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ABSTRACT OF THE DISSERTATION

Practical and Scalable Methods for

Information Network Analysis and Mining

by

Wenchao Yu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Wei Wang, Chair

The problem of information network analysis has gained increasing attention in recent years, be-

cause most objects and data in the real world are interconnected, forming complex networks. One

challenging aspect of network analysis is that they are inherently resistant to parametric modeling,

which allows us to truly express the vertices and edges in the network as vectors or functions of

time. This is because, unlike multi-dimensional data, the edges in the network reflect interactions

among vertices, and it is difficult to independently model them without taking into account their

correlations and interactions with neighboring vertices or edges. This thesis presents a combina-

tion of the methods and applications in static network analysis and evolutionary network analysis,

which is trying to analyze and model the structure and evolution in networks.

On the analysis of static network side, we develop methods to learn the network representations

with adversarially regularized autoencoders, which learns smoothly regularized vertex representa-

tions that well capture the network structure through jointly considering both locality-preserving

and global reconstruction constraints. And applications in community detection are designed to de-

tect communities which have the maximum competition intensity score in an advertiser-keyword

bipartite network.

On the analysis of evolutionary network side, we show that it is indeed possible to represent

the network structure purely as a function of time with the use of temporal matrix factorization,

in which the entries are parameterized by time. This opens the possibility of using the approach

ii



for a wide variety of evolutionary network analysis problems, such as temporal link prediction.

It can also be utilized to model co-evolution across multiple networks by decomposing the adja-

cency matrix of each co-evolving network into a product of network-independent factors and a set

of network-specific time-dependent factors. Applications in temporal link prediction and online

anomaly detection are proposed, in which the low-dimensional representations of networks can be

learned and updated to capture evolutionary network structures.
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CHAPTER 1

Introduction

Information networks have emerged as a powerful conceptual paradigm in science and engineer-

ing, which appear in a wide variety of researches, ranging across social networks, communication

networks, citation networks, etc., as shown in Figure 1.1. The reason for this unprecedented atten-

tion to information networks is twofold. On the one hand, this attention is driven by applications in

areas such as biological and social science, which are trying to gain a deeper understanding of the

roles that the inter-elemental interactions play in the networked data. On the other hand, advanced

technological methods have facilitated the ability to analyze the complex networks. This thesis

will introduce various methods and applications with different forms of information networks. In

particular, we will categorize these networks into two groups: static networks and evolutionary

networks, as described below,

Static Networks: In these networks, the edges and vertices are static, that is, the edge and

vertex sets will not be varying over time. This is, for example, the situation in road network

analysis. We can assume that network is fixed after being established.

Evolutionary Networks: These networks are changing as a function of time. Here edge and

vertex sets are time varying, either by adding or removing edges or vertices over time. For exam-

ples, in social networks, people make and lose friends over time, thereby creating and destroying

edges, and some people become part of new social networks or leave their networks, changing the

vertices in the network.

The analysis of static and evolutionary information networks has been attracting many research

interests with its enormous potential in mining useful information which benefits the downstream

tasks such as link prediction, community detection and anomaly detection. A basic premise in

information network analysis is that the structure and attributes of the network influence the prop-

1



(a) Social Network (b) World Wide Web (c) Communication Network

(d) Citation Network (e) Road Network (f) Protein Interaction Network

Figure 1.1: Network examples
Social Network: https://williamjturkel.net/2011/08/02/social-network-analysis-and-visualization/

World Wide Web: http://rtfm.readthedocs.io/en/latest/security/network.html

Communication Network: https://www.hindawi.com/archive/2013/972352/

Citation Network: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0039464

Road Network: https://en.wikipedia.org/wiki/United_States_Numbered_Highway_System

Protein Interaction Networks: http://research.stowers.org/proteomics/ProtNetAnal.html

erties exhibited at the network level. Next, we will describe the problems in information network

analysis that motivated our research.

1.1 Motivation

Ultimately we search for methods to learn interesting representations that let us characterize the

underlying network structures with both static and dynamic settings. Then we design applications

that take advantages of the identified structural network representations by the learning methods.

We describe the motivations below regarding to different forms of information networks.
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1.1.1 PART I – Static Network Analysis

To analyze the static network data, one fundamental problem is to learn a low-dimensional vector

representation for each vertex, such that the network structure is preserved in the learned vector

space. For this problem, there are two major challenges:

• preservation of complex structure property. The objective of network embedding is to train

a model to “fit” the training networks, that is, to preserve the structure property of networks.

However, the latent structure of the network is too complex to be portrayed by an explicit

form of probability density which can capture both the local network neighborhood infor-

mation and global network structure.

• sparsity of network sampling. Current research on network embedding employs network

sampling techniques, including random walk sampling, breadth-first search etc., to derive

vertex sequences as training datasets. However, the sampling strategy suffers from the data

sparsity problem since the total amount of vertex sequences is usually very large in real

networks and it is often intractable to enumerate all. Subsequently, learning on a sparse

sample set tends to produce an overly complex model to explain the sampled dataset, which

eventually causes overfitting.

Therefore, carefully designed regularizations are still desirable for improving generalization of the

learned network representations. Moreover, most network embedding models with deep architec-

tures usually do not consider the order of the vertices in the sampled vertex sequences. Thus, the

information of proximity orders cannot be well considered.

On the application side, this thesis focuses on community detection task. In a sponsored search

market, different advertisers, bidding on the same set of keywords, compete against each other for

their ad slot in the search results. A common question to answer is “what is the best way to measure

the competition among different advertisers in the bi-partite advertiser-keyword network?”. This

is a very important question from the search providers’ perspective, as understanding the intensity

of competition among different advertisers can help them monitor a sector better. However, not

much work has been conducted in identifying competitive advertiser communities.

3



1.1.2 PART II – Evolutionary Network Analysis

In recent years, a significant amount of work has been done on the area of evolutionary network

analysis, which examines various problems in the context of network evolution. Some examples

of such problems are as follows:

• Based on the trends in the past, which links are most likely to be received at a future point

in time? How does the likelihood change with increasing value of time. Note that this is a

more refined problem than traditional link prediction, in which one simply predicts the links

based on a static state of the network.

• How do communities evolve over time? Which communities grow, and which ones shrink?

Which ones are expected to grow in the future? Numerous works have been proposed in this

context, although none of these methods fully capture the evolving nature of the underlying

network.

• One would like to predict surprising or anomalous events in different regions of the networks.

These could represent sudden regions of change, or other structural changes in the network.

Although many individual solutions exist for these problems, a broader question is whether we can

directly characterize the structure of the network as a function of time. The ability to character-

ize the structure of the network as a function of time is crucial in using it in different application

settings such as network co-evolution, because such a characterization can capture very rich infor-

mation about the structure of the underlying network.

On the application side, this thesis focuses on online anomaly detection and temporal link pre-

diction tasks. Recently, network embedding has attracted significant interest and shown promis-

ing results, in particular towards obtaining desired low-dimensional network representations that

better preserve the neighborhood information. The structure preserving property of the network

embedding makes it particularly suitable for anomaly detection tasks, by examining the similarity

between vertices/edges in the latent representation. For example, vertices staying far away from

the majority clusters in the multidimensional latent space will very likely indicate certain types of

anomalies, which can be detected conveniently through dynamic clustering algorithms. However,
4



existing methods for network embedding can not update the representation dynamically as new

vertices or edges keep feeding, and thus may not be perfectly suitable for anomaly detection in

a dynamic environment. In case of a rapidly evolving network, the problem can be even more

challenging. It is therefore highly desirable to design an effective and especially efficient embed-

ding algorithm that is capable of fast, real-time detection with bounded memory usage. Regarding

to the temporal link prediction task, the key factors to link prediction task in temporal networks

are spatial and temporal consistencies, which mean: 1) a node has higher probability to form a

link with a nearby node than with a remote node in the near future; 2) a network usually evolves

smoothly over time. Existing approaches, however, seldom unify these two factors to strive for the

spatial and temporal consistency in the dynamic network.

1.2 Thesis Outline

This thesis addresses a number of important questions regarding the methods and applications of

information network analysis under static and evolutionary settings, which have been categorized

into two parts: static network analysis and evolutionary network analysis. Table 1.1 gives the

overall structure of our research with the mapping to the chapters of this thesis. We break each part

into methods and applications sections in the thesis.

1.2.1 PART I – Static Network Analysis

In this part we focus on the methods and applications on static network analysis. To analyze net-

work data, one fundamental problem is to learn a low-dimensional vector representation for each

vertex, such that the network structure is preserved in the learned vector space. In Chapter 3, we

propose NETRA, a novel model to learn the network representations with adversarially regularized

autoencoders. NETRA exhibits desirable properties that a network embedding model requires: 1)

structure property preservation, NETRA leverages recurrent neural network as an encoder to cap-

ture the neighborhood information among vertices in each sequence sampled from the network.

Additionally, the model is also trained simultaneously with the locality-preserving constraint. 2)

generalization capability, the generalization capability requires a network embedding model to
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Table 1.1: Structure of the thesis with references to the chapters

Thesis Parts Methods Applications

PART I: Static Network Analysis
Chapter 3 Chapter 4

NETRA (KDD’18) MAXINTENSITY (ICDM’15)

PART II: Evolutionary Network Analysis

Chapter 5 Chapter 6

TMF (WSDM’17) NETWALK (KDD’18)

COEVOL (SDM’18) LIST (IJCAI’17)

generalize well on unseen vertex sequences which follow the same distribution as the population.

The generative adversarial training process enables the proposed model to learn smoothly regu-

larized representations without pre-defining an explicit density distribution which overcomes the

sparsity issue from the input sequences of vertices.

On the application side, Chapter 4 introduces a novel approach to detect competitive commu-

nities in a weighted bi-partite network formed by advertisers and their bidding keywords. The

proposed approach is based on an advertiser vertex metric called intensity score, which takes the

following two factors into consideration: the competitors that bid on the same keywords, and the

advertisers’ consumption proportion within the community. Thereafter, we propose a community

detection algorithm MAXINTENSITY which detects highly competitive communities by maximiz-

ing the total intensity score within each community.

1.2.2 PART II – Evolutionary Network Analysis

Evolving networks are common in a wide variety of settings because of the importance of different

types of dynamic networks and social streams. In this part we present the methods and applications

on evolutionary network analysis. In Chapter 5 we show that it is indeed possible to express the

edges/vertices in the network as functions of time with the use of temporal matrix factorization

(TMF), in which the entries are parameterized by time. This opens the possibility of using the

approach for a wide variety of temporal network analysis problems, such as predicting future trends

in structures, predicting links, and node-centric anomaly detection. This flexibility is because of the
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general way in which the approach allows us to express the structure of the network as a function

of time. In practice, a significant amount of information is encoded in the evolution of multiple

networks with respect to one another. With this observation, we propose COEVOL to model co-

evolution across multiple networks with shared temporal matrix factorization, which decomposes

the adjacency matrix of each co-evolving network into a product of network-independent shared

factor and a set of network-specific temporal factors, and impose a non-negativity constraint on

the factors for greater interpretability. Even though we provide more general models, our results

show that their specific instantiations to different prediction tasks perform better than state-of-the-

art techniques, thereby demonstrates the generality and effectiveness of the TMF and COEVOL

methods.

On the application side, Chapter 6 introduces two applications, namely anomaly detection and

link prediction, under the dynamic setting. Given an evolutionary network, it is crucial to de-

tect structural anomalies, such as vertices and edges whose “behaviors” deviate from underlying

majority of the network, in a real-time fashion. We propose a novel approach, NETWALK, for

anomaly detection in dynamic networks by learning network representations which can be up-

dated dynamically as the network evolves. The vertices of the dynamic network are encoded to

vector representations by clique embedding, which jointly minimizes the pairwise distance of ver-

tex representations of each walk derived from the dynamic networks, and the deep autoencoder

reconstruction error serving as a global regularization. The vector representations can be com-

puted with constant space requirements using reservoir sampling. On the basis of the learned low-

dimensional vertex representations, a clustering-based technique is employed to incrementally and

dynamically detect network anomalies. Link prediction in dynamic networks has also attracted

tremendous research interests. There are two key factors: 1) a node is more likely to form a link in

the near future with another node within its close proximity, rather than with a random node; 2) a

dynamic network usually evolves smoothly. We develop a temporal link prediction model, LIST,

to strive for the spatial and temporal consistency in evolutionary networks. LIST characterizes the

network dynamics as a function of time, which integrates the spatial topology of network at each

timestamp and the temporal network evolution.
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1.3 Contributions

The thesis focuses on static (PART I) and time evolving networks (PART II), where each of them

is composed of two chapters: methods and applications, as summarized in Table 1.1. In PART I,

we proposed NETRA to learn network representations, and MAXINTENSITY to detect competitive

communities under static setting. And in PART II, we propose TMF and COEVOL for evolutionary

network analysis based on time-dependent matrix factorization. Meanwhile, NETWALK and LIST

are developed for online anomaly detection and temporal link prediction.

Static Network Analysis:

• We propose a novel deep network embedding model with adversarially regularized autoen-

coders, NETRA, to learn vertex representations by jointly minimizing locality-preserving

loss and global reconstruction error using generative adversarial training process. The re-

sultant representations are robust to the sparse inputs derived from the network. Extensive

experiments are conducted on tasks of network reconstruction, link prediction and vertex

classification using real-world information networks. Experimental results demonstrate the

effectiveness and efficiency of NETRA.

• We propose a new metric intensity score to represent the competition in an advertiser-

keyword network (modeled as a weighted bi-partite graph), and we propose Max-Intensity

algorithm which is based on intensity score, to detect competitive communities within a

sector. We extend the concepts of market concentration measures from retail markets to

calculate the competition in a sponsored search marketplace.

Evolutionary Network Analysis:

• We developed TMF, a novel temporal matrix factorization model for dynamic network anal-

ysis. TMF has the advantage of significant generality in addressing various temporal appli-

cations because of its ability to explicitly represent the network as a function of time.

• We proposed COEVOL to utilize a shared temporal matrix factorization framework to model

co-evolution across multiple networks, which decomposes the adjacency matrix of each co-
8



evolving network into a product of network-independent shared factor and a set of network-

specific temporal factors, and impose a non-negativity constraint on the factors for greater

interpretability.

• We proposed NETWALK to detect anomalies in dynamic networks, by learning faithful net-

work representations which can be updated dynamically as the network evolves over time

based on deep neural network embedding and reservoir sampling. Quantitative validation on

anomaly detection task showed that NETWALK is computationally efficient and outperforms

state-of-the-art techniques.

• We proposed a novel temporal link prediction model, LIST, for dynamic networks which

simultaneously consider the network structure at each timestamp and the evolutionary pattern

across all timestamps. We leverage network propagation constraint which ensures that the

connected vertices will have similar feature vectors. This “locality-preserving” property

captures the spatial structure of networks at each timestamp. The feature vector of each

vertex can be learned via time-dependent matrix factorization across all recent timestamps,

which reveals the temporal structure of networks.. Extensive experiments show that the LIST

model outperforms the state-of-the-art techniques.
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CHAPTER 2

Overview and Survey

In this chapter, we aim to provide readers with an overview of information network analysis meth-

ods and applications. We begin with a review of the basic concepts and terminology used in this

thesis. We then survey the literatures on static and evolutionary network analysis, as well as the

applications including link prediction, community detection and anomaly detection.

2.1 Static Network Analysis

Matrices are the most straightforward representation of a network. Earlier work has focused

on factorization of different matrix representations, including but not limited to adjacency ma-

trix [Roweis and Saul, 2000], Laplacian matrix [Tang and Liu, 2011], and transition probability

matrix [Cao et al., 2015]. Matrix factorization approaches usually have time complexity ofO(|V |2),

which restricts their applications. Thus one challenge facing matrix factorization is its poor scala-

bility as the data volume explodes with time, as demonstrated in [Zhou et al., 2017] on a real-world

network of Alibaba Group, which has 290 million vertices and 18 billion edges.

Recently, we have witnessed the emergence of random walk based methods [Dong et al., 2017,

Perozzi et al., 2014b, Grover and Leskovec, 2016], inspired by the success of natural language pro-

cessing [Perozzi et al., 2014b]. These models build connections between network structure and

natural language. The training input of these algorithms changes from matrices to sentence-like

vertex sequences generated by random walks among connected vertices. The skip-gram algo-

rithm [Mikolov et al., 2013b] maximizes the co-occurrence probability among the vertices within

a certain window in a random walk. DeepWalk [Perozzi et al., 2014b] obtains effective embed-

dings using truncated random walks. node2vec [Grover and Leskovec, 2016] extends the model
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with flexibility between homophily and structural equivalence [Zhang et al., 2016]. These last two

methods motivate the study of network embedding taking advantage of language models. Addi-

tionally, a wide variety of models have been proposed for attributed networks [Huang et al., 2017a,

Yang et al., 2015], which show that jointly learning network representations with network topology

information and vertex attributes enhance the performance on various tasks. The text-associated

DeepWalk [Yang et al., 2015] incorporates text features of vertices into network representation

learning under the framework of matrix factorization. Similarly, an accelerated attributed network

embedding learns an effective unified embedding representation by incorporating node attribute

proximity into network embedding [Huang et al., 2017a].

However, these matrix factorization based shallow models are not enough for the complicated

networks. Deep learning embedding models [Tian et al., 2014, Cao et al., 2016, Wang et al., 2016,

Gao and Huang, 2018, Bojchevski and Günnemann, 2018] have been applied to solve the network

embedding problem. Autoencoder based approaches [Wang et al., 2016, Cao et al., 2016] were

proposed, utilizing its ability of learning highly non-linear properties. By carefully construct-

ing the learning objective, [Wang et al., 2016] preserves the first and second proximity of net-

works which delivers the state-of-the-art performance. Recent works on graph convolutional net-

works [Defferrard et al., 2016, Kipf and Welling, 2016] have demonstrated effective convolution

operation on network data. Inductive and unsupervised GraphSAGE [Hamilton et al., 2017] lever-

ages vertex features [Huang et al., 2017b] and aggregates features among vertex neighborhood.

The rapid advances in deep learning research in last decades have provided novel methods

for studying highly non-linear data. One of such models is the generative adversarial networks

(GANs) [Goodfellow et al., 2014] which has achieved great success in generating and learning the

latent presentation of high dimensional data, such images [Radford et al., 2015]. There have been

several successful attempts [Gulrajani et al., 2017, Rajeswar et al., 2017, Kim et al., 2017] of im-

plementing GANs on discrete structures, such as text and discrete images, which inspired us to

investigate network representation learning using GANs. Using GANs to learn the representa-

tion of discrete contents like natural languages and social networks remains a challenging prob-

lem due to the difficulty in back-propagation through discrete random variables. Recent work

on GANs such as GraphGAN [Wang et al., 2018] and ANE [Dai et al., 2017] for discrete data is
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either though the use of discrete structures [Yu et al., 2017a, Che et al., 2017] or the improved au-

toencoders [Kim et al., 2017].

2.2 Evolutionary Network Analysis

Evolutionary networks [Aggarwal and Subbian, 2014, Ranshous et al., 2015] have recently found

increasing importance because of their numerous applications for trend detection in the networks.

Numerous methods have been proposed in the context of temporal link prediction [Sarkar et al., 2012,

Murata and Moriyasu, 2007, Zhao et al., 2015], dynamic community detection [Tang et al., 2008,

Chi et al., 2007, Backstrom et al., 2006, Gupta et al., 2011], compression [Sun et al., 2007], mixed

membership modeling [Fu et al., 2009, Rossi et al., 2013], and anomaly detection [Yu et al., 2013a,

Ide and Kashima, 2004]. The approach in [Rossi et al., 2013] uses non-negative matrix factoriza-

tion to extract features in a sequence of graphs which is different from the structural factorization

model in the paper. The applications in [Rossi et al., 2013] are implicitly regulated by the nature

of the node features that are extracted, and cannot fully characterize the structure of the network

over time or directly express the network structure as a function of time, once the features have

been extracted. The fully parameterized model in this paper is more general, and it can be used to

reconstruct the approximate future structure in the network at any point in time. Recently, some

interest has been focused on the use of rth order tensors [Dunlavy et al., 2011, Sun et al., 2006] for

expressing dynamic networks. Tensors are, however, inherently designed for the case when the

other (r − 2) dimensions of interest (than source node and destination node) are discrete variables

rather than continuous; time is a continuous variable. Although some temporal applications have

been designed with tensors [Dunlavy et al., 2011], by treating time as a discrete variable, the ap-

plicability of these methods to express the network as a continuous function of time is limited.

Temporal matrix factorization has recently been used successfully in the context of collaborative

filtering [Koren, 2010]. In this thesis, we explore temporal matrix factorization in the context of

network-centric applications. We show that a significant number of evolutionary network applica-

tions can be addressed with the use of the factorization framework.

The increasing number of networks that encountered in temporal settings has also gained atten-
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tion to the study of co-evolutionary dynamics between networks [Zheleva et al., 2009, Sun et al., 2014,

Farajtabar et al., 2015, Ellwardt et al., 2012]. Among all these proposed models, they focus on spe-

cific types of networks such as social and affiliation networks [Zheleva et al., 2009], star networks

(a special type of heterogeneous networks) [Sun et al., 2014], or jointly learn information diffu-

sion and network evolution [Farajtabar et al., 2015]. However, these models are designed based on

the features or topology of certain networks, which limit their potential to capture the correlation

information among multiple co-evolution networks.

2.3 Applications

The past decades have given rise to significant advances in the development and application of

methods for analyzing information networks. The main applications including link prediction,

community detection and anomaly detection. This section presents a review of these applications

in network analysis.

2.3.1 Link Prediction

Link prediction problem can be generally divided into two distinct categories: structural link pre-

diction and temporal link prediction [Menon and Elkan, 2011]. The structural link prediction prob-

lem, which only considers a single network structure as the input, predicts the possible unobserved

links within the same network [Liben-Nowell and Kleinberg, 2007, Lichtenwalter et al., 2010]. Tem-

poral link prediction models, on the other hand, analyze the evolution pattern of a sequence

of networks over time [Sarkar et al., 2012, Dunlavy et al., 2011, Li et al., 2014, Zhu et al., 2016,

Rahman and Al Hasan, 2016]. The probabilistic nonparametric link prediction model can be used

to predict the linkage possibility of two nodes only based on the similarity of their local neigh-

borhoods [Sarkar et al., 2012]. One can also extend a local probabilistic model [Wang et al., 2007]

based on maximum entropy with temporal information of the past interactions [Tylenda et al., 2009].

Experimental results show this time-awareness model outperforms the simple time-invariant base-

line predictors. Other than the aforementioned statistical approaches, we can also leverage tensor

decomposition technique to address the temporal link prediction problem effectively [Ermiş et al., 2015,
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Dunlavy et al., 2011]. The global network structure has also been considered in the temporal link

prediction task [Gao et al., 2011]. It aggregates weighted link matrices, and learns the model with

graph regularization. Most of the existing link prediction models only predict the existence of

links, i.e., a(i, j) ∈ {0, 1}, where 0 represents the absence of a link, and 1 represents the existence

of a link. The weights of links are rarely taken into account [Lü and Zhou, 2009].Recently, some

interest has been focused on the use of temporal matrix factorization technique for expressing dy-

namic networks [Yu et al., 2017b]. However, it only explores the network evolving pattern across

the dynamic network, but ignores the network propagation within each single timestamp.

