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COMPOSITENESS, FEYNMAI'T DIAGRAMS, 

AND THE REGGEIZED ABSORPTION MODEL 

Clifford Risk 

Lawrence Radiation Laboratory 
University of California 
Berkeley, California 

ABSTRACT 

In this paper we derive the Reggeized absorption model from 

field theoretic diagrams. This model has been used to describe a 

large number of quasi-two-body reactions. It invOlves a Regge cut 

correction to Regge pole amplitudes which is generated by the exchange 

of the Regge pole and aPomeranchuk. The cut features the product of 

the Reggeon and Pomeron (without complex conjuationof either) and 

a large magnitude for the cut (coherent inelastic effects add to the 

original cut term). 

The fundamental physical assumption of our derivation is that 

physical particles are composite objects of constituent pieces of 

matter. In a scattering process, some of the constituent matter takes 

part in the scattering while the rest stands by as a spectator. These 

ideas lead us to describe double scattering processes by a class of 



-iv- 	 UCRL-1981 

diagrams involving exchange of two Reggeons in the cross channel and 

propagationóf composite physical particles in the direct channel. 

When the direct-channel particles are Reggeized, we obtain an expression 

for the Regge box diagram. 

We begin our analysis of diagrams by discussing the AFS diagram 

and similar diagrams to demonstrate how the absence of third double - 

spectral functions leads to the absence of a cut. For simple diagrams, 

we find that we are forced to invoke properties of form factors to show 

absence of the cut, but that for sufficiently composite diagrams the 

absence of the cut rests solely on the absence of the third double- 

spectral functions. 

Next we discuss the Mandeistam diagram and similar diagrams to 

demonstrate how the presence of third double-spectral functions leads 

to cuts. For each diagram we bring the expression for the amplitude to 

the form of the absorption model. 

Finally, we study the general class of diagrams referred to 

above. These diagrams feature compositeness in the direct channel 

(physical particles are composite), third double-spectral functions 

(physical particles have definite signature; no exchange degeneracy), 

and two-Reggeon exchange (double scattering and the Glauber spectator 

approximation). By assuming saturation of direct-channel amplitudes by 

physical states, we are led to an absorption formula (no complex 

conjugations) that includes the coherent inelastic factor x (diffraction 

production of direct-channel resonances). 
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* 
I. INTRODUCTION 

• 	 The idea that the asymptotic behavior of a scattering amplitude 

A(s,t) is determined by singularities Of the partial—wave amplitude 

f(t) in the complex j plane is ten years old. 1  During this decade, 

this idea has been studied both pheñomenologically with various models 

that describe specific reactions 2  , and theoretically with the investiga-

tion of sums of Feynman diagrams that define amplitudes with various 

3 4 types of j-plane singuiarities.' 

The main school of thought has been that f(t) ismeromorphic 

in the j plane with simple poles at values j = a1 (t) that correspond 

to physical particles. Phenomenological models with these Regge poles 

were used to fit a large number of elastic and quasi-two-body reactions. 

Meanwhile, the theoretical study Of various field theories led to the 

conclusion that Regge poles arise in field theories also. 

However, the use of phenomenological models with poles alone 

led to several difficulties and complications in the attempt. 	to 

explain features of differential cross sections-such as dips, crossovers, 

and forward peaks (in Tc exchange reactions).-and features of total cross 

sections--suchas the rise at Serpukhov energies. This suggested that 

in the j plane the properties of f(t) might be more involved than 
Ni 

containing poles only. Meanwhile, the study of field-theory iodels 

produced amplitudes with fixed poles, moving cuts, fixed cuts, and 

essential singularities .3 . . 

One of the earlier models with more complicated singularities 

6  was developed by Abers et al (following earlier work by Udgaonkar 
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and Gell-Mann7 ) in the study of -deuteron scattering. Glauber 8  had 

shown that the amplitude Ad could be expressed as a sum of single and 

double TtN scatterings. Abers et al.then showed that these scatterings 

correspond: to the amplitudes for the diagrams of Fig. 1, where the 

particles in the direct channel (cut by the dashed line) are to be 

evaluated near mass shell. Furthermore )  if the single scattering terms 

were given by Regge poles 

A(st) = 6(0 
	

(1) 

then the double scattering term ofEq. (1) took the form of an amplitude 

with a ãut in the j plane at j(t) = 2a() - 1, 

j(t) 
A(double) = 

 

in s 
(2) 

This cut.term, the Glauber shadow correction, was observed experimentally 

In differential and total cross sections. However, it was next shown 

that if in Fig. lb the contribution was evaluated from the region of 

integration where the it was off mass shell, this exactly canceled the 

cut. The sum of both contributions behaved as In s1s 3  and had no 

leading cut. 9  

This trpe of theoretical difficulty also occurs in models that 

describe two-body processes in terms of a multiple scattering series. 

In describing 	p - ri°n, one is led to the formula (where Ae2 

A(s,t) = A(st) - 	I dQ A(s,t1 ) Aee(st2) 
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where A is the amplitude for p exchange, and A 2  is the elastic 

it-nucleon amplitude. This can be derived from either a Glauber eikonal 

10,11. 	 5 series 	. •or from the Sopkovitch formula. 	It can also be derived 

from Feynman diagrams of the type of Fig. 2b. The second term in Eq. 

(3) corresponds to the contribution from Fig. 2b in which the direct 

channel i° ,n areevaluated on mass shell. However, if one evaluates 

the contribution from the region where the i ° ,n go off mass shell, 

the previous term is again exactly canceled, and their sum has no cut. 

The difficulty encountered in both of these examples is related 

to the diagram version of the work of AFS. The discontinuity of the 

amplitude of Fig. 3 across the branch cut of the two—particle direct-

channel state is given by12  

Im A(s,t) oc f d 	
A1(s,t1 ) A(s,t2 ) 	. 	. . . 	 () 

and A(s,t) has a branch point at j(t) = 2a(t/4) - 1. However, in a 

ladder representation of a Reggeon, 13  there are further contributions 

to the unitarity equation that cancel the cut. 14  

Although the three diagrams considered do not have cuts, there 

are diagrams which do have cuts, for example, the double cross 

diagram3,15  of Fig. 

