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COMPOSITENESS, FEYNMAN DIAGRAMS,

AND THE REGGEIZED ABSORPTION MODEL

Clifford Risk
Lawrence Radiation Laboratory

University of California-
Berkeley, California

June 8, 1970

~ ABSTRACT
‘{.iﬁ,this paper we derive the Reggeized absorption modelyfrom
field'theoretic diagrams. This model has been used'to_describe' a
large number of quasi-two-body reactions. It involves a Regge cut
correctioﬁ_to Regge pole amplitudes which is geherated by the exchange
of the'Regge pole and a'Pomeranchuk The cut features the product of
the Reggeon and Pomeron (wlthout complex conJugatlon of either) and
a large megnitude for the cut (coherent inelastic effects add to the'
original cut term). | |
The fUndamental phys1ce1 assﬁmptlon of our derlvatlon is that
phy51cal partlcle° are. composite objects of constltuent pleces of
matter _ In a scattermc process, some of the constltueﬁt matter takes
pait-inithe scattering while the rest stands by as a spectator. These

ideas lead us to describe double.scaftering'processes by a class of
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diagramé in?blving exchange of two Reggeons in the cross channel and
propagation bf composite physical particles in the direct channel.
When the direct;channel particles are Reggeized, Wé obtain an expression

for the Regge box diagfam.

We.begln our analysis of dlagrams by dlscuss1ng the AFS diagram
and 51m11ar diagrams to demonstrate -how the absence of thlrd double ~
spectral functlons leads to the absence of a cut. For simple diagrams,
we flnd that we are forced to invoke propertles of form factors to show
absence of the cut but that for sufficiently comp051te diagrams the -
absencéiof»the cut rests solely on the absence of thekthird double -
spectral fﬁnctions. |

1Né§£ we discuss the Mandelstam diagram apa similar diagrams to
demonstiate’how the presence of third double-spectfal functions leads
to cutsi“ fbr'each diagram we bring the expression fof the amplitude to
the form bf.the abéorption model. |

:ﬁinally, we étud& the general class of diagfams referred to
above.-;These diagraﬁs feature compoéiteness in'thé direct channel
(physicalhpdrticles are composite), third double-spectral functions
(phys1cal partlcles have definite s1gnature, no exchange degeneracy),

and two- Reggeon exchange (double scattering and the Glauber spectator

approx1mat10n). By assuming saturation of dlrect channel amplitudes by :

phy51cal states, we are led to an absorption formula (no complex

conJugatlons) that 1ncludes the coherent inelastic factor x (dlffractlon

production of direct-channel resonances).
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I. INTRODUCTION

The idea that the asym@totic behavior-of a'S¢af£ering amplitudé
A(s,t) 'ig determined ﬁy singularities of the partial;wave_amplitude
fj(t) 'inbthe cqmplex J plane is ten yéars old.l During this decade,
this idea has been.studied'both phenomenolbgicallj witﬁ various models
that describe specific reactiéné,2 and theorefically with‘the»ihvestiga-
tion of-sum$ of Feynman diagrams thét define ampliﬁudes with various
types of‘j—plane singularitieé.s’l+

The main school of thought has been fhatfifj(t)‘ is meromorphic
in the j plane with simple poles at values = ai(t) that correspond
to physibaliparticles.' Phenomenological models Qith thesé Regge poles
were usgd ﬁd fitAa large humbef offelastic_and‘quasi—two-body reactions.
Meanwvhile, the fheoretical stuay of various field théories led to thg
conclusionvthat Regge poles arise in field théories aléo.

Héwever, the use of phenomenological mddels with pblés alone
led to several difficulties and complications in the attempt. - to
explainlfeatures of differential cross sectiohsg—such as dips; crossovefs,
and forward peaks (in x exchange réactions)-anq features of total cross ‘
sectidns~sﬁch’as the rise at Serpukhov energies. This suggested that
in the j.plane the propertiés_of fj(t) might be more involyed than
containing poles oplj. Méanwhile, the study of field-theory models

produced amplitudes with fixed poles, moving cuts, fixed cuts, and

essential singularities.>
One of the earlier models with more complicated singularities

was developed by Aber36 et al.(fbllowing eérlier_work by Udgaonkar
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and Gell—Mann7) in the study of n-deuteron scatterlng Glauber8 had
shown that the amplltude A could be expressed as a sum of 31ngle and
double N - scatterings. Abers et al.then showed that these scatterlngs
correspond to the amplltudes for the dlagrams of Fig. 1, where the
partlcles in the direct channel (cut by the dashed llne) are to be
evaluated near mass shell. Furthermore, if the s1ngle scatterlng terms
were gi#en:ﬁy Regge poles

a_(s,0) = 8(e) Y, | (1)

then the double scattering term of Eq. (1) took the form of an amplitude
with a cut in the j plane at j(t) = EG(H) -1, .
S3(t)

A(double) = —. . (2)

This cuﬁ.ferm, the Glauber shadow correction, was observed expérimentally
in diffefential and tdtal cross sections. However, it was next shown
that if in Fig. 1b the contribﬁtion was evaluated from the region of
integration where the 5 was,off mass shell, tﬁis exactly canceled the
cut. The sum of both contributions behaved as Zn s/s3 and had no
leading‘cut.9

This type of theoreﬁical difficulty.also occurs in models thaﬁ
describe two-body processes in terms of a multipie scattering series.

5 ' :
In describing x"p - n°n, one is led to the formula (where A, ~ -i)

CA(s,t) = Ap(s,t) - '12 erg Ap(s,tl) Aez(s,tg) , ,(5)

321

¢
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where ‘Ap 'is the amplitude for o ‘exchange, and Aez is the elastic

n-nucléoh amplitude.‘ This can be derived from-éither-a Glauber eikonal
. 10,11 . ) . 5 - .

series” ' or from the Sopkovitch formula. It can also be derived

from Féynman diagrams of the type of Fig. 2b. The second term in Eq.

(3) corresponds to the contribution from Fig. 2b in which the direct

o}

‘channel 1~ ,n are evaluated on mass shell. However, if one evaluates

the contribﬁtion from the region where the 7°,n éo off mass shell,
the preVibus term is again exactly canceled, and_their sum has'no‘éuf. .
The difficulty encountered in both of these‘ekamples is related
to the diagram version of the work of AFS. The"diséontihuity of the
amplitudé of Fig. 3 across the brénch cut of thentﬁo—particle direct-

channeljétaté is given by12

- Im A(s,t) oc j.__: Al(s,tl) A;(s,tg) oo (%)
—

and A(s;t)' has a branch point at j(t) = 2a(t/h) - 1. quevef, in a
ladder feﬁresentation of a Reggeon,13 there are_fufther contributions
to the unitarity equation that cancel the cut.. -

| :Aithough the three diagrams considered do not have cuts, there
are diagrahs which do have cuts, for exampie, fhe double cross
diagram 215 op Fig. 4.