2.3.2 Community Detection

Traditional methods involve clustering or partitioning the graph in a way as to discover commu-

nities. Often they require parameters which must be specified a priori, such as k-means clus-

tering [MacQueen et al., 1967], or are highly dependent on a defined similarity measure as in

hierarchical clustering [Hastie et al., 2009]. Hierarchical clustering, which also has the advan-

tage of detecting the hierarchical structure of communities, can be split into two categories: ag-

glomerative, and divisive algorithms. Agglomerative algorithms are a bottom up approach where

clusters are merged together using a similarity metric in a series of iterations. The approach of

divisive algorithms is top down starting with large clusters and then iteratively breaking them

apart. A well known and widely used community detection metric is modularity [Newman, 2006b],

which is a comparison of edges inside a cluster to the expected number of randomly distributed

edges. Methods using this quality function attempt to maximize modularity of partitions in a

graph. Since obtaining the maximal modularity has been shown to be a NP-Complete prob-

lem [Brandes et al., 2006], approximation techniques must be used. This set of techniques in-

clude greedy, simulated annealing, extremal optimization, and spectral optimization techniques.

Although the techniques can be quite good at estimating the maximal modularity, the metric

may suffer some shortcomings in detecting “good” partitions [Fortunato and Barthélemy, 2007].

Other methods such as spin models, random walks, and synchronizing can be described as a set

of stochastic algorithms, and can be used for detecting communities. Spin models originated in

statistical mechanics [Wu, 1982], and consist of a system of spins in different states. By apply-
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ing these spin variables to vertices of a graph then clusters of the graph can be discovered by

identifying like-valued spin clusters. In random walks [Hughes, 1996] it is likely that a random

walker will spend more time inside a community than crossing between different communities.

One approach which exploits this assumption to find communities is to define a distance mea-

sure based on random walks [Zhou and Lipowsky, 2004] and then finding “close” vertices. The

application to community detection involves placing oscillators at vertices, which are initially in

random phases, and detecting which oscillators synchronize first [Arenas et al., 2006]. To address

the resolution limit problem of modularity-based methods [Newman, 2006b], recently Duan et

al. proposed an approach to incorporate correlation analysis into the modularity-based method by

subtly reformatting their math formulas and objective functions [Duan et al., 2014]. Recent studies

also include Permanence, a vertex-based metric proposed to identify the community structures in

the graph [Chakraborty et al., 2014], aiming at estimating the internal and external connectivity of

the vertex to individual communities. Another approach based on heat kernel is to compute this

graph diffusion and use that to study the communities that it produces [Kloster and Gleich, 2014].

Besides, to identify the members of a potential but unlabeled community in large-scale social net-

work, one can apply seed expansion to find remaining community members outside current dataset

given sample community members [Kloumann and Kleinberg, 2014].

2.3.3 Anomaly Detection

Anomaly detection (a.k.a. outlier detection) has been extensively studied in the context of multi-

dimensional data [Cheng et al., 2016, Aggarwal, 2013, Gupta et al., 2014a] and structured infor-

mation networks [Gao et al., 2010, Akoglu et al., 2015, Ranshous et al., 2015, Akoglu et al., 2010,

Eberle and Holder, 2007, Gupta et al., 2014b], including networks with a rich set of attributes and

other side information [Perozzi and Akoglu, 2016, Perozzi et al., 2014a, Sun et al., 2005]. Mas-

sive networks arise in many applications such as social media and public health, thus numerous al-

gorithms have been developed for processing networks in the stream model [Aggarwal et al., 2010,

Aggarwal et al., 2011, Ranshous et al., 2016]. In this section, we briefly review anomaly detection

algorithms in dynamic networks, as well as network embedding techniques.
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The anomalies of static networks can be generally divided into three distinct types: anoma-

lous vertices, anomalous edges and anomalous subgraphs or communities [Ranshous et al., 2015].

A number of anomaly detection methods on networks are designed for vertex or edge based de-

tection tasks [Aggarwal, 2013, Akoglu et al., 2010, Cheng et al., 2016, Eberle and Holder, 2007].

One of the early methods [Eberle and Holder, 2007] employed the minimum description length

principle to establish the normative pattern, then used a trail of pattern expansion to discover par-

ticular anomalous instances. Subsequent work [Akoglu et al., 2010] discovered several rules in

density, weights, ranks and eigenvalues that derived from the neighborhood sub-networks, which

is referred to as the egonet, and proposed a scalable and un-supervised method for anomalous

vertex detection. Recent work [Cheng et al., 2016] adopted network diffusion to detect causal

anomalies in invariant network. This method also focused on static networks, though its variants

can achieve a temporal smoothing effect. Anomalous subgraphs were defined as the subgraphs

containing less common substructures [Noble and Cook, 2003]. This work used the Subdue sys-

tem [Holder et al., 1994] to discover patterns within graphs, and then anomalies occur if the pattern

is not infrequent. There are also some work proposed to detect community outlier [Gao et al., 2010,

Gupta et al., 2014b], defined as the instance with non-conforming patterns compared with other

members in the same community. Work also exists in studying how to detect anomalies for at-

tributed graphs [Perozzi and Akoglu, 2016, Perozzi et al., 2014a, Sun et al., 2005]. The attributes

include user preference [Perozzi et al., 2014a], and neighborhoods in graphs [Sun et al., 2005,

Perozzi and Akoglu, 2016]. These methods are proposed for static graphs, and not generally ap-

plicable to network streams.

In streaming networks, a number of methods perform anomaly detection in the context of edge

streams [Ranshous et al., 2015, Aggarwal et al., 2011, Gupta et al., 2014a, Ranshous et al., 2016].

For instance, GOutlier [Aggarwal et al., 2011] introduced a structural connectivity model to define

anomalies, and proposed a reservoir sampling method to maintain structural summaries of the un-

derlying graph streams. The anomalies can then be identified as those graph objects which contain

unusual bridging edges. The recent work [Ranshous et al., 2016] proposed an anomaly detection

method based on edge scoring. The score of an incoming edge was based on historical evidence

and vertex neighborhood. There is a new type of anomalies in graph streams: anomalous graph

16



snapshots [Gupta et al., 2014a, Manzoor et al., 2016, Ranshous et al., 2015]. The StreamSpot in-

troduced a new similarity function to compare two heterogeneous graphs based on their rela-

tive frequency of local substructures, and leveraged a centroid-based clustering methods to cap-

ture the normal behaviors [Manzoor et al., 2016]. Graph stream clustering algorithms like GMi-

cro [Aggarwal et al., 2010] created sketch-based micro clusters which using a hash-based compres-

sion of the edges to a lower-dimensional domain space in order to reduce the size of representation.

Variants include graph streams with attributes [McConville et al., 2015, Zhao and Yu, 2013]. The

communities evolve across snapshots. The evolutionary community anomalies can be defined as

those objects which evolve in a very different way rather than following the community change

trends [Gupta et al., 2012a, Gupta et al., 2012b].
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Part I

Static Network Analysis
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CHAPTER 3

Static Network Analysis: Methods

The analysis of complex networks has recently received considerable attentions. In this chapter, we

focus on the static network analysis methods using network representation learning which is also

known as network embedding. Network embedding arises in many machine learning tasks assum-

ing that there exist a small number of variabilities in the vertex representations which can capture

the “semantics” of the original network structure. Most existing network embedding models, with

shallow or deep architectures, learn vertex representations from the sampled vertex sequences such

that the low-dimensional embeddings preserve the locality property and/or global reconstruction

capability. The resultant representations, however, are difficult for model generalization due to

the intrinsic sparsity of sampled sequences from the input network. As such, an ideal approach to

address the problem is to generate vertex representations by learning a probability density function

over the sampled sequences. However, in many cases, such a distribution in a low-dimensional

manifold may not always have an analytic form. In this chapter we will introduce the NETRA

model in Section 3.1 which learns the network representations with adversarially regularized au-

toencoders. The resultant vertex representations can well capture the network structure through

jointly considering both locality-preserving and global reconstruction constraints. The joint infer-

ence is encapsulated in a generative adversarial training process to circumvent the requirement of

an explicit prior distribution, and thus obtains better generalization performance.

3.1 Representation Learning with Adversarially Regularized Autoencoders

Static network analysis has been attracting many research interests with its enormous potential

in mining useful information which benefits the downstream tasks such as link prediction, com-
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munity detection and anomaly detection on social network [Tylenda et al., 2009], biological net-

works [Theocharidis et al., 2009] and language networks [Tang et al., 2015], to name a few.

To analyze network data, one fundamental problem is to learn a low-dimensional vector rep-

resentation for each vertex, such that the network structure is preserved in the learned vector

space [Perozzi et al., 2014b]. For this problem, there are two major challenges: (1) preservation

of complex structure property. The objective of network embedding is to train a model to “fit”

the training networks, that is, to preserve the structure property of networks [Perozzi et al., 2014b,

Ribeiro et al., 2017]. However, the latent structure of the network is too complex to be portrayed

by an explicit form of probability density which can capture both the local network neighborhood

information and global network structure. (2) sparsity of network sampling. Current research

on network embedding employs network sampling techniques, including random walk sampling,

breadth-first search etc., to derive vertex sequences as training datasets. However the sampled data

represent only a small proportion of all the vertex sequences. An alternative approach is to encode

these discrete structures in a continuous code space [Wang et al., 2016]. Unfortunately, learning

continues latent representations of discrete networks remains a challenging problem since in many

cases, the prior distribution may not exist in a low dimensional manifold [Ribeiro et al., 2017].

Recent work on network embedding has shown fruitful progress in learning vertex represen-

tations of complex networks [Perozzi et al., 2014b, Ribeiro et al., 2017, Wang et al., 2016]. These

representations employ nonlinear transformations to capture the “semantics” of the original net-

works. Most existing methods first employ a random walk technique to sample a bunch of vertex

sequences from the input network, then feed a learning model with these sequences to infer the

optimal low-dimensional vertex embeddings. However, the sampling strategy suffers from the

data sparsity problem since the total amount of vertex sequences is usually very large in real net-

works and it is often intractable to enumerate all. Subsequently, learning on a sparse sample set

tends to produce an overly complex model to explain the sampled dataset, which eventually causes

overfitting. Though autoencoders are adopted to encode the inputs into continuous latent represen-

tations [Wang et al., 2016], regularizations are still desirable to force the learned representations

remain on the latent manifold. Ideally we could generate the continuous vertex representations

with a prior distribution. However, in many cases, it is difficult, if not impossible, to pre-define
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Figure 3.1: Illustration of the NETRA model

an explicit form of the prior distribution in a low-dimensional manifold. For example, Dai et

al. [Dai et al., 2017] proposed to train a discriminator to distinguish samples generated from a

fixed prior distribution and the input encoding, and thereby pushing the embedding distribution to

match the fixed prior. While this gives more flexibility, it suffers from the mode-collapse prob-

lem [Kim et al., 2017]. Moreover, most network embedding models with deep architectures usu-

ally do not consider the order of the vertices in the sampled vertex sequences [Wang et al., 2016].

Thus, the information of proximity orders cannot be well considered.

To address the aforementioned challenges, in this study, we propose a novel model to learn

the network representations with adversarially regularized autoendoers (NETRA). NETRA jointly

minimizes network locality-preserving loss and the reconstruction error of autoencoder which uti-

lizes a long short-term memory network (LSTM) as an encoder to map the input sequences into a

fixed length representation. The joint embedding inference is encapsulated in a generative adver-

sarial training process to circumvent the requirement of an explicit prior distribution. As visually

depicted in Figure 3.1, our model employs a discrete LSTM autoencoder to learn continuous vertex

representations with sampled sequences of vertices as inputs. In this model, besides minimizing

the reconstruction error in the LSTM autoencoder, the locality-preserving loss at the hidden layer
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is also minimized simultaneously. Meanwhile, the continuous space generator is also trained by

constraining to agree in distribution with the encoder. The generative adversarial training can be

regarded as a complementary regularizer to the network embedding process.

NETRA exhibits desirable properties that a network embedding model requires: 1) structure

property preservation, NETRA leverages LSTM as an encoder to capture the neighborhood infor-

mation among vertices in each sequence sampled from the network. Additionally, the model is

also trained simultaneously with the locality-preserving constraint. 2) generalization capability,

the generalization capability requires a network embedding model to generalize well on unseen

vertex sequences which follow the same distribution as the population. The generative adversarial

training process enables the proposed model to learn smoothly regularized representations without

pre-defining an explicit density distribution which overcomes the sparsity issue from the input se-

quences of vertices, as described in Section 3.1.2. We present experimental results in Section 3.1.3

to show the embedding capability of NETRA on a variety of tasks, including network reconstruc-

tion, link prediction and vertex classification.

3.1.1 Preliminaries

3.1.1.1 Network Embedding

Network embedding approaches seek to learn representations that encode structural information

about the network. These approaches learn a mapping that embeds vertices as points into a low-

dimensional space. Given the encoded vertex set {x(1), ...,x(n)}, finding an embedding fφ(x(i)) of

each x(i) can be formalized as an optimization problem [Yu et al., 2013b, Weston et al., 2008]

min
φ

∑
1≤i<j≤n

L(fφ(x(i)), fφ(x(j)), ϕij), (3.1)

where fφ(x) ∈ Rd is the embedding result for a given input x. L(·) is the loss function between a

pair of inputs. ϕij is the weight between x(i) and x(j).

We consider the Laplacian Eigenmaps (LE) that well fits the framework. LE enables the em-

bedding to preserve the locality property of network structure. Formally, the embedding can be
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obtained by minimizing the following objective function

LLE(φ; x) =
∑

1≤i<j≤n

‖fφ(x(i))− fφ(x(j)‖2ϕij. (3.2)

3.1.1.2 Generative Adversarial Networks

The Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] build an adversarial train-

ing platform for two players, namely generator gθ(·) and discriminator dw(·), to play a minimax

game.

min
θ

max
w

E
x∼Pdata(x)

[log dw(x)] + E
z∼Pg(z)

[log (1− dw(gθ(z)))] (3.3)

The generator gθ(·) tries to map the noise to the input space as closely as the true data, while the

discriminator dw(x) represents the probability that x came from the data rather than the noise. It

aims to distinguish real data distribution Pdata(x) and fake sample distribution Pg(z), e.g. z ∼

N (0, I). Wasserstein GANs [Arjovsky et al., 2017] overcome unstable training problem by re-

placing Jensen-Shannon divergence with Earth-Mover (Wasserstein-1) distance, which considers

solving the problem

min
θ

max
w∈W

E
x∼Pdata(x)

[dw(x)]− E
z∼Pg(z)

[dw(gθ(z))]. (3.4)

The Lipschitz constraintW on discriminator has been kept by clipping the weights of the discrim-

inator within a compact space [-c, c].

3.1.1.3 Autoencoder Neural Networks

An autoencoder neural network is trained to set the target values to be equal to the inputs. The net-

work consists of two parts: an encoder fφ(·) that maps inputs (x ∈ Rn) to latent low-dimensional

representations and a decoder hψ(·) that produces a reconstruction of the inputs. Specifically, given

a data distribution Pdata, from which x is drawn from, i.e., x ∼ Pdata(x), we want to learn represen-

tations fφ(x) such that the output hypotheses hψ(fφ(x)) is approximately equal to x. The learning

process is described simply as minimizing a cost function

minEx∼Pdata(x)[dist(x, hψ(fφ(x)))], (3.5)
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where dist(·) is some similarity metric in the data space. In practice, there are many options for

the distance measure. For example, if we use `2 norm to measure the reconstruction error, then the

objective function can be defined as LAE(φ, ψ; x) = Ex∼Pdata(x)‖x− hψ(fφ(x))‖2. Similarly the

objective function for cross-entropy loss can be defined as,

−Ex∼Pdata(x)[x log hψ(fφ(x)) + (1− x) log(1− hψ(fφ(x)))] (3.6)

The choice of encoder fφ(·) and decoder hψ(·) may vary across different tasks. In this paper,

we use LSTM autoencoders [Sutskever et al., 2014] which are capable of dealing with sequences

as inputs.

3.1.2 The NETRA Model

We consider the network embedding problem of finding a transformation that maps structural in-

put data to lower-dimensional vertex representations. In this section, we present NETRA, a deep

network embedding model using adversarially regularized autoencoders, to learn smoothly regular-

ized vertex representations with sequences of vertices as inputs. The resultant representations can

be used in the downstream tasks, such as link prediction, network reconstruction and multi-class

classification.

3.1.2.1 Random Walk Generator

Given networkG(V,E), the random walk generator in DeepWalk [Perozzi et al., 2014b] is utilized

to obtain truncated random walks (i.e. sequences of vertices) rooted on each vertex v ∈ V in

G(V,E). A walk is sampled randomly from the neighbors of the last visited vertex until the preset

maximum length is reached.

The random walk sampling technique has been widely adopted in network embedding re-

searches [Grover and Leskovec, 2016, Perozzi et al., 2014b, Wang et al., 2016]. However, it suf-

fers from the sparsity problem in network sampling. For each vertex in given network, if we

assume that the average node degree is d̄, the walk length is l and the number of samples is k, then
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Figure 3.2: Sparsity of network sampling.

the sampling fraction of walks can be calculated by

pfrac ∝
|V | × k
|V | × d̄l

=
k

d̄l
× 100%. (3.7)

The effect of the sampling fraction is presented in Figure 3.2. In the example, DeepWalk is used to

perform link prediction task on the UCI Msg network described in Section A.1. Figure 3.2(a) and

Figure 3.2(b) show that if the walk length or the average vertex degree increases, the performance

decreases dramatically1. According to Eq. (3.7), obviously, when l or d̄ increases, the sampling

fraction of walks is getting smaller. Thereby, the trained model is prone to overfitting because

of the sparse inputs. On the contrary, if the number of samples k increases, the performance

is getting better as shown in Figure 3.2(c). However, more sampled walks also call for more

computing burden on model training. Therefore, it is desirable to develop effective models with

better capabilities of generalization on sparsely sampled network walks.

3.1.2.2 Embedding with Adversarially regularized Autoencoders

In this section, we propose NETRA, a network embedding model with adversarially regularized

autoencoders, to address the sparsity problem. Autoencoders are popularly used for data embed-

ding, such as images and documents. It provides informative low dimensional representations of

input data by mapping the them to the latent space. Unfortunately, if the encoder and decoder are

1In Figure 3.2(a), the window size of DeepWalk is set to be equal to the walk length. The reason is that, if the
window size is set to a small value against a long walk length, it turns out to be equivalent to increase the samples per
vertex with a short walk length. In Figure 3.2(b), we reduce the degree of the dataset by removing vertices with large
degrees [?].
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allowed too much capacity, the autoencoder can learn to perform the copying task without extract-

ing useful information about the distribution of the data [Goodfellow et al., 2016]. We proposed

to use a generative adversarial training process as a complementary regularizer. The process has

two advantages. On one hand, the regularizer can guide the extraction of useful information about

data [Goodfellow et al., 2016]. On the other hand, the generative adversarial training provides

more robust discrete-space representation learning that can well address the overfitting problem

on sparsely sampled walks [Makhzani et al., 2016]. Specifically, in NETRA, the discriminator up-

dates by comparing the samples from the latent space of the autoencoder with the fake samples

from the generator, as shown in Figure 3.1. The latent space of autoencoder provides optimal

embedding for the vertices in the network with the simultaneous update of encoder and discrimi-

nator. In this study, we use the LSTM as the encoder and decoder networks [Sutskever et al., 2014]

because it takes the order information of the sampled walks into consideration.

This joint architecture requires dedicated training objective for each part. The autoencoder

can be trained individually by minimizing the negative log-likelihood of reconstruction, which is

indicated by cross entropy loss in the implementation

LAE(φ, ψ; x) = −Ex∼Pdata(x)[dist(x, hψ(fφ(x)))], (3.8)

where dist(x,y) = x log y + (1− x) log(1− y). Here x is the sampled batch from training data.

fφ(x) is embedded latent representation of x, which is also the positive samples for discriminator,

indicated by the arrow with “+” in Figure 3.1. φ and ψ are parameters of the encoder and decoder

functions, respectively. In the training iteration of autoencoder, not only the encoder and decoder

are updated, the locality-preserving loss (Eq. (3.2)) is jointly minimized.

As depicted in Figure 3.1, NETRA minimizes the distributions between the learned represen-

tations from the encoder function fφ(x) ∼ Pφ(x), and the representations from the continuous

generator model gθ(z) ∼ Pθ(z). The dual form of the Earth Mover distance between Pφ(x) and

Pθ(z) can be described as follows [Arjovsky et al., 2017]

W (Pφ(x),Pθ(z)) = sup
‖d(·)‖L≤1

Ey∼Pφ(x)[d(y)]− Ey∼Pθ(z)[d(y)] (3.9)

where ‖d(·)‖L≤1 is the Lipschitz continuity constraint (with Lipschitz constant 1). If we have a
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family of functions {dw(·)}w∈W that are all K-Lipschitz for some K, then we have

W (Pφ(x),Pθ(z)) ∝ max
w∈W

E
x∼Pdata(x)

[dw(fφ(x))]− E
z∼Pg(z)

[dw(gθ(z))] (3.10)

We can separate the training of generator and discriminator. As for the generator, the cost

function can be defined as,

LGEN(θ; x, z) = Ex∼Pdata(x)[dw(fφ(x))]− Ez∼Pg(z)[dw(gθ(z))] (3.11)

and the cost function for discriminator is,

LDIS(w; x, z) = −Ex∼Pdata(x)[dw(fφ(x))] + Ez∼Pg(z)[dw(gθ(z))] (3.12)

NETRA learns smooth representations by jointly minimizing the autoencoder reconstruction

error and the locality-preserving loss in an adversarial training process. Specifically, we consider

solving the joint optimization problem with objective function

LNETRA(φ, ψ, θ, w) = LAE(φ, ψ; x) + λ1LLE(φ; x) + λ2W (Pφ(x),Pθ(z)) (3.13)

Theorem 1. Let Pφ(x) be any distribution. Let Pθ(z) be the distribution of gθ(z) with z being

a sample drawn from distribution Pg(z) and gθ(·) being a function satisfying the local Lipschitz

constants Ez∼Pg(z)[L(θ, z)] < +∞. Then we have

∇θLNETRA = −λ2∇θEz∼Pg(z)[dw(gθ(z))] (3.14)

∇wLNETRA = −λ2∇wEx∼Pdata(x)[dw(fφ(x))] + λ2∇wEz∼Pg(z)[dw(gθ(z))] (3.15)

∇φLNETRA = λ1∇φ

∑
1≤i<j≤n

‖fφ(x(i))− fφ(x(j))‖2ϕij

−∇φEx∼Pdata(x)[dist(x, hψ(fφ(x)))] + λ2∇φEx∼Pdata(x)[dw(fφ(x))] (3.16)

∇ψLNETRA = −∇ψEx∼Pdata(x)[dist(x, hψ(fφ(x)))] (3.17)

Proof. Let X ⊆ Rn be a compact set, and

V (d̃, θ) = Ey∼Pφ(x)[d̃(y)]− Ey∼Pθ(z)[d̃(y)]

= Ey∼Pφ(x)[d̃(y)]− Ez∼Pg(z)[d̃(gθ(z))] (3.18)
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where d̃ lies in D = {d̃ : X → R, d̃ is continuous and bounded, ‖d̃‖ ≤ 1}. Since X is compact,

we know by the Kantorovich-Rubinstein duality [Arjovsky et al., 2017] that there exists a d ∈ D

that attains the value

W (Pφ(x),Pθ(z)) = sup
d̃∈D

V (d̃, θ) = V (d, θ) (3.19)

and D∗(θ) = {d ∈ D : V (d, θ) = W (Pφ(x),Pθ(z))} is non-empty. According to the envelope

theorem [Milgrom and Segal, 2002], we have

∇θW (Pφ(x),Pθ(z)) = ∇θV (d, θ) (3.20)

for any d ∈ D∗(θ). Then we get

∇θW (Pφ(x),Pθ(z)) = ∇θV (d, θ)

= ∇θEy∼Pφ(x)[d(y)]− Ez∼Pg(z)[d(gθ(z))]

= −∇θEz∼Pg(z)[dw(gθ(z))] (3.21)

Therefore, we have∇θLNETRA = −λ2∇θEz∼Pg(z)[dw(gθ(z))].

