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Abstract

Signature of non-standard cosmologies: from dark matter to primordial black

holes

by

Nicolas Fernandez Gonzalez

If the dark matter is produced in the early universe prior to Big Bang nucleosyn-

thesis, a modified cosmological history can drastically affect the abundance of relic

dark matter particles. Here, we assume that an additional species to radiation

dominates at early times, whose energy density red-shifts faster than radiation like

ρφ ∝ a−(4+n), causing the expansion rate at a given temperature to be larger than

in the standard radiation-dominated case. We consider the cases of dark matter

production via freeze-out and freeze-in in theses non-standard cosmologies.

For the first case, dark matter freeze-out occurs at higher temperatures com-

pared to the standard case, implying that reproducing the observed abundance

requires significantly larger annihilation rates. Here, we point out a completely

new phenomenon, which we refer to as relentless dark matter: for large enough

n, unlike the standard case where annihilation ends shortly after the departure

from thermal equilibrium, dark matter particles keep annihilating long after leav-

ing chemical equilibrium, with a significant depletion of the final relic abundance.

For the case of dark matter production via freeze-in (a scenario when dark matter

interacts very weakly, and is dumped in the early universe out of equilibrium by

decay or scattering processes involving particles in the thermal bath) the abun-

dance is dramatically suppressed. We quantitatively and analytically study this

phenomenon for three different paradigmatic classes of freeze-in scenarios. For

the frozen-in dark matter abundance to be as large as observations, couplings

xii



between the dark matter and visible sector particles must be enhanced by sev-

eral orders of magnitude. This sheds some optimistic prospects for the otherwise

dire experimental and observational outlook of detecting dark matter produced

by freeze-in.

Finally, the recent discovery of gravitational waves from binary black hole

mergers has given us a new way to study our universe, but the origin of the black

holes binaries remains unclear. We investigate how to use information on the

effective spin parameter of binary black hole mergers from the LIGO-Virgo grav-

itational wave detections to discriminate the origin of the merging black holes.

We calculate the expected probability distribution function for the effective spin

parameter for primordial black holes. Using LIGO-Virgo observations, we then

calculate odds ratios for different models for the distribution of black holes’ spin

magnitude and alignment. We evaluate the posterior probability density for a pos-

sible mixture of astrophysical and primordial black holes as emerging from current

data, and calculate the number of future merger events needed to discriminate dif-

ferent spin and alignment models at a given level of statistical significance.
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Chapter 1

Introduction

We are at an exciting juncture in physics where we have consensus models for

both particle physics, the Standard Model (SM), and cosmology. However, despite

success, several puzzles remain. Notable among these is the question of what the

particle physics description of dark matter (DM) and its cosmological origin. The

evidence for DM is a very robust expanding over several order of magnitude in

the universe, from dwarf galaxies to the cosmic microwave background (CMB).

furthermore, each particle candidate has to satisfy the relic density constraint,

namely the computed relic density has to match the one inferred from astronomical

and cosmological observations.

Thermal freeze-out is an attractive mechanism for DM genesis [8, 9, 10, 11].

Within this paradigm, DM particles are in thermal equilibrium at high temper-

atures; as the plasma temperature eventually drops below the DM mass, the

Hubble expansion rate becomes larger than the rate for processes that keep the

DM species in thermal equilibrium; DM particles thus freeze-out, with an approx-

imately fixed comoving number density. Remarkably, such a relic density depends

only on masses and couplings that can be, in principle, independently measured

in a laboratory, and it therefore does not depend on the uncertain cosmological
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history of the universe. The jargon used to express this fact is to say that DM

freeze-out is “IR-dominated”.

The above statement has, however, a well-known caveat: it is true only for a

standard thermal history (i.e. an energy density dominated by radiation at early

times, T � 1 MeV) all the way up to the freeze-out temperature, approximately

a factor of 20 below the DM mass. Although this has to be the case at tempera-

tures below Big Bang Nucleosynthesis (BBN), TBBN ' few MeV [12, 13], we have

no direct information for the expansion rate and energy density make-up of the

universe at higher temperatures.

In chapter 2, we consider a modification to the standard cosmological history

consisting of introducing a new species φ whose energy density red-shifts with

the scale factor a like ρφ ∝ a−(4+n). For n > 0, such a red-shift is faster than

radiation, hence the new species dominates the energy budget of the universe at

early times while it is completely negligible at late times. If equality with the

radiation energy density is achieved at low enough temperatures, dark matter can

be produced as a thermal relic during the new cosmological phase. Dark matter

freeze-out then occurs at higher temperatures compared to the standard case,

implying that reproducing the observed abundance requires significantly larger

annihilation rates. Here, we point out a completely new phenomenon, which we

refer to as relentless dark matter: for large enough n, unlike the standard case

where annihilation ends shortly after the departure from thermal equilibrium, dark

matter particles keep annihilating long after leaving chemical equilibrium, with a

significant depletion of the final relic abundance. Relentless annihilation occurs

for n ≥ 2 and n ≥ 4 for s-wave and p-wave annihilation, respectively, and it thus

occurs in well motivated scenarios such as a quintessence with a kination phase.

We discuss a few microscopic realizations for the new cosmological component and

2



highlight the phenomenological consequences of our calculations for dark matter

searches.

Furthermore in chapter 3, we demonstrate that, if this is the case, dark mat-

ter production via freeze-in (a scenario when dark matter interacts very weakly,

and is dumped in the early universe out of equilibrium by decay or scattering

processes involving particles in the thermal bath) is dramatically suppressed. We

illustrate and quantitatively and analytically study this phenomenon for three

different paradigmatic classes of freeze-in scenarios. For the frozen-in dark matter

abundance to be as large as observations, couplings between the dark matter and

visible-sector particles must be enhanced by several orders of magnitude. This

sheds some optimistic prospects for the otherwise dire experimental and observa-

tional outlook of detecting dark matter produced by freeze-in.

Finally, the recent discovery of gravitational waves from ten binary black hole

mergers has given us a new way to study our universe. The origin of the black

hole binaries remains unclear. In chapter 4, we investigate how to use information

on the effective spin parameter of binary black hole mergers from the LIGO-

Virgo gravitational wave detections to discriminate the origin of the merging black

holes. We calculate the expected probability distribution function for the effective

spin parameter for primordial black holes. Using LIGO-Virgo observations, we

then calculate odds ratios for different models for the distribution of black holes’

spin magnitude and alignment. We evaluate the posterior probability density

for a possible mixture of astrophysical and primordial black holes as emerging

from current data, and calculate the number of future merger events needed to

discriminate different spin and alignment models at a given level of statistical

significance.
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Chapter 2

Freeze-out in Modified

Cosmologies

2.1 Introduction

Decades after the first observational evidences, the origin and composition of

the DM is still among the most urgent open questions in particle physics [5, 6, 7].

Weakly Interacting Massive Particles (WIMPs) are motivated particle candidates

for DM, with a thermal relic abundance naturally close to the observed cosmolog-

ical abundance of DM. A standard calculation [8, 9, 10] shows that this thermal

relic WIMP abundance scales as the inverse annihilation cross section, and is

mildly dependent on the particle mass. The observed DM abundance is repro-

duced for

〈σthvrel〉 ' 3× 10−26 cm3 sec−1 , (2.1)

where the brackets denote a thermal average and vrel is the Møller velocity (for

details see Ref. [11]). The cross section needed for a thermal relic is thus that

typical of weak interactions. This phenomenal coincidence, combined with the

4



expectation of new degrees of freedom at the weak scale for independent reasons

such as the hierarchy problem, is referred to as the “WIMP miracle”.

The numerical value in Eq. (2.1) has been an important benchmark for WIMP

searches. It is worth keeping in mind that it relies on a crucial assumption: at

the time of DM genesis, the energy budget of the universe was dominated by its

radiation content. We know from Big Bang Nucleosynthesis (BBN) that this is

definitely the case at temperatures around and below TBBN ' few MeV [12, 13].

However, we have no direct information about the energy budget of the universe

at higher temperatures. The WIMP DM thermal relic abundance may differ

by orders of magnitude if deviations from a standard cosmological history are

considered [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

In this chapter we consider DM genesis for a broad class of alternative cos-

mological histories. We assume the presence of another species φ, whose energy

density red-shifts with the scale factor a as follows

ρφ ∝ a−(4+n) , n > 0 . (2.2)

The standard case of radiation follows the behavior above for n = 0. Here, we

always consider n > 0, which implies that the φ energy density dominates over

radiation at early enough times. The equality between the energy density of φ and

radiation must happen at a temperature Tr & TBBN (we will be more quantitative

about this point in Sec. 2.3). If such an equality is achieved after the time of

DM production, the standard relic calculation is significantly affected, as is the

thermal relic abundance of the DM. We survey the options for DM genesis when

the universe is dominated by a fluid red-shifting as in Eq. (2.2) in Sec. 2.4.

The two-dimensional parameter space (Tr, n) fully describes the possible cos-

mological backgrounds in our setup. The two parameters cannot be arbitrary,
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since for low enough Tr we must ensure not to spoil the success of BBN. This set

of cosmological backgrounds are described in Sec. 2.2, where we provide an ex-

pression for the Hubble parameter as a function of the radiation bath temperature

T . For each temperature value T > Tr, the Hubble parameter is always larger

than what it would be for a standard cosmological history. For this reason, the

universe expands faster than in the standard case when dominated by φ.

A significant energy density of φ around the time of BBN mimics the role of

additional neutrino species. Light element abundances put bounds on Nν [27],

which can be used to exclude part of the (Tr, n) plane. We discuss these bounds

in Sec. 2.3. Interestingly, the energy density of φ is completely subdominant at

the time of the decoupling of the Cosmic Microwave Background (CMB). The

number of effective neutrinos at TCMB ' 1 eV is also constrained [28], but our

framework does not predict any deviation from the SM value.

This work focuses on freeze-out DM production. We assume the DM particles

to achieve thermal equilibrium with the primordial plasma at high temperature,

and decouple once the temperature drops below its mass. The faster expansion

rate raises however an important question: does the DM ever= thermalize? This

is inspected in App. A.1, where we quantify the conditions we need in order to

have the DM in thermal equilibrium at early times. The answer to this question

sets the stage for the DM relic density calculations in Sec. 2.4. These calculations

are performed by parameterizing the new cosmological phase by (n, Tr), without

specifying the microscopic origin of the new species φ. At large enough n, we

find a very peculiar behavior for the DM number density evolution, that had

never been recognized before: The different Hubble scaling with the temperature

allows significant DM annihilations long after the decoupling from the thermal

bath. For a DM annihilating through an s-(p-)wave process, this happens for
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n ≥ 2(4). Remarkably, the red-shift with n = 2 arises from motivated theories of

quintessence attempting to explain the current acceleration of our universe [29, 30].

We call relic particles freezing-out during this phase relentless dark matter, due to

their obstinate struggle to get back to thermal equilibrium. This behavior, which

we find in our numerical results shown in Figs. 2.1 and 2.2, is easily understood

with the semi-analytical results given in App. A.3. Notably, the phenomenon of

relentless dark matter leads to significant numerical differences in the calculation

of the thermal relic density for example in the case of kination-domination phases

from previous studies (see e.g. [31, 32]).

The faster expansion rate implies an earlier freeze-out. Since we are dealing

with cold relic, reproducing the observed DM density requires couplings signifi-

cantly larger than in the standard case. This opens up the possibility of having

cross section substantially larger than the thermal value in Eq. (2.1), in contrast

with the case of an early matter-dominated epoch providing dilution where smaller

values of the cross section are required [14, 15, 16, 17], and consequently weaker

signals in DM searches. We quantify how much annihilation cross sections can be

enhanced in Figs. 2.3 and 2.4.

Finally, we address the question of the origin of the new cosmological compo-

nent φ in Sec. 2.5, where we provide one explicit example of a microscopic theory

leading to the behavior in Eq. (2.2). We summarize our results in Sec. 2.6, where

we also discuss future work addressing the implications of our analysis for dark

matter searches.

2.2 A faster expansion

The expansion rate of the universe, quantified by the Hubble parameter H,

is controlled by its energy density through Friedmann’s equations. We consider
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cosmological histories where two different species populate the early universe,

radiation and φ, with a total energy density ρ = ρrad + ρφ.

The contribution from radiation, the only one present for a standard cosmo-

logical history, can be expressed in terms of its temperature as follows

ρrad(T ) = π2

30g∗(T )T 4 , (2.3)

where g∗(T ) is the number of effective relativistic degrees of freedom. We find it

useful to express ρφ as a function of the radiation temperature T . All we know is

its red-shift behavior given in Eq. (2.2), hence we need to connect a with T . This

is achieved by assuming and imposing entropy conservation in a comoving volume

S = sa3 = const, where the entropy density reads

s(T ) = 2π2

45 g∗s(T )T 3 . (2.4)

Here, g∗s is the effective relativistic degrees of freedom contributing to the entropy

density. Entropy conservation ensures g∗s(T )1/3Ta = const, and the scaling in

Eq. (2.2) can be re-expressed as follows

ρφ(T ) = ρφ(Tr)
(
g∗s(T )
g∗s(Tr)

)(4+n)/3 (
T

Tr

)(4+n)
. (2.5)

Here, Tr is some reference temperature set by the boundary conditions. We choose

Tr as the temperature where the two fluids have equal energy densities. The full

energy density at any temperature reads

ρ(T ) = ρrad(T ) + ρφ(T ) =

ρrad(T )
1 + g∗(Tr)

g∗(T )

(
g∗s(T )
g∗s(Tr)

)(4+n)/3 (
T

Tr

)n ,
(2.6)
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where we find it convenient to factor out the energy density of the radiation bath

as given in Eq. (2.3). From this expression it is manifest that the energy budget

of the universe is dominated by φ for temperatures T & Tr.

With Eq. (2.6) in hand, we can evaluate the Hubble parameter as a function

of the temperature

H =
√
ρ√

3MPl
, (2.7)

where the reduced Planck mass is MPl = (8πG)−1/2 = 2.4× 1018 GeV. At temper-

atures larger than Tr, and setting for simplicity g∗(T ) = g∗ = const, the Hubble

rate approximately is

H(T ) ' π g
1/2
∗

3
√

10
T 2

MPl

(
T

Tr

)n/2
, (T � Tr) , (2.8)

The full standard model (SM) degrees of freedom would lead g∗ = g∗SM = 106.75.

The expression in Eq. (2.8) is the Hubble rate at the time of DM genesis for

the cosmological histories considered in this work. This result manifestly shows

how the expansion rate at a given temperature T is always larger than the corre-

spondent value for a standard cosmological history. In our numerical analysis we

use the complete expression for H, including the full temperature dependence of

g∗(T ).

2.3 BBN Constraints

The successful predictions of light element abundances give us a quantitative

test of the energy content of the universe when it was few seconds old. Before

we consider freeze-out in the cosmological background described in Sec. 2.2, we

have to ensure that we do not spoil this remarkable agreement between theoretical

predictions and observations.
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A potential issue with BBN arises if Tr is not too far away from the MeV scale,

where light elements begin to form. If this is the case, the universe expands faster

than the usual case around the BBN time, and the theoretical prediction for BBN

abundances may be altered.

We parameterize the effect of the field φ by an effective number of relativistic

degrees of freedom

ρ(T ) = π2

30g
eff
∗ (T )T 4 , (2.9)

where we define

geff
∗ (T ) = g∗(T ) + ∆gφ∗ (T ) . (2.10)

Here, g∗(T ) is the standard contribution from radiation, whereas ∆gφ∗ (T ) accounts

for the energy density of φ. The expression for the total energy density in Eq. (2.6)

define unambiguously the latter. A historical and widely used way to parameterize

this effect is to describe the presence of φ as the the number of effective neutri-

nos. Within this convention, the total number of relativistic degrees of freedom

appearing in Eq. (2.9) reads

geff
∗ (T ) = 2 + 7

8 × 4 + 7
8 × 2×Nν . (2.11)

Here, we account for photons and positrons as well as neutrinos. In the absence of

physics beyond the SM, the number of neutrino flavors at temperatures T > 1 MeV

is N (SM)
ν = 3. 1 By a comparison between the last two expressions, we compute

1At lower temperatures, neutrinos decouple from the thermal bath, and after e+e− pair
annihilations their temperature is lower than the photons, Tν = (4/11)1/3Tγ . Furthermore,
corrections due to non-instantaneous neutrino decoupling lead to a SM effective number of
neutrino light flavors N (SM)

eff = 3.04 [33].
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∆Nν ≡ Nν −N (SM)
ν = 4∆gφ∗/7. We find

∆Nν = 4
7g∗(Tr)

(
g∗s(T )
g∗s(Tr)

)(4+n)/3 (
T

Tr

)n
. (2.12)

This is the general expression for the temperature dependent contribution to the

number of additional neutrinos. The temperature Tr cannot be much lower than

TBBN ' 1 MeV, therefore this contribution is vanishing at the time of CMB for-

mation. If we consider Tr around the BBN time, the expression takes the simpler

form

∆Nν '
4
7

43
4

(
T

Tr

)n
' 6.14

(
T

Tr

)n
. (2.13)

We impose the recent bound on ∆Nν from Ref. [27], where the authors consid-

ered an effective number of relativistic species as in Eq. (2.11), with Nν constant

over the different temperature range probed by BBN. Our case is different, since

we have a temperature dependent ∆Nν . As manifestly shown in Eq. (2.13), such

a correction to the number of SM neutrinos increases with the temperature. In or-

der to put the most conservative limits, we evaluate ∆Nν at a time slightly before

neutron freeze-out for temperature T ' 1 MeV. At such a temperature, neutrons

and protons are still in chemical equilibrium in the entire range for the parameters

(Tr, n) under consideration, as explicitly computed in App. A.2. In this regard,

our bounds are very conservative. Ref. [27] found the range 2.3 ≤ Nν ≤ 3.4 at 95%

CL (2σ). The contribution in Eq. (2.13) is always positive, so the BBN bounds

only allow the region in the (Tr, n) where

Tr & (15.4)1/n MeV . (2.14)
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2.4 Dark Matter Freeze-Out

In this section we analyze dark matter freeze-out in the cosmological back-

ground introduced in Sec. 2.2. The underlying assumption here is that DM par-

ticles achieve thermal equilibrium in the early universe. The conditions needed

to satisfy these requirement are given in App. A.1. A DM particle interacting

through a light mediator (i.e. lighter than the TeV scale) and with coupling

strength at least as big as weak gauge interactions thermalizes at temperatures

above the TeV scale. In this regime, DM is produced through freeze-out. We first

present the Boltzmann equation describing the DM number density evolution. All

the results presented in this Section are obtained by numerically solving this equa-

tion. In order to understand the qualitative features of the solutions we found,

the semi-analytical solution presented in App. A.3 is very useful. In particular,

this solution allows us to estimate the freeze-out temperature and understand the

relentless behavior of relics. This regime where DM particles keep annihilating

until T ' Tr is entered for n ≥ 2 (n ≥ 4) if DM annihilations are s-(p-)wave

processes. We present explicit solutions for the number density as a function of

the temperature, and we quantify the enhancement in the cross section we need

with respect to the standard calculation.

Finally, we investigate the relic density dependence on the DM mass. As is

well known, the thermal relic density for WIMPs in a standard cosmology depends

on the DM mass very weakly (logarithmic, see App. A.3). The quantity that sets

the final abundance is the annihilation cross section. We find that this is not

the case anymore for a fast expanding universe, since there is a new scale, the

temperature Tr. The relative hierarchy between the DM mass and Tr determines

whether freeze-out happens before or after the epoch of φ domination. The final

relic density differ enormously in the two cases, as we discuss extensively in this
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Section.

2.4.1 Boltzmann Equation

From now on, we denote χ the DM particle, and we assume it to be a Majorana

fermion. The DM number density is governed by

dnχ
dt

+ 3Hnχ = −〈σvrel〉
(
n2
χ − neq 2

χ

)
. (2.15)

Here, neq
χ and 〈σv〉 are the equilibrium number density distribution and the ther-

mally averaged cross section, respectively. This is the same as the standard

case [8, 9, 10, 11], with one important difference: the Hubble parameter H is

different. Assuming mχ � Tr, the energy density at the freeze-out epoch is dom-

inated by φ and the Hubble parameters in this regime is given in Eq. (2.8).

As usual, it is convenient to write the Eq. (2.15) in terms of the comoving

number density, Yχ = nχ/s, and to use x = mχ/T as the “time variable”

dYχ
dx

= −s 〈σvrel〉
H x

(
1− 1

3
∂ log g∗s
∂ log x

)(
Y 2
χ − Y eq 2

χ

)
. (2.16)

The expression for the comoving equilibrium number density for a Maxwell-

Boltzmann distribution is

Y eq
χ (x) = 45 gχ

4π4g∗s
x2K2(x) , (2.17)

where gχ = 2 for a Majorana fermion and K2(x) is the modified Bessel function.

At late times the comoving Yχ(x) reaches a constant value Yχ(∞), since the actual

number density only changes because of the expansion. The present DM density

is ρχ(T0) = mχ Yχ(∞) s(T0), where T0 is the current temperature of the Cosmic
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Microwave Background (CMB) photons.

We expand the annihilation cross section times the relative velocity in partial

waves

〈σvrel〉 = σs + σp x
−1 +O(x−2) , (2.18)

keeping only the leading s- and p-wave contributions. We present numerical results

for both cases.

2.4.2 An Earlier Freeze-Out

Before looking at the explicit numerical solution, we examine the qualitative

features we expect to find in the solutions. First, and not surprisingly, freeze-

out happens earlier than for the case of a radiation background. This is due

to the Hubble parameter during the phase of φ domination, which for a given

temperature is always larger than the associated value in a radiation background.

A faster Hubble rate makes it harder for the DM to stay in thermal equilibrium,

and freeze-out happens at higher temperatures.

We provide semi-analytical expressions for the freeze-out temperature in Eqs. (A.23)

and (A.33) for the case of radiation and modified cosmology, respectively. Keep-

ing the DM mass and the annihilation cross section fixed, and focusing for the

purpose of this illustration on s-wave processes, the freeze-out temperatures are

related by

T
1/2
f rade

−mχ/Tf rad = T
1/2
f e−mχ/Tf

(
Tf
Tr

)n/2
. (2.19)

Here, Tr and Tf rad are the freeze-out temperature in a generic (Tr, n) and the

radiation background, respectively. For freeze-out happening during the φ dom-

inated epoch, Tf > Tr, the freeze-out temperature is larger than the one for the

case of a radiation background, Tf > Tf rad. Even if the numerical difference be-
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tween the two temperatures is a factor of a few, the consequent modification of

the relic density are significant, since freeze-out happens on the exponential tail

of the Maxwell-Boltzmann distribution.

2.4.3 Relentless Relics

We point out here a very peculiar and previously unrecognized behavior of the

number density evolution once n gets large. In order to understand the physics

underlying this feature, it is useful to start the discussion by reviewing what

happens right after freeze-out for a standard radiation background. DM particles

depart from thermal equilibrium when the interaction rate, Γ ' nχ〈σvrel〉 is of

the order of the Hubble rate, Hrad ' T 2/MPl. Immediately after freeze-out,

DM particles can still annihilate occasionally, just not enough to stay in thermal

equilibrium. The post freeze-out annihilation rate scales as Γ ∝ T 3(T 4) for s-

wave (p-wave) annihilations, due to the dilution of the DM particles from the

expansion of the universe. This is not enough for the annihilation rate to compete

with the Hubble rate, and post freeze-out annihilations do not change the density

significantly. This can be observed in our numerical solutions, and it can also be

understood analytically (see Eq. (A.20)).

We can repeat the same analysis for the set of modified cosmologies considered

here. The argument goes along the same lines, with one important difference: the

Hubble parameter now scales as H ∝ T 2+n/2. Thus there is a critical value

of n above which the post freeze-out annihilation rate scales with a power of

temperature lower than the one for the Hubble rate. For s-wave annihilation, this

happens for n ≥ 2. Interestingly, the case n = 2 corresponds to motivated theories

of quintessence [29, 30]. For p-wave annihilation, the condition for this to be the

case is n ≥ 4.
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What are the consequences of this relative scaling? For s-wave annihilating

DM and n ≥ 2 cosmologies, the annihilation rate red-shifts slower than the Hubble

rate. The effects of post freeze-out annihilations is then substantial: DM particles

keep annihilating, relentlessly trying to get to the equilibrium thermal distribution;

thermal equilibrium, however, is always unaccessible due to the temperature being

low enough for the equilibrium number density to be deeply in the exponential tail.

The older the age of the universe, the lower the temperature, and the harder it is

for DM particles to get to the equilibrium distribution. The process of depletion

goes on until temperatures of the order Tr, when the expansion is driven by the

radiation bath, and the usual scaling applies.

2.4.4 Number Density Evolution

We now show results for the full numerical solutions to the Boltzmann equation

in Fig. 2.1 and 2.2 for the case of s- and p-wave annihilation, respectively. We take

a DM mass mχ = 100 GeV (we discuss the very important dependence on mass

below) and we fix the annihilation cross section in such a way that we reproduce

the observed DM abundance for the case of a standard cosmology (red lines). The

solutions for the other cosmological histories are obtained by fixing Tr = 20 MeV

and n as described in the figure caption.