In this 	work we will reconcile these results for Feynman 

diagrams on the one hand with the e4erimentally  valid multiple scattering 

models on the other.. To do this, we start fromasumptions about the 

composite structure of physical particles, and combine them with the 

ideas of multiple scattering. This leads us to a class of Feynman 
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diagrams, which can be evaluated in the high-energy limit. The final 

expression, we are led to agrees with the multiple-scattering models 

discussed above. 

The.organization of the paper is as follows. In Sec. II A we 

point out the features of the AFS diagram that cause it not to have a 

cut. 	In B we discuss why the double cross.diagram of Fig. 4 does 

have a cut, and bring the amplitude to a form similar to the absorption 

model. Next we extend the results to more complicated diagrams with 

cuts. 	In C we discuss two further diagranis without cuts, drawing 

out the role that third double-spectral functions and form factors play 

in theanalysis. This leads to the analysis in D of a very general 

class of diagrams, in which the 'presence of a cut is thrown completely 

onto the presence of third double-spectral functions. 

In Sec. III we present our view of the composite structure of 

physical particles and combine this with the diagram results to obtain 

the derivation of the absorption model. 	' 

In Sec. IV we compare our results with the work of Gribov et al. 

In Sec. V we summarize the assumptions, results, and unsolved 

problems of the paper. 
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II. MATHEMATICAL DERIVATIONS 

A. The AFS Diagram 

To.begin we briefly point out the features of Roth&s treat- 

16,17 ment 	of the AFS diagram that are relevant to our later derivation. 

In terms of mass variables, the amplitude is given by 

dt dt 
A(s,t)oc 1 	 1 	 ds1ds2 

jX(t.9t1' t 2 
 )<O.(_%2 

1X(S'sVS2 ) 

R(s,t1 ; s1 ,s 2 ) R(s,t 2 ; s1 ,s2 ) 

X 	2 	 2 ' 
(s1 	i — m + €)(s 2 	i — m + c) 

where 

X(a,b,c) = a2  + b2  + C2  — 2ab — 2ac - 2bc 

As a function of s1 , the integrand of Eq. (5) has singularities in 

the lower half plane consisting of a. pole at s1  = m2  — i€ and cuts 

l)+,i8 
from the form factors of the Regge amplitudes. Also, it is known 

that as sbecomes large 

R(s,t; s1 ,s2 ) 	1/s . 	 ( 6) 

• (This is valid in the limit s fixed, s1  — 	and also in the limit 

S 	S1 	The s1  integration runs from s = — co to s1  s 

(Fig. 5). Therefore, if we distort the s1-and similarly s-integration 

in the lower half plane, we obtain 

	

• 	 fdtdt 
A(s,t) 	J 	R(s,t1 ) R(s,t2 ) + A2 (s,t) + A3(s,t) , 	(7) 
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where R(s,t.)  is the Regge amplitude evaluated on mass shell, A 2  is 

the contribution from the cuts in the mass variables, and A(s,t) is 

the contribution from the large semicircies. This last term is negligible 

because of Eq. (6). The first term in Eq. (7) is the usual AFS amplitude 

[but without complex conjugation of R(s,t2 )]. 

On the other hand, if we close the contour of s integration 

in the upper half plane, we obtain for A(s,t) only a term similar to 

A3 (s,t), which vanishes as s -. Hence we conclude that A(s,t) 

must vanish as s - . (the Feynman parameter technique 

gives 	 in /3),  and the apparent cut Of the first term in Eq. 

(fl is canceled by A2 (s,t). 

To summarize, the cut does not appear because of 

(a)the absence of a third double spectral function 

(b) the presence of form factors. 

We shall see that the correct interpretation of these two features leads 

to the Reggeized absorption model. 
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B. Diagrams With Cuts 

We now turn to diagrams that do have cuts, leading to the general 

diagram of.  Sec. D that will connect with our ideas of the composite 

structure of physical particles and yield the absorption model. 

First consider the double cross diagram of Fig 4 We follow 

the treathént by Gribov (1968),19,  and then extend the analysis further 

to obtain a result resembling the absorption model. The amplitude of 

Fig. I-i- is given by 16, 19 

dk d4k dk 	 . 	. 
.ij 	 2 R(k1) k2 ,1) R'(p1  - k1 ,p2  - k2 ,q - 

1 	
(8a) 

The essential feature of the analysis is to note from Eq. (6) that the 

internal.Regge amplitudes R and Rt become small if their external 

masses d  become large as fast as or faster than s. Therefore, the 

dominant contribution to Eq. (8a) comes from the region of integration 

where d. remains finite relative to s as s goes, to infinity. After 

s has become asymptotic, the integration over the remaining large values 

of 'd. can be completed. To express this precisely, let A be a finite 

number, and define  

8. 	 2 
- d. ) 

AA(s,t) = i f dk d4k1  d k 2 R R' 	

1 
F 	d. 1 	

(8) 

Then, the above arguments' state the leading behavior of A(s,t) is 

given by 	 ... 
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urn A(s,t) 	urn [urn AA(s,t)) . 	 (8c) 
5 -4 00 

To perform the analysis embedded in Eqs (8a) and (8c), it is 

convenient to replace the external momenta p 1 ,p2  by light-like momenta 

p, p  defined to order. 1/s by 

2 	 2. rn 	 m 
p1•: = p1  - -p2 	p2  = p2  - - p1  

	

The momentum transfer is given by q = (p - 	+ Q, where  Q  is a 

two-dimensional vector perpendicular to the incident vectors p 1 ,p2 . 

The S,udakov variables of integration are introduced by 

k = ap + ppi + K, k = a1p + 1p + K, for i=1,2, 

dk = '- J da d43 dk, etc 

where.. .K,K1. are again two-dimensional vectOrs, perpendicular to p 1 ,p2 . 

In terms of these variables,the denominators for.the left side.of . 

Fig. 4 become 	 .. 

