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Abstract

The influence of the turbulence spreading is studied on the self-sustained turbulence
which isinduced by the subcritical instability. It isfound that there isaminimum system
Size that can sustain the self-sustained turbulence, and an anaytic formulais derived.

The generalization of the Maxwell's construction rule is also derived.

K eywor ds: turbulence spreading, subcritical turbulence, plasma transport, nonlocal

effect, generalized Maxwell’ s construction, minimum system size



1. Introduction

Substantial progress has been achieved recently in the field of plasma turbulence.
One of the key in the theoretical progress, in comparison with the classical view of
plasmaturbulence,b) is the recognition of the importance of nonlocal effect of turbulence
ininhomogeneous plasmas. The nonlocal interaction has been analyzed from various
points of view: One approach is based on the framework of the K-¢ mode!,23) another
onetreats along radia transmission of fluctuation energy,® and the other approach
emphasizes the interaction between fluctuations with different scale lengths.® These
theoretical approaches have been applied to study the radial profiles of turbulent transport
coefficientt-9 and the transient transport.10.11) The importance of nonlocal interactions
has aso been shown by direct nonlinear simulations (DNS).12-18) |n particular, the
recent evolution of DNS has encouraged the quantitative test, including the scaling law
with respect to control parameters, and stimulated the detailed theoretical analysis on the
turbulent spreading.18-24)

The other key processisthe subcritical turbulence. The nonlinear instability
mechanisms exist in toroidal plasmas, so that the strong turbulence is sustained even for
plasma parameters that predict linear stability for microscopic fluctuations. (See
references quoted in refs.25 and 26.) The theoretical progress has alowed to analyze the
anomalous transport which is driven by self-sustained turbulence. Experimental
observations have suggested a relevance of subcritical turbulence in the toroidal
plasmas.27. 28)

Progress on these two directions raises a problem, i.e., the impact of the turbulent
spreading on the subcritical turbulence. In thisarticle, we study the influence of the
turbulence spreading on the self-sustained turbulence of subcritical instabilities. The
stationary solution of the self-sustained turbulence is obtained where the turbulence
spreads into strongly stable regions. The reduction of turbulent transport by the radial
spreading is analyzed. It is shown that thereisaminimum radial plasma extent, in order

for a self-sustained turbulence to exist in linearly stable plasmas. A new bifurcation is



illustrated. The new phase boundary in parameter space is derived, in which the effect of

turbulence spreading isincluded.

2. Model

We study a one-dimensional moddl to study the turbulence spreading into stable
regions. The turbulence quantities are averaged over the magnetic surface, and a profile
inthe X— direction isstudied. (A sab model isemployed, and the X — axisistaken in the
radial direction.) We take the case that the plasma has a subcritical instability in the region
of 0=<|x|=L,anditisstrongly stablein theregions|X|>L . (Schematic drawing is
giveninFig.1.)

We follow the framework of ref.22, in which a dynamical equation has been

formulated in aform as

a|aa|

Jl Ao 1t M
wherel = ‘ (T)z ‘/‘ <T>|20ca| ‘ isthe normalized el ectrostatic potentia fluctuation amplitude,

‘ (T)|%Ca| ‘ isthe level which isgiven by thelocal balance of drive and dampingA =0, A
isthe decorrelation rate (including the growth rate and local nonlinear damping rate), and
xol ¢ isthediffusion coefficient due to aturbulence spreading, in which the dependence
on the fluctuation level is represented by use of theindex o . (In aweak turbulence limit,
a =1 holds, and o = 1/2 for strong turbulence limit.3)) This model has several
limitations. Firgt, the fluctuations, the wavelengths of which are comparableto L , are
not included. Second, the incoherent and fluctuating kicks are not taken into account.
Noticing that these additional processes may have a substantial influence, we choose the

model (1) as a starting point of the analysis.

In the damper region, | X \ > L, the plasmais stable, and we simply choose

A== gamp— %K *<0  for|x|>L. )



where 1/k denotes a characteristic scale length of turbulence. In the excitation region,
O<|x|=<L, plasmacan be unstable, i.e., A can be positive. In the case of subcritical

excitation, the dependence of A on | issuch that

A<0 for I1<lg andl<l, (33)
and

A>0 for lg<I<1, (3b)

where | ¢ isthethreshold amplitude of fluctuations for the onset of nonlinear instability.