The comoving number density Y in Fig. 2.1 do not change significantly after

freeze-out for the radiation (red line) and n = 1 (green line) cases. This is ex-

pected and consistent with the qualitative analysis above. However, an important

difference is already clearly visible: freeze-out happens earlier for n = 1, than for

the n = 0 standard case, and as a consequence the asymptotic comoving density

is higher.

The phenomenon of relentless annihilation is visible in Fig. 2.1 already for the

16



��-��

��-��

��-�

��-�

��-�

��-�
�
χ
(

)

� ��� ��� ��� ��� ��� ���

�= �
�= �
�= �
�= �

Figure 2.1: Numerical solution of the Boltzmann equation for mχ =
100 GeV and 〈σvrel〉 = σs. The s-wave cross section is fixed to
σs = 1.7 × 10−9 GeV−2, which reproduces the observed DM density
for a standard cosmology (red line). We set Tr = 20 MeV for all
n. We highlight the relentless annihilation phase with thicker dashed
lines.

n = 2 (thick dashed blue line), as also expected from the discussion above: DM

particles continue to find each other to annihilate much later than freeze-out, since

the Hubble rate and the red-shifting annihilation rate feature the same scaling with

temperature, until the universe becomes radiation dominated and eventually H �

Γ. The number density evolution in this regime can be understood analytically

(see Eqs. (A.27) and (A.29)), and it is closely approximated by the expression

Yχ(x) ' xr
mχMPl σs

[
2
xf

+ log(x/xf )
]−1

. (2.20)
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Here, xf and xr are the freeze-out temperature and Tr expressed in terms of the

dimensionless variable x = mχ/T , respectively. The slow logarithmic decrease of

the number density is the result of the relentless attempt of the DM to go back

to thermal equilibrium. This behavior persists until T ' Tr, after which the DM

comoving number density reaches a constant value.

This post freeze-out annihilation are even more pronounced for n > 2, as we

can see from the orange and the magenta lines in Fig. 2.1. In this regime for n,

the comoving number density is approximated by the following expression

Yχ(x) ' xn/2r

2mχMPl σs

[
x
n/2−2
f + xn/2−1

n− 2

]−1

. (2.21)

The decrease of Yχ is even faster, with a power law instead of the logarithmic

dependence appearing for the marginal case of n = 2. As before, the number

density keeps decreasing with the behavior described above, until radiation takes

over.

The discussion for the p-wave solutions in Fig. 2.2 is analogous: Freeze-out

happens earlier and earlier for higher and higher n, and the resulting number

density is correspondingly larger. The only difference is that the transition to

relentless relics sets in at n = 4, as correctly estimated above.

2.4.5 Enhancement in the Relic Density

One of the central results of the number density evolution analysis is that

freeze-out abundances are in general larger than in the standard case: The red lines

is below all the other ones in Figs. 2.1 and 2.2, for fixed values of the annihilation

cross section. One can turn the argument around, and state that larger cross

sections are therefore needed, with the cosmological setup we consider here, to

reproduce the observed DM density. This is quite remarkable, as large cross
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Figure 2.2: Same as Fig. 2.1 but for p-wave annihilation 〈σvrel〉 = σp x
−1. The

cross section is chosen to reproduce the observed abundance for the standard case,
σp = 7.56× 10−8 GeV−2.

sections translate into larger couplings and therefore larger signals in DM searches,

especially in the context of indirect detection. This thus begs the question: How

large can the annihilation cross section be, consistently with BBN bounds?

The two dimensional parameter space (Tr, n) entirely fixes the cosmological

background in the present setup. At large values of Tr, larger than the DM mass,

the standard freeze-out calculation holds, and there is no enhancement to the

cross section. The lower Tr, the larger the enhancement; However, we cannot take

Tr arbitrarily small, as we have to satisfy the BBN bounds in Eq. (2.14).

The results for s-wave annihilation are shown in Fig. 2.3, where we fix the DM

mass to mχ = 100 GeV and we calculate for each point in the (Tr, n) the cross
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Figure 2.3: Enhancement to the annihilation cross section needed to reproduce
the observed DM density due to a cosmological background with a given Tr and n.
We fixmχ = 100 GeV, and we provide the result in units of the s-wave cross section
σs = 1.7×10−9 GeV−2 relative to the standard (n = 0) radiation-dominated case.
The grey region to the bottom left is excluded by BBN.

section needed to produce the right amount of thermal relic DM, normalized to

σs = 1.7 × 10−9 GeV−2, the value producing the “correct” thermal relic density

for a radiation background. We checked numerically that within better than 20%

accuracy, the contour lines also correspond to the enhancement to the thermal

relic abundance for a fixed value of the pair-annihilation cross section, in Fig. 2.3

σs = 1.7 × 10−9 GeV−2. In the bottom left corner of the figure we shade in grey

the region excluded by BBN.

The figure importantly also indicates the “boost factors” expected in indirect

detection signals, compared to a standard cosmological setup. The key message
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Figure 2.4: As in Fig. 2.3 but for a p-wave annihilation cross section that repro-
duces the observed abundance for the standard case, σp = 7.56× 10−8 GeV−2.

is that for the s-wave case enhancements beyond ∼ 103 are possible.

The analogous analysis for p-wave annihilation is presented in Fig. 2.4. As

a result of the temperature dependence of the cross section, larger enhancement

factors are possible, up to ∼ 106 and above. In the case of p-wave annihilation,

however, indirect signals are suppressed by the DM velocity in the late universe,

thus the enhancement to indirect signals is both smaller than the enhancement

factors to the relic density, and dependent on environment.

As a side note, we point out that the effect of relentless annihilation produces

significantly smaller enhancements than what previously calculated in the literature

(see e.g. [31, 32]). This is presumably traced back to the previous calculations

having assumed a constant value for the comoving number density after a cer-
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Figure 2.5: Contours of fixed thermal relic density on the (mχ, σs) plane, for
given choices of n and Tr, for s-wave annihilation cross section (the dashed red and
blue lines correspond to, from bottom to top, n = 2 and 3, while the dashed orange
line to n = 3) . The top right corner is in conflict with limits from perturbative
unitarity [1].

tain effective freeze-out temperature, thus neglecting the relentless annihilation

potentially affecting the relic density over several decades in temperature.

2.4.6 Dependence on the DM mass

All the results presented so far assumed the fixed DM mass benchmark value

mχ = 100 GeV. For a cold relic in a standard cosmology, the value of the DM mass

has a weak impact on the final abundance, which is controlled by the annihilation

cross section. We conclude this Section by pointing out one more interesting

feature than the framework discussed in this work: the relic density has a strong
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Figure 2.6: As in Fig. 2.5, but for p-wave annihilation cross sections. The inter-
mediate dashed lines, from bottom to top within each shaded region, correspond
to increasing integer values of n.

dependence on the DM mass.

The reason why this is the case is the presence of the critical temperature Tr.

If the freeze-out temperature is below Tr, there is no change with respect to the

standard story. In the opposite case, the precise value of the DM mass is impor-

tant. Freeze-out happens at temperatures Tf ' mχ/10, thus the larger the DM

mass, the longer the DM particle relentlessly reduce its comoving number density

through residual annihilations. Again, this means that compared to previous cal-

culations the larger the ratio of mχ/Tr, the larger the effect and the larger the

suppression of the calculated enhancement to the thermal relic density.

To quantitatively study this effect, we fix a few benchmark cosmologies and

show contours of fixed relic density in the (mχ, σs,p) plane. The results are shown
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in Figs. 2.5 and 2.6 for s-wave and p-wave annihilation cross sections, respectively.

At low values of the DM mass, corresponding to a freeze-out temperature below

Tr, these lines are close to horizontal: This is expected, as in the standard case

the relic density depends only on the cross section. The mild dependence on the

mass comes from two factors: (i) the logarithmic mass dependence of the freeze-

out temperature, and (ii) the different value of g∗ at the freeze-out. However,

for larger DM mass we see that the relic density strongly depends on the mass,

since the larger the DM mass, the longer the phase of relentless annihilation, and

the ensuing suppression of the relic density. In the figure we also indicate, in the

top-right corners, regions in conflict with perturbative unitarity [1]. Comparing

Figs. 2.5 and 2.6 one can also appreciate the steeper dependence on mass in the

p-wave case. This arises because of the steeper dependence of Γ on temperature

in the p-wave case, and is already reflected in the larger enhancements we find,

e.g., in Fig. 2.4 compared to Fig. 2.3.

2.5 Ultra Stiff Fluids

A virtue of the freeze-out analysis performed in the previous Section is its gen-

erality and model independence. Any DM particle thermalized in the cosmological

background of Eq. (2.6) is produced through freeze out as described in Sec. 2.4.

The analysis only assumes our knowledge of the two parameters (Tr, n), without

the need of specifying any further property of the new species φ. In this last part

of this chapter, we provide explicit microscopic realizations for φ, reproducing the

red-shift behavior in Eq. (2.2).

All the examples we consider are theories of a single real scalar field φ mini-
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mally coupled to gravity

S =
∫
d4x
√
−g

(
−1

2g
µν∂µφ∂νφ− V (φ)

)
. (2.22)

For the remaining of this Section, we setMPl = 1. The energy density and pressure

for this fluid read

pφ = 1
2

(
dφ

dt

)2

− V (φ) ,

ρφ = 1
2

(
dφ

dt

)2

+ V (φ) ,
(2.23)

leading to the equation of state

wφ = pφ
ρφ

=
1
2

(
dφ
dt

)2
− V (φ)

1
2

(
dφ
dt

)2
+ V (φ)

. (2.24)

For such an equation of state, the energy density red-shifts as ρφ ∝ a−3(1+wφ),

which allows us to connect

n = 3wφ − 1 , (2.25)

where n is the index defined through the red-shift behavior in Eq. (2.2). For

a positive scalar potential, the allowed values of wφ are in the range (−1,+1).

Equivalently, the range for n is between −4 and +2. The highest n is achieved

during a kination phase, where the energy density of φ is mostly kinetic. In order

to get values larger than n = 2, we need to consider negative scalar potentials. In

what follows, we first describe examples of fluids with n = 2 and then we show

how the n > 2 domain can be accessed.
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2.5.1 Quintessence (n = 2)

Examples of theories with n = 2 are quintessence fluids motivated by the

discover of the accelerated expansion of the universe [29, 30]. The energy density

of this type of fluid red-shifts as ρφ ∝ a−6 in the kination regime, i.e. when the

kinetic energy density dominates over the potential energy . One possible scalar

potential leading to this behavior is the exponential form [34, 35]

V (φ) = exp [−λφ] . (2.26)

The role of quintessence for neutralino dark matter freeze-out was studied in

Refs. [31, 32]. Alternatives to quintessence, still with the same red-shift behavior,

are Chaplygin gas [36] or a perfect fluid described by a polytropic equation of

state [37].

2.5.2 Faster than Quintessence (n > 2)

We provide here example theories where n > 2. We assume the energy density

of the universe to be entirely dominated by φ, with red-shift as in Eq. (2.2). The

scale factor vs time relation can be derived from the Friedmann equation

a(t) = ai

(
t

ti

)2/(n+4)
, (2.27)

where we define ai to be the value of the scale factor at t = ti. The time derivative

of the Hubble parameter reads

dH

dt
= −1

2(ρφ + pφ) = −1
2

(
dφ

dt

)2

. (2.28)
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By comparing this expression with the one resulting from direct calculation,

dH/dt = −2/[(n+ 4)t2], we find the time evolution of the field

φ(t) = φi + 2√
n+ 4

ln
(
t

ti

)
. (2.29)

We go back to Eq. (2.24), and if we assume that wφ = const we can solve for

the scalar potential

V (φ) = −1
2

(
n− 2
n+ 4

)(
dφ

dt

)2

, (2.30)

where we have traded wφ with n by using Eq. (2.25). The time derivative of the

field φ is related to the one of the Hubble parameter, as shown in Eq. (2.28).

We know how the Hubble parameter scales with time in this background with

wφ = const, therefore we can find an expression for the potential as a function of

time. Once this is done, we use Eq. (2.29) to trade the time variable with φ. The

output of this procedure is the scalar potential as a function of the field

V (φ) = Vi e
−
√
n+4φ . (2.31)

The overall constant reads

Vi = − 2(n− 2)
(n+ 4)2 t2i

eφi
√
n+4 , (2.32)

and it is negative for n > 2. It is straightforward to check that the solution in

Eq. (2.29) with the potential above satisfies the equation of motion φ̈ + 3Hφ̇ +

dV (φ)/dφ = 0, as it should. This class of potentials have been used in the context

of ekpyrotic scenario [38]. A dynamical wφ > 1 can be obtained also with periodic

potentials [39, 40].
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2.5.3 No superluminal propagation

We conclude this Section with one important comment. The regime wφ > 1

implies pφ > ρφ, and there may be concerns about superluminal propagation.

However, the speed of sound for a canonical scalar field with action as in Eq. (2.22)

is always c2
s = 1 [41, 42]. Consequently, causality is not violated.

2.6 Discussion and Conclusions

We analyzed DM freeze-out for non-standard cosmological histories which in-

clude a faster-than-usual expansion at early times, driven by a new cosmological

species φ. We gave a full description of the cosmological backgrounds in Sec. 2.2.

We then parameterized the possible cosmological histories by the values of n and

Tr, i.e., respectively, the index appearing in Eq. (2.2) and the temperature when

the energy densities of φ and radiation are equal. Light element abundances

exclude part of this two-dimensional parameter space, and this BBN bound is

summarized by Eq. (2.14) of Sec. 2.3.

In calculating the DM density evolution we identified two distinct possibilities:

For n not too large, the behavior is quite similar to the one for standard freeze-out,

where shortly after chemical decoupling the comoving number density approaches

its asymptotic value. For large n, however, we found a new domain where post

freeze-out annihilation substantially dilute the DM density. This is explained by

the different scaling of the Hubble parameter with temperature, H ∝ T 2+n/2; we

called this possibility relentless dark matter. The critical values of n dividing the

two regimes are n = 2 and n = 4 for s-wave and p-wave annihilation, respectively.

A central result of our analysis is that DM particles which freeze out in the

cosmological era dominated by the new species φ must have cross sections way
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larger than the thermal value in Eq. (2.1) if DM is to be a thermal relic. We plan

to study in the future the implications for dark matter searches of such a large

annihilation cross section, such as CMB spectral distortion [43] and bounds from

gamma rays [44].

The underlying assumption of our study of DM genesis was an early time

thermalization. As discussed in App. A.1, this is not necessarily the case, and

the faster expansion makes things even harder. If our assumption is not satisfied,

DM production would be non-thermal. Assuming production from a decay and/or

scattering of particles in the thermal bath, the comoving density produced at a

given temperature T approximately reads

Yχ(T ) ' Γ(T )H(T )−1 ' Γ(T )MPl T
−2−n/2 . (2.33)

If the rate is mediated by a higher dimensional operator of mass dimension d, it

would scale as Γ(T ) ∝ T 2d−7. Thus the comoving density at a given temperature

scales as Yχ(T ) ∝ T 2d−n/2−9. We see that the relative size of d and n establishes

where most of DM particles are produced. If the dimension is not too large,

d < n/4 + 4.5, the production is dominated at lower temperature, of the size of

the decaying/scattering bath particles. This type of “IR production” is known as

freeze-in [45]. In the opposite case, d > n/4 + 4.5, the production is dominated

by scattering at high temperatures, similarly to the UV production of axinos or

gravitinos [46, 47]. This latter case is especially interesting, because it requires

the knowledge of how the universe entered the φ domination phase after inflation.

We will study both possibilities in a forthcoming analysis.
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Chapter 3

Freeze-in in Modified

Cosmologies

3.1 Introduction

The subject of this chapter is DM freeze-in, another motivated mechanism

for DM genesis where the relic density, in a standard cosmological setting can be

calculated directly from the DM particle physics properties [45, 51]. The same

caveat as above applies to this case: a modified, non-standard thermal history will

affect the predicted final density of DM from freeze-in. Our goal here is to perform

a general analysis of DM freeze-in in a fast expanding universe, similarly to what

we performed for freeze-out in Ref. [49], and to draw the critical phenomenological

consequences of such scenario. DM particles produced through freeze-in are very

weakly coupled with the primordial plasma and never attain thermal equilibrium

in the early universe. Although very weak, the interactions with bath particles

Bi are enough to create DM particles χ through reactions Bi → χ. After χ is

produced, it simply red-shifts away and it is still present today contributing to
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the observed DM energy density.

The set of cosmological histories considered in this work is phenomenologi-

cally described by the two-dimensional parameter space (Tr, n). Here, Tr is the

temperature where the energy density of φ equals the one of the radiation bath,

whereas n > 0 is the index describing how the fluid red-shifts through the rela-

tion ρφ ∝ a−(4+n). These two parameters cannot take arbitrary values, since they

are bound by BBN constraints [49] which constrains the Hubble expansion rate,

and hence the energy density of the universe at temperatures around when BBN

operates to be close to pure radiation-domination.

In the spirit of a very general analysis, we consider the following freeze-in

scenarios to produce DM particles χ through reactions involving bath particles

Bi:

1. Decay B1 → B2χ: a bath particle B1, heavier than χ, decays to a final

state involving one DM particle and other bath particles (which we indicate

generically with the symbol B2). While we consider a two-body decay for

illustration, our results are valid for general n-body decays. The discussion

for decay channels involving more than one DM particle (e.g. B1 → χχ) in

the final state is analogous.

2. Single Production B1B2 → B3χ: Collisions between two bath particles

lead to one DM particle in the final state. This reaction happens, for exam-

ple, when one initial state bath particle shares the same discrete quantum

number with χ, e.g. when both B1 and χ are odd under a Z2 symmetry.

3. Pair Production B1B2 → χχ: Collisions between two bath particles lead

to two DM particles in the final state. We separate this case from the one

above since it happens in different theories. As an example, χ can be the only

particle odd under a Z2 symmetry, and it thus needs to be pair produced.
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g/gstandard early MD era fast-expanding universe
DM freeze-out smaller larger
DM freeze-in larger larger

Table 3.1: Comparison between couplings needed to produce the observed DM
abundance in a standard versus modified cosmological setting, for the two cases an
early MD era and of a fast expanding universe. We consider both DM freeze-out
and freeze-in, and for each case we identify whether the required coupling to the
plasma is smaller or larger than the standard case.

A consistent picture emerges from our analysis of different cosmological histo-

ries and of various freeze-in scenarios: the observed DM abundance is reproduced

for larger couplings between DM and plasma particles compared to standard cos-

mological histories. This conclusion was also reached for freeze-in in an early MD

epoch [22, 26, 52]. A comparison among different cases is provided in Tab. 3.1.

The general, key conclusion of our study is that DM genesis in a fast expanding

universe, be it via freeze-out or via freeze-in, always requires larger couplings, with

the inescapable prediction of enhanced signals for DM detection.

We note that freeze-in through pair production of DM particles (case 3 above)

but limited to the specific case n = 2 (kination domination) was studied in

Refs. [53, 54]. The goal of this chapter is to present, instead, a general analy-

sis for different cosmological histories and freeze-in scenarios. For the particular

case of n = 2 our results are consistent with those presented in Refs. [53, 54].

The reminder of this study has the following outline: After reviewing the

Boltzmann equation for freeze-in with the modified cosmological background in

Sec. 3.2, we consider freeze-in production of DM in the early universe. As explicitly

stated, we only focus on IR production (i.e. production dominated by processes

occurring at low temperatures, close to the bath particle masses). While this is

always the case for decays, we identify under which circumstances IR production

occurs from scattering as well. By focusing on IR production, we avoid issues
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related to the uncertain history of the universe before the time of φ-domination.

We then divide the following discussion into two parts: we deal with decay in

Sec. 3.3 and with scattering in Sec. 3.4. Wherever relevant, we highlight the

most prominent possible experimental signals associated with freeze-in within a

non-standard cosmological history with faster-than-usual expansion rates at early

times. We summarize our results in Sec. 3.5.

3.2 Boltzmann Equation for Freeze-In

The number density of DM particles χ evolves in an isotropic and homogeneous

early universe according to the Boltzmann equation

dnχ
dt

+ 3Hnχ = Cα . (3.1)

The second term on the left-hand side accounts for the Hubble expansion, whereas

number-changing reactions which, here, produce DM particles are accounted for

by the collision operator on right-hand side. This collision operator Cα depends on

the specific reaction under consideration (e.g. α = B1 → B2χ). It also generically

depends on time, or, equivalently, on the temperature of the radiation bath.

The boundary condition we assume for the Boltzmann equation (3.1) is a

vanishing DM number density at very early times. In other words, we are assuming

here that physics at high scale (e.g. inflation) produces a negligible number of χ

particles, which are then exclusively produced in the later universe by the freeze-in

reactions listed in the Introduction.

It is convenient to re-cast the Boltzmann equation factoring out the effect of

expansion. To this end, as customary, we define the comoving number density Yχ =

nχ/s, where s is the entropy density. Using the definition of the comoving density,
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together with the assumed conservation of entropy, sa3 = const, we rewrite the

Boltzmann equation as

dYχ
d log T = −

(
1 + 1

3
∂ log g∗s
∂ log T

)
Cα
H s

. (3.2)

Finally, we introduce the dimensionless “time variable” x = mB/T , where mB is

typically the mass scale of some bath particles that we will specify for each case.

Upon using the general relation df/d log T = −df/d log x, we find the final form

of the Boltzmann equation

dYχ
d log x =

(
1− 1

3
∂ log g∗s
∂ log x

)
Cα(x)

H(x) s(x) , (3.3)

where we make explicit the x-dependence (i.e. time, or inverse temperature) of

the Hubble parameter H, the entropy density s and the collision operator Cα.

In the next Sections, we specify each time our choice for x and what reaction

α we are considering. Before discussing the freeze-in process, we conclude this

Section with a brief review of the cosmological background and a comparison

between IR and UV production.

3.2.1 The cosmological background

We are interested in DM production for cosmological histories where the uni-

verse is dominated by a new species φ, whose red-shift behavior is ρφ ∝ a−(4+n).

Since entropy is conserved, during the time of φ-domination the energy density

scales as ρφ ∝ T−(4+n), where T is the temperature of the radiation bath. The

Friedmann equation allows us to identify the relation H ∝ T−(2+n/2).

Motivated theories leading to this faster Hubble expansion can be found in

models for dark energy and/or inflation (see e.g. Refs. [55, 34, 35, 29, 30, 39,
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36, 38, 40, 37, 56, 50]. Famously, quintessence theories explaining the current

acceleration feature an early phase where the universe is dominated by the kinetic

energy of a new scalar field (kination regime), which is equivalent to the case

n = 2 in our parameterization. An even faster expansion can be achieved in the

context of ekpyrotic scenarios, since larger values n > 2 are needed to smooth

the universe out in the contracting phase. An explicit example of a microscopic

theory leading to the n > 2 expansion was provided in Ref. [49].

Regardless of the microscopic theory, the Hubble parameter at a fixed temper-

ature is always larger than its associated value for a standard history at the same

temperature when the universe is dominated by φ. This is why the cosmological

histories considered in this work are the ones for a fast expanding universe. A

complete description of these histories and how BBN bounds the parameter space

can be found in Ref. [49]. Here, we summarize the key results.

When the universe is dominated by φ, the Hubble parameter at a fixed tem-

perature is always larger than its associated value for a standard history at the

same temperature. This is why the cosmological histories considered in this work

are the ones for a fast expanding universe. A complete description of these histo-

ries and how BBN bounds the parameter space can be found in Ref. [49]. Here,

we summarize the key results.

The cosmological background is identified by two parameters: (Tr, n). The

temperature Tr is set by some boundary condition, and we choose it to be the

temperature where the energy density of φ and radiation are the same. The index

n described the red-shift behavior. The energy density of φ as a function of the

radiation bath temperature is given by

ρφ(T ) = ρφ(Tr)
(
g∗s(T )
g∗s(Tr)

)(4+n)/3 (
T

Tr

)(4+n)
. (3.4)
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The total energy density at any temperature reads

ρ(T ) = ρrad(T ) + ρφ(T ) =

ρrad(T )
1 + g∗(Tr)

g∗(T )

(
g∗s(T )
g∗s(Tr)

)(4+n)/3 (
T

Tr

)n ,
(3.5)

where we factor out the energy density of the radiation bath. The Hubble pa-

rameter as a function of the temperature can be computed using Friedmann’s

equation

H =
√
ρ√

3MPl
, (3.6)

where the reduced Planck mass is MPl = (8πG)−1/2 = 2.4 × 1018 GeV. This is

the expression for the Hubble parameter, with the energy density ρ as given in

Eq. (3.5). The Hubble parameter H(T ) enters the Boltzmann equation (3.3),

which we use to compute the DM relic density. All results in this chapter are

obtained via a numerical calculation with this complete expression for the Hubble

parameter. However, in order to perform simple analytical estimate, it is useful to

give an approximate expression for the Hubble rate at temperatures larger than

Tr

H(T ) ' π g
1/2
∗

3
√

10
T 2

MPl

(
T

Tr

)n/2
, (T � Tr) , (3.7)

where we take g∗s(T ) = g∗(T ) = g∗ = const. The full matter content of the

Standard Model gives g∗ = g∗SM = 106.75. Finally, as found in Ref. [49], BBN

bounds the cosmological parameters to be

Tr & (15.4)1/n MeV . (3.8)

The cosmological history introduce here and parameterized by (Tr, n) cannot

be extrapolated arbitrarily back in time. As we consider a younger universe, or
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equivalently as we go to higher temperature, the energy density of φ gets larger.

