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Abstract

The influence of the turbulence spreading is studied on the self-sustained turbulence

which is induced by the subcritical instability.  It is found that there is a minimum system

size that can sustain the self-sustained turbulence, and an analytic formula is derived.

The generalization of the Maxwell's construction rule is also derived.
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1. Introduction

Substantial progress has been achieved recently in the field of plasma turbulence.

One of the key in the theoretical progress, in comparison with the classical view of

plasma turbulence,1) is the recognition of the importance of nonlocal effect of turbulence

in inhomogeneous plasmas.  The nonlocal interaction has been analyzed from various

points of view: One approach is based on the framework of the K-ε model,2,3) another

one treats a long radial transmission of fluctuation energy,4) and the other approach

emphasizes the interaction between fluctuations with different scale lengths.5)  These

theoretical approaches have been applied to study the radial profiles of turbulent transport

coefficient6-9) and the transient transport.10,11)  The importance of nonlocal interactions

has also been shown by direct nonlinear simulations (DNS).12-18)  In particular, the

recent evolution of DNS has encouraged the quantitative test, including the scaling law

with respect to control parameters, and stimulated the detailed theoretical analysis on the

turbulent spreading.18-24)

The other key process is the subcritical turbulence.  The nonlinear instability

mechanisms exist in toroidal plasmas, so that the strong turbulence is sustained even for

plasma parameters that predict linear stability for microscopic fluctuations.  (See

references quoted in refs.25 and 26.) The theoretical progress has allowed to analyze the

anomalous transport which is driven by self-sustained turbulence.  Experimental

observations have suggested a relevance of subcritical turbulence in the toroidal

plasmas.27, 28)

Progress on these two directions raises a problem, i.e., the impact of the turbulent

spreading on the subcritical turbulence.  In this article, we study the influence of the

turbulence spreading on the self-sustained turbulence of subcritical instabilities.  The

stationary solution of the self-sustained turbulence is obtained where the turbulence

spreads into strongly stable regions.  The reduction of turbulent transport by the radial

spreading is analyzed.  It is shown that there is a minimum radial plasma extent, in order

for a self-sustained turbulence to exist in linearly stable plasmas.  A new bifurcation is
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illustrated.  The new phase boundary in parameter space is derived, in which the effect of

turbulence spreading is included.

2. Model

We study a one-dimensional model to study the turbulence spreading into stable

regions.  The turbulence quantities are averaged over the magnetic surface, and a profile

in the   x – direction is studied.  (A slab model is employed, and the   x – axis is taken in the

radial direction.)  We take the case that the plasma has a subcritical instability in the region

of    0 ≤ x ≤ L , and it is strongly stable in the regions    x > L .  (Schematic drawing is

given in Fig.1.)

We follow the framework of ref.22, in which a dynamical equation has been

formulated in a form as

   ∂
∂t I = Λ I + χ0

∂
∂x Iα ∂

∂x I , (1)

where    I = φ2 / φlocal
2  is the normalized electrostatic potential fluctuation amplitude,

  φlocal
2  is the level which is given by the local balance of drive and damping   Λ = 0 , Λ

is the decorrelation rate (including the growth rate and local nonlinear damping rate), and

   χ0Iα  is the diffusion coefficient due to a turbulence spreading, in which the dependence

on the fluctuation level is represented by use of the index α .  (In a weak turbulence limit,

  α = 1  holds, and   α = 1/2  for strong turbulence limit.3))  This model has several

limitations.  First, the fluctuations, the wavelengths of which are comparable to L , are

not included.  Second, the incoherent and fluctuating kicks are not taken into account.

Noticing that these additional processes may have a substantial influence, we choose the

model (1) as a starting point of the analysis.

