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ABSTRACT

We present MAESTROeX, a massively parallel solver for low Mach number astrophysical flows. The

underlying low Mach number equation set allows for efficient, long-time integration for highly subsonic
flows compared to compressible approaches. MAESTROeX is suitable for modeling full spherical

stars as well as well as planar simulations of dynamics within localized regions of a star, and can

robustly handle several orders of magnitude of density and pressure stratification. Previously, we

have described the development of the predecessor of MAESTROeX, called MAESTRO, in a series of
papers. Here, we present a new, greatly simplified temporal integration scheme that retains the same

order of accuracy as our previous approaches. We also explore the use of alternative spatial mapping

of the one-dimensional base state onto the full Cartesian grid. The code leverages the new AMReX

software framework for block-structured adaptive mesh refinement (AMR) applications, allowing for

scalability to large fractions of leadership-class machines. Using our previous studies on the convective
phase of single-degenerate progenitor models of Type Ia supernovae as a guide, we characterize the

performance of the code and validate the new algorithmic features. Like MAESTRO, MAESTROeX

is fully open source.

Keywords: convection, hydrodynamics, methods: numerical, nuclear reactions, nucleosynthesis, abun-

dances, supernovae: general

1. INTRODUCTION

Many astrophysical flows are highly subsonic. In this regime, sound waves carry sufficiently little energy that they do
not significantly affect the convective dynamics of the system. In many of these flows, modeling long-time convective

dynamics are of interest, and numerical approaches based on compressible hydrodynamics are intractable, even on

modern supercomputers. One approach to this problem is to use low Mach number models. In a low Mach number

approach, sound waves are eliminated from the governing equations while retaining compressibilitiy effects due to, e.g.,

nuclear energy release, stratification, compositional changes, and thermal diffusion. When the Mach number (the ratio
of the characteristic fluid velocity over the characteristic sound speed; Ma = U/c) is small, the resulting system can be

numerically integrated with much larger time steps than a compressible model. Specifically, the time step increase is

at least a factor of ∼ 1/Ma larger. Each time step is more computationally expensive due to the presence of additional

linear solves, but for many problems of interest the overall gains in efficiency can easily be an order of magnitude or
more.
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LowMach number models have been developed for a variety of contexts including combustion (Day & Bell 2000), ter-

restrial atmospheric modeling (Durran 1989; O’Neill & Klein 2014; Duarte et al. 2015), and elastic solids (Abbate et al.

2017). For astrophysical applications, a number of approaches to modeling low Mach number flows have been developed

in recent years. One of the more similar approaches to ours is Lin et al. (2006), however this approach is only first-
order accurate and does not account for atmospheric expansion. There are also semi-implicit all-Mach number solvers,

where the Euler equations are split into an acoustic part and an advective part (Kwatra et al. 2009; Degond & Tang

2011; Cordier et al. 2012; Haack et al. 2012; Happenhofer et al. 2013; Chalons et al. 2016; Padioleau et al. 2019). The

fast acoustic waves are then solved using implicit time integration, while the slow material waves are solved explicitly.

Another approach is to use preconditioned all-Mach number solvers (Miczek et al. 2014; Barsukow et al. 2016), where
the numerical flux is multiplied by a preconditioning matrix. This reduces the stiffness of the system at low Mach

numbers, while retaining the correct scaling behavior. In the reduced speed of sound technique (RSST) and related

methods, the speed of sound is artificially reduced by including a suitable scaling factor in the continuity equation,

reducing the restriction on the size of the time step (Rempel 2005; Hotta et al. 2012; Wang et al. 2015; Takeyama et al.
2017; Iijima et al. 2019). Finally, there are fully implicit time integration codes for the compressible Euler equations

(Viallet et al. 2011; Kifonidis & Müller 2012; Viallet et al. 2015; Goffrey et al. 2017). The MUSIC code uses fully

implicit time integration for the compressible Euler equations, which therefore allows for arbitrarily large time steps.

Previously, we developed the low Mach number astrophysical solver, MAESTRO. MAESTRO is a block-structured,

Cartesian grid finite-volume, adaptive mesh refinement (AMR) code that has been successfully used for many years
for a number of applications, detailed below. Unlike several of the references above, MAESTRO is not an all-Mach

solver, but is suitable for flows where the Mach number is small (∼ 0.1 or smaller). Furthermore, the low Mach number

model in MAESTRO is specifically designed for, but not limited to, astrophysical settings with significant atmospheric

stratification. This includes full spherical stars, as well as planar simulations of dynamics within localized regions
of a star. The numerical methodology relies on an explicit Godunov approach for advection, a stiff ODE solver for

reactions (VODE, Brown et al. 1989), and multigrid-based linear solvers for the pressure-projection steps. Thus, the

time step is limited by an advective CFL constraint based on the fluid velocity, not the sound speed. Central to the

algorithm are time-varying, one-dimensional stratified background (or base) state density and pressure fields that are

held in hydrostatic equilibrium. The base state density couples to the full state solution through buoyancy terms in the
momentum equation, and the base state pressure couples to the full state solution by constraining the evolution of the

thermodynamic variables to match this pressure. The time-advancement strategy uses Strang splitting to integrate the

thermodynamic variables, a second-order projection method to integrate the velocity subject to a divergence constraint,

and a velocity splitting scheme that uses a radially-averaged velocity to hydrodynamically evolve the base state. The
original MAESTRO code was developed in the pure-Fortran 90 FBoxLib software framework, whereas MAESTROeX

is developed in the C++/F90 AMReX framework (AMReX Development Team et al. 2019; Zhang et al. 2019).

The key numerical developments of the original MAESTRO algorithm are presented in a series of papers which we

refer to as Papers I-V:

• In Paper I (Almgren et al. 2006a), we derive the low Mach number equation set for stratified environments from

the fully compressible equations.

• In Paper II (Almgren et al. 2006b), we incorporate the effects of atmospheric expansion through the use of a

time-dependent background state.

• In Paper III (Almgren et al. 2008), we incorporate reactions and the associated coupling to the hydrodynamics.

• In Paper IV (Zingale et al. 2009), we describe our treatment of spherical stars in a three-dimensional Cartesian

geometry.

• In Paper V (Nonaka et al. 2010), we describe the use of block-structured adaptive mesh refinement to focus

spatial resolution in regions of interest.