We identify the temperature when we reach the value ρφ ∼M4
Pl, and we set this as

a limit above which we cannot use our framework anymore. This in turns imply a

constraint on TRH, the reheating temperature after inflation. We find the bound

TRH .MPl (Tr/MPl)n/(n+4) . (3.9)

In Fig. 3.1, we visualize this upper bound on the reheating temperature in the

(Tr, n) plane. We consider the region of this plane correspondent to the set of

cosmological histories analyzed in the following study, and we also shade away

the region excluded by the BBN bound in Eq. (3.8). In all the parameter space of

interest, this bound is several orders of magnitude above the masses of the particles

considered in this work. As explained in the following sub-section, we will only

consider IR production, namely freeze-in processes mostly active at temperatures

around the typical masses of the particles involved in the reactions. Thus we can

safely assume that TRH is well above the masses under consideration, but still well

below the upper bound given in Fig. 3.1.

3.2.2 IR vs. UV production

A remarkable feature of freeze-in is that DM production, with a standard

cosmological history, is always IR dominated [45]. In this section we show that

this is always the case for freeze-in from decays, even in the case of a modified

cosmological history with a fast-expanding universe at early times. If DM particles

are produced via scattering processes, instead, the production with a standard

cosmological history is IR dominated as long as the interactions between DM and

the bath particles are renormalizable. We conclude this Section with a comparison

between IR and UV production for the cosmological histories considered in this
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Figure 3.1: Upper bound on the reheat temperature after inflation TRH in the
(Tr, n) plane. The gray region is excluded by BBN.

work.

Our assumption through this work is that at very high temperatures the abun-

dance of χ is negligible. As the temperature drops down, DM particles are created

via processes involving the plasma particles. At a given temperature T , much

higher than the DM and the bath particles masses, the comoving abundance of χ

particles approximately reads

Yχ(T ) ' γ(T )H(T )−1 . (3.10)

Here, γ(T ) is the (temperature dependent) rate for the process under considera-

tion, whereas the inverse Hubble parameter is about the age of the universe. This

simple relation allows to establish whether the production is IR or UV dominated.
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We start from the case of decays, B1 → B2χ, where the rate scales as γB1→B2χ(T ) '

ΓB1→B2χmB1/T . The partial width computed in the rest frame of B1 is corrected

by the Lorentz time dilatation factor. Upon using the approximate Hubble pa-

rameter in Eq. (3.8), and neglecting numerical factors, we find for decays

Yχ(T )|B1→B2χ
' ΓB1→B2χ

mB1MPl T
n/2
r

T 3+n/2 . (3.11)

Thus freeze-in from decays is always dominated at low (IR) temperatures.

For the case of scattering, the temperature dependence of the rate stems from

the type of interaction under consideration. If we take an operator of mass di-

mension d as responsible for the scattering process, the rate scales γB1→B2χ(T ) ∝

T 2d−7/M2d−8
∗ , where M∗ is the mass scale appearing in the operator. The comov-

ing density scales with the temperature as

Yχ(T )|B1B2→B3χ
∝ T 2d−9−n/2

M2d−8
∗

MPl

T
n/2
r

. (3.12)

The scaling for the case B1B2 → χχ is identical. Thus for freeze-in via scattering

the production is IR dominated only for operators whose mass dimension satisfies

d < 4.5 + n

4 . (3.13)

The case n = 0 corresponds to a standard history, and for this case freeze-in is IR

dominated only for renormalizable interactions, as correctly identified in Ref. [45].

We always consider IR production in this work. And in doing so we avoid the

complication of specifying how the cosmological phase of φ domination arises at

very high temperatures. All we assume here is that at temperatures above the

plasma particle masses φ domination sets in, and DM particles are produced at
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around the mass scale of the bath particles. As discussed above, this is automatic

for decays, whereas for scattering IR production only applies for interactions satis-

fying Eq. (3.13). The comoving number density at any “time” x can be computed

from Eq. (3.14) by solving a numerical integral

Yχ(x) =
∫ x

0

dx′

x′

(
1− 1

3
∂ log g∗s
∂ log x′

)
Cα(x′)

H(x′) s(x′) . (3.14)

Here, the lower integration extreme (x′ = 0) is justified by IR production. The

final DM density is given by taking x→∞ in the above equation.

3.3 Freeze-In from Decays

We start with the case where DM particles are produced through the decay

process

B1 → B2χ . (3.15)

We provide a complete derivation of the collision operator for this process in

Eq. (B.7) of App B.1. Here, we only quote the final result,

CB1→B2χ = neq
B1 ΓB1→B2χ

K1[mB1/T ]
K2[mB1/T ] . (3.16)

For the case of decays, it is convenient to choose x = mB1/T . Furthermore,

we take the equilibrium distribution from Eq. (B.3), and we rewrite the collision

operator for decays as a function of the variable x

CB1→B2χ =
gB1 m

3
B1

2π2
K1[x]
x

ΓB1→B2χ . (3.17)

The comoving density at any temperature can be computed by applying the
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general result in Eq. (3.14). After plugging the explicit expression for the entropy

density, the freeze-in comoving density reads

Yχ(x) = gB1

45
4π4 ΓB1→B2χ×∫ x

0
dx′

(
1− 1

3
∂ log g∗s
∂ log x′

)
K1[x′]x′

g∗s(x′)H(x′) .
(3.18)

This is our master equation to compute freeze-in production via decays. The only

assumption so far is that entropy is conserved, thus this equation is also valid for

the case of a standard thermal history. The details of the thermal history under

consideration enter through the Hubble parameter H(x′) in the denominator of

the integrand.

3.3.1 Number Density Evolution

We parameterize the partial decay width with the expression

ΓB1→B2χ = λ2
d

8πmB1 . (3.19)

Here, λd � 1 is a very small coupling mediating the decay process, whereas the

factor of 8π in the denominator accounts for the phase space of the two-body final

state.

The freeze-in number density of χ particles is determined by Eq. (3.18) once

we specify the mass of the decaying particle and the coupling λd. The asymptotic

value for the number density is found by taking the x → ∞ limit, whereas the

energy density is obtained by just multiplying the previous result by the mass of

χ. As an illustrative example, we fix (mB1 ,mχ) = (1000, 10) GeV, and we also

fix gB1 = 2. The observed DM abundance for a standard cosmological history

is achieved if we choose λrad
d = 1.22 × 10−11. In Fig. 3.2 we keep these particle

41



�� = �� ���

��-��

��-��

��-��

��-��

��-��

��-��

��-��

��-��

��-��
�
χ
(

)

��-� ��-� � ��� ��� ���

�= �
�= �
�= �
�= �

Figure 3.2: Numerical solutions for the comoving number density Yχ for the case
of freeze-in from decays. We choose gB1 = 2, mχ = 10 GeV, mB1 = 1 TeV, and
λd = λrad

d = 1.22× 10−11. We always set Tr = 20 MeV.

physics parameters constant, and we show numerical solutions for different mod-

ified cosmological histories. We always take Tr = 20 MeV, consistently with BBN

bounds, and we show solutions for different values of n.

Fig. 3.2 illustrates well our findings: the asymptotic comoving density con-

sistently decreases as we increase the value of the index n. In a fast expanding

universe, the freeze-in production from bath particle decays is less effective than in

the case of a standard cosmological history (red line). As a result, larger couplings

are required to reproduce the observed DM density. Moreover, for each given tem-

perature the comoving density is always lower as we consider larger values of n.

Correspondingly, the same freeze-in yield is achieved at lower temperatures.
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The results in Fig. 3.2 are readily explained by an approximate solution to the

Boltzmann equation. (We remind the Reader that what shown in the plot was

obtained by numerically solving the integral in Eq. (3.18)). It is helpful to recall

the asymptotic behavior for the Bessel function appearing in the integrand

K1[x′] '


1
x′

x′ � 1√
π

2x′ e
−x′ x′ � 1

(3.20)

The physics behind the suppression at large x′, namely at temperature much lower

than the decaying particle mass, is clear: decaying particles are exponentially

rare at temperatures below their mass, thus freeze-in production in this range of

temperatures is negligible. As a result, in Fig. 3.2 the comoving yields are just

horizontal lines at x′ � 1: the integral in Eq. (3.18) is saturated around x′ ' 1.

For all cases in Fig. 3.2 we also have Tr � mB1 , thus freeze-in production

happens entirely during the phase of φ-domination. If we additionally neglect the

temperature variation for the number of relativistic degrees of freedom, namely

we set g∗s(x) = g∗(x) = g∗, we can rewrite Eq. (3.18) as follows

Yχ(x) ' gB1

g
3/2
∗

135
√

10
4π5

ΓB1→B2χMPl

m2
B1x

n/2
r

×

∫ x

0
dx′K1[x′]x′ (3+n/2) ,

(3.21)

where we introduce xr = mB1/Tr. The asymptotic value for the comoving density

can be computed analytically. We write it as follows:

Y ∞χ = Y ∞χ
∣∣∣
rad
×Fdecay(Tr, n) , (3.22)

where we calculate the suppression factor Fdecay with respect to the result in a
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pure radiation dominated early universe [45]

Y ∞χ
∣∣∣
rad

= gB1

g
3/2
∗

405
√

10
8π4

ΓB1→B2χMPl

m2
B1

, (3.23)

and we define the function accounting for the correction

Fdecay(Tr, n) ≡ 8
3π

( 2
xr

)n/2
Γ
[6 + n

4

]
Γ
[10 + n

4

]
. (3.24)

Here, Γ [x] is the Euler gamma function. This result is valid only for n > 0.

Notice that we do not recover the radiation case result for n = 0: this is consistent

with the expression for the energy density in Eq. (3.5) where setting n = 0 does

not get rid of φ, but, rather, it adds a new species that red-shifts like radiation.

From the explicit expression for F(n) we immediately see that the main source

for the difference among the horizontal lines location in Fig. 3.2 is the factor xn/2r

in the denominator, since for the case we consider we have xr = 5× 104.

The slope of the numerical solutions at x . 1 can also be derived analytically

by taking the appropriate limit for the Bessel function (see Eq. (3.20)). We con-

sider Eq. (3.21) in the x� 1 regime, where the integral is straightforward and we

find

Yχ(x) ∝ x(3+n/2) (x� 1) . (3.25)

The freeze-in solutions are steeper for larger n. The predicted asymptotic behavior

is indeed what we find with our full numerical treatment in Fig. 3.3, where we

take the same mass values for B1 and X but this time we choose the coupling

λd to reproduce the observed DM density. The steepness of the lines with larger

n allows freeze-in process to start later and to be dominated at slightly lower

temperatures.

44



�� = �� ���

��-��

��-��

��-��

��-��

��-��

��-��

��-��

��-��
�
χ
(

)

��-� ��-� � ��� ���

� = ��� × ��-��

�= � ��= ��� × ��-��

�= � ��= ��� × ��-�

�= � ��= ��� × ��-�

�= � ��= ��� × ��-�

Figure 3.3: Numerical solution for the comoving number density Yχ with
mχ = 10 GeV, mB1 = 1 TeV. Now λd is changed in order to repro-
duce the observed abundance (λd1 = 2.0 × 10−10, λd2 = 2.6 × 10−9,
λd3 = 3.3 × 10−8, λd4 = 4.0 × 10−7). We set Tr = 20 MeV for
all n.

3.3.2 Relic Density Suppression

Within the modified cosmological setup we consider in this work, DM is always

under-produced with respect to the case of a standard history. We quantify by

how much the relic density is suppressed in Fig. 3.4, where we keep the particle

physics parameters fixed to the same values we used in the previous section. We

calculate the DM relic density for each point in the (Tr, n) plane, and we take the

ratio between the observed DM relic density in the radiation case and the relic

density in our modified cosmological setup. In other words, we show iso-countours

45



Figure 3.4: Contour plots of the reduction in the relic density in the case of
Freeze-in by decay.

for the function

rdecay(Tr, n) ≡ Ωχh
2|rad

Ωχh2 . (3.26)

For Tr as large as mB1 , the effect of the fast expanding universe phase is less

important and we are back to a “standard” freeze-in scenario. For lower values

of Tr, but still consistent with the BBN bound in Eq. (3.8), the factor can be as

large as 1010. For these low values of Tr we can approximate the result by using

the semi-analytical solution found above

rdecay(Tr, n) ' Fdecay(Tr, n)−1 (Tr � mB1) . (3.27)

One could turn the argument around, and state that stronger interactions are
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needed to reproduce the observed DM density. The enhancement of the dimen-

sionless coupling λd defined in Eq. (3.19) is easily obtained from Fig. 3.4, since the

final relic density is always proportional to the decay width. We find the relation

λd(Tr, n) = rdecay(Tr, n)1/2 λrad
d , (3.28)

with λrad
d the coupling for the case of a standard history. This enhancement to the

couplings required to produce the right DM density today can thus be as large as

105 with modified fast-expanding thermal histories.

3.3.3 Displaced Events at Colliders

We conclude this Section by commenting on the consequences of the coupling

constant enhancement required for successful freeze-in DM production in modified

cosmological settings. Once we fix the mass of the particles, the requirement of

reproducing the observed relic density fixes the decay width for each point in

the (Tr, n) plane. The inverse decay width gives the scale for the decay length

τB1 = Γ−1
B1 if B1 particles are produced at colliders. As we will see shortly, a typical

prediction in the (Tr, n) plane is the observation of displaced B1 decay vertices

at particle colliders. This is opposed to the case of a standard cosmology, where

the decay width is too large and for collider purposes B1 is a stable particle [45].

Displaced events at collider are also typical is DM is produced via freeze-in during

an early matter dominated era [23].

A convenient variable to express the observed DM density is the comoving

energy density

ξobs
χ = mχnχ

s0
= mχYχ = 0.44 eV , (3.29)

with s0 the current entropy density. We can find an approximate expression for
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the expected decay length by taking the solution in Eq. (3.22) and compare it

with the value above

τB1 ' 3.4× 107F(Tr, n)
(

mχ

10 GeV

)(1 TeV
mB1

)2

cm , (3.30)

where we also fixed g∗ = 106.75 (accounting for the full SM degrees of freedom).

The scale 107 cm, way above the size of any detector, is typical for freeze-in during

a radiation dominated era. However, as observed above, for the cosmologies we

consider in this work we typically have F(Tr, n)� 1, thus we can potentially get

back to the detector size. We actually know how much we can reduce this decay

length, since the inverse of F(Tr, n) is what is shown in Fig. 3.4. This suppression

can be as large as 1010 and the decay length can get as small as 10−3 cm.

The parameter space for displaced decays is explored in Figs. 3.5 and 3.6.

We start from Fig. 3.5, where we analyze the behavior of τB1 as we change the

particle physics properties. The cosmological parameters (Tr, n) are fixed for each

panel, and we show the contours for τB1 on the (mχ,mB1) plane. The blue region

corresponds to 102 cm ≤ τB1 ≤ 104 cm, whereas the dark blue region corresponds

to 10−2 cm ≤ τB1 ≤ 102 cm. There are benchmarks for displaced signatures at

colliders. The gray region in the bottom right corner is excluded by kinematics.

We observe that isocontours follow the lines where mχ ∝ m
2+n/2
B1 , consistently

with the approximate solution given in Eq. (3.30).1 Moreover, we see that the

decay length is reduced by a factor of ∼ (Tr/mB1)n/2 with respect to the radiation

case. For example, if we take mχ = 10 GeV and mB1 = 3 TeV, the expected decay

length for radiation case τB1 ∼ 3× 106cm. In our modified cosmological histories,

the decay length expands into a range where its values vary from 10−2 cm to
1It is important to remember that there is a power of mB1 in F(Tr, n) through xr, since for

each panel this time Tr is the fixed quantity, see the definition in Eq. (3.24).
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104 cm. This range is accessible to present or future colliders.
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Figure 3.5: Contours of the B1 decay length (in cm) on the (mχ,mB1) plane
corresponding to coupling values which produce the observed DM abundance, for
different values of n and Tr. The blue region corresponds to 102cm ≤ τB1 ≤ 104cm
and the dark blue region corresponds to 10−2cm≤ τB1 ≤ 102cm. The first (second)
row corresponds to Tr = 1 GeV (Tr = 100 MeV) and the first (second, third and
fourth) column corresponds to n = 1 (n = 2, 3 and 4).

In Fig. 3.6 we study the decay length τB1 as we change the cosmological

parameters, offering a complementary view of our results. The value of mB1 and

mχ are fixed now for each panel, and we show iso-contours for τB1 in the (n, Tr)

plane. The bottom left corner grey area is the region excluded by BBN.

3.4 Freeze-In from Scattering

We now focus on models where DM is produced out of equilibrium via 2→ 2

scattering processes. As already explained in the Introduction, we divide the

discussion into two classes of models, according to the number of DM particles

produced for each reaction. We study the DM number density evolution for both

scenarios, and we then discuss the implications for experimental searches.
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Figure 3.6: Contours of the B1 decay length (in cm) on the (Tr, n) plane that
reproduces the observed DM abundance for different values of mB1 and mχ. The
blue region corresponds to 102cm ≤ τB1 ≤ 104cm and the dark blue region corre-
sponds to 10−2cm ≤ τB ≤ 102cm. We fix mB1 = 3 TeV and mB1 = 300 GeV for
the first and second row respectively and change mχ accordingly.

3.4.1 DM Single Production

We start our analysis from models where DM particles are produced in the

early universe via bath particle scattering of the form

B1B2 → B3χ . (3.31)

This is the leading production mechanism for several DM models. For example,

the supersymmetric partner to the axion, the axino, in supersymmetric Peccei-

Quinn theories, is a motivated DM candidate [57, 58, 59, 60, 61, 62] produced
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via scattering as in Eq. (3.31). The bath particles producing the axino depend

on the specific implementation of the PQ symmetry. For KSVZ theories [63, 64],

the axino is produced via scattering of gluons and gluinos, whereas for DFSZ

theories [65, 66] the processes can also be initiated by Higgs bosons and higgsinos.

The general collision operator for this class of models is derived in App B.1,

where we find the two equivalent expressions in Eqs. (B.27) and (B.28). In our

numerical analysis, we choose each time the most convenient one according to the

mass spectrum of the theory (see the Appendix for details).

We observe that the process in Eq. (3.31) is not the only channel for DM

production. The two reactions obtained by taking a permutation of the bath

particles are allowed by crossing symmetry, and we must account for them as

well. The way crossing symmetry is implemented depends on the specific model.

Here, we study benchmark models where the matrix element is left unchanged

under crossing symmetry. Moreover, we assume that the matrix element for this

process is independent on the kinematics. We parameterize the squared matrix

elements as follows 2

λ2
Bχ = |MB1B2→B3χ|

2 =

|MB2B3→B1χ|
2 = |MB1B3→B2χ|

2 .
(3.32)

For models satisfying these assumptions, the collision operator takes the simple

form in Eq. (B.42), which we report here in the final form

CBiBj→Bkχ =
λ2
Bχ T

512π5

∫ ∞
smin

single

ds

s3/2 K1[
√
s/T ]×

λ1/2(s,mBi ,mBj)λ1/2(s,mBk ,mχ) ,
(3.33)

2Notice that this happens exactly, for example, when the particles involved in the reaction
are scalar fields and the interaction is of the type L = λBχB1B2B3χ.
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where the function λ(x, y, z) is defined in Eq. (B.14) and the lower integration

limit is set by the kinematical threshold for the reaction

smin
single = max

{
(mBi +mBj)2, (mBk +mχ)2

}
. (3.34)

We analyze the number density evolution for the class of models introduced

above. We fix the masses to be (mB3 ,mχ) = (1000, 10) GeV, whereas bath parti-

cles B1 and B2 have negligible masses. As an example, this is the case where χ

is the axino, B3 is the gluino and B1,2 are gluons. For this choice of the parame-

ters, the observed DM abundance is reproduced for the standard cosmology if we

choose λradBχ = 1.5× 1010.

Numerical results for the number density evolution are shown in Fig. 3.7, where

we set Tr = 20 MeV and we consider a few different values of n as indicated in the

caption. We plot the solution as a function of the “time variable” x = mB3/T . The

behavior is similar to the one already seen for freeze-in via decays: the asymptotic

comoving density decreases as we increase the value of the index n. The net

effect is that DM is underproduced, which in turn requires larger cross sections

to reproduce the observed DM abundance. The asymptotic number density is

reached for x ' 4, or equivalently for temperatures T ' mB3/4. This is not

surprising, since B3 is the heaviest particle involved in the reaction. In order to

produce a DM particle, we either need a B3 particle in the initial state or enough

kinetic energy to produce B3 in the final state. At the temperature drops below

mB3 , these processes become exponentially rare.

As in the decays of freeze-in via decays, the behavior of the numerical solutions

can be reproduced analytically. In order to do so, we only keep the finite mass

of B3. This is well justified for the spectrum under consideration: mB3 = 100mχ,

whereas B1 and B2 are massless. Once we make this approximation, the collision
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Figure 3.7: Numerical solutions for the comoving number density Yχ as a func-
tion of x = mB3/T . We choosemB3 = 1 TeV,mχ = 10 GeV and λBχ = 1.5×10−10.
We consider different values for n, whereas we always set Tr = 20 MeV.

operator in Eq. (3.33) simply reads

CBiBj→Bkχ =
λ2
Bχ T

512π5

∫ ∞
m2
B3

ds
s−m2

B3

s1/2 K1[
√
s/T ] =

λ2
Bχm

4
B3

128π5
K1[x]
x3 ,

(3.35)

where we remind the Reader that x = mB3/T . This result is valid for any per-

mutation of the bath particles, thus the total collision operator is obtained by

multiplying the above result by a factor of three.

The freeze-in yield is obtained from the general result in Eq. (3.14). Upon

neglecting as usual the temperature variation of g∗, we find the approximate so-

53



lution

Yχ(x) '
λ2
Bχ

g
3/2
∗

405
√

10
256π8

MPl

mB3x
n/2
r

∫ x

0
dx′K1[x′]x′ (1+n/2) , (3.36)

where, in this case, xr ≈ mB3/Tr. Considering early times, x� 1, we can Taylor-

expand the Bessel function and calculate the slope of the lines in Fig. 3.7

Yχ(x) ∝ x(1+n/2) (x� 1) . (3.37)

This scaling is different from the result we found for decays in Eq. (3.25). Con-

sistently, the slopes of the curves in Fig. 3.2 and Fig. 3.7 are different.

The asymptotic value for the yield can be computed by evaluating the ap-

proximate solution in Eq. (3.36) for x → ∞. As done before, it is convenient to

normalize our solution with respect to the result in a radiation-dominated “stan-

dard” early universe

Y ∞χ
∣∣∣
rad

=
λ2
B3χ

g
3/2
∗

405
√

10
512π7

MPl

mB3

. (3.38)

We express the asymptotic value as it follows

Y ∞χ = Y ∞χ
∣∣∣
rad
×FBχscatt(Tr, n) , (3.39)

where we define the function

FBχscatt ≡
2
π

( 2
xr

)n/2
Γ
[2 + n

4

]
Γ
[6 + n

4

]
. (3.40)

In Fig. 3.8, we use the same mass and Tr values, but we choose this time λB3χ

to reproduce the observed DM abundance for each n. The enhancement in the

matrix element can be as large as ∼ 105. Such enhancements for the couplings

translate into a quadratically larger effect in the cross sections for potential DM

detection processes, which can be enhanced by a factor of 1010.
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Figure 3.8: Numerical solution for the comoving number density Yχ with
mB3 = 1 TeV and mχ = 10 GeV. Now λB3χ is changed in order to re-
produce the observed abundance (λ1

B3χ = 3.3 × 10−9, λ2
B3χ = 5.4 × 10−8,

λ3
B3χ = 8.0 × 10−7, λ4

B3χ = 1.1 × 10−5). We set Tr = 20 MeV for
all n.

For freeze-in via scattering B1B2 → B3χ, the DM relic abundance is always

suppressed in the (Tr, n) plane. We quantify this suppression in Fig. 3.9, where we

keep the same mass values for B3 and χ. More specifically, we show iso-contours

of the function

rBχ(Tr, n) ≡ Ωχh
2|rad

Ωχh2 . (3.41)

The suppression factor can be analytically understood by using the equations

derived above

rBχ(Tr, n) ' FBχscatt(Tr, n)−1 '
(
xr
2

)n/2
. (3.42)
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Figure 3.9: Reduction in the relic density in the case of Freeze-in by scattering
B1B2 → B3χ for mB3 = 1 TeV and mχ = 10 GeV compare with the observed DM
density in the standard case (radiation)

The associated enhancement in the required matrix element λB3χ reads

λBχ(Tr, n) = rBχ(Tr, n)1/2 λrad
Bχ , (3.43)

indicating that increasing n and/or decreasing Tr leads to larger values for the

necessary coupling constant to reproduce the observed DM density of the universe.

3.4.2 DM Pair Production

We consider in this section the third and final freeze-in case: DM pair produc-

tion

B1B2 → χχ . (3.44)
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This process is the leading production mechanism for all models where the DM

particle belongs to a dark sector very weakly coupled to the visible sector. Notable

examples include Higgs portal models with small mixing angle and dark photon

models with small kinetic mixing.