2 	2 2 	2 d1 =k1 '-m + i€=a11s+K1 .-m +J_€, 

d2 	- k1 ) 2  - m2  + 1€ = (a1 - 	- i) +K12  - m2  + i€ 

(9) 
d3  = (k1  - k) 2  - m2  + ic = (a1  - a)( 	- ) s + (K1  - K) 2  - m2  + 1€ , 

2 2 	2 	. 	 m 	 t d=(k1 _k+q_p1)_m+i€(a1 _a+____)(1___.l)s  

with similar expressions on the right side. 



Performing the analysis of Eqs. (8a) and (8b), we first find 

the region of integration over which d < A. By solving the equations 

d1 ,d2  = 0(A) for a1 , 1 , we find from Eq. (i) that a1  = 

= 0(A). After a similar analysis on d3 ,d; d5 ,d6 ; d7 ,d8 , we 

conclude that the dominant region of integration as s -->co is given by 

= 0(i); 	11a2  = 0(A) . 	 (10) 

Conparing Eq. (10) with Eq. (9),• we see that we can neglect 

relative to 	
, 

and a relative to a2 . if we change variables a1s -4 a11  

as -a, 	s 	 Eqs. (9) become 

2 	2 
d1 =a11 +K1  -rn +1E 	 . 	 ... 

-m +ie, 

2 	2 
-m +iE 

d4.= (a1a+ t_ m2 )( 1 _1) + (K1 _K. _)2 _ ffi2 +i€ 

and the Regge energies, momentum transfers, and direct channel energies .  

become 	. 

U1 - a2 s , 	 U2  - (1 - a2)(l 
- 

)s 

k2  = K2  , 	 (q - k)2 	K) 2  ; 	 (12) 

2. 	. 	 2 	 2 	2 
sl  = m -a ~ K 

' 	2 	m + + K 

The factbrs 	etc. in Eq. (12) tell what fraction of. the original 

energy s Vlows through the Reggeons and what portion flows down the 

sides of the diagram. We see that the terms 	',d1  depend only on 
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the variables of the left 1oop.a1 , 1 ,K1-and on a,K, but not on 5. 

Similarly 'for the terms d 5,",d8 . 

Next we assume that the Regge amplitudes of Eq. (8a) can be 

written in the factorized form 

2 	- 1(k2 ) 	1(k2) 	 2 
H = g1(d1,d3,k ) e 	U1 	

92(d,d7,k ) 

- 2 [(q -k) 2 ] 	2[(q-k) 2 ] 
= gj(d2 ,d,(q - 	e 	 U2 	g2(d6 ,d8 ,(q - 

Then, Eq. (8a) can be recast into the following form 

1 (K2 )+ 2 [(Q-K) 2 ]1 

AA(s,t) oc 	dKLe 2 
	 N1(K,Q)N2 (K,Q), ,(15a) 

fo (A) 

fo da1d1dK1
N1(K,Q) : 

	

	da 	 (1 - 	., (13b) 

(A) 	'-r---i' d 

fo (A) 

d 	2 gg' a2 	a2 ) 2  . 

 , f J 5 Vi 

Here we see that 

l2 1  
S. 	 , times 

Feynman amplitud 

each side of the 

Now let 

of N1  by 

AA is an integral over the usual energy term 

structure functions N1  and N2  that involve the 

s, the form factors, and the Regge energy factors on 

diagram. 

A - 	in accord with Eq. (8c). We denote the integrand. 



	

A1(a,KQ) 

= J 	ill g1g  

	

- 	1j1di 

Note from Eq (14) that D runs between 0 and +1 only. If 	< 0, 

then the integrand, as a functiOn of a, has singularities that all lie 

in the upper half plane [see Eq. (11) and Fig. 61; the a1  contour of 

integration can be closed in the lower half plane to give zero. If 

> 1, the singularities all lie in the lower half plane. But if 

0 < 	
<1, then the singularities pinch the contour of integration and 

the integral is nonzero. 

obring .A(s,t) into the form of the absorption model, we 

shall findit necessary to understand the analytic properties of A 1 . 

This can. be  investigated in the following way. (We neglect the form factors, 
which can be handled by dispersing in their masses Z0)  Introduce Feynman 

20-22 parameters 	into Eq. (i ) via 

= (f 	e 	
d 	

(17) 

(The iE in d guarantees convergence.) Then, the dK 1  integration 

can be done directly. The d 1  integration can be done by using 

f 	ei 
	

(i6a) 

The quantity B involves 	and this allows the . dD integral to be 

performed. We find 



(16b) 
, 

and that 

2 
± _)i 

A1(s1,t; t1,t2)OCf fil d ( Cl 
iD(x,s1 ,u)/c(7) 

(17a) 

where 

D(?,s1 ,u1 ) = x2s1 + 1 u1  + Xt1  + 	+ m2(12+ 3 14 
 

- m2C()2 	(17b) 

c(x) = 
	 (l7c) 

s,t +u1  = 2m2 	t1  + t2 	(17d) 

This can be written in the more familiar Feynman representation as 

02 
+ac'4) 

A1 (s1,t; t1 ,t2 )oc f 	-
C) 	 (-!C  ~+Cla  

X . 	 (17e) 
[D(a,s1 ,u1 )] 

Note that for 01 = 	
= 0, A1  reduces to Ali  the ordinary Feynman 

amplitude of Fig. 7. 
From Eq. (17e) the analytic properties of A 1  can be read off 

instantly. First, Al 
 has the same Landau curves as Al., because these

Oi  
come from D(a,s1,u1 ). Second, the term 	does not introduce a 

new singularity, because if a2  = a14  = 0 1  then 
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D(9,s1 ,u1 ) = a1a3t1  - (a1  + a3 ) 2  m2  

but since t < 0 1  then D is strictly negative and cannot pinch with 
0 

Finally, it can be seen from Eq. .(l7b) that for 

Vul 	
2mg, 

D is strictly negative; therefore A 1  is strictlyreal there. This 

region, labelled D2, is shown in Fig. 8. We summarize the results in 

Fig. 9a. The expression for A 1  in Eq. (17e) in terms of invariants 

also allows us to write 

A(s,t) oc 	
dt12 	

N1 (t,t1 ,t 2 ) N2 (t,t1 ,t2 ) 

(l8a) 

+90 

	

N1 (t,t1 ,t2 ) 	ds 1  A1 (s,t, t1 ,t2 ) f00- (18b)  
We can now bring A(s,t) to the form of the absorption model. In 

Fig. 9awe distort the contour of integration around the right-hand cut. 