- In :this work we will reconcile these results for Feynman
diagramszohvthe one hapd with the eﬁperiméntally.validvmultiple scattgring
models_oﬁ #he other. To do this, we start from assumptions abouf the
coﬁposifé structure of‘physicai particles, and combine them with the

ideas of multiple scattering. This leads us to a class of Feynman:
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diagrams, which can be evaluated in the high~enérgy limit. The final
expression we are led to agrees with the multiplEQSCattering models

discussed above.

'Thé_organization of the paper is as follows. In Sec. IT A we

point out the features of the AFS diagram that cause‘it not to have a
cut. 1. » in B we discuss why the double croséjdiagram of Fig. L does
have a cut, and bring fhe amplitude to a form similar to the absorption
model. Nekf we extend the resulté to more complitéted diagrams with
cuts. = v In C we>discusé two further diagrams Wiﬁhout cuts, drawing
out the.fOle that third double-spectral functions.and form factors play
invthe aﬁalysis. This leads to the analysis in D of a very general
clasé oﬁ.diagrams, in which the presence of a cqt-is thrown completely '
onto the pfesence of third double—spectrai fuﬁctiohs.

”in.Séc. IIT wepresent our view of the cémposite strﬁcture of
physical pérticles and combine this with the diagfém results to obtain
the defivation of the absorption model.

- In Sec. IV we compare our results with the work of Gribov et.al.
In.Sec. V we summarize the.assumptions,.results, and uhsolved

problems of the paper.

v
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II. MATHEMATICAL DERIVATIONS
A. The AFS Dlagram ' : .
To begln we briefly point out the features of Rothe's treat-

16 17

of the AFS diagram that are relevant to our later derivation.

'In‘terms Of mass variables, the amplitude is given by

dt,dt

A(s;t) oc 2 ~—————;—l 2 ds,ds,
= =
A, ty,t)<0 M Si(s,60,8,)30
R(s,tl; sl,se) R(s{tg; sl,sg) | _
(sl -m o+ ie)(32 -m" + ie)_. ' o
where
"_X(a,b,c) = 8 +b° 4+ ¢ - 2ab - 2ac-{ 2bc .

As a fuhcfion-of sy, the integrand of Eq. (5) - has singularities in

the lower half plane consisting of a pole at s. = m2 - ie and cuts

1 .
' _ ey sy 1k4,18
from the form factors of the Regge amplitudes. Also, it is known

that as - s,

1 becomes large
‘R(s,t; s,,8,) »1/s . - ‘ (6)
2 T1’T2 :
(This is valid in the limit s fixed, §) e and also in the limit
5 ~ Sl,_iw‘) The Sy 1ntegra?10n runs from 8, = - to. s, ~ S
(Fig. 5). Therefore, if we distort the si—and similarly sé-integration
in the 1ower half plane; we obtain
o fatgat, ) . '
Als,t) oo 5 [ === R(s,%;) R(s,t,) + Ay(s,t) +A5(s,8) , (7)

(-2\)7
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'whgre R(g,ﬁi) is the Regge amplitude evaluated on mass shell, A2 is
the conﬁiibutioﬁ from the cuts in the mass variab;gs, and A3(S’t) is . »
the contribﬁtion from the large semicircles. This iast term is negligible
because of Eq. (6). Thé first term in Eq. (7) is thé usual AFS amplitude
[but wiﬁhoﬁt comblex,conjugation of R(s,tg)}. . |
bh;the other hand; if we close the contoﬁr‘df CH ihtegration'
in the upper half plane, we obtain for A(s,f) thy a term similar to
v AB(S’t)’ which vanishes‘asv s - «. Hence we conqlude that A(s,t)
must vaniéh as 8 - oo. v(the Feynman parameter'ﬁechﬁique
gilves ‘ ;'v. fn s/s5); and the apparent cut of ﬂhe first term in Eq.
(7). is c'av,rjlceled by Ag(s,t). o
 ' To'summarize, the cut does not appear'becaﬁse of.
(a) the absencé of & third double spectral function
'(b) tﬁe'preéence of form factors.
We éhali'see'that the correcf interpretation of these two features leads:

to the_Réggeized absorption model.
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B. Diagrams_With Cutsj
We:an‘turn to diagraﬁs that do have cuﬁs; leading to the general
diagra@'qf'Sec. D that will connect with our ideéquf the coﬁposite |
stiucturé of physical parficles and yield the abéorbtion model.
"Firét considei the double cross diagram of Fig. 4. We follow
the treatment by Gribov_(l968)}9f and then extend the analyéis further

to Obtainié:reéult resembling the absorption model.' The amplitude of

16,19

dhk dhk duk‘

1 4% Nmeee oy
R(kl)ngk) R (pi = kl}P2 - kg}q - k) .

8
/r-( a, S . o | | (8a)

CA(s,t) =1

1
The essehtial.featUre of the analysis is to note from Eq. (6) that the
internai.Regge'amplitudes R and R' become small if their external

masses ‘div-become'large as fast as or faster than s. Therefore, the

dominant contribution to Eq. (8a) comes from the region of integration

‘where di remains finite relative to s as s goes to infinity. After

s has beCome asymptotic, the integration over the remaining large values
of 'di _cah be completed. To express this precisely, let A be a finite

number, and define

IR : 8 ,. 2
R . N " ' (A - d, ) o

1

Then, the above drguments'state the leading behavior of A(s,t) 1is

given by
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(8¢c)

Tojperform the analysis embedded in Egs.: (8a) and (8c), it is

convenient to replace the external momenta pl,p2 _by light-1like momenta

P{, D) defined to order 1/s by

2 2
B; = P - D, Py =Dy =D
1 1 s ‘27 272 s M1

The momentUm transfer is given by q = g (pé - pi),+ Q, where Q is a

two-dimensional vector perpendicular to the incident vectors

pl,’ p2 .

