/unbinding, which provide a more complete picture of molecular 

recognition and understanding of mutation effects of distal sites. While many protein 

systems demonstrate a single channel for ligand binding/unbinding, HIVp has highly 

flexible flap regions to allow ligand binding/unbinding via different pathways. As a result, 

examining one single pathway is insufficient to understand drug unbinding. This study 

therefore investigated different unbinding pathways in detail to uncover key transient states 

and residues of interest. By combining this with side chain correlation, we uncovered 

new information on the motion of HIVp as ritonavir dissociates. Our study shows that 

the computed free energy landscape captures detailed ligand–protein interactions during 

ligand unbinding using the 2D PC space to define unbinding coordinates and milestones. 

However, the computed absolute binding free energy and residence time were obtained with 

moderate accuracy. We also used ligand rmsd as unbinding coordinates, and use of the 

1D milestones resulted in accurate absolute binding free energy and drug residence time 

compared with experimental measurements. Combining these two approaches, we validated 

our sampled unbinding pathways and demonstrated key interactions that brought about free 

energy barriers and minima during ritonavir dissociation.

Ritonavir–HIVp interactions, particularly those in the flap region, show that hydrogen 

bonding contributes significantly to the free energy and governs dissociation of ritonavir 

from HIVp. These interactions can be directly tied to the unbinding free energy plot in each 

of the three pathways. However, the studies of ritonavir–HIVp interactions are insufficient 

to explain the low occurrence of pathway B and pathway C in comparison to pathway A, 

considering the similarity in the unbinding free energy between the pathways. We therefore 

carried out side-chain correlation to find the residue–residue interaction network, which is 

not directly visible in the energy profile. Pathway A exhibits a remarkably large residue 

correlation in the protease itself, allowing HIVp to adjust intramolecular interactions to 

better accommodate ritonavir to form hydrogen bonds during ligand dissociation and lead 

to the most popular unbinding pathway. The correlation analysis disclosed these highly 

correlated residues in pathway A, which include ILE84 and Val131 reported in mutations 

and drug resistance. When the residues mutated, the residue correlation network was 

altered, leading to less stable intermediate states that accelerate drug dissociation. This 

study explains how the distal sites may affect the drug binding affinity. As the protein 

most commonly works via a wide-scale correlation network, we also demonstrated that 

considering single residue-drug contacts is not enough in understanding drug unbinding 

processes. This explains why multiple mutations need to happen simultaneously to cause 
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drug resistance to ritonavir. Our study also explains that when mutations occur outside of 

flap regions, though not directly affecting drug-HIVp binding in the catalytic pocket, it may 

disrupt the correlation network of HIVp and facilitate the dissociation of ritonavir. These 

mutation effects would be difficult to predict using thermodynamic data alone. Based on the 

results of this study, protein correlation may be used as a factor in predicting ligand–protein 

binding kinetics and specificity. If a ligand–protein system has a widespread correlation 

network, it may suggest that it can better stabilize transient states, thus making the ligand an 

ideal inhibitor with a high residence time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
HIVp and ritonavir structures. (A) HIVp structure with color-coded regions: flap (orange: 

residues 42–60 and 141–159), flap tips (orange: residues 49–52 and 148–151), loop (pink: 

residues 75–85 and 174–184), catalytic triads (blue: residues 23–29 and 122–128) and dimer 

interface (red: residues 1–9, 86–99, 100–108 and 185–198). Catalytic residues, Asp 25 and 

Asp 124, are shown in licorice. (B) Two-dimensional structure of HIVp inhibitor ritonavir.
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Figure 2. 
Pathway specific free energy landscape of ritonavir unbinding from HIVp. Free energy 

landscape of pathway A (A), pathway B (B), and pathway C (C) computed using unbinding 

coordinates defined from the PC space, labeled as PC coordinate in Table 1. Pathways A 

and B demonstrate a progressive increase in energy. Pathway C exhibits an initial jump 

in energy, followed by a large plateau, before a final energy jump upon unbinding. The 

absolute binding free energy ΔG estimated from the plots is systematically underestimated, 

compared with experimental results. However, the free energy plots allow for relative energy 

studies of local minima and maxima.
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Figure 3. 
Ritonavir rmsd during dissociation pathway A. Ritonavir rmsd is seen going up and down 

during dissociation, representing a back-and-forth motion in the pocket. This results in many 

frames having the same rmsd value. Ritonavir position is visualized for frames #3613, 

#13537, and #17294, where each frame was saved every 10 ps. These frames all have a rmsd 

value of 8.62 Å, yet represent different positioning, and occur at drastically different time 

points during the trajectory.
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Figure 4. 
Free energy landscape of ritonavir unbinding from HIVp under pathway A. (A) Ritonavir 

dissociation under pathway A. HIVp colored as in Figure 1. Each bead represents a position 

of center of mass of ritonavir with 1 ns interval taken from aMD dissociation, with total 

simulation time of 248.7 ns. The HIVp conformation is taken from the final frame of the 

dissociation trajectory. Color beads present center of mass of ritonavir taken from frames 

in the beginning (red), middle (white) and near the end (blue) of the trajectory. Ritonavir’s 

initial position is green licorice. (B) Free energy landscape of ritonavir under pathway 