In the damper region,    x > L , the plasma is stable, and we simply choose

   Λ = – γ damp – χ0k2I α < 0 for    x > L . (2)
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where 1/k  denotes a characteristic scale length of turbulence.  In the excitation region,

   0 ≤ x ≤ L , plasma can be unstable, i.e., Λ  can be positive.  In the case of subcritical

excitation, the dependence of Λ  on I  is such that

  Λ < 0 for   I < Ic1  and   1 < I , (3a)

and

  Λ > 0 for   Ic1 < I < 1 , (3b)

where   Ic1  is the threshold amplitude of fluctuations for the onset of nonlinear instability.

Λ  takes the maximum value   Λ 0  in the region   Ic1 < I < 1 .  In a local theory, the solution

  I = 1 (4)

is given for the self-sustained turbulence.  (Notice that the normalization of fluctuation is

defined such that   I = 1  holds for local theory.)

The stationary state is given by the equation

   χ0
∂
∂x Iα ∂

∂x I + Λ I = 0 . (5)

Equation (5) is solved with the boundary condition

  d
dx

I = 0 at   x = 0 , (6a)

  I = 0 at    x →∞ . (6b)

We introduce a characteristic length
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   =
χ0

1 + α Λ 0
,

(7a)

and the length and Λ  are normalized with respect to  and   Λ 0 , respectively,

   ζ = x/ ,   L = L/ ,   Λ = Λ/Λ 0 . (7b)

By use of this normalization, Eq.(5) is rewritten as

   d2

dζ2 F + Λ F 1/ 1 + α = 0 , (8)

where a new variable for the fluctuation amplitude is introduced as

   F = I 1 + α . (9)

The flux of turbulence is given by a gradient of F .  In Eq.(8), variable F  and coefficient

Λ  are of the order of unity.

3. Solution

3.1 Solution of the steady state

The solution of Eq.(8) in the unstable layer,    0 ≤ ζ ≤ L  (i.e.,    0 ≤ x ≤ L ), is

examined.  The solution   F ζ  is symmetric with respect to ζ , and we look for a solution

in the domain    0 ≤ ζ ≤ L  with the boundary condition    dF/dζ = 0  at   ζ = 0 .  Multiplying

   dF/dζ  to Eq.(8) and integrating it with respect to ζ  once, one has a relation as

   d
dζ

F = – H F 0 – H F , (10)

where the Sagdeev potential is given as
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H F ≡ 2 dF Λ F1/ 1 + α

0

F

(11)

and the relation    dF/dζ = 0  at   F = F 0  is used.  The function  H F  is illustrated in

Fig.2.  Equation (10) is integrated, and the solution   F ζ  in the domain    0 ≤ ζ ≤ L  is

given in an implicit form as

   
dF

H F 0 – H F
F

F 0

= ζ . (12)

This solution Eq.(12) includes an integral constant   F 0 , which is determined by

the continuity condition at    ζ = L .  In the stable region,    ζ > L , Eq.(8) takes a form

   
d2

dζ2 F –
γdamp
Λ 0

F 1/ 1 + α +
χ0k 2

Λ 0
F = 0 . (13)

Noticing the boundary condition Eq.(6b), i.e.,    F → 0  as   ζ → ∞ , Eq.(13) is integrated

once as

   dF

dζ

2

=
γdamp
Λ 0

2 + 2α
2 + α F 2+α / 1+α +

χ0k 2

Λ 0
F 2 . (14a)

This gives a relation between   F ′ L  (i.e.,    dF/dζ  at ˆ ˆζ = L) and  F L  as

   
F ′ L

2
=
γdamp
Λ 0

2 + 2α
2 + α F L

2+α / 1+α
+
χ0k 2

Λ 0
F L

2
. (14b)

The constant   F 0  in Eq.(12) is determined to satisfy the condition Eq.(14b) at    ζ = L .