General results for this case are also given in App B.1, where the two equivalent

forms are in Eqs. (B.34) and (B.35). We focus also for this case on models where

the matrix element is a constant

λ2
χχ = |MB1B2→χχ|

2 . (3.45)

The collision operator then takes the simple form in Eq. (B.43). We write it here

in the final form

CB1B2→χχ =
λ2
χχ T

512π5

∫ ∞
smin

pair

ds

s3/2 K1[
√
s/T ]×

λ1/2(s,mB1 ,mB2)λ1/2(s,mχ,mχ) ,
(3.46)

with λ(x, y, z) defined in Eq. (B.14) and the lower integration limit set by kine-

matics

smin
pair = max

{
(mB1 +mB2)2, (2mχ)2

}
. (3.47)

Numerical results for the comoving yield are presented in Fig. 3.10. We choose

mχ = 100 GeV, we neglect the bath particle masses and we set λχχ = λrad
χχ =

3.41× 10−11. This is the value that reproduces the correct abundance for a stan-

dard cosmological history. We plot the comoving number density as a function

of the “time variable” x = mχ/T . The freeze-in abundance is largely suppressed

compared to the standard case also for DM pair production, forcing markedly

larger couplings to explain the observed abundance. Quantitatively, this is illus-

trated in Fig. 3.11, where we keep mχ and Tr fixed and we set the couplings λnχχ
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Figure 3.10: Numerical solution for the comoving number density Yχ with mχ =
100 GeV and λχχ = 3.41×10−11 in the case of Freeze-in by scattering B1B2 → χχ.
We set Tr = 20 MeV for all n.

needed for a modified cosmology featuring a given n > 0. The figure shows how

the needed couplings are larger than in the standard case by up to more than four

orders of magnitude, for large n ∼ 4.

The analytical estimates are analogous to the previous case, and we therefore

only quote the final results here. First, the collision operator neglecting the bath

particles mass reads

CB1B2→χχ =
λ2
χχm

4
χ

128π5
K1[x]2
x2 . (3.48)

The comoving density as a function of the temperature is obtained by computing
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Figure 3.11: Numerical solution for the comoving number density Yχ with mχ =
100 GeV. Now λχχ is changed in order to reproduce the observed abundance
(λ1

χχ = 4.7 × 10−10, λ2
χχ = 4.8 × 10−9, λ3

χχ = 4.6 × 10−8, λ4
χχ = 4.1 × 10−7). We

set Tr = 20 MeV for all n.

the integral

Yχ(x) '
λ2
χχ

g
3/2
∗

135
√

10
256π8

MPl

mχx
n/2
r

×
∫ x

0
dx′K1[x′]2 x′ (2+n/2) .

(3.49)

The slope of the different curves is the same as the one found for single DM

production (see Eq. (3.37)).

We normalize again the asymptotic value with respect to the radiation case

Y ∞χ = Y ∞χ
∣∣∣
rad
×Fχχscatt , (3.50)
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Figure 3.12: Relic density suppression in the case of freeze-in by scattering
B1B2 → χχ, compared with the observed DM density in the standard case (radi-
ation)

which in this case it reads

Y ∞χ
∣∣∣
rad

=
λ2
χχ

g
3/2
∗

405
√

10
8192π6

MPl

mχ

. (3.51)

The suppression we find in this case reads

Fχχscatt ≡
8

3
√
π

Γ
[

2+n
4

]
Γ
[

6+n
4

]
Γ
[

10+n
4

]
x
n/2
r Γ

[
8+n

4

] . (3.52)

We quantify the DM relic abundance suppression rχχ in the (Tr, n) plane

in Fig. 3.12 for the same values of the DM particle mass. Also in this case,

suppression factors can be as large as ten orders of magnitude.
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3.4.3 Implications for Dark Matter Detection

Our general finding is that when the universe is dominated, at the time of

DM production through freeze-in, by a species that produces a larger Hubble

rate a given temperature than in the radiation-dominated case (what we dub a

“fast-expanding” universe), the couplings needed to produce the observed DM

abundance are larger than in a radiation-dominated, standard scenario. As a

result, quite generically, DM detection prospects improve.

Besides the general conclusion above, it is however hard to solidly quantify

how DM detection prospects are affected in a general, model-independent way for

freeze-in via scattering in modified, fast-expanding cosmologies. A first difficulty

stems from the impossibility of performing a cross-symmetry prediction for, e.g.,

the cross section for the B1B2 → χχ process versus the cross-symmetric χB1 →

χB2 process (and similarly for the single-production scattering case).

With that caveat in mind, however, for simple instances where for example

the matrix element squared is a constant, as we considered above, we can attempt

to draw a few general statements. Let us consider first the DM single-production

case, B1B2 → B3χ. In this case, let us assume that for instance B3 is some visible-

sector species which is abundant in the late universe, for instance an electron or a

photon. As long as the inverse reaction to the process leading to freeze-in χ pro-

duction is kinematically allowed for non-relativistic processes, i.e., approximately,

mχ +mB3 > mB1 +mB2 ≡ m12 , (3.53)

and as long as χ’s stability is not jeopardized by decays to B1 +B2 +B3, i.e.

mχ −mB3 < m12 , (3.54)
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then, the reaction

B3χ→ B1B2 (3.55)

would be generically allowed, leading to potential completely novel indirect de-

tection signals, involving a single DM particle in the initial state. Rates for this

type of reaction are much larger in the fast-expanding universes we entertain

here. If B3 is a particle species abundant in direct detection targets, the reac-

tion B3χ→ B1B2 would also possibly produce striking signals at direct detection

experiments.

In the case of DM pair production, B1B2 → χχ, and again assuming a simple

form for the matrix element squared, modified cosmologies would give a strikingly

large enhancement to late-time DM pair annihilation rates, χχ→ B1B2. The rel-

evant pair-annihilation cross sections, however, would presumably be quite small,

unless mχ �∼ GeV, since one would naively estimate, given what we find above,

σχχ→B1B2 ∼
λ2
χχ

m2
χ

& 10−13 GeV−2
(

GeV
mχ

)2

, (3.56)

while indirect detection is usually sensitive to pair-annihilation cross sections on

the order of 10−10 GeV−2. Strong constraints from annihilation effects on the

CMB would however apply in the case of light dark matter masses.

The cross-symmetric process, χB1 → χB2, is instead rather promising, as

the implied rates (which again, in general do depend on the underlying model)

might be large enough to be of interest for direct detection, provided a modified

cosmology affects DM freeze-in pair production.

We postpone a more general and comprehensive analysis of implications of a

modified cosmology with a fast-expanding universe at DM freeze-in, including the

discussion of specific models, to future studies.
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3.5 Discussion and Conclusions

The cosmological history of the universe is observationally and quantitatively

tested only up to temperature of around 1 MeV: at larger temperatures, it is cus-

tomary to assume a radiation dominated universe, which is thus the canvas on

which pictures for dark matter production in the early universe are usually drawn.

However, cosmological histories where at a given temperature the expansion rate,

and thus the Hubble rate, was much larger are possible, and yield dramatic con-

sequences for the prediction of the amount of dark matter produced in the early

universe by thermal or non-thermal processes.

Here, we focused on the case of dark matter production via freeze-in: the dark

matter is “dumped” by a decay or scattering process in the early universe, and

never reaches thermal equilibrium. As is well known, given a certain cosmological

history, and similarly to the case of thermal freeze-out, it is possible to compute

the relic dark matter yield for freeze-in from a few particle physics input param-

eter characterizing the dark matter sector. Also in analogy to what we recently

pointed out for the case of freeze-out in Ref. [49], in the presence of a modified

cosmological history at temperatures above Big Bang nucleosynthesis, such relic

dark matter yield can be profoundly affected, and the ensuing phenomenological

and observational consequences for a given dark matter particle setup drastically

changed.

To outline a simple yet comprehensive picture of the effects of a rapidly ex-

panding pre-BBN universe, here we parameterized the additional energy density

responsible for the modified expansion history with only two parameters, Tr and

n, effective describing the normalization and the power-law temperature/redshift

dependence of the extra species (concrete models for the cosmological history

might feature a more complicated functional dependence for the energy density
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and thus the Hubble rate, see e.g. the recent Ref. [50], but the resulting effects

fall within the range of parameters we study here).

For each of the three cases, we illustrated the freeze-in production suppres-

sion, for various values of the parameters defining the cosmological background;

We derived analytical expressions that accurately capture and illustrate our nu-

merical results; We then specialized our analysis to simplified expressions for the

decay or scattering rates, translating the freeze-in production suppression in the

enhancement needed in the relevant particle coupling; Finally, for each of the

three cases, we scanned the parameter space of background modified cosmologies,

and calculated for each parameter space point the resulting freeze-in production

suppression.

Our results are remarkable first for their generality: we demonstrated that in

a fast-expanding universe, freeze-in dark matter production is systematically, and

dramatically suppressed. Secondly, our results quantify such suppression, which,

we find, can be as large as ten orders of magnitude in some cases. Thirdly, and

perhaps most importantly, our work outlines the range of potential implications

for collider studies and for direct and indirect dark matter detection, which can

drastically affect detection strategies for entire classes of particle dark matter

candidates.

64



Chapter 4

Primordial Black Holes and

Effective Spin Measurements

with LIGO-Virgo

4.1 Introduction

After the detection of binary black hole (BBH) merger events with LIGO-Virgo

[67, 4], the question of the physical origin of the black holes has become somewhat

pressing. In particular, there has been some significant interest in the possibility

that some or all of the BBH events originate from primordial black holes (PBH)

[68], i.e., black holes originating from large over-densities in the very early universe

rather than from the collapse of stellar objects (see e.g. [69]). Interestingly, this

interpretation is compatible with the notion that these PBH could be the dark

matter needed for a consistent picture of the early and large-scale structure of the

universe (see e.g. [68]). Whether or not this possibility is ruled out is the focus

of intense debate, the key issues at stake including (1) the problem of matter
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accretion that might produce significant-enough accelerated charged particles to

perturb in a measurable, and excessive way the cosmic microwave background

photons [70, 71] (see however [72]); (2) the problem of disruption of small-scale

structure by the relatively massive black holes that would make up the dark

matter [73, 74] (see however [75]); and (3) limits from gravitational lensing of

type Ia supernovae [76] (see however [77]).

These constraints notwithstanding, it is known (and it is reviewed below) that

PBH that were produced during a radiation-dominated cosmological epoch have

low intrinsic spin magnitude. As a result, a generic prediction of the picture

where the LIGO-Virgo BBH events are in part or all PBH mergers is that the

effective spin parameter (to be defined below, and which depends among other

things on the intrinsic black hole spin magnitudes) is very low. Incidentally, it is

important to point out that this fact (that binary mergers of PBH should have a

low effective spin parameter) does depend on cosmology: it has been shown, for

instance, that if the universe went through a matter-domination phase during PBH

formation, then in fact the intrinsic spin of the resulting PBHs is generically close

to maximal [78]. Furthermore, other possibilities might arise for cosmologies where

the early universe was neither matter- nor radiation-dominated at early times, as

we explored recently [49, 79]. With this caveat in mind, we shall hereafter assume

radiation domination at the time of PBH formation.

The key motivation for the present study is that, so far, 9 out of 10 of the

LIGO-Virgo BBH mergers are compatible with very low effective spin parameters.

It seems timely, therefore, to assess what the predicted probability density for

PBH’s effective spin parameter is, and to compare it with current observations;

additionally, we intend to explore how many events it will take to differentiate in

a statistically robust fashion different effective spin parameter models. Although
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at present there is no firm prediction for astrophysical black holes’ effective spin

parameter, and there is debate concerning selection and bias effects in the detected

BBH events, our study intends to point out that (i) current observations of the

effective spin parameter are largely compatible with a dominant PBH component

in the BBH mergers, and that (ii) in the future, the effective spin parameter

distribution could help discriminating PBH from “ordinary”, astrophysical black

holes.

Aspects of the question we address here have been considered in the recent

literature, with different assumptions and methods. Soon after the detection of

the first four BBH mergers [67, 80, 81, 82, 83], Ref. [84] argued that information

on the effective spin could be used to distinguish between aligned versus isotropic

angular distributions; specifically, [84] concluded that as long as the black hole

spin values are not intrinsically small (which, however, might well be a distinct

possibility, as pointed out e.g. by Ref. [85]) then an aligned angular distribution

is strongly disfavored. Additionally, Ref. [84] also showed how with relatively

few additional events, the odds ratio would conclusively point in one direction or

another (i.e., isotropic or aligned).

Ref. [86] reiterated how scenarios considered in the formation of astrophysical

black hole binaries naturally lead to isotropic (for dynamical capture) or near-

aligned (for common envelope evolution) black hole spins. They also showed that

Bayesian statistics allows one to distinguish, at a given confidence level, which

fraction of the binaries are preferentially aligned versus isotropically distributed.

A similar analysis was conducted in Ref. [87], with the additional points that a

discrimination between isotropic and aligned spin distributions might be possible

even regardless of the intrinsic spin magnitude distribution. They also showed

that once an aligned or isotropic spin distribution is established, it is possible
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to re-construct the spin magnitude distribution with a high degree of confidence.

The possibility of disentangling the existence of sub-populations of binary black

holes with different spin orientations was explored in Ref. [88], which also pointed

out how a “pure” distribution would be statistically preferred with relatively few

events (see also Ref. [89]).

In this study, we utilize the intrinsic spin distribution of PBHs from the results

of Ref. [90] to calculate (to our knowledge for the first time) the predicted prior

probability distribution for the effective spin parameter. Ref. [90] assumes that

there is no correlation between the overdensity leading to the formation of the

PBH and its spin, and that the probability density for the spin distribution as

a function of the overdensity is flat. A recent study, Ref. [3], challenges these

assumptions, and finds a peaked distribution for the PBH spin parameter, which

critically depends on the width of the power spectrum peak giving rise to the

PBH, and on the relative abundance of PBH. As a result, the spin distribution

is significantly narrower than what was predicted in Ref. [90]. In what follows,

we compare the resulting spin distribution for a variety of assumptions for PBH

formation as outlined in Ref. [3], and compare it to our benchmark choice which

reflects the results of Ref. [90] (and which, as we explain below, can be seen as a

limiting case of the setup of Ref. [3]).

To these ends, in this study we first explore, in sec. 4.2, the theoretical predic-

tion for the effective spin parameter distribution for PBH. We outline the assumed

astrophysical black holes spin magnitude distribution we consider, and we review

LIGO-Virgo observations; in sec. 4.3 we compare the odds ratios for the models

we consider and study the favored “mixture” of different such models; we then

forecast how future events will inform both the odds ratios and the inference of

the relative level of mixing of different models. Finally, in sec. 4.4 we discuss our
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results and present our conclusions.

4.2 Effective Spin Distribution

The spin magnitude of a Kerr black hole (BH) is commonly defined via a

dimensionless spin parameter χ,

χ = |~S|
Gm2 ,

(4.1)

where ~S and m are the spin and mass of the BH, respectively. One of the most

important parameters that LIGO can infer from the gravitational waveform is the

effective spin parameter χeff , defined as:

χeff = m1χ1 cos θ1 +m2χ2 cos θ2

m1 +m2
, (4.2)

where θi = cos−1(~L · ~Si) is the tilt angle between the spin ~Si and the orbital

angular momentum vector ~L. As apparent from its definition, the parameter χeff

is a quantity sensitive to both the spin alignment of the two black holes with their

orbit (angular momentum of the binary) before the merger, and to the magnitude

of the individual spins. χeff is a dimensionless number ranging from −1 to 1, where

for χeff = 1 the spins of both black holes are perfectly aligned with their orbit, and

χeff = −1 the spins are perfectly anti-aligned. Values of χeff ≈ 0 can stem from

one or both of the following physical situations: (i) the black hole intrinsic spins

are anti-aligned with each other, or (ii) the magnitude of the intrinsic effective

spin parameters, χi � 1. There could be a third possibility, that both spins are

perpendicular to the orbit, but this is somewhat less likely and less physically

motivated.
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First, let us gain some intuition about the effective spin distribution for a few

binary black hole (BBH) formation channels. One possible formation channel for

BBH is from massive isolated binaries through common envelope evolution, where

the intrinsic spin is generally aligned along the same direction as the orbital angu-

lar momentum, meaning that χeff ≈ 1. On the other hand, there exist dynamical

scenarios where we expect most BBHs to have spins largely uncorrelated with

their orbit meaning that χeff ≈ 0. This is the case, for instance, for BBHs formed

dynamically in dense stellar environments, and it is also the case for PBHs, which

additionally are predicted to have small intrinsic spins. It is important to notice

that a key consequence, and possible signature, of any isotropic formation mech-

anism is that the distribution of χeff is symmetric around zero, regardless of the

spin magnitude distribution [87].

4.2.1 LIGO-Virgo effective spin measurements

Event m1[M�] m2 [M�] χeff

GW150914 35.6+4.8
−3.0 30.6+3.0

−4.4 −0.01+0.12
−0.13

GW151012 23.3+14.0
−5.5 13.6+4.1

−4.8 0.04+0.28
−0.19

GW151226 13.7+8.8
−3.2 7.7+2.2

−2.6 0.18+0.20
−0.12

GW170104 31.0+7.2
−5.6 20.1+4.9

−4.5 −0.04+0.17
−0.20

GW170608 10.9+5.3
−1.7 7.6+1.3

−2.1 0.03+0.19
−0.07

GW170729 50.6+16.6
−10.2 34.3+9.1

−10.1 0.36+0.21
−0.25

GW170809 35.2+8.3
−6.0 23.8+5.2

−5.1 0.07+0.16
−0.16

GW170814 30.7+5.7
−3.0 25.3+2.9

−4.1 0.07+0.12
−0.11

GW170818 35.5+7.5
−4.7 26.8+4.3

−5.2 −0.09+0.18
−0.21

GW170823 39.6+10.0
−6.6 29.4+6.3

−7.1 0.08+0.20
−0.22

Table 4.1: Selected parameters of the ten BBH mergers events detected during
LIGO’s O1 and O2 runs. The parameters are median values, with 90% credible
intervals [2].

We list in Table 4.1 the relevant observed properties of the 10 BBH merger
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events we consider in our study: the masses of each individual black hole m1

and m2 (columns 2 and 3), and the corresponding dimensionless effective spin

χeff (column 4). It is worth pointing out that before the first gravitational wave

detection, LIGO was expecting 33-100 more NS-NS binary events compared with

BH-BH binaries [91]; however, LIGO’s O1 and O2 run showed that the rate of

BH-BH binaries is an order of magnitude greater than the NS-NS binaries. Fur-

thermore, the range of black hole masses was expected to be from ∼ 5M� to

∼ 15M� [92]. As a result, the first detection (GW150914) came somewhat as a

surprise, because previously-known black holes were significantly lighter than the

inferred masses, among various reasons.

As evident in Table 4.1, the majority of black holes are over 25M� with the

heaviest being 50M� (GW170729). The nature of this new population of heavy

stellar-mass black holes is still debated in the literature [93, 94, 95, 96]; notice

that a reason for observing more massive binary mergers over lighter ones could

partly be explained as a selection bias [97], since more massive BBH mergers

produce a louder signal, and therefore the accessible space-time volume is larger

than for lighter systems. It has been proposed that there exists a mass gap (∼

50M�−150M�) due to pair-instability supernovae for stellar black holes [98, 99, 93]

and therefore, that the black hole masses cannot be arbitrary large. There have

also been claims of a cutoff at high masses in the current detections made by

LIGO to date [100, 101, 102, 103].

The last column of Table 4.1 shows the most interesting parameter for this

work: the effective spin χeff , defined by Eq. (4.2). The listed 10 observed events

appear to disfavor high spin magnitude aligned with the orbital angular momen-

tum, unlike the large spin values (near to the maximum possible value) observed

in the majority of black holes in X-ray binaries [104, 105]. Most events are consis-
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Figure 4.1: Posterior probability densities for the effective
aligned spin magnitude χeff for the 10 events from the LIGO-
Virgo observations [2] as given in the files downloadable at
https://dcc.ligo.org/LIGO-P1800370/public. Notice the difference in
the vertical scale for the left and right panels.

tent with χeff = 0, with two exceptions: GW170729 and GW151226. These two

events show evidence of positive, but relatively small, χeff values. Fig. 4.1 shows

the posterior distribution of χeff for the ten events observed by LIGO’s O1 and

O2 run and the prior assumed by the LIGO Collaboration1.

It is important to note that the LIGO Collaboration used Bayesian statistics

to analyze the data and to infer the source properties of all ten BBH gravitational

wave events [2]. This means that one needs to properly define prior probability

density distributions. While ideally the conclusions should be robust and fairly

independent under the choice of different priors, if the data are only mildly infor-

mative, priors could influence the statistical inference on the source parameters

(see Ref. [106] for a discussion on this point). An analysis of the importance and

effect of the choice of priors on the first three LIGO events has been carried out

in Ref. [86]. One should also bear in mind that there certainly exist selection bias

effects for the posterior distribution of χeff . For instance, sources with positive
1https://dcc.ligo.org/LIGO-P1800370/public
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χeff > 0 have a more clear signal, due to longer time orbiting before merging,

therefore allowing to better constrain the waveform (see e.g. Ref. [107, 108]).

4.2.2 PBH spin distribution

Given a spin distribution for the intrinsic spin of individual primordial black

holes, and the assumption of isotropy in the spin-orbit alignment, one can cal-

culate the distribution of χeff . We follow here Ref. [90] in assuming that the

distribution function for the intrinsic spin magnitude of a single PBH can be

closely approximated by the Gaussian functional form

p(χ) ≈ exp
[
− χ2

2σ2

]
. (4.3)

The parameter σ is, in principle, calculable given the spectrum of density per-

turbations leading to PBH formation in the early universe. Absent this, and in

view of the fact that there might be circumstantial evidence for a PBH origin of

at least some of the detected BBH merger events [109], here we infer the value of

σ directly from observations. To this end, we define a probability distribution for

χ as a half Gaussian

p(χ;µ, σ) = N (µ, σ)√
2πσ

exp
[
−(χ− µ)2

2σ2

]
, (4.4)

entertaining a possible non-zero value for µ. In Eq. (4.4)N (µ, σ) is the appropriate

normalization constant. Notice that the function is only defined in the interval

χ ∈ [0, 1] and zero otherwise (see the definition of χ in Eq.(4.1)). Our goal is

to investigate the probability distribution of χeff resulting from an isotropic spin

orientation distribution and the intrinsic spin distribution of Eq. (4.4) and to infer

the posterior probability density for the parameters µ and σ from the LIGO-Virgo
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data.

We utilize here a hierarchical Bayesian analysis: we assume that the individual

BHs in the binary are coming from a primordial population which is described by

some hyper-parameters Λ. Then, we use the 10 LIGO-Virgo events to derive the

posterior distribution for Λ. Our approach is analogous to Refs. [84, 87, 101, 110].

Our goal is thus to find p (Λ | d), the probability distribution of the parameters

Λ given the data d, where Λ simply represents here the parameters that describe

the PBH population Λ = {µ, σ}.

Assuming that the events are independent of each other, we can combine the

individual likelihoods to build a joint likelihood

p
(
{di} | Λ

)
=

Nobs∏
i=1

p
(
di | Λ

)
, (4.5)

where

p
(
di | Λ

)
=
∫

dχieff p
(
di | χieff

)
p
(
χieff | Λ

)
(4.6)

is the likelihood function for ith event and p (d | χeff) is the marginal likelihood,

meaning that it has been marginalized over all parameters but χeff . Since the

LIGO-Virgo collaboration have not yet released the marginalized or full likelihoods

to the general public, but have rather provided the posterior distributions which

we show in Fig. 4.1, we need to re-weight the posterior distribution of χeff to

obtain the likelihoods. The last term in the integral, p (χeff | Λ), is the probability

of measuring χeff given the parameters of our model Λ. In our case this distribution

of χeff has been derived in App. C.1.1 and the result is given in Eq. (C.4). Finally,

using Bayes’ theorem we obtain the posterior distribution of the parameters Λ as

p
(
Λ |

{
di
})
∝

Nobs∏
i=1

∫
dχieff p

(
di | χieff

)
p
(
χieff | Λ

) p (Λ) . (4.7)
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Figure 4.2: Left: Marginalized probability density functions for the µ and σ
parameters describing the intrinsic PBH spin magnitude distribution. Colored
contours show the 50% and 90% credible intervals. Right: Probability density
functions for σ parameters with µ = 0 with 90% credible intervals.

Here, p (Λ) is the prior choice for the parameters Λ, which we take here to be

uninformative (i.e. we use a flat prior for both µ and σ).

The posterior distribution for the hyper-parameters µ and σ describing the

putative PBH population given the 10 LIGO-Virgo events is shown in the left

panel in Fig. 4.2. The distribution for µ is almost flat, except for µ > 0.15,

a slightly disfavored range of values. In contrast, the distribution for σ offers

more information: one can clearly see a peak around ∼ 0.3. Notice that µ and σ

are anti-correlated, as expected: given a half Gaussian with zero mean and fixed

width, one can find an approximately equivalent distribution with a negative mean

and larger width; conversely, a distribution with a positive mean will correspond

to one with mean zero and a narrower width.