The SudakQQ variables of intégration are introduced by

k = qp2-+ 5pl + K3 ki = aip2 + Bipi + Ki’ ;'?Qr‘ i=l,2,

 'dhk'= lgl do dg dk, etc. ,

where . K,Ki. are again two-dimensional vectors perpendicular to P1sPs-

In terms Qf these variables,the denominators fpr_the left side of

Fig. h:bééome
- - N 2 2 .
dl ='kl- -m + le = alBls + Kl' -m + iey

[o7]
il

2

Q
It

L 2 2 . | ,
4, = (kl k +q - pl) -vm + ie = (al - f.

+ (Kl - K

with similar expressions on the right side.

u|ct

' 2 2 . m o 2 2 .
5 “(Pl - kl) -m + i€ = (al - g—)(al -1)s + K,\” - m o+ ey

(9)
2

. . ) - ‘ o . 2 ) o
5 gkl - k)" - m" +'ie = (al - a)(Bl —_B)S'f_(Kl - K) -m +de ,

- EE)( -p -t ;vl)'
s Bl B S =78

Q)2 -t + e R

&
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Performing the analysis of Egs. (8a) and (8b), we first find
the region of integration over which di < A. By solving the‘equations
9y09

= 0(A) for o,8;, we find from Eq. (14) that o = o(2),
By = O(A). ~ After a similar analysis on d5’dh; d5?d6; d7,d8, we

conclude that the dominant region of integration'as s —ow 1is givén by
& o 8,8, = 0(2);  By,0, = O(A) - (10)
127=2F2 s’? 1’72 ot o .

:Compdriﬁg Eq. (10) with Eq. (9), we see that we can neglect B
relativeato Bl’ and « relative to Ay If we change variables Qs -0

os ;aa; Bs - B, B - B, Eqs. (9) vecome

il

S 2 2
vdl alBl + K1 -m + ie

'2,' (o - mg)(Bl - 1) + K_12 - n° 4+ ie,

4 -
- | | (11)
a4, = (o - a)py + (K, - K)2 I P
%3 1 1 1 _
' _ 2 ) e a2 2 .
d, = (al -+t -m )(el 1) + (Kl K -Q) -m™ + ie 4

and tgg Regge energies, momeﬁtum transfers, and direct channel energies
begome»

";'U'l; - ogBys , U, - (1 —Iag)(l -‘Bl)s ;.

'ké' K, (é-kﬁ=(Q-Kﬁ; S (12)

m2 -a +-K2 5 52 = m? + B + ng.

i

The factors QpysBq s ete. in Eq. (12) tell what fraction of the original
energy s- tlows through the Reggeons and what portion flows down the

sides of the diagram. We see that the terms dl,--?,du depend only on
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the varlables of . the left loop- ,Bl,K and on ,K, but not on 8.
Slmllarly for the terms d5,-° y 8 | V
Next we assume that the Regge amplltudes of Eq. (8a)can be

writtenvln the factorized form

e
S50 9, (k)

. 5

k=
t

~¢2[<q %)°) ¢2[(q 1)°]

R'

Then, Eq.»(8a)can be recast into the following fbrm:

¢1(K )+, (e- ®)°11

A (s t) j dK( (KN, (K,Q) , (132)
. o(a) i
do., dR., dK ¢ - ¢ ,
N (KQ) = | da—2=L gels T1-8)c, o ()
? o(n) ,r;r . |
o da dB dK ' ¢ .
NE(K}Q> = 2 2 Qgé a2¢l(l .'_.OZZ). 2 (lBC)
(A) di ' '
-5

Here we see that AA is anfintegral over the usual energy term

S ~, ‘times structure functions Nl and N, that involve the

Feynman:amplitudes, the form factors, and the Regge energy factors on

each side of the diagram.

Now let A — o in accord with Eq. (8¢).  We denote the integrand

Cof N by

&

. gl(ég,du,(q - k)?) U, g2<§6,d8,(q_— k)?):;
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RN A ¢ g
R /_[E\/—l——l_ g8 B, N(1-8) " | (1),

Note from Eq (lh) that B, runs between 0 and - +l only. If B < O

then the lntegrand, as a function of «,, has 31ngular1t1es that all lie’

l’
in the uppef half plane [see Eq. (11) and Fig. 6]; the «a, contour of v
integratiqn.can be closed in the lower half plane to give zero. If

Bl > 1, the singularities all lie in the.lower half plane. But if

0 < 31 <11,’then the singularities pinch the contour of integration and

" the integral is nonzero.

To bring A(s,t) into the form of the absorption model, we
shall fihdfit necessary to understand the analytic properties of Al'

This ean be investigated in the following way. (We neglect the form factors,

which can. be handled by d1spers1ng in thelr masses ZO)v Introduce Feynman

parameters 20-22 into Eq. (14) via

- () f TTGD\ e J:: . (15)

(The ie in d guarantees convergence. ) Then,_the dKl integration

can be done directly. The dal _integration can be done by using

+o0
ax e & () . | |  (16a)

The qudnﬁity B involvesv Bl’ and this allows'the dBl integral to be

performed. We find
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o 6
Bl >"]_ T }\2 T )\5 T )\')4 ’ A(l b)
and that
/“"'T + N
Al(sl,t, ty5t, ) f dn. < u» /
D 1D(>\: l’u )/0(7\)
)( = 5 ) (17a)
| [c()I™ |
where A}&
C 2
D(x’ U)o MphgSy MMy T AR At (7‘17‘2. + agny)
- m20(>\)2 - (17v)
(M) = At A g N IR (17¢)
s. +t +u = ome + . + b . - . : (l7d)

1 ' 1 1 2

Thls can be written in the more familiar Feynman representatlon as

Ot
l(sl,t ty,b,) ocf i i ao, 8(1 -c)( > <_C7502

X L. : (17e)
[D(a,s, 51 )]2
et I I
Note that for ¢ = ¢2 A, reduces to ﬁi; the ordinary Feynman

amplitude of Flg 7.
From Eq. (17e) the analytic properties of "A, can be read off

instant;y, First, A has the same Landau curves as A., because these

1 y ’ 1
come from ‘D(a,sl,ul). Second, the term B, = does not introduce a

new singularity, because if Q, =0y = 0, then
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' , 2 2
‘D‘(-Of/’sl’ul) = a1a5t1 - (ozl + cx}) mo3

but since tl < 0, then D is strictly negativei@nd cannot pinch with

#

B, ~. Finally, it can be seen from Eq. (17b) that for

s ﬁ 2m2
S1% 2 )