Eq. (3.15)-(3.17) are straightforward applications of the derivative definition.

We now have all the derivatives needed. To train the model, we use a block coordinate descent

to alternate between optimizing different parts of the model: (1) locality-preserving loss and au-

toencoder reconstruction error (update φ and ψ), (2) the discriminator in the adversarial training

process (update w), and (3) the generator (update θ). Pseudocode of the full approach is given in

Algorithm 1.

The training process of NETRA consists of the following steps: Firstly, given a network

G(V,E), we run random walk generator acquiring random walks of length l. Then, one hot repre-

sentation x(i) of each vertex is taken as input to LSTM cells. We pass the random walks through

encoding layers and obtain the vector representations of vertices. After the decoder network, the

vertex representations will be transformed back into n dimensions. Cross-entropy loss is calculated

between the inputs and outputs by minimizing the reconstruction error in autoencoder operation.

Meanwhile, locality-preserving constraint ensures that the adjacent vertices are in close proximity

(Step 2-7 in Algorithm 1). The latent representation of encoder and the output of generator will be
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Algorithm 1 NETRA Model Training
Require: the walks generated from input graph, maximum training epoch nepoch, the number of

discriminator training per generator iteration nD.

1: for epoch = 0; epoch < nepoch do

2: . Training autoencoder with LE constraint

3: Minimizing LLE(φ; x) with autoencoder LAE(φ, ψ; x)

4: Sample {x(i)}Bi=1 ∼ Pdata(x) a batch from the walks

5: Compute latent representation fφ(x(i))

6: Compute reconstruction output hψ(fφ(x(i)))

7: Compute LAE(φ, ψ) and LLE(φ) using Eq. (3.8) and Eq. (3.2)

8: Back-propagate loss and update φ and ψ using Eq. (3.16)-(3.17)

9: . Training discriminator

10: for n = 0, n < nD do

11: Sample {x(i)}Bi=1 ∼ Pdata(x) a batch from the walks

12: Sample {z(i)}Bi=1 ∼ Pg(z) a batch from the noise

13: Compute representations fφ(x(i)) and gθ(z(i))

14: Compute LDIS(w) using Eq. (3.12)

15: Back-propagate loss and update w using Eq. (3.15)

16: clip the weight w within [−c, c]

17: end for

18: . Training generator

19: Sample {z(i)}Bi=1 ∼ Pg(z) a batch from the noise

20: Compute the representation gθ(z(i))

21: Compute LGEN(θ) using Eq. (3.11)

22: Back-propagate loss and update θ using Eq. (3.14)

23: end for
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fed into discriminator to get adversarial loss (Step 10-17). Additionally, the generator transforms

Gaussian noise into the latent space as closely as the true data, by passing through multilayer per-

ceptron (Step 20-23). After the training of NETRA, we obtain the vertex representations fφ(x) of

the network by passing the input walks through the encoder function.

Optimality Analysis. NETRA, as illustrated in Figure 3.1, can be interpreted as minimizing

the divergence between two distributions, namely Pφ(x) and Pθ(z). We provide the following

proposition which shows that under our parameter settings, if the Wasserstein distance converges,

the encoder distribution fφ(x) ∼ Pφ(x) converges to the generator distribution gθ(z) ∼ Pθ(z).

Theorem 2. Let P be a distribution on a compact set X , and (Pn)∈N be a sequence of distributions

on X . Considering W (Pn,P)→ 0 as n→∞, the following statements are equivalent:

1. Pn
D
 P where D represents convergence in distribution for random variables.

2. Ex∼Pn [F (x)]→ Ex∼P[F (x)], where F (x) = Πn
i=1x

pi
i ,x ∈ Rn,

∑n
i=1 pi = k, k > 1, k ∈ N.

Proof. (1) As shown in [Villani, 2008], Pn converges to P is equivalent to W (Pn,P)→ 0.

(2) According to the Portmanteau Theorem [Villani, 2008], Ex∼Pn [F (x)]→ Ex∼P[F (x)] holds

if F : Rn → R is a bounded continuous function. Our encoder fφ(·) is bounded as the inputs are

normalized to lie on the unit sphere, and our generator gθ(·) is also bounded to lie in (−1, 1)n by

tanh function. Therefore, F (x) = Πn
i=1x

pi
i is a bounded continuous function for all pi > 0, and

Ex∼Pn [Πn
i=1x

pi
i ]→ Ex∼P[Πn

i=1x
pi
i ] (3.22)

such that
∑n

i=1 pi = k,∀k > 1, k ∈ N.

Computational Analysis. Given a network G(V,E), where |V | = n, |E| = m, according to

the definition in Eq. (3.2), the overall complexity of Laplacian Eigenmaps embedding isO(n2). In

our implementation, we only consider the vertex pairs (x(i),x(j)) that have edges between them,

thus the size of the sampled pairs is O(m), which is much smaller than O(n2) because real net-

works are sparse in real settings. The computational complexity of learning LSTM autoencoders

is proportional to the number of parameters |φ| and |ψ| in each iteration. Therefore, the learning
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computational complexity for LSTM autoencoders is O(nepoch × (|φ| + |ψ|)). Similarly, for the

generator and discriminator, each invocation of back-propagation is typically linear in the number

of parameters O(|θ|) and O(|w|). Thus the computational complexity for generator and discrimi-

nator is O(nepoch × (nD × |w|+ |θ|)). It is basically quadratic if the input and hidden layers are of

roughly the same size. However, if we set the size of embedding layers much less than that of the

inputs, the time complexity reduces to O(n).

3.1.3 Evaluation

We evaluate the performance of our model with extensive experiments on tasks including network

reconstruction, link prediction and vertex classification. The experiments are conducted on a vari-

ety of networks from different domains including UCI Msg, JDK, Blogcatalog, DBLP, Wikipedia

and PPI. The detailed description of each dataset can be found in Section A.1.

To evaluate the performance of our network embedding model, the baselines used in this

study includes Spectral Clustering (SC) [Tang and Liu, 2011], DeepWalk [Perozzi et al., 2014b],

node2vec [Grover and Leskovec, 2016], SDNE [Wang et al., 2016] and Adversarial Network Em-

bedding (ANE) [Dai et al., 2017], as described in Section A.2. For fair comparison, we run each

algorithm to generate 300 dimensional vertex representations on different datasets, unless noted

otherwise. The number of walks per vertex in DeepWalk and node2vec is set to 10 with walk

length 30, which is the same as the random walk generation step of NETRA. The window size of

DeepWalk and node2vec is optimized to 10. node2vec is optimized with grid search over its return

and in-out parameters (p, q) ∈ {0.25, 0.50, 1, 2, 4}. For SDNE, we utilize the default parameter

setting as described in [Wang et al., 2016]. For NETRA, the gradient clipping is performed in ev-

ery training iteration to avoid the gradient explosion, and we use stochastic gradient descent as the

optimizer of autoencoder networks. The multilayer perceptron (MLP) is used in the generator and

discriminator. The evaluation of different algorithms is based on applying the embeddings they

learned to the downstream tasks, such as link prediction, network reconstruction, and multi-label

classification as will be illustrated in the subsequent sections.
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Figure 3.3: Visualization results of the compared methods on JDK dataset

3.1.3.1 Visualization

In order to demonstrate how well key properties of network structure are captured by the network

embedding models, we visualize the embeddings of each compared method. We run different

embedding algorithms to obtain low dimensional representations of each vertex and map vertex

vectors onto a two dimensional space using t-SNE [Maaten and Hinton, 2008]. With vertex colored

by its label, we perform the visualization task on JDK network, as shown in Figure 3.3.

As observed in Figure 3.3, three classes are presented: red points for org.omg, green points for

org.w3c and blue points for java.beans. It can be seen that the eigenvector-based method Spectral

Clustering cannot effectively identify different classes. Other baselines can detect the classes to

varying extents. NETRA performs best as it can separate these three classes with large boundaries,

except for a small overlap between green and red vertices.
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Figure 3.4: Link prediction performance comparison

3.1.3.2 Link Prediction

The objective of link prediction task is to infer missing edges given a network with a certain

fraction of edges removed. We randomly remove 50% of edges from the network, which serve

as positive samples, and select an equal number of vertex pairs without linkage between them as

negative samples. With vertex representation learned by network embedding algorithms, we obtain

the edge feature from the `2 norm of two vertex vectors, and use it directly to predict missing edges.

Because our focus is network embedding model, this simple experimental setup can evaluate the

performance based on the assumption that the representations of two connected vertices should be

closer in the Euclidean space. We use the area under curve (AUC) score for evaluation on link

prediction task. The results are shown in Table 3.1.

Obviously, we observe that NETRA outperforms the baseline algorithms across all datasets by

a large margin. It can be seen that NETRA achieves 3% to 32% improvement based on the AUC

score on the four datasets. By comparing NETRA, node2vec and DeepWalk, which all use random

walks as inputs, we can see the effectiveness of generative adversarial regularization for improving

the generalization performance in NETRA model. With same random walk sequences, NETRA
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Table 3.1: AUC score comparison on link prediction task

Methods UCI Msg JDK Blogcatalog DBLP

SC 0.6128 0.6686 0.6014 0.5740

DeepWalk 0.6880 0.8506 0.7936 0.8605

node2vec 0.6040 0.8667 0.8105 0.8265

SDNE 0.7806 0.7226 0.6621 0.7712

ANE 0.6402 0.7409 0.7025 0.7935

NETRA 0.8879 0.8913 0.8627 0.8902

can overcome the sparsity issue from the sampled sequences of vertices.

We also plot the ROC curve of these four datasets, as shown in Figure 3.4(a)-(d). The ROC

curve of NETRA dominates other approaches and is very close to the (0, 1) point. We train the

NETRA model with different epochs for different datasets and embed the vertices to get represen-

tations after each training epoch. The results are shown in Figure 3.4(e)-(h). Generally, we can

observe that NETRA converges pretty fast with high AUC score almost after the first epoch. When

comparing with Deepwalk, node2vec, SDNE and ANE, we can clearly see the better performance

of NETRA on these datasets.

3.1.3.3 Network Reconstruction

Network embeddings are considered as effective representations of the original network. The ver-

tex representations learned by networking embedding maintain the edge information for network

reconstruction. We randomly select vertex pairs as edge candidates and calculate the Euclidean

distance between the vertices. We use the precision@k, the fraction of correct predictions in the

top k predictions, for evaluation.

precision@k =
1

k
× |Epred(1 : k) ∩ Eobs|, (3.23)

where Epred(1 : k) represents the top k predictions and Eobs represents observed edges in origi-

nal network. In the evaluation, the UCI message and Blogcatalog datasets have been utilized to
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Figure 3.5: Network reconstruction results on UCI Msg and Blogcatalog dataset

illustrate the performance of NETRA, with results shown in Figure 3.5.

As it can be seen from the precision@k curves, the NETRA model achieves higher precision

in the network reconstruction task. The total number of edge candidates selected in this task is 8k

for UCI message and 300k for Blogcatalog. The reconstruction given by NETRA is very accu-

rate in predicting most positive samples (results on JDK and DBLP datasets show similar trends

which haven’t been included here). DeepWalk and node2vec can give reasonable reconstruction

but the results are worse than NETRA for most k’s. By learning smoothly regularized vertex repre-

sentations using generative adversarial training process [Goodfellow et al., 2014], our model well

integrates the locality-preserving and global reconstruction constraints to learn embeddings that

capture the “semantic” information.

3.1.3.4 Vertex Classification

The task of predicting vertex labels with the learned network representations is widely used in

recent studies [Perozzi et al., 2014b, Grover and Leskovec, 2016, Wang et al., 2016]. An effective

network embedding algorithm should capture network topology and extract most useful features

for downstream machine learning tasks. In this section, we use vertex features as input to a one-vs-

rest logistic regression using the LIBLINEAR [Fan et al., 2008] package to train the classifiers. For

the Wikipedia and PPI datasets, we randomly sample 10% to 50% vertex labels as the training set

and use the remaining vertices as the test set. We report Micro-F1 [Wang et al., 2016] as evaluation
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Figure 3.6: Vertex classification results on PPI and Wikipedia dataset

metrics. Each result is averaged by five runs, as shown in Figure 3.6.

It is evident from the figure that NETRA outperforms the state-of-the-art embedding algorithms

on multi-label classification task. In the PPI dataset, NETRA achieves higher Micro-F1 scores

than the baseline models by over 10% in all experiment settings. In the Wikipedia dataset, NETRA

model performs better even with lower percentage training set. This well illustrates the good

generalization performance when the training set is sparse. The vertex classification task shows

that, with adversarially regularized LSTM autoencoders, the neighborhood information can be well

captured by the low dimensional representations.

3.1.3.5 Parameter Sensitivity

In this section, we investigate the parameter sensitivity in NETRA for link prediction. We study

how the training set size, embedding dimension and locality-preserving constraint parameter λ1

will affect the performance of link prediction. Also by changing the architecture of the NETRA

model, we can investigate roles of different components in NETRA. Note that similar observations

can be made on vertex classification and network reconstruction tasks.

In Figure 3.7(a), we vary the training percentage of edges in the UCI message network. As

it can be seen, the performance increases as the training ratio increases. Comparing with other

algorithms, NETRA can capture the network topology even with a small proportion of edges for
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Figure 3.7: Parameter sensitivity analysis

training, which demonstrates the generalization capability of the NETRA model. In Figure 3.7(b),

we vary the embedding dimension from 50 to 1000. The prediction performance gets saturated as

the dimension increases. Considering that the embedding dimension is related to the parameter

volume in NETRA, there exists a trade off between the performance and the efficiency during

model training.

The parameter λ1 is defined by the relative strength between locality-preserving constraint

and autoencoder constraint. The higher the λ1, the larger the gradient comes from the locality-

preserving constraint. As observed from the Figure 3.7(c), a higher λ1 enhances the link prediction

performance on the UCI message network, indicating the important role of local proximity.

We also include three variants of NETRA to demonstrate the importance of individual com-

ponents in NETRA, including NETRA−LE, NETRA−LSTM, and NETRA−GAN. NETRA−LE and

NETRA−GAN remove the locality-preserving constraint LLE and adversarial regularization, respec-

tively. As for NETRA−LSTM, we replace LSTM with multilayer perceptron. It’s evident from

Figure 3.7(d) that LSTM autoencoder, locality-preserving constraint, and adversarial regulariza-

tion play important roles in NETRA model. The overfitting becomes obvious in the training of

NETRA−LSTM and NETRA−GAN.

3.2 Summary

This chapter describes one of the static network analysis methods NETRA, which is a deep network

embedding model for encoding each vertex in a network as a low-dimensional vector representa-
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tion with adversarially regularized autoencoders. NETRA demonstrates the ability of generative

adversarial training process in extracting informative representations. This model has better gen-

eralization capability, without requiring an explicit prior density distribution for the latent repre-

sentations. Specifically, NETRA leverages LSTM autoencoders that take the sampled sequences

of vertices as input to learn smooth vertex representations regularized by locality-preserving con-

straint and generative adversarial training process. The resultant representations are robust to the

sparse vertex sequences sampled from the network. Empirically, the learned representations has

been evaluated with a variety of network datasets on different tasks such as network reconstruc-

tion, link prediction and vertex classification. The results show substantial improvement over the

state-of-the-art network embedding competitors.
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CHAPTER 4

Static Network Analysis: Applications

Static network analysis has been extensively used in a wide range of applications such as propaga-

tion modeling, user behavior analysis, link prediction and community detection. In this chapter, we

will introduce one of the community detection applications which is to detect competitive adver-

tiser communities in a sponsored search market. The problem of measuring the intensity of com-

petition among advertisers is increasingly gaining prominence today. Usually, search providers

want to monitor the advertiser communities that share common bidding keywords, so that they can

intervene when competition slackens. However, not much work has been conducted in identify-

ing advertiser communities and understanding competition within these communities. Section 4.1

introduces a novel approach to detect competitive communities in a weighted bi-partite network

formed by advertisers and their bidding keywords. The proposed approach is based on an advertiser

vertex metric called intensity score, which takes the following two factors into consideration: the

competitors that bid on the same keywords, and the advertisers’ consumption proportion within the

community. The community detection algorithm Max-Intensity is designed to detect communities

which have the maximum intensity score.

4.1 Detecting Competitive Advertiser Communities

Search providers often divide the entire sponsored search market into different areas of business

interests. Each such area, like healthcare, education, food and nutrition, etc. is formally known as

a sector. Each sector has a wide spectrum of sponsored keywords that different advertisers bid on

through keyword auctions. However, advertisers are eventually charged only when their sponsored

ads are clicked by a user [Graepel et al., 2010]. Typically, advertisers open their accounts with the
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search provider(s) and bid for a set of keywords which they consider to be relevant to their prod-

ucts [Perlich et al., 2012]. Different advertisers, bidding on the same set of keywords, compete

against each other for their ad slot in the search results. Thus, the search engine providers often

ask themselves “what is the best way to measure the competition among different advertisers in

each sector?”. This is a very important question from the search providers’ perspective, as under-

standing the intensity of competition among different advertisers can help them monitor a sector

better, and if necessary, implement changes in their current policy to increase their revenue.

In traditional retail markets, market concentration measures which are based on firms’ profits

or market shares [Boone, 2008, Hirschman, 1964, Horvath, 1970] are used to estimate the compe-

tition. We can extend this notion to the sponsored search market as well, where we can view the

fraction of the total “user clicks” that an advertiser gets on its sponsored ads as its corresponding

market share in the sector. The fundamental principles of economic theory suggest that as market

competition rises, the revenue for search providers should also increase [Shapiro, 2010]. This is

easily verifiable from our results in Section 4.1.1. However, analyzing market competition at the

sector level over time may not always give adequate insights. For example, if the competition for

a sector remains stagnant or increases over time, it does not necessarily mean that the competition

among advertisers for different keywords will follow a similar trend. Even in such cases, there

will be pockets of advertisers, fiercely competing against each other for certain keywords, thereby

contributing towards a higher search engine revenue. Likewise, a low competition for an entire

sector does not indicate that all keywords within that sector are experiencing high competition.

There can be several groups of keywords which are not fairing well in the market and are hardly

sought out by the advertisers. Thus, our primary motivation is to detect small meaningful com-

munities of advertisers, competing against each other, within a sector. These communities offer an

appropriate microscopic view that will allow us to extract relevant insights like finding core and

fringe competitors of advertisers, studying how the competition evolves, etc.

Traditional community detection algorithms [Newman, 2006b, Rosvall and Bergstrom, 2007,

Newman, 2006a, Blondel et al., 2008], running on network graphs, allow us to discover groups of

tightly connected vertices and their inter-relationships. In order to run these community detection

methods, we modeled our sponsored search market as a bi-partite advertiser-keyword network, as
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Figure 4.1: Weighted advertiser-keyword bipartite graph

shown in Figure 4.1 (detailed description can be found in Section 4.1.2). However, recent studies

in community detection mainly focus either on improving the existing modularity-based meth-

ods [Kloster and Gleich, 2014, Duan et al., 2014], or proposing new metrics to better estimate the

community structure [Chakraborty et al., 2014]. But, for our advertiser-keyword network, we need

to detect communities based on their internal competition with each other. Therefore, in this study,

we first introduce a novel scoring function called intensity score to measure the competitiveness

of an advertiser. Thereafter, we propose a community detection algorithm Max-Intensity which

detects highly competitive communities by maximizing the total intensity score within each com-

munity.

4.1.1 Preliminaries

Market concentration measures are commonly used in retail markets to estimate the competition

among the stakeholders. One such measure that is widely regarded by economists as an excellent

indicator for market competition is the Herfindahl-Hirschman index (HHI) [Hirschman, 1964].

HHI for a market having N firms is calculated as,

HHI =
N∑
i=1

s2
i (4.1)

where si is the market share of firm i in the market, and N is the number of firms. Thus, in a

market with two firms each having 50% market share, the HHI will be 0.52 + 0.52 = 0.5.

Another alternative market concentration measure commonly used for estimating competition
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is the comprehensive concentration index (CCI) [Horvath, 1970]. CCI for a market havingN firms

is calculated as,

CCI = s1 +
N∑
i=2

s2
i × (2− si) (4.2)

where s1 is the market share of the largest competitor. Thus, in a market with two competitors

having shares of 40% and 60%, the CCI will be 0.6 + 0.42 × (2− 0.4) = 0.856. CCI puts greater

weight on the share of the largest firm as compared to HHI. But typically, a low value of HHI or

CCI indicates high market competition, whereas a high HHI or CCI would practically indicate a

monopoly. We use both HHI and CCI metrics to validate our results.

In order to apply HHI and CCI in the context of a sponsored search marketplace, we can

consider “user clicks” as sales for an advertiser and the fraction of total clicks garnered by the

advertiser on its sponsored ads as its market share. With these considerations, we calculate Spear-

man’s rank correlation coefficient between HHI and the search engine revenue over seven weeks

for different sectors. The results are summarized in Table 4.1. For each sector, we average the user

clicks and advertisers’ consumption each week, and then calculate HHI of each sector (sector is a

“market” here). It is evident from the table that there is a very strong negative correlation between

the HHI for a sector and the revenue the search engine obtained from that sector. This indicates

that an increase or decrease in the market competition can lead to a corresponding rise or drop in

the search provider’s revenue as well. Therefore, it is critical that search engine providers identify

scenarios where market competition is becoming stagnant or decreasing so that it can come up with

remedial strategies [Boone, 2008], such as free token distributions to intensify the competition.

However, sector level analysis offers a very broad macroscopic view. It is difficult to gain

relevant insights into the market competition at the sector level. For example, a low HHI value

does not suggest that all keywords within that sector are facing high competition, and vice versa.

Thus, it is much more useful for search providers to find different pockets of advertisers and their

corresponding keywords within a sector and track their competition over time. Our proposed com-

munity detection algorithm Max-Intensity identifies these competitive advertiser communities and

their corresponding bidding keywords.
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Table 4.1: Market competition versus search provider revenue

Sector Criteria Weekly Averaged Data Correlation

Instruments
HHI 0.0006 0.0007 0.0007 0.0008 0.0019 0.0017 0.0006

-0.9611
Revenue 6,059,822 5,876,791 5,494,558 4,614,660 1,593,922 625,657 5,196,103

Finishing HHI 0.0009 0.0010 0.0012 0.0025 0.0027 0.0035 0.0011
-0.9417

Materials Revenue 7,438,719 7,143,498 6,151,826 4,988,395 2,103,629 1,740,237 6,392,471

Industrial HHI 0.0010 0.0011 0.0011 0.0014 0.0018 0.0026 0.0012
-0.9533

Chemicals Revenue 3,175,138 3,042,216 2,862,213 2,347,107 951,526 574,986 2,760,362

Machinery
HHI 0.0003 0.0004 0.0004 0.0005 0.0008 0.0009 0.0004

-0.9976
Revenue 5,397,096 5,196,760 4,721,726 3,909,659 1,363,837 789,953 4,650,112

Metallic HHI 0.0004 0.0004 0.0005 0.0006 0.0011 0.0016 0.0006
-0.9415

Materials Revenue 3,441,036 3,330,836 2,920,052 2,177,350 701,702 433,938 3,024,788

Specialty HHI 0.0006 0.0006 0.0006 0.0007 0.0010 0.0014 0.0007
-0.9580

Hospital Revenue 81,584,689 79,453,651 76,563,899 66,196,751 34,401,222 23,445,646 71,740,014

4.1.2 Data Modeling and Definitions

In this section, we first describe our data model and the intuition behind it. Then we formally

define the intensity score and evaluate its boundary conditions.