Finally, in the right panel of Fig. 4.2 we show the posterior distribution of σ

when we set µ = 0. This choice is motivated by the analytical findings of Ref. [90]

(see their Eq.(17) and figure 2), and is approximately valid even in the scenario
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discussed in Ref. [3], where the preferred value of µ is non-zero but extremely

small (see their Eq.(8.7) and Fig.7).

Based on the 10 LIGO-Virgo events under consideration here, the best fit value

for σ is 0.27+0.14
−0.15, which, remarkably, is inconsistent with zero at 90% confidence

level. Notice that the distribution does not change much compared to the general

case where we marginalize over µ, indicating that the data is largely insensitive

to the value of µ.

4.2.3 Benchmark spin models for astrophysical BH

We are interested in comparing the χeff distribution for PBH, discussed above,

with what predicted in the case of astrophysical black holes. Given the current

status of observations and the output of population synthesis codes, it is presently

unwarranted to try to reproduce specific binary black hole spin distribution reflec-

tive of given astrophysical formation processes. Rather, it has become somewhat

customary in the literature to adopt simplified benchmark models for the align-

ment and intrinsic spin distributions of astrophysical black holes, following what

proposed in Ref. [87], and endorsed and utilized by the LIGO collaboration [4]

and by others (see e.g. [110]). We shall assume that the merging black holes

have equal mass (see a discussion of the effect of unequal mass mergers on χeff in

the Appendix), and that the distribution for the spin magnitude is statistically

independent of that for the spin alignment.

Noting that the spin directions for isolated binary black holes are thought

to be dominantly aligned (see e.g. [111, 112, 113]), we choose a distribution for

the spin direction with perfect alignment as an extreme case. We note that this

assumptions reflects under any circumstances an extreme, idealized situation for a

variety of reasons: for instance, there exists evidence for spin-orbitmisalignment in
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Figure 4.3: Left: Normalized spin magnitude distributions for PBH, low, flat and
high spin models. Right: Prior distributions for χeff for the different models under
consideration here. Solid lines indicate isotropic models while the two dashed lines
to the far right (peaking at χeff 6= 0) correspond to spin-orbit aligned ones.

black hole X-ray binaries [114], and effects from the supernova explosion could also

contribute to tilt the spin-orbit angle (natal kicks) [115]. We study the systematic

effects of relaxing the assumption of perfect alignment in the Appendix, see in

particular Fig. C.2, bottom panel.

We parameterize the astrophysical spin magnitude following the spin distribu-

tion proposed by [87] and used by LIGO [4] and [110]. The models consist of 3

different spin magnitude distributions:

• a low (intrinsic) spin distribution p(χ) = 2(1− χ) (L),

• a flat spin distribution p(χ) = 1 (F), and

• a high spin distribution p(χ) = 2χ (H).

We reproduce the distributions in the left panel of Fig. 4.3, together with the PBH

intrinsic spin distribution for PBH for the central value of σ = 0.27 and µ = 0

inferred above.

Also following Ref. [87], we consider two spin-orbit distribution orientations:

aligned and isotropic. Notice that the tilt angle is an excellent tracer of BBH
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formation channels [116], with the aligned distribution expected for isolated bi-

nary formation channel [99, 88, 92, 117], under the simplifying assumption that

the binaries remain perfectly aligned throughout their evolution (an assumption

that could be violated by effects such as supernova natal kicks, although mass

transfer and tidal interactions might work in the opposite direction and tend to

re-align the binary). The isotropic distribution is motivated by dynamical forma-

tion mechanisms in dense stellar environments or similarly disordered assembly

scenarios [118, 119, 120], as well as by what expected for PBH [121].

The final prior distribution for χeff for the various models under consideration

is shown in the right panel of Fig. 4.3, where we do not include the HA model

which is already strongly excluded by data. Notice that since the intrinsic spin

distribution is positive-definite, “aligned” models do not allow for negative values

of χeff ; finally, also notice how the prior distribution for “isotropic” models is

symmetric in χeff .

4.3 Analysis and Results

We present here our results for the odds ratios of the different prior distribu-

tions for χeff outlined in the previous section, as well as the posterior probability

density functions for a “mixed” scenario with PBH providing a fraction f of the

BBH events. We then discuss how, under different assumptions, such odds ra-

tios will evolve with additional events in the future, and how knowledge of which

fraction of the events originates from which prior distribution will change with

greater statistics (sec. 4.3.2).
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Figure 4.4: Odds ratios for different models with respect to the LI benchmark
model. Larger odds ratios show higher statistical preference, with ratios larger
than 1 indicating a preference with respect to the benchmark LI model. The low,
flat and high spin magnitude are combined with the isotropic and aligned spin-
orbit orientation distributions. The PBH model is for a fixed σ = 0.27, PBH 2
and PBH 3 are for (ν = 6, γ = 0.8) and (ν = 6, γ = 0.88) respectively, in the
notation of Ref. [3] (see text for details).

4.3.1 Comparing models to observations: odds ratios and

mixture

We confront here the prior distributions obtained in the previous section

with data by calculating odds ratios, which quantify the statistical support for a

model over another, allowing us to compare models and giving us a statistically-

motivated selection criterion. Fig. 4.4 shows the odds ratios between all possible

models and the reference low-intrinsic-spin, isotropic (LI) model; what we show is

therefore defined as p(d|M)/p(d|LI) for model M given the 10 events d. Here, we

have already assigned equal probability to the prior probability distributions of

each and every model (i.e., we assume that all models are equally likely a priori).

This implies that the odds ratio and the Bayes factor are equivalent.

Fig. 4.4 shows how all models with aligned spin distribution are significantly
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LIGO Low Flat High

Isotropic 0.0 −0.93 −2.07
Aligned −4.12 −12.92 −32.37

This work Low Flat High PBH

Isotropic 0.0 −1.18 −2.49 0.39
Aligned −6.07 −14.65 −36.41

Table 4.2: Natural log Bayes factors for various spin distributions with
q = 1. Right: Values reported by LIGO [4]. Left: Values found in this
work.

disfavored with respect to the isotropic ones. Also if we compare the “favored”

aligned model, which is the one corresponding to a low intrinsic spin distribution

(LA), with the least favored isotropic model, which is the one with high intrinsic

spin distribution (HI), the odds ratio in favour of HI is still very large, at 36 : 1.

In addition to showing a strong statistical evidence for isotropy of spin and

orbit orientations, the data favour models with small intrinsic spin magnitude

distributions and heavily disfavour those with high spin. The two best models are

the PBH and LI with the PBH model slightly preferred over the LI with an odds

ratio of 3 : 2.

Notice that the intrinsic spin distribution we assume for PBH was calculated

in Ref. [90] by integrating the probability density P (χ, δ), with χ the intrinsic spin

and δ the overdensity giving rise to the PBH formation, over δ. Critically, Ref. [90]

assumes no correlation between δ and χ. When this assumption is relaxed, one

generally finds much narrower intrinsic spin distributions [3]. In the notation of

Ref. [3], the probability distribution for χ in the case of PBH depends on the pa-

rameter ν, defined as the ratio of the critical collapse overdensity and the variance

of the overdensity at horizon crossing, and on the parameter γ which effectively

measures the width of the PBH mass function, with γ = 1 for a monochromatic
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power spectrum.

Figure 5 of Ref. [3] shows that the relevant range for the parameter ν for LIGO-

sized PBH is around ν ∼ 6. While the range for the parameter γ depends on the

PBH mass function, mass functions peaked around a few solar masses typically

have values of γ ∼ 0.85...0.88 (see their sections 7.2 and 7.3), although a broader

range is possible. Here, we take as benchmark cases (ν = 6, γ = 0.8) (which we

indicate in Fig. 4.4 as PBH 2) and (ν = 6, γ = 0.88) (PBH 3 in Fig. 4.4), the

latter leading to the narrowest possible prior distribution for χeff , and the former

with a broader distribution. We show the prior distribution for the two models in

the bottom panel of Fig. C.1.

We find odds ratio of 0.44 and 0.37 respectively for PBH 2 and 3, indicating

(since both odds ratios are smaller than 1) a statistical preference for the LI model

as well as for our benchmark PBH model over these narrower intrinsic PBH spin

distribution. As expected, our current ability to distinguish between models with

very low spin distribution is very limited with the available data. Similar results

and conclusions have been found in [84, 110]. For reference and to summarize

our findings, we list in Table 4.2 the natural log Bayes factors for various models

compared to the benchmark LI model.

The actual LIGO BBH population likely reflects a mixed population of two

different models (or more). Here, we are going to assume that the mixture is our

PBH model with the second one any of the following models: LI, LA, FI, FA and

HI. In Fig. 4.5 we show the posterior probability density for the fraction of the

BBH mergers coming from PBH, which we indicate with f , where f = 1 means

that all the events are from PBH and f = 0 means the opposite, i.e. all the events

are coming from the second model and none from PBH. Notice that if we allow

a mixed model we find a statistical preference for the majority of events coming
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Figure 4.5: Posterior probability density functions on the parameter f for the
10 events observed by LIGO. f = 1 corresponds to all coming from PBH.

from a PBH population. For the case where the mixed model consists of PBH

and FA (dashed orange line), the f distribution peaks around ∼ 0.9, therefore

favoring a scenario where 9 events come from a PBH population and 1 event

from the FA population. This is somewhat expected because there clearly is one

event (GW170729) that could have come more likely from a population favoring

large χeff values such as what predicted in the FA prior distribution rather than

PBH. A similar conclusion can be drawn when the second mixture model is LA

(dashed green line). In this second case, there are two events that could be

ascribed to a LA distributions: GW170729 and GW170729. This is why the f

posterior distribution peaks around ∼ 0.85, a little lower than the case of FA. For

the case of a mixture of FI (solid orange line) or HI (solid pink line) with PBH,

the probability distribution for f is flatter, but we still can conclude that more

than half of the events are coming from a PBH population. Lastly, in the case

of a mixture model consisting of PBH and LI (solid green line) the distribution

is almost half PBH and half LI with a slight preference for the PBH model, as
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Figure 4.6: Evolution of the odds ratio as a function of the number of extra
events for 200 LI (left) and 200 FI (right) simulated events.

expected from the odds ratio between the two models, which have comparably

similar χeff prior distributions.

4.3.2 Future events

To test the sensitivity of our setup to the different benchmark models under

consideration, we simulate future events for each of the six population models

under consideration: PBH, LI, LA, FI, FA and HI. We generate mock observations

following the same approach as in Refs. [87, 84]. First, We approximate each LIGO

event as a Gaussian with the same mean value and 90% credible interval; Second,

we draw a value of χtrue
eff from the population’s distribution we want to simulate;

third, we generate an observation from the distribution χobs
eff ∼ N (χtrue

eff , σunc),

where σunc is a random uncertainty from one of LIGO’s ten events. Finally, the

we calculate the posterior probability as ∼ N (χtrue
eff , σunc)pFI(χeff).

Assuming that all events are coming from the same population, we simulate

200 events for three possible “true” scenarios: FI, LI or PBH. Fig. 4.6 shows the

dependence of the odds ratio with respect to the number of extra events from

LI (left) and FI (right) populations. Notice that the odds ratios for the models

already start at different values, because the current 10 LIGO events are included:
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Figure 4.7: Evolution of the odds ratio as a function of the number of extra
events for 200 PBH simulated events.

the starting point for each model is thus just the odds ratio from Table 4.2.

For the fully LI-simulated population, our results show that with only 10 extra

events the FA and LA models might be disfavoured at more than the 5σ level, and

that 75 extra events are needed to reject the the HI model at the same confidence

level. The LI and PBH models would be disfavored at the same level with even

more events, reaching close to a 5σ level with 200 extra events.

Under the assumption that the true population is FI, the evolution of the odds

ratios is shown in the right panel of Fig. 4.6. With less than 10 extra events we

find that it would be possible to heavily disfavor both the FA and LA models;

interestingly, the PBH model can also be rejected at the 5σ level with only 50

extra events. The entire 200 extra events would allow for a 5σ rejection threshold

for the LI model and 3σ for the HI model. Finally, if the true population is that

of PBHs, as in Fig. 4.7, all models except LI can be rejected at 5σ level with only

75 extra events. We find that 200 extra events would be needed to discriminate

the LI model over the PBH one at the 4σ level.

Once again, we emphasize that there is no reason to assume all events observed
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by LIGO are coming from the same single population. In what follows we therefore

consider a mixed population consisting of half PBH and half of a second model

among LI, FI, HI or LA. We simulate up to 500 mixed events for each of these

mixed populations.

In the upper panels of Fig. 4.8, we show that it is possible to infer the relative

fraction of PBH f (which is given on the horizontal axis) with high confidence

with 200 events for the case of PBH-LA and PBH-HI mixture models. To be able

to discriminate the mixture fraction between PBH and FI, more events are needed

than in the previous two cases, as shown in the bottom left panel of Fig. 4.8. After

detecting 500 events the value of f can be determined fairly precisely. Additional

events are needed when the two prior distributions for the two models are similar,

such as for the case of a mixed PBH-LI population, bottom right in Fig. 4.8. This

notwithstanding, the value of f peaks at the correct value of ∼ 0.5 but the spread

is still substantial, even with 500 extra events.

Run O3 of LIGO-Virgo has already commenced, and the projected inferred

rate of BBH mergers from the previous runs is around 9.7−101 Gpc−3 y−1 [2]. At

this moment, the number of putative candidate run O3 BBH merger events is 10,

from a period of approximately 1.5 months2, which would imply an approximate

total number of events per year of around 80.

4.4 Discussion and Conclusions

In this study we considered how measurements of the effective spin parameter

χeff provide information on the origin of merging binary black holes observed with

gravitational wave telescopes. To this end, we presented a calculation of the prior

distribution for primordial black holes as well as for a few representative bench-
2https://gracedb.ligo.org/latest/

86



mark distributions possibly indicative of what expected in simple astrophysical

black hole binary populations.

In the case of PBHs, following Ref. [90] we assumed no correlation between the

overdensity leading to the black hole formation in the early universe and the in-

trinsic black hole spin; the resulting intrinsic spin distribution is a positive-definite

half-Gaussian with zero mean; to fix the width of the intrinsic spin distribution

we calculated the prior distribution for the effective spin parameter χeff and we

utilized 10 LIGO-Virgo measurements of χeff to determine a best-fit intrinsic spin

width.

We then proceeded to compare odds ratios for the current set of 10 measure-

ments for χeff for the various models under consideration. We showed that with

current data the χeff measurements have a marginal, and not highly statistical

significant preference for a dominant population of primordial black holes over

the best fitting astrophysical model. We also calculated the posterior probability

for the relative fraction of primordial versus astrophysical BBH events, finding

that there is a preference for a scenario where one or two events originate from a

population with preferentially aligned spin-orbit distributions, and the remaining

eight-to-nine events from a population with an isotropic spin-orbit distribution

and low intrinsic spin.

We then assessed the number of future events needed to disentangle, at a given

significance level, BBH from different populations, assuming that all binaries origi-

nate from the same “true” distribution. Generally, non-isotropic spin distributions

are highly disfavored even when only considering the current 10 events. In ad-

dition, even for isotropic alignment distributions, it will quickly become possible

to distinguish models with large intrinsic spin from those with low intrinsic spin

magnitude distributions. Assuming that the entirety of the merging black holes
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have a primordial origin, we anticipate that distinguishing at 3σ their χeff distri-

bution from a low intrinsic spin, aligned spin distribution will require on the order

of 100 additional events.

Finally, we illustrated the number of events necessary to acquire information

on the relative fraction of primordial versus non primordial binary black holes.

Once again, if the population of non-primordial black holes has a preferentially

aligned spin-orbit distribution, such fraction can be pinpointed with relatively

few additional events; the posterior distribution for the relative fraction of events

from populations with isotropic spin-orbit distribution shows a peak generally

pointing to a systematically larger-than-true fraction of primordial black holes,

but eventually converging with large-enough statistics to the “true” value.

In the App. C, we discuss the systematics associated with three key assump-

tions used in our analysis: (1) the width σ of the primordial black hole intrinsic

spin distribution, (2) the mass ratio we use to calculate the χeff prior distribution,

and (3) the assumption of perfect alignment between spin and orbit.

Clearly, as an increasingly large statistics of BBH mergers becomes available,

the question of the origin of the population of merging black holes will come into

sharper focus not only with studies of the effective spin parameter, but using all

other pieces of information, including but not limited to the mass distribution

of events, the correlation between mass and spin, localization information, etc.

Interesting questions relating for instance to the degree to which BBH accrete

will also be tackled, including the issue of whether there could be substantial

accretion for PBH and how much accretion would spin up individual PBHs [122]:

possibly, if PBHs do significantly accrete, the heavier ones would have both higher

spin and higher χeff . Interestingly, this seems to be the case for the most massive

LIGO event (GW170729) and for the recent, claimed detection events GW151216
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[123] and GW170403 [124]. The central issue of observational bias in inferring the

origin of merging BBH will also be helped greatly by benefiting from increased

statistics. Finally, we also expect that theoretical and observational progress will

lead to more realistic models for the expected distributions for the intrinsic spin

and spin-orbit correlation of different populations of astrophysical black holes,

allowing firmer statements on the origin of merging black holes than what is

possible with the benchmark models currently in use.
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Chapter 5

Conclusion

In this thesis, we have presented a comprehensive study of DM production in

modified cosmologies for two popular mechanisms: freeze-out and freeze-in. In

chapter 2, we showed that in an non-standard cosmological history where the uni-

verse expands very fast, as in presence of a new species φ whose energy density

red-shifts as ρφ ∝ a−(4+n), the relic DM density from freeze-out is then significantly

larger than the one obtained by a standard calculation, as a result of equality

between the (faster) expansion rate and the thermal processes rates occurring

at earlier times (i.e. at higher temperatures, when the comoving DM density is

larger). The key consequence for DM phenomenology is that that larger couplings

(and therefore larger predicted experimental signals, for example for the annihi-

lation rate of dark matter pairs in the late universe) are needed to produce the

observed DM abundance. Moreover, we identified a completely new phenomenon

that happens for large enough n: unlike the standard case, DM particles keep

annihilating even long after the departure from chemical equilibrium. This novel

behavior was dubbed relentless DM, and it was later confirmed by Ref. [50]. Re-

lentless DM also generically features larger-than-usual DM interaction rates with

ordinary particles.

90



In chapter 3, we focused our study on three specific mechanisms of dark mat-

ter freeze-in: (i) the production from decay of some other particle species in the

early universe, (ii) the production of a single dark matter particle in the final

state of a 2 → 2 scattering process, and (iii) the production of a dark matter

pair from a scattering process. For each case, we provided complete expression

for the relevant collision operators, reducing the task of calculating the resulting

freeze-in abundance to a simple integral. The general and universal finding is that

in a faster-than-standard expanding universe, freeze-in production is suppressed,

implying that to produce enough dark matter to match observations, larger cou-

plings, and thus larger detection rates, are in order.

Lastly in chapter 4, we considered how measurements of the effective spin

parameter χeff provide information on the origin of merging binary black holes

observed by LIGO-Virgo. To this end, we presented a calculation of the odds

ratio for primordial black holes as well as for a few representative benchmark

distributions possibly indicative of what expected in simple astrophysical black

hole binary populations. We found that the PBH model agrees well with the data

and can be a possible explanation of the events observed by LIGO and Virgo.

Furthermore, if the underlying population of the BBH is unique, only 100 events

are needed to be able to distinguish between models with very high statistical

significance. Finally, we illustrated the number of events necessary to acquire

information on the relative fraction of primordial versus non primordial binary

black holes.
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Appendix A

Appendix

A.1 Dark matter thermalization

The DM production mechanism depends on whether the DM ever reaches ther-

mal equilibrium at early times. Thermalization is achieved by collisions, therefore

a faster expanding universe makes it harder for the DM to thermalize. This is

what we investigate in this Appendix, checking whether the interaction rate be-

tween DM and the radiation bath was ever larger than the expansion rate at high

temperatures. If this was the case, then DM reaches thermal equilibrium and

it is produced through thermal freeze-out. In the opposite case, the production

mechanism must be non-thermal.

For temperatures much larger than the DM mass, the scattering rate can be

parameterized as follows

Γscatt(T ) 'nDMσscattvrel (A.1)

'3
2
ζ(3)
π2 T 3 λ4

32π
T 2

(T 2 +M2
∗ )2 .

Here, we use the number density for a Majorana fermion in the relativistic regime,
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and the scattering is assumed to be mediated by a particle with mass M∗ that

couples to DM and radiation with strength λ. In what follows, we explore two

different possibilities for M∗.

A.1.1 Massless Mediator

The first case we study is a massless mediator, M∗ = 0. Strictly speaking, this

analysis is valid also for the case of a massive mediator with mass smaller than

the temperatures under consideration. For example, any mediator lighter than

the DM particle would fall within this category. The scattering rate in this case

reads

Γscatt(T ) ' 3λ4 ζ(3)
64π3 T , (M∗ � T ) . (A.2)

This linear scaling with the temperature has to be contrasted with the Hubble rate

proportional to T 2+n/2 (with n > 0, see Eq. (2.8)). At high enough temperatures

the expansion rate wins, and interactions become more effective as the universe

expands and cools down.

A comparison between the Hubble rate in Eq. (2.8) for different values of n

and the scattering rate in Eq. (A.2) is shown in Fig. A.1, where we plot both

these quantities as a function of the inverse temperature. The Hubble rate is

obtained by fixing Tr = 20 MeV in order to have the faster expanding phase

to last as long as possible, but still consistent with the BBN bounds discussed

in Sec. 2.3. The red line corresponds to the standard cosmological history, the

other colored line represent the faster expansion rate, with n the index appearing

in the exponent of Eq. (2.8). The rate is computed by setting the size of the

coupling λ ' 1. DM thermalizes at a temperature Tth defined to satisfy the

condition H(Tth) = Γscatt(Tth). In other words, this temperature can be obtained

by finding the intersection between the black lined and the colored line under
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Figure A.1: Expansion rate (colored lines) and DM scattering rate (black line)
as a function of the inverse temperature (time from left to right). We set the
equality temperature between φ and radiation Tr = 20 MeV, and the coupling
strength of the massless mediator λ = 1. DM is in thermal equilibrium for tem-
peratures below the intersection between the black line and the colored line under
consideration.

consideration in Fig. A.1. This value depends on n, and it falls within the range

Tth ' (103, 109) GeV as we vary n from 1 to 4. DM particles always achieve thermal

equilibrium at temperatures higher than the weak scale, even in the extreme case

n = 4.

The above conclusion would be altered if we considered smaller values for the

coupling λ. We find it useful to write down an analytical expression for Tth,

which can be obtained by using the approximate expression for the Hubble rate

in Eq. (2.8). The thermalization temperature approximately reads

Tth '
(

9
√

10 ζ(3)λ4

64π4 g
1/2
∗

MPl T
n/2
r

)2/(n+2)

. (A.3)
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Figure A.2: DM thermalization temperature for a massless mediator as a func-
tion of λ. Parameters are chosen as in Fig. A.1.

It scales as λ8/(n+2), so taking a smaller λ would affect less the cases of larger n.

By taking a weak interaction coupling λ ' 0.3, the thermalization temperature is

in the range Tth ' (103, 108) GeV. The numerical solution for the thermalization

temperature as a function of λ is shown in Fig. A.2. For small couplings, λ . 10−3,

the thermalization temperature is below the weak scale. For weak scale DM this

implies that thermal equilibrium is never achieved, and the production mechanism

must necessarily be non-thermal.
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A.1.2 Heavy Mediator

We consider here the case of heavy mediators. At temperatures below M∗, the

scattering rate in approximately

Γscatt(T ) ' 3λ4 ζ(3)
64π3

T 5

M4
∗
, (T �M∗) . (A.4)

Unlike the case discussed above, the interaction rate now scales with a higher

temperature power than the Hubble parameter. This means that at very early

times interactions are effective, and as the temperature drops the expansion takes

over. We illustrate this case in Fig. A.3, where we compare again the rates as a

function of the (inverse) temperature. We consider three masses for the mediator.

We define mΛ ' 1010 GeV, the scale where the SM Higgs quartic vanishes [125],

hinting for possible new physics [126, 127, 128, 129]. We also consider the unifica-

tion scale for the gauge couplings (MGUT ' 2×1016 GeV) and the reduced Planck

mass (MPl). For an order one coupling, λ ' 1, thermalization is never achieved for

n > 0. This conclusion is unchanged even if we badly break perturbation theory,

λ ' 4π, and it is only strengthened if we consider smaller couplings. We conclude

that for a heavy mediator, as heavy as at least 1010 GeV, DM never equilibrates

with the thermal plasma.

A.2 Neutron Freeze-Out and BBN

The neutron freeze-out temperature for the cosmological background studied

in this work can be found by using the analytical results of Ref. [130]. The

neutron abundance in conveniently expressed in terms of the neutron fraction

Xn ≡ nn/(nn + np), where nn(p) is the neutron (proton) abundance. The time
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Figure A.3: Comparison between expansion and interaction rates. Parameters
are chosen as in Fig. A.1, with the only difference that the mediator is massive.

evolution is described by the Boltzmann equation

dXn

dt
= −λn→p

(
1 + e−Q/T

)
(Xn −Xeq

n ) . (A.5)

Here, we introduce the neutron-proton mass difference

Q ≡ mn −mp = 1.293 MeV , (A.6)

and the equilibrium neutron fraction reads

Xeq
n = 1

1 + eQ/T
. (A.7)
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For temperatures above the electrons mass, the neutron to proton conversion rates

can be approximated by the analytical expression

λn→p ' 2× 1.63
(
T

Q

)3 (
T

Q
+ 0.25

)2

sec−1 . (A.8)

This simple expression reproduces the full result within the accuracy of a few

percent.

