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Michigan, Ann Arbor, MI 48109; ¶¶Department of Molecular Biology and Biochemistry and
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ABSTRACT
Examining institutional data from seven cohorts of students intending to major in
biology across five research-intensive institutions, this work analyzes opportunity
gaps—defined as the difference between the grade received by students from the domi-
nant and nondominant sociodemographic groups in institutions of higher education—at
the course-section level across mathematics, physics, biology, and chemistry disciplines.
From this analysis, we find that the majority of course sections have large opportunity
gaps between female and male students, students who are Black, Latino/a/e/x, or
indigenous to the United States and its territories and students who are White or Asian,
first-generation and non-first-generation students, and low-income and non-low-
income students. This work provides a framework to analyze equity across institutions
using robust methodology, including: using multiple approaches to measure grades,
quantile regression rankscores which adjust for previous academic performance, and
cluster analysis. Recommendations are provided for institutions to identify faculty who
have equitable course sections, automate equity analyses, and compare results to other
institutions to make a change toward more equitable outcomes.
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INTRODUCTION
Inequitable grade outcomes in introductory science, technology, engineering, and
mathematics (STEM) courses are well documented in discipline-based education
research (Matz et al., 2017; Salehi et al., 2019; Borda et al., 2020; Mead et
al., 2020; Castle et al., 2024). In recent years, research across institutions has
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been conducted to determine whether the inequities present
at one institution hold true at other institutions (Freeman et
al., 2014; Matz et al., 2017; Mead et al., 2020; Hatfield et al.,
2022; Fiorini et al., 2023; Fischer et al., 2023). Further, in-
equitable outcomes for students from historically minoritized
populations (students who are Black, Latino/a/x, Pacific Is-
landers, and indigenous to the United States and its territo-
ries; first-generation college students; low-income students;
and women) can be seen in exam performance (Eddy et al.,
2014), persistence in STEM (Griffith, 2010), and STEM un-
dergraduate, doctorates, and workforce (Allen-Ramdial and
Campbell, 2014). And for those students who leave STEM,
they experience lower grade outcomes in their first-year STEM
courses compared with those who stay in STEM (Chen and
Ho, 2012). These inequities manifest themselves at the indi-
vidual course level and persist through graduation, where the
proportion of students of a given subgroup that start and com-
plete in their STEM major are substantially lower for minori-
tized populations (National Science Foundation, 2021).
The inequities for historically minoritized populations are per-
vasive in the higher education system (Chen, 2009, 2013;
Cataldi et al., 2018; Canning et al., 2019; National Science
Foundation, 2021). For example, while the share of STEM
degrees awarded to people traditionally excluded due to
ethnicity or race (PEERs) (Asai, 2020) over the past 10 years
has increased (National Science Foundation, 2021), we still do
not know how pervasive student grade equity issues are, and
how they vary across institutions. PEERs disproportionately
experience negative outcomes across a wide range of metrics
including course grades, grade point average (GPAs), grad-
uation rates, and retention in STEM (Ainsworth-Darnell and
Downey, 1998; Kao and Thompson, 2003; Bécares and Priest,
2015; Domina et al., 2017; Tatum, 2017; National Science
Foundation, 2021), inequities caused by an educational sys-
tem that is infused with institutional racism (Ladson-Billings,
1995, 2009, 2020; Solórzano and Villalpando, 1998; McCoy
and Rodricks, 2015; Patton, 2016; McGee, 2020; Taylor et
al., 2023). Similarly, first-generation college students are less
likely to earn a bachelor’s degree compared with non-first-
generation college students (Chen, 2009; Cataldi et al., 2018),
as are women compared with men (National Science Foun-
dation, 2021), and low-income students relative to non-low-
income students (Chen, 2013).

One barrier to persistence in STEM is one or more nega-
tive academic outcomes in individual courses (Chen, 2013)
with first-term academic performance serving as a primary
predictor of graduation success (Gershenfeld et al., 2016).
While active learning approaches have been shown to reduce
achievement gaps for minoritized students (Theobald et al.,
2020), it has been shown that adoption of student-centered
instructional practices vary across discipline and institution
(Stains et al., 2018). As such, the student experience is likely
to be highly inconsistent from course to course, impacting the
degree to which equitable course outcomes occur. Identifying
the persistence of opportunity gaps—defined as the difference
between the grade received by students from the dominant
and nondominant sociodemographic groups—across STEM
disciplines and student demographics will greatly help to
inform this national discussion.

Theoretical Framework
This research is guided by the critical social and critical
race frameworks. Critical theoretical perspectives guide
interpretation of grade disparities seen throughout STEM
programs. In the current study, we explore opportunity gaps
in STEM courses, considering the impact of racism, sexism,
and classism on imparting different learning contexts for
students This analysis leverages institutional data to evalu-
ate equity while viewing the results through a critical lens.
Careful consideration of student grade outcomes in relation
to educational contexts can assist with limiting their misin-
terpretation. The adoption of a critical perspective supports
reframing the individual experience (e.g., an outcome in a
course) as stemming from the constraints of the surrounding
social and cultural context and that society has produced a
university structure which disadvantages people “who are not
White, cisgendered, male, heterosexual, able-bodied, wealthy,
and Western individuals” (Pearson et al., 2022, p.2). Drawing
on critical race theory allows us to attend to the persistent
system of racism ingrained in the structures of American
society, and in educational organizations such as schools and
colleges in particular, that can produce inequitable STEM
learning environments (Freeman, 1977, 1988; Bell, 1995;
Ladson-Billings, 1998, 2009; Taylor et al., 2009; Patton,
2016; McGee, 2020). Critical social theory and reproduction
theories also allow us to focus on issues of power in relation
to gender and socioeconomic status as well (Bourdieu and
Passeron, 1990; Bourdieu, 1998; Manias and Street, 2000;
Leonardo, 2004; Kincheloe and McLaren, 2011).