A takesthemaximumvaueA g intheregionl; <1 <1. Inalocd theory, the solution
1=1 (4)
isgiven for the self-sustained turbulence. (Notice that the normalization of fluctuation is

defined suchthat | =1 holdsfor local theory.)

The stationary state is given by the equation

d (a0 _
X0 | S I +AT=0. )

Equation (5) is solved with the boundary condition

d1=0  ax=0, (63)
=0 a|x|— o (6b)

We introduce a characteristic length



0=, ) —20__
(1+(X,)A0 ,

(73)
and the length and A are normalized with respectto ¢ and A , respectively,

T=x/f C=L0,  A=AlAq. (7b)

By use of this normalization, Eq.(5) is rewritten as

2
Epearyi o, ©

where anew variable for the fluctuation amplitude is introduced as

F:|1+oc' (9)

The flux of turbulenceis given by agradient of F . In Eq.(8), variable F and coefficient

A are of the order of unity.

3. Solution
3.1 Solution of the steady state

The solution of Eq.(8) inthe unstablelayer, 0<|C|<LC (i.e, O<|x|<L),is
examined. The solution F(?;) is symmetric with respect to € , and we look for a solution
inthe domain 0= ¢ < L with the boundary condition dF/d =0 a ¢ =0 . Multiplying

dF/dC to Eq.(8) and integrating it with respect to € once, one has arelation as

dp=-_ H(F(0)|-H(F) , (10)

where the Sagdeev potential is given as

5



H(F)Eszde\F”(“a) (11)

and therelation dF/dC =0 a F = F(0) isused. Thefunction H(F) isillustratedin
Fig.2. Equation (10) isintegrated, and the solution F(C) inthedomain0<C <L is

giveninanimplicit form as

[ H(F(SS—H(F) “ 12

This solution EQ.(12) includes an integral constant F(O) , which is determined by

the continuity conditionat S =L . In the stableregion, ¢ > L , Eq.(8) takes aform

2
d”

Ydamp - 1/(1+a) , XoK* o | _
2 FUL+a) X% Fl=g (13)

Ag 0

Noticing the boundary condition Eq.(6b), i.e., F = 0 asT — « | Eq.(13) isintegrated

once as
aF
dg

Thisgives arelation between F (L] (i.e, dF/dz at £=L)and F(L) as

2 2
_Ydamp 2 + 20, =(2+a)(1+a) . XOK* =2
_/\OZHXF( I )+AOF _ (149)

2 Vdamp 2+ 20 () (2+a)( L) | xoKZ L ~\2
F(C) = Ag 210?':('-)( el Ao F(0)". (14b)
The constant F(O) in Eq.(12) is determined to satisfy the condition Eq.(14b) at T =L .

For obtaining an analytic insight of the problem, we consider the case that the

damping in the region C > \ C \ is strong enough, i.e.,
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Ydamp/AO_>°° . (15)

Inthislimit of strong damping, Y damg/A o = ® , EQ.(14b) is simplified as
F=0at=L. (16)

(Thelimit of Eq.(15) does not change the conclusion qualitatively in thisarticle. See
appendix for supplementary discussion.) Figure 3 illustrates an example of the self-

sustained solution Eq.(12) with Eq.(16), by choosing a model form

A=4(1—a)‘2(—a+(a+1)|:—|:2), (17)

where a isaparameter to denote the magnitude of the linear stability, and the threshold
amplitude for the onset of instability isgiven, intermsof | | as |31+ *=a. (The
parameter @ isintherangesO<a<1, and the linear damping rateislarger for alarger

vaueof a.)

3.2 Influence of turbulence spreading on self-sustained turbulence
Theresult (12) with Eq.(16) determines the influence of the turbulence spreading

on the sustainment of the subcritical turbulence. The dependence on the width of the

region 2L isstudied in this subsection. PuttingC =L into Eq.(12), one has

~F(0)

dF =L (18)

From Eq.(18), one sees that there is an upper bound and alower bound for F(O) . From

the functional dependence of H(F) shown in Fig.2, H(F(O)) must satisfy the condition



0=H(0) < H[F(0]|< H(1) . (19)

(1f H([F(0)) isnegative, F(L) =0 cannot be stisfied.) The lower bound of F(0) is

imposed by the subcritical excitation condition and isgiven as

F(O)=F« (20a)
where F+ isdefined by therelation

H(F+]=0. (20b)
That is, the value F(0) must satisfy the condition

F.<F(0]<1, (21)

in order that the nontrivial solution F(0) >0 is allowed for the self-sustained turbulence,
The fact that F(0) has alower bound is different from the case that the turbulence is
driven by supercritical instability. In the case of supercritical instability, F(O)
continuously reducesto 0 as L approaches 0, as has been discussed in ref.22.