For obtaining an analytic insight of the problem, we consider the case that the

damping in the region    ζ > L  is strong enough, i.e.,
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  γdamp/Λ 0 →∞ . (15)

In this limit of strong damping,   γdamp/Λ 0 →∞ , Eq.(14b) is simplified as

  F = 0  at    ζ = L . (16)

(The limit of Eq.(15) does not change the conclusion qualitatively in this article.  See

appendix for supplementary discussion.)  Figure 3 illustrates an example of the self-

sustained solution Eq.(12) with Eq.(16), by choosing a model form

   Λ = 4 1 – a – 2 – a + a + 1 F – F 2 , (17)

where a  is a parameter to denote the magnitude of the linear stability, and the threshold

amplitude for the onset of instability is given, in terms of I , as     Ic1
1 + α = a .  (The

parameter a  is in the ranges   0 < a < 1 , and the linear damping rate is larger for a larger

value of a .)

3.2 Influence of turbulence spreading on self-sustained turbulence

The result (12) with Eq.(16) determines the influence of the turbulence spreading

on the sustainment of the subcritical turbulence.  The dependence on the width of the

region   2L  is studied in this subsection.  Putting    ζ = L  into Eq.(12), one has

  
dF

H F 0 – H F
0

F 0

= L . (18)

From Eq.(18), one sees that there is an upper bound and a lower bound for   F 0 .  From

the functional dependence of  H F  shown in Fig.2,   H F 0  must satisfy the condition
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   0 = H 0 ≤ H F 0 ≤ H 1 . (19)

(If   H F 0  is negative,   F L = 0  cannot be satisfied.)  The lower bound of   F 0  is

imposed by the subcritical excitation condition and is given as

   F 0 ≥ F* , (20a)

where   F*  is defined by the relation

  H F* = 0 . (20b)

That is, the value   F 0  must satisfy the condition

   F* ≤ F 0 ≤ 1 , (21)

in order that the nontrivial solution   F 0 > 0  is allowed for the self-sustained turbulence.

The fact that   F 0  has a lower bound is different from the case that the turbulence is

driven by supercritical instability.  In the case of supercritical instability,   F 0

continuously reduces to 0 as L  approaches 0, as has been discussed in ref.22.

Noting the lower and upper bounds, Eq.(21), the influence of the finite length L

on the turbulence level is studied by analyzing Eq.(18).

First, the case of large L  is discussed.  By definition,  H F  has a local maximum

at   F = 1 , which denotes the self-sustained turbulence in a local model.  As L  increases,

  F 0  approaches to unity.  In order to study the situation of    F 0 ∼ 1 ,  H F  is expanded

in the vicinity of   F = 1  as

   H F = H 1 – 1
2 H ′′ 1 1 – F 2 + ⋅ ⋅ ⋅ , (22)
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(    H ′′ 1 = 2 Λ′ 1 , where    H ′′ = d2H/dF 2  and    Λ′ = dΛ/dF ).  Substituting Eq.(22) and

   H ′′ 1 = 2 Λ′ 1  into Eq.(18), one obtains the leading term with respect to   1 – F 0  of

the LHS of Eq.(18)  as

   
dF

H F 0 – H F
0

F 0

= 1

2 Λ′ 1
ln 1

H 1 – H F 0
+ ⋅ ⋅ ⋅

   = 1

2 Λ′ 1
ln 1

2 Λ′ 1 1 – F 0
2 + ⋅ ⋅ ⋅ . (23)

Equations (18) and (23) yield the relation

   
F 0 ∼ 1 – 1

2 Λ′ 1
exp – Λ′ 1 L . (24a)

The asymptotic relation for the turbulent intensity I  =( )+F1 1/ α  in the large L  limit is also

given as

   
I 0 ∼ 1 – 1

1 + α
1

2 Λ′ 1
exp – Λ′ 1 L , (24b)

and the turbulent transport coefficient, which has the dependence    χ = χ0Iα , is given as

   
χ = χ0 1 – α

1 + α
1

2 Λ′ 1
exp – Λ′ 1 L . (24c)

In the largeL  limit, one sees that F , I  and χ  have reduction factors which have

exponential decrease with respect to L .