A consistent thread found across these critical theoretical
perspectives is that individual intent and explicit discrimina-
tory acts are not necessary to the maintenance of inequitable
learning environments and to perpetuate grade disparities.
As a systemic feature of society and organizations, every-
day policies and practices can reproduce racial, gender, and
socioeconomic disparities without identifiable racist, sexist,
or elitist individuals (Acker, 1990; Bourdieu and Passeron,
1990; Bourdieu, 1998; Ray, 2019). These organizationally-
and disciplinarily-embedded features shape the differential
experiences and outcomes of students and researchers in
STEM fields (Asai, 2020; McGee, 2020; Fischer et al., 2023).
Common, normalized features of STEM classrooms reflect
the maintenance of inequitable educational contexts students
must navigate. What the assumed common educational tra-
jectories of students are when they enter the classroom, what
instructors and departments need to provide for them to suc-
ceed, and why students may not perform well are rooted in
the systemic inequities of postsecondary institutions and the
instructor’s beliefs about success and failure that reinforce
racial, gender, and socioeconomic inequalities in education.

Our goal is to consider the grade inequities among biologi-
cal sciences majors of multiple demographic groups (including
race/ethnicity, first-generation status, and low-income status)
across multiple STEM courses spanning five research-intensive
universities. Examining differences in opportunity gaps across
disciplines, institutions, and course characteristics, can assist
future researchers to begin to tease out the impacts of the
structures and systemic barriers that these courses are situated
in that may be causing persistent inequitable outcomes. We
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specifically focus on students majoring in biological sciences
degree programs as they are typically high-enrollment majors
(National Science Foundation, 2021) and more diverse with
respect to gender and race/ethnicity compared with other
STEM disciplines (Funk, 2021).

RESEARCH QUESTIONS
Institutional data from five public research universities are
used to calculate the opportunity gaps in biology, chemistry,
mathematics, and physics courses among undergraduate bio-
logical sciences students. Specifically, we address the follow-
ing research questions:

1. How do opportunity gaps vary across STEM courses among
biological sciences majors?

2. How similar are these opportunity gaps across institutions?
3. What is the relationship between the observed opportunity

gaps and discipline, institution, and course characteristics?

MATERIALS AND METHODS
Context
This study was conducted within the Sloan Equity and Inclu-
sion in STEM Introductory Courses (SEISMIC) collaboration,
a multi-institutional research and practice endeavor across 10
public research-intensive universities in the United States that
connects individuals across disciplines and institutional roles
who are committed to making introductory STEM courses
more equitable and inclusive (SEISMIC Overview, SEISMIC Col-
laboration, n.d.). A central goal of SEISMIC is to examine
institutional data across member institutions, leveraging par-
allel analyses to understand the pervasiveness of inequity
across disciplines. Based on interest and access to institutional
data, five SEISMIC institutions were included in this study. The
institutions each educate about 30,000 undergraduate stu-
dents on average, one is a Hispanic Serving Institutions (HSI)
and two are dual HSIs and Asian American and Native Ameri-
can Pacific Islander-Serving Institutions.

Data Collection
In this study, we conducted a retrospective cohort study (also
known as a historical cohort study) (Sedgwick, 2014). We se-
lected the cohorts by identifying full-time, first-year, nontrans-
fer students who were majoring in the biological sciences at
the time of admission into each university over a 7-year pe-
riod (fall cohorts from 2013 to 2019) and followed each co-
hort for 2 years. Data for this project came from admissions
and registrar records at each institution. For each student, we
included their entry term to the university, major at the time
of admissions, demographic variables (gender, race/ethnicity,
first-generation status, and low-income status) and transcript
data (term, course section, grade in course). The demographic
variables, defined further in Table 1, are limited to binary cat-
egorizations due to institutional data availability and to meet
minimum sample size requirements for statistical purposes.
Table 2 presents the percentage of students in each demo-
graphic category averaged across the course sections for each
institution.

Students Majoring in the Biological Sciences. This study
specifically focuses on students intending to major in the bio-
logical sciences. These students enroll in similar courses across
the five participating campuses, including biology, chemistry,
mathematics, and physics courses. While the institutions in
the SEISMIC collaboration have similar organizational fea-
tures (i.e., public, large undergraduate student enrollments
and “R1” or very high research activity) (McCormick, 2001),
the requirements for major declaration vary; for the institu-
tions in this study most require the selection of a major at
entry, but one institution does not. For the one institution in
this study that does not require declaration of a major at ad-
missions, we defined majoring in the biological sciences as
those who took at least one biology course and at least one
chemistry, mathematics, physics, or statistics course in their
first year because this aligns with biological sciences major
course-taking patterns.

Biology, Chemistry, Mathematics, and Physics Course Sec-
tions. The dataset includes biology, chemistry, mathematics,
and physics course sections that have at least 20 students ma-
joring in biological sciences enrolled. Course sections are the
unit of analysis for this study and are defined at the lecture
level. For example, an introductory biology course might have
1200 students enrolled in one term, split into four 300-person
course sections, and then further divided into smaller discus-
sion sections. In this example, this would equate to four course
sections. We use the course section–level data since this is the
level at which grades are typically decided, students take ex-
ams, and students earn credits toward their degree.

Exclusion Criteria. Course sections worth less than three
credit hours were excluded from the analysis. The minimum
credit hours of the course sections was used to limit our study
to the course sections which the biology students take as the
core requirements for their major and exclude courses that are
supplemental (i.e., supplemental instruction, seminar courses,
etc.). For each course section, if there were fewer than 20
students majoring in biological sciences, the course section
was excluded. Further, if there were less than five enrolled
students majoring in biological sciences from any subgroup
(e.g., less than 5 students who are female, male, PEER, non-
PEER, first-generation, non-first-generation, low-income, or
non-low-income), the course section was excluded. This min-
imum sample size per course section was used to ensure that
assumptions of the statistical tests were met.

The following students were excluded prior to checking for
minimum sample size requirements for each course section: 1)
students who withdrew from a course, 2) students taking the
course under a pass/no pass grading basis, and 3) transfer stu-
dents. The first exclusion was made since these students’ over-
all GPA would not be impacted by withdrawing from a course
and at most institutions students are only allowed to withdraw
from all their courses in a particular term. The second exclu-
sion was made since students intending to major in biological
sciences should be taking the core courses for a grade in or-
der for the course to count toward their major requirements.
The third exclusion was made as transfer students would not
equally be enrolled across the disciplines examined; since the
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TABLE 1. Description of demographic variables. Description of the demographic variables and how data were collected across the
SEISMIC institutions

Indicator variable Codes Notes

Female 1 = female
0 = not female

Sex is self-reported by the students on a binary
basis at three of the five institutions. Only
two institutions collect information on gender
identity in addition to sex.