2 

	

(A. - in s/s 	as s1  —oo.) Then 

co  

N1 (t,t1 ,t2 ). .oc

J 	
ds1  disc[A1 (s1 ,t; t1,t2)] . 	(19a) 

2 
4m 

• Since A1  is real analytic between the cuts of Fig. 9a, note that 

disc[A1 ] 	2i Im A1  . 	 (19b) 
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Since the discontinuity is generated by the denominators d 2 ,d3 , and 

since A1  is real analytic, we can invoke a Cutkoslcy -  type theorem to 

give 

02 
N1 (t,t1 ,t2 ) 	i I dsif 1 	1(l - 	(d) (d3 ) F 

li.m2 	 (190 

where F involves the Jacobian of the transformation to mass variables. 

Integrating on the 5 functions, we obtain 

03  

N1 (t,t1 ,t2 )oc i f 	ds1  fdK1 BUBL 	 (19d) 

where 

02 
1 	 ,) 

1 	 _ 	(t2 

- 	d 	' / 
1 

(l9e) 

In terms of graphs, we can write N 1  as in Fig. 9b. 

Thus we can split N1  into an integral of factors B
!J BL* 
 , 

where BU  involves the upper part of the diagram, and B 1 ' involves 

the lower part. Performing the same operation on N 2 . 

00 

N2 cc 1 	 ds2 f 
dK2 cUcL* 	 (19f) 

1eturning. to Eq. (18a), we cars bring A(s,t) to the form 
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11 A(s,t) 	
1fdtdt2 	

dK fu()cu fBL*2(t2)cL* 

(20a) 

Writing 

Ml = B (-) 	C , 	M 	= •B (.) 	C . 	 (20b) 

we finally arrive (see Fig. 10) at 

-iØ2 (t2 ) TC . 

	

fdK dK1 2  M1  M e 	
. 	 (20c) 

With B,C real, Eq. (20a) agrees with the absorption model. In 

particular, when 0 is the Pomeranchuk, then A(s,t) interferes 

destructively with the pole term of 02 . In Eq. (20c) the extra phase 

term restores the correct phase to the M 2  amplitude. 

To extend this result and prepare for the general diagram of 

Sec. D, we briefly discuss the diagram of Fig. 11. There are several 

noteworthy features. 

In the first place, one sees that on the left side of the 

diagram only the lines 1,13,7,7 attach to Regge amplitudes. Hence 

we might suspect that only these are subject to the finite-mass condition. 

It turns out this would not give enough conditions to provide an 

• 

	

	immediate solution for the Sudakov variables. There are two ways we 

can argue to extend the class 1,3,7,7. On the one hand we can argue 

that, in the spirit of Arnold, HPKR, and of the work to follow in Sec. III, 

• 

	

	tlw external physicul prtic1es should themselves also be Reggeized. 

This would place form factors on the external vertices also, and would 
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lead to the requirement that the lines 2,6 also satisfy the finite-

mass condition, and would provide enough lines to perform the Gribov 

analysis On the other hand, Polkinghorne 2  has recently extended the 

Gribov analysis to diagrams with internal Reggeons constructed from 

Venezianoamplitudes without any form factors at all. The integrations 

are done by a steepest-descent analysis, and as it turns out this leads 

to the desired finite mass conditions on all internal lines. 

In any event, after satisfying the finite mass conditions, 

one finds, in the same way as before, 

A/s, 	0 	 1 

One again obtains the amplitude A(s,t) in the same form as before, 

with the amplitude A1 (s1 ,t; t1 ,t2 ) now given by 

fo 	
01 	2 	1da2dK1dX2 A(s1 ,t; t1,t2) d1 	2 l 82 g192 

1 	(21) 

The amplitude N1 (t,t1 ,t2 ) is given by a sum of four unitarity terms 

(Fig. 12). Therefore, A(s,t) takes the form 

A(s,t) 	 CjUJ [Bi L *() c.L* , (22)
is  

a sum of all possible unitarity cuts on the left side of the diagram 

times all possible cuts on the right. 
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C. Diagrams Without Cuts 

We now pass on to diagrams that do not have cuts. The essential 

point we shall demonstrate is that a diagram has a cut if it has third 

double spectral functions on its sides. As we shall see in Sec. III, 

this will te in conveniently with our physical ideas about the composite 

structure of physical particles. 

To demonstrate this relation we will show that the amplitude of 

any diagram with two-Reggeon exchange (Fig. 13) can be brought to the 

form 

r 
A(s,t) cc 	dx() 	N1N2 , 	 (23a) 

where N. is reiated.26 to the amplitude of the 1lobs 

N1(t,t1,t2) 	f 	ds1  A1 (s1 ,t, t1 ,t2 ) 	 (23b) 

Furthermore, if A1  has a third double-spectral function, then the 

integral in Eq. (23b) is nonzero. But if A 1  has no third double-

speàtral function, then N1  is identically zero; in this case, Eq. (23a) 

is also zero and the leading behavior of A(s,t) is of lower order in 

s than Eq. (23a). 

We saw earlier that the leading behavior of the AFS diagram 

vanishes as s —o. (It behaves as in s1s 3 .) Its amplitude can be 

brought to the form of Eq. (23a), even though the coefficients 

are zero. To do this, apply the Gribov analysis to Fig. 3 
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= 	(1 
- k) 2  a) s + 	- m2  + ic 

(25c) 

d2  =(p2 +k) = (1+a)(+) s+K2 -m2 +iE 

Then d1 ,d2  0(A) 	gives a 	o(A/s); setting a 	as, 	B 	13s, we 

have 

= - 	+ K2  + i€, d = 	+ K 	.- i€, t1  = K, t2  = (K - 

Since we have kept d1 ,d2  finite as s went to infinity, we can write 

the Regge amplitudes in factorized form, 

Ø1 (t )  
R 	g1(d1,t1)() 	

1 g2 (d2 ,t2 ), R' = g1(d,,t1)() Ø2(t2) g(d2,t2). 