A with labeled maxima and minima. Ritonavir major energy barriers (B,D,E) and local 

minimum (A,C,F,G) labeled in red, and the conformations are detailed in Figure 5.
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Figure 5. 
Progression of molecular interactions of ritonavir and HIVp during dissociation via pathway 

A. A–G show local energy minima or barriers indicated in Figure 4. (A,C,G). Local free 

energy minima are explained via bound-state stabilization by hydrogen bonds between 

ritonavir and HIVp. (B,D,E) Free energy barriers are seen when these hydrogen bonds are 

broken, and ritonavir is positioned that allows high solvent exposure. (F) A free energy 

minimum reveals a favorable ritonavir positioning between the flap and loop regions.
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Figure 6. 
Free energy landscape of ritonavir unbinding from HIVp under pathway B. (A) Ritonavir 

dissociation under pathway B. HIVp colored as in Figure 1. Each bead represents a position 

of center of mass of ritonavir with 1 ns interval taken from aMD dissociation, with total 

simulation time of 304.9 ns. The HIVp conformation is taken from the final frame of the 

dissociation trajectory. Color beads present center of mass of ritonavir taken from frames 

in the beginning (red), middle (white) and near the end (blue) of the trajectory. Ritonavir’s 

initial position is green licorice. (B) Free energy landscape of ritonavir under pathway 

B with labeled maxima and minima. Major energy barriers (B,E) and local minimum 

(A,C,D,F) labeled in red, and the conformations are detailed in Figure 7.
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Figure 7. 
Progression of molecular interactions of ritonavir and HIVp during dissociation via pathway 

B. Local energy minima or barriers are indicated in Figure 6. (A,C,D,F) Local energy energy 

minima are explained via bound-state stabilization by hydrogen bonds between ritonavir 

and HIVp. (B,E) Local free energy barrier has appeared when these bonds are broken, and 

ritonavir is positioned that allows high solvent exposure.
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Figure 8. 
Free energy landscape of ritonavir unbinding from HIVp under pathway C. (A) Ritonavir 

dissociation under pathway C. HIVp colored as in Figure 1. Each bead represents a position 

of center of mass of ritonavir with 1 ns interval taken from aMD dissociation, with total 

simulation time of 543.1 ns. The HIVp conformation is taken from the final frame of the 

dissociation trajectory. Color beads present center of mass of ritonavir taken from frames 

in the beginning (red), middle (white) and near the end (blue) of the trajectory. Ritonavir’s 

initial position is green licorice. (B) Free energy landscape of ritonavir under pathway B 

with labeled maxima and minima. Major energy barriers (B) and local minimum (A,C,D,E) 

labeled in red, and the conformations are detailed in Figure 9.
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Figure 9. 
Progression of molecular interactions of ritonavir and HIVp during dissociation via pathway 

C. Local energy minima or barriers are indicated in Figure 8. (A,C,D,E) Local free energy 

minima are explained via bound-state stabilization by hydrogen bonds between ritonavir and 

HIVp. (B) Free energy barrier can be described by the breaking of favorable interactions.
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Figure 10. 
Highly positively correlated residue in ritonavir–HIVp dissociation pathway A. HIVp shown 

in cyan. Ritonavir position during dissociation taken from representative frames shown 

in bead illustration (gray), dissociating between the flap and the loop regions. Crude 

approximate binding spheres are used to show general ritonavir location. Image captures 

backbone and side chain positions at the final unbinding index. Residues are dispersed in all 

regions excluding the flap regions. Increased number of correlated residues on side in which 

ritonavir dissociates. Side chain colors reflect correlation pairings/groups.
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Figure 11. 
Highly positively correlated residue in ritonavir–HIVp dissociation pathway B. HIVp shown 

in cyan. Ritonavir position during dissociation taken from representative frames shown 

in bead illustration (gray), dissociating along the flap region. Crude approximate binding 

spheres are used to show general ritonavir location. Image captures backbone and side chain 

positions at the final unbinding index. Correlated residues are primarily localized to the 

interface region and are absent from the flap region. Only one correlation group is present 

(red).
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Figure 12. 
Highly positively correlated residue in ritonavir–HIVp dissociation pathway C. HIVp shown 

in cyan. Ritonavir position during dissociation taken from representative frames shown in 

bead illustration (gray), dissociating on the interface region. Crude approximate binding 

spheres are used to show general ritonavir location. Image captures backbone and side chain 

positions at the final unbinding index. Side chain colors reflect correlation pairings/groups. 

Correlated residues show no distinct localization.

Vig et al. Page 27

Biochemistry. Author manuscript; available in PMC 2025 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vig et al. Page 28

Ta
b

le
 1

.