Since then, there have been many scientific investigations using MAESTRO, which have included additional algo-

rithmic enhancements. Topics include:

• The convective phase preceding Chandrasekhar mass models for type Ia supernovae (Zingale et al. 2011;

Nonaka et al. 2011; Malone et al. 2014a).
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• Convection in massive stars (Gilet et al. 2013; Gilkis & Soker 2016).

• Sub-Chandrasekhar white dwarfs (Zingale et al. 2013; Jacobs et al. 2016).

• Type I X-ray bursts (Malone et al. 2011, 2014b; Zingale et al. 2015).

In this paper, we present new algorithmic methodology that improves upon Paper V in a number of ways. First,

the overall temporal algorithm has been greatly simplified without compromising second-order accuracy. The key

design decisions were to eliminate the splitting of the velocity into average and perturbational components, and
also to replace the hydrodynamic evolution of the base state with a predictor-corrector approach. Not only does

this greatly simplify the dynamics of the base state, but this treatment is more amenable to higher-order multi-

physics coupling strategies based on method-of-lines integration. In particular, schemes based on deferred corrections

(Dutt et al. 2000) have been used to generate high-order temporal integrators for problems of reactive flow and low
Mach number combustion (Pazner et al. 2016; Nonaka et al. 2018). Second, we explore the effects of alternative spa-

tial mapping routines for coupling the base state and the Cartesian grid state for spherical problems. Finally, we

examine the performance of our new MAESTROeX implementation in the new C++/F90 AMReX public software

library (AMReX Development Team et al. 2019; Zhang et al. 2019). MAESTROeX uses MPI+OpenMP parallelism

and scales well to over 10,000 MPI processes, with each MPI process supporting tens of threads. The resulting code
is publicly available on GitHub (https://github.com/AMReX-Astro/MAESTROeX), uses the Starkiller-Astro micro-

physics libraries (the StarKiller Microphysics Development Team et al. 2019, https://github.com/starkiller-astro) , as

well as AMReX (https://github.com/AMReX-Codes/amrex).

The rest of this paper is organized as follows. In Section 2 we review our model for stratified low Mach number
astrophysical flow. In Section 3 we present our numerical algorithm in detail, highlighting the new temporal integration

scheme as well as spatial base state mapping options. In Section 4 we validate our new approach and examine the

performance of our algorithm on full spherical star problems used in previous scientific investigations. We conclude in

Section 5.

2. GOVERNING EQUATIONS

Low Mach number models for reacting flow were originally derived using asymptotic analysis (Rehm & Baum 1978;

Majda & Sethian 1985) and used in terrestrial combustion applications (Knio et al. 1999; Day & Bell 2000). These

models have been extended to nuclear flames in astrophysical environments using adaptive algorithms in space and time
(Bell et al. 2004). In Papers I-III, we extended this work and the atmospheric model by Durran (1989) by deriving a

model and algorithm suitable for stratified astrophysical flow. We take the standard equations of reacting, compressible

flow, and recast the equation of state (EOS) as a divergence constraint on the velocity field. The resulting model is

a series of evolution equations for mass, momentum, and energy, subject to an additional constraint on velocity. The
evolution equations are

∂(ρXk)

∂t
=−∇ · (ρXkU) + ρω̇k, (1)

∂U

∂t
=−U · ∇U− β0

ρ
∇
(

π

β0

)
− ρ− ρ0

ρ
ger, (2)

∂(ρh)

∂t
=−∇ · (ρhU) +

Dp0
Dt

+ ρHnuc. (3)

Here ρ, U, and h are the mass density, velocity and specific enthalpy, respectively, and Xk are the mass fractions

of species k with associated production rate ω̇k and energy release per time per unit mass Hnuc. The species are

constrained such that
∑

k Xk = 1 giving ρ =
∑

k(ρXk) and

∂ρ

∂t
= −∇ · (ρU). (4)

The total pressure is decomposed into a one-dimensional hydrostatic base state pressure, p0 = p0(r, t), and a dynamic
pressure, π = π(x, t), such that p = p0 + π and |π|/p0 = O(Ma2) (we use x to represent the Cartesian coordinate

directions of the full state and r to represent the radial coordinate direction for the base state). One way to mathe-

matically think of the difference between p0 and π is that π controls the velocity evolution in a way that forces the

thermodynamic variables (ρ, h,Xk) to evolve in a manner that is consistent with the EOS and p0.

https://github.com/AMReX-Astro/MAESTROeX
https://github.com/starkiller-astro
https://github.com/AMReX-Codes/amrex
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By comparing the momentum equation (2) to the momentum equation used in equation (2) in Paper V, we note

that we are using a formulation that enforces conservation of total energy in the low Mach number system in the

absence of external heating or viscous terms (Klein & Pauluis 2012; Vasil et al. 2013). We have previously validated

this approach in modeling sub-Chandrasekhar white dwarfs using MAESTRO (Jacobs et al. 2016). We also define a
one-dimensional base state density, ρ0 = ρ0(r, t), that represents the lateral average (see Section 3.1) of ρ and is in

hydrostatic equilibrium with p0, i.e.,

∇p0 = −ρ0ger, (5)

where g = g(r, t) is the magnitude of the gravitational acceleration and er is the unit vector in the outward radial

direction. Here β0 is a density-like variable that carries background stratification, defined as

β0(r, t) = ρ0(0, t) exp

(∫ r

0

1

Γ1p0

∂p0
∂r′

dr′
)
, (6)

where Γ1 is the lateral average of Γ1 = d(log p)/d(log ρ)|s (evaluated with entropy, s, constant). We explored the effect

of replacing Γ1 with Γ1 as well as a correction term in paper III. Thermal diffusion is not discussed in this paper,

but we have previously described the modifications to the original algorithm required for implicit thermal diffusion in

Malone et al. (2011); inclusion of these effects in the new algorithm presented here is straightforward.
Mathematically, equations (2)-(3) must still be closed by the EOS. This is done by taking the Lagrangian derivative

of the EOS for pressure as a function of the thermodynamic variables, substituting in the equations of motion for mass

and energy, and requiring that the pressure is a prescribed function of altitude and time based on the hydrostatic

equilibrium condition. See Papers I and II for details of this derivation. The resulting equation is a divergence

constraint on the velocity field,

∇ · (β0U) = β0

(
S − 1

Γ1p0

∂p0
∂t

)
. (7)

The expansion term, S, incorporates local compressibility effects due to compositional changes and heat release from

reactions,

S = −σ
∑

k

ξkω̇k +
1

ρpρ

∑

k

pXk
ω̇k + σHnuc, (8)

where pXk
≡ ∂p/∂Xk|ρ,T,Xj,j 6=k

, ξk ≡ ∂h/∂Xk|p,T,Xj,j 6=k
, pρ ≡ ∂p/∂ρ|T,Xk

, and σ ≡ pT /(ρcppρ), with pT ≡
∂p/∂T |ρ,Xk

and cp ≡ ∂h/∂T |p,Xk
is the specific heat at constant pressure.