Persons Excluded because of their
Ethnicity or Race (PEER)

1 = students who identify as Black, Latinx,
Pacific Islander, and/or indigenous to the
United States and its territories

0 = students who identify as White or Asian
only

PEER status (Asai, 2020) is used rather than
individual race/ethnicity categories to ensure
a large enough sample size within each
course section.

First-Generation 1 = first-generation
0 = not first-generation

First-generation status includes students who
self-reported that neither parent graduated
from a 4-year university.

Low-Income 1 = low-income
0 = not low-income

TABLE 2. Demographic representation of biology students
across these SEISMIC institutions. The percent of students in
each category are averaged over the respective course sections

Institution

1 2 3 4 5
% % % % %

Gender
Female 65 59 69 67 65
Non-female 35 41 31 33 35

Ethnicity
PEERs 35 17 22 37 10
Non-PEERs 65 83 78 63 90

First-Generation (FG) Status
FG 28 16 38 50 12
Non-FG 72 84 62 50 88

Low-Income (LI) Status
LI 43 24 29 36 11
Non-LI 57 76 71 64 88

coursework for some disciplines may have already been com-
pleted at a community college. Rather than excluding students
with missing demographic information, students with missing
demographic information were assumed to be part of the dom-
inant group (i.e., a student who is male, non-PEER, non-first-
generation, or non-low-income).

Data Analysis
To calculate the opportunity gaps between two subgroups (fe-
males vs. males, PEERs vs. non-PEERs, first-generation vs.
non-first-generation, and low-income vs. non-low-income),
we took three different approaches. The first two approaches
relied solely on the transcript data and paralleled the work
of Denaro et al. (2021), while the third approach examined
course grades while taking into account previous academic
performance (including high school GPA, incoming credits
from advanced placement exams, international baccalaureate
exams, and any college credits earned while in high school)
using quantile regression (QR) and normalized regression
rankscores (NRR). The three approaches can be summarized

as follows: Approach #1: we calculated the difference in the
fraction of A and B grades awarded compared with C, D, and
F grades awarded in each subgroup (�%AB). Approach #2:
we calculated the difference in the average grade received by
each subgroup on a 4.0 scale (�GP). Approach #3: we car-
ried out the QR procedure to calculate the NRR for each stu-
dent in a course section and then calculated the difference
in the average rankscores in each subgroup (�NRR). Detailed
descriptions of the three approaches are provided in the Sup-
plemental Materials (Supplemental Table S1). While, the term
“opportunity gap” can describe any of the approaches, we fo-
cus our findings for RQ1 and RQ2 on approach #3 and provide
results for approach #1 and #2 in the Supplemental Materi-
als. For RQ3, information from all three approaches is used in
the cluster analysis, as described below.

Data Sharing. Initial analyses using the student-level data
were performed independently by researchers at each institu-
tion using shared code and was carried out in R (R Core Team,
2020). The student-level datasets include 292,591 student
enrollments. All data identified at the student level were
maintained at each home institution and never shared. For
every course section, each institution provided the differences
in academic performance (�%AB, �GP, and �NRR) for the
four different demographic comparisons: 1) females versus
males, 2) PEERs versus non-PEERs, 3) first-generation versus
non-first-generation, and 4) low-income versus non-low-
income. Only the course section–level data were shared for
joint analysis.

QR and NRRs. Linear QR and other quantile methods
were developed by Koenker (2000, 2005) and appear in
many applications across disciplines (Casady and Cryer,
1976; Portnoy and Koenker, 1997; Eide and Showalter,
1998; He and Shi, 1998; Zhou and Portnoy, 1998; Møller
et al., 2008; Daouia et al., 2013; Zhang et al., 2017;
Denaro et al., 2021; Xiong and Tian, 2021). QR is particu-
larly useful when the assumption of normality for ordinary
least squares regression is violated (i.e., the response variable
is non-normal or asymmetric); it is a robust alternative to or-
dinary least squares regression and does not require normality

23:ar53, 4 CBE—Life Sciences Education � 23:ar53, Winter 2024



Cluster Analysis of Opportunity Gaps

among the error terms (Denaro et al., 2021). In our case, the
response variable (course grade) tends to be skewed and non-
normal. We used QR to estimate the conditional quantiles of
the response variable (course grade) given a set of predictor
variables (previous academic performance). Unlike traditional
regression methods that focus on estimating the conditional
mean of the response variable, QR provides a more compre-
hensive picture of the relationship between the response and
predictor variables by estimating multiple quantiles of the re-
sponse variable. The quantiles range from zero to one and are
equally spaced, with the QR model for the 0.50 quantile being
the median regression model. After fitting the QR models, we
leveraged the NRRs to compare the performance of subgroups
of students. The NRRs provide a continuous measure of stu-
dent performance that accounts for previous academic perfor-
mance (high school GPA and incoming credits from advanced
placement exams, international baccalaureate exams, and col-
lege credits earned while in high school). The difference in
the NRRs for each subgroup provides a continuous measure of
grade equity which adjusts for previous academic performance
(note see Supplemental Materials for a discussion of the
choice in approaches). The estimates of the quantile-specific
regression parameters were found using the quantreg pack-
age in R (Koenker, 2015). For further details on the QR proce-
dure, see Supplemental Materials. Following the fitting of the
QR models, we leverage the opportunity gaps (�%AB, �GP,
and �NRR) to compare the performance of the subgroups of
students by using the following clustering algorithms.

Algorithms for Clustering. Cluster analysis is appropriate
when there is no response variable of interest and a re-
searcher would like to identify groups of observations (Fisher,
1958; Macqueen, 1967; Hartigan and Wong, 1979a, 1979b;
Pollard, 1981; Rousseeuw and Kaufman, 1987; Hastie et
al., 2001; Denaro et al., 2021). We conducted hierarchical
clustering with complete linkage to group the course sections
into statistically homogeneous clusters (Ng and Han, 2002;
Kaufman and Rousseeuw, 2005) using the opportunity gaps
(�%AB, �GP, and �NRR) for each pair of subgroups (fe-
males vs. males, PEERs vs. non-PEERs, first-generation vs.
non-first-generation, and low-income vs. non-low-income).
The differences in academic performance (�%AB, �GP, and
�NRR) for all institutions were standardized to have a mean
of zero and a standard deviation of one prior to clustering.
The NbClust package in R was used to carry out the clustering
(Charrad et al., 2014). Each clustering algorithm was carried
out while varying the cluster size (from k = 2, . . . , 15); we
note that the number of final clusters was not predetermined.
The relevant number of clusters for each clustering algo-
rithm was found by evaluating 26 different internal indices
(see Supplemental Table S2 in the Supplemental Materials
for a complete list). For further discussion of the indices,
see Charrad et al. (2014). The internal indices consist of
measures of compactness (how similar are objects within
the same cluster), separation (how distinct are objects from
different clusters), and robustness (how reproducible are
the clusters in other datasets). Index citations and whether
the specific index should be maximized or minimized are
included in the Supplemental Materials (Supplemental
Table S2).