D is strictly negative; therefore Al is strictly.real there. This
region, labelled Dg,‘is shown in Fig. 8. We summarize the results in
Fig. 9a. The expression for A, in Eq. (17e) in terms of invariants

also allows us to write

. dtldtzl(3)¢1(t1)+¢2(t2)'1

A(s,t) oc zj;;gf T Nl(t,tl,tg) Ng(t,tl,tg)
. - | (18a)
- - | |
Ni(t,tl,tg) = ds; Ai(si,t; tl,tg) . o (18b)
. . B -00

We can-nbw:bring A(s,t) to the form of the absorption model. In

Fig. Qa we distort the contour of integration around the right-hand cut.
2 ' ' ‘

(A1 - 4n sl/sl as s - ,) Then

[+

B ACHOY

tE)AAoc ds qisc[Al(sl,t; tl,t2)] . (19a)

1
Ahm?
- 8ince 'Ai .is real analytic between the cuts of Fig. 9a, note that

disc[A;] = 2i Im A . | - | (190)
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Since the_discontinuity is'géﬁerated by the denominators dQ’d3’ and

since A, 1is real analytic, we can invoke a Cutkosky-type theorem to

l»
give
. 171 1 2
Nl(t,tl,tg) «c i dsy —a?i—l:———— B, (1 - Bl) 6((12) 6(d3) F .
hm® | | | (19¢)

where F involves the Jacobian of the transformation to mass variables.

Integrating on the :6 functions, we obtain °

‘oo

N (t,8,t,) e i as; [ ax 8'p"" 3 | (19d)
bm® ‘
whefe : ,
U 51¢l 1 R e
B~ = a5 (F)2 , B = - e (F)?
' d2=d5=0 d2=d3=0
(19e)
In terms.of graphs, we can'ﬁrite Nl as in Fig. §b.
' Thus we can split N into an integral of factors BUBL*,

1

where BU involves the upper part of the diagram; and BL involves

the lower part. Performihg the same operation on Ng.

o0

. : U L* ' '
5 @ i ‘ dsa dK,, C°C . - (19f)

hmg'

Returning to Eq. (18a), we can bring A(s,t) to the form
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"at, dt, | ¢1<t1) U. | AN

: * *
A(s, t) E‘ ak, ax, (8°(3) /(B )
| ()% x)*’- |
(20a)
Writing
us I w nse 1
M = B ({)_ c, M, =B () ¢, _ (20p)
we finally arrive (see Fig. 10) at
-iﬂ¢2(t2>'

A(s‘,t)- oc éi ,de dK, dK, M M; e . | (eoé)
Wifh B;c feal, Eq. (20a) agrees with the,absqrption model.  Ih. 
particular, when ¢l is the Poﬁeranchuk, then A(s,t) interferes
'deéﬁructively with the pole term of ¢2. In Eq. (20c) the extra phase
term restores the correct phase to the M, émplitude. |

_To extend this result anq prepare . for the general aiagfam of

Sec. D, we.briefly discuss the diagram of Fig. 11. There are Several
noteworthy features. |

‘ In;the first place, one sees that on the left side of the
diagram}énly the lines .1,3,5,7 attach to Regge aﬁplitudeé.‘ Hence
we might suépect fﬁat-only these are subjeét‘to fhe finite-mass‘condition.
It turﬁs Qﬁt this would.not give enough conditions to provide an
immediét§ soiutibn fér the Sudakov variables, Thére are two ways we
can arguevfo extend the class’ 1,3,5,7. On the one hand ﬁe can argue
,vthat, in the spirit of Arnold,'HPKR,_and of the wofk to follow in Sec..III,
the extejnLI puysical pazticlma should themselves also be Reggeized.

This would place erm factors on the external vertices also, and would
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lead tOvthe'requirement that -the lines 2,6 also satisfy the finite -
mass condition, and would provide enough 1lines- to perform the Gribov

analysis. On, the other hand, Polkinghorne23 hasvrecently extended the

S

Gribov analysis to diagrams with internal.Reggeons‘constfucted from
Veneziano amplitudes without any form factors at'éll. The integrétions-
are done”b& a steepest-descent analysis, and as it turns out this leads
to the desired finite mass conditions on all internal lines.

"In any eveﬁt, after satisfying the finite mass conditions,

one finds, in the same way as before,

. al’QQ’Q’B’-BB’B)-L ~ A/S) 0 < Bl,BQ,GB,OCA <1

One again obtains the amplitude A(s,t) in the same form as before,
with the amplitude Al(sl,t; tl’tg) now given by

. el ‘ ’ +oo '

\ : ¢l ¢2 : _ daidagdKlng

0 -0 d.
- : 1

1

(21)
The amplitude Nl(t,tl,
(Fig. 12). Therefofe; A(s,t) takes the form , o - -

tg) 'is‘given by a sum of four unitarity terms

I N ‘U(s ¢ U L* s>¢2 L¥ B

A(s,‘_cv) a : = cmi By I> CJ. 9B (i_ | Cj , (22)
o 1,3 A N ' :

a sum of all possible unitarity cuts on the left side of the diagram

times all possible cuts on the right.
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C. Diagrams Without Cuts
v-Wé ndw pass on to diagrams that do not have cuts; The essential
p01nt we shall demonstrate is that a dlagram has a cut if it has third
double spectral functions on its sides. As we shalllsee in Sec 111,

this;will tie in conveniently with our physical ideas about the compdsite

'structure of phys1cal particles.

To demonstrate this relation we will show that the amplitude of

any'diagram with two-Reggeon exchange (Fig. 13) can be brought to the

- form

TR ¢l+¢2-1 |
A(s;t) @ aK(3) NN,  (232)

g 2 . :
where Ni is related 6 to the amplitude of the blobs

Nl(p,tl,tg) ~ ds, Al(sl,t; tl,te) P (23b)

-00

~Furthermore, if Al _has a third double-spectral function, then the

intégral in Eq. (23b) is nonzero. But if A; has no third double-
speétral function, then Nl is identically zero; in this case, Eq. (2%a)

is also zero and the leading behavior of A(s,t) is of lower order in

s than Eq. (23a).’

. we saw earlier that the leading behavior of the AFS diagram
Vaqi;héé as s S . (It behaves as £n s/sB.) Its amplitude can be
bréﬁght to the form of Eq. (25&), even though the cbefficients Nl’N2
are zero. To do this, apply the Gribov analysis to Fig. 3;
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a4, = (Pl"k)2 ='(l-B)(Esl-r-Oé>s+K2—‘m2+ie
: ._ (25¢)
: 2 m \ 2 2 .

d, =.(.p2|+k) = (lfa)(g—jLﬁD.st -m + ie
Then d,,d, ~ 0(A) gives a ~ B’~ 0(A/s); setting a —as, B —Bs, we
have -

e 2 . ' 2 . 2 2
d) = - + K+ ie, d, =B + K - ie, tlv= K, t, = (K - Q) .