To summarize, we model evolution equations for momentum, mass, and energy, equations (2)-(3) subject to a
divergence constraint on the velocity, equation (7), and the hydrostatic equilibrium condition, equation (5).

3. NUMERICAL ALGORITHM

3.1. Spatial Discretization

The spatial discretization and adaptive mesh refinement methodology remains unchanged from Paper V. We now

summarize some of the key points here before describing the new temporal integrator in the next section. We recom-

mend the reader review Section 3 of Paper V for further details.

We shall refer to local atmospheric flows in two and three dimensions as problems in “planar” geometry, and full-star

flows in three dimensions as problems in “spherical” geometry. The solution in both cases consists of the Cartesian
grid solution and the one-dimensional base state solution. Figure 1 illustrates the relationship between the base state

and the Cartesian grid state for both planar and spherical geometries in the presence of spatially adaptive grids.

One of the key numerical modules is the “lateral average”, which computes the average over a layer of constant

radius of a Cartesian grid variable and stores the result in a one-dimensional base state array. In planar geometries,
this is a straightforward arithmetic average of values in cells at a particular height since the base state cell centers

are in alignment with the Cartesian grid cell centers. However for spherical problems, the procedure is much more

complicated. In Section 4 of Paper V, we describe how there is a finite, easily computable set of radii that any there-

dimensional Cartesian cell-center can map to. Specifically, for every three-dimensional Cartesian cell, there exists an

integer m such that the distance from the cell center to the center of the star is given by

r̂m = ∆x
√
0.75 + 2m. (9)



MAESTROeX Low Mach Number Astrophysics 5

Figure 1. (Left) For multi-level problems in planar geometry, we force a direct alignment between the base state cell centers and
the Cartesian grid cell centers by allowing the radial base state spacing to change with space and time. (Right) For multi-level
problems in spherical geometry, since there is no direct alignment between the base state cell centers and the Cartesian grid cell
centers, we choose to fix the radial base state spacing across levels. Reprinted from Paper V (Nonaka et al. 2010).

Figure 2. A direct mapping between the base state cell centers (red squares) and the Cartesian grid cell centers (blue crosses)
is enforced by computing the average of the grid cell centers that share the same radial distance from the center of the star.

Figure 2 is a two-dimensional illustration (two dimensions is chosen in the figure for ease of exposition; this mapping

is only used for three-dimensional spherical stars) of the relationship between the Cartesian grid state and the one-

dimensional base state array. We compute the lateral average by first summing the values in all the cells associated

with each radius, dividing by the number of contributing cells to obtain the arithmetic average, and then use quadratic
interpolation to map this data onto a one-dimensional base state. Previously, for spherical problems MAESTRO only

allowed for a base state with constant ∆r (typically equal to ∆x/5).

The companion “fill” module maps a base state array onto the full Cartesian grid state. For planar problems, direct

injection can be used due to the perfect alignment of the base state and Cartesian grid state. For spherical problems,

quadratic interpolation of the base state is used to assign values to each Cartesian cell center.
In this paper we explore a new option to retain an irregularly-spaced base state to eliminate mapping errors from

the “fill” module. For the lateral average, as before we first sum the values in all the cells associated with each radius

and divide by the number of contributing cells to obtain the arithmetic average. However we do not interpolate this

onto a uniformly spaced base state and retain the use of this irregularly-spaced base state. The advantage with this
approach is that the fill module does not require any interpolation. A potential benefit to eliminating the mapping

error is to consider a spherical star in hydrostatic equilibrium at rest. In the absence of reactions, the star should

remain at rest. The buoyancy forcing term in the momentum equation contains ρ − ρ0. With the original scheme,

interpolation errors in computing ρ0 by averaging would cause artificial acceleration in the velocity field due to the
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interpolation error from the Cartesian grid to and from the radial base state. By retaining the radial base state as

an irregularly spaced array, the effects due to interpolation error are nearly eliminated, but not completely eliminated

since there are still machine precision effects resulting from averaging a large number of numerical values. We note

that ∆r decreases as the base state moves further from the center of the star, which results in far more total cells in
the irregularly-spaced array than the previous uniformly-spaced array.

3.2. Temporal Integration Scheme

We now describe the new temporal integration scheme, noting that it can be used for the original base state mapping
(with uniform base state grid spacing) as well as the new irregularly spaced base state mapping. Previously we adopted

an approach where we split the velocity into a base state component, w0(r, t), and a local velocity Ũ(x, t), so that

U = Ũ(x, t) + w0(r, t)er, (10)

where er is the normal vector in the outward radial direction. We used w0 to provide an estimate of the base state

density evolution over a time step. This resulted in some unnecessary complications to the temporal integration
scheme including base state advection modules for density, enthalpy, and velocity, as well as more cumbersome split

velocity dynamics evolution equations. Our new temporal integration scheme uses full velocities for scalar and velocity

advection, and only uses the above splitting to satisfy the velocity divergence constraint due to boundary considerations

at the edge of the star. This results in a much simpler numerical scheme than the one from Paper V since we use the

velocity directly rather than more complex terms involving the perturbational velocity. Additionally, the new scheme
uses a simpler predictor-corrector approach to the base state density and pressure that no longer requires evolution

equations and numerical discretizations to update the base state, greatly simplifying the algorithm while retaining the

same overall second-order accuracy in time.