Statistical Tests and Data Visualizations. The course section–
level dataset contained 3207 unique undergraduate course
sections across five public research universities. Data visu-
alizations included box plots providing the minimum, 25th
percentile, median, 75th percentile and the maximum (Mcgill
et al., 1978) to examine the distributions of opportunity gaps
across disciplines and institutions. We note that a value of
zero on the boxplots for the opportunity gaps represent no
difference in opportunity gaps for a particular demographic
characteristic. We created 95% confidence intervals (CI) for
the opportunity gaps (�%AB, �GP, �NRR; i.e., the differences
in academic performance) between each pair of subgroups
(females vs. males, PEERs vs. non-PEERs, first-generation vs.
non-first-generation, and low-income vs. non-low-income)
for all undergraduate course sections (RQ1). We next tested
whether the opportunity gaps in the four disciplines were
significantly different between demographic groups (RQ1),
followed by whether to opportunity gaps across the insti-
tutions were significantly different between demographic
groups (RQ2) by conducting an analysis of variance (ANOVA)
using an overall F-test (Fisher, 1974; Chambers et al., 1992).
To unpack the relationship between discipline, institution,
and opportunity gaps across a variety of student demograph-
ics (RQ3), we examined the differences across the resultant
clusters using the χ2 goodness of fit test (Pearson, 1900;
Fleiss et al., 2013). The χ2 goodness of fit test can be used
to compare proportions between three (or more) groups of
categorical data; the test compares the observed frequency
distribution with the frequency distribution under the null hy-
pothesis (where the null hypothesis is that the counts will be
equally distributed across the clusters). In terms of discipline,
we tested if the biology, mathematics, chemistry, and physics
course sections are equally distributed across the clusters.
For each institution, we tested whether the course sections
were equally distributed across the clusters. To examine the
relationship between course characteristics (student demo-
graphics per course section and student enrollments) and
opportunity gaps across a variety of student demographics
(RQ3), we quantified the differences across the resultant
clusters using an overall F-test (Fisher, 1974; Chambers et al.,
1992). Table 3 provides the research questions, variables used
to address each RQ as well as the corresponding statistical
tests and where the results can be found.

RESULTS
RQ1: How do Opportunity Gaps Vary across STEM
Courses among Biological Sciences Majors?
The data for all undergraduate course sections (n = 3207)
revealed substantial opportunity gaps for students majoring
in biological sciences based on a variety of demographic
characteristics (Table 4; Supplemental Table S3). These in-
equities were pervasive and robust to adjustment for previous
academic performance. The opportunity gap was largest for
PEERs compared with non-PEERs (average �NRR = −0.37,
95% CI for �NRR: [−0.38, −0.36]). PEERs typically re-
ceive between 0.36 and 0.38 grade points lower, on average,
compared with non-PEERs, even after adjusting for previous
academic performance. We also found inequitable outcomes
when comparing females with males (95% CI for �NRR:
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TABLE 3. Data analysis summary. The research questions, description, variables used, statistical test, and where to find the results are
presented

Research question
To identify

differences in: Variables used Statistical test Results

RQ1: How do opportunity
gaps vary across STEM
courses among biological
sciences majors?

Opportunity gaps
across disciplines

�%AB, �GP, �NRR Overall F-test Table 5 and Supplemental
Table S4

RQ2: How similar are
these opportunity gaps
across institutions?

Opportunity gaps
across institutions

�%AB, �GP, �NRR Overall F-test Table 6 and Supplemental
Table S5

Discipline-specific
opportunity gaps
across institutions

�%AB, �GP, �NRR Overall F-test Supplemental Tables S6–S9

RQ3: What is the
relationship between the
observed opportunity
gaps and discipline,
institution, and course
characteristics?

The distribution of
disciplines across
the clusters

Discipline χ2 goodness of fit test Table 8

The distribution of
institutions across
the clusters

Institution χ2 goodness of fit test Table 8

The distribution of
student
demographics
across the clusters

Gender, PEER status,
first-generation
status, low-income
status

Overall F-test Table 8

The distribution of
enrollments
across the clusters

Student enrollment Overall F-test Table 8

TABLE 4. 95% CIs for the opportunity gap between subgroups as
measured by �NRR for all undergraduate course sections (n =
3207). The interval estimates for the differences in the NRRs
(�NRR, Approach #3) are adjusted for previous academic
performance. The 95% CIs show the range of plausible values for
the opportunity gaps; since none of the intervals contain zero,
all represent differences in opportunity gaps for each of the
subgroups that are significant at the α = 0.05 level

Group Approach #3

1 2
95% CI for

�NRR

Female Males (−0.19, −0.16)
PEERs Non-PEERs (−0.38, −0.36)

First-generation Non-first-generation (−0.35, −0.32)
Low-income Non-low-income (−0.27, −0.24)

n = 3207

[−0.19, −0.16]), first-generation college students to non-
first-generation college students (95% CI for �NRR: [−0.35,
−0.32]), and low-income to non-low-income students (95%
CI for �NRR: [−0.27, −0.24]).

We next tested whether the opportunity gaps across the
four disciplines for each of the demographic comparisons were
significantly different (Table 5, Supplemental Figures S1–S5;
Supplemental Table S4). Figure 1 presents the results for the
opportunity gaps which adjust for previous academic perfor-
mance (�NRR, Approach #3). The opportunity gaps between
subgroups of biological sciences majors show consistently
large opportunity gaps across all disciplines examined (biol-
ogy, chemistry, mathematics, physics). The only case in which

there was no statistically measurable difference in opportu-
nity gaps was for first-generation students (first-generation vs.
non-first generation �NRR; F = 1.43, p = 0.2316).