The amplitude takes the form of Eq. (23a) with 

91 
N1(t,t1,t2) 

= f 	d 	g 	= 	 A1 (s 1 ,t; t1 ,t2 ). 	(2k) 

In Eq. (24) the integrand, as a function of a, has pole and cut 

singularities in the lower half plane (Fig. 14). Since the form factors 

decrease as d1 	 CO,— 

- 0 as d1  

we can close the a contour of integration in the upper half plane and 

get for N1  zero, as expected. We conclude that Eq. (2) holds for the 

AFS amplitude, but its value is zero. 

In the discussion of the AFS diagram, we need to invoke proper-

ties of the form factors in order to prove that the amplitude does not 

persist. For the diagram of Fig. 17a we must also employ knowledge of 

1 
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the form factors. However, for diagrams more complicated (Fig. 20 for 

example)., the absence of the cut rests completely on.the absence of the 

third double-spectral functions. 

Consider Fig. 17a. After performing the finite-mass analysis, 

we arrive at Eq. (23) with 

-1 
I da1dK1  

	

A1 	
J 	iJ . d1d2d3d l 	91(d1,d3,t1) 

_cO

X g(d3 ,d24 ,t2 ) 	 (2a) 

As a function of sl, A1  has only a right hand cut in the lower half 

plane, so in Eq. (23b) we are tempted to close the . s 1  contour of 

integration in the upper half plane (Fig. 15b). This cannot be done if 

we ignore the form factors . because the amplitude without form factors 

satisfies 

	

1 (s1 ,t; t1,t2) 	- £n 	. 	 (25b) 

Therefore,..the contour cannot necessarily be c1ose. We must invoke 

the presence of the form factors. We do this by interchanging the orders. 

of integration in Eq. (23b)and first integrating on 	a( -l• Then 

- r 	12 f ' 	

g1g2 

	

N1 	
ddi 	 d 	• 	(5c) 

	

J 	l2. 	 - 	5 

The a integrand has singularities in a in the upper half plane. The 

contour can be closed in the lower half plane. Since g 1 ,g2  decrease 
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as d3  becomes large, we see that the a integral is zero. The 

remaining integrals in Eq. (25c) converge, and hence N 1  = 0. 

Finally, we discuss the diagram of Fig. 16, which will lead to 

the general case of Sec. D. We obtain Eq. (8), with 

A - fda1d 1dX1  da2d2dK2 	l 	2 	 (26) 

- J 	l 	
2 g1g1 

d.  

Again, A1  has only a right cut, but now the amplitude without form 

factors: satisfies 

A1 	£n s1/s12 	as s1  CO 

and hence the contour of integration in Eq. (23b) can be closed in the 

upper half plaae to give N1  = 0. For Fig. 16 the absence of the cut 

is thrown entirely on the absence of the third double-spectral function. 
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- 	 D. The General Case 

We now come to a general class of two-Reggeon exchange diagrams 

which is the basis for our derivation 'of the absorption model. Just 

how general can this class be? What we 

are interested in is the amplitude for a diagram of the type of Fig. 13. 

However, we do not wish the amplitudes A. to be completely arbitrary, 

because in the form of the absorption model we are interested in we 

require that they be strictly low-energy amplitudes relative to s. 

That is, we require that the incident energy s flow across the 

Reggeons and not down the sides of the diagram, because we 

will want to identify the A. with direct-channel physical 'particles 

near mass shell. 

Note that the diagrams we have studied satisfy this condition. 

For example, we have found that whereas the 1 -momenta on the sides of 

the diagrams can become large (e g , k= + ap + K 1 , 

o < l < l, a1 -'- 	the energies s 1  always romain  finite relative to 

s (e.g., s l = -as + m + K , a A/s). The large energy s flows 

only across the Reggeons. 

It is not hard to convince oneself that a general type of 

diagram satisfying these conditions is that of Fig. 17 below. The 

effect of the elementary lines 1,2 	is to tell us where the 

internal Reggeon line ends and to prevent A1  from having Regge 

behavior in s. 



LI 
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Thus, Fig. 17 excludes all the diagrams of Fig. 18. It includes all 

the diagrams discussed before. (For the double cross diagram, A 

would be various 5 functions.) It also includes the diagram of Fig. 19, 

if. the lines n. are grouped into a single line of mass M; Most 

important,, it includes the diagram of Fig. 20a. When the rungs in the 

direct channel are summed over, this provides a model for the Regge box 

diagram of Fig. 20b (first introduced by Arnold and discussed in HPKR). 

We consider, then, the diagram of Fig. 17. We use the notation 

A =A(s,t), 	A1  = A1 (s 1 ,t; t1 ,t2 ), 	= A1 (s1 ,t,u 	d.) 

The amplitude A. is to be quite general; we are interested only in 

whether or not it has a third double spectral function, and so write it 

in the form 

co 	

f(s ,) 	

f
g(s1 ,) 

A 	

= 	

d 	1 	
+ 	

d 	- 	. 	 (27a) 

4m2  

That is, we can treat A as a propagator of mass 	> 4m 	The 

analysis now goes through as before. We indicate the essential 

features. 

After the finit.emass analysis has been performed, A(s,t) takes the 

expected form of Eq. (23a,b) with 

A1 (s1 ,t; t11t2) 

= 
f1 
	

L
12l2

d 1d 2
5 	

g1g2A 

 d. 

(2(b) 



	

-23- 	 UCRL-19831 

where 

2 	2 
d1  = a11 +K1  -m +i€ 

d2 =(a1 -m2 )( 1 -1)+K12 -m2 +1E 

= (a1 -a) 1 +(K1 -K)2 -m2 +i€ 

2. 	2 
d)  = a22 +K 	-m +ic.1  

d5 = 	2 + t -  m2 )( 2  - 1) + (Q + 
	

)2 - m2  + 1€ 

d6  = (a2 +t-a) 2 +(K2 +Q-K)2 -m2 +1E 

s1 = -a+K2  +m2 , 	u1 =m2  +a -t +(K-Q)2 	 (28) 

= (a + t - a1)(2 - 	) + (K2  + Q - K1 ) 2  

u = (a1  +a2  + t - a - m2)(1 + 2 -1) + ( 	+ K2  + Q - K) 2  

We consider, separately the cases of the t and u dispersion 

contributions. 