C
al

cu
la

te
d 

an
d 

E
xp

er
im

en
ta

l U
nb

in
di

ng
 F

re
e 

E
ne

rg
y 

V
al

ue
s 

an
d 

Pa
th

w
ay

 O
cc

ur
re

nc
ea

P
C

 c
oo

rd
in

at
e

rm
sd

 c
oo

rd
in

at
e

ex
pe

ri
m

en
ta

l
aM

D

bi
nd

in
g 

fr
ee

 e
ne

rg
y

(Δ
G

)
re

si
de

nc
e 

ti
m

e
(μ

s)
bi

nd
in

g 
fr

ee
 e

ne
rg

y
(Δ

G
)

re
si

de
nc

e 
ti

m
e

(s
)

bi
nd

in
g 

fr
ee

 e
ne

rg
y

(Δ
G

)
re

si
de

nc
e 

ti
m

e
(s

)
oc

cu
rr

en
ce

(%
)

pa
th

w
ay

 A
−

9.
4 

±
 0

.8
48

3 
±

 2
19

−
14

.1
 ±

 0
.5

2.
5 

±
 0

.2
−

13
.7

46
3

55

pa
th

w
ay

 B
−

9.
5 

±
 0

.8
20

10
 ±

 5
01

−
15

.4
 ±

 0
.5

41
.6

 ±
 3

.8
−

13
.7

46
3

20

pa
th

w
ay

 C
−

6.
1 

±
 0

.8
4.

5 
±

 1
.1

−
14

.9
 ±

 0
.6

29
.6

 ±
 2

.3
−

13
.7

46
3

15

a Pa
th

w
ay

-s
pe

ci
fi

c 
bi

nd
in

g 
fr

ee
 e

ne
rg

y 
(k

ca
l/m

ol
) 

an
d 

re
si

de
nc

e 
tim

e 
co

m
pu

te
d 

w
ith

 c
oo

rd
in

at
es

 a
ss

ig
ne

d 
us

in
g 

th
e 

PC
 s

pa
ce

 (
la

be
le

d 
PC

 c
oo

rd
in

at
e)

 a
nd

 li
ga

nd
 r

m
sd

 (
la

be
le

d 
rm

sd
 c

oo
rd

in
at

e)
 in

 

co
m

pa
ri

so
n 

to
 e

xp
er

im
en

ta
l v

al
ue

s.
 P

er
ce

nt
ag

es
 s

ho
w

 f
re

qu
en

cy
 o

f 
ea

ch
 p

at
hw

ay
 o

ut
 o

f 
a 

to
ta

l o
f 

20
 s

uc
ce

ss
fu

l l
ig

an
d 

di
ss

oc
ia

tio
n 

ru
ns

 m
od

el
ed

 b
y 

aM
D

 s
im

ul
at

io
ns

.3
1  

Pe
rc

en
ta

ge
s 

do
 n

ot
 a

dd
 u

p 
to

 1
00

%
 

du
e 

to
 n

eg
at

io
n 

of
 u

nd
ef

in
ed

 p
at

hw
ay

s.

Biochemistry. Author manuscript; available in PMC 2025 February 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vig et al. Page 29

Table 2.

Residues with Substantial Correlation in Ritonavir–HIVp Dissociation Pathway Aa

positive correlation (>0.5) negative correlation (←0.5)

residue residue correlation residue residue correlation

ILE66 ASN83 0.601541 TYR59 ASN83 −0.52429

VAL75 GLN160 0.529861 ILE62 TRP141 −0.51558

VAL82 GLN101 0.501499 ILE62 LEU122 −0.599

ASN83 ASN182 0.573296 ASN83 ASN182 −0.5665

ASN83 ILE161 0.530882 ASN83 ASN182 −0.6823

ASN83 ASN182 0.644101 ILE84 ILE165 −0.50422

ARG87 ILE112 0.526643 GLN92 ILE183 −0.51592

ILE114 MET135 0.508678 ILE112 ASN83 −0.56379

LEU122 ASN182 0.547785

VAL131 ILE171 0.505891

a
Positive correlation cutoff >0.50. Negative correlation cutoff <−0.50. 10 residue pairs had significant positive correlation. 8 residue pairs had a 

significant negative correlation.
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Table 3.

Residues with Substantial Correlation in Ritonavir–HIVp Dissociation Pathway B and Pathway Ca

pathway residue residue correlation

B THR31 LEU89 0.523319

B LEU89 ILE184 0.625443

B ILE184 LEU188 0.654553

B ILE183 LEU189 −0.50999

C LEU19 LEU23 0.504406

C ASP30 THR91 0.506992

a
Positive correlation cutoff >0.50. Negative correlation cutoff <−0.50. Pathway B shows 3 residue pairs with significant positive correlation and 

1 residue pair with a significant negative correlation. In pathway C, 2 residue pairs were identified with a significant positive correlation and 0 
residues shared a significant negative correlation.
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