RQ2: How Similar are These Opportunity Gaps across
Institutions?
We observed differences in opportunity gaps for females,
PEERs, first-generation students and low-income students
across the five institutions (Figure 2; Table 6). These dif-
ferences persisted regardless of analytical approach (see
Supplemental Materials, Supplemental Tables S5–S9; Supple-
mental Figures S6–S10), including accounting for previous
academic performance (Female �NRR: F = 11.51, p < 0.001;
PEER �NRR: F = 11.26, p < 0.001; First-generation �NRR:
F = 17.58, p < 0.001; Low-income �NRR: F = 27.73, p <

0.001). There was no consistent pattern for a single institution
showing smaller opportunity gaps than the others across the
demographic characteristics (Table 6). For example, institu-
tion two had smaller gaps for female students compared with
male students while institution five had smaller gaps for low-
income students compared with non-low-income students.
Moreover, the institution with the smallest gap often differs
by analytical approach, which underscores that these gaps are
multifaceted.

RQ3: What is the Relationship between the Observed
Opportunity Gaps and Discipline, Institution, and Course
Characteristics?
Through cluster analysis, we uncovered three distinct and
cohesive groupings among the course sections. Index values
for the indices and the summary statistics for the best choice
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TABLE 5. Discipline summary statistics for opportunity gaps as measured by �NRR for all undergraduate course sections (n = 3207).
Results for �NRR (Approach #3) are given for each demographic characteristic examined. The mean and standard error are provided
for the opportunity gaps from each discipline. The overall F-test and respective p-values for the test of the difference across
disciplines. Significant results are denoted with an asterisk (*)

Approach #3 Biology Chemistry Mathematics Physics
�NRR Mean (SE) Mean (SE) Mean (SE) Mean (SE) F p-value

Female −0.15 (0.01) −0.21 (0.01) −0.08 (0.02) −0.28 (0.02) 24.88 <0.001 *
PEER −0.35 (0.01) −0.36 (0.01) −0.41 (0.02) −0.48 (0.02) 14.72 <0.001 *
First-Generation −0.33 (0.01) −0.34 (0.01) −0.32 (0.02) −0.36 (0.02) 1.43 0.2316
Low-Income −0.25 (0.01) −0.26 (0.01) −0.22 (0.02) −0.30 (0.02) 3.04 0.0278 *
Number of course sections 1625 877 334 371

of cluster size can be found in the Supplementary Materials
(Supplemental Tables S10 and S11). These clusters represent
fundamental divisions within our dataset and offer insights
into the landscape of opportunity gaps by course section

(Figure 3; Table 7; Supplemental Tables S11–S15). The
clusters can be characterized as: 1) large opportunity gaps
cluster, 2) mixed opportunity gaps cluster, and 3) small
opportunity gaps cluster. More than half (54%) of course

FIGURE 1. Opportunity gaps (�NRR) for students intending to major in the biological sciences across disciplines. Panels (A), (B), (C),
and (D) present the opportunity gaps for female students, PEERs, first-generation students, and low-income students, respectively,
using Approach #3.

CBE—Life Sciences Education � 23:ar53, Winter 2024 23:ar53, 7



K. Denaro et al.

FIGURE 2. Opportunity gaps (�NRR) for students intending to major in the biological sciences across institutions. Panels (A), (B), (C),
and (D) present the opportunity gaps for female students, PEERs, first-generation students, and low-income students, respectively,
using Approach #3.

sections comprised the first cluster, representing course sec-
tions that had large opportunity gaps for all four demographic
characteristics examined. The second cluster, with 11% of the
course sections, had no opportunity gap for female students
and small opportunity gaps for low-income students, but

large opportunity gaps for PEERs and first-generation college
students similar to the first cluster. Notably, in the second
cluster there was a large opportunity gap for male students.
The remaining 35% of the course sections were in the third
cluster, which included course sections with small opportunity

TABLE 6. Institution summary statistics for opportunity gaps as measured by �NRR for all undergraduate course sections (n = 3207).
Results for �NRR (Approach #3) are given for each demographic characteristic examined. The mean and standard error are provided
for the opportunity gaps from each institution. The overall F-test and respective p-values for the test of the difference across
institutions. Significant results are denoted with an asterisk (*)

Approach #3
�NRR I1 I2 I3 I4 I5 F p-value

Female −0.26 (0.02) −0.19 (0.02) −0.14 (0.01) −0.15 (0.01) −0.22 (0.02) 11.51 <0.001 *
PEER −0.34 (0.02) −0.32 (0.02) −0.41 (0.01) −0.38 (0.01) −0.27 (0.02) 11.26 <0.001 *
First-Generation −0.35 (0.02) −0.34 (0.02) −0.39 (0.01) −0.27 (0.01) −0.30 (0.03) 17.58 <0.001 *
Low-Income −0.25 (0.02) −0.39 (0.02) −0.30 (0.01) −0.18 (0.01) −0.22 (0.02) 27.73 <0.001 *
Number of Course Sections 474 277 1153 1007 296
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FIGURE 3. Opportunity gaps (�NRR) for students intending to major in the biological sciences across clusters. Panels (A), (B), (C), and
(D) present the opportunity gaps for female students, PEERs, first-generation students, and low-income students, respectively, using
Approach #3.

gaps for all four demographic characteristics. While the
clusters were created based on the standardized opportunity
gaps, we can further examine the cluster composition by
overlaying institution, discipline, student demographics per
course section, and student enrollments (Table 8).

Biology course sections were less represented in the large
opportunity gaps cluster and overrepresented in the small
opportunity gaps cluster (χ2 = 34.74, p < 0.001). Forty-
nine percent of biology course sections were in the large op-
portunity gaps cluster (large gaps on all dimensions; com-
pared with 54% all course sections, 59% non-biology course
sections) and 40% were in the small opportunity gaps clus-
ter (smaller gaps on all dimensions; compared with 35%
all course sections, 31% non-biology course sections). Con-
versely, chemistry, mathematics, and physics were underrep-
resented in the small opportunity gaps cluster (Chemistry
χ2 = 16.71, p < 0.001, Math χ2 = 17.38, p < 0.001, and
Physics χ2 = 14.63, p < 0.001). The mixed opportunity gaps

cluster included proportionately more mathematics classes
(17% compared with 11%).