Since we have kept 4 d2 finite as s went to infinity, we can write

lJ

the Regge amplitudes in factorized form ,

| @, (t : | g,(t,)
_ _S_ l l . 1 . 5 2 2 !
R = gl(dl,tl)(i) gz(dg’t2)’ R A gl(dl’tl)(i) .ga(dg)tg)' ;
The amplitude takes the form of Eq. (23a) with
. +o0 +o0 ,
, g : )
Nl(tfﬁl,tg) = do EI g = ~ dsy Al(sl,t, tl,tg), (24)

-5 : -0

In Eq. (24) the integrand, as a function of «, has pole and cut
singularities in the lower half plane (Fig. 14). Since the form factors

decrease as dl - oo,
gl(dl,tl) - 0 as 4 -y
we can close the @ contour of integration in the upper half plané and

get for N, zero, as expected. We conclude that Eq. (23) holds for the

1
AFS amplitude, but .its value is zero.
Iﬁ the discussion of the AFS diagram, we need to invoke proper-

ties of the form factors in order to prove that the amplitude does not

persist. For the dia;gi'am of Fig. 15a we must also employ knowledge of
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the foroffaCtors However, for diagrams more co@pllcated (Fig. 20 for ’
example), the absence of the cut rests completely on _the absence of the
third double—spectral functlons.

Con31der Fig. 15a. After performlng the flnlte-mass analy31s,‘

we'’ arrlve at "Eq. (23) with

da dK, @ +p

11 172
f d’el/ EBAél, gl(l’5’ )
X gi(dydwt‘g) - (25a)

As a fuﬁction of sl; 'Al has only a right hand cut in the lower half

plane, so 1n Eq. (2%b) we are tempted to close the -8 contour of
1ntegrat10nzin the upper half plane (Fig.. 15b). This cannot be done if
 we ignore the form factors . because the ampl1tude w1thout form factors

satlsfles _
Ky (sq,t5 t,t,) > s /s - o (25p)

Therefofe;:the contour cannot necessarily be closed. We must invoke
the presenée of the form factors. We do this by interchanging the orders

of integration in Eq. (2%b)and first integrating on  al~ -Sl)- Then

+o0
U Bt ! 5, P12 - g8 (250)
Ny T aa T »

-~00

The aeintegrand has singularities in o in the upper half plane. The

contour can be closed in the lower half plane. Since gi,gg decrease



~00- _ i UCRL-19831

>

remaining integrals_in Eq. (25c) converge, and hence Nl = 0.

as el becomes-large, we see that the ‘d-integral is zero. The
vFihaliy, we discuss the diagram of Fig. 16, which will lead to
the genefal case of Sec. D. We dbtain Eq. (38), with

douy dp K, dor,dB,dK 6. 4.
1 1 2365 251152281gi (26)

d.’
i

Again, A,

1 has only a right cut, but now the amplitudé without form

factors satisfies
A .—y fn s, /s 2 a5 s, ow
1 1771 1 ’
vand hence the contour of integration in Eq. (2%b) can be closed in the
upper half plane to give Nl = O. For Flg 16 the absence of the cut

is thrown entlrely on the absence of the third double~spectral function.

1
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D. The General Case
ﬂWé now come tova general_class of th;Réggéonvéxchange diagrams
which‘is:the basis for our derivation of the abébrption model. Just
how génEral can this class be? What we

are 1nterested in is the amplltude for a dlagram of ‘the type of Fig. 13.

'.However,_we do not wish the amplitudes Ai to be completely arbitrary,

‘ because in the form of the absorptlon model we aré interested in we

requlre that they be strlctly low-energy amplltudes relative to s.
That 1s, we require that the 1nc1dent energy s Tflow across the

Reggeons and not down the sides of the diagraﬂg”bécause we

~will want to-identify the A, with direct-channel physical particles

" near mass shell.

- Note that the diagrams we have studied'satisfy this condition.

For example, we have found that whereas the L-momenta on the sides of

.'.'j . . . _ t ! '
the dlagrams can become large (e.g., ky = ByPy + P, + Kl’

0 < Bi <1, o ~ 2) the energies s, /alwayS’rgmain f?nite relétive to
s (e.g., él - -as + mo + KE, o~ A/s). The large enéfgy s flows
only aéross the Reggeons.

It is hot hard to convince oneself thatua general type of

diagram.satisfying these conditions is that of Fig. 17 Below; The

' effect ofthe élementary lines 1,2 is to tell us where the

internal Reggeon line ends and to prevent A from having Regge

1

behavior in s.
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Thus, Fig} 17.excludes all the diagrams_of Fig. l8. It includes all
‘the diagfeme discussed before. (For the‘double cross diagram, Ai

would be &arious ® functions.) It also includes the diagram of Fig. 19,
if:thenlines n, are grouped into a single line of mass M. Most
important;_it includes the diagram of PFig. 20a. ‘When the rungs in the
diiect chanﬁel are summed‘over, this provides a model for the Regge box
diagraﬁlof Fig. 20b (first introduced by Arnold and discussed in HPKR).

We consider, then, the diagram of Fig. 17. We use the notation-

A = A(s,t), Al = Al(s,l’t; tl’tg)’ Al = A (Sl’ l’ul’ di)

. The ampliﬁude Ai_ is to be quite general§ we are intereeted'enly in

whether or not it has a third double spectral funétion, and so write it
in the form

®f(s, ,C) ” g(sl,g) |
Ai. = dC [ + ag C ' » (272)

hmg ' hm?