The Boltzmann equation for the neutron fraction can be solved as an asymp-

totic series

Xn = Xeq
n

1−

(
1 + e−Q/T

)−1

λn→p

dXeq/dt

Xeq + . . .

 . (A.9)

This expression is valid as long as the second term in the parenthesis is smaller

than the first, namely if we are close to the equilibrium value. We define the

neutron freeze-out as the temperature when the two are equal

∣∣∣∣∣∣∣
(
1 + e−Q/T

)−1

λn→p(T )
dXeq/dt

Xeq

∣∣∣∣∣∣∣
T=TFO

n

' 1 . (A.10)

The only missing information to solve this equation is the time vs temperature

relation, which differs from the one for a standard cosmology due to the presence

of φ. This can be derived by imposing conservation of the total entropy. Since

we focus on temperatures around the MeV scale, we neglect the g∗s temperature

dependence and the final equation for the freeze-out temperature reads

∣∣∣∣∣∣∣
(
1 + e−Q/T

)−2

λn→p(T )
Q

T
H(T )

∣∣∣∣∣∣∣
T=TFO

n

' 1 . (A.11)

The Hubble rate H as defined in Eq. (2.7) contains both the energy density of

φ and radiation. If we only account for radiation and we solve Eq. (A.11) we find
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TFO
n ' 0.76 MeV, valid for a standard cosmology [130]. If we also account for the

φ energy density, we find that this result is not changed by much as long as we

consider Tr ≥ 1 MeV. More specifically, in the extreme case n = 0 (where there

is no temperature dependence in Nν) and Tr = 1 MeV we find TFO
n ' 0.83 MeV.

In order to put the most conservative bounds, we evaluate ∆Nν as defined in

Eq. (2.13) for T = 1 MeV.

A.3 Semi-Analytical Freeze-Out

In this Appendix we derive semi-analytical solutions for freeze-out relic den-

sity. We start with a review of the standard calculation for DM production in a

background of radiation, then we extend it to the modified cosmological histories

considered in this work.

A.3.1 Standard Cosmology

In order to connect with the new freeze-out scenarios studied in chapter 2, we

review the Lee-Weinberg calculation for cold relics [8]. We simplify the Boltzmann

equation in Eq. (2.16) by setting g∗ = g∗s = const. Furthermore, we Taylor expand

the equilibrium density in Eq. (2.17) for temperatures lower than the DM mass

Y eq
χ (x) = 45

4
√

2 π7/2

gχ
g∗
x3/2e−x + . . . (x� 1) . (A.12)

The Boltzmann equation can be written as follows

dYχ
dx

= −A〈σvrel〉
x2

(
Y 2
χ − Y eq 2

χ

)
, (A.13)
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where we define the constant 1

A = s(mχ)
Hrad(mχ) = 2

√
2π

3
√

5
g1/2
∗ mχMPl . (A.14)

We identify two distinct regimes for the solution. At early times, DM anni-

hilations are efficient and Yχ closely tracks the equilibrium distribution. At late

times, the expansion takes over and the density freezes-out. We solve the Boltz-

mann equation in these two regimes and then match the two solutions at some

intermediate point. We perform the matching at the temperature where Yχ moves

away from its equilibrium expression, a point known as the DM freeze-out.

We find it convenient to write the Boltzmann equation for ∆χ ≡ Yχ − Y eq
χ ,

which is obtained by plugging its definition into Eq. (A.13). We find

d∆χ

dx
= −A〈σvrel〉

x2 ∆χ(2Y eq
χ + ∆χ)−

dY eq
χ

dx
. (A.15)

At times much earlier than freeze-out, the departure from thermal equilibrium

is minimal and we can neglect terms quadratic in ∆χ and its derivative. As a

consequence, the DM number density can be approximated by

Yχ(x) ' Y eq
χ (x) + x2

2A〈σvrel〉
(1 < x < xf ) . (A.16)

In the opposite regime, we neglect the equilibrium distribution in the Boltzmann

equation (A.13), which can be integrated to find the solution

Yχ(x) '
[

1
Yχ(xf )

+ AJ(x)
]−1

(x > xf ) . (A.17)

1Hrad(x) is Hubble parameter obtained by plugging only the energy density of the radiation
bath. This is obviously the case for standard freeze-out. We find this definition useful also for
the case when the energy density is dominated by φ.
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Here, we define the annihilation integral

J(x) ≡
∫ x

xf

〈σvrel〉
x2 dx . (A.18)

The term equal proportional to the inverse comoving density at the freeze-out

in Eq. (A.17) is important to ensure that our solution is continuous. However, it is

numerically subdominant, unless we consider values x ' xf . This can be explicitly

checked for the partial wave expansion of Eq. (2.18), for which the annihilation

integral now reads:

J(x) ' σs

(
1
xf
− 1
x

)
+ σp

2

(
1
x2
f

− 1
x2

)
. (A.19)

The comoving number density after freeze-out reads

Yχ(x) = xf
A


(1−xf/x)−1

σs
s-wave

2xf (1−(xf/x)2)−1

σp
p-wave

. (A.20)

The above equation illustrates how the comoving number density quickly ap-

proaches a constant values after freeze-out. This is only valid for the standard

case of a radiation background. In the cosmological histories discussed in this

work, we find that DM particles keep annihilating well after the number density

has departed from its equilibrium value.

The current DM abundance is evaluated from the asymptotic value (x� xf )

of the comoving number density. This can be obtained by extrapolating Eq. (A.17)

to very large values of x, and we find

Y ∞χ = 1
AJ(∞) = 3

√
5

2
√

2 π

(
σs
xf

+ σp
2x2
f

)−1

g
1/2
∗ mχMPl

. (A.21)
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The first equality is general, whereas the second assumes the solutions in Eq. (A.20)

for a partial wave expansion. The asymptotic number density scales as the inverse

DM mass. In units of the critical density, the DM density results in

Ωχh
2 ≡

mχY
∞
χ s(T0)
ρcr/h2 = 2× 108 GeV−1

MPl g
1/2
∗

(
σs
xf

+ σp
2x2
f

) . (A.22)

This quantity depends on the DM mass only through the value of xf .

Finally, we determine the value of the freeze-out temperature. This is the

point where we match the two solutions in Eqs. (A.16) and (A.17). We define the

freeze-out as temperature xf by imposing ∆χ(xf ) = c Y eq
χ (xf ), where c is an order

one coefficient. We plug this definition into the Boltzmann equation (A.15), and

the freeze-out condition is expressed as follows

ex x1/2

〈σvrel〉

∣∣∣∣∣
x=xf

= c(c+ 2)
c+ 1

3
√

5
2 π5/2

gχ

g
1/2
∗

mχMPl , (A.23)

where we also restore the definition for A as in Eq. (A.14). We remind that

the thermally averaged cross section can depend on x, as in the case of p-wave

annihilation.

A.3.2 Non-Standard Cosmology Freeze-Out

For the modified cosmological backgrounds considered here, the DM num-

ber density evolution is still described by Eq. (2.16). However, the tempera-

ture dependence of the Hubble parameter is different. We introduce the quantity

xr ≡ mχ/Tr, where Tr was defined as the temperature where the energy of the
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radiation bath reaches the one of φ. The Boltzmann equation now reads

dYχ
dx

= −A 〈σvrel〉
x2−n/2 (xn + xnr )1/2

(
Y 2
χ − Y eq 2

χ

)
, (A.24)

where we use again the parameter A defined in Eq. (A.14).

We assume that freeze-out happens during the time of φ domination, namely

xf � xr. At the freeze-out time, the Boltzmann equation can then be approxi-

mated by
dYχ
dx
' −A 〈σvrel〉

x2−n/2 x
n/2
r

(
Y 2
χ − Y eq 2

χ

)
. (A.25)

We solve again before and after freeze-out by using the convenient variable ∆χ.

At earlier times we neglect terms quadratic in ∆χ and its derivative

Yχ(x) ' Y eq
χ (x) + x2−n/2xn/2r

2A〈σvrel〉
(1 < x < xf ) . (A.26)

After freeze-out, the solution takes the same form

Yχ(x) '
[

1
Yχ(xf )

+ AJφ(x)
]−1

(xf < x < xr) . (A.27)

This looks analogous to Eq. (A.17), but with the crucial difference that the anni-

hilation integral reads

Jφ(x) ≡ 1
x
n/2
r

∫ x

xf

〈σvrel〉
x2−n/2 dx . (A.28)

We can perform the integral for partial wave expansion, and we find the expres-

sions

J
(s)
φ (x) = σs

x
n/2
r


x
n/2−1
f

−xn/2−1

1−n/2 n 6= 2

log(x/xf ) n = 2
, (A.29)
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and

J
(p)
φ (x) = σp

x
n/2
r


x
n/2−2
f

−xn/2−2

2−n/2 n 6= 4

log(x/xf ) n = 4
, (A.30)

for s- and p-wave, respectively.

The solution in Eq. (A.27) can only be extrapolated up to x = xr. Once the

radiation bath dominates the energy density, we perform an additional matching,

analogous to the one for standard freeze-out (see Eq. (A.17)). The subsequent

evolution is described by

Yχ(x) '
[

1
Yχ(xr)

+ AJrad(x)
]−1

(x > xr) , (A.31)

where define the annihilation integral now reads

Jrad(x) ≡
∫ x

xr

〈σvrel〉
x2 dx . (A.32)

The final DM density is ρχ(t0) = mχY
∞
χ s(T0), where the asymptotic value of

the comoving density can be extracted by Eq. (A.31).

We conclude with the evaluation of the freeze-out temperature, defined as

before by the condition ∆χ(xf ) = c Y eq
χ (xf ). We find

ex x1/2

〈σvrel〉

(
xr
x

)n/2∣∣∣∣∣
x=xf

= c(c+ 2)
c+ 1

3
√

5
2π5/2

gχ

g
1/2
∗

mχMPl . (A.33)

This relation is very similar to Eq. (A.33) with the important difference of a

(xr/x)n/2 factor, which significantly enhances the left-hand side since we consider

freeze-out during the φ domination phase (xf � xr). If we fix the DM mass

and annihilation cross section, freeze-out must happen earlier with respect to the

standard case.
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Appendix B

Appendix

B.1 Collision Operators

The explicit expression for the collision operator Cα appearing in the Boltz-

mann equation (3.1) depends on the specific freeze-in process α under consider-

ation. In this Appendix, we derive its expression for the reactions considered in

this work.

Bath particles always have an equilibrium phase space distribution f eq
Bi

(E, t)

that depends on time and energy, under the assumptions that the universe is ho-

mogeneous and isotropic. Equilibrium number densities are defined as follows [131]

neq
Bi

(t) = gBi

∫ d3p

(2π)3f
eq
Bi

(EBi(|p|), t) . (B.1)

Here, gBi accounts for internal degrees of freedom (e.g. spin or color) and the

dispersion relation reads

EBi(|p|) =
√
|p|2 +m2

Bi
. (B.2)
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From now on, we leave the time dependence implicit. In the early universe we are

always away from Bose condensation or Fermi degeneracy. This allows us to use

f eq
Bi

(EBi) = exp[−EBi/T ] for both bosons and fermions in thermal equilibrium,

and the number density of bath particles reads

neq
Bi

= gBi
2π2 m

2
Bi
T K2[mBi/T ] , (B.3)

where K2 is the modified Bessel function. Another useful quantity for the analysis

of this Appendix is the Lorentz invariant phase space

dΠBi = d3pi
2EBi(2π)3 . (B.4)

B.1.1 Collision Operator for Decays

We start with the derivation of the collision operator for the decay processes

considered in Sec. 3.3. The number density of χ can change both due to decays and

inverse decays. Here, we only consider decays since DM particles never thermalize

and the reaction goes only toward one direction. The collision operator is thus

CB1→B2χ =
∫
dΠB1 dΠB2 dΠχ f

eq
B1 |MB1→B2χ|

2

(2π)4δ4(pB1 − pB2 − pX) .
(B.5)

The decaying bath particles B1 are in thermal equilibrium. It is important to em-

phasize here that the squared matrix element in the above equation in summed

over initial and final states. In particular, we do not average over initial polariza-

tions. We identify the partial decay width for the channel B1 → B2χ computed

106



in the rest frame of B1 and we rewrite the collision operator 1

CB1→B2χ = gB1 ΓB1→B2χ

∫ d3p

(2π)3
mB1

EB1

f eq
B1 . (B.6)

We perform the last integration and we find

CB1→B2χ = neq
B1 ΓB1→B2χ

K1[mB1/T ]
K2[mB1/T ] , (B.7)

where the equilibrium number density of the decaying bath particle is given in

Eq. (B.3).

B.1.2 Collision Operator for Scattering

The other freeze-in process we consider in this work is production via scatter-

ing. As done in Sec. 3.4, we distinguish between single and double production.

Single Production

For single production the collision operator reads

C(a)
B1B2→B3χ =

∫
dΠB1 dΠB2 dΠB3 dΠχ f

eq
B1 f

eq
B2 ×

|MB1B2→B3χ|
2 (2π)4δ4(pB1 + pB2 − pB3 − pχ) .

(B.8)

The initial state bath particles are in equilibrium and the squared matrix element

is summer over both initial and final polarizations, without taking any average as

before. Before we further develop the expression above, we observe that it can be
1The partial width ΓB1→B2χ can be different from the total width ΓB1 if other decay channels

for B1 are allowed.
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rewritten into an equivalent form. Conservation of energy enforces the equality

f eq
B1 f

eq
B2 = exp[−(EB1 + EB2)/T ] =

exp[−(EB3 + Eχ)/T ] = f eq
B3 f

eq
χ .

(B.9)

Moreover, if we assume CP invariance, we have the equality between the squared

matrix elements

|MB1B2→B3χ|
2 = |MB3χ→B1B2|

2 (B.10)

Putting these two results together, we have

C(b)
B1B2→B3χ =

∫
dΠB3 dΠχ dΠB1 dΠB2 f

eq
B3 f

eq
χ ×

|MB3χ→B1B2|
2 (2π)4δ4(pB3 + pχ − pB1 − pB2) .

(B.11)

The expressions in Eqs. (B.8) and (B.11) are equivalent forms for the collision

operator and they give the same result. In spite of f eq
χ appearing in the sec-

ond one, DM particles never reach thermal equilibrium. Conservation of energy

as expressed in Eq. (B.9) brings f eq
χ into the game, but we are still averaging

over initial state bath particles. Although the two expressions are equivalent, it

is computationally advantageous to use the one for the reaction allowed at zero

kinetic energy: in other words, if mB1 +mB2 > mB3 +mχ we use Eq. (B.8), oth-

erwise Eq. (B.11). This strategy isolates thermal suppressions in the distribution

functions rather than phase space integrals. In what follows, we develop both

expressions.

We present the derivation starting from Eq. (B.8); the one correspondent to

the definition in Eq. (B.11) is analogous. We define the Lorentz invariant relative
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velocity between the two initial state particles

vB1B2 ≡

√
(pB1 · pB2)2 −m2

B1m
2
B2

pB1 · pB2

. (B.12)

Here, pBi (with i = 1, 2) are Lorentz four-vectors denoting initial state four-

momenta, and the only consider Lorentz invariant products. Once we put particles

on-shell (p2
Bi

= m2
Bi
), the relative velocity reads

vB1B2 = λ1/2(s,mB1 ,mB2)
2 pB1 · pB2

, (B.13)

where we introduce the (square of the) center of mass energy s = (pB1 + pB2)2

and we define the function

λ(x, y, z) ≡ [x− (y + z)2][x− (y − z)2] . (B.14)

The Lorentz invariant cross section for each individual binary collision is de-

fined as it follows [132]

σB1B2→B3χ(s) = 1
gB1gB2

1
4 pB1 · pB2 vB1B2∫

dΠB3 dΠχ |MB1B2→B3χ|
2

(2π)4δ4(pB1 + pB2 − pB3 − pχ) .

(B.15)

According to our conventions, the squared matrix element appearing in Eq. (B.8)

is only summed over initial states, and this is why we divided the expression above

by an overall factor of gB1gB2 . This allows us to express the collision operator in
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Eq. (B.8) in terms of a thermally averaged cross section

C(a)
B1B2→B3χ = 2gB1gB2

∫
dΠB1 dΠB2 f

eq
B1 f

eq
B2

λ1/2(s,mB1 ,mB2)σB1B2→B3χ(s) ,
(B.16)

where we use Eq. (B.13) for the relative velocity.

The last task left for us is the phase space integration. The integrand depends

only on the energies EB1 and EB2 and on s, thus the only non-trivial angular inte-

gration is the one over the angle θ between the initial momenta. The integration

over the remaining angles is straightforward. After plugging in the definition in

Eq. (B.4), the integration measure reads

dΠB1 dΠB2 = |pB1 |2 d|pB1| dΩB1

16π3EB1

|pB2|2 d|pB2 | dΩB2

16π3EB2

=

|pB1| |pB2|
32π4 dEB1dEB2d cos θ ,

(B.17)

where in the second row we perform the straightforward integration over the

angles and we we use the dispersion relation in Eq. (B.2). In order to proceed, it

is convenient to use the following variables [11]

E+ =EB1 + EB2 , (B.18)

E− =EB1 − EB2 , (B.19)

s =m2
B1 +m2

B2+

2 (EB1EB2 − |pB1||pB2| cos θ) . (B.20)

The Jacobian for this transformation reads

dEB1dEB2d cos θ = dE+dE−ds

4|pB1||pB2|
, (B.21)
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and the integration measure expressed in terms of the new variables takes a much

simpler form

dΠB1 dΠB2 = dE+dE−ds

128π4 . (B.22)

Before computing the integral, we need to identify the integration domain.

The Mandelstam variables s is bound to be in the region

s ≥ smin
12 ≡ (mB1 +mB2)2 . (B.23)

Once we fix s, the variable E+ can take the values

E+ =
√
s−

(
pB1 + pB2

)2
≥
√
s . (B.24)

The allowed values for E− are found after imposing that the absolute value of

cos θ as expressed in Eq. (B.20) is always smaller than one. We find the range

∣∣∣∣E− − E+
(m2

B1
−m2

B2
)

s

∣∣∣∣
(E2

+ − s)
1/2 ≤ λ1/2(s,mB1 ,mB2)

s
. (B.25)

Finally, we perform the integrations. The product f eq
B1 f

eq
B2 = exp[−E+/T ]

depends only on E+, therefore we can always perform the integration over dE−

C(a)
B1B2→B3χ = gB1gB2

32π4 ×∫ ∞
smin

12

ds
λ(s,mB1 ,mB2)

s
σB1B2→B3χ(s)∫ ∞

√
s
dE+ exp[−E+/T ]

(
E2

+ − s
)1/2

.

(B.26)
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The integral over dE+ gives a Bessel function

C(a)
B1B2→B3χ = gB1gB2

32π4 T ×∫ ∞
smin

12

ds
λ(s,mB1 ,mB2)

s1/2 σB1B2→B3χ(s)K1[
√
s/T ] .

(B.27)

This is our final expression. The last integral over s can be performed only after

we specify the explicit cross section, and it is in general model dependent.

We conclude with two additional results. First, we quote the final expression

for the collision operator as defined in Eq. (B.11). After a similar derivation to

the decay case, we find

C(b)
B1B2→B3χ = gB3gχ

32π4 T ×∫ ∞
smin

3χ

ds
λ(s,mB3 ,mχ)

s1/2 σB3χ→B1B2(s)K1[
√
s/T ] ,

(B.28)

where this time smin
3χ = (mB3 + mχ)2. Second, we introduce a compact form to

express the collision operator

C(a)
B1B2→B3χ = 〈σB1B2→B3χv〉n

eq
B1n

eq
B2 , (B.29)

C(b)
B1B2→B3χ = 〈σB3χ→B1B2v〉n

eq
B3n

eq
χ , (B.30)

as a combination of equilibrium number densities and a thermally averaged cross

section. The explicit forms for the latter can be obtained by identifying the
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equilibrium distribution as defined in Eq. (B.3), and they result in

〈σB1B2→B3χv〉 = 1
8K2[mB1/T ]K2[mB2/T ]m2

B1m
2
B2T∫ ∞

smin
12

ds
λ(s,mB1 ,mB2)

s1/2 σB1B2→B3χ(s)K1[
√
s/T ] . (B.31)

〈σB3χ→B1B2v〉 = 1
8K2[mB3/T ]K2[mχ/T ]m2

B3m
2
χT∫ ∞

smin
3χ

ds
λ(s,mB3 ,mχ)

s1/2 σB3χ→B1B2(s)K1[
√
s/T ] . (B.32)

The equality between the collision operators expressed as in Eqs. (B.8) and (B.11)

can be also written as

〈σB1B2→B3χv〉n
eq
B1n

eq
B2 = 〈σB3χ→B1B2v〉n

eq
B3n

eq
χ . (B.33)

Pair Production

The collision operator for the case of DM pair production can be derived by

employing similar techniques. As usual, the collision operator can be written in

two equivalent forms. Here, we report the final results

C(a)
B1B2→χχ = gB1gB2

32π4 T ×∫ ∞
smin

12

ds
λ(s,mB1 ,mB2)

s1/2 σB1B2→χχ(s)K1[
√
s/T ] . (B.34)

C(b)
B1B2→χχ =

g2
χ

32π4 T ×∫ ∞
smin
χχ

ds
λ(s,mχ,mχ)

s1/2 σχχ→B1B2(s)K1[
√
s/T ] . (B.35)
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As already done before, we give expressions for both cases of direct and inverse

reactions. We can also write the collision operators in the form

C(a)
B1B2→χχ = 〈σB1B2→χχv〉n

eq
B1n

eq
B2 , (B.36)

C(b)
B1B2→χχ = 〈σχχ→B1B2v〉neq

χ n
eq
χ , (B.37)

where the thermally averaged cross sections result in

〈σB1B2→χχv〉 = 1
8K2[mB1/T ]K2[mB2/T ]m2

B1m
2
B2T∫ ∞

smin
12

ds
λ(s,mB1 ,mB2)

s1/2 σB1B2→χχ(s)K1[
√
s/T ] , (B.38)

〈σχχ→B1B2v〉 = 1
8K2[mχ/T ]2m4

χT∫ ∞
smin
χχ

ds
λ(s,mχ,mχ)

s1/2 σχχ→B1B2(s)K1[
√
s/T ] . (B.39)

Some Limiting Expressions

All results derived in this Appendix so far did not rely upon any approximation.

Here, we conclude by providing some limiting expressions that are useful for the

analytical estimates found in this work. The scattering analysis in Sec. 3.4 always

assumes a constant matrix element for the collision. In other words, we always

consider matrix element independent on the kinematics. Within this assumption,

the cross section for binary collisions in Eq. (B.15) can be immediately computed

because the phase space integral is straightforward.

For single DM production, and within this assumption, the binary cross section

reads

σB1B2→B3χ(s) = |MB1B2→B3χ|
2

gB1gB2 16πs
λ1/2(s,mB3 ,mχ)
λ1/2(s,mB1 ,mB2) . (B.40)
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Likewise, the cross section for the inverse reaction reads

σB3χ→B1B2(s) = |MB3χ→B1B2|
2

gB3gχ 16πs
λ1/2(s,mB1 ,mB2)
λ1/2(s,mB3 ,mχ) . (B.41)

The collision operator can be computed from Eqs. (B.27) or (B.28). Both expres-

sions give the same result

C(a)
B1B2→B3χ = C(b)

B1B2→B3χ =

|MB1B2→B3χ|
2 T

512π5

∫ ∞
smin

single

ds

s3/2 K1[
√
s/T ]×

λ1/2(s,mB1 ,mB2)λ1/2(s,mB3 ,mχ) ,

(B.42)

where the lower integration limit is set by the kinematical threshold for the reac-

tion smin
single = max

{
smin

12 , smin
3χ

}
. The remaining integral depends on the spectrum

of the model and it can be computed numerically.

For DM pair production, an analogous calculation leads to the result

C(a)
B1B2→χχ = C(b)

B1B2→χχ =

|MB1B2→χχ|
2 T

512π5

∫ ∞
smin

pair

ds

s3/2 K1[
√
s/T ]×

λ1/2(s,mB1 ,mB2)λ1/2(s,mχ,mχ) ,

(B.43)

where this time smin
pair = max

{
smin

12 , smin
χχ

}
.
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Appendix C

Appendix

C.1 Priors

In this Appendix we derive the probability distribution for χeff for general

given spin magnitude and angular distributions. Subsequently, we show how the

distribution for χeff differs when we relax some assumptions that we employed in

our calculations, specifically the assumption that the merging black holes have

the same mass, and the assumption of perfect alignment between the individual

spin and the orbital angular momentum for the “aligned” models.

Let us define the direction of the orbital angular momentum as the direction

of the z-axis, then χeff can be re-written as

χeff = χz1 + qχz2
1 + q

, (C.1)

where q is the mass ratio m2/m1 such that 0 ≤ q ≤ 1, and χzi = χi cos θi is the

individual spin component along the z-axis. Our goal is to derive the distribution

for χzi and the probability distribution for the sum χz1 + qχz2.