4.1.2.1 Data Modeling

In order to deploy the community detection algorithms, we need to model the sponsored search

market as a graph. In our model, we consider both keywords and advertisers as vertices. In this

keyword-advertiser graph, an edge exists between a keyword and an advertiser, if the advertiser

bids for that keyword and has paid some remuneration to the search provider for it. If an edge

exists between an advertiser and a keyword, we say that the advertiser “consumed” the keyword

and the corresponding “consumption” is measured by the amount paid by the advertiser to the

search provider for that keyword. Since, in our model, there cannot be any advertiser-advertiser

or keyword-keyword edges, we essentially have a bi-partite graph. However, all keywords are not

equally important to an advertiser. Therefore, we assign weights to the advertiser-keyword edge

according to the remuneration the advertiser pays to the search provider for that keyword.

There is a significant drawback if we treat only advertisers as vertices in the graph. This is

because the edges can be established between two advertisers vertices, if there is at least one
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mutual keyword that both these advertisers have consumed. In this case, there will be too many

cliques which may not be meaningful communities. For example, consider a network where five

advertisers share a common keyword, two among them share two additional keywords while the

remaining three share only one additional keyword. These five advertisers in this model form a

clique. However, even if these five advertisers had just one common keyword, they would still

have formed a clique. Thus we will end up having too many redundant cliques that goes against

the definition of communities (less external connections and more internal connections).

We now formally denote the weighted bi-partite advertiser-keyword graph by G(A,K,E),

where A is the set of advertisers, K is the set of keywords and E is the weighted edge set such that

A ∩ K = ∅ and E ⊆ V × K. Let wij denote the weight of an edge between vertex i ∈ A and

vertex j ∈ K. In the context of our model, wij > 0 is the proportion of the money that advertiser i

spent on keyword j. Thus we have

wij = csmij ×
1∑ni

k=1 csmik

(4.3)

where csmij (shown with red numbers in Figure 4.1) represents the consumption of advertiser i on

keyword j and ni is the total number of keywords consumed by advertiser i.

4.1.2.2 Competition Coefficient

Community detection methods [?] partition vertices in a graph into set of groups, also called com-

munities, based on their inter-relationships. Let the subgraph C(AC , KC , EC) of an advertiser-

keyword graph G(A,K,E) be such a community. In order to measure the degree to which adver-

tisers within a community tend to compete with each other, we propose a competition coefficient

based on the internal competition within a community.

Definition 1 (Homogeneous Neighborhood). For a given vertex u ∈ AC ∪ KC in a bipartite

subgraph C, we define its homogeneous neighbor set as N(u) = {v|(u, t) ∈ EC ∧ (t, v) ∈ EC , t 6=

∅, u 6= v}, which is a collection of homogeneous vertices.

Definition 2 (Competition Coefficient). In a given bipartite subgraph C(AC , KC , EC), the com-
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petition coefficient of an advertiser vertex i ∈ AC is defined as follows:

cci =


∑
j

∑
k wjk

|N(i)| , if N(i) 6= ∅

0 if N(i) = ∅
(4.4)

where j ∈ N(i), k ∈ KC , wik > 0 and wjk > 0.

Leveraging the concept of clustering coefficient in graph theory [Watts and Strogatz, 1998],

we propose the competition coefficient to factor the competition an advertiser vertex will face in a

bipartite graph. The definition shows that competition coefficient is the sum of the weighted edges

of all the competitors that are bidding on the same keywords as the advertiser, normalized by its

number of competitors. Consider the example given in Figure 4.1, the competition coefficient of

vertex HTC in the community is ccHTC = 0.7+0.1+0.6+0.4
3

= 0.6.

From this definition we can obtain that cci ∈ [0, 1]. The maximum value of 1 is obtained

when all the homogeneous neighbors spend all their money on the same keywords that are bid

on by advertiser i. The lower bound of competition coefficient is 0, which is obtained when no

competitors exist (N(i) = ∅).

Theorem 3. Given a community C(AC , KC , EC), advertiser i ∈ AC , cci = ϕ. If a new competitor

j is introduced in this community, the competition coefficient will increase if and only if∑
wik>0

wjk > ϕ. (4.5)

Proof. Let,
∑

l

∑
k wlk = α, where l ∈ N(i), k ∈ KC . We have ϕ = cci =

∑
l

∑
k wlk

|N(i)| = α
|N(i)| .

After adding a new competitor j, ϕ′ =
α+

∑
wik>0 wjk

|N(i)|+1
. If the competition coefficient increases,

ϕ′ > ϕ, then
α+

∑
wik>0 wjk

|N(i)|+1
> α
|N(i)| . Thus we can get

∑
wik>0wjk >

α
|N(i)| × (|N(i)| + 1) − α =

α
|N(i)| = ϕ.

4.1.3 Intensity Score

Based on the competition coefficient, we formulate the intensity score for an advertiser vertex. We

assume that if the proportion of advertiser consumption for a keyword is high, then the advertiser’s

competitive capacity to this keyword is also high. To measure the intensity score of an advertiser

within a community, we use the following two criteria:
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1. The internal consumption proportion
∑

i∈AC∧j∈KC wij of the advertiser i inside community

C should be more than the maximum consumption proportion to a single external community

maxC′
∑

i∈AC∧j′∈KC′
wij′ . This criteria is represented in the intensity computation as the dif-

ference between the internal consumption proportion and the maximum external community

consumption proportion
∑

i∈AC∧j∈KC wij − maxC′
∑

i∈AC∧j′∈KC′
wij′ , where C ′ represents

the external communities (more details in case study 1 of Section 4.1.4.3). This value will

be between −1 when there are no competitors inside the community, and 1 when there are

no competitors outside the community. This criteria emphasizes that a vertex is likely to be

within a community if its sum of consumption proportions (edges) within the community is

large (see Theorem 1).

2. Within a specific community, if the competition intensity is high, then the homogeneous

neighbors of the advertiser vertex i should spend more money on the same keywords as i.

In this case, its competition coefficient, cci, should be high. (more details in case study 2 of

Section 4.1.4.3). This value ranges from 0 (not competitive) to 1 (full competition).

We aggregate these two criteria to formulate intensity score Ii of an advertiser vertex i in commu-

nity C(AC , KC , EC) as follows:

Ii = cci + λ

 ∑
i∈AC∧j∈KC

wij −max
C′

∑
i∈AC∧j′∈KC′

wij′

 (4.6)

where λ ≥ 0 is a tuning parameter. We test different values for λ in our experiments. Base on this

formulation, the intensity score forHTC in Figure 4.1 is IHTC = ccHTC+λ(0.3+0.5−0.2) = 1.2

(we choose λ = 1 here).

The intuition behind this intensity measure is based on our observations that an advertiser

vertex with high intensity score has lots of competitors within its community, and its internal

consumption proportion is higher than the maximum consumption proportion to any single external

community.
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4.1.3.1 Boundary Conditions of Competition Intensity

For vertices that do not have any external connections, Ii is equal to the sum of internal coefficient

and λ (i.e. Ii = cci + λ). Ii attains its maximum value of 1 + λ when advertiser i has no

external connections and faces full competition (all competitors spend all their money on the same

keywords as advertiser i) inside the community. The theoretical lower bound of Ii is −λ, which

is obtained when the competitors of advertiser i are only from outside of the community. For

example, this is possible for singleton advertiser community which has only external connections.

Therefore, for every advertiser vertex i, Ii ∈ [−λ, λ+ 1].

The intensity score of the communityC(A,K,E) is given by IC =
∑

i∈AC
1
|A|Ii, IC ∈ [−λ, λ+

1]. IC will be closer to λ+ 1 as more vertices inside the community high intensity score. This can

happen only when the community has a strong internal structure without any external connections

to its vertices and all the keywords inside the community are bid by all the advertisers. If C is

a singleton community which has only one advertiser and has only external connections, then

IC = −λ.

4.1.4 Proposed Approach

In this section, we present the formal definition of competition community detection problem,

and develop a community detection algorithm called Max-Intensity that identifies communities by

maximizing their intensity scores.

4.1.4.1 Objective

Our objective is to deal with the following problem: given a weighted bipartite graph G(A,K,E),

partition the vertices of G into subsets so as to maximize the intensity score in each detected

community. The goal function is,

fobj = max
∑
AC⊆G

∑
i∈AC

Ii (4.7)

where C(AC , KC , EC) is the detected community. An edge between A and K in G(A,K,E)

amounts to an advertiser a ∈ A bidding on a particular keyword k ∈ K. The weight of an edge
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(b) Case study 2: Advertiser assignment re-

garding to the competitors

Figure 4.2: Case studies on advertiser assignment performance of Max-Intensity

Wa,k represents the consumption of that particular bid normalized by total consumption for the

advertiser. With this input set then the algorithm is set to iteratively assign keyword and advertiser

vertices to communities in order to increase the overall intensity of the network.

4.1.4.2 Community Detection with Max-Intensity

Similar to finding subgraphs of a given size with some fitness measures larger than a thresh-

old [Fortunato, 2010], our problem is also NP-complete. Therefore, we utilize a heuristic approach

which strives to obtain a high value of intensity. To achieve this desiderata, the algorithm iterates

through the entire advertiser set and tests the assignment of an advertiser to each of its neighboring

communities against no assignment at all. The advertiser is then assigned to the community which

results in the highest intensity for the graph overall (pseudocode in Algorithm 2). After each as-

signment outside of an advertiser’s current community, and initially, each keyword is assigned to

the community which has the highest average intensity score, as shown in Algorithm 3. An itera-

tion limit is set so as to avoid infinite looping in the event that the assignment of vertices oscillate.

By iteratively assigning the advertiser and keyword vertices the algorithm will approach a network

with a good intensity score.
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Algorithm 2 Max Intensity
Input: A weighted bipartite graph G.

Output: Intensity of advertisers in G; Detected communities.

1: procedure MAXINTENSITY(G(A,K,E), λ)

2: ASSIGNKEYWORDS(K) . Each vertex is assigned to its seed community

3: Sum← −λ× |A|, Old Sum← −1

4: do

5: Old Sum← Sum, Sum← 0

6: for a ∈ A do

7: cur i← Intensity(a)

8: if cur i == λ+ 1 then

9: Sum← Sum+ cur i

10: continue

11: end if

12: cur i neig ← 0

13: for l ∈ Neig(Neig(a)) do

14: cur i neig ← cur i neig + Intensity(l)

15: end for

16: for C ∈ Comm(Neig(a)) do

17: n i← Intensity(a) . Move a to community C

18: n i neig ← 0

19: for l ∈ Neig(Neig(a)) do

20: n i neig ← n i neig + Intensity(l)

21: end for

22: if (cur i < n i) and (cur i neig < n i neig) then

23: cur i← n i, ASSIGNKEYWORDS(K)

24: else

25: replace a to its original community

26: end if

27: end for

28: Sum← Sum+ cur i

29: end for

30: while not stopping criterion and Sum 6= Old Sum

31: return Advertiser intensity = Sum/|A|

32: end procedure
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Algorithm 3 Assign Keywords
Input: A partite set of keywords K.

Output: Assigned communities of K

1: procedure ASSIGNKEYWORDS(K)

2: for all k ∈ K do

3: max i← −∞

4: for C ∈ Comm(Neig(k)) do

5: cur i← 0, A← { a | (a ∈ Neig(k)) ∧ (a is a memeber of C) }

6: for a ∈ A do

7: cur i← cur i+ Intensity(a)

8: end for

9: cur i← cur i
|V |

10: if cur i > max i then

11: max i← cur i, and move k to community C

12: end if

13: end for

14: end for

15: end procedure

4.1.4.3 Case Study

In this part, we study the behavior of Max-Intensity algorithm with two simple cases. In the first

case study, we test the advertiser assignment regarding the consumption proportion. The initial

choice of vertices in the graph is arbitrary but suppose without loss of generality the vertices are

chosen in order (i.e. A1, A2, ..., A5). Initially each vertex is assigned to it’s seed community

(C1, C2, ..., C5). The intensity score of an advertiser vertex in it’s seed community is −λ due

to hitting the lower boundary condition (Section 4.1.3.1). Then the keywords are assigned to the

community with the highest average intensity score. Again without loss of generality assume ties

are assigned to the lower ordered vertex (i.e A1 < A2 < ..., A5). There are other intutive choices

to make in breaking ties, such as assigning the keyword to the advertiser with a higher weight, but

for simplicity we will just use this basic ordering. After initialization, each advertiser is assigned

to a distinct community with K1 and K2 assigned to A1’s community (C1), K3 assigned to A3’s

community (C3) and K4 assigned to A4’s community (C4). C2 and C5 are still singleton com-
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munities with A2 and A5 respectively. The algorithm begins the iteration, choosing A1 first. The

intensity score will be calculated at this vertex and is given to be 1 because all attached keywords

are within the same community. Next A1 will stay in C1 since all other assignments will lead to

a minimum score. This is because all attached keywords are in C1, so an assignment to another

community will lead to ccA1 = 0 (N(A1) = ∅). The intensity score thus becomes −λ, the left-

most bound. The next vertex chosen will be A2. The initial score for A2 is −1 because that is the

maximum weight of the leaving edges to C1. Once A2 is placed into C1 then the intensity will

increase and A2 will stay in C1. This will result in a call to Assign Keywords(K) will place K3

into C4. A3 is next and will follow the same steps as A2, this time choosing C4. A4 will stay in

C4 by the same reasoning as A1. The final advertiser, A5 is placed into C4 because it will increase

the intensity score of the graph, ending the current iteration. The next iteration begins selecting

the advertisers in order. A1 and A2 will remain in C1 since all of their keywords are contained

in C1. A3, which at this time is in C4, has the choice to stay or move to C1. Since the intensity

is higher for both A3 and A3’s neighbors to switch, A3 will be placed in C1. The remaining two

advertisers will stay in their current communities. Since there are no other options, the algorithm

will terminate and the result is shown in Figure 4.2(a).

In the second case study, we test the advertiser assignment regarding the competitors in the

same community. The iteration will proceed as in the first case for the first iteration. On the

second iteration, as in the first case, A1 and A2 will stay in their communities. Once the vertex

A3 is taken, the vertex will stay in it’s own community rather than adding it to C1 which will not

increase the intensity of A3. The algorithm will proceed and will not change the communities of

A4 and A5. This leaves the network partitioned into two communities as shown in Figure 4.2(b).

4.1.4.4 Effectiveness Analysis

To help in analyzing the complexity of the algorithm, the shorthand notation that is presented along

with a description in Table 4.2 will be used.

Since the algorithm runs in a max total of M times in the worst case this factor is run for

each vertex assignment iteration. In the vertex assignment iteration the most dominate time fac-
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Table 4.2: Notations used in effectiveness analysis

Notation Description

|V | number of vertices in G

|A| number of advertiser vertices in V

|K| number of keyword vertices in V

|E| number of edges in G

|C| number of communities in G

M max iteration

tor comes from iterating through all the communities in the keyword edge set neighbors of an

advertiser. This additional factor of |C| will be multiplied to the intensity calculation of the neigh-

bors of the adjoining advertisers of the keyword. This cost will be dominated by a move to a

new community which will call the Assign Keywords subroutine. Since the Assign Keywords

subroutine iterates over all keywords this factor of |K| will be multiplied by the run through all

communities multiplied by the intensity score of each advertiser neighbor. This total cost so far is

O(M×|K|×|C|×|A|×|C|×cost(i)), where cost(i) is the cost of intensity score calculation which

is dominated by the cost associated with calculating the competition coefficient and in the worst

case is |K|×|A| giving a total worst case running time ofO(M×|K|×|C|×|A|×|C|×|K|×|A|)⇒

O(M × |K|2 × |C|2 × |A|2). Although this running time is slow in the worst case, actual running

times are much faster. This is due to the time complexity reaching its worst case only when an as-

signment to a new community is made which has the effect of reducing |K|, |C|, |A| in subsequent

iterations.

4.1.5 Evaluation

In this section, we provide a brief overview of our sponsored search advertising dataset collected

from one search provider, the comparative methods and the evaluation metrics that we used in our

experiments, and finally the performance analysis of our Max-Intensity algorithm.
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Table 4.3: Daily sponsored search advertising dataset statistics

Network Dataset Average Statistics

|V |
advertisers ≈ 200, 000

keywords ≈ 2, 000, 000

|E| consumption records ≈ 6, 000, 000
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Figure 4.3: Advertiser distribution among all sectors

4.1.5.1 Dataset Description

We conducted all our experiments on actual sponsored search advertising data collected for a pe-

riod of two months. These datasets are structured and capture information about different advertis-

ers in different sectors consuming various keywords. The overall data is available at two different

granularities–one at the keyword level and the other at the advertiser level. This data has been

curated and anonymized to ensure business secrets and privacy information are not publicly avail-

able. For example, we do not know the exact keywords, but instead we have the keyword ids. This,

however, does not concern us, since our model and community detection methodology do not re-

quire this information. Table 4.3 shows the average statistics for daily sponsored search advertising

dataset.

There are about 200 sectors in this dataset like IT, electronics, food, nourishment, etc. Fig-

ure 4.3 shows the advertiser distribution among all sectors. In our experiment, we selected the top
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(a) Input network before filtering (b) Input network after filtering

Figure 4.4: Input network pre-processing

four popular sectors.

Pre-processing. Given the nature of the dataset, modeling of the data can result in a set of highly

disconnected and sparse subgraphs which act as noise in the mining analysis. This is due to sets of

keywords being exclusively bid on by a small set of advertisers. Therefore, prior to constructing

the advertiser-keyword graph, we pre-process the input to reduce the noise. We filter out the

noise by building a set of trees using breadth-first search (BFS) [Moore, 1959] over the entire

vertex set of the graph and then considering only those trees whose depth and vertex set size are

above user-defined threshold. We demonstrate the filtering process through an example shown in

Figure 4.4(a) and Figure 4.4(b). It is apparent from the figures that the strongly connected clusters

in our advertiser-keyword graph are retained, while those subgraphs, which act as outliers, are

removed.

4.1.5.2 Comparative Methods and Evaluation Metrics

In this subsection, we consider the canonical community detection algorithms as well as recent

state-of-the-art algorithms. We used the python-igraph package for executing the canonical al-
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Figure 4.5: Cumulative proportion of competition communities detected by each method

gorithms Infomap, Multilevel and Leading Eigenvector, while we implemented Max-Permanence,

Bi-Permanence and Max-Intensity algorithms in C#. We then evaluate the quality of the detected

communities by calculating their Herfindahl-Hirschman index (HHI) [Hirschman, 1964] and com-

prehensive concentration index (CCI) [Horvath, 1970]. According to the definition of HHI and

CCI mentioned in Section 4.1.1, smaller index scores indicate more competitive communities.

4.1.5.3 Experimental Results

In this section, we first evaluate the competitiveness of the communities detected from different

algorithms by comparing their HHI and CCI scores. Then we test the performance of our Max-

Intensity algorithm for different λ values. Lastly, we examine the computational complexity of our

Max-Intensity algorithm.

Community Competitiveness Evaluation. To compare the competitiveness of communities

detected by different algorithms, we run our experiments on one month dataset for the four sectors

mentioned previously. Here we choose λ = 1 for all our experiments.

Figure 4.5 shows the cumulative proportion of communities against different HHI and CCI
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Table 4.4: Community number and average HHI/CCI of each method

Methods #Comminities Average HHI Average CCI

Infomap 164 0.4542 0.7100

Multilevel 31 0.4730 0.7439

Eigen 23 0.4278 0.6868

Max-Permanence 271 0.4050 0.6292

Bi-Permanence 237 0.4008 0.6264

Max-Intensity 186 0.3488 0.5725

Average 152 0.4183 0.6615

values for various algorithms averaged across four sectors. In this figure, x-axis represents the

HHI (above) and CCI (below) values while y-axis represents the cumulative community propor-

tion accordingly (averaged over four sectors). For example, a point (0.4, 0.6) on the curve means

60% of all the detected communities by a certain method has HHI or CCI ≤ 0.4. According to

the definitions, smaller HHI and CCI values indicate more competitive communities. We can see

from the figure that the cumulative proportion of competitive communities detected by our algo-

rithm Max-Intensity is significantly higher than other methods, particularly for lower HHI or CCI

values (left of the vertical line, HHI=0.4 or CCI=0.4). The nature of the curves for Max-Intensity,

Bi-Permanence, Max-Permanence and Infomap are very similar. However, the curves correspond-

ing to Multilevel and Eigen rise steeply from moderate HHI values and ends abruptly. This is

because, both these methods detect very few communities, each with a large number of commu-

nity members, which fail to capture the actual competition in the marketplace. In other words,

both Multilevel and Eigen cannot detect either intense competitive communities or communities

without significant competition, instead they merge smaller community structures to get an overall

moderate HHI. This is primarily because modularity-based community detection algorithms (like

Multilevel or Eigen) suffer from resolution limit problems and end up selecting very few but large

communities. This is conclusively shown in table 4.4.

Table 4.4 displays the average number of communities detected by each method and their
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Table 4.5: Cumulative proportion of competition communities under different HHI/CCI threshold

Methods
HHI

≤ 0.1 ≤ 0.2 ≤ 0.3 ≤ 0.4

Infomap 1.62%±0.0060 4.55%±0.0147 17.02%±0.0242 39.43%±0.0688

Multilevel 0.00%±0.0000 0.00%±0.0000 0.00%±0.0000 10.88%±0.0655

Eigen 0.00%±0.0000 1.76%±0.0214 2.85%±0.0205 25.83%±0.0640

Max-Permanence 4.36%±0.0128 15.58%±0.0269 32.60%±0.0339 48.25%±0.0322

Bi-Permanence 10.45%±0.0175 19.93%±0.0355 34.80%±0.0340 53.21%±0.0417

Max-Intensity 16.02%±0.0218 27.44%±0.0188 41.88%±0.0111 59.52%±0.0170

Methods
CCI

≤ 0.1 ≤ 0.2 ≤ 0.3 ≤ 0.4

Infomap 0.15%±0.0031 1.00%±0.0047 1.47%±0.0031 4.09%±0.0071

Multilevel 0.00%±0.0000 0.00%±0.0000 0.00%±0.0000 0.00%±0.0000

Eigen 0.00%±0.0000 0.00%±0.0000 0.68%±0.0135 1.76%±0.0214

Max-Permanence 0.40%±0.0050 1.35%±0.0062 5.18%±0.0192 13.79%±0.0214

Bi-Permanence 1.73%±0.0051 5.64%±0.0143 12.16%±0.0140 19.12%±0.0392

Max-Intensity 3.07%±0.0037 8.41%±0.0071 15.07%±0.0116 24.00%±0.0250

corresponding average HHI and average CCI values (across all the communities). As shown in the

table, Max-Intensity achieves the lowest average HHI and average CCI values.

We also tabulate the cumulative proportion of competitive communities under different HHI

and CCI thresholds with their respective standard deviations from 0.1 to 0.4 with an interval of

0.1 in Table 4.5. We can observe from the table that, when HHI ≤ 0.1, the cumulative proportion

of communities detected by Max-Intensity is 1.5 to 10 times higher than its closest competitors

namely Infomap, Max-Permanence and Bi-Permanence. Similarly, when CCI ≤ 0.1, the cumula-

tive proportion of communities detected by Max-Intensity is 1.8 to 20.5 times higher.