That is, we can treat Ai as a propagator of mass- § > hmg. The

analysis now goes through as before. We indicate the essential
features.
After the finite mass analysis has been performed A(s,t) takes the

expected form of Eg. (23a b) with
1 l +oo
. _ N daldaszlng -¢l ¢?
Ay (systs ty,t5) = B9 By Pa &8

0 -0 ‘l I d

(21v)
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where

g 2 - 2 .
dl = "alBl + Kl -m + }e 4
) 2 2 .
d, %”(QI - m )({3l - 1) + Kl -m” o+ ie
L2 2
63 .'-T'H(al"a)Bl""(Kl'K) -+ 1€
Co 2. 2 .
4, = ap, + Ky - mo o+ de,
o 2 . 2 2 .,
d5 =v'(gé tt-m )({32 - 1) +(Q + K2) - m. +ie ,
4 = (o, +t-a)p, + (K, + Q- K) -0+ ie
6 = Y2 Pa T AR | °
. 2 v | :
81 7 fa'+'K2 + mz’ Yy =mo o=t (x - Q)2 . o - (28)
L o
. L - : - ,
= (O vt -0o)(e, - By) + (v -K)",
w = (o, +a +t-oz-m2)(8 +B -l)+v('v+K +Q"K)2
R B 1B rk e

We consider separately the éases of the ti and ui dispersion

contributions.

The ui Contribution

As-before, the first task is to establish the analytic proper-.

‘ties of ﬁhe'amplitude Al. This can again be done by introducing

Feynman parameters.
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' The amplitude A, takes the form

Al(s;?is"tl’té) = [ at £(s,8) Fplsyougs tya0,0) o (29a)

hmg

Fy =J[’ any -+ -dn, (g, (M)] * (8, (%) 2
} o

iD(x,sl,ulgg)/c(x)
€ : : (29b)
X 7 emi?
: - (@
o --do, 8(L - ;) o
.QJ; 1 T i [D_(a’s]_’u]_’{;_)]B
X 8] T (8@ %, (29¢)
wheré |
; ooy, +an va +a) o (e o)
Bl(a) - 2 & 5 6C(a)7 [ L6 3 (294)
oo, ta, va +'a)+a.(0t +0,)
Bg(a) . 21 2 50(037‘ 1 l. .5 . (29¢)
7
cla) =

1
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D = _.‘sl[a2a5(au+ a5+ Ot 'oz7) + _oc5oc6(ocl+ oz2+.(:x§f”oz7) +a2a5a7+ oc5a6a7]

f'u-ldlah%
+ 'E[aa(oz+a'+oz+a)+oca ]
ol oyt OgF Agt Oy ) F 3%y

+ -,mg[,otuoz5 (al+ apt Oyt oc7) + ocsozhoz7]

. _‘2' ~
+ K [alocB(ozu+ o+ a6+ a7) + a0 oz7J

5 15
+ (Q - K) [ethoz6(ozl+ at Qg+ o¢7) + ozB().zucx?]’
R 6 o
.. [voz7§-_+ % - m ]

X : [(og+ ay+ oz3)_(ah+ ag* ap) + oz,r(ocl+ a2+_ o%; o+ a5+_ a)l .

(29g)

AThe analytic properties of Al now follow easily. First, Al has

all the:singularities that - A

3 " has, because they are determined by

the Feynmen‘discrimihate D of Eq. (29g). Secend, Ay " does not have:

any new_sihgularity arising from the"Bi factors. If Aﬁi’.vanishes,

say, then various a in Eq. (29d) also vanish. Further, since we

have aesumed ¢l > -1, By 1 ois integrable;utherefore, we are

only interested in those singqlerities in.which.the propagatorse dl""’d6'
also - i 'participate. This means’fhat all the remaining a's must
either‘yenish or pinch. However, these are Just the conditions'for a
Landau:gingularity of- the Feynman emplitude Kif We conclude

that any singularity of A, associated with the vanishing of Bl

1

must already be a singularity of Kl' Since the sheet structure of the
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singuleritiee is determined by the ie prescription in D, and is
unaffected by the presence of the Bl l, we see.that Al has no ﬁore
s1ngular1t1es than ‘Al | : e : -,
7 Third, it is easily seen from Eq. (29g)vthat D 1is strictly | |
negatiﬁekfor

si,ul < 2m2;‘hence Al is real in this region.

T'So we conclude that Al has the same real analytic properties

.

as

Now we can return to Nl and bring it to the

unitarity form. Since Al has left and right thresholds (Fig. 9), we
can close the contour of integration around the right cut‘te obtain

(see Fig. 21)

. - U L*
E: J/F dlsc[A ] = 21 E: ~ds; B," BT . (30) |
: ' 1

'channel'uﬁitarity cuts

The sums in Eq. (30) are over all possible sy

with thresholds a;-

The amplitude ‘A becomes o ‘ ' -

R . ’ * *\ ' w
A(s,t) = -2i E dK ds.ds B'iU(i) .U\ Mgy 2 o Y |
o — | | _

(31)
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The ti -Cdntribﬁtion

‘ Thé calculations proceed as before. Oﬁe7again verifies that

1 1 When we come to

consider‘_Nl, we observe that as a function of 8y

Eq. (25b)3has singularities that all lie in the'léwer half plane. (Thié o

A haS’the same real analytié¢ structure as .

| the integrand of

is another way of saying that Ai has no left cut.) Hence we can
close thé"sl contour Qf integration in the upper half plane to get

zero.  The?efore N, =0, and A(s,t) does noﬁ persist.
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I1T. fHYSICAL iMPLiCATIONSnCOMfOSITENESS,
MULTIPLE SCATTERING, AND THE ABSORPTION MODEL

Now consider the relationship between the mathematical results‘
obtalned and the phy51cal meaning of comp051teness and multlple :
scatterlng.; It is not hard to see why the AFS dlagram does not give
the double scattering we would expect. On the.one hand, the form of\

a Reggeon amplltude in Flg 22 rmplles a comp051teness of the external
particleS' Mi- which is reflected in the form factor dependence on M,

It was through Just this dependence that the Rothe cancellatlon occurred.
This comp051teness is also reflected through the ladder representatlon
of a Reggeon (Fig. 23). On the other hand when the Reggeon of Flg 22
is inserted in an AFS diagran, the external‘particles Ml’Mh are glyen
elementary particle propagators. We claim it is this inconsistency

that deprlves the AFS diagram of a cut. | |

What must be done is either to renove the M.i dependence from
Fig. 22 or’to represent the external partlcles;dMi by more realistic
propagators We would like to discuss the second'alternative.

It is our belief, in the spirit of, Arnold HPKR, and Yang, that
physical particles are compllcated composite obgects. In a Bethe-
Salpeter framework for.example,-one writes the equetion of Fig. 2h,
where the right s1de represents the physical pole of the left side.