First, the distribution of the product for χzi is given by the following integral
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over probability distributions

p(χzi ) =
∫ 1

0
fχi(χi) dχi

∫ 1

−1
fcos θi(cos θi) δ(χzi − χi cos θi) d cos θi, (C.2)

where the probability density functions fχi is just the spin magnitude distribution,

as given, for example, for PBH in Eq. (4.4), and where fcos θi is the distribution

for the cosine of θi (θi is defined under Eq. (4.2)). For instance, if the angular

distribution is isotropic the p(χz) distribution reads as

p(χzi ) = 1
2

∫ 1

|χzi |
fχi(χzi / cos θi)

1
| cos θi|

d cos θi. (C.3)

Using the probability distribution for χzi , and assuming that the individual spins

are independent of each other, we find that the probability distribution for χeff is

given by the following convolution of the distributions

p (χeff) =
∫ 1

−1
dχz1

∫ 1

−1
δ

(
χeff −

(χz1 + qχz2)
(1 + q)

)
p (χz1) p (χz2) dχz2

= (1 + q)
∫ b

a
p (χz2) p ((1 + q)χeff − qχz2) dχz2 ,

(C.4)

where the extrema of integration read

a = max
(
−1, (1 + q)χeff − 1

q

)

b = min
(

1, (1 + q)χeff + 1
q

)
.

(C.5)

In general, there is no analytic solution for the probability density, and we have

to perform the integration numerically to solve for the distribution.
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Figure C.1: Top left: Prior distribution for χeff used in LIGO analysis and for
the PBH model with various values of σ. Top right: Prior distribution for χeff for
different mass ratios q = 1, q = 0.5 and q = 0.2. Bottom: Prior distribution for
χeff for different PBH spin distribution (see sec. 4.2.2 for details).

C.1.1 PBH

In figure C.1, we compare the LIGO prior distribution with the results for the

prior distribution for χeff for our PBH models, for various values of σ = 0.1, 0.2

and 0.3 (top left) and of the mass ratio q (top right). By allowing the width to

vary we get a sense of how sensitive is the PBH distribution with respect to σ is.

The top right panel, instead, illustrates how the choice of q has a very marginal

impact on the functional shape of the predicted prior distribution. Notice that all

events reported by LIGO have a median value of the mass ratio q larger than 0.5

and larger than 0.2 at 90% credible interval (figure 5 on ref. [2]), which is why we

focus on relatively large mass ratios, q = 0.2, 0.5 and 1.0.
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Finally, the bottom panel shows our benchmark q = 1 and σ = 0.27 PBH

prior distribution with what is predicted in the models of Ref. [3]. Notice that

as illustrated in Fig. 5 of Ref. [3], the relevant value for ν ' 6 for masses in the

10 M� range, while the choice of γ reflects the prediction for a nearly flat power

spectrum (γ = 0.88) and a slightly smaller value, which could result from e.g. a

broader power spectrum (see e.g. their Fig. 6, left panel).

C.1.2 Benchmark spin models

Here we study the systematic dependence of the prior distribution for χeff on

the values of the mass ratio q (Fig. C.2, top panels) and on the assumption of

perfect alignment (bottom panel).

The top left panel shows how the LI, FI and HI prior distributions change when

switching to our benchmark value of q = 1 (equal mass ratio) to q = 0.5. The top

right panel does the same for the aligned models LA and FA. It is clear that the

changes for the isotropic models is very small, while for the aligned models there

is a slight but noticeable effect near the peak of the distribution for the FA model,

and a slight shift in the peak location for the LA model. For the aligned models,

as the mass ratio starts to get more extreme, the distribution for χeff begins to

resemble the distribution for the spin magnitude.

The bottom panel of Fig. C.2 shows how the prior distributions for the LA

and FA models change when the assumption of perfect BH spin-orbit is relaxed.

If the BBH is formed via classical isolated binary evolution with an initial perfect

alignment, large values for the misalignment angle are required to be consistent

with the GW151226 event [133], but the natal kicks necessary to explain this

large misalignments usually exceed the typical values for binary evolution models.

Therefore, the distribution of the tilt angle is taken to be flat from 0 up to 35◦,
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Figure C.2: Distribution of χeff for different mass ratios q for the isotropic
(top left) and aligned (top right) models with q = 1 and q = 0.5. Bottom:
the distribution of χeff when the assumption of perfect alignment is relaxed for
the aligned models (green and orange) and BBH efrom massive isolated binaries
through common envelope evolution with randomly misaligned initial spin (blue
dash-dotted line) [134].
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and thus the maximal angle is within the region suggested by Ref. [133]. The

figure shows that the prior distribution is hardly affected at all, with the only

noticeable change being a shift of the peak distribution to slightly lower values of

χeff .

Finally, we consider the scenario of binary BH evolution from isolated massive

binary systems studied in Ref. [134]; in this scenario χeff can take negative values

because of effects such as initially misaligned binary components spins; while other

effects such as mass exchange, tidal interaction, and common envelope evolution

tend to align the spins, the resulting distribution for χeff was found to range

between -0.2 and 0,8, thus encompassing negative values (see their Figure 11). To

mimic this physical situation, here we assumed (following what shown in fig. 8 of

Ref. [134]) that one black hole has a spin orientation that is isotropic compared to

the orbital angular momentum, and has low intrinsic spin magnitude distribution;

for the second black hole, we assumed perfect alignment, and a flat intrinsic spin

magnitude distribution. The resulting χeff distribution is shown in Fig. C.2 with a

dot-dashed light-blue line; our results reflect qualitatively the range for χeff found

in Ref. [134]. We calculated the resulting odds ratio for this setup, and found that

compared to the benchmark LI model, the odd ratio is of -6.04, thus comparable

to what we found for the LA model.

121



Bibliography

[1] K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius
of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615.

[2] LIGO Scientific, Virgo collaboration, B. P. Abbott et al., GWTC-1:
A Gravitational-Wave Transient Catalog of Compact Binary Mergers
Observed by LIGO and Virgo during the First and Second Observing Runs,
1811.12907.

[3] V. De Luca, V. Desjacques, G. Franciolini, A. Malhotra and A. Riotto,
The Initial Spin Probability Distribution of Primordial Black Holes,
1903.01179.

[4] LIGO Scientific, Virgo collaboration, B. P. Abbott et al., Binary
Black Hole Population Properties Inferred from the First and Second
Observing Runs of Advanced LIGO and Advanced Virgo, 1811.12940.

[5] G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark
matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380].

[6] G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence,
candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175].

[7] J. L. Feng, Dark Matter Candidates from Particle Physics and Methods of
Detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [1003.0904].

[8] B. W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy
Neutrino Masses, Phys. Rev. Lett. 39 (1977) 165.

[9] R. J. Scherrer and M. S. Turner, On the Relic, Cosmic Abundance of
Stable Weakly Interacting Massive Particles, Phys. Rev. D33 (1986) 1585.

[10] M. Srednicki, R. Watkins and K. A. Olive, Calculations of Relic Densities
in the Early Universe, Nucl. Phys. B310 (1988) 693.

[11] P. Gondolo and G. Gelmini, Cosmic abundances of stable particles:
Improved analysis, Nucl. Phys. B360 (1991) 145.

122

https://doi.org/10.1103/PhysRevLett.64.615
https://arxiv.org/abs/1811.12907
https://arxiv.org/abs/1903.01179
https://arxiv.org/abs/1811.12940
https://doi.org/10.1016/0370-1573(95)00058-5
https://arxiv.org/abs/hep-ph/9506380
https://doi.org/10.1016/j.physrep.2004.08.031
https://arxiv.org/abs/hep-ph/0404175
https://doi.org/10.1146/annurev-astro-082708-101659
https://arxiv.org/abs/1003.0904
https://doi.org/10.1103/PhysRevLett.39.165
https://doi.org/10.1103/PhysRevD.33.1585, 10.1103/PhysRevD.34.3263
https://doi.org/10.1016/0550-3213(88)90099-5
https://doi.org/10.1016/0550-3213(91)90438-4


[12] M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature
and thermalization of neutrino background, Phys. Rev. D62 (2000) 023506
[astro-ph/0002127].

[13] K. Ichikawa, M. Kawasaki and F. Takahashi, The Oscillation effects on
thermalization of the neutrinos in the Universe with low reheating
temperature, Phys. Rev. D72 (2005) 043522 [astro-ph/0505395].

[14] J. McDonald, WIMP Densities in Decaying Particle Dominated
Cosmology, Phys. Rev. D43 (1991) 1063.

[15] M. Kamionkowski and M. S. Turner, THERMAL RELICS: DO WE
KNOW THEIR ABUNDANCES?, Phys. Rev. D42 (1990) 3310.

[16] D. J. H. Chung, E. W. Kolb and A. Riotto, Production of massive particles
during reheating, Phys. Rev. D60 (1999) 063504 [hep-ph/9809453].

[17] G. F. Giudice, E. W. Kolb and A. Riotto, Largest temperature of the
radiation era and its cosmological implications, Phys. Rev. D64 (2001)
023508 [hep-ph/0005123].

[18] T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated
SUSY breaking, Nucl. Phys. B570 (2000) 455 [hep-ph/9906527].

[19] R. Allahverdi and M. Drees, Production of massive stable particles in
inflaton decay, Phys. Rev. Lett. 89 (2002) 091302 [hep-ph/0203118].

[20] R. Allahverdi and M. Drees, Thermalization after inflation and production
of massive stable particles, Phys. Rev. D66 (2002) 063513
[hep-ph/0205246].

[21] B. S. Acharya, G. Kane, S. Watson and P. Kumar, A Non-thermal WIMP
Miracle, Phys. Rev. D80 (2009) 083529 [0908.2430].

[22] A. Monteux and C. S. Shin, Thermal Goldstino Production with Low
Reheating Temperatures, Phys. Rev. D92 (2015) 035002 [1505.03149].

[23] R. T. Co, F. D’Eramo, L. J. Hall and D. Pappadopulo, Freeze-In Dark
Matter with Displaced Signatures at Colliders, JCAP 1512 (2015) 024
[1506.07532].

[24] H. Davoudiasl, D. Hooper and S. D. McDermott, Inflatable Dark Matter,
Phys. Rev. Lett. 116 (2016) 031303 [1507.08660].

[25] R. T. Co, F. D’Eramo and L. J. Hall, SaxiGUTs and their Predictions,
Phys. Rev. D94 (2016) 075001 [1603.04439].

123

https://doi.org/10.1103/PhysRevD.62.023506
https://arxiv.org/abs/astro-ph/0002127
https://doi.org/10.1103/PhysRevD.72.043522
https://arxiv.org/abs/astro-ph/0505395
https://doi.org/10.1103/PhysRevD.43.1063
https://doi.org/10.1103/PhysRevD.42.3310
https://doi.org/10.1103/PhysRevD.60.063504
https://arxiv.org/abs/hep-ph/9809453
https://doi.org/10.1103/PhysRevD.64.023508
https://doi.org/10.1103/PhysRevD.64.023508
https://arxiv.org/abs/hep-ph/0005123
https://doi.org/10.1016/S0550-3213(99)00748-8
https://arxiv.org/abs/hep-ph/9906527
https://doi.org/10.1103/PhysRevLett.89.091302
https://arxiv.org/abs/hep-ph/0203118
https://doi.org/10.1103/PhysRevD.66.063513
https://arxiv.org/abs/hep-ph/0205246
https://doi.org/10.1103/PhysRevD.80.083529
https://arxiv.org/abs/0908.2430
https://doi.org/10.1103/PhysRevD.92.035002
https://arxiv.org/abs/1505.03149
https://doi.org/10.1088/1475-7516/2015/12/024
https://arxiv.org/abs/1506.07532
https://doi.org/10.1103/PhysRevLett.116.031303
https://arxiv.org/abs/1507.08660
https://arxiv.org/abs/1603.04439


[26] R. T. Co, F. D’Eramo and L. J. Hall, Gravitino or Axino Dark Matter
with Reheat Temperature as high as 1016 GeV, JHEP 03 (2017) 005
[1611.05028].

[27] R. H. Cyburt, B. D. Fields, K. A. Olive and T.-H. Yeh, Big Bang
Nucleosynthesis: 2015, Rev. Mod. Phys. 88 (2016) 015004 [1505.01076].

[28] Planck collaboration, P. A. R. Ade et al., Planck 2015 results. XIII.
Cosmological parameters, Astron. Astrophys. 594 (2016) A13
[1502.01589].

[29] R. R. Caldwell, R. Dave and P. J. Steinhardt, Cosmological imprint of an
energy component with general equation of state, Phys. Rev. Lett. 80
(1998) 1582 [astro-ph/9708069].

[30] V. Sahni and A. A. Starobinsky, The Case for a positive cosmological
Lambda term, Int. J. Mod. Phys. D9 (2000) 373 [astro-ph/9904398].

[31] P. Salati, Quintessence and the relic density of neutralinos, Phys. Lett.
B571 (2003) 121 [astro-ph/0207396].

[32] S. Profumo and P. Ullio, SUSY dark matter and quintessence, JCAP 0311
(2003) 006 [hep-ph/0309220].

[33] S. Dodelson and M. S. Turner, Nonequilibrium neutrino statistical
mechanics in the expanding universe, Phys. Rev. D46 (1992) 3372.

[34] B. Ratra and P. J. E. Peebles, Cosmological Consequences of a Rolling
Homogeneous Scalar Field, Phys. Rev. D37 (1988) 3406.

[35] C. Wetterich, Cosmology and the Fate of Dilatation Symmetry, Nucl. Phys.
B302 (1988) 668.

[36] A. Yu. Kamenshchik, U. Moschella and V. Pasquier, An Alternative to
quintessence, Phys. Lett. B511 (2001) 265 [gr-qc/0103004].

[37] P.-H. Chavanis, Cosmology with a stiff matter era, Phys. Rev. D92 (2015)
103004 [1412.0743].

[38] J. Khoury, B. A. Ovrut, P. J. Steinhardt and N. Turok, The Ekpyrotic
universe: Colliding branes and the origin of the hot big bang, Phys. Rev.
D64 (2001) 123522 [hep-th/0103239].

[39] K. Choi, String or M theory axion as a quintessence, Phys. Rev. D62
(2000) 043509 [hep-ph/9902292].

124

https://doi.org/10.1007/JHEP03(2017)005
https://arxiv.org/abs/1611.05028
https://doi.org/10.1103/RevModPhys.88.015004
https://arxiv.org/abs/1505.01076
https://doi.org/10.1051/0004-6361/201525830
https://arxiv.org/abs/1502.01589
https://doi.org/10.1103/PhysRevLett.80.1582
https://doi.org/10.1103/PhysRevLett.80.1582
https://arxiv.org/abs/astro-ph/9708069
https://doi.org/10.1142/S0218271800000542
https://arxiv.org/abs/astro-ph/9904398
https://doi.org/10.1016/j.physletb.2003.07.073
https://doi.org/10.1016/j.physletb.2003.07.073
https://arxiv.org/abs/astro-ph/0207396
https://doi.org/10.1088/1475-7516/2003/11/006
https://doi.org/10.1088/1475-7516/2003/11/006
https://arxiv.org/abs/hep-ph/0309220
https://doi.org/10.1103/PhysRevD.46.3372
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1016/0550-3213(88)90193-9
https://doi.org/10.1016/0550-3213(88)90193-9
https://doi.org/10.1016/S0370-2693(01)00571-8
https://arxiv.org/abs/gr-qc/0103004
https://doi.org/10.1103/PhysRevD.92.103004
https://doi.org/10.1103/PhysRevD.92.103004
https://arxiv.org/abs/1412.0743
https://doi.org/10.1103/PhysRevD.64.123522
https://doi.org/10.1103/PhysRevD.64.123522
https://arxiv.org/abs/hep-th/0103239
https://doi.org/10.1103/PhysRevD.62.043509
https://doi.org/10.1103/PhysRevD.62.043509
https://arxiv.org/abs/hep-ph/9902292


[40] C. L. Gardner, Quintessence and the transition to an accelerating universe,
Nucl. Phys. B707 (2005) 278 [astro-ph/0407604].

[41] C. Armendariz-Picon, T. Damour and V. F. Mukhanov, k - inflation,
Phys. Lett. B458 (1999) 209 [hep-th/9904075].

[42] A. J. Christopherson and K. A. Malik, The non-adiabatic pressure in
general scalar field systems, Phys. Lett. B675 (2009) 159 [0809.3518].

[43] T. R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I.
Generalizing the bound on s-wave dark matter annihilation from Planck
results, Phys. Rev. D93 (2016) 023527 [1506.03811].

[44] Fermi-LAT collaboration, M. Ackermann et al., Searching for Dark
Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six
Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015)
231301 [1503.02641].

[45] L. J. Hall, K. Jedamzik, J. March-Russell and S. M. West, Freeze-In
Production of FIMP Dark Matter, JHEP 03 (2010) 080 [0911.1120].

[46] V. S. Rychkov and A. Strumia, Thermal production of gravitinos, Phys.
Rev. D75 (2007) 075011 [hep-ph/0701104].

[47] A. Strumia, Thermal production of axino Dark Matter, JHEP 06 (2010)
036 [1003.5847].

[48] S. Hamdan and J. Unwin, Dark Matter Freeze-out During Matter
Domination, 1710.03758.

[49] F. D’Eramo, N. Fernandez and S. Profumo, When the Universe Expands
Too Fast: Relentless Dark Matter, JCAP 1705 (2017) 012 [1703.04793].

[50] B. Dutta, E. Jimenez and I. Zavala, D-brane Disformal Coupling and
Thermal Dark Matter, 1708.07153.

[51] N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen,
The Dawn of FIMP Dark Matter: A Review of Models and Constraints,
Int. J. Mod. Phys. A32 (2017) 1730023 [1706.07442].

[52] R. T. Co, F. D’Eramo, L. J. Hall and K. Harigaya, Saxion Cosmology for
Thermalized Gravitino Dark Matter, JHEP 07 (2017) 125 [1703.09796].

[53] K. Redmond and A. L. Erickcek, New Constraints on Dark Matter
Production during Kination, Phys. Rev. D96 (2017) 043511 [1704.01056].

125

https://doi.org/10.1016/j.nuclphysb.2004.11.065
https://arxiv.org/abs/astro-ph/0407604
https://doi.org/10.1016/S0370-2693(99)00603-6
https://arxiv.org/abs/hep-th/9904075
https://doi.org/10.1016/j.physletb.2009.04.003
https://arxiv.org/abs/0809.3518
https://doi.org/10.1103/PhysRevD.93.023527
https://arxiv.org/abs/1506.03811
https://doi.org/10.1103/PhysRevLett.115.231301
https://doi.org/10.1103/PhysRevLett.115.231301
https://arxiv.org/abs/1503.02641
https://doi.org/10.1007/JHEP03(2010)080
https://arxiv.org/abs/0911.1120
https://doi.org/10.1103/PhysRevD.75.075011
https://doi.org/10.1103/PhysRevD.75.075011
https://arxiv.org/abs/hep-ph/0701104
https://doi.org/10.1007/JHEP06(2010)036
https://doi.org/10.1007/JHEP06(2010)036
https://arxiv.org/abs/1003.5847
https://arxiv.org/abs/1710.03758
https://doi.org/10.1088/1475-7516/2017/05/012
https://arxiv.org/abs/1703.04793
https://arxiv.org/abs/1708.07153
https://doi.org/10.1142/S0217751X1730023X
https://arxiv.org/abs/1706.07442
https://doi.org/10.1007/JHEP07(2017)125
https://arxiv.org/abs/1703.09796
https://doi.org/10.1103/PhysRevD.96.043511
https://arxiv.org/abs/1704.01056


[54] L. Visinelli, (Non-)thermal production of WIMPs during kination,
1710.11006.

[55] J. De-Santiago and J. L. Cervantes-Cota, Generalizing a Unified Model of
Dark Matter, Dark Energy, and Inflation with Non Canonical Kinetic
Term, Phys. Rev. D83 (2011) 063502 [1102.1777].

[56] K. Dimopoulos and C. Owen, Quintessential Inflation with α-attractors,
1703.00305.

[57] K. Rajagopal, M. S. Turner and F. Wilczek, Cosmological implications of
axinos, Nucl. Phys. B358 (1991) 447.

[58] L. Covi, J. E. Kim and L. Roszkowski, Axinos as cold dark matter, Phys.
Rev. Lett. 82 (1999) 4180 [hep-ph/9905212].

[59] L. Covi, H.-B. Kim, J. E. Kim and L. Roszkowski, Axinos as dark matter,
JHEP 05 (2001) 033 [hep-ph/0101009].

[60] E. J. Chun, Dark matter in the Kim-Nilles mechanism, Phys. Rev. D84
(2011) 043509 [1104.2219].

[61] K. J. Bae, K. Choi and S. H. Im, Effective Interactions of Axion
Supermultiplet and Thermal Production of Axino Dark Matter, JHEP 08
(2011) 065 [1106.2452].

[62] K.-Y. Choi, J. E. Kim and L. Roszkowski, Review of axino dark matter, J.
Korean Phys. Soc. 63 (2013) 1685 [1307.3330].

[63] J. E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev.
Lett. 43 (1979) 103.

[64] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Can Confinement
Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B166
(1980) 493.

[65] M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong
CP Problem with a Harmless Axion, Phys. Lett. 104B (1981) 199.

[66] A. R. Zhitnitsky, On Possible Suppression of the Axion Hadron
Interactions. (In Russian), Sov. J. Nucl. Phys. 31 (1980) 260.

[67] LIGO Scientific, Virgo collaboration, B. P. Abbott et al., Observation
of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett.
116 (2016) 061102 [1602.03837].

126

https://arxiv.org/abs/1710.11006
https://doi.org/10.1103/PhysRevD.83.063502
https://arxiv.org/abs/1102.1777
https://arxiv.org/abs/1703.00305
https://doi.org/10.1016/0550-3213(91)90355-2
https://doi.org/10.1103/PhysRevLett.82.4180
https://doi.org/10.1103/PhysRevLett.82.4180
https://arxiv.org/abs/hep-ph/9905212
https://doi.org/10.1088/1126-6708/2001/05/033
https://arxiv.org/abs/hep-ph/0101009
https://doi.org/10.1103/PhysRevD.84.043509
https://doi.org/10.1103/PhysRevD.84.043509
https://arxiv.org/abs/1104.2219
https://doi.org/10.1007/JHEP08(2011)065
https://doi.org/10.1007/JHEP08(2011)065
https://arxiv.org/abs/1106.2452
https://doi.org/10.3938/jkps.63.1685
https://doi.org/10.3938/jkps.63.1685
https://arxiv.org/abs/1307.3330
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837


[68] S. Bird, I. Cholis, J. B. Muñoz, Y. Ali-Haïmoud, M. Kamionkowski, E. D.
Kovetz et al., Did LIGO detect dark matter?, Phys. Rev. Lett. 116 (2016)
201301 [1603.00464].

[69] B. J. Carr, K. Kohri, Y. Sendouda and J. Yokoyama, New cosmological
constraints on primordial black holes, Phys. Rev. D81 (2010) 104019
[0912.5297].

[70] V. Poulin, P. D. Serpico, F. Calore, S. Clesse and K. Kohri, CMB bounds
on disk-accreting massive primordial black holes, Phys. Rev. D96 (2017)
083524 [1707.04206].

[71] T. Nakama, B. Carr and J. Silk, Limits on primordial black holes from µ
distortions in cosmic microwave background, Phys. Rev. D97 (2018)
043525 [1710.06945].

[72] Y. Ali-Haïmoud and M. Kamionkowski, Cosmic microwave background
limits on accreting primordial black holes, Phys. Rev. D95 (2017) 043534
[1612.05644].

[73] T. D. Brandt, Constraints on MACHO Dark Matter from Compact Stellar
Systems in Ultra-Faint Dwarf Galaxies, Astrophys. J. 824 (2016) L31
[1605.03665].

[74] S. M. Koushiappas and A. Loeb, Dynamics of Dwarf Galaxies Disfavor
Stellar-Mass Black Holes as Dark Matter, Phys. Rev. Lett. 119 (2017)
041102 [1704.01668].

[75] DES collaboration, T. S. Li et al., Farthest Neighbor: The Distant Milky
Way Satellite Eridanus II, Astrophys. J. 838 (2017) 8 [1611.05052].

[76] M. Zumalacarregui and U. Seljak, Limits on stellar-mass compact objects
as dark matter from gravitational lensing of type Ia supernovae, Phys. Rev.
Lett. 121 (2018) 141101 [1712.02240].

[77] J. Garcia-Bellido, S. Clesse and P. Fleury, Primordial black holes survive
SN lensing constraints, Phys. Dark Univ. 20 (2018) 95 [1712.06574].

[78] T. Harada, C.-M. Yoo, K. Kohri and K.-I. Nakao, Spins of primordial
black holes formed in the matter-dominated phase of the Universe, Phys.
Rev. D96 (2017) 083517 [1707.03595].

[79] F. D’Eramo, N. Fernandez and S. Profumo, Dark Matter Freeze-in
Production in Fast-Expanding Universes, JCAP 1802 (2018) 046
[1712.07453].