In terms of institutions, we see that institutions 2 and 3
had higher proportions of course sections falling in the large
opportunity gaps cluster (I2: χ2 = 25.54, p < 0.001; I3:
χ2 = 31.66, p < 0.001) and lower proportions of course
sections falling into the small opportunity gaps cluster (I2:
24%, compared with 35% for all course sections and 36%
for non-I2 course sections; I3: 29%, compared with 39% for
non-I3 course sections). The distribution of course sections
from institution 1 was no different than expected with similar
proportions of course sections falling into each of the clusters
compared with the non-I1 course sections (I1: χ2 = 1.68,
p = 0.432). Institutions 4 and 5 had lower proportions of
course sections in the large opportunity gaps cluster and
higher proportions of course sections falling in the small
opportunity gaps cluster (I4: χ2 = 27.33, p < 0.001 and I5:
χ2 = 26.97, p < 0.001).
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TABLE 7. Cluster summary statistics for opportunity gaps as measured by �%AB, �GP, and �NRR. Results for the three analytical
approaches are given for each demographic characteristic examined. The mean and standard error are provided for the opportunity
gaps from each of the clusters. The overall F-test and respective p-values for the test of the difference across institutions. Significant
results are denoted with an asterisk (*)

Cluster

Large
opportunity

gaps

Mixed
opportunity

gaps

Small
opportunity

gaps
Approach 1 2 3 F p-value

�%AB
Female − 7.58 (0.29) 8.33 (0.64) −1.63 (0.36) 282.70 <0.001 *
PEER − 19.16 (0.35) − 20.43 (0.65) −5.34 (0.40) 383.42 <0.001 *
First-Generation − 18.04 (0.29) − 17.38 (0.73) −3.31 (0.33) 552.10 <0.001 *
Low-Income − 16.13 (0.30) − 11.35 (0.72) −1.43 (0.31) 520.23 <0.001 *

�GP
Female − 0.19 (0.01) 0.18 (0.01) −0.05 (0.01) 316.51 <0.001 *
PEER − 0.48 (0.01) − 0.52 (0.01) −0.17 (0.01) 452.07 <0.001 *
First-Generation − 0.45 (0.01) − 0.43 (0.02) −0.12 (0.01) 622.16 <0.001 *
Low-Income − 0.41 (0.01) − 0.28 (0.02) −0.07 (0.01) 576.73 <0.001 *

�NRR
Female − 0.27 (0.01) 0.15 (0.02) −0.13 (0.01) 255.48 <0.001 *
PEER − 0.48 (0.01) − 0.53 (0.02) −0.16 (0.01) 323.22 <0.001 *
First-Generation − 0.46 (0.01) − 0.44 (0.02) −0.11 (0.01) 461.87 <0.001 *
Low-Income − 0.40 (0.01) − 0.26 (0.02) −0.03 (0.01) 465.04 <0.001 *

Course sections
Number 1720 352 1135 n = 3207
Percent 54 11 35 100

We also examined the extent to which demographic repre-
sentation of a course varied across the final clusters. There was
not a significant difference in the average proportion of PEERs
in course sections between the clusters (F = 0.55, p = 0.579).
Similarly, we did not observe different group representation
for females, first-generation students, or low-income students
between the clusters.

The last variable we considered in examining the clusters
was the average student enrollment per course section for
each of the clusters. There was a significant difference in the
average student enrollment per course section for the three
clusters (F = 26.9, p < 0.001). The large opportunity gaps
cluster had the largest average student enrollments (98 stu-
dents). The mixed opportunity gaps cluster had the smallest
average student enrollments (76 students). The small oppor-
tunity gaps cluster had an average of 86 students per course
section.

DISCUSSION
While universities often claim that they contribute to in-
creased social mobility and access to future opportunities, we
found that the majority of course sections (54%) have large
opportunity gaps for historically excluded groups. The reasons
could include learning environments, course structures, and
instructional practices (Seymour et al., 2019), all driven in
large part by pedagogical decisions made by faculty, that are
racialized, gendered, and classist as well as the extended im-
pact of systemic biases in preparation and support for college
(Dizon et al., 2023). However, we also found that 35% of the
course sections in our dataset exhibited no gaps across the de-
mographic characteristics we examined, representing all four
disciplines and five institutions in our dataset, showing that

equitable STEM education outcomes, insofar as they are de-
fined herein, are achievable.

Among the disciplines included, biology courses had more
equitable results overall. This is in line with prior work
highlighting how outcomes tend to be more equitable in
biological sciences relative to physical sciences courses (Matz
et al., 2017), and may reflect a focused commitment within
the discipline to address systemic disparities (Woodin et al.,
2010; American Association for the Advancement of Science,
2011, 2015, 2018; Ledbetter, 2012). It could also be reflective
of our study methodology, as we focus on course outcomes
specifically for biological sciences students. It is possible these
student populations as a whole have a greater aptitude or
interest for these courses relative to those in the physical
sciences, resulting in smaller opportunity gaps, although
prior literature has not demonstrated a connection between
course interest and equitability of outcomes. Regardless, the
presence of significant gaps in a majority of course sections at
all of these institutions—and the inconsistent pattern across
institutions—underscores the urgent need for all universities
to critically examine and reform educational practices and to
look for exemplary course sections (at their own institution as
well as others).