In a scattering process of a physical partlcle, some of the
constituent pleces of matter takes part in the scatterlng, while the’
rest stends by as a.spectator not taking part. Adsingle scattering
process thet is drawn as Fig. 25a microscopically looks liké’Fig.'25b,

where the double lines are the physical particles and the single lines
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are fheir censtituents.' Similarly; a double eeeftering process that is
drawn as Flg. 26b should actually be drawn as Flg 25b. The incident
partlcle at (:) separates 1nto scattering and spectator constltuents;
At_ (:);:the constituents unite to form a phys;cal particle in the
interﬁediate state; Atr (:) the same process Qccurs_again, and the
phys1cal partlcle emerges at (:) _.

’f In a field theory model, the 1ntermed1ate phy31cal particle
can berrepresented by the direct-channel ladders of Flg. 2%, We can
1nterpret»thls as a direct channel Reggeon. ThlS suggests. Fig. 27a.
From the'results of Sec. D, we know Fig. 27a does not have a cut because
-the sidegliack third double spectral functione{ Physically, this
corresﬁpqde.to an apparent cancellation between £he contributions to
.‘[es A (sl,t; tl,t ) that come from even-and odd—51gnature physical
partlcles in an exchange degenerate trajectory. -A direct-channel
Reggeoh'with signature is represented as in Fig. 27b. Figure 27a
beedmes'replaced by Fig. 27c, which has a cﬁt;“ |

'l.In_a'phenomenological calculation, we replace the direct -
channeluemplitudes of Pig. 27c by the known physieal particles;: Thus;
fqr',nrp_—zﬂon, the contribution ‘/f rv ds, diéc:Az(sg;t;.tl,tg) is

o th. S

written:as in Fig. 28,Awhere weiinclude.all'reeurrences of the o) and

continuum states. A typieai term contributes

- | B - -2 |
: . ppn ~ppP
_ jdsl disc .S 5 a

2 . - €opn Eppp
o - mp- +ie .
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The scattering amplitude becomes

A(s,t) o = de & 0’T) Engp " Eend(T)  Cppp (32§)
: dt,dt : :
ee 'E_J’ Mp(S,t.) Mez(s,t ) - (320)

(-2)?

_Thié is thevabsorptibn model.

In HPKR the contributions of the remaininé terms of Fig. 28
are assumed to have the same s,t dependence'aé Eq. (32p), -
and are added by multiplying Eq. (32b) by a factor . It:has been

showngylthat the amplitude for
p + p »p + anything y » - (33a)

proceeding via Pomeranchuk exchange, 6 may be as large as 50% of the

elastic amplitude
P+P-oP+D . . i (330)

This suggests that A could be about 2.
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. Iv. COMPARISON WITH THE.WORK OF GRIBOVYET'AL

Iﬁ Ref;_28, Gribov and Migdal studiéd:amplitddéé-generated by
the exchahge of a Regge polé. Their brogram is:tq wfife a Reégeon field
theory.that cah be solved by sumﬁing Réggeon diagrams to determine the
scattefing ampiituda.' For example, the amplitudeainvélaing the . .
Pomeranchak and the PP cut is given by Fig. 29. This implies for the
absorptiOn model that in addition to the diagfams of Fig. 2 ane must
consider effects of t-channel iterations in Fig. 30. It is well known
that ifathe diagrams of Fig. 30c are summed, the.sum-has a pole‘tefm
related to the pole of Fig. 29a, and a cut te?m related to the cut of
Fig. 29b.> Is one doablé counting by including the pole of Fig. 29a
separately? Compelling'physical arguménts have beén given in HPKR for
why this is noﬁ so, and why fhe physics of elastic absorption is

diffeieht from the physics af.quantum number éxchangé.

Gribov and collabofators28’29 derived.the absorption model from diagrams
We compare their derivation with ours.. For theif discussion of Nl’
they wfite the equation of Fig. 31. They argué in a general fashion
that Al ~has no new singularities or complexity from the presence of
the _ Bi i. Therefore'the-discontinuity of aAi can be calculated as
for ordinary aﬁplitudes-bj cutting the diagram and replacing the lower
amplitude by its complex conjugate. | | |

- They also givé a proof for elastic scattering that A > 1.

'.'Our'approach differs from theirs'in that we have attempted tq

present a specific model for the two-Reggeon diagram that is based on
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our physiéél understandiﬁg‘of compoéiteness and:multiple scattering,
and toﬂdefive thé absorption formula from that model.

vKaidalov and Karﬁakoveg have consideréd the effect of the form
factors on the convergence of the Sy integral for Nl at infinity.

Ter—Martlrosyan3 has derived the two- Reggeon cut from the AFS
diagram by u51ng form factors for the internal Reggeons that are
evaluated on mass shell. The Rothe cancellation mechanlsm is removed .
and the coﬁtribution from the "elementary" propagators evaluated near
maés shéli:gives the expected form of the cut;

He also considers higher order cuts (Fig. 32), and derives the
eikonal:formula of Arnold. How do his résults affect ours? In a‘
phenomenclogical absorption model, one needs tb'consider only the pP
cut. All. elastlc multiple scatterlngs are gréuped into a éingle P
term, which is parameterized and fit by experlment (rig. 55& b). The
PPp cut (Fig. 33c) is found to be small. Any cut involving Pp and
a non—queranchon (Fig. 33d) is small because thebbranch point'is well

below the p pole.
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V. ASSUMPTIONS, C'QI\_ICILUSIIONS , AD
_ FUTURE AREAS OF WORK
',AssumgtiOhs | | o
| ,l;‘ Physical particles are composite objeéts,and when regarded -
as Reggé&néi»they have definite signature.
fé.f Multiple»scaftéring'of composite systems can be treated in
a Glauber ééatterer-spectator‘approach.
"BE_.The leading behavior of a Féynman‘amplitude is given by
the Gribov finite-mass conditions; the_second-ofdér term is down by a

factof Of'fl/s _from the leading behavior.
Conclusions

.'The amplitude for the'diagram of‘Fig._lj, where Ai are low .
energy amplitudes relative to s, is given by*thé.absorptioh formula -

N N,

f a Jr7e e-?@f%) -

A(s,t) @ 41

. dK ) '
@ -J_IE-—Ml(s,tl) Mg(s‘,tg) + - .

Future'A?éas of Work

i.l; What is‘the efféct of t—channel iferétions?