127

https://doi.org/10.1103/PhysRevLett.116.201301
https://doi.org/10.1103/PhysRevLett.116.201301
https://arxiv.org/abs/1603.00464
https://doi.org/10.1103/PhysRevD.81.104019
https://arxiv.org/abs/0912.5297
https://doi.org/10.1103/PhysRevD.96.083524
https://doi.org/10.1103/PhysRevD.96.083524
https://arxiv.org/abs/1707.04206
https://doi.org/10.1103/PhysRevD.97.043525
https://doi.org/10.1103/PhysRevD.97.043525
https://arxiv.org/abs/1710.06945
https://doi.org/10.1103/PhysRevD.95.043534
https://arxiv.org/abs/1612.05644
https://doi.org/10.3847/2041-8205/824/2/L31
https://arxiv.org/abs/1605.03665
https://doi.org/10.1103/PhysRevLett.119.041102
https://doi.org/10.1103/PhysRevLett.119.041102
https://arxiv.org/abs/1704.01668
https://doi.org/10.3847/1538-4357/aa6113
https://arxiv.org/abs/1611.05052
https://doi.org/10.1103/PhysRevLett.121.141101
https://doi.org/10.1103/PhysRevLett.121.141101
https://arxiv.org/abs/1712.02240
https://doi.org/10.1016/j.dark.2018.04.005
https://arxiv.org/abs/1712.06574
https://doi.org/10.1103/PhysRevD.99.069904, 10.1103/PhysRevD.96.083517
https://doi.org/10.1103/PhysRevD.99.069904, 10.1103/PhysRevD.96.083517
https://arxiv.org/abs/1707.03595
https://doi.org/10.1088/1475-7516/2018/02/046
https://arxiv.org/abs/1712.07453


[80] VIRGO, LIGO Scientific collaboration, B. P. Abbott et al.,
GW170104: Observation of a 50-Solar-Mass Binary Black Hole
Coalescence at Redshift 0.2, Phys. Rev. Lett. 118 (2017) 221101
[1706.01812].

[81] Virgo, LIGO Scientific collaboration, B. P. Abbott et al., GW170608:
Observation of a 19-solar-mass Binary Black Hole Coalescence, Astrophys.
J. 851 (2017) L35 [1711.05578].

[82] Virgo, LIGO Scientific collaboration, B. P. Abbott et al., GW170814:
A Three-Detector Observation of Gravitational Waves from a Binary Black
Hole Coalescence, Phys. Rev. Lett. 119 (2017) 141101 [1709.09660].

[83] Virgo, LIGO Scientific collaboration, B. P. Abbott et al., Binary
Black Hole Mergers in the first Advanced LIGO Observing Run, Phys. Rev.
X6 (2016) 041015 [1606.04856].

[84] W. M. Farr, S. Stevenson, M. Coleman Miller, I. Mandel, B. Farr and
A. Vecchio, Distinguishing Spin-Aligned and Isotropic Black Hole
Populations With Gravitational Waves, Nature 548 (2017) 426
[1706.01385].

[85] K. Belczynski et al., The origin of low spin of black holes in LIGO/Virgo
mergers, 1706.07053.

[86] S. Vitale, D. Gerosa, C.-J. Haster, K. Chatziioannou and A. Zimmerman,
Impact of Bayesian Priors on the Characterization of Binary Black Hole
Coalescences, Phys. Rev. Lett. 119 (2017) 251103 [1707.04637].

[87] B. Farr, D. E. Holz and W. M. Farr, Using Spin to Understand the
Formation of LIGO and Virgo’s Black Holes, Astrophys. J. 854 (2018) L9
[1709.07896].

[88] S. Stevenson, C. P. L. Berry and I. Mandel, Hierarchical analysis of
gravitational-wave measurements of binary black hole spin–orbit
misalignments, Mon. Not. Roy. Astron. Soc. 471 (2017) 2801
[1703.06873].

[89] D. Wysocki, J. Lange and R. O. ’shaughnessy, Reconstructing
phenomenological distributions of compact binaries via gravitational wave
observations, 1805.06442.

[90] T. Chiba and S. Yokoyama, Spin Distribution of Primordial Black Holes,
PTEP 2017 (2017) 083E01 [1704.06573].

128

https://doi.org/10.1103/PhysRevLett.118.221101, 10.1103/PhysRevLett.121.129901
https://arxiv.org/abs/1706.01812
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.3847/2041-8213/aa9f0c
https://arxiv.org/abs/1711.05578
https://doi.org/10.1103/PhysRevLett.119.141101
https://arxiv.org/abs/1709.09660
https://doi.org/10.1103/PhysRevX.6.041015, 10.1103/PhysRevX.8.039903
https://doi.org/10.1103/PhysRevX.6.041015, 10.1103/PhysRevX.8.039903
https://arxiv.org/abs/1606.04856
https://doi.org/10.1038/nature23453
https://arxiv.org/abs/1706.01385
https://arxiv.org/abs/1706.07053
https://doi.org/10.1103/PhysRevLett.119.251103
https://arxiv.org/abs/1707.04637
https://doi.org/10.3847/2041-8213/aaaa64
https://arxiv.org/abs/1709.07896
https://doi.org/10.1093/mnras/stx1764
https://arxiv.org/abs/1703.06873
https://arxiv.org/abs/1805.06442
https://doi.org/10.1093/ptep/ptx087
https://arxiv.org/abs/1704.06573


[91] LIGO Scientific, VIRGO collaboration, J. Abadie et al., Predictions
for the Rates of Compact Binary Coalescences Observable by Ground-based
Gravitational-wave Detectors, Class. Quant. Grav. 27 (2010) 173001
[1003.2480].

[92] I. Mandel and R. O’Shaughnessy, Compact Binary Coalescences in the
Band of Ground-based Gravitational-Wave Detectors, Class. Quant. Grav.
27 (2010) 114007 [0912.1074].

[93] M. Spera and M. Mapelli, Very massive stars, pair-instability supernovae
and intermediate-mass black holes with the SEVN code, Mon. Not. Roy.
Astron. Soc. 470 (2017) 4739 [1706.06109].

[94] C. Kimball, C. P. L. Berry and V. Kalogera, What GW170729’s
exceptional mass and spin tells us about its family tree, 1903.07813.

[95] M. U. Kruckow, T. M. Tauris, N. Langer, M. Kramer and R. G. Izzard,
Progenitors of gravitational wave mergers: Binary evolution with the
stellar grid-based code ComBinE, 1801.05433.

[96] M. Fishbach, D. E. Holz and B. Farr, Are LIGO’s Black Holes Made From
Smaller Black Holes?, Astrophys. J. 840 (2017) L24 [1703.06869].

[97] S. Vitale, Three observational differences for binary black holes detections
with second and third generation gravitational-wave detectors, Phys. Rev.
D94 (2016) 121501 [1610.06914].

[98] A. Heger and S. E. Woosley, The nucleosynthetic signature of population
III, Astrophys. J. 567 (2002) 532 [astro-ph/0107037].

[99] K. Belczynski et al., The Effect of Pair-Instability Mass Loss on Black
Hole Mergers, Astron. Astrophys. 594 (2016) A97 [1607.03116].

[100] M. Fishbach and D. E. Holz, Where Are LIGO’s Big Black Holes?,
Astrophys. J. 851 (2017) L25 [1709.08584].

[101] C. Talbot and E. Thrane, Determining the population properties of
spinning black holes, Phys. Rev. D96 (2017) 023012 [1704.08370].

[102] J. Roulet and M. Zaldarriaga, Constraints on Binary Black Hole
Populations from LIGO-Virgo Detections, Mon. Not. Roy. Astron. Soc.
484 (2019) 4216 [1806.10610].

[103] Y. Bai, V. Barger and S. Lu, Measuring the Black Hole Mass Spectrum
from Redshifts of aLIGO Binary Merger Events, 1802.04909.

129

https://doi.org/10.1088/0264-9381/27/17/173001
https://arxiv.org/abs/1003.2480
https://doi.org/10.1088/0264-9381/27/11/114007
https://doi.org/10.1088/0264-9381/27/11/114007
https://arxiv.org/abs/0912.1074
https://doi.org/10.1093/mnras/stx1576
https://doi.org/10.1093/mnras/stx1576
https://arxiv.org/abs/1706.06109
https://arxiv.org/abs/1903.07813
https://arxiv.org/abs/1801.05433
https://doi.org/10.3847/2041-8213/aa7045
https://arxiv.org/abs/1703.06869
https://doi.org/10.1103/PhysRevD.94.121501
https://doi.org/10.1103/PhysRevD.94.121501
https://arxiv.org/abs/1610.06914
https://doi.org/10.1086/338487
https://arxiv.org/abs/astro-ph/0107037
https://doi.org/10.1051/0004-6361/201628980
https://arxiv.org/abs/1607.03116
https://doi.org/10.3847/2041-8213/aa9bf6
https://arxiv.org/abs/1709.08584
https://doi.org/10.1103/PhysRevD.96.023012
https://arxiv.org/abs/1704.08370
https://doi.org/10.1093/mnras/stz226
https://doi.org/10.1093/mnras/stz226
https://arxiv.org/abs/1806.10610
https://arxiv.org/abs/1802.04909


[104] J. E. McClintock, R. Narayan and J. F. Steiner, Black Hole Spin via
Continuum Fitting and the Role of Spin in Powering Transient Jets, Space
Sci. Rev. 183 (2014) 295 [1303.1583].

[105] L. Gou, J. E. McClintock, M. J. Reid, J. A. Orosz, J. F. Steiner,
R. Narayan et al., The Extreme Spin of the Black Hole in Cygnus X-1,
Astrophys. J. 742 (2011) 85 [1106.3690].

[106] E. Thrane and C. Talbot, An introduction to Bayesian inference in
gravitational-wave astronomy: parameter estimation, model selection, and
hierarchical models, Publ. Astron. Soc. Austral. 36 (2019) 10 [1809.02293].

[107] K. K. Y. Ng, S. Vitale, A. Zimmerman, K. Chatziioannou, D. Gerosa and
C.-J. Haster, Gravitational-wave astrophysics with effective-spin
measurements: asymmetries and selection biases, Phys. Rev. D98 (2018)
083007 [1805.03046].

[108] M. Campanelli, C. O. Lousto and Y. Zlochower, Spinning-black-hole
binaries: The orbital hang up, Phys. Rev. D74 (2006) 041501
[gr-qc/0604012].

[109] S. Clesse and J. García-Bellido, Seven Hints for Primordial Black Hole
Dark Matter, Phys. Dark Univ. 22 (2018) 137 [1711.10458].

[110] V. Tiwari, S. Fairhurst and M. Hannam, Constraining black-hole spins
with gravitational wave observations, Astrophys. J. 868 (2018) 140
[1809.01401].

[111] A. V. Tutukov and L. R. YungelSon, The merger rate of neutron star and
black hole binaries, Mon. Not. Roy. Astron. Soc. 260 (1993) 675.

[112] M. C. Miller and J. M. Miller, The Masses and Spins of Neutron Stars and
Stellar-Mass Black Holes, Phys. Rept. 548 (2014) 1 [1408.4145].

[113] D. Gerosa, E. Berti, R. O’Shaughnessy, K. Belczynski, M. Kesden,
D. Wysocki et al., Spin orientations of merging black holes formed from the
evolution of stellar binaries, Phys. Rev. D98 (2018) 084036 [1808.02491].

[114] T. Fragos, M. Tremmel, E. Rantsiou and K. Belczynski, Black Hole
Spin-Orbit Misalignment in Galactic X-ray Binaries, Astrophys. J. 719
(2010) L79 [1001.1107].

[115] D. Wysocki, D. Gerosa, R. O’Shaughnessy, K. Belczynski, W. Gladysz,
E. Berti et al., Explaining LIGO’s observations via isolated binary
evolution with natal kicks, Phys. Rev. D97 (2018) 043014 [1709.01943].

130

https://doi.org/10.1007/s11214-013-0003-9
https://doi.org/10.1007/s11214-013-0003-9
https://arxiv.org/abs/1303.1583
https://doi.org/10.1088/0004-637X/742/2/85
https://arxiv.org/abs/1106.3690
https://doi.org/10.1017/pasa.2019.2
https://arxiv.org/abs/1809.02293
https://doi.org/10.1103/PhysRevD.98.083007
https://doi.org/10.1103/PhysRevD.98.083007
https://arxiv.org/abs/1805.03046
https://doi.org/10.1103/PhysRevD.74.041501
https://arxiv.org/abs/gr-qc/0604012
https://doi.org/10.1016/j.dark.2018.08.004
https://arxiv.org/abs/1711.10458
https://doi.org/10.3847/1538-4357/aae8df
https://arxiv.org/abs/1809.01401
https://doi.org/10.1093/mnras/260.3.675
https://doi.org/10.1016/j.physrep.2014.09.003
https://arxiv.org/abs/1408.4145
https://doi.org/10.1103/PhysRevD.98.084036
https://arxiv.org/abs/1808.02491
https://doi.org/10.1088/2041-8205/719/1/L79
https://doi.org/10.1088/2041-8205/719/1/L79
https://arxiv.org/abs/1001.1107
https://doi.org/10.1103/PhysRevD.97.043014
https://arxiv.org/abs/1709.01943


[116] LIGO Scientific, Virgo collaboration, B. P. Abbott et al.,
Astrophysical Implications of the Binary Black-Hole Merger GW150914,
Astrophys. J. 818 (2016) L22 [1602.03846].

[117] P. Marchant, N. Langer, P. Podsiadlowski, T. M. Tauris and T. J. Moriya,
A new route towards merging massive black holes, Astron. Astrophys. 588
(2016) A50 [1601.03718].

[118] S. F. Portegies Zwart and S. McMillan, Black hole mergers in the universe,
Astrophys. J. 528 (2000) L17 [astro-ph/9910061].

[119] C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J.
Haster and F. A. Rasio, Binary Black Hole Mergers from Globular
Clusters: Implications for Advanced LIGO, Phys. Rev. Lett. 115 (2015)
051101 [1505.00792].

[120] N. C. Stone, B. D. Metzger and Z. Haiman, Assisted inspirals of stellar
mass black holes embedded in AGN discs: solving the ‘final au problem’,
Mon. Not. Roy. Astron. Soc. 464 (2017) 946 [1602.04226].

[121] S. Sigurdsson and L. Hernquist, Primordial black holes in globular clusters,
Nature 364 (1993) 423.

[122] K. Postnov and N. Mitichkin, Spins of primordial binary black holes before
coalescence, 1904.00570.

[123] B. Zackay, T. Venumadhav, L. Dai, J. Roulet and M. Zaldarriaga, A
Highly Spinning and Aligned Binary Black Hole Merger in the Advanced
LIGO First Observing Run, 1902.10331.

[124] T. Venumadhav, B. Zackay, J. Roulet, L. Dai and M. Zaldarriaga, New
Binary Black Hole Mergers in the Second Observing Run of Advanced
LIGO and Advanced Virgo, 1904.07214.

[125] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio
et al., Investigating the near-criticality of the Higgs boson, JHEP 12
(2013) 089 [1307.3536].

[126] L. J. Hall and Y. Nomura, Grand Unification and Intermediate Scale
Supersymmetry, JHEP 02 (2014) 129 [1312.6695].

[127] L. J. Hall, Y. Nomura and S. Shirai, Grand Unification, Axion, and
Inflation in Intermediate Scale Supersymmetry, JHEP 06 (2014) 137
[1403.8138].

131

https://doi.org/10.3847/2041-8205/818/2/L22
https://arxiv.org/abs/1602.03846
https://doi.org/10.1051/0004-6361/201628133
https://doi.org/10.1051/0004-6361/201628133
https://arxiv.org/abs/1601.03718
https://doi.org/10.1086/312422
https://arxiv.org/abs/astro-ph/9910061
https://doi.org/10.1103/PhysRevLett.116.029901, 10.1103/PhysRevLett.115.051101
https://doi.org/10.1103/PhysRevLett.116.029901, 10.1103/PhysRevLett.115.051101
https://arxiv.org/abs/1505.00792
https://doi.org/10.1093/mnras/stw2260
https://arxiv.org/abs/1602.04226
https://doi.org/10.1038/364423a0
https://arxiv.org/abs/1904.00570
https://arxiv.org/abs/1902.10331
https://arxiv.org/abs/1904.07214
https://doi.org/10.1007/JHEP12(2013)089
https://doi.org/10.1007/JHEP12(2013)089
https://arxiv.org/abs/1307.3536
https://doi.org/10.1007/JHEP02(2014)129
https://arxiv.org/abs/1312.6695
https://doi.org/10.1007/JHEP06(2014)137
https://arxiv.org/abs/1403.8138


[128] P. J. Fox, G. D. Kribs and A. Martin, Split Dirac Supersymmetry: An
Ultraviolet Completion of Higgsino Dark Matter, Phys. Rev. D90 (2014)
075006 [1405.3692].

[129] F. D’Eramo, L. J. Hall and D. Pappadopulo, Radiative PQ Breaking and
the Higgs Boson Mass, JHEP 06 (2015) 117 [1502.06963].

[130] V. F. Mukhanov, Nucleosynthesis without a computer, Int. J. Theor. Phys.
43 (2004) 669 [astro-ph/0303073].

[131] E. W. Kolb and M. S. Turner, The Early Universe, Front. Phys. 69 (1990)
1.

[132] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field
theory. Addison-Wesley, Reading, USA, 1995.

[133] R. O’Shaughnessy, D. Gerosa and D. Wysocki, Inferences about supernova
physics from gravitational-wave measurements: GW151226 spin
misalignment as an indicator of strong black-hole natal kicks, Phys. Rev.
Lett. 119 (2017) 011101 [1704.03879].

[134] K. Postnov and A. Kuranov, Black hole spins in coalescing binary black
holes, Mon. Not. Roy. Astron. Soc. 483 (2019) 3288 [1706.00369].

[135] F. Elahi, C. Kolda and J. Unwin, UltraViolet Freeze-in, JHEP 03 (2015)
048 [1410.6157].

[136] R. R. Caldwell, A Phantom menace?, Phys. Lett. B545 (2002) 23
[astro-ph/9908168].

[137] J. Sola and H. Stefancic, Effective equation of state for dark energy:
Mimicking quintessence and phantom energy through a variable lambda,
Phys. Lett. B624 (2005) 147 [astro-ph/0505133].

[138] E. J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int.
J. Mod. Phys. D15 (2006) 1753 [hep-th/0603057].

[139] Y.-F. Cai, E. N. Saridakis, M. R. Setare and J.-Q. Xia, Quintom
Cosmology: Theoretical implications and observations, Phys. Rept. 493
(2010) 1 [0909.2776].

[140] L. P. Chimento, Extended tachyon field, Chaplygin gas and solvable
k-essence cosmologies, Phys. Rev. D69 (2004) 123517 [astro-ph/0311613].

[141] P. Creminelli, K. Hinterbichler, J. Khoury, A. Nicolis and E. Trincherini,
Subluminal Galilean Genesis, JHEP 02 (2013) 006 [1209.3768].

132

https://doi.org/10.1103/PhysRevD.90.075006
https://doi.org/10.1103/PhysRevD.90.075006
https://arxiv.org/abs/1405.3692
https://doi.org/10.1007/JHEP06(2015)117
https://arxiv.org/abs/1502.06963
https://doi.org/10.1023/B:IJTP.0000048169.69609.77
https://doi.org/10.1023/B:IJTP.0000048169.69609.77
https://arxiv.org/abs/astro-ph/0303073
https://doi.org/10.1103/PhysRevLett.119.011101
https://doi.org/10.1103/PhysRevLett.119.011101
https://arxiv.org/abs/1704.03879
https://doi.org/10.1093/mnras/sty3313
https://arxiv.org/abs/1706.00369
https://doi.org/10.1007/JHEP03(2015)048
https://doi.org/10.1007/JHEP03(2015)048
https://arxiv.org/abs/1410.6157
https://doi.org/10.1016/S0370-2693(02)02589-3
https://arxiv.org/abs/astro-ph/9908168
https://doi.org/10.1016/j.physletb.2005.08.051
https://arxiv.org/abs/astro-ph/0505133
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.1142/S021827180600942X
https://arxiv.org/abs/hep-th/0603057
https://doi.org/10.1016/j.physrep.2010.04.001
https://doi.org/10.1016/j.physrep.2010.04.001
https://arxiv.org/abs/0909.2776
https://doi.org/10.1103/PhysRevD.69.123517
https://arxiv.org/abs/astro-ph/0311613
https://doi.org/10.1007/JHEP02(2013)006
https://arxiv.org/abs/1209.3768


[142] J.-L. Lehners, New Ekpyrotic Quantum Cosmology, Phys. Lett. B750
(2015) 242 [1504.02467].

[143] T. Piran and K. Hotokezaka, Who Ordered That? On The Origin of
LIGO’s Merging Binary Black Holes, 1807.01336.

[144] D. Gerosa, A. Lima, E. Berti, U. Sperhake, M. Kesden and
R. O’Shaughnessy, Wide nutation: binary black-hole spins repeatedly
oscillating from full alignment to full anti-alignment, Class. Quant. Grav.
36 (2018) 10 [1811.05979].

[145] T. W. Baumgarte and C. Gundlach, Critical collapse of rotating radiation
fluids, Phys. Rev. Lett. 116 (2016) 221103 [1603.04373].

[146] C. Gundlach and T. W. Baumgarte, Critical gravitational collapse with
angular momentum, Phys. Rev. D94 (2016) 084012 [1608.00491].

[147] C. Gundlach and J. M. Martin-Garcia, Critical phenomena in gravitational
collapse, Living Rev. Rel. 10 (2007) 5 [0711.4620].

[148] K. Hotekezaka and T. Piran, Are the observed black hole mergers spins
consistent with field binary progenitors?, 1707.08978.

[149] M. Sasaki, T. Suyama, T. Tanaka and S. Yokoyama, Primordial Black
Hole Scenario for the Gravitational-Wave Event GW150914, Phys. Rev.
Lett. 117 (2016) 061101 [1603.08338].

[150] L. Barack et al., Black holes, gravitational waves and fundamental physics:
a roadmap, 1806.05195.

[151] M. Sasaki, T. Suyama, T. Tanaka and S. Yokoyama, Primordial black
holes—perspectives in gravitational wave astronomy, Class. Quant. Grav.
35 (2018) 063001 [1801.05235].

[152] E. Payne, C. Talbot and E. Thrane, Higher order gravitational-wave modes
with likelihood reweighting, 1905.05477.

133

https://doi.org/10.1016/j.physletb.2015.09.032
https://doi.org/10.1016/j.physletb.2015.09.032
https://arxiv.org/abs/1504.02467
https://arxiv.org/abs/1807.01336
https://doi.org/10.1088/1361-6382/ab14ae
https://doi.org/10.1088/1361-6382/ab14ae
https://arxiv.org/abs/1811.05979
https://doi.org/10.1103/PhysRevLett.116.221103
https://arxiv.org/abs/1603.04373
https://doi.org/10.1103/PhysRevD.94.084012
https://arxiv.org/abs/1608.00491
https://doi.org/10.12942/lrr-2007-5
https://arxiv.org/abs/0711.4620
https://arxiv.org/abs/1707.08978
https://doi.org/10.1103/PhysRevLett.121.059901, 10.1103/PhysRevLett.117.061101
https://doi.org/10.1103/PhysRevLett.121.059901, 10.1103/PhysRevLett.117.061101
https://arxiv.org/abs/1603.08338
https://arxiv.org/abs/1806.05195
https://doi.org/10.1088/1361-6382/aaa7b4
https://doi.org/10.1088/1361-6382/aaa7b4
https://arxiv.org/abs/1801.05235
https://arxiv.org/abs/1905.05477

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Freeze-out in Modified Cosmologies
	Introduction
	A faster expansion
	BBN Constraints
	Dark Matter Freeze-Out
	Boltzmann Equation
	An Earlier Freeze-Out
	Relentless Relics
	Number Density Evolution
	Enhancement in the Relic Density
	Dependence on the DM mass

	Ultra Stiff Fluids
	Quintessence (n = 2)
	Faster than Quintessence (n > 2)
	No superluminal propagation

	Discussion and Conclusions

	Freeze-in in Modified Cosmologies
	Introduction
	Boltzmann Equation for Freeze-In
	The cosmological background
	IR vs. UV production

	Freeze-In from Decays
	Number Density Evolution
	Relic Density Suppression
	Displaced Events at Colliders

	Freeze-In from Scattering
	DM Single Production
	DM Pair Production
	Implications for Dark Matter Detection

	Discussion and Conclusions

	Primordial Black Holes and Effective Spin Measurements with LIGO-Virgo
	Introduction
	Effective Spin Distribution
	LIGO-Virgo effective spin measurements
	PBH spin distribution
	Benchmark spin models for astrophysical BH

	Analysis and Results
	Comparing models to observations: odds ratios and mixture
	Future events

	Discussion and Conclusions

	Conclusion
	Appendix
	Dark matter thermalization
	Massless Mediator
	Heavy Mediator

	Neutron Freeze-Out and BBN
	Semi-Analytical Freeze-Out
	Standard Cosmology
	Non-Standard Cosmology Freeze-Out


	Appendix
	Collision Operators
	Collision Operator for Decays
	Collision Operator for Scattering


	Appendix
	Priors
	PBH
	Benchmark spin models


	Bibliography