Next, we show that there is a minimum length of L  in order that the nontrivial

solution   F 0 > 0  exists.  Figure 4 shows L , which is given by Eq.(18), together with a

model Eq.(17), as a function of   F 0 .  The minimum of L  appears at a value   F 0
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which satisfies   0 < H F 0 < H 1 .  The minimum of L  indicates the necessary length

of the system for the self-sustained turbulence to exist.  When   H F 0  becomes smaller

than   H 1 ,  the estimate Eq.(23) provides

   L ∼ 1

2 Λ′ 1
ln 1

H 1
+ ⋅ ⋅ ⋅

. (25)

Alternatively, the limiting values at    H F 0 → 0  is given from Eq.(18) as

   
L ∼ dF

– H F
0

F*

. (26)

One has an order-of-magnitude of the minimum value of L  by taking a mean of two

limiting formulae, Eqs.(25) and (26) as

   
2 L ≥ dF

– H F
0

F*

+ 1

2 Λ′ 1
ln 1

H 1
+ ⋅ ⋅ ⋅ . (27)

This minimum value of L  introduces a new bifurcation for the self-sustained

turbulence, which is caused by the finite width of the unstable region.  Figure 5 illustrates

transport coefficient at   x = 0  as a function of L .  A new type of bifurcation is

demonstrated.  Namely, when L  approaches to the lower bound, the self-consistent

solution disappears.

Third, the result of Eq.(27) provides a generalized Maxwell's construction rule,

which has been derived in the absence of the turbulence spreading.25)  In the absence of

turbulence spreading (i.e.,   L →∞ ), the construction rule that the self-sustained

turbulence is realized has been given by

   H 1 ≥ 0 , (28)
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and    H 1 = 0  predicts the phase boundary.  In the presence of the turbulence spreading,

i.e., L  is finite, Eq.(27) yields the condition that   H 1  must satisfy as

   

H 1 ≥ exp – 2 Λ′ 1 2 L – dF
– H F

0

F*

. (29)

This result is a generalization of Eq.(28).  If one takes the limit of   L →∞ , Eq.(29)

reduces to Eq.(28) in an exponential way.  Figure 6 illustrates   H 1  as a function of the

system size   2L .  Below this curve, the subcritical turbulence is not self-sustained.  The

exponential dependence on L  is confirmed by the numerical result in Fig.6.

4. Summary and discussion

In this article, we have studied the effects of the turbulence spreading on the

subcritically induced self-sustained turbulence.  There is a minimum width of

subcritically-unstable region, in order to realize the self-sustained turbulence.  An analytic

formula is derived.  This result qualitatively differs from that of supercritical instabilities,

which has been studied in ref.22 in detail.  The effect of turbulence spreading was also

studied in the limit of large system size.  In this case, the subcritical and supercritical

turbulences show a qualitatively similar dependence.  The generalization of the Maxwell's

construction rule including the finite size effect is also derived.

The key result associate with the minimum length is also interpreted as follows.

This sets a minimal turbulence impulse (or energy), that is, a product of maximal intensity

times length, which is required for the turbulence to spread into the stable region.  The

normalizations of turbulence level and time clarify that the length is the relevant parameter

to set the minimal energy of the slug of turbulence which drives the expansion process

into stable zone.  Thus the critical condition is expressed in terms of the minimum length.
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These results show that the combination of the nonlocality and the subcritical

excitation mechanism introduces a new understanding of the turbulent transport.  The

transport coefficient has different parameter dependence form that of the local theory.  In

addition, the turbulence spreading allows a new type of bifurcation phenomena, which is

caused by the critical system size.

One direction of the future study is the dynamical evolution of the turbulence

spreading.  In the case that the coefficient for the turbulence spreading is constant, i.e.,

  α = 0  in Eq.(1), dynamics of the front has been studied in an infinite domain.  (See, for

instance, §19A of ref.3.)  In this case, a ballistic propagation of the front was calculated.