The ui Contribution  

As before, the first task is to establish the analytic proper-

ties of the amplitude A1 . This can again be done by introducing 

Femman parameters. 	. 	 . 	. 
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The amplitude A takes the form 

A1 (s,u1 ; t1 ,t2 ) f4m.d f(s1 ,) F1 (s1 ,u1 ; t1 ,t 2,) 

2 

F1  =1 dk1  dX7 [ 1()1 1  [ 2 ( x )] 2  

iD(., s1)` u1 ,)/C() 

x e  

1 

m 	••• 	- 	
c(a) 

fo 	7 	1 [D(a,S,U,)]3 

[ 1 (a)] 

where 

-. a2 (a + a5  + a6  + a7 ) + a7 (a + a) 
1 a 	 c(a) 

- a5 (a + a2  + a3  + a7 ) + a7 (a1  + a3)

CM 

c(a)  

;f 

 

 

 

 

 

(29±') 



= 1 [a2a3 (a+ a5 + a6+ a7 ) + a5a6 (a1+ a2+ a3+ a7 ) 2a5a7+ a3aa7 ] 

+ u a1aa7  

+ m2 [a1a2 (a4+ a5+ a6+ a7 ) + a1a 7 ] 

+ m2[aa5 (a1+ a2+ a+ a7 ) + a3aa7 ] 

+ K2 [a1a3 (a+ a5 + a6+ a7 ) + a1a5a7 ] 

+ - K) 
2
[aa6 (a1+ a2+ a3 + a7 ) + a3aa7 ] 

6 
a m2 ] 

' 	1 

X [(a1+ a 2 + a3 )(a+ a5+ a6 ) + a7 (a1+ a2+ a3 + a4+ a5 + a6 )] 

• . 	. 	 . 	 (29g) 

The analytic properties of A1  now follow easily. First, A1  has 

all the singularities that 	has, because they are determined by 

the Feynman discriminate D of Eq. (29g). Second, A does not have 

any new singularity arising from the 13 	factors. If 	vanishes, 

say, then various a. in Eq. (29d) also vanish. Further, since we 

have assuthed 01 > 	0l is integrable; therefore, we are 

only interested in those singularities in which the propagat.ors 

also . 	participate. This means that all the remaining a's must 

either vanish or pinch. However, these are just the conditions for a 

Landau singularity of the Feynman amplitude A 1 . We conclude 

that any singularity of A1  associated with the vanishing of 13 

must already be a singularity of A 	Since the sheet structure of the 
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singularities is determined by the i€ prescription in ID, and is 

01 
unaffected by the presence of the P, we see that A 1  has no more 

singularities than A. 

Third, it is easily seen from Eq. (29g) that D is strictly 

negative for s,u1  < 2m2 ; hence A1  is real in this region. 

So we conclude that A1  has the same real analytic properties 

as A1 . 

Now we can return to N1  and bring it to the 

unitarity form. Since A1  has left and right thresholds (Fig. 9), we 

can close the contour of integration around the right cut to obtain 

(see Fig. 21) 

00  

N1 	f ds1  disc[A1 ] = 2i 	ds1 BU BL* 	(30) 

The sums in Eq. (30) are over all possible schannel unitarity cuts 

with thresholds A.. 
3 

The amplitude A becomes 

A(s,t) = -2i 	f dx ds1ds2  fBi
U()1 	fB1L *() 2  c1L* 

(31) 
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The t[ Contribution 

The calculations proceed as before. One again verifies that 

A1  has the same real analytic structure as A. When we come to 

consider N1, we observe that as a function of s l  the integrand. of 

Eq. (25b) has singularities that all lie in the lower half plane. (This 

is another way of saying that A has no left cut.) Hence we can 

close the s1  contour of integration in the upper half plane to get 

zero. Therefore N1 	0, and A(s,t) does not persist. 

I 
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III PHYSICAL fliIPLICATIONS--COMPOSITENESS, 

MULTIPLE SCATTERING, AND THE ABSORPTION MODEL 

Now consider the relationship between the mathematical results 

obtained and the physical meaning of compositeness and multiple 

scattering.: It is not hard to see why the AFS diagram does not give 

the double scattering we would expect. On the one hand, the form of 

a Reggeon amplitude in Fig. 22 implies a compositeness of the external 

particles M. which is reflected in the form factor dependence on M. 

It was through just this dependence that the Rothe cancellation occurred. 

This compositeness is also reflected through the .ladder representation 

of a Reggeoii (Fig. 25). On the other hand, when the Reggeon of Fig. 22 

is inserted in an AFS diagram, the external particles M1,M are given 

elementary particle propagators. We claim it is this inconsistency 

that deprives the AFS diagi'am ofa cut. 

What must be done is either to remove the M. dependence from 

Fig. 22 or to represent the external particles .M. by more realistic 

propagätors. We would like to discuss the second alternative. 

It is our belief, in the spirit of Arnold, HPKR, and Yang, that 

physical particles are complicated composite objects. In a Bethe-

Salpeter framework, for example, one writes the equation of Fig. 24, 

where the right side represents the physical pole of the leftside. 

In a scattering process of a physical particle, some of the 

constituent pieces of matter takes part in the scattering, while the 

rest stands by as a spectator not taking part. A single scattering 

process that is drawn as Fig. 25a microscopically looks like Fig. 27b, 

where the double lines are the physical particles and the single lines 
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are their constituents. Similarly, a double scattering process that is 

drawn as Fig. 26b should actually be drawn as Fig. 25b. The incident 

particle at 	separates into scattez'ing and spectator constituents. 

At & the constituents unite to form a physical particle in the 

intermediate state. At 	the same process occurs again, and the 

physical particle emerges at ( 

In a field theory model, the intermediate physical particle 

can be represented by the direct-channel ladders of Fig. 23. We can 

interpret, this as a direct channel Reggeon. This suggests Fig. 27a. 