Parameter Analysis. The intensity score defined by Eq. (4.6) is dependent on the parameter

λ. The value of λ decides the relative importance between the competition coefficient and the
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difference between advertiser’s consumption within the community and outside. If the value of

the latter difference is high, it implies that the advertiser has less capacity to compete outside this

community. By varying the parameter λ, we want to examine which component of the intensity

score is more important to identify competitive communities in the sponsored search market. The

special case of λ = 1 indicates that both these components are equally important. We choose

different values of λ from 0.001 to 20 and compute the corresponding average HHI and CCI values.

The results are summarized in Figure 4.6. It is evident from the figure that with λ < 1, we get more

competitive communities (with low HHI and CCI values). However, the curves corresponding to

λ < 1 follow a broad “U” pattern. This means that as λ increases from 0 to 1, the average HHI or

CCI decreases till it attains its optimal value, after which it starts increasing. In this case, we found

that λ = 0.1 gave the best HHI and CCI values. Likewise, for λ ≥ 1, the average HHI or CCI

values sharply increase. Thus, we can infer that the competition coefficient is significantly more

important in the definition of the intensity score.

Computational Analysis. Lastly, we examine the computational time for Max-Intensity and com-

pare it with the Bi-Permanence algorithm which has the second best performance in competitive

community detection results, as shown in Figure 4.5. In this experiment, we ran the algorithms

on different graphs with varying number of edges. The running times of the algorithms averaged

over 10 iterations are plotted against the number of edges in Figure 4.7. The results show that the

running time of Bi-Permanence is only marginally faster than our Max-Intensity algorithm, since

these two algorithms have similar time complexity. However, our method Max-Intensity can detect

more competitive communities than Bi-Permanence.

4.2 Summary

This chapter describes a novel approach Max-Intensity to detect competitive communities for

weighted bi-partite network formed by advertisers and their bidding keywords. This approach

iteratively assigns keyword and advertiser vertices to communities in order to increase the overall

intensity score of the network. The proposed intensity score takes into consideration two factors:

the competitors that bid the same keywords and the advertisers’ consumption proportion within
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Figure 4.7: Running time comparison

the community. The proposed methods Max-Intensity is compared with canonical community

detection methods Infomap [Rosvall and Bergstrom, 2007], Multilevel [Blondel et al., 2008] and

Eigen [Newman, 2006a], and the state-of-the-art method Max-Permanence [Chakraborty et al., 2014]

as well as its bipartite version (Bi-Permanence). HHI and CCI are employed as evaluation metrics

to measure the competition within the detected communities. Compared to these baseline meth-

ods, the communities detected by Max-Intensity algorithm have the lowest HHI and CCI values,

thereby demonstrating that the Max-Intensity method identifies more competitive communities.
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Part II

Evolutionary Network Analysis
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CHAPTER 5

Evolutionary Network Analysis: Methods

The problem of evolutionary network analysis has gained increasing attention in recent years,

because of an increasing number of networks, which are encountered in temporal settings, and it is

desirable to learn interesting trends about how the network structure evolves over time in terms of

other interesting trends. One challenging aspect of networks is that they are inherently resistant to

parametric modeling, which allows us to truly express the edges in the network as functions of time.

This is because, unlike multidimensional data, the edges in the network reflect interactions among

nodes, and it is difficult to independently model the edge as a function of time, without taking into

account its correlations and interactions with neighboring edges. In Section 5.1 we show that it

is indeed possible to achieve this goal with the use of a matrix factorization, in which the entries

are parameterized by time. This approach allows us to represent the edge structure of the network

purely as a function of time, and predict the evolution of the network over time. This opens the

possibility of using the approach for a wide variety of temporal network analysis problems, such as

predicting future trends in structures, predicting links, and node-centric anomaly detection. This

flexibility is because of the general way in which the approach allows us to express the structure of

the network as a function of time. Inspired by the time-dependent matrix factorization technique,

Section 5.2 introduces a framework to model co-evolution across multiple networks with shared

temporal matrix factorization. It decomposes the adjacency matrix of each co-evolving network

into a product of network-independent shared factor and a set of network-specific temporal factors,

and impose a non-negativity constraint on the factors for greater interpretability. The benefits of

this approach is demonstrated in predicting co-evolutions across multiple networks such as cross-

network link prediction, lag correlation detection and community detection.
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5.1 Temporally Factorized Network Modeling

Temporal networks have become ubiquitous because of the numerous applications that generate

network structures in a time-dependent way. Recently, a significant amount of work has been done

in the area of evolutionary network analysis [Aggarwal and Subbian, 2014, Ranshous et al., 2015],

which examines various problems in the context of network evolution. Some examples of such

problems are as follows:

• Based on the trends in the past, which links are most likely to be received at a future point in

time? How does the likelihood change with increasing value of time. Note that this is a more

refined problem than traditional link prediction [Dunlavy et al., 2011, Sarkar et al., 2012], in

which one simply predicts the links based on a static state of the network.

• How do communities evolve over time? Which communities grow, and which ones shrink?

Which ones are expected to grow in the future? Numerous works have been proposed in this

context [Backstrom et al., 2006, Gupta et al., 2011, Chi et al., 2007], although none of these

methods fully capture the evolving nature of the underlying network.

• One would like to predict surprising or anomalous events in different regions of the net-

works [Akoglu and Faloutsos, 2010, Ide and Kashima, 2004, Yu et al., 2013a]. These could

represent sudden regions of change [Yu et al., 2013a], or other structural changes in the net-

work [Gupta et al., 2011].

Although many individual solutions exist for these problems, a broader question is whether we can

directly characterize the structure of the network as a function of time. The ability to characterize

the structure of the network as a function of time is crucial in using it in different application

settings, because such a characterization can capture very rich information about the structure

of the underlying network. In this section, we discuss one such model, with the use of matrix

factorization methods.

Matrix factorization is a natural method to express the evolutionary structure of networks be-

cause of its ability to leverage the structural correlations among the edges in the network. The basic
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Figure 5.1: Illustration of temporal matrix factorization model

idea of temporal matrix factorization methods is to extract a low rank representation of the underly-

ing adjacency matrices, in a way which are parameterized with time, as shown in Figure 5.1. This

temporally parameterized factorization can be used to reconstruct the structure of the network at

any time t, including at times in the past or future where the network has not been observed. This

ability to reconstruct the adjacency structure of the network at any time t is crucial; it allows one

to make far more general predictions. Furthermore, it can be viewed as a compressed representa-

tion of not just the current state of the network, but the entire dynamic profile of the network over

time. This comprehensive characterization is crucial in enabling an effective solution to a variety

of problems. We view our solution as generic, as it is not specific to a particular problem, but it

enables solutions across a wider variety of settings.

5.1.1 The Temporal Matrix Factorization Model

In the following, we will generally assume that we have a temporal network G(t) = (N,A(t)),

where N is set of nodes in the networks, and A(t) is the adjacency matrix of the edges, as a

function of time. We assume that the size of A(t) = [aijt] is n × n, where |N | = n. For
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unweighted networks, the matrix A(t) is binary, whereas for weighted networks, the matrix A(t)

might contain arbitrary weights which change with time. For example, in the case of the DBLP

network, aijt might represent the number of publications between authors i and j at time t. These

weights might even be negative for dynamic signed networks such as a dynamic Epinions network

with shifting trust relationships. In general, the way in which A(t) changes will depend on the

specific application at hand, and it is completely agnostic to the model discussed in our paper. It is

assumed that the time stamp t is a continuous variable that varies from 1 through T .

Note that the set of nodes in the current state of the network is also a function of time, but in

practice, one can only work with the set of nodes that one has seen so far historically. Therefore,

the setN is fixed to the union of all nodes received so far at the current time t, at which the analysis

is performed. It is generally relatively easy to also provide estimations of the number of new nodes

that various parts of the network can receive as neighbors in the future. If the network G(t) is

directed, the basic temporal rank-k matrix factorization model assumes that the matrix A(t) can

be factorized as follows:

A(t) = f(UV (t)T ) (5.1)

Here, both U and V (t) are n × k matrices. The main difference between U and V (t) is that U

is a constant matrix and V (t) is time-dependent. The function f(·) is an element-wise function on

elements of the matrix in UV (t), which is useful in certain settings. For example, if the elements

inA(t) are normalized to the range (0, 1), then one can use a logistic function for f(·).

Obviously, results from Eq. (5.1) are trivially generalizable to undirected networks, since undi-

rected networks are special cases of directed networks. For undirected networks, the matrix A(t)

is symmetric. We can simply average UV (t)T and its transpose as the prediction of A(t). It can

also be factorized as the product of a time-dependent matrix V (t) and its transpose:

A(t) = f(V (t)V (t)T ) (5.2)

Note that one can also make both U and V (t) time-dependent, although the simpler model

can often achieve good approximations and avoid overfitting. Furthermore, it is also possible to

make U time-dependent instead of V (t) to achieve similar results. It is possible to simplify the

aforementioned relation, by not using a functional transformation f(·), and simply expressingA(t)
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as follows:

A(t) = UV (t)T or A(t) = V (t)V (t)T (5.3)

The function V (t) can take on any canonical form, such as linear models, polynomial models, and

so on. The choice of models is, however, orthogonal to the key ideas in this study as shown in

Section 5.1.1.1.

How does one determine the values of U and V (t)? The standard approach in matrix factor-

ization is to set up a least squares optimization problem, so that the A(t) matches f(UV (t)T ) as

closely as possible. This can be achieved by minimizing the sum of the squares of the entries in

A(t)− f(UV (t)T ). Therefore, one can express this optimization problem as the minimization of

the time-decayed sum of the Frobenius norms of the matrixA(t)− f(UV (t)T ) over all values of

t from 1 to the current time T .

min
U ,V

J(U ,V ) =
T∑
t=1

D(t)

2
‖A(t)− f(UV (t)T )‖2

F (5.4)

Here, D(t) is a decay function with time t that regulates the greater importance of the current state

of the network with respect to the past time stamps. For example, one might choose the decay

function as the exponential decay function with parameter θ > 0:

D(t) = e−θ(T−t) (5.5)

One challenge with the use of this approach is that the network may be very large, and only a small

number of edges may be present inA(t). For a network with n nodes, theO(n2) objective function

expressed above might simply be computationally too expensive to even represent effectively. In

such cases, the presence of an edge between a pair of nodes in A(t) is more significant than the

absence of an edge. The absence of an edge, in fact, often conveys far more noisy information in

real settings. Therefore, the aforementioned objective function should be tailored to edge presence

rather than edge absence. However, we do need a sample of absent edges to properly train the

model. Let S(t) be a sample of edges (i, j) at time-stamp t such that the value of aijt is 0. At time

t, let E(t) be the set of edges for which the weights in A(t) are non-zero at time t. Therefore, we

have the following:

E(t) = {(i, j)|aijt > 0} ∪ S(t) (5.6)
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Note that the size of the set E(t) is much smaller than O(n2) because real networks are sparse in

real settings. Then, one can express the aforementioned objective function in terms of the edges

that are present in the network as follows:

J(U ,V ) =
T∑
t=1

D(t)

2

∑
(i,j)∈E(t)

(aijt − f(UV (t)T )ij)
2 (5.7)

Similarly, for undirected network we have

J(V ) =
T∑
t=1

D(t)

2

∑
(i,j)∈E(t)

(aijt − f(V (t)V (t)T )ij)
2 (5.8)

Note that the number of terms in this objective is dependent on the number of edges in the

network, which is much easier to handle in practical settings. We also need to add a regularization

term to reduce the model variance. However, the specific regularization term will be discussed in

the next section, because it depends on the choice of the temporal function V (t).

5.1.1.1 Model Choices

In this section, we will set up various forms of the model for various choices of f(·), andV (t). One

typical choice for f(·) include the use of the identity function, and that for V (t) is a polynomial

function. In such a case, we can represent V (t) as follows:

V (t) = W (0) +W (1)t+ ...+W (d)td =
d∑
i=0

W (i)ti (5.9)

Here {W (i)}di=0 are all n × k matrices, which need to be learned from the model along with U .

d ∈ N+ and d ≥ 1, when d = 1, V (t) is the simplest linear function. Given the definition of V (t),

the matrix form of Eq. (5.7) becomes the following with added regularization:

J(U ,W ) =
T∑
t=1

D(t)

2
‖1E(t)(A(t)−U(

d∑
i=0

W (i)ti)T )‖2
F +

α

2
‖U‖2

F +
d∑
i=0

βi
2
‖W (i)‖2

F (5.10)

where,

1E(t)(X) =


Xij if (i, j) ∈ E(t),

0 if (i, j) /∈ E(t).
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The regularization terms add the Frobenius norms of the matrices U and W (i), so as to mini-

mize overfitting. Similarly, for undirected graphs, we obtain the following loss function:

J(W ) =
T∑
t=1

D(t)

2
‖1E(t)(A(t)− (

d∑
i=0

W (i)ti)(
d∑
i=0

W (i)ti)T )‖2
F +

d∑
i=0

βi
2
‖W (i)‖2

F (5.11)

5.1.1.2 Model Solutions

In this section, we first compute the partial derivatives of objective functions Eq. (5.10) and

Eq. (5.11), with respect to U and W to derive updates. Then we present the temporal matrix

factorization algorithms for both asymmetric and symmetric adjacency matrices.

Consider the model for directed networks, one needs to minimize the loss function J(U ,W ),

min
U ,W

J(U ,W ) =
T∑
t=1

D(t)

2
‖1E(t)(A(t)−U (

d∑
i=0

W (i)ti)T )‖2
F +

α

2
‖U‖2

F +
d∑
i=0

βi
2
‖W (i)‖2

F

(5.12)

We introduce a “decayed error term” ξ(t) for each time stamp t, as follows:

ξ(t) = D(t)1E(t)(A(t)−U(
d∑
j=0

W (j)tj)T ) (5.13)

To compute the gradient, we will need to differentiate our error function. Since our function is

defined by parameter matrices U and W (i), we will need to compute a partial derivative for each.

These derivatives work out to be,

∂J(U ,W )

∂U
=

T∑
t=1

ξ(t)(−
d∑
i=0

W (i)ti) + αU (5.14)

∂J(U ,W )

∂W (i)
=

T∑
t=1

ξ(t)T (−U ti) + βiW
(i) (5.15)

We now have all the derivatives needed to run gradient descent. Pseudocode of the full ap-

proach is given in Algorithm 4, where λ is the learning rate. To train this model, we can now

repeatedly take steps of gradient descent to reduce our cost function J(U ,W ). Note that TMF is

a general framework, which can be adapted for both directed and undirected networks.
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Algorithm 4 Algorithm for the TMF model
Input: temporal adjacency matrices {A(t)}Tt=1, the order d of V (t) and latent dimension k.

Output: results of factor matrices U and {W (i)}di=1 and the predict adjacency matrix A(T + 1).

1: Set k and d.

2: Randomly initialize U and {W (i)}di=1.

3: while not stopping criterion do

4: Compute “decayed error term” ξ(t) for each time stamp t.

5: Compute partial derivatives ∂J(U ,W )
∂U

and ∂J(U ,W )

∂W (i) using ξ(t) by Eq. (5.14) and Eq. (5.15).

6: Determine the step size λ by line search.

7: Update U = U − λ∂J(U ,W )
∂U

.

8: for i = 1, ..., d do

9: UpdateW (i) = W (i) − λ∂J(U ,W )

∂W (i) .

10: end for

11: end while

12: Compute predict adjacency matrix A(T + 1) = UV (T + 1)T = U(
∑d

i=0W
(i)(T + 1)i)T

For undirected networks, the adjacency matrices are symmetric, thus we can leverage symmet-

ric matrix factorization technique [Kuang et al., 2012] to deal with the undirected networks. Then

one needs to minimize the loss function J(W ),

J(W ) =
T∑
t=1

D(t)

2
‖1E(t)(A(t)− (

d∑
i=0

W (i)ti)(
d∑
i=0

W (i)ti)T )‖2
F +

d∑
i=0

βi
2
‖W (i)‖2

F (5.16)

In order to infer the parameterW , we need to compute the derivatives of Eq. (5.16). Similar to

the derivative calculation for directed network model, we introduce an “error term” ψ(t) for each

time stamp t of undirected networks, as follows:

ψ(t) = 1E(t)(A(t)− (
d∑
j=0

W (j)tj)(
d∑
j=0

W (j)tj)T ) (5.17)

Note that, the error matrix in ψ(t) has already projected to indices set defined by E(t). Thus, the

derivatives of Eq. (5.16) with regularization term can be calculated as,

∂J(W )

∂W (i)
=−

T∑
t=1

D(t)(ψ(t)
d∑
j=0

W (j)tj + ψ(t)T
d∑
j=0

W (j)tj)ti + βiW
(i) (5.18)
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5.1.1.3 Computational Analysis

To help in analyzing the complexity of the algorithm, we assume that the number of nodes in

G(N,A(t)) is n, the number of edges is m, and the rank of the factorization is k. The gradient-

descent method is implemented for M iterations. Here, d is the (polynomial) order of the time-

dependent matrix V (t). Furthermore, it is assumed that there are T time-stamps for the temporal

method. In each of the M iterations, the bottleneck step involves updating all the parameters.The

number of parameters in U is nk. The same number for V (t) is nk(d + 1), because we need to

sum over the d polynomial orders. for {W (i)}di=1, respectively. For the derivative computation of

each parameter, one needs to multiply the corresponding k dimensional columns of matrices U

and
∑d

i=0W
(i)ti, and then compute the derivative. This requires time of the order of magnitude

of the sum of the corresponding node degrees in the adjacency matrixA(t). By summing up these

costs, we obtain:

MT
∑
{i,j}∈U

(degreei,j + kd) +MT
∑
{i,j}∈W

(degreei,j + kd)

= MTmk(d+ 2) +MTnk2d(d+ 2) (5.19)

The order d of the polynomial is set to a small number such as 1 or 2. Thus, the asymptotic

running time is O(MTmk+MTnk2). Since M , T and k are much smaller than n and m, the time

complexity is approximately O(m+ n).

5.1.1.4 Leveraging the Factorization in Different Application Settings

The most interesting aspect of the models discussed in this section is its extraordinary general-

ity in terms of its applicability to various settings. Most of the existing methods for evolutionary

network analysis [Aggarwal and Subbian, 2014] are focused on specific problems like link predic-

tion [Sarkar et al., 2012], dynamic community detection [Backstrom et al., 2006, Gupta et al., 2011,

Chi et al., 2007, Tang et al., 2008, Mankad and Michailidis, 2013], compression [Sun et al., 2007]

and anomaly detection [Ide and Kashima, 2004, Yu et al., 2013a]. Here we provide a very general

purpose framework TMF and symmetric TMF (s-TMF), which can perform almost all of these

tasks within a single unified approach. In the following sections, we will describe how the meth-
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ods described in this section can be used to accomplish these tasks.

5.1.2 Temporal Matrix Factorization in Link Prediction

Link prediction and network reconstruction are almost trivial in this setting because the entire

network is expressed as a function of time with the use of latent variables. The main advantage of

link prediction with temporal matrix factorization model over traditional link prediction methods is

that it can not only predict new links at any time T in the future, but also predict the weight of each

link. Note that traditional link prediction is only able to predict new links at “some” point in the

future based on the current snapshot, but it does not really provide temporally sensitive analysis.

Given the advantages of the proposed model described above, we evaluate the performance of the

TMF model and symmetric TMF (s-TMF) model in two aspects, corresponding to link-weight

prediction and new link prediction.

To verify the performance of the proposed model, we conducted experiments on a variety of

dynamic networks from different domains including three directed networks UCI Msg, Digg and

Epinions, and three undirected networks Infectious, arXiv hep-th and DBLP. The detailed descrip-

tions of each network dataset can be found in Section A.1. We consider the canonical link pre-

diction methods as well as recent algorithms as comparative methods, including weighted common

neighbors (WCN) [Murata and Moriyasu, 2007], weighted Adamic Adar (WAA) [Zhao et al., 2015],

High-performance Link Prediction (HPLP) [Lichtenwalter et al., 2010], Preferential Attachment

(PA) [Mitzenmacher, 2004], Nonparametric Link Prediction (NP) [Sarkar et al., 2012], Link Pre-

diction via Matrix Factorization (Fact-Sq) [Menon and Elkan, 2011] and CP Tensor Model (CP-

Tensor) [Dunlavy et al., 2011]. Section A.2 has detailed descriptions of each method. Our models

are denoted as TMF and s-TMF, respectively, where the term s stands for symmetric. We attach a

suffix (say, d=1), to represent the order of V (t) for the corresponding model.

5.1.2.1 Link Weight Prediction

In this section, we evaluate the link-weight prediction accuracy of each method. For each of the six

networks, three directed networks (asymmetric adjacency matrices) and three undirected networks
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Figure 5.2: Prediction RMSE at time-stamp T

(symmetric adjacency matrices), we choose the first T − 1 time-stamps as training set, and the T th

time-stamp as test set, here T varies from 2 to the total time-stamps of each dataset. We analyze

the algorithms by measuring the accuracy of the weight prediction based on root mean-squared

error (RMSE). We obtained the RMSE at different T for link prediction as presented in Figure 5.2.

For the first three directed networks UCI Msg, Digg and Epinions in Figure 5.2, we compute

the RMSE of all five weighted baselines and our models TMF. Here we set d, the order of the

time-dependent matrix, V (t), to 1 (linear) and 2 (quadratic). The other parameter settings are

as follows: latent dimension k = 10, exponential decay function parameter θ = 0.3, regularizer

weights α = βi = 0.01. The maximum iteration of TMF models is set to 500. The upper three

figures show that the best prediction results are achieved by our TMF models, namely TMF (d=1)

and TMF (d=2). The performance of TMF models are very similar with respect to different values

of d. The RMSE of TMF models in the last time-stamp of these three directed networks are only

15.58%, 9.49% and 1.34% of the worst baseline, and 36.48%, 48.39% and 26.89% of the best

baseline.
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For the lower three undirected networks, referred to as Infectious, arXiv hep-th and DBLP in

Figure 5.2, we compute the RMSE of all five weighted baselines, TMF and symmetric TMF (s-

TMF). Note that we can still use the TMF model for the undirected networks. In this case, E(t)

in Eq. (5.6) is the non-zero entries of the upper triangular matrices of the undirected networks.

In these detailed figures, we show the results when d = 1 (since the results are very similar for

d = 2) although all results are presented in tabular form in Table 5.1. All the remaining parameter

settings are the same. It is evident that TMF and s-TMF provide the best overall performance,

which are consistent with the good performance of different values of T in undirected networks.

The average RMSE of s-TMF is smaller than TMF, which will be shown in Table 5.1. The RMSE

of s-TMF models of these three undirected networks are only 9.49%, 16.78% and 9.13% of the

worst baseline, and 42.15%, 67.08% and 73.33% of the best baseline, showing the advantage of

TMF and s-TMF models in link-weight prediction.

Table 5.1 displays the average prediction RMSE over all time frames of each dataset. It is

evident that TMF and s-TMF models have a lower RMSE than the five weighted baselines. Note

that, for undirected networks, s-TMF models always perform better than TMF models, though the

RMSE differences are not that large when compare to other baselines. However, the advantage of

TMF models is that they can also be applied to directed networks.