Across the institutions in this study, we found that
the grades received by students who are female, PEERs,
first-generation, and low-income were lower than their non-
female, non-PEER, non-first-generation, and non-low-income
counterparts in the majority of course sections. The oppor-
tunity gaps at the course-section level may contribute to
retention issues that have been previously identified (Chen
and Ho, 2012; Chen, 2013; Dika and D’Amico, 2016; Eddy and
Brownell, 2016; Bettencourt et al., 2020; Hatfield et al., 2022;
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TABLE 8. Cluster summary statistics for overlaid variables. Summary statistics for each of the overlaid variables (discipline, institution,
student demographics per course section, and student enrollments) are presented. The number of course sections and conditional
percentages are provided with the respective χ2 tests for discipline and institution. Note that for the conditional percentages, each
row sums to 100. The mean and standard error are provided student demographics per course section and the student enrollments
along with the respective overall F-tests

Cluster

Large
opportunity

gaps

Mixed
opportunity

gaps

Small
opportunity

gaps
1 2 3

n (%) n (%) n (%) χ2 p-value

Discipline
Biology 790 (49) 188 (12) 647 (40) 34.74 <0.001 *
Chemistry 521 (59) 79 (9) 277 (32) 16.71 <0.001 *
Mathematics 177 (53) 58 (17) 99 (30) 17.38 <0.001 *
Physics 232 (63) 27 (7) 112 (30) 14.63 <0.001 *

Institution
I1 247 (52) 60 (13) 167 (35) 1.68 0.432
I2 160 (58) 50 (18) 67 (24) 25.54 <0.001 *
I3 686 (59) 131 (11) 336 (29) 31.66 <0.001 *
I4 494 (49) 92 (9) 421 (42) 27.33 <0.001 *
I5 133 (45) 19 (6) 144 (49) 26.97 <0.001 *

Cluster

Large
opportunity

gaps

Mixed
opportunity

gaps

Small
opportunity

gaps
1 2 3

Mean (SE) Mean (SE) Mean (SE) F p-value

Demographic
representation
Female 66.87 (0.20) 66.84 (0.47) 66.88 (0.25) 0 0.9969
PEER 26.94 (0.31) 27.76 (0.73) 27.02 (0.43) 0.55 0.5790
First Generation 36.11 (0.36) 35.48 (0.82) 36.06 (0.48) 0.25 0.7782
Low Income 31.10 (0.27) 31.65 (0.66) 30.44 (0.37) 1.79 0.1664

Class size 97.81 (1.46) 76.46 (2.65) 85.86 (1.71) 26.9 <0.001 *
Course sections

Number 1720 352 1135 n = 3207
Percent 54 11 35 100

Fiorini et al., 2023). The universities accepted each of these
students and it is reasonable to argue that, through admis-
sion, they have made an implicit promise to educate those
students. Even comparing students with similar academic
backgrounds, we found that students who are female, PEERs,
first-generation, and low-income ended up receiving grades
lower than their more privileged counterparts (see also
Hatfield et al., 2022). However, there were two institutions
with course sections overrepresented in the cluster with small
opportunity gap course sections. While all institutions in the
study offer professional development activities, institutions
4 and 5 have multiple initiatives on campus related to active
learning, including professional development opportunities,
relevant classroom infrastructure, and tenure and promotion
incentives centered around inclusive teaching. Future re-
search to examine the different initiatives across the campus
and the fidelity of implementation is needed to understand
the impact of the campus on opportunity gaps.

The largest opportunity gaps identified in this re-
search were between PEERs and non-PEERs. PEER/non-PEER

opportunity gaps were pervasive across disciplines and insti-
tutions, suggesting that all disciplines need to examine their
course structures and practices to create more equitable op-
portunities for students from historically excluded ethnic and
racial groups. Examples of examining course structures and
practices could include syllabi analysis that measures tone,
opportunities to make mistakes, flexibility in participation of
modes, and grading policies (Eslami et al., 2024). Differen-
tial outcomes in college for PEERs may be attributed to the
complex interplay of systemic factors resulting in substantial
differences across populations regardless of all students being
well prepared for college.

Systemic biases within educational systems, including
high stakes exams (Au, 2022), limited amounts of student-
centered learning opportunities (Cullen et al., 2012), and
the prevalence of traditional lecture-based courses (Freeman
et al., 2014) can perpetuate inequalities. Addressing these
multifaceted issues requires a comprehensive approach that
tackles not only educational policies but also the university
climate to create a more inclusive and equitable learning
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environment for all students. One suggestion from the Joint
Working Group on Improving Underrepresented Minorities
persistence in STEM is to track and increase awareness of
institutional progress toward diversifying STEM (Estrada et
al., 2016). Shukla and colleagues also provide a selection of
research frameworks that move away from deficit models of
student learning (2022). Their work provides examples of
how achievement gaps can reinforce racial stereotypes and
examples that prevent opportunity gaps, such as course-based
undergraduate research experiences (Shukla et al., 2022).
Similarly, by identifying course sections with minimal oppor-
tunity gaps as we did in this analysis, institutions can learn
what successful instructors and departments are doing to
foster more equitable outcomes.

One example of effort to reduce inequities in STEM by
the SEISMIC collaboration is a project that is providing
“Course Equity Reports” and a yearlong curriculum for devel-
oping equity-mindedness in faculty and undergraduate stu-
dents (The SELC Grant, n.d.). Teams of STEM faculty and
students, supported by teaching center staff and institutional
researchers, regularly review course equity analyses, discuss
teaching practices and course structures, and work as a team
to make campus-specific recommendations to university lead-
ership. This model is bringing together faculty to make a
change to achieve more equitable outcomes.

Other examples of beneficial practices could include in-
terventions to increase student confidence, self-efficacy, and
motivation (Koenig et al., 2012; Graham et al., 2013; Musu-
Gillette et al., 2015; Gao et al., 2020), the inclusion of diverse
examples and perspectives into the curriculum (Tanner, 2013;
Schinske et al., 2016; Lygo-Baker et al., 2019), or instructors’
approaches to providing students with opportunities to receive
feedback and support, such as office hours or supplemental tu-
toring (Topping, 1996; Yorke, 2003; Guerrero and Rod, 2013).
Instructors can also work to create a more welcoming and sup-
portive classroom culture by establishing clear expectations,
promoting respect and inclusivity, and providing opportunities
for students to build community and connections with one an-
other (O’Keeffe, 2013; Ahn and Davis, 2020; Van Herpen et
al., 2020). By examining these course-level remedies, depart-
ments and institutions can better understand how to create
inclusive learning environments across a university.

Limitations
The data analyzed in this work were limited to the data found
in each participating campus’ institutional research records.
We rely on legal sex data, but acknowledge that this does not
capture all students who may experience implicit or explicit
discrimination in the classroom for reasons related to gender
identity. Low-income status is defined differently across insti-
tutions, and due to data reporting policies at the individual in-
stitutions, we were unable to fully standardize low-income sta-
tus leading to slightly different definitions across institutions.
We would have liked to expand analyses to include more char-
acteristics that impact the student experience, such as sense
of belonging and other qualitative measures, however that
data are not comprehensively collected across institutions.