It is in proportion to a geometric mean of reaction rate and diffusion time.  The front

velocity (spreading velocity in this problem) vanishes when the Maxwell's construction

rule is satisfied.  The extension to the cases with amplitude-dependent diffusivity (   α ≠ 0 )

attracts attentions.  For instance, the ballistic propagation velocity was obtained, with

amplitude-dependent diffusivity (   α ≠ 0 ), in the case of supercritical excitation in ref.29.

The analysis of dynamical spreading in subcritical excitations is ongoing and will be

reported in future.
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Appendix:

When Eq.(15) does not hold, Eq.(14b) instead of Eq.(16) is employed for the

boundary condition.  Even in this case, the presence of minimum length L  for the self-
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consistent solution exists.  The boundary condition    F L , F ′ L  is determined by the

crossing of two curves Eqs.(10) and (14a).  Connecting Eqs.(10) and (14b) at   F = F L ,

one obtains a relation

   
H F 0 = H F L +

γdamp
Λ 0

2 + 2α
2 + α F L

2+α / 1+α
+
χ0k 2

Λ 0
F L

2
(A1)

which gives the relation between  F L  and   F 0 . We see that the following relation

holds:

  F 0 > F L , (A2)

and   F 0 – F L  is positive definite.

When one examines the RHS of Eq.(A1) as a function of  F L , there are two

cases.  One case is that coefficients   γdamp/Λ 0  and    χ0k 2/Λ 0  are so large that the RHS of

Eq.(A1) is a monotonous increasing function of  F L .  (Strong damping case.)  In this

case, RHS of Eq.(A1) is positive definite, and

  F 0 > F* (A3)

holds.  The same argument following Eq.(21) applies.  The other case is that the

coefficients   γdamp/Λ 0  and    χ0k 2/Λ 0  are small so that RHS of Eq.(A1) has a minimum.

The RHS takes minimum at   F L = Fm , where   Fm  satisfies

   
Λ +

γdamp
Λ 0

+
χ0k 2

Λ 0
Fm
α/ 1 + α = 0 . (A4)

(Note that    Λ Fm < 0  holds.)  In this case,   F 0  is bounded as

  F 0 > F** , (A5)
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where   F**  is defined by the relation

   
H F** = H Fm +

γdamp
Λ 0

2 + 2α
2 + α Fm

2+α / 1+α +
χ0k 2

Λ 0
Fm

2 . (A6)

In both cases of the strong damping and weak damping,   F 0  is bounded as Eq.(A3) or

Eq.(A5).

Equation.(18) is replaced as

  
dF

H F 0 – H F
F L

F 0

= L . (A7)

The integral in the LHS of Eq.(A7) does not vanish.  This is because   F 0  is finite as is

given by Eqs.(A3) and (A5), and the range of integral   F 0 – F L  is finite and positive

as is given by Eq.(A2).  From this consideration, it is clear that there is a lower bound for

L

  L > Lc , (A8)

that allows a non-trivial solution   F ζ .  This result is qualitatively the same as that in the

limit of strong damping in §3.2.
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Fig.1  Schematic drawing of the turbulence spreading into stable regions.
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Fig.2  Function  H F . (    Fc1 = Ic1
1 + α  denotes the threshold amplitude for nonlinear

instability.)
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Fig.3  A solution of   F ζ  in the presence of turbulence spreading.  (Parameters are

  L = 2.83 ,   a = 0.4  and   α = 1 .) F Icl cl=
+1 α

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

L
^

α=1

a=0.4
a=0.2

F (0)

Fig.4  The relation of the system length L  and   H F 0  for the stronger damping case

of   a = 0.4  (solid line) and weaker one of   a = 0.2  (dashed line).  (   α = 1 )
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Fig.5  The turbulent conductivity at the center   χ 0  is given as a function of the width of

the unstable region   2L .  (the case of   a = 0.4  and   α = 1 .)
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Fig.6  Critical value for the sustainment of subcritical excitation   H 1  as a function of

the width of the unstable region   2L .  Below this curve, the subcritical turbulence is not

self-sustained. (   α = 1 )