Although one might expect the prediction RMSE to decrease with increasing T (and more

data), this is not the case for all data sets. It was only in the UCI Msg and Infectious data sets that

the RMSE reduced. For the other four datasets, the RMSE increased. The reason is that the network

showed increasing rates of evolution over time with rapid formation of new links. As a result, it

became harder to predict more accurately with passage of time. Nevertheless, the incorporation of

temporal information still has an inherent temporal advantage over the use of static models; this is

the reason that the approach outperforms the baselines.

5.1.2.2 New Link Prediction

The TMF model is not designed for new link prediction since we use Frobenius norm to define the

loss function, as shown in Eq. (5.10) and Eq. (5.11). However, one can still apply it to unweighted
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Table 5.1: Average RMSE across all time-stamps

Methods UCI Msg Digg Epinions Infectious arXiv hep-th DBLP

WCN 0.2649 0.0229 0.0171 0.9386 0.1167 0.0227

WAA 0.5101 0.0325 0.0483 1.0192 0.2295 0.0350

HPLP 0.2653 0.0064 0.0021 0.5802 0.0785 0.0056

Fact-Sq 0.3324 0.0107 0.0021 0.5215 0.0970 0.0071

CP-Tensor 0.2215 0.0191 0.0150 0.9321 0.1440 0.0170

TMF (d=1) 0.1853 0.0031 0.0007 0.5304 0.0464 0.0016

TMF (d=2) 0.1673 0.0032 0.0012 0.5398 0.0436 0.0014

s-TMF (d=1) – – – 0.4743 0.0432 0.0011

s-TMF (d=2) – – – 0.4391 0.0427 0.0012

data sets. In this section, we predict new links using TMF model on Epinions data set in which the

maximum link weight is 1.

We measure the accuracy of new link prediction by using the area under curve (AUC) of the

receiver operating characteristics (ROC) analysis. The ROC is designed to work in the binary class

setting with positive and negative samples. When predicting the new links at time-stamp T , the

new edges to be predicted are treated as the “positive” samples. We use the absolute values of our

prediction results, so that the new edges (both with +1 weights and−1 weights) to be predicted are

treated as the positive samples. We then randomly sample the same number of node pairs without

an edge between them at time T as “negative” samples (S(t) in Eq. (5.6)). The parameter settings

remain the same as previous experiments. We compare TMF (d=1) model with six baselines which

is shown in Figure 5.3. In the Epinions network, the TMF model outperforms the baseline

methods by 15.53% on average. It outperforms Common Neighbors by more than 21.55% across

all time-stamps. We attribute this success to the temporal nature of the factorization that can predict

trends over time, rather than simply relying on a static model.
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Figure 5.3: New link prediction AUC score at T on Epinions dataset

5.1.2.3 Sensitivity Analysis

The loss function defined by Eq. (5.10) is dependent on parameters denoted by k, θ and the regu-

larizer weight α and βi. Normally, we set the regularizer weight to a relatively small value such as

0.01. Therefore, in this section, we conduct sensitivity analysis on k, the latent dimension of V (t)

and θ, the parameter of the exponential decay function D(t).

We used the Infectious and UCI Msg data sets for sensitivity analysis; the first is a fast evolv-

ing undirected network and the second is a slowly evolving directed network. We choose values

between k from 5 to 100 for Infectious and 10 to 300 for UCI Msg. The value of θ varied from

0.1 to 1.0 with interval 0.1. The results are summarized in Figure 5.4. It is evident that RMSE

initially improves with k but further improvements are harder beyond a certain point. But from

the effectiveness analysis in Section 5.1.1.3 we can see that, the time complexity is proportion to

O(k2) for fixed networks. Taking both prediction error and computational time into consideration,

we will choose a relative small k from 10 to 100.

The value of θ has a significant impact on prediction results, and it is in fact sensitive to the

data set. For the Infectious dataset, when θ increases, the proposed model will have a better RMSE.

This means that as we assign less weight on the early time-stamps, it will achieve better prediction
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Figure 5.4: Last time-stamp prediction RMSE of Infectious and UCI Msg

results. Thus, we can infer that for a fast evolving network, higher exponential weight decay brings

better prediction accuracy. For UCI Msg dataset, we obtain a totally different trend. As θ increases,

RMSE increases. This means that for a slowly evolving network like UCI Msg, we should assign

more weights to the early time-stamps.

5.1.3 Temporal Matrix Factorization in Anomaly Detection

Temporal anomalies and events are often defined by unexpected changes in the network structure

over time, which are different from their forecasted values. Consider the scenario, where the

training data at time stamps 1 . . . T has been used to learn the network A(t). We would like to

use the learned training data to determine the anomalies in A(T + 1), when the network at time

(T + 1) is received. Let the predicted network at time (T + 1) according to the aforementioned

model be denoted by Â(T + 1), and the true network state at time (T + 1) beA(T + 1). Then, the

unexpected part of the change in network structure, is given by the following:

∆A(T + 1) = Â(T + 1)−A(T + 1) (5.20)

Large absolute values in ∆A(T + 1) correspond to edges with unusual levels of activity:

F (t) = {(i, j) : |[∆A(T + 1)]ij| > δ} (5.21)

One can use a Z-statistic or t-statistic over the values of |∆A(T + 1)| to determine the value of δ

at which the change is significant. As in the case of communities, one can discover the connected

components in such edge sets, and report the anomalous change regions in the network. It is also
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possible to discover the individual node hot spots, by first quantifying the level L(T + 1, i) of

anomalous activity adjacent to each node i at time (T + 1) as follows:

L(T + 1, i) =
∑

j:{i,j}∈F (t)

|[∆A(T + 1)]ij| (5.22)

Nodes with large anomalous values of L(T + 1, i) correspond to hot-spots of activity. One can use

a Z-statistic or t-statistic to determine thresholds on the value of L(T + 1, i). For example, in a

DBLP network, such nodes might correspond to researchers who had a sudden change in their co-

authorship activity as a result of an event, such as change of institution. Therefore, the structural

and node events tell us a lot about unusual events in the underlying network activity.

5.1.3.1 Discovering Temporal Anomalies: A Case Study

In this section, we detect temporal anomalous coauthors and individual authors on DBLP dataset

using TMF model. Based on aforementioned analysis, we first show the trends of maximum abso-

lute values in ∆A(T + 1) and maximum anomalous values of level L(T + 1, i). Then we present

the top 10 pairs of anomalous coauthors and authors.

The blue dashed line in Figure 5.5 shows the maximum absolute value in ∆A(T + 1) at each

time-stamp T , while the red dashed line shows the maximum anomalous value of L(T + 1, i).
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Table 5.2: Top 10 pairs of anomalous coauthors sorted by |[∆A(T + 1)]ij|

# ∆ Coauthors Year

1 52.6421 Sudhakar M. Reddy, Irith Pomeranz 1999-2000

2 46.8029 Sudhakar M. Reddy, Irith Pomeranz 1998-1999

3 44.7452 Sudhakar M. Reddy, Irith Pomeranz 1997-1998

4 36.8849 Raj Jain, Sonia Fahmy 1997-1998

5 36.877 Raj Jain, Rohit Goyal 1997-1998

6 35.5676 Sudhakar M. Reddy, Irith Pomeranz 1996-1997

7 35.2318 Divyakant Agrawal, Amr El Abbadi 1999-2000

8 34.876 Sonia Fahmy, Rohit Goyal 1997-1998

9 32.2694 Divyakant Agrawal, Amr El Abbadi 1998-1999

10 30.5123 Didier Dubois, Henri Prade 1997-1998

Therefore, these two lines respectively represent the trends of top anomalous coauthor and top

anomalous author at each time-stamp. It can be seen that as T increases, the anomalous level in-

creases in terms of both quantifications. This can be explained by the fact that recent years have

experienced a larger volume of publications; therefore, the corresponding anomalous trends in-

crease in absolute magnitude. Furthermore, the statistical correlation between these two lines is

very high (0.9308), which is evidence that anomalous author-events are usually caused by under-

lying anomalous co-authorship events.

Additionally, we labeled two anomalous peaks, corresponding to Y. Nakamura (1988) and Di-

dier Dubois (1993) in Figure 5.5. These two authors represent different types of abnormalities.

According to DBLP, Y. Nakamura has only one publication (in 1982) before 1988 but has 15 in

1988, which is unusual. For Didier Dubois, the abnormality is a result of the fact that he has an

unusually large number of new coauthors in 1993.

We then detect the anomalous coauthors by calculating the unexpected part of the change

∆A(T + 1) in network structure. Table 5.2 represents the top 10 pairs of anomalous coauthors

sorted by |[∆A(T + 1)]ij|. The experiment is conducted with the same parameter settings de-
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Table 5.3: Top 10 anomalous authors sorted by the level of anomalous activity L(T + 1, i)

# L(T + 1, i) Author Year

1 222.799 Robin J. Chapman 1999-2000

2 205.561 Hector Garcia-Molina 1997-1998

3 190.993 John H. Lindsey II 1999-2000

4 168.677 Raj Jain 1997-1998

5 157.488 Alberto L. S.-V. 1995-1996

6 152.147 David Callan 1999-2000

7 149.377 Rohit Goyal 1997-1998

8 148.404 Sonia Fahmy 1997-1998

9 147.063 Hugo De Man 1999-2000

10 144.791 Alberto L. S.-V. 1999-2000

scribed in Section 5.1.2.1. Surprisingly, the pair of authors Sudhakar M. Reddy and Irith Pomeranz

appears 4 times. The total coauthor papers between them from 1997 to 2000 are 92, 116, 135 and

159, respectively. But before 1991, they have no coauthor papers. This could be the reason that

why they are titled “top anomalous coauthor” by our model.

Additionally, we calculate L(T+1, i) of all time-stamps and show the top 10 anomalous values

in Table 5.3. We can verify the authors who receive large anomalous values with DBLP database.

For example, the DBLP homepage shows that Robin J. Chapman, the top 1 “anomalous” author,

had no coauthor paper in 1999, but 21 coauthor papers in 20001.

5.1.4 Temporal Matrix Factorization in Community Analysis

The temporal matrix factorization approach can be naturally used for discovering the rate of evo-

lution of each edge in the network at any given time t. This may be expressed in the form of the

1http://dblp.uni-trier.de/pers/hd/c/Chapman:Robin_J=
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following matrixA′(t) at any given time t:

A′(t) =
∂A(t)

∂t
=
∂f(UV (t)T )

∂t
(5.23)

Here we only consider the temporal matrix factorization model for directed network, since it is

trivially generalizable to undirected network. Note that A′(t) can vary with t, when a nonlinear

expression is used for f(UV (t)T ). When a polynomial expression of V (t) is used, the above

partial derivative evaluates to

∂f(UV (t)T )

∂t
= U(

d∑
i=1

W (i)ti−1i)T ) (5.24)

The partial derivative of Eq. (5.24) is equal toUW (1) when V (t) is linear (i = 1). Note that edges

(i, j) for which [A′(t)]ij =
∑k

p=1(uip
∑d

q=1w
(q)
jp t

q−1q) > 0 correspond to edges in which the

weights are increasing with time. When the sign is negative, it corresponds to edges with reducing

weights. One approach to discover expanding communities, is to isolate the following edge set for

some threshold δ > 0:

I(t) = {(i, j) : [A′(t)]ij > δ} (5.25)

The connected components of this network yield the expanding communities. By varying the value

of δ, one can obtain expanding communities at different threshold levels of evolution. A similar

approach can be used to determine the contracting communities. It is noteworthy that the discovery

of expanding or contracting communities is almost trivial once the network has been expressed in

functional form.

5.1.4.1 Discovering Expanding Communities: A Case Study

Expanding and contracting community detection techniques are essential for finding trends in time-

series data, such as the discovery of hot research topics. In this section, we report the expanding

community detection examples from the DBLP data set using the TMF model.

In order to interpret each expanding community detected by the proposed model, we label the

coauthor edges with their dominant venues (journals or conferences). For example, if author a1

and a2 coauthored 10 papers (7 in SIGIR, 2 in WWW and 1 in WSDM), we label the coauthor
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17.46% journals_tcs 
11.11% journals_mst 
  9.52% journals_jcss

20.83% journals_siamcomp 
18.75% journals_jacm 
14.58% conf_stoc

83.69% journals_ibmsj 
14.18% journals_tods 
  1.42% journals_cacm

Figure 5.6: Expanding communities from 1980 to 1981

edge ea1,a2 with SIGIR. We utilize asymmetric TMF model with linear V (t) in this experiment.

The gradient threshold δ is set to 0.01. We filter out the graph noise by building a set of trees

using breadth-first search (BFS) over the entire vertex set of the network and then considering only

those trees whose vertex set size are at least 4. The other parameter settings remain the same as

Section 5.1.2.1. The expanding communities are shown in Figure 5.6.

Figure 5.6 illustrates three largest expanding communities in DBLP from 1980 to 1981. The

top three venues of each community are also listed. It can be seen that, the largest expanding com-

munity has 17.46%, 11.11% and 9.52% of the weight increasing edges labeled with journals tcs

(Theoretical Computer Science), journals mst (Mathematical Systems Theory) and journals jcss

(Journal of Computer and System Sciences). Notably, these three venues belong to the same

area Computer Science Theory which is consistent with the increasing prominence of theoretical

computer science in the early eighties. Similar analytical results were obtained from the other

two expanding communities. Among the edges with increasing weight, the second community

has 20.83%, 18.75% and 14.58% of the edges labeled with journals siamcomp (SIAM Journal
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on Computing), journals jacm (Journal of the ACM) and conf stoc (Symposium on Theory of

Computing). These venues also tend to contain theoretical topics. The third community is a highly

compact sub-network where 83.69% edges are labeled with journals ibmsj (IBM Systems Journal).

Another interesting finding from Figure 5.6 is that most of the cliques contain fewer edges with

increasing weight. This means that stable groups of persistent co-authors often have a tendency to

not evolve too much with time. This is consistent with the intuition that most evolution in network

structures is caused by dynamically changing co-authorships. On the other hand, connected com-

ponents with a greater number of branches also tend to have more edges with increasing weight.

This is because these components contain groups of authors that are more open to initiating new

cross-collaborations with different groups. In these sense evolutionary community detection can

provide insights about the causality of the underlying network changes because of its summary

representation.

5.2 Modeling Co-Evolution Across Multiple Networks

Evolving networks are common in a wide variety of settings because of the importance of different

types of dynamic networks and social streams [Aggarwal and Subbian, 2014]. In many cases, mul-

tiple networks co-evolve with time and influence each other’s co-evolution. The co-evolution of

multiple networks often has significant predictive power in the context of a wide variety of applica-

tions. In this section, we will examine the problem of co-evolution in the context of networks that

are defined on the same set of nodes, but multiple networks are defined over edges with different

types of interpretations. Some examples of such networks are as follows:

• The same author may be represented in multiple collaboration networks such as patent net-

works and publication networks. Each of these areas forms a collaboration network of which

nodes are authors and edges represent co-authorships between two authors. The activity in

one network is typically related to that in other networks.

• In social networks, users may belong to different types of implicitly constructed networks.

For example, users may exchange posts, post a “like” on each other’s posts, or interact with
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Figure 5.7: Illustration of shared temporal matrix factorization at time-stamp t

the same object. Each of these different types of interactions can be used to create a different

type of network in its own right. Furthermore, interactions among different networks could

affect each other.

• In some cases, a set of participants may be connected in different ways across multiple

networks. For example, they may be connected via both communication and social network

links. The interaction dynamics in one network can often be predictive of the interaction

dynamics in another network.

Co-evolving networks, which are defined on the same set of nodes, can also be viewed as

heterogeneous information networks, in which links of a specific type can be used to define an

individual (homogeneous) network. However, here we will treat each such homogenous network

as an individual entity, which co-evolves with other homogeneous networks over time.

The prediction of co-evolution in networks is often challenging because of its structural nature.

A network may contain large parts that evolve with time, and the changes in the structure of various

edges might be correlated within particular structural localities. This cannot be easily captured

with mathematical models. To address these issues, we propose to use a shared temporal matrix

factorization framework COEVOL, in which some of the factors are shared between networks.
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Fig. 5.7 shows the shared temporal matrix factorization at time-stamp t. Formally, the adjacency

matrices {Ar(t)}sr=1 are decomposed into a product of U and {Vr(t)}sr=1. Here U is a constant

matrix shared by all co-evolving networks. {Vr(t)}sr=1 are time-dependent matrices corresponding

to individual networks. s is the total number of networks in our setting. The shared factorization

process has the advantage that it converts a sequence of networks to sets of real-valued time-

series. Real-valued time-series are much easier to analyze in terms of auto-correlations, cross-

correlations, and lag-correlations. Furthermore, one can also use the approach to discover co-

evolving communities and predict temporal structure in the multiple networks.

5.2.1 The Network Co-Evolution Model

In this section, we will introduce the network co-evolution model as a function of time. We assume

that we have s different networks {G1(t) = (N,A1(t)) . . . Gs(t) = (N,As(t))} that are defined

over the same set of nodes and co-evolve over time. It is assumed that the (i, j)th entry of the

adjacency matrix of Ar(t) ∈ Rn×n is given by a(r)
ijt , where n = |N |. The adjacency matrix might

either be binary or weighted. Our approach is capable of handling both settings. Furthermore,

the networks might be either directed or undirected, and our approach is capable of handling both

settings. The time-stamp t is a discrete and ordered variable that varies from 1 to T . Furthermore,

we assume that N is a fixed set of nodes corresponding to the union of all nodes received till time

T , over which all networks are defined.

In this study, we propose to use shared temporal factorization methods for performing evolu-

tionary network analysis. The basic idea is to use a set of constant factor matrix U ∈ Rn×k and

a temporally varying set of factors Vr(t) ∈ Rk×n for the rth network Gr(t), where k is the latent

dimension. Note that the temporal factors Vr(t) are functions defined over the entire timestamps
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that are known to us. Therefore, we have the following:

A1(t) = UV1(t)T

A2(t) = UV2(t)T

. . .

As(t) = UVs(t)
T

In addition, we impose a non-negativity constraint on the factors for greater interpretability (see

Section 5.2.1.2). Thus U and Vr(t) have non-negative entries. According to the theory that learns

the parts of objects by non-negative matrix factorization [Lee and Seung, 1999], the k columns of

U are called basis communities (or aspects). Each column of Vr(t)T is called an encoding which is

in one-to-one correspondence with an adjacency vector in the matrixAr(t). An encoding consists

of the coefficients by which the weights of all edges associate to a node is represented with a linear

combination of basis aspects. The functions Vr(t) can take on any canonical form in terms of

variation with t, such as linear, polynomial, and so on.

There is no algorithm known yet for computing an exact non-negative matrix factorization

despite its existence [Vasiloglou et al., 2009]. Therefore we would like to determine the values of

U and Vr(t) so that each Ar(t) matches UVr(t)T as closely as possible. Although the standard

approach in matrix factorization is to optimize the Frobenius error of the factorization, we cannot

separately optimize the Frobenius norm of Ar(t) − UVr(t)T because the matrix U is shared

across the s different factorizations. Therefore, we optimize the sum of squared errors across the s

different factorizations. Note that instead of minimizing the Frobenius error to determine suitable

factor matrices, we could also minimize general divergence measures. But this would not make

much of a difference [Lee and Seung, 2001]. In addition, we would like to compute the error over

all values of t from 1 to the current time-stamp T . A time-decay function D(t) is used to regulate

the varying importance of different time-stamps:

min
U ,Vr≥0

J =
T∑
t=1

D(t)

2

s∑
r=1

‖Ar(t)−UVr(t)T‖2
F (5.26)

Here, D(t) is a decay function with time t that regulates the greater importance of the current state

of the network with respect to the past time-stamps. For example, one might choose the decay
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function as the exponential decay function D(t) = e−θ(T−t) with parameter θ > 0.

Most real networks are sparse, as a result of which only a small fraction of the edges are present

in Ar(t). When the number of nodes is large, the entire objective function requires O(n2) time to

evaluate. This can be inefficient because of the entries contain values of 0. Therefore, we will use

all the non-zero entries inAr(t) along with a sample of 0 entries fromA(t) [Aggarwal, 2016]. Let

Sr(t) be a sample of edges (i, j) at time-stamp t such that the value of a(r)
ijt is 0. At time t, let Er(t)

be the set of edges for which the weights in A(t) are non-zero at time t, along with the sample of

0 edge weights. Therefore, we have the following:

Er(t) = {(i, j)|a(r)
ijt > 0} ∪ Sr(t) (5.27)

Then, the aforementioned objective function can be written in terms of the specified entries as

follows:

J(U ,V ) =
T∑
t=1

D(t)

2

s∑
r=1

∑
(i,j)∈Er(t)

(a
(r)
ijt − (UVr(t)

T )ij)
2 (5.28)

Note that the model described in the above objective function can still be used for the undirected

co-evolving networks. But we can also decompose the symmetric adjacency matrices of undirected

networks into a product of Vr(t) and its transpose for each network, and leverage symmetric matrix

factorization technique [Kuang et al., 2012] to find the solution.

5.2.1.1 Solving the Optimization Problem

The function Vr(t)T can take on any canonical form based on the specific tasks. One typical choice

for Vr(t)T is the linear function [Yu et al., 2017c], that is Vr(t) = Xrt + Yr. Since Vr(t) ≥ 0,

here we attempt to use a more stringent constraint: Xr ≥ 0 and Yr ≥ 0. Given the definition of

V (t), the matrix form of Eq. (5.28) becomes the following with added regularization:

J(U ,X,Y ) =

T∑
t=1

D(t)

2

s∑
r=1

‖1E(t)(Ar(t)−U(Xrt+ Yr)
T )‖2F

+
α

2
‖U‖2F +

β

2
‖X‖2F +

γ

2
‖Y ‖2F (5.29)
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where,

1E(t)(W ) =

Wij if (i, j) ∈ E(t),

0 if (i, j) /∈ E(t).

Then the bound-constrained non-negative matrix factorization optimization problem becomes,

min
U ,X,Y

J(U ,X,Y )

subject to U ≥ 0,X ≥ 0,Y ≥ 0 (5.30)

For the ease of the gradient calculation, we introduce a “error term” ξ(t, r) for each network r

at time stamp t, as follows:

ξ(t, r) = 1E(t)(Ar(t)−U(Xrt+ Yr)
T ) (5.31)

To compute the gradient, we will need to differentiate our error function. Since our function is

defined by parameter matricesU ,X and Y , we will need to compute a partial derivative for each.

These derivatives work out to be:

∂J(U ,X,Y )

∂U
=

T∑
t=1

D(t)
s∑
r=1

ξ(t, r)(−Xrt− Yr) + αU (5.32)

∂J(U ,X,Y )

∂Xr

=
T∑
t=1

D(t)
s∑
r=1

ξ(t, r)T (−U t) + βXr (5.33)

∂J(U ,X,Y )

∂Yr
=

T∑
t=1

D(t)
s∑
r=1

ξ(t, r)T (−U) + γYr (5.34)

We now have all the derivatives needed to run gradient descent. Pseudocode of the full ap-

proach is given in Algorithm 5, where λ is the learning rate. To train this model, we can now

repeatedly take steps of gradient descent to reduce our cost function J(U ,X,Y ), here we use the

projected gradient methods [?]. The iterative algorithm starts from non-negative initial conditions

for U , X and Y , iteration of these update rules for non-negative Ar(t) finds an approximate fac-

torization Ar(t) ≈ UVr(t)T for each network by converging to a local minimum of the objective

function given in Eq. (5.29). Monotonic convergence can be proven using techniques similar to

those used in proving the convergence of the EM algorithm [Lee and Seung, 1999].
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Algorithm 5 Projected Gradient for The COEVOL Model
Input: Adjacency matrices {A1(t),A2(t), ...,As(t)}Tt=1, and the latent dimension k.