To create a relatively homogenous dataset, we chose to
limit this analysis to STEM courses taken by students intend-
ing to major in the biological sciences. There may be non-

STEM courses that are critical for the development of biology
majors that we did not include as a result of this choice of
scope. While our exclusions may limit the generalizability of
the results, the methods remain fully applicable to other ma-
jors and course selections. Because we are focused on course
sections, we were unable to address intersectional analysis
due to the sample size of overlapping identities within each
course section. And while we would have liked to consider
intersectional identities (e.g., women who are PEERS, PEERS
who are first generation, etc.), we would have limited our-
selves more to a reduced number of course sections which had
all combinations of intersectional identities.

We elected to focus on course grades as the outcome of
interest, as they are the primary indicator most students re-
ceive of their own ability and achievement in a subject area.
Furthermore they are essential in determining whether a stu-
dent is allowed to continue in STEM, stay in college, and enter
graduate school. As such, inequitable grades will inevitably
lead to inequitable retention in STEM and inequitable en-
rollment in graduate programs. It is important to note that
since our outcome was course grade, we excluded students
who dropped out of the course sections because they did not
earn a grade. Each institution also has different policies that
guide how and when students are able to drop a course, and
so rather than treat this as a single population for analysis pur-
poses, we excluded them from the analysis. We acknowledge
that better understanding who drops a STEM course and the
reasons for that are important areas of research.

While our analysis focused on course grades, we did not
take into consideration the types and complexity of assess-
ments undertaken within each section that produced these
grades. While some course sections may take advantage of
multiple forms of assessment that represent multiple levels
of complexity, including higher cognitive levels according
to Bloom (Bloom, 1956; Krathwohl, 2002; Adams, 2015),
others favor more fundamental recall levels often found in
easily scored multiple choice assessments as seen by biology
faculty often favoring lower level Bloom’s questions (Larsen
et al., 2022). The use of varying types of assessments likely
influences the observed opportunity gaps, and thus need to
be further considered.

Lastly, we acknowledge that this research was conducted at
large, research intensive institutions which do not capture stu-
dents’ opportunities at a diverse set of institutions. And while
this framework for comparing opportunity gaps across differ-
ent demographic groups could be leveraged at other types of
institutions, the results of our study may not be generalizable
to non-R1 institutions.

Future Work
The focus of the paper was to apply a robust quantitative ap-
proach to measure opportunity gaps across institutions and
disciplines. In future work, we would like to integrate qual-
itative data and follow-up with course sections where we
saw smaller opportunity gaps. There are a few areas which
we would like to consider for future work and will discuss
here briefly. The first area is to integrate qualitative data.
Pearson et al. (2022) discuss critical approaches for quantita-
tive STEM equity work. Scholars following the guidelines: 1)
grapple with historical and present-day reality of racism, 2)
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recognize how the practice of naively using statistics can up-
hold white supremacy, 3) interrogate how social categoriza-
tions are varied, contested, and fluid over time, 4) integrate
voices of racially marginalized and minoritized individuals
through qualitative mixed methods approaches, and 5) em-
brace research methods to pursue equity goals that align with
a social justice agenda (Pearson et al., 2022). Future research
could include factors discussed by Ulriksen and colleagues
about why students leave STEM and include measures of stu-
dents identifying with the science community (2015), how
students feel about the inclusivity of the learning environ-
ment, the degree of competitiveness in STEM courses, and
pedagogical choices by faculty. Also, Tinto’s model of student
retention relies on institutional commitment, academic inte-
gration, and social integration (1975) and future work could
include measures of these items. And while the goal of this
study was to focus on quantitative analysis of opportunity
gaps, future research including qualitative analysis could add
additional context to our findings.

RECOMMENDATIONS
Recommendations for changing from a state where the ma-
jority of course sections had large opportunity gaps to a state
where the majority of course sections achieve equitable out-
comes are discussed below. According to Lewin’s theory of
change, there are three steps to a change, unfreezing, mov-
ing, and [re]freezing of group standards (Lewin, 1947). If the
desired state is to achieve more equitable outcomes, we can-
not evaluate equity at one point in time and expect to drive
change by focusing on equity. Lewin discusses the necessity of
instilling permanency in the change process (Lewin, 1947).
Our recommendations are to create awareness for the cur-
rent state of equitable course sections (unfreezing), provide
equity analyses for the faculty (moving), identify faculty who
have equitable course sections (moving), compare results with
other institutions (moving). All of these efforts could support
permanency of equitable student outcomes (refreezing). Be-
low we discuss steps that institutions can take to improve eq-
uity. We hope that the recommendations below can help in-
stitutions consider how they would like to use data to inform
their faculty and stakeholders, which can help them track eq-
uity in their courses

By identifying faculty who have equitable course sections,
further study of how equity is achieved and what the instruc-
tors are doing to promote equity could give insights for other
instructors. The institution should have structures in place to
help identify these courses, including automated equity anal-
ysis through student data dashboards (Verbert et al., 2013;
Reinitz, 2022; Williamson and Kizilcec, 2022; Sloan-Lynch
and Morse, 2024) and departmental reports that aggregate
these findings, as well as appropriate research staff to help
stakeholders comprehend these results. There also needs to be
relevant support in the form of educational developers who
are able to help instructors and programs consider how to
leverage these data to generate concrete pedagogical changes.
And finally, a change in incentive structure, perhaps driven
through the faculty merit and promotion process, is needed;
one which rewards faculty who make strides to more inclusive
classroom spaces is essential for creating a university structure

that promotes equity and excellence. Finally, it is important
that these discussions continue beyond a single institution. By
comparing institutional outcomes across colleges and univer-
sities, a larger pool of instructors and departments with more
equitable outcomes will exist, allowing for the improved iden-
tification of beneficial practices and policies.

CONCLUSIONS
By looking at the data from multiple institutions, we were
able to identify patterns of differential student grades across
thousands of course sections and multiple STEM disciplines.
In our work, we found the majority of course sections had
large opportunity gaps for females, PEERs, first-generation,
and low-income biology students. There was a difference in
the representation of disciplines and institutions across the
clusters with biology course sections being overrepresented in
the most equitable cluster. By identifying course sections that
are more equitable, we are able to take the first step in creat-
ing more inclusive learning environments.
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