:_2.» What-is the relation betweeﬁ the absorption model épproach
and thé bootstrap approach? ,(Seé Ref. 31.). -

3. Is A > 17
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APPENDIX A. CUTS WITH VENEZIANO AMPLITUDES

An essential condition for the AFS diagram'nbt to have a cut is

the presence of the form factors. What happens when the Reggeons are

représentéd as Veneziano amplitudes with no form factors? The amplitude

of Fig. 5'bécomes

' A(s,t) - J[.E—Q%;%E—gg R(s,t. ) R(s;tg): . (A.1)

where d1  and d, are given by Eq. (23%c) and by =oBs 4 Kd,

£, = (a +t/s)(p - t/s)s + (Q - K)E. There are now no form factors

2

- and hence no Gribov finite mass condition, but the integral (A.l) can

be evalddted'directly.?u’35 We obtain the dominant contribution to
(A.1) from the region of integration O(mg/s) 5'3 <1 by evaluating

the pole in o at 4. =0,

1
.df; me/s + (m2 - KE)/(l - B)s .  n : .(A.2)'

The PR . integrations can be done to give

S A(s,t) @ de s¢(K?)+¢((Q‘K) D s+ 1 0(1)] . (A.3)

. The first term in the brackets comes from O(m?/s) < B < e and

corresponds to d2 going off mass shell. (e is a small finite number).
The seéqnditefm comes from f ~ O(mz/sj when dg' is on mass shell,
and cdrrésponds to the usual AFS cut term. The asymptotic behavior of-

(4.3) is then

3 (t) | - |
S A(s,t) - s &0 [1+i0(1/ems)] (A.L4)



where

2¢(t/&)'- 1

UCRL-19831

(a.5)
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APPENDIX B. AN ALTERNATIVE PROOF OF‘REAL ANALYTICITY FOR Al
One can also 1nvest1gate real analyt1c1ty of the A amplitudes
dlrectly using Sudakov variables. Cons;der Eq,”(ll).. We see-that if
0 <‘Bl < l - we can evaluate the al integratioh directly by cloSing the
Al‘ contour in the lower half plane and plcklng up the re31dues from
‘dl,dB.f_ertlng di(J) as the value of d, at the pole of dj’ and
writing D (J) Bldi(j),vwe obtain |

A (S l)t’ )
| . . ] (1), (1) D, (3)D,(3) |
- (B.1)
where -
a,(1) = -omy + (g - K)F -

Dy(1) = Sl - (1 - B +a- 6)] ¢ (1 -8 KT+ B (Ky +Q - x)?
b,(3) = -lu” -8y - By’ - )] + 8K, (1 - B (K - K)?
D#(l).‘v'vv: “[m° - B, (L - Bl)(m.2 ro-t)] + (1 - fal)Kl'2 + 8 (K + Q‘—: K)?
D,(3) = -In - By (1 - )’ - 8)] + g (g - K+ @+ (L - By)(KK)

(B.2)

We'immeQiately see that at thé endpoints of integration-- Bl = 0,1 -—-1

the terms Di(j) are strictly negative and cannot vanish. The term
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dB(l) can vanish, but its residue is zero [i.e., ‘dB(l) is a factor

of the terhs ih the brackets]. Hence we conclude that the terms
_Bl¢l,.(i ;_Bl) 2 4o not introducé any neW‘Singﬁlafities.

~ Finally, we observe that Al is certainly'a real
quantity'whgn the Di(j)'s are neégative for all
By betweéﬁv O and 1. This occgrs when the terms in brackets of
Eq. (8’2)'{ are positive. Since the maximum vaiue of Bl(l - Bl)
is l/h;viﬁis condition is satisfied for

2 2

Ahm,d>m23+oc-t, m -Qa m -t

This is equivalent to the region

5 <fhm2 + K2, -5m2 <t <0, 5

2 2
5 +t>-2m + K ,

1

which 6vérlaps'with‘the region D, of Fig. 8.
‘This method can also be applied to the amplitude Ai of
Fig. 17;'bUt it becomes very tedious. The Feynman paramter method

considerably easier.

is
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VFIGURE CAPTIONS
Diagrams for xD scattering.
Diagramé for absorption model.
AFS diagram.v |

Mandelstam diagram.

" Integration contour for Fig. % in the complex 8; plane.
;Singularities of the ¢ integrand in the complex O plane.

The integration on « runs from -0 to .

1 Whgn g and 51. are
1
Analytic properties of Al;‘ 1

A. has singularities at
= hmg, and f, = O (boundary of double

s, = hmg, u

1 1 1

spectral function), and it is real in 'Dl..
(a) Contour of integration for N,.

(b) Representation for N, of Fig. 4 in terms of the integral

1
of the absorptive part of Aj-

The single scattering amplitudes M;, M, of Eq. (20c).
Extension of the Mandelstam diagram.

Representation for N of Fig. 11 in terms of the integral

1

of the absérptive parts of A .

The general two Reggeonvexchange diagram.

. Contour of integration in « for Nl of Fig. 3.

Diagram without a cut.
Contour of integration in 84 for Nl of Fig. 15a.

Diagram without a cut.
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Fig. 17.vf'The general;two Reggeon exchange diagram_with low energy
direct-éhannel amplitudesf o

Fig. 18.;' Diagrams not contained in Fig. 17.

Fig. 19.  :A class of diagramé contained in Fig. 17;

Fig. 26.,f Represéntation of the Regge box diégram in térms of

R - diagrams of the class of Fig; 17. |
Fig. 21. Representation of Nl of Fig. 17 ih terms of absorptive
, partsvof Al.' |

Fig. 22. Regge amplitude with form factors fepresenting conmposite
external particles. “ |

Fig. 23. = Ladder representation of a Reggeon.

Fig. 24. Bethe—SalpeterArepreéentation of coﬁposite physical
particles. o

Fig; 25. Single sqattering of composite gystems..

Fig. 26L., Double scattering.of composite systeﬁs.

Fig. 27. (a) Two-Reggeon exchange with direct-channel ladders.
(b) Ladder representation of a direct-channel Reggeon with
signature. |
(c) Diagramvfdr two~-Reggeon exéhange with direct-channel
'Reggeons with signature. |

Fig. 28. Contributions to the amplitude N2 frbm‘the direct-éhannelb
physicd; statesbthét are contained in A,.

Fig. 29. Graphs.in the Reggeon pérturbation’thgory of Gfibov and

Migdal.
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Graphs that have not been included in the derivation of the

absorption model. These graphs have_amplitudes Ai that

have large subenergies.

The eguation Gribov and Migdal use to felate Nl to direct

‘channel physical states.
S-channel iterations of the Pomeranchon that give the

 eikonal.

Cuts generated by the o. Diagrams (a), (b) are used in

the absorption model; (c), (d) have small contributions.
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tion contained in this report, or that the use of any information,
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