At the beginning of each time step we have the cell-centered Cartesian grid state, (U, ρXk, ρh)
n, and nodal Cartesian

grid state, πn−1/2, and base state (ρ0, p0)
n. At any time, the associated density, composition, and enthalpy can be

trivially computed using, e.g.,

ρn =
∑

k

(ρXk)
n, Xn

k = (ρXk)
n/ρn, hn = (ρh)n/ρn. (11)

Temperature is computed using the equation of state1, e.g., T = T (ρ, p0, Xk), where p0 has been mapped to the

Cartesian grid using the fill module, and (Γ1, β0) are similarly computed from (ρ, p0, Xk); see Appendix A of Paper I

and Appendix C of Paper III for details on how β0 is computed.
The overall flow of the algorithm begins with a second-order Strang splitting approach to integrate the advection-

reaction system for the thermodynamic variables (ρXk, ρh), followed by a second-order projection methodology to

integrate the velocities subject to a divergence constraint. Within the thermodynamic variable update we use a

predictor-corrector approach to achieve second-order accuracy in time. To summarize:

• In Step 1 we react the thermodynamic variables over the first ∆t/2 interval.

• In Steps 2–4 we advect the thermodynamic variables over ∆t. Specifically, we compute an estimate for the

expansion term, S, compute face-centered, time-centered velocities that satisfy the divergence constraint, and

then advect the thermodynamic variables.

• In Step 5 we react the thermodynamic variables over the second ∆t/2 interval2.

• In Steps 6–8 we redo the advection in Steps 2–4 but are able to use the trapezoidal rule to time-center certain

quantities such as S, ρ0, etc.

• In Step 9 we redo the reactions from Step 5 beginning with the improved results from Steps 6–8.

• In Steps 10–11 we advect the velocity, and then project these velocities so they satisfy the divergence constraint

while updating π.

1 As described in Paper V, for planar problems we compute temperature using h instead of p0, since we have successfully developed
volume discrepancy schemes to effectively couple the enthalpy to the rest of the solution; see Malone et al. (2011). We are still exploring
this option for spherical stars.

2 After this step we could skip to the velocity advance in Steps 10–11, however the overall scheme would be only first-order in time, so
Steps 6-9 can be thought of as a trapezoidal corrector step.
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There are a few key numerical modules we use in each time step.

• Average[φ] → [φ] computes the lateral average of a quantity over a layer at constant radius r, as described

above in Section 3.1.

• Enforce HSE[ρ0] → [p0] computes the base state pressure, p0, from a base state density, ρ0 by integrating the

hydrostatic equilibrium condition in one dimension. This follows equation (A10) in Paper V, noting that for the
irregularly spaced base state case, ∆r is not constant, where ∆rj+1/2 = rj+1 − rj for cell face with index j+1/2.

The base state pressure remains equal to a constant value at the location of a prescribed cutoff density outward

for the entire simulation.

• React State[(ρXk)
in, (ρh)in, p0] → [(ρXk)

out, (ρh)out, (ρω̇), (ρHnuc)] uses VODE (Brown et al. 1989) to integrate

the species and enthalpy due to reactions over ∆t/2 by solving

dXk

dt
= ω̇k(ρ,Xk, T );

dT

dt
=

1

cp

(
−
∑

k

ξkω̇k +Hnuc)

)
(12)

The inputs are the species, enthalpy, and base state pressure, and the outputs are the species, enthalpy, reaction

rates, and nuclear energy generation rate. See Paper III for details.

Each time step is constrained by the standard advective CFL condition,

∆t = σCFL min
i
(∆x/Ui), (13)

where for our simulations we typically use σCFL ∼ 0.7 and the minimum is taken over all spatial directions over all

cells. There are additional constraints on the time step that are typically much less restrictive than the advective

CFL including the acceleration due to the buoyancy force (sometimes in effect when the velocity is approximately
zero at the start of some simulations) and the local magnitude of the divergence constraint (to prevent too much mass

evacuation from a cell in a time step); see Section 3.4 in Paper III for details.

In stratified low Mach number models, due to the extreme variation in density, the velocity can become very large in

low density regions at the edge of the star. These large velocities can severely affect the time step, so throughout Papers
II-V, we have employed two techniques to help control these dynamics without significantly affecting the dynamics in

the convective region. First, we use a cutoff density technique, where we hold the density constant outside a specified

radius (typically near where the density is ∼4 orders of magnitude smaller than the largest densities in the simulation).

Second, we employ a sponge technique where we artificially damp the velocities near and beyond the cutoff region.

For more details, refer to Paper V and the previous references cited within.
Beginning with (U, ρXk, ρh)

n, πn−1/2, and (ρ0, p0)
n, the temporal integration scheme contains the following steps:

Step 1: React the thermodynamic variables over the first ∆t/2 interval.

Call React State[(ρXk)
n, (ρh)n, pn0 ] → [(ρXk)

(1), (ρh)(1), (ρω̇k)
(1), (ρHnuc)

(1)].

Step 2: Compute the time-centered expansion term, Sn+1/2,⋆.

We compute an estimate for the time-centered expansion term in the velocity divergence constraint. Following

Bell et al. (2004), we extrapolate to the half-time using S at the previous and current time steps,

Sn+1/2,⋆ = Sn +
∆tn

2

(
Sn − Sn−1

∆tn−1

)
. (14)

Note that in the first time step we average S0 and S1 from the initialization step.

Step 3: Construct a face-centered, time-centered advective velocity, UADV,⋆.

The construction of face-centered time-centered states used to discretize the advection terms for velocity, species,

and enthalpy, are performed using a standard multidimensional corner transport upwind approach (Colella

1990; Saltzman 1994) with the piecewise-parabolic method (PPM) one-dimensional tracing (Colella & Woodward

1984). The full details of this Godunov advection approach for all steps in this algorithm are described in
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Appendix A of Zingale et al. (2015). Here we use equation (2) to compute face-centered, time-centered velocities,

UADV,†,⋆. The † superscript refers to the fact that the predicted velocity field does not satisfy the divergence

constraint,

∇ ·
(
βn
0U

ADV,⋆
)
= βn

0

[
Sn+1/2,⋆ − 1

Γ
n

1p
n
0

(
∂p0
∂t

)n−1/2
]
. (15)

We project UADV,†,⋆ onto the space of velocities that satisfy the constraint to obtain UADV,⋆. Each projection

step in the algorithm involves the solution of a variable-coefficient Poisson solve using multigrid. Note that we

still employ velocity-splitting as described by equation (10) for this step in order to enforce the appropriate
behavior of the system near the edge of the star as determined by the cutoff density. The details of this “MAC”

projection are provided in Appendix A.

Step 4: Advect the thermodynamic variables over a time interval of ∆t.