Output: Results of factor matrices U and Vr(t), r = 1, ..., s for each time-stamp.

1: Set latent dimension k.

2: Randomly initialize U ≥ 0,X ≥ 0 and Y ≥ 0.

3: while not stopping criterion do

4: Compute “decayed error term” ξ(t, r) for network r at each time-stamp t.

5: Compute partial derivatives ∂J(U ,X,Y )
∂U

using Eq. (5.32).

6: Compute partial derivatives ∂J(U ,X,Y )
∂Xr

using Eq. (5.33).

7: Compute partial derivatives ∂J(U ,X,Y )
∂Yr

using Eq. (5.34).

8: Determine the step size λ by line search.

9: Update U = U − λ∂J(U ,X,Y )
∂U

.

10: for r = 1, ..., s do

11: UpdateXr = Xr − λ∂J(U ,X,Y )
∂Xr

.

12: Update Yr = Yr − λ∂J(U ,X,Y )
∂Yr

.

13: end for

14: Xr = max{0,Xr}, Yr = max{0,Yr}

15: end while

16: Compute time-dependent factor matrix Vr(t) = Xrt+ Yr, r = 1, ..., s.

5.2.1.2 Interpretation of the COEVOL Model

The main advantage of introducing a non-negativity constraint is that a high degree of interpretabil-

ity can be achieved in the COEVOL model. Take Fig. 5.7 as an example: assume that there are

s = 3 networks, each of which is denoted as a toy 5× 5 matrix. The rank of the factorization, also

referred to as the number of aspects, is 3 in this example. Since matrices {Ar(t)}sr=1 are directed

graphs, the element a(r)
ijt is the weight that measures the interaction between sender node ni and

receiver node nj of network r at timestamp t. Therefore, the corresponding factor matrices provide

a clear interpretability about the affinity of sender nodes and receiver nodes to these aspects. If we

use collaboration networks in DBLP as a concrete illustration, the three networks could be data
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mining network, machine learning network and database network, and the aspects are the general

topics in these networks such as supervised learning, sequential data analysis and graph analysis.

The entry values in matrices U and Vr(t) quantify the level of interest in the relevant aspect. No-

tably, the COEVOL framework is trivially generalizable to undirected networks, since undirected

networks are special cases of directed networks.

5.2.1.3 Computational Analysis

We assume that the number of networks is s, the number of nodes in Gs(t) is n, the number of

edges is m, and the rank of the factorization is k. The iteration threshold for Algorithm 1 is set as

M . Furthermore, we assume that the total number of time-stamps is T . In each of theM iterations,

the number of parameters in U is nk. The number of parameters inXr and Yr is also nk for each

network r. For the derivative computation of each parameter at time-stamp t, one needs to calculate

the “error term” ξ(t, r). This requires time O(mk). Since we have (2s+1)nk parameters, the total

cost will be MT · (2s+ 1)nk ·mk. Thus the asymptotic running time is O(MTsmnk2).

5.2.1.4 Applications

Numerous applications can be designed in the context of such co-evolving time-series because the

approach transforms temporal co-evolving networks to co-evolving time-series with real-values.

In the following sections, we will first deploy the COEVOL framework to cross-network struc-

ture prediction task. Then we detect the lag correlations among the co-evolving time-series. The

evolutions of the time-series among the different groups may be correlated with one another. We

show the improvements in structure prediction task with the help of the lag correlations. Addi-

tionally, the cross network communities can be detected by clustering the multidimensional data

corresponding to the rows of the shared factor matrix U . We evaluate the detected communities

using cluster purity.
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Table 5.4: Conferences in each network dataset

Network Conferences

Data Mining KDD, ICDM, CIKM, SDM, PKDD, WSDM

Machine Learning ICML, NIPS, IJCAI, AAAI, UAI, ECML

Database VLDB, ICDE, SIGMOD, PODS, EDBT, ICDT

5.2.2 Cross-Network Link Prediction

In this section we use the co-evolution information among multiple networks to help predict the

entire network structure at each timestamp. The ability of this share temporal factorization model

to predict links at a specific time is so general, that one can effectively reconstruct network structure

at any given time. In this section, we evaluate the link prediction performance of COEVOL against

different baselines.

5.2.2.1 Co-Evolving Network Datasets and Baselines

We experimentally evaluated the performance of our COEVOL framework on a variety of dynamic

networks obtained from the DBLP database, which provides co-authorship information for major

computer science journals and conferences. In this paper, the data mining network (DM), machine

learning network (ML) and databases network (DB) are built based on DBLP database. Table 5.4

summarizes the conferences that included in each network.

We also use both conference network (Conf ) and journal network (Journal) from DBLP database

in which edges denote the co-authorship from conferences or journals. The nodes in these networks

represent the authors, and edge weights represent the number of co-authorships between two au-

thors. Since authors can involve in various networks, we create our test datasets by combining

different networks using the union set of the nodes and edges. The statistics of all four datasets

DM|ML, DM|DB, DM|ML|DB and Conf|Journal are shown in Table 5.5.

For comparison, we consider the following link prediction methods: weighted common neigh-

bors (WCN) [Zhao et al., 2015], weighted Adamic Adar (WAA) [Adamic and Adar, 2003], High-

89



Table 5.5: Co-evolving network dataset description

Dataset Vertices Unique Edges Max Weight |T | #Networks

DM|ML 35,935 49,746|53,132 28|35 24 years 2

DM|DB 27,782 49,746|42,895 28|56 24 years 2

DM|ML|DB 44,293 49,746|53,132|42,895 28|35 |56 24 years 3

Conf|Journal 315,979 503,305|382,099 117|80 34 years 2

performance Link Prediction (HPLP) [Lichtenwalter et al., 2010], Non-negative Matrix Factor-

ization (NMF) [Lee and Seung, 1999] and CP Tensor Model (CP-Tensor) [Dunlavy et al., 2011].

Note that the HPLP algorithm used here is a modified version that trains a regression model to

predict the link weights. The evaluation metric we adopt is the root mean-squared error (RMSE).

5.2.2.2 Experimental Results

In this section, we present an experimental comparison of our model COEVOL with the link pre-

diction baselines. For each of the four co-evolving network datasets, we evaluate the link-weight

prediction accuracy across all time-stamps. In detail, the first t− 1 time-stamps of each dataset are

used as the training set, and the tth time-stamp is used as the testing set (t ∈ [2, T ]). We analyze

the baselines by measuring the link weight prediction accuracy based on the root mean-squared

error (RMSE). The RMSE at different t for link prediction is presented in Fig. 5.8.

For these four co-evolving network datasets DM|ML, DM|DB, DM|ML|DB and Conf|Journal,

we compute the prediction RMSE of all five baselines and our model COEVOL. The latent dimen-

sion k of factors U , Xr and Yr is set to 10. The other model parameter settings are as follows:

exponential decay function parameter θ = 0.3, regularizer weights α = β = γ = 0.01. The

maximum iteration of COEVOL model is set to 500. We set the same latent dimension k for base-

line methods NMF and CP-Tensor. The results in Fig. 5.8 demonstrate that the best prediction

results are achieved by our COEVOL model. It is evident that COEVOL provides the best over-

all performance, which are consistent across all time-stamps. The RMSE of COEVOL in the last

time-stamp is only 35.27%, 36.75%, 49.29% and 30.06% of that of the worst baseline, and 69.35%,
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Figure 5.8: Prediction RMSE at time-stamp t, t ∈ [2, T ]

72.31%, 88.70% and 59.50% of that of the best baseline of these four datasets, respectively. The

result shows that our model can better capture the underlying structure of the network, and also

have a better prediction ability. This is due to the time-dependent factors Vr(t) that enable the

model to better fit the data across different time-stamps. Surprisingly, the performance of CP-

Tensor is much worse among all baselines. This method is implemented based on the heuristic

approach [Dunlavy et al., 2011], which assume that average activity in the last three time-stamps

is a good choice for the weight.

The average prediction RMSE across all time-stamps of each dataset are summarized in Ta-

ble 5.6. Methods with scores in bold have the best score among methods being compared in that

dataset. The COEVOL model outperforms other baselines by a large margin. WCN and WAA per-

form well due to the normalization by the size of common neighbors. We tried the original version

of WCN and WAA, their RMSE are worse than CP-Tensor if not normalized.
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Table 5.6: Average RMSE across all time-stamps on four network datasets

Methods DM|ML DM|DB DM|ML|DB Conf|Journal Average

WCN 1.1628±0.1747 1.3423±0.3142 1.3191±0.2785 1.3371±0.3208 1.2904

WAA 1.1658±0.1346 1.2933±0.1779 1.2777±0.1766 1.3050±0.2653 1.2605

HPLP 1.0557±0.1507 1.2127±0.1894 1.3231±0.1894 1.2010±0.3339 1.1981

NMF 1.4363±0.1698 1.4960±0.1948 1.5044±0.1954 1.5192±0.3954 1.4890

CP-Tensor 2.0409±0.3687 2.4127±0.4796 2.2487±0.4194 2.6458±0.5991 2.3370

COEVOL 0.7400±0.0991 0.9135±0.1512 0.9650±0.1849 0.7754±0.1459 0.8485

5.2.3 Finding Cross-Network Lag Correlations

The formation and evolution of network structures in one network are often closely correlated with

that in another. Specifically, one can view V1(t) . . .Vs(t) as a set of s different groups of n× k co-

evolving time-series. A one-to-one correspondence exists between the (p, q)th entry of the matrix

Va(t) and the (p, q)th entry of the matrix Vb(t) for a 6= b. Therefore, a natural question arises

as whether one can find groups of nodes such that evolution in one network is highly predictive

of evolution in another. We informally state this problem as the lag-centric evolution prediction

problem. In the following, we discuss a simple algorithm to discover lag correlations between

different networks.

1. For each node-latent-component (i, q), where i ∈ [1, n] and q ∈ [1, k], and for each network

pair (a, b) ∈ [1, s], we compute the Pearson correlation coefficient between the (i, q)th com-

ponent of Va(t + δ) and (i, q)th component of Vb(t) over various values of t. We store all

values of (a, b) and (i, q) such that the correlation is larger than a given threshold ρ.

2. For each network pair (a, b), we report the subset of components Cρ(a, b) which satisfy the

condition of the first step. This is a closely related group of components which time-series

in the network a are highly related to the other in network b.

The calculation of these lag correlations is time-efficient. Assume that we have s networks,

the latent dimension is k, lag time-stamp is set to [−δ, δ]. Under this setting, it’s obvious that
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we have n × k components. For each component, one has to slide 2 × δ times between any two

networks. We have s × (s − 1) pairs of networks in total. Thus the complexity of the calculation

is 2δnks(s − 1). Usually, we set δ and k to a relative small number. Thus the time complexity is

O(s2n). If a dataset contains a small number of networks, then the complexity goes to O(n).

5.2.3.1 Re-visit Cross-Network Link Prediction

One application that utilize the detected lag correlations is to help predict the cross-network struc-

ture. In this section, we detect lag correlation set Cρ(a, b) on dataset DM|DB to help improve the

prediction RMSE at time-stamp T .

We build the time-series with the factors Vr(t) for each network r. Factors Vr(t) at different

time-stamps t (t ∈ [1, T − 1]) are computed by our model COEVOL. Thus for each network r, we

obtain n× k times-series with length T − 1. Each time-series at node-latent-component pair (i, q)

(denoted as Si,q) is a T − 1 vector which has elements V (r)
i,q (1), ..., V

(r)
i,q (T − 1).

For each of the n×k times-series in DM network, we calculate the correlation with its counter-

part in DB network. The maximum correlation among all lag-years ([−15,−1] ∪ [1, 15]) is saved

for each component. Fig. 5.9 shows the distributions of lag correlations and lag years. It shows that

most of node-latent-component pairs have a positive correlation between DM and DB networks.

This is reasonable since the authors may share similar co-authorship patterns in data mining net-

work and database network. The lag year distribution is “symmetric” between negative lag years

and positive lag years. It demonstrates that the data mining network is highly predictive of evo-

lution in the database network and vice versa. Additionally, the frequency distribution follows a

convex curve in the lag year range [−15, 0] and [0, 15], respectively. These curves depict that as

lag year increases, the correlation decreases (δ ∈ [1, 10]). However, if the lag year is too large,

the length of time-series Si,q in DM and DB networks is very short which will cause overfitting.

Therefore the correlation increases when |δ| is large.

Cross-network link prediction is possible only if lag correlations exist between pairs of net-

works for δ > 0. Therefore, the first step is to identify such pairs of networks by using the

approach discussed in the Section 5.2.3. Now, we will show that this lag correlation information
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Figure 5.9: Lag correlation distribution and lag year distribution of dataset DM|DB

can improve the link prediction results of COEVOL framework. The task is to predict the last

time-stamp (t = T ) network structure of dataset DM|DB. In Section 5.2.2.2, the last time-stamp

network structure of network Ar(T ) is predicted by calculating UVr(T )T , where U and Vr(T )

are learned by the data from first T − 1 time-stamps. But now we are trying to enhance the pre-

diction of Vr(T ) with lag correlation information. The experiment is designed as follows: 1) find

the highly correlated node-latent-component pairs, and save their indices (i, q). Since the dataset

DM|DB only has two networks, there is no need to save the network pair information. 2) if any

node-latent-component pair (i, q) has a lag correlation larger than a given threshold ρ, we use a lin-

ear regression model to fit the time-series indexed by (i, q), and predict the last time-stamp value

of the lagged network. This prediction value is set as the corresponding entry in (Vr(T ))i,q (r

is determined based on positive lag or negative lag). We then calculate the RMSE based on the

modified Vr(T ) and the constant matrix U .

The parameters are set as follows: lag year δ = 3, lag correlation ρ ∈ [0.85, 1] with interval

0.01. Fig. 5.10 shows the accuracy of link weight prediction on dataset DM|DB, the x-axis is

the correlations, the y-axis shows the RMSE (left) and the number of node-latent-components

(right). The blue horizontal line is the prediction accuracy of COEVOL without incorporating the

lag correlation information. As can be seen in this figure, when δ > 0.95, the prediction RMSE is

better than the RMSE obtained by the vanilla COEVOL. It shows that when the latent components

have a very high correlation (> 0.95), we can just use this correlation information to predict it’s

behavior in the near future. However, if the correlation is low (< 0.95 in this experiment setting),

94



Lag Correlation
0.85 0.9 0.95 1

R
M

SE

1.04

1.06

1.08

1.1

La
te

nt
 C

om
po

ne
nt

s

0

2000

4000

6000

Accuracy of CoEvol

Figure 5.10: Prediction RMSE and latent components under different lag correlation thresholds

the RMSE increases. The reason is that, as more and more latent components meet the threshold

of ρ, it introduces more noise into the estimation matrix Vr(T ).

5.2.4 Cross-Network Community Detection

Information networks evolve over time, driven by the shared properties of each individual net-

work, such as the similarity of node attributes and the arrangement of links. Therefore, the pro-

posed framework COEVOL can also be used to detect communities across networks by exploring

the correlations among multiple networks. Actually such correlation information can be learned

from the factor U from Eq. (5.29). A typical approach to detect such groups (communities) is to

propose application-related objective functions [Fortunato, 2010] to minimize the internal connec-

tivity while maximizing the external connectivity. As to the COEVOL framework, it naturally has

clear clustering effects [?]. Thus we can use a cluster-based method to detect communities on the

learned factor U , which capitalizes on the large number of potential interactions between nodes.

The simple method used to discover communities between different networks is summarized as

follows,

1. Compute factor matrix U by Algorithm 5 with input networks {Ar(t)}sr=1.

2. Apply clustering algorithms on matrix U . We treat U as a dataset with n samples, each of
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which has k dimensions. The detected clusters are resultant communities.

5.2.4.1 Compared Methods and Evaluation

In this section, we use three canonical community detection methods as baselines: Informa-

tion Maps (Infomap) [Rosvall and Bergstrom, 2007], Multilevel [Blondel et al., 2008] and Lead-

ing Eigenvector (Eigen) [Newman, 2006a]. We evaluate the community detection results by a

simple and transparent measure purity. To compute purity, each community is assigned to the

label which is most frequent in the cluster, and then the accuracy of this assignment is measured

by counting the number of correctly assigned nodes and dividing by n. Formally, purity(C,L) =

1
n

∑
i maxj |Ci ∩ Lj|, where C = {C1, C2, ..., CI} is the set of communities, andL = {L1,L, ...,LJ}

is the set of labels such as KDD, VLDB and ICML. We interpret Ci, Lj as the set of nodes.

5.2.4.2 Experimental Results

In this section, we look at the community detection results on both synthetic and real-world

datasets.

Community Detection on Synthetic Dataset: We create two large connected components

with 2242 and 3262 nodes respectively. The edges are randomly assigned in two networks A1

and A2. Here we only generate data with one time-stamp for the ease of result visualization. The

rank of factorization k is set to 2. Other parameter settings remain same as in Section 5.2.2.2.

The left subfigure in Fig. 5.11 visualizes the adjacency matrix A, where A = A1 +A2, and the

right one shows the corresponding shared factor U learned by COEVOL. In our experiment, the

multidimensional data set is clustered corresponding to the rows of the shared factor matrixU . But

the learned matrix U in Fig. 5.11 doesn’t show a good property to be clustered (different colors

represent different components each edge comes from). However, when we factorizeAAT instead

of A, all the points in the learned matrix U have been pulled to the two axes which correspond to

two clusters, as shown in Fig. 5.12.

Fig. 5.12 depicts that the shared factor U is easily to be clustered into two groups. The reason

is that AAT is a more robust similarity measure between a pair of nodes. Each entry in AAT
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Figure 5.11: Visualization of synthetic data with two components and the corresponding factor U
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Figure 5.12: Visualization of matrixAAT and the corresponding factor U

represents the number of common neighbors between a pair of nodes. If A is originally repre-

sented as a binary matrix, the number of common neighbors between a pair of nodes shows their

clustering characteristics [Liben-Nowell and Kleinberg, 2007]. In summary, using AAT is a way

to augment the matrix A with neighborhood information, thus it is more robust. This is different

from cross-network link prediction in Section 5.2.2 which is more natural to use the original matrix

A. Because link prediction tries to predict the new links or link weights rather than similarities. In

the following subsection, we will factorizeAAT instead ofA.

Table 5.7: Purity of cross-network community detection

Methods DM|ML DM|DB DM|ML|DB Conf|Journal

Infomap 0.7716 0.7801 0.7431 0.8063

Multilevel 0.7563 0.7650 0.7218 0.7836

Eigen 0.7283 0.6909 0.7060 0.7621

COEVOL 0.7904 0.7814 0.7559 0.8148
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Community Detection on Real-world Datasets: In this section, we report the cluster purity

of the detected communities for each methods. Each node (author) in these four datasets is labeled

by the venues (e.g. KDD, VLDB etc.) where the author published the majority papers. The

cluster purity score tends to be higher if we set more clusters for the k-means algorithm. In order

to have a fair comparison, the cluster numbers are set to 50, 50, 100, 2500 for datasets DM|ML,

DM|DB, DM|ML|DB and Conf|Journal, respectively. The other parameters remains the same as

in Section 5.2.2.2. Table 5.7 shows the cluster purity of each method and the number of detected

communities at the last time-stamp. It can be seen that our model obtains the highest purity on all

datasets. Notably, Infomap detects more communities, each with a small number of community

members, which tends to achieve a high purity according to the definition. But our model still

preforms better than Infomap.

5.3 Summary

In this chapter, we introduce two novel time-dependent matrix factorization based models, TMF

and COEVOL, for evolutionary network analysis. These model have the advantage of significant

generality in addressing various temporal applications because of its ability to explicitly represent

the networks as a function of time. As specific examples, we provide results for temporal weight

trend prediction, link prediction, dynamic community detection and event detection within the

TMF framework, and we evaluate the extraordinary generality of COEVOL in terms of its appli-

cability to cross-network link prediction, lag correlation detection and community detection tasks.

Even though we provide more general models, our results show that their specific instantiations to

different prediction tasks perform better than state-of-the-art techniques, thereby demonstrates the

generality and effectiveness of the TMF and COEVOL frameworks.
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CHAPTER 6

Evolutionary Network Analysis: Applications

Massive and dynamic networks arise in many practical areas such as social media, security and

public health. In this chapter, we will talk about two applications, namely anomaly detection and

link prediction, under the dynamic setting. Given an evolutionary network, it is crucial to detect

structural anomalies, such as vertices and edges whose “behaviors” deviate from underlying ma-

jority of the network, in a real-time fashion. Section 6.1 proposes a novel approach, NETWALK,

for anomaly detection in dynamic networks by learning network representations which can be

updated dynamically as the network evolves. The vertices of the dynamic network are encoded

to vector representations by clique embedding, which jointly minimizes the pairwise distance of

vertex representations of each walk derived from the dynamic networks, and the deep autoen-

coder reconstruction error serving as a global regularization. The vector representations can be

computed with constant space requirements using reservoir sampling. On the basis of the learned

low-dimensional vertex representations, a clustering-based technique is employed to incrementally

and dynamically detect network anomalies.

Link prediction in dynamic networks has also attracted tremendous research interests. Many

models have been developed to predict links that may emerge in the immediate future from the

past evolution of the networks. There are two key factors: 1) a node is more likely to form a link

in the near future with another node within its close proximity, rather than with a random node; 2)

a dynamic network usually evolves smoothly. Existing approaches seldom unify these two factors

to strive for the spatial and temporal consistency in a dynamic network. To address this limitation,

Section 6.2 introduces the LIST model to predict links in a sequence of networks over time. LIST

characterizes the network dynamics as a function of time, which integrates the spatial topology of

network at each timestamp and the temporal network evolution.
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6.1 Anomaly Detection with Dynamic Network Embedding

Anomaly detection (a.k.a outlier detection) in dynamically changing networks is a long-standing

problem deeply motivated in a number of application domains, such as social media, security, pub-

lic health, and computational biology [Aggarwal, 2013, Akoglu et al., 2015, Gupta et al., 2014a,

Ranshous et al., 2015, Akoglu and Faloutsos, 2013]. Identifying time-varying anomalies (such as

edges or vertices), which represent significant deviations from “normal” structural patterns in the

evolving network, can shed important light on the functional status of the whole system. Many

methods have been proposed in the past decade to solve this problem [Aggarwal et al., 2011,

Gupta et al., 2012b, Manzoor et al., 2016, Ranshous et al., 2016, Yu et al., 2017b]. Some promi-

nent examples of applications are summarized as follows.

• With the popularity of social media, anomalous behaviors can be found in the underlying

social network. The malicious activities such as cyber-bullying, terrorist attack planning

and fraud information dissemination can be detected as anomalies using anomaly detection

models based on social network.

• The advanced persistent threat (APT) detection problem in security can also be cast as real-

time anomaly detection in network streams. In an APT scenario, we are given a stream of

system logs which can be used to construct information-flow networks. Information flows

induced by malicious activities can be quite different from normal system behaviors.

• In clinics, anomaly detection can provide valuable information on managing and diagnosis

with the electric patient records. The data typically consist of records from various types

of entities (vertices) such as patients, symptoms and treatments, which can be modeled as a

multi-partite network representing their complex interactions. Anomalies in such networks

can pinpoint important scenarios requiring instant human interventions, such as abnormal

patient condition or recording errors.