Noting the lower and upper bounds, Eq.(21), the influence of the finite length L

on the turbulence level is studied by analyzing Eq.(18).
First, the case of large L is discussed. By definition, H(F) hasalocal maximum

a F =1, which denotes the self-sustained turbulencein alocal model. As C increases,

F(O) approaches to unity. In order to study the situation of F(O) ~1, H(F) is expanded

inthevicinityof F=1 as

HF) = i) -3 (1) (L @



(H'(1)=2A/(1), whereH" = d?H/dF? and A’ = dA/dF ). Substituting Eq.(22) and
H"(1)=2A'(1) into Eq.(18), one obtains the leading term with respect to 1 — F(0) of

the LHS of Eq.(18) as

= In 1 +.e (23)

Equations (18) and (23) yield the relation

Ho)=1- 2A1'(1) ex'o(_ Ar(l)f)' e

The asymptotic relation for the turbulent intensity | (= F**) inthelarge L limitisalso

given as

(0)=1— L I exp(_ A’(l)t), (24)

L)\ . (240)

X:XO{l‘lfa Il |- /[ A1)

Inthelargel limit, oneseesthat F, | and y have reduction factors which have
exponential decrease with respectto L .

Next, we show that there is aminimum length of L in order that the nontrivial
solution F(0) >0 exists. Figure 4 shows L , which is given by Eq.(18), together with a

model Eq.(17), as afunction of F(O) . Theminimum of L appearsat avalue F(O)



which satisfies 0 < H{F(0)) < H(1). Theminimum of L indicatesthe necessary length
of the system for the self-sustained turbulence to exist. When H(F(O)) becomes smaller

than H(l) , the estimate Eq.(23) provides

SO NN T B N P
=5 A’(l)l(H(1)> . (25)

c-| £ @)

One has an order-of-magnitude of the minimum value of L by taking a mean of two

limiting formulae, Eqgs.(25) and (26) as

2L =

| e bl

This minimum value of L introduces a new bifurcation for the self-sustained

turbulence, which is caused by the finite width of the unstable region. Figure 5 illustrates

transport coefficient at X=0 as afunction of L. Anew type of bifurcationis

demonstrated. Namely, when L approaches to the lower bound, the self-consistent

solution disappears.
Third, the result of Eq.(27) provides a generalized Maxwell's construction rule,

which has been derived in the absence of the turbulence spreading.25) In the absence of

turbulence spreading (i.e., L — oo ), the construction rule that the self-sustained

turbulence isrealized has been given by
H(1)=0, (28)
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and H (1) =0 predicts the phase boundary. In the presence of the turbulence spreading,
i.e., L isfinite, Eq.(27) yieldsthe condition that H(1) must satisfy as

H(l)zepr—Z A1) 2E—J _dF\_ (29)

\

This result is a generalization of Eq.(28). If onetakesthelimit of L — o | Eq.(29)

reduces to Eq.(28) in an exponential way. Figure 6 illustrates H(1) asafunction of the
system size 2L . Below this curve, the subcritical turbulence is not self-sustained. The

exponential dependenceon L is confirmed by the numerical result in Fig.6.

4. Summary and discussion

In this article, we have studied the effects of the turbulence spreading on the
subcritically induced self-sustained turbulence. There isaminimum width of
subcritically-unstable region, in order to realize the self-sustained turbulence. An analytic
formulaisderived. Thisresult qualitatively differsfrom that of supercritical instabilities,
which has been studied in ref.22 in detail. The effect of turbulence spreading was also
studied in the limit of large system size. In this case, the subcritical and supercritical
turbulences show a qualitatively similar dependence. The generalization of the Maxwell's
construction rule including the finite size effect is a so derived.

The key result associate with the minimum length is al so interpreted as follows.
This setsaminimal turbulence impulse (or energy), that is, a product of maximal intensity
times length, which is required for the turbulence to spread into the stable region. The
normalizations of turbulence level and time clarify that the length is the relevant parameter
to set the minimal energy of the dug of turbulence which drives the expansion process

into stable zone. Thusthe critical condition is expressed in terms of the minimum length.
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These results show that the combination of the nonlocality and the subcritical
excitation mechanism introduces a new understanding of the turbulent transport. The
transport coefficient has different parameter dependence form that of the local theory. In
addition, the turbulence spreading allows a new type of bifurcation phenomena, whichis
caused by the critical system size.