A. Update (ρXk) using a discretized version of

∂(ρXk)

∂t
= −∇ · (ρXkU), (16)

where the reaction terms have been omitted since they were already accounted for in React State. The

update consists of two steps:

i. Compute the face-centered, time-centered species, (ρXk)
n+1/2,pred,⋆, for the conservative update of

(ρXk)
(1) using a Godunov approach (Zingale et al. 2015). As described in Paper V, for robust nu-

merical slope limiting we predict ρ′n = ρn − ρn0 and Xn
k to faces and here we spatially interpolate ρn0 to

faces to assemble the fluxes.

ii. Evolve (ρXk)
(1) → (ρXk)

(2),⋆ using

(ρXk)
(2),⋆ = (ρXk)

(1) −∆t
{
∇ ·
[
UADV,⋆(ρXk)

n+1/2,pred,⋆
]}

, (17)

B. Update ρ0 by calling Average[ρ(2),⋆] → [ρn+1,⋆
0 ].

C. Update p0 by calling Enforce HSE[ρn+1,⋆
0 ] → [pn+1,⋆

0 ].

D. Update the enthalpy using a discretized version of equation

∂(ρh)

∂t
= −∇ · (ρhU) +

Dp0
Dt

+ ρHnuc, (18)

again omitting the reaction terms since we already accounted for them in React State. This equation

takes the form:
∂(ρh)

∂t
= −∇ · (ρhU) +

∂p0
∂t

+ (U · er)
∂p0
∂r

. (19)

For spherical geometry, we solve the analytically equivalent form,

∂(ρh)

∂t
= −∇ · (ρhU) +

∂p0
∂t

+∇ · (Up0)− p0∇ ·U. (20)

The update consists of two steps:

i. Compute the face-centered, time-centered enthalpy, (ρh)n+
1/2,pred,⋆, for the conservative update of

(ρh)(1) using using a Godunov approach (Zingale et al. 2015). As described in Paper V, for robust

numerical slope limiting we predict (ρh)′n = (ρh)n − (ρh)n0 to faces, where (ρh)n0 is obtained by calling
Average[(ρh)n] → [(ρh)n0 ], and here we spatially interpolate (ρh)n0 to faces to assemble the fluxes.

ii. Evolve (ρh)(1) → (ρh)(2),⋆ using

(ρh)(2),⋆ = (ρh)(1) −∆t
{
∇ ·
[
UADV,⋆(ρh)n+

1/2,pred,⋆
]}

+∆t
Dp0
Dt

(21)
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where here

Dp0
Dt

=






pn+1,∗
0

−pn
0

∆t +
(
UADV,⋆ · er

) (
∂p0

∂r

)n
(planar)

pn+1,∗
0

−pn
0

∆t +
[
∇ ·
(
UADV,⋆p

n+1/2
0

)
− p

n+1/2
0 ∇ ·UADV,⋆

]
(spherical)

, (22)

and p
n+1/2
0 = (pn0 + pn+1,∗

0 )/2.

Step 5: React the thermodynamic variables over the second ∆t/2 interval.

Call React State[(ρXk)
(2),⋆, (ρh)(2),⋆, pn+1,⋆

0 ] → [(ρXk)
n+1,⋆, (ρh)n+1,⋆, (ρω̇k)

n+1,⋆, (ρHnuc)
n+1,⋆].

Step 6: Compute the time-centered expansion term, Sn+1/2,⋆.

First, compute Sn+1,⋆ with

Sn+1,⋆ =

(
−σ
∑

k

ξkω̇k +
1

ρpρ

∑

k

pXk
ω̇k + σHnuc

)n+1,⋆

. (23)

Then, define

Sn+1/2 =
Sn + Sn+1,⋆

2
, (24)

Step 7: Construct a face-centered, time-centered advective velocity, UADV.

The procedure to construct UADV,† is identical to the Godunov procedure for computing UADV,†,⋆ in Step 3,

but uses the updated value Sn+1/2 rather than Sn+1/2,⋆. The † superscript refers to the fact that the predicted

velocity field does not satisfy the divergence constraint,

∇ ·
(
β
n+1/2
0 UADV

)
= β

n+1/2
0

[
Sn+1/2 − 1

Γ
n+1/2
1 p

n+1/2
0

(
∂p0
∂t

)n+1/2
]
, (25)

with

β
n+1/2
0 =

βn
0 + βn+1,⋆

0

2
, Γ

n+1/2
1 =

Γ
n

1 + Γ
n+1,⋆

1

2
. (26)

we projectUADV,† onto the space of velocities that satisfy the constraint to obtain UADV using a MAC projection
(see Appendix A).

Step 8: Advect the thermodynamic variables over a time interval of ∆t.

A. Update (ρXk). This step is identical to Step 4A except we use the updated values UADV and ρn+1,⋆
0 rather

than UADV,⋆ and ρn0 . In particular:

i. Compute the face-centered, time-centered species, (ρXk)
n+1/2,pred, for the conservative update of

(ρXk)
(1) using a Godunov approach (Zingale et al. 2015). Again, we predict ρ′n = ρn − ρn0 and Xn

k to

faces but here we spatially interpolate (ρn0 + ρn+1,∗
0 )/2 to faces to assemble the fluxes.

ii. Evolve (ρXk)
(1) → (ρXk)

(2) using

(ρXk)
(2) = (ρXk)

(1) −∆t
{
∇ ·
[
UADV(ρXk)

n+1/2,pred
]}

, (27)

B. Update ρ0 by calling Average[ρ(2)] → [ρn+1
0 ].

C. Update p0 by calling Enforce HSE[ρn+1
0 ] → [pn+1

0 ].

D. Update the enthalpy. This step is identical to Step 4D except we use the updated values UADV, ρn+1
0 ,

(ρh)n+1
0 , and pn+1

0 rather than UADV,⋆, ρn0 , (ρh)
n
0 , and pn0 . In particular:

i. Compute the face-centered, time-centered enthalpy, (ρh)n+
1/2,pred, for the conservative update of (ρh)(1)

using a Godunov approach (Zingale et al. 2015). Again, we predict (ρh)′n = (ρh)n − (ρh)n0 to faces but

here we spatially interpolate [(ρh)n0 ) + (ρh)n+1,∗
0 ]/2 to faces to assemble the fluxes.
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ii. Evolve (ρh)(1) → (ρh)(2).