From the results of Sec. D, we know Fig. 27a does not have a cut because 

the sideS lack third double spectral functions. Physically, this 

corresponds to an apparent cancellation between the contributions to 

fds 1  A1 (s1,t; t
1 ,t2 ) that come from even-and odd-signature physical 

particles in an exchange degenerate trajectory. A direct-channel 

Reggeon with signature is represented as in Fig. 27b. Figure 27a 

becomes replaced by Fig. 27c, which has a cut. 

In a phenonienological calculation, we replace the direct - 

channel amplitudes of Fig. 27c by the known physical particles. Thus, 

for 	p 	0n, the contribution f 	ds2  disc A2 (s2 ,t, t1 ,t2 ) is 

written as in Fig. 28, where we include all recurrences of the p and 

continuum states. A typical term contributes 

fds1 
 disc s22_mp2± 	

1 
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The scattering amplitude becomes 

A(s,t) 	f dx 	()np g()ø2g 	 (32a) 

J dtdt 
M(s,t1 ) Me (St2) 

This is the absorption model. 

In HFKR the contributions of the remaining terms of Fig. 28 

are assumed to have the same s,t dependence as .Eq. (32b), 

and are added by multiplying Eq. (32b) by a factor X. It has been 

shown 27  that the amplitude for 

p + p - p + anything 	 (33a) 

proceeding via Pomeranchuk exchange, may be as large as 50 of the 

elastic amplitude 

p + p p + p . (33b) 

This suggests that X could be about 	2. 
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IV. COMPARISON WITH THE WORK OF GRIBOV ET AL 

In Ref. 28, Gribov and Migdal studied anrplitudes generated by 

the exchange of a Regge pole. Their program is to write a Reggeon field 

theory that can be solved by summing Reggeon diagrams to determine the 

scattering amplitude. For example, the amplitude involving the 

Pomeranchuk and the PP cut is given by Fig. 29. This implies for the 

absorption model that in addition to the diagrams of Fig. 2 one must 

consider effects of tchanne1 iterations in Fig. 30. It is well known 

that ifthe diagrams of Fig. 30c are summed, the sumhas a pole term 

relatedto the pole of Fig. 29a, and a cut term related to the cut of 

Fig. 29b. Is one double counting by including the pole of Fig. 29a 

separately? Compelling physical arguments have been given in HPKR for 

why this is not so, and why the physics of elastic absorption is 

different from the physics of quantum number exchange. 

Gribov and collaborators2829  derived the absorption model from diagrams 

We compare their derivation with ours. For their discussion of N1 , 

they write the equation of Fig. 31. They argue in a general fashion 

that A has no new singularities or complexity from the presence of løi  

the 	13. . Therefore the discontinuity of A1  can be calculated as 

for ordinary amplitudes by cutting the diagram and replacing the lower 

amplitude by its complex conjugate, 

• They also give a proof for elastic scattering that X > 1. 

Our approach differs from theirs in that we have attempted to 

present a specific model for the twoReggeon diagram that.is  based on 
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our physical understanding of compositeness and multiple scattering, 

and to.derive the absorption formula from that model. 

Kaidalov and Karnakov29  have considered the effect of the form 

factors on the convergence of the s l 
 integral for N1  at infinity. 

Ter-Martirosyan5°  has derived the two-Reggeon cut from the AFS 

diagram by using form factors for the internal Reggeons that are 

evaluated on mass shell. The Rothe cancellation mechanism is removed . 

and the contribution from the "elementary" propagators evaluated near 

mass shell gives the expected form of the cut. 

He also considers higher order cuts (Fig. 52), and derives the 

eikonal formula of Arnold. How do his results affect ours? In a 

phenomenological absorption model, one needs to consider only the pP 

cut. All.elastic multiple sOatterings are grouped into a single P 

term, which is parameterized and fit by experiment (pig. 55a,b). The 

PPp cut (Fig.. 55c) is found to be small. Any cut involving Pp and 

a non-Pomeranchon (Fig. 55d) is small because the branch point is well 

below the p pole. 
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V. ASSUMPTIONS, CONCLUSIONS, AID 

FUTURE AREAS OF WORK 

Assumptions 

1. Physical particles are composite objects,and when regarded 

as Reggeons they have definite signature. 

2.. Multiple scattering of composite systems can be treated in 

a Glaubér scatterer-spectator approach. 

3. The leading behavior of a Feynman amplitude is given by 

the Gribov finite—mass conditions; the second-order term is down by a 

factor of 1/s from the leading behavior 

Conclusions 

The amplitude for the diagram of Fig. 13, where A. are low. 

energy amplitudes relative to s, is given by the. absorption formula . 	. 

12 1  --(01 02. 
A(s,t) 	+1 	dX s. 	e 	 .N1N2  f 	. 

02 _lfM1 (st1 ) M2 (s 1 t2 ) + 

Future Areas of Work 	 . 

I. What is the effect of t-channel iterations? 

2 What is the relation between the absorption model approach 

and the bootstrap approach" (See Ref. 31 ) 

3 	Is 	>1? 
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APPENDIX A. CUTS WITH VENEZIANO AMPLITUDES 

An essential condition for the AFS diagam not to have a cut is 

the presence of the form factors. What happens when the Reggeons are 

represented as Veneziano amplitudes with no form factors? The amplitude 

of Fig. 3 becomes 

A(s,t) = f 
S 	R(s,t1 ) R(s,t2 ) , 	 (A i) 

where d1 . and d2  are given by Eq. (23c) and :ti = as + K 2 , 

= (a +t/s)( - t/s)s + (Q -K) 2 . There are now no form factors 

and hence no Gribov finite mass condition, but the integral (A.l) can 

be evaluated directly.2,33 We obtain the dominant contribution to 

(A.l) from the region of integration O(m2/s) < 	. 1 by evaluating 

the pole in a at d1  = 
019 

a 	m2/s + (m2  - K2 )/(l - )s . 	. 	 (A.2) 

The 	integrations can be done to give 

A(s,t) ac f dx 	 [n s + 1 0(i)] 	(A 3) 

The first term in the brackets comes from O(m ./s) K < c and 

corresponds to d2  going off mass shell. (€ is a small finite number). 