One direction of the future study is the dynamical evolution of the turbulence
spreading. In the case that the coefficient for the turbulence spreading is constant, i.e.,
o =0 inEg.(1), dynamics of the front has been studied in an infinite domain. (See, for
instance, 819A of ref.3.) Inthis case, aballistic propagation of the front was calcul ated.
It isin proportion to a geometric mean of reaction rate and diffusion time. The front
velocity (spreading velocity in this problem) vanishes when the Maxwell's construction

ruleissatisfied. The extension to the cases with amplitude-dependent diffusivity (o = 0)

attracts attentions. For instance, the ballistic propagation velocity was obtained, with
amplitude-dependent diffusivity (o = 0), in the case of supercritical excitation in ref.29.
The analysis of dynamical spreading in subcritical excitationsis ongoing and will be

reported in future.
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Appendix:
When Eqg.(15) does not hold, Eq.(14b) instead of Eq.(16) is employed for the

boundary condition. Evenin this case, the presence of minimum length L for the self-
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consistent solution exists. The boundary condition {F( E), F ( I:)} is determined by the
crossing of two curves Egs.(10) and (14a). Connecting Egs.(10) and (14b) at F = F(E) ,

one obtains arelation

2
H@mn:H&wn+%@f%T?F@ﬂwwwm+%$)WQZ (A1)
which gives the relation between F(E) and F(0) . We see that the following relation

holds:
F(0)>F(C), (A2)

and F(0) - F(I:) is positive definite.

When one examines the RHS of Eq.(A1) asafunction of F( E) , there aretwo
cases. One caseisthat coefficientsy gampg/Ao and xokzlA o areso largethat the RHS of
Eq.(A1) isamonotonous increasing function of F( E) . (Strong damping case.) Inthis

case, RHS of Eq.(A1l) is positive definite, and

F(0) > F. (A3)

holds. The same argument following Eq.(21) applies. The other caseisthat the
coefficientsy gamp/A o and xokzlA o aresmall sothat RHS of Eq.(A1) hasaminimum.

The RHS takes minimum at F(I:) =Fm, where Fp, satisfies

v, Ydamp| L %0k® a1+ a) _
(A+ Ao)+ N Fmrel=o, (A%)

(Note that /A\(Fm) <0 holds) Inthiscase F(0) ishounded as

F(0) > Fax (A5)

13



where F+«« isdefined by the relation

2
_ Tdamp 2 + 2q, 2+a)/( 1+o XOk 2
H(Far) = H(F) + e 2220 p (2ef{tee) L X0 2. (A6)

In both cases of the strong damping and weak damping, F(0) is bounded as Eq.(A3) or
Eq.(A5).
Equation.(18) isreplaced as

=L, (A7)

Theintegral inthe LHS of Eq.(A7) does not vanish. Thisisbecause F(0) isfiniteasis
given by Egs.(A3) and (A5), and the range of integral F(0) —F(L) isfinite and positive
asisgiven by Eq.(A2). From thisconsideration, it is clear that thereis alower bound for

L

[y
\Y
[

C» (A8)

that allows anon-trivial solution F(C) . Thisresult is qualitatively the same as that in the

limit of strong damping in §3.2.
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Fig.1 Schematic drawing of the turbulence spreading into stable regions.
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Fig.2 Function H(F) . (Fg =14"* denotesthe threshold amplitude for nonlinear

instability.)
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Fig.3 A solution of F(C) in the presence of turbulence spreading. (Parameters are

L=283,a=04 ando=1.) Fa=la""

>

Fig.4 Therelation of the system length L and H(F(O)) for the stronger damping case

of a=0.4 (solid line) and weaker oneof a=0.2 (dashed line). (=1
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Fig.5 Theturbulent conductivity at the center x(O) is given as afunction of the width of

the unstable region 2L . (thecaseof a=0.4 ando =1 .)
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Fig.6 Critical value for the sustainment of subcritical excitation H(1) asafunction of

the width of the unstable region 2L . Below this curve, the subcritical turbulence is not

self-sustained. (0 =1)
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