(ρh)(2) = (ρh)(1) −∆t
{
∇ ·
[
UADV(ρh)n+

1/2,pred
]}

+∆t
Dp0
Dt

(28)

where here

Dp0
Dt

=






pn+1

0
−pn

0

∆t +
(
UADV · er

) (
∂p0

∂r

)n
(planar)

pn+1

0
−pn

0

∆t +
[
∇ ·
(
UADVp

n+1/2
0

)
− p

n+1/2
0 ∇ ·UADV

]
(spherical)

, (29)

and p
n+1/2
0 = (pn0 + pn+1

0 )/2.

Step 9: React the thermodynamic variables over the second ∆t/2 interval.

Call React State[(ρXk)
(2), (ρh)(2), pn+1

0 ] → [(ρXk)
n+1, (ρh)n+1, (ρω̇k)

n+1, (ρHnuc)
n+1].

Step 10: Define the new-time expansion term, Sn+1.

A. Define

Sn+1 =

(
−σ
∑

k

ξkω̇k + σHnuc +
1

ρpρ

∑

k

pXk
ω̇k

)n+1

. (30)

Step 11: Update the velocity.

First, we compute the face-centered, time-centered velocities,Un+1/2,pred using a Godunov approach (Zingale et al.

2015). Then, we update the velocity field Un to Un+1,† by discretizing equation (2) as

Un+1,† = Un −∆t
[
UADV · ∇Un+1/2,pred

]
−∆t


β

n+1/2
0

ρn+
1/2
∇
(
πn−1/2

β
n−1/2
0

)
+

(
ρn+

1/2 − ρ
n+1/2
0

)

ρn+
1/2

gn+
1/2er


 , (31)

where

ρn+
1/2 =

ρn + ρn+1

2
, ρ

n+1/2
0 =

ρn0 + ρn+1
0

2
. (32)

Again, the † superscript refers to the fact that the updated velocity does not satisfy the divergence constraint,

∇ ·
(
βn+1
0 Un+1

)
= βn+1

0

[
Sn+1 − 1

Γ
n+1

1 pn+1
0

(
∂p0
∂t

)n+1/2
]
. (33)

We use an approximate projection to project Un+1,† onto the space of velocities that satisfy the constraint to

obtain Un+1 using a “nodal” projection. This projection necessarily differs from the MAC projection used in

Step 3 and Step 7 because the velocities in those steps are defined on faces and Un+1 is defined at cell centers,

requiring different divergence and gradient operators. Furthermore, as part of the nodal projection, we also
define a nodal new-time perturbational pressure, πn+1/2. Refer to Appendix A for more details.

This completes one step of the algorithm.

To initialize the simulation we use the same procedure described in Paper III. At the beginning of each simulation,

we define (U, ρXk, ρh). We set initial values for U, ρXk, and ρh and perform a sequence of projections (to ensure

the velocity field satisfies the divergence constraint) followed by a small number of steps of the temporal advancement
scheme to iteratively find initial values for πn−1/2 and S0 and S1 for use in the first time step.

Our approach to adaptive mesh refinement is algorithmically the same as the treatment described in Section 5 of

Paper V; we refer the reader there for details. MAESTROeX supports refinement ratios of 2 between levels. We note

that for spherical problems, AMR is only available for the case of a uniformly-spaced base state.
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4. PERFORMANCE AND VALIDATION

4.1. Performance and Scaling

We perform weak scaling tests for simulations of convection preceding ignition in a spherical, full-star Chandrasekhar

mass white dwarf. The simulation setup remains the same as reported in Section 3 of Nonaka et al. (2011) and originally

used in Zingale et al. (2011), and thus we emphasize that these scaling tests are performed using meaningful, scientific

calculations. Here, we perform simulations using 2563, 5123, 7683, 10243, 12803, and 15363 grid cells on a spatially
uniform grid (no AMR). We divide each simulation into 643 grids, so these simulations contain between 64 grids (2563)

and 13,824 grids (15363). These simulations were performed using the NERSC cori system on the Intel Xeon Phi

(KNL) partition. Each node contains 68 cores, each capable of supporting up to 4 hardware threads (i.e., a maximum

of 272 hardware threads per node). For these tests, we assign 4 MPI tasks to each node, and 16 OpenMP threads per

MPI process. Each MPI task is assigned to a single grid, so our tests use between 64 and 13,824 MPI processes (i.e.,
between 1,024 and 221,184 total OpenMP threads). For 643 grids we discovered that using more than 16 OpenMP

threads did not decrease the wallclock time due to a lack of work available per grid; in principle one could use larger

grids, fewer MPI processes, and more threads per MPI process to obtain a flatter weak scaling curve, however the

overall wallclock time would increase except for extremely large numbers of MPI processes (beyond the range we tested
here). Thus, the more accurate measure of weak scaling is to consider the number of MPI processes, since the scaling

plot would look virtually identical for larger thread counts. Note that the largest simulation used roughly 36% of the

entire computational system.
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Figure 3. (Left) Weak scaling results for a spherical, full-star white dwarf calculation using the original MAESTRO code,
MAESTROeX, and MAESTROeX with base state evolution disabled. Shown is the average wallclock time per time step.
(Right) Weak scaling results showing the average wallclock time per time step spent in the cell-centered and nodal linear solvers
within a full time step of the aforementioned simulations.

In the left panel of Figure 3 we compare the wallclock time per time step as a function of total core count (in

this case, the total number of OpenMP threads) for the original FBoxLib-based MAESTRO implementation to the
AMReX MAESTROeX implementation. These tests were performed using the original temporal integration strategy

in Nonaka et al. (2010), noting that the new temporal integration with and without the irregular base state gives

essentially the same results. We also include a plot of MAESTROeX without base state evolution. Comparing the

original and new implementations, we see similar scaling results except for the largest simulation, where MAESTROeX

performs better. We see that the increase in wallclock time from the smallest to largest simulation is roughly 42%. We
also note that without base state evolution, the code runs 14% faster for small problems, and scales much better with

wallclock time from the smallest to largest simulation increasing by only 13%. This is quite remarkable since there

are 3 linear solves per time step (2 cell-centered Poisson solves used in the MAC projection, and a nodal Poisson solve

used to compute the updated cell-centered velocities). Contrary to our prior assumptions, the linear solves are not the
primary scaling bottleneck in this code. In the right panel of Figure 3, we isolate the wallclock time required for these

linear solves and see that (i) the linear solves only use 20-23% of the total computational time, and (ii) the increase in

the solver wallclock time from the smallest to largest simulation is only 28%. Further profiling reveals that the primary

scaling bottleneck is the average operator. The averaging operator requires collecting the sum of Cartesian data onto
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one-dimensional arrays holding every possible mapping radius. This amounts to at least 24,384 double precision values

(for the 2563 simulation) up to 883,584 values (for the 15363 simulation). The averaging operator requires a global

sum reduction over all processors, and the communication of this data is the primary scaling bottleneck. For the

simulation with base state evolution, this averaging operator is only called once per time step (as opposed to 14 times
per time step when base state evolution is included). The difference in total wallclock times with and without base

state evolution is almost entirely due to the averaging. Note that as expected, advection, reactions, and calls to the

equation of state scale almost perfectly, since there is only a single parallel communication call to fill ghost cells.