2 	I  
The second term comes from 	0(m /s) when d2  is on mass shell, 

and corresponds to the usual AFS cut term. The asymptotic behavior of 

(A.3) is then 

j (t) 
A(s,t) 	s 

C 	{i + iO(1/n s)] 	 (A.1) 
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APPENDIX B. AN ALTERNATIVE PROOF OF REAL ANALYTICITY FOR A 1  

One can also investigate real analyticity of the A1  amplitudes 

directly using Sudakov variables. Consider Eq. (11). We seethat4f .  

O.< f3 K 1, we can evaluate the a1  integration directly by closing the 

A1  contour in the lower half plane and picking up the residues from 

d1 ,d3 .: Writing d.(j) as the value of ci. at the pole of d., and 

writing 	 1d1 (j), we obtain 

A1 ( 1 t; t1 ,t2 ) 

• 
 l 
c+i 	

02 

00 	

1  ffdKi dl 	
l 	

tD2(1)(l) - D2(3)D(3) , 

(B.i) 

where 

+ ( 	K) - K12  

D2 (1) = -[m2 - 	- 1 )(m2 	t)] + (1 - 1 )K12  + 1 (K1  + Q - K) 2  

D2(3) = -[m2 - l(l -. 1 )(m2  - a)] + 1K1  + (1 - 1 )(K1  - K) 2  

D4 (l) = -[m2 - 	- 1)(m2  + a - t)] + (1 - 6 1 )K12  + 1 (K1  + Q - K) 2  

D4(3) = -Em2 - 	(l - 1 )(m2  - t)] + 1 (K1  - K + 	+ (1 - 

(B 2) 

We immediately see that at the endpoints of integration-- l = 0,1 --

the terms D.(j) are strictly negative and cannot vanish. The term 
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d3 (1) can vanish, but its residue is zero [i.e., d 3 (1) is a factor 

of the terms in the brackets]. Hence we conclude that the terms 

02 do not introduce any new singularities. 

Finally, we observe that A1  is certainly a real 

quantity when the D(i)'s are negative for all 

between 0 and 1. This occurs when the terms in brackets of 

Eq. (B.2) 	are positive. Since the maximum value of l(l - 

is i/fl, this condition is satisfied for 	• 

I-I-tn 
2 	2 	 2 	2 
>m +a-t, m -a, m -t 

This is equivalent to the region 

S1  < 4m2  + K2 , 	-3m2  K t < 0 	s1  + t > -2m2  + K2  

which overlaps with the region D2  of Fig. 8.: 

This method can also be applied to the amplitude A1  of 

Fig. 17, but it becomes very tedious. The Feynman paramter method is 

considerably easier. 	- 
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FIGUEE CAPTIONS 

Fig. 1. 	Diagrams for T(D scattering. 

Fig 2.. 	Diagrams for absorption model. 

Fig. 3. 	AFS diagram. 

Fig. 4. 	Mandelstam diagram. 

Fig. 7. 	Integration contour for Fig. 3 in the complex S 1  plane. 

Fig. 6. 	Singularities of the a integrand in the complex a plane. 

The integration on a runs from -00 to +c. 

Fig. 7. . Diagram for the amplitude A 1 . When g; and l 
 are 

included, we obtain A1 . 	 . .• 

Fig. 8. 	Analytic properties of A1 ; A1  has singularities at

s i  = 
	u1  = m2 , and f1  = 0 (boundary of double 

spectral function), and it is real. in D1 . 

Fig. 9. 	(a) Contour of integration for N 1 . 

(b) Representation for N1  of Fig. )+ in terms of the integral 

of the absoptive part of A1 . 

Fig. 10. 	The single scattering amplitudes M1 , M2  of Eq. (20c). 

Fig. 11. 	Extension of the Mandelstam diagram. 

Fig. 12. 	Representation for N 1  of Fig. 11 in terms of the integral 

of the absorptive parts of A1 . 	 . 

Fig. 13. 	The general two Reggeon exchange diagram. 

Fig. 1. . Contour of integration in a for N 1  of Fig. 3. 

Fig. 17a. Diagram without a cut. 

Fig. 17b. Contour of integration in s1 
 for N1  of Fig. 15a. 

Fig. 16.. Diagram without a cut. 



Fig.  The general two Reggeon exchange diagram with low energy 

direct-channel amplitudes. 

Fig.  Diagrams not contained in Fig. 17. 

Fig.  A class of diagrams contained in Fig. 17. 

Fig. 20.; Representation of the Regge box diagram in terms of 

diagrams of the class of Fig. 17. 

Fig.  Representation of 	N1 	of Fig. 17 in terms of absorptive 

parts of 	A1 . 

Fig.  Regge amplitude with form factors representing composite 

external particles. 

Fig.  Ladder representation of a Reggeon. 

Fig.  Bethe-Salpeter representation of composite physical 

• particles. 

Fig. 25.. Single scattering of composite systems. 

Fig. 26. Double scattering of composite systems. 

Fig. 27. Two-Reggeon exchange with direct-channel ladders. 

Ladder representation of a direct-channel Reggeon with 

• signature. 

Diagram for two-Reggeon exchange with direct-channel 

.Reggeons with signature. 

Fig. 28. Contributions to the amplitude 	N2 	from - the direct-channel 

physical states that are contained in 	A1  

Fig. 29. Graphs in the Reggeon perturbation theory of Gribov and 

Migdal. 
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Fig. 30. 	Graphs that have not been included in the derivation of the 

• absorption model. These graphs have.arnplitudes A. that 

have large subenergies. 

Fig. 31. 	The equation Gribov and Migdal use to relate N1  to direct 

channel physical states. 

Fig. 32. 'S-channel iteations of the Pomeranchon that give the 

eikonal. 

Fig. 33. 	Cuts generated by the p. Diagrams (a), (b) are used in 

the absorption model; (c), (d) have small contributions. 
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Fig. 19. 
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This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or 
Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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