4.2. White Dwarf Convection

To explore the accuracy of the new temporal algorithm, we now analyze in detail three-dimensional, full-star cal-
culations of convection preceding ignition in a white dwarf. Again, we refer the reader to Nonaka et al. (2011) and

Zingale et al. (2011) for setup details. We implement both uniformly- and irregularly-spaced base state with the

new temporal algorithm, while only uniform base state spacing is used in the original algorithm. As in Section 3 of

Nonaka et al. (2011), we choose the peak temperature and peak Mach number as the two diagnostics to compare the

simulations. Figure 4 shows the evolution of both peak temperature and peak Mach number until time of ignition
on a single-level grid with resolution of 2563. The simulation using the new temporal scheme with uniformly-spaced

base state gives the same qualitative results as the original scheme, and predicts a similar time of ignition (t = 7810 s

compared to t = 7850 s for original algorithm). The simulation using the new temporal scheme with irregularly-spaced

base state displays a slightly different peak temperature behavior during the initial transition period t < 150 s, which
results in the difference between the curves post transition. We strongly suspect that this is a result of using a different

initial model file (the resolution near the center of the star is much coarser with the irregular spacing than the uniform

spacing). Fortunately, the simulation with irregular base state spacing still follows the same trend as with uniform

spacing, and the star is shown to ignite at an earlier time t = 6840 s.

Figure 5 shows the peak temperature evolution over the first 1000 s on two grids of differing resolutions, 2563 and
5123. Limited allocations prevented us from running this simulation further. As previously suspected, the simulation

using irregularly-spaced base state agrees much closer with the results from using uniform spacing as the resolution

increases. This is most likely due to the increased resolution of the initial model, which more closely matches the

uniformly-spaced counterpart. This is especially important when computing the base state pressure from base state
density, which is particularly sensitive to coarse resolution near the center of the star.

6.5x108

7x108

7.5x108

8x108

0 1000 2000 3000 4000 5000 6000 7000 8000

T
p
e
a
k
(K
)

Time (s)

original scheme
new scheme (dx)
new scheme (dr)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1000 2000 3000 4000 5000 6000 7000 8000

P
e
a
k
M
a
c
h
N
u
m
b
e
r

Time (s)

original scheme
new scheme (dx)
new scheme (dr)

Figure 4. (left) Peak temperature, Tpeak, and (right) peak Mach number in a white dwarf until time of ignition at resolution
of 2563 for three different MAESTROeX algorithms.

In terms of efficiency, all three simulations on 2563 single-level grid were run on Cori haswell with 64 processors and

8 threads per core and their run times were compared. As a result of simplifying the algorithm by eliminating the
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Figure 5. Peak temperature, Tpeak in a white dwarf at grid resolutions of 2563 (dotted line) and 5123 (solid line) until
t = 1000 for uniform (dx) and irregular (dr) base state spacing. Note that the irregularly-spaced solution agrees better with
the uniformly-spaced solution as the resolution increases.

evolution equations for the base state density and pressure, the simulation using the new temporal algorithm took only
6.75 s per time step with uniformly-spaced base state, which is 13% faster than the 7.77 s per time step when using

the original scheme. However, we do observe a 25% increase in run time of 9.72 s when using irregularly-spaced base

state with the new algorithm. This can be explained by the irregularly-spaced base state array being much larger in

size than its uniformly-spaced counterpart, and thus require additional communication and computation time. One
possible strategy to significantly reduce the run time is to consider truncating the base state beyond the cutoff density

radius.

4.3. AMR Performance

Figure 6. Initial grid structures with two levels of refinement. The red, green, and black lines represent grids of increasing
refinement. (Left) Profile of T − T̄ for a hot bubble in a white dwarf environment. (Right) Region of star where ρ ≥ 105 g cm−3

in a full white dwarf star simulation.

We now test the performance of MAESTROeX for adaptive, three-dimensional simulations to track localized regions

of interest over time. Figure 6 illustrates the initial grid structures with two levels of refinement for both planar and

spherical geometries where the grid is refined according to the temperature and density profiles, respectively. For each

of the problems we tested, the single-level simulation was run using the original temporal scheme and the adaptive



14 Fan et al.

simulations using the original and new temporal algorithms. We want to show that the adaptive simulation can give

similar results to the single-level simulation and in a more computationally efficient manner.

In the planar case, we use the same problem setup for a hot bubble rising in a white-dwarf environment as described

in Section 6 of Paper V. Here we use a domain size of 3.6× 107 cm by 3.6× 107 cm by 2.88× 108 cm, and allow the
grid structure to change with time. The single-level simulation at a resolution of 1282 × 1024 was run on Cori haswell

with 48 processors and took approximately 33.5 s per time step (averaged over 10 time steps) using either the original

or new temporal algorithm. The adaptive simulation has a resolution of 322×256 at the coarsest level, resulting in the

same effective resolution at the finest level as the single-level simulation. We tag cells that satisfy T − T̄ > 3× 107 K

as well as all cells at that height. The adaptive run took only 3.7 s per time step, and this 89% decrease in runtime is
mostly due to the fact that initially only 6.25% of the cells (1,048,576 out of 1282× 1024 cells) are refined at the finest

level. Figure 7 shows a series of planar slices of the temperature profile at time intervals of 1.25 s, and verifies that the

adaptive simulation is able to capture the same dynamics as the single-level simulation at much lower computational

cost.

Figure 7. Time-lapse cross-section of a hot bubble in a white dwarf environment at t = 0, 1.25, and 2.5 s for (left) single-level
simulation, and (right) adaptive simulation at the same effective resolution. The red, green, and black boxes indicate grids of
increasing resolution

We continue to use the full-star white dwarf problem described in Section 4.2 to test adaptive simulations on spherical

geometry. The adaptive grid is refined twice by tagging the density at ρ > 105 g cm−3 on the first level and ρ > 108 g

cm−3 on the second level. These tagging values have been shown to work well previously in Paper V, but we have found

that the code may encounter numerical difficulties when the tagging values are too close to each other in subsequent
levels of refinement. The simulation on a single-level grid of 5123 resolution took 12.7 s per time step (again averaged

over 10 time steps). The adaptive grid has a resolution of 1283 at the coarsest level and an effective resolution of 5123

at the finest level. On this grid, 27.8% of the cells (4,666,880 out of 2563 cells) are refined at the first level and 5.3%

(7,176,192 out of 5123 cells) at the second. The adaptive simulation took 5.61 s, resulting in more than a factor of 2 in

speedup. Both simulations are computed to t = 2000 s and we choose to use the peak temperature as the diagnostic
to compare the results. Figure 8 shows the evolution of the peak temperature for all three runs and shows that the

adaptive simulation gives the same qualitative result as the single-level simulation. We do not expect the curves to

match up exactly because the governing equations are highly nonlinear, and slight differences in the solution caused

by solver tolerance and discretization error can change the details of the results. Each simulation was run on Cori
haswell with 512 processors and 4 threads per core.

5. CONCLUSIONS AND FUTURE WORK

We have developed a new temporal integrator and spatial mapping options into our low Mach number solver, MAE-

STROeX. The new AMReX-enabled code scales well on large fractions of supercomputers with multicore architectures.

Future software enhancements will include GPU implementation. In particular, the AMReX-based companion code,

the compressible CASTRO code (Almgren et al. 2010), has recently ported hydrodynamics and reactions to GPUs
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Figure 8. Peak temperature, Tpeak, in a white dwarf from t = 0 to 2000 s for grids with effective resolution of 5123. We can
see that the adaptive grids with two levels of refinement give very similar solution trends compared to the single-level grid.

(Almgren et al. 2019). We plan to leverage the newly implemented mechanisms for offloading compute kernels to

GPUs inside of the AMReX software library itself. Our future scientific investigations include convection in massive
rotating stars, (Heger et al. 2000), the convective Urca process in white dwarfs (Willcox et al. 2016), solar physics

(Wood & Brummell 2018), and magnetohydrodynamics (Wood & Hollerbach 2015; Wood et al. 2011). Our future

algorithmic enhancements include more accurate and higher-order multiphysics coupling strategies based on spectral

deferred corrections (Dutt et al. 2000; Bourlioux et al. 2003). This framework has been successfully used in terrestrial

combustion (Pazner et al. 2016; Nonaka et al. 2018)
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APPENDIX

A. PROJECTION DETAILS

To enforce the divergence constraint in Step 3, 7, and 11, we use a projection method analogous to the methods

originally developed for incompressible flow (Almgren et al. 1998; Bell et al. 1989). The basic idea is to decompose the

velocity field into a part that satisfies the divergence-satisfying component and a curl-free (gradient of a scalar field)
component by solving a variable-coefficient Poisson equation for the scalar field. The details for the MAC projection

in Step 3 and Step 7 are given in Appendix B of Paper III. The details of the nodal projection in Step 11 are given

in Section 3.2 of Paper III. We note that in the nodal projection, the gradient of the scalar field is used to update the

perturbational pressure, π.
Based on our past experience in the MAESTRO project, we have found it useful to split the velocity dynamics into

a perturbational and base state velocity,

U = Ũ(x, t) + w0(r, t)er, (A1)

http://arxiv.org/abs/de-sc/0017955


16 Fan et al.

solve for each term separately, and immediately combine them to find a full velocity that satisfies the constraint. We

take that approach here, primarily because it allows us to enforce a boundary condition on w0 at the edge of the star

(i.e., the cutoff density location where we hold density constant). Namely, to enforce that r2w0 remain constant is

difficult to do when solving for the full velocity. This is demonstrated in Figure 9 (right) where the velocity magnitude
is observed to incorrectly increase outside the cutoff density radius when we solve for the full velocity in the nodal

projection. The resulting peak temperature also dips significantly as seen in Figure 9 (left), presumably because the

dynamics of the overall expansion of the star are not being captured correctly.
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Figure 9. When solving for the full velocity U in the nodal projection step instead of the split velocity formulation, we illustrate
(left) the peak temperature, Tpeak in a white dwarf at resolution of 2563 during the early evolution of the star and (right) the
magnitude of velocity at early time. We observe much larger velocities outside the density cutoff region, ρ < 105 g cm−3, that
are not seen when we split the velocity dynamics.

In practice, we solve the constraint over the lateral average,

∇ ·
(
β0Ũ

)
= β0(S − S) (A2)

and separately solve for w0 using

∇ · (β0w0er) = β0

(
S − 1

Γ1p0

∂p0
∂t

)
. (A3)

To solve for Ũ we use a projection method, which involves the solution of a variable-coefficient Poisson solver to extract
the curl-free component of the unprojected velocity, leaving a velocity field that satisfies the divergence constraint. Note

that MAESTRO contains alternate low Mach number formulations that conserve total energy in stratified systems,

with minimal changes to the code (see Appendix A of Jacobs et al. (2016) for details). To find w0 we integrate in one

dimension using the procedure in Appendix B of Paper V, keeping in mind that the base state spacing (∆r) should
be computed using the appropriate cell-edge and cell-center locations when using irregularly-spaced base state. Note

that in this approach, we estimated the time-derivative of the pressure in part by examining how laterally averaged

ρ′ = ρ− ρ0 changed over time (quantified by ηρ = ρ′U · er). After evolving the species (Steps 4A/8A), we compute

this term as reported in Paper V. For example, after Step 8A, we define a radial cell-centered η
n+1/2
ρ ,
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: For planar geometry, ηρ = ρ′(U · er),

ηn+
1/2

ρ = Average
∑

k

[(
UADV · er

)
(ρXk)

n+1/2,pred
]

(A4)

: For spherical geometry, first construct η
cart,n+1/2
ρ = [ρ′(U · er)]n+1/2 on Cartesian cell centers using:

ηcart,n+
1/2

ρ =

[(
ρ(1) + ρ(2)

2

)
−
(
ρn0 + ρn+1

0

2

)]
·
(
UADV · er

)
. (A5)

Then,

ηn+
1/2

ρ = Average
(
ηcart,n+

1/2
ρ

)
. (A6)
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