To detect network anomalies in these applications, a typical approach is to first perform net-

work sketching and then identify anomalies in the sketches through clustering and outlier de-

tection, such as in [Manzoor et al., 2016, Ranshous et al., 2016]. The network sketches serve
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as a compact, latent representation of the network and thus allow efficient updates as new net-

work objects arrive in a streaming fashion, without having to maintain the complete details of the

full network. In the literature, the network sketches have been learned through locality-sensitive

hashing [Indyk and Motwani, 1998] and count-min sketch [Cormode and Muthukrishnan, 2005].

However, these approaches are not directly designed to learn the network sketches that can si-

multaneously preserve important structural relations, such as the local neighborhood composition

or proximity landscapes. Thus, the sketches extracted are usually shallow [Bengio et al., 2003,

Levy and Goldberg, 2014], and thereby bottleneck the accuracy of downstream tasks such as anomaly

detection.

Recently, network embedding has attracted significant interest and shown promising results, in

particular towards obtaining desired low-dimensional network representations that better preserve

the neighborhood information [Bengio et al., 2003, Levy and Goldberg, 2014, Mikolov et al., 2013a,

Mikolov et al., 2013b]. The structure preserving property of the network embedding makes it par-

ticularly suitable for anomaly detection tasks, by examining the similarity between vertices/edges

in the latent representation. For example, vertices staying far away from the majority clusters

in the multidimensional latent space will very likely indicate certain types of anomalies, which

can be detected conveniently through dynamic clustering algorithms. However, existing methods

for network embedding can not update the representation dynamically as new vertices or edges

keep feeding, and thus may not be perfectly suitable for anomaly detection in a dynamic environ-

ment [Bengio et al., 2003, Levy and Goldberg, 2014, Mikolov et al., 2013a, Mikolov et al., 2013b].

In case of a rapidly evolving network, the problem can be even more challenging. It is therefore

highly desirable to design an effective and especially efficient embedding algorithm that is capable

of fast, real-time detection with bounded memory usage.

To address this problem, in this study, we propose the NETWALK algorithm to incrementally

learn network representations as the network evolves, and detect anomalies in the networks in a

real-time fashion. Figure 6.1 shows an illustrative diagram of the anomaly detection pipeline in

dynamic networks. First, we learn the latent network representation by using a number of network

walks extracted from the initial network. The representation is obtained not only through maintain-

ing the pairwise vertex-distance in the local walks, but also by hybridizing it with the hidden layer
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Figure 6.1: Workflow of NETWALK for anomaly detection in dynamic networks

of a deep autoencoder, such that the resultant embedding is guaranteed to faithfully reconstruct the

original network. By doing this, the learned vertex coordinates in the multi-dimensional Euclidean

space can achieve both local fitting and global regularization. In addition, the learned represen-

tations can be easily updated over dynamic changes by leveraging a reservoir sampling strategy.

Then, a dynamic clustering model is used to flag anomalous vertices or edges based on the learned

vertex or edge representations. We quantitatively validate the effectiveness and efficiency of the

proposed framework on real datasets.

6.1.1 Problem Formulation

Given a temporal network G(t) = (E(t),V(t)), we assume that the incoming stream of network

objects at time-stamp t is typically a small number of network objects denoted by an edge set1

E(t) where |E(t)| ≥ 1. All vertices in the edge set E(t) at time-stamp t are denoted by V (t). The

vertex set V(t) denotes the union of the vertex sets across all time-stamps from 1 to t, that is,

V(t) = ∪{V (i)}ti=1. Similarly, we have E(t) = ∪{E(i)}ti=1. Note that the complete set of vertices

may not be known at time-stamp t, since new vertices may keep arriving at time-stamp t′ for any

t′ > t. The network G(t) includes all edges received from time-stamps 1 to t.

1Note that the case of incoming stream of edges includes the case of new vertices since an edge contains both the
edge itself and the connected vertices. The case of incoming stream of singleton vertices is trivial because they are
obviously anomalies.
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Our goal is to detect anomalous vertices, edges and communities (group of vertices) at any

given time-stamp t, i.e., in real time as E(t) occurs. To achieve this goal, we encode the network

G(t) as a feature matrix, where each row is the vector representation of a vertex (Section 6.1.2).

The main challenges are, i) we need a cohesive way to encode the dynamic network, ii) incoming

network objects should be easily coded with the learned network representations, iii) network

representations need to be efficiently updated as new network objects arrive. We then follow a

clustering-based approach to detect the anomalies in the dynamic network (Section 6.1.3). The

clusters are generated after calculating the distances between the embedded vertices. Whether the

incoming network objects are anomalies or not can be determined from the distance between their

respective representations and existing clusters. The clustering results are updated efficiently as

new network objects arrive.

6.1.2 Encoding network Streams

In order to detect anomalies in dynamic networks in real time, our method needs to learn network

representations and perform online updates efficiently as network evolves. For clarity, now we

only discuss the case that new edges stream in on unweighed network. The cases of decreasing

edges or tackling weighted networks are similar and will be discussed in Section 6.1.2.2. In this

section, we present the network encoding and the updating phase in NETWALK which does not

require to store the entire network.

6.1.2.1 Walk Generation

Analogous to word embedding techniques [Mikolov et al., 2013a, Mikolov et al., 2013b] in con-

structing vector representations, we decompose the network into a set of network walks each of

which contains a list of vertices selected by a random walk2. We formally define the network walk

as follows.

Definition 3 (Network Walk). For a given vertex v1 ∈ V in a network G(E ,V), its network walk

2Note that this works for both directed and undirected network
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set is defined as Ωv1 = {(v1, v2, ..., vl)| (vi, vi+1) ∈ E ∧ p(vi, vi+1) = 1
Dvi,vi

}, which is a collection

of l-hop walks starting from vertex v1. The transition probability p(vi, vi+1) from vi to vi+1 is

proportional to the degree Dvi,vi of vertex vi. We call Ωv a network walk set starting from v, and

Ω = {Ωv}v∈V as the union of all walks.

Similar to the word frequency which typically follows a power law distribution in natural lan-

guage, we observe that if the degree distribution of the network follows a power law distribution,

the frequency distribution of vertices occurring in the network walks also follows a power law dis-

tribution (or Zipf’s law) [Perozzi et al., 2014b]. Therefore we will use a stream of network walks as

our basic tool for extracting information from a network. We then learn the vertex representations

of the network using a novel embedding method introduced in Section 6.1.2.2.

6.1.2.2 Learning Network Representations

We formulate the network representation learning problem as an optimization problem. Our goal

is to learn a mapping function f : V → Rd such that each v ∈ V is represented as a d-dimensional

vector, where d is the latent-space dimension. The mapping function f applies to any (un)directed,

(un)weighted network.

Inspired by skip-gram architecture [Mikolov et al., 2013b], we propose a network embedding

algorithm, clique embedding, that utilizes an deep auto-encoder neural network to learn the vec-

tor representation of vertices through a stream of network walks while minimizing the pairwise

distance among all vertices in each walk. Figure 6.2 depicts the clique embedding model used in

NETWALK. The inputs and outputs are one-hot encoded vectors, that is, for a given vertex input

x
(i)
p ∈ Rn, only one out of n elements will be 1, and all others are 0’s. Our goal is to learn a latent

representation for each input network walk {x(i)
p }lp=1. Here l is the walk length, {W(`)}nl`=1 are the

weight matrices, {b(`)}nl`=1 are the bias vectors, and f (`)(·) denotes the output of each layer.

Formally, given a one-hot encoded network walk {x(i)
p }lp=1, i = 1, ..., |Ω|, we want to learn the

following representations in a nl-layer autoencoder network,

f (
nl
2

)(x(i)
p ) = σ(W(

nl
2

)>h(
nl
2

)(x(i)
p ) + b(

nl
2

)), (6.1)
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Figure 6.2: Illustration of clique embedding for one network walk of length three

where

h(
nl
2

)(x(i)
p ) = W(

nl
2
−1)f (

nl
2
−1)(x(i)

p ) + b(
nl
2
−1). (6.2)

Here, σ(z) = 1
1+exp(z)

is the sigmoid function; nl ≥ 2; f (0)(x
(i)
p ) = x

(i)
p . In an auto-encoder

network, the output hypotheses f (nl)(x
(i)
p ) is approximately equal to x

(i)
p . Therefore, if we use `2

norm to minimize the reconstruction error, the objective function becomes

JAE =
1

2

|Ω|∑
i=1

l∑
p=1

∥∥f (nl)(x(i)
p )− x(i)

p

∥∥2

2
. (6.3)

We also seek to minimize the pairwise distance among all vertices3 of each network walk in

the embedding space at layer nl
2

, which can be formally described as follows,

JClique =

|Ω|∑
i=1

∑
1≤p,q≤l

∥∥∥f (
nl
2

)(x(i)
p )− f (

nl
2

)(x(i)
q )
∥∥∥2

2
. (6.4)

Due to the sparsity of the input and output vectors, we consider a sparse auto-encoder with

sparsity parameter ρ and penalize it with the Kullback-Leibler divergence [Ng, 2011],

KL(ρ‖ρ̂(`)) =
d∑
j=1

KL(ρ‖ρ̂(`)
j ) =

d∑
j=1

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

, (6.5)

where ρ̂(`) = 1
|Ω|×l

∑|Ω|
i=1

∑l
p=1 f

(`)(x
(i)
p ) is the average activation of the units in the hidden layer.

This sparsity constraint penalizes large deviation of ρ̂(`)
j from ρ. Given a training set of network

3This is inspired by skip-gram architecture that considers all word pairs within a distance window. It is effective
for extracting local proximity information [Mikolov et al., 2013b].
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walks Ω, we then define the overall cost function to be:

J(W,b) =

|Ω|∑
i=1

∑
1≤p,q≤l

∥∥∥f (
nl
2

)(x(i)
p )− f (

nl
2

)(x(i)
q )
∥∥∥2

2︸ ︷︷ ︸
Clique Embedding Loss

+
γ

2

|Ω|∑
i=1

l∑
p=1

∥∥f (nl)(x(i)
p )− x(i)

p

∥∥2

2︸ ︷︷ ︸
Reconstruction Error

+ β

nl−1∑
`=1

∑
j

KL
(
ρ‖ρ̂(`)

j

)
︸ ︷︷ ︸

Sparsity Constraint

+
λ

2

nl∑
`=1

∥∥W(`)
∥∥2

F
,︸ ︷︷ ︸

Weight Decay

(6.6)

where |Ω| is the number of network walks, l is the walk length. The weight decay term decreases

the magnitude of the weights, and helps prevent overfitting. γ, β and λ control the weight of the

corresponding penalty terms. The loss function J(W,b) can also be written in a matrix form,

J(W,b) =

|Ω|∑
i=1

Tr(F (i)LF (i)>) +
γ

2

∥∥∥H(nl)(X)−X
∥∥∥2

F
+ β

nl−1∑
`=1

KL(ρ‖ρ̂(`)) +
λ

2

nl∑
`=1

∥∥∥W(`)
∥∥∥2

F
,

(6.7)

where F (i) = [f
(i)
1 , f

(i)
2 , ..., f

(i)
l ], f (i)

l = f (
nl
2

)(x
(i)
l ); L is the Laplacian matrix of the clique with l

vertices, thus we have L = Il×(l−1)−Φ, and Φi,j = 1,∀i 6= j. X = [x(1),x(2), ...,x(|Ω|)], x(i) =

[x
(i)
1 ,x

(i)
2 , ...,x

(i)
l ]; H(nl)(X) = [g(1), g(2), ..., g(|Ω|)], g(i) = [f (nl)(x

(i)
1 ), f (nl)(x

(i)
2 ), ...f (nl)(x

(i)
l )].

Our goal is to minimize J(W,b) as a function of W and b. The key step is to compute

the partial derivatives of objective function Eq. (6.7), with respect to W and b to derive updates.

Inspired by back-propagation algorithm [?], we introduce “error terms” for δ(`) and δ(nl) for the

hidden layer and output layer respectively. These “error terms” can be computed as follows:

δ(nl) = −γ∇f (nl)(X)JAE ◦ σ′
(
h(nl)(X)

)
= −γ

(
H(nl)(X)−X

)
◦ f (nl)(X) ◦

(
1− f (nl)(X)

)
, (6.8)

δ(`) =

(
W(`)>δ(`+1) + β

ρ̂(`) − ρ0

ρ̂(`)(1− ρ0)

)
◦ σ′

(
h(`)(X)

)
=

(
W(`)>δ(`+1) + β

ρ̂(`) − ρ0

ρ̂(`)(1− ρ0)

)
◦ f (`)(X) ◦

(
1− f (`)(X)

)
, (6.9)

where ρ0 is a vector with all entries ρ; “◦” denotes the element-wise product. Since the clique
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embedding loss only depends on {W(`),b(`)}
nl
2
`=1, then the derivatives for ` > nl

2
are

∇W(`)J(W,b) =δ(`)
(
f (`−1)(X)

)>
+ λW(`), (6.10)

∇b(`)J(W,b) =

|Ω|∑
i=1

δ
(`)
i . (6.11)

We need to take the clique embedding loss into consideration when computing the derivatives

for {W(`),b(`)}
nl
2
`=1.

∇W(`)J(W,b) =

|Ω|∑
i=1

F (i)(L + L>) ◦F (i) ◦ (1−F (i))
(
f (`−1)(X)

)>
+ δ(`)

(
f (`−1)(X)

)>
+ λW(`), (6.12)

∇b(`)J(W,b) =

|Ω|∑
i=1

F (i)(L + L>) ◦F (i) ◦ (1−F (i)) + δ
(`)
i . (6.13)

Starting from every vertex v ∈ V , we generate all network walks via random walk. Then

network representations are learned by optimizing the aforementioned loss function J(W,b). The

pseudocode for network encoding is given in Algorithm 6.

In a fully streaming setting, the entire vertex set V will change over time, and hence is the

number of vertices n. In this case, we need to pre-allocate a fixed length for one-hot encoding

technique to encode the input vectors x
(i)
p ’s.

Visualization. In the network representation learning phase, NETWALK takes an initial net-

work as input and learns a latent representation for every vertex. Here, we show the encoding

capability of clique embedding in NETWALK by applying our method to the Zachary’s karate net-

work [Zachary, 1977]. Figure 6.3(a) shows the original network in which the vertex color indicates

the community to which each vertex belongs. Figure 6.3(b) presents the 2-dimensional represen-

tations learned by NETWALK. Notably, the linearly separable clusters can be found in the vector

representation space learned by our method.

6.1.2.3 Edge Encoding

NETWALK learns vector representations for vertices, which allows us to detect vertex anomalies

based on clustering. In addition, we are also interested in edge anomaly detection. Therefore, in
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Algorithm 6 Clique Embedding of NETWALK

Input: Network walk set Ω.

Output: Network representations f
nl
2 (x

(i)
p )

1: Set latent dimension d, sparsity ρ, weight control parameters γ, β and λ.

2: Randomly initialize {W(`),b(`)}nl`=1.

3: Construct input vector x
(i)
p ∈ Rn for vertex p in walk i, 1 ≤ p ≤ l, 1 ≤ i ≤ |Ω|.

4: while not stopping criterion do

5: Perform a feedforward pass to compute f (`)(x
(i)
p ).

6: For the output layer nl, set δ(nl) using Eq. (6.8)

7: for ` = nl − 1, nl − 2, nl − 3, . . . , 1 do

8: Compute “error terms” δ(`) using Eq. (6.9).

9: if ` > nl
2

then

10: Compute∇W(`)J(W,b) and ∇b(`)J(W,b) using Eq. (6.10)-(6.11).

11: else

12: Compute∇W(`)J(W,b) and ∇b(`)J(W,b) using Eq. (6.12)-(6.13).

13: end if

14: Determine the step size ξ by line search.

15: Update W(`) = W(`) − ξ∇W(`)J(W,b).

16: Update b(`) = b(`) − ξ∇b(`)J(W,b).

17: end for

18: end while

19: Compute embedding results f
nl
2 (x

(i)
p ).
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(a) the Zachary’s karate network (b) Embedding results of NETWALK

Figure 6.3: Embedding results on Zachary’s karate network

order to determine whether an incoming edge is an anomaly, we build a lookup table to encode

new edge(s) in real-time based on the network representations we have learned. For undirected

networks, the operator has to be symmetric. That is, for any edge (u, v) or (v, u), the edge rep-

resentation should be the same. In this paper, we use the Hadamard operator which has shown

good performance in edge encoding [Grover and Leskovec, 2016]. Assume that the d-dimensional

representation learned by Algorithm 6 for vertex v is f(v), then the representation of each edge

(v, u) under Hadamard operator is [f(v) ◦ f(u)]i = fi(v) × fi(u). It is worth mentioning that the

way to encode edges is very flexible. We can add any additional edge-specific features to augment

the edge vector.

6.1.2.4 Maintaining Network Representations Incrementally

To cope with the fast evolving nature of dynamic networks, we prefer to update the network rep-

resentations without having to maintain explicitly the complete details of network structures. This

section describes how the network representations learned by NETWALK are dynamically up-

dated upon changes of the network. Each added/deleted edge affects in a number of network

walks which will be used to update the current network representation. In our model, we design a

reservoir-based algorithm to maintain a compact record which consists of a set of “neighbors” for

each vertex, and the walks are updated based on the reservoir for each vertex.
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Figure 6.4: Illustration of updating the reservoirs

Definition 4 (Vertex Reservoir). For each vertex v ∈ V , the corresponding vertex reservoir Sv

is a set of vertex with ψ items, which are sampled with replacement from v’s neighbors nev =

{u|(u, v) ∈ E , u 6= v}.

Given a stream of edges, NETWALK maintains a reservoir for each vertex v such that each

single item in the reservoir is selected at random from v’s neighbors. Thus the reservoir needs to

be updated as new edges arrive. The updating rules are described as follows for each newly added

edge (u, v):

1. update the degree of vertices u and v: Du,u = Du,u + 1, Dv,v = Dv,v + 1;

2. for each item in the reservoir Su, with probability 1
Du,u

, replace the old item with the new

item v; and with probability 1− 1
Du,u

, keep the old item;

3. for each item in the reservoir Sv, with probability 1
Dv,v

, replace the old item with the new

item u; and with probability 1− 1
Dv,v

, keep the old item.

Lemma 1. For each i, the ith neighbor of vertex v is chosen to be included in the reservoir Sv with

probability ψ
Dv,v

.

Proof. We will prove it by induction. After the (i − 1)th round, let us assume that the probability

of an item being in the reservoir Sv is ψ
Dv,v

. Since the probability of the item being replaced in the
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ith round is 1
Dv,v+1

, the probability that a given item is in the reservoir after the (i− 1)th round will

be ψ
Dv,v
× (1 − 1

Dv,v+1
) = ψ

Dv,v+1
. We update Dv,v ← Dv,v + 1. Hence, the result holds for i, and

is therefore true by induction.

In case where edges are deleted, the reservoir is chosen similarly to aforementioned rules. In

this case, one needs to update the degree matrix first, and then replace the deleted items with the

remaining neighbors of the corresponding vertex. As illustrated in Figure 6.4, when (v2, v3) is

added at timestamp t2, the corresponding reservoirs of v2 and v3 will be updated by adding v3 with

a probability of 1
3
, and v2 with a probability of 1

3
, respectively. Similarly, when (v1, v4) is deleted

at timestamp t3, we replace the deleted item v1 with v3 with a probability of 1 (there is only one

remaining neighbor of the corresponding vertex v4), and replace the deleted item v4 with v3 or v6

with probability 1
2
.

After updating the reservoir of the corresponding vertices as edge (u, v) arrives, we will gener-

ate the network walks that need to be updated accordingly. For each newly added edge (u, v), the

walks need to be added are defined as Ω+ = {(u1, u2, ..., ui, u, v, v1, v2, ..., vj) ∨(v1, v2, ..., vi, v,

u, u1, u2, ..., uj)|i + j = l − 2}, which is a collection of network walks with length l includ-

ing the new edge (u, v). The transition probability of each connected vertex pair (um, un) is

p(um, un) = 1
Dum,um

. For each edge (u′, v′) that needs to be removed, the dynamic walk are

defined as Ω− = {ω|∀ω ∈ Ω ∧ ((u′, v′) ∈ ω ∨ (v′, u′) ∈ ω)}. We will then continue to train the

model with the updated network walk set in a warm-start fashion. The pseudocode of updating

network representations is shown in Algorithm 7.

Discussion. 1). On the incremental online training. When new edges come, ideally, we need

to retrain the embedding model on the whole walk set Ω ∪ Ω+. However, this is usually time-

consuming. Many online gradient decent methods have been discussed for this problem. For

example, we can sample a small set of walks from Ω based on their gradients [Defazio et al., 2014]

and add them to Ω+ for training. For the edge deletion case, we retrain the model with the updated

walk set Ω−Ω− for edge deletion. This is time consuming if the original walk set Ω is very large.

111



Algorithm 7 Network Representation Maintenance
Input: Network walk set Ω, a streaming edge set E(t); saved clique embedding model.

Output: The updated Ω, the updated embedding clique model.

1: for (u, v) in the streaming edge set E(t) do . dynamic walk generation

2: Update vertex set V .

3: Update degree matrix D.

4: Update the reservoirs Su and Sv using the rules described in Section 6.1.2.4.

5: Generate the network walk sets Ω+ for new edges and Ω− for deleted edges, respectively.

6: end for

7: Load the saved embedding model. . model update

8: Train the model with the dynamic network walk set Ω+, or with the updated walk set Ω− Ω−

if with edge deletion.

9: Update network representations f (
nl
2

)(x
(i)
p ).

10: Save the updated clique embedding model.

We can also incorporate the edge deletion part into the objective function Eq. (6.7),

J(W,b) =

|Ω+|∑
i=1

∑
1≤p,q≤l

∥∥∥f (
nl
2

)(x(i)
p )− f (

nl
2

)(x(i)
q )
∥∥∥2

2

+

|Ω−|∑
i=1

∑
1≤p,q≤l

max

(
0, α−

∥∥∥f (
nl
2

)(x(i)
p )− f (

nl
2

)(x(i)
q )
∥∥∥2

2

)
+
γ

2
JAE + βJSparsity +

λ

2
JWeight Decay, (6.14)

which ensures that the deleted edges in the embedding space have a distance of at least α from

each other. In the following evaluation section, we focus on the edge addition scenario which is

more common in real world. 2). On the weighted networks. Only minor modification on current

algorithm is needed to accommodate weighted network anomaly detection. First, since the walks

generating step adopts random walker technique, it is easy to consider the weights of edges into the

transition probability. Accordingly, in Eq. (6.4), additional weights should be put to the pairwise

loss of two vertices.

Visualization. In this subsection, we show the dynamic encoding capability of NETWALK by
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Figure 6.5: Embedding results on Email network

applying our method to the Email network4. Figure 6.5(a) shows the embedding results with

50% edges, in which the vertex color indicates the community to which each vertex belongs.

Figure 6.5(b) presents the online embedding results with additional 25% edges, and Figure 6.5(c)

updates the embeddings with the remaining 25% edges. Notably, more and more linearly separable

clusters can be found in the 2-dimensional representation space in Figure 6.5(b) and (c).

Computational Analysis. In network walk generation section, the time complexity to generate

|Ω| walks with length l in a network with n vertices is O(nl|Ω|). The edge encoding step takes

O(md) time to encode m edges with vertex dimension d. For each newly added edge, it takes

O(ψ) time to update the corresponding reservoirs, and O(ψl) time to generate the walks that need

to be retrained.

6.1.3 Anomaly Detection

The network representations learned by NETWALK can be beneficial for lots of downstream ap-

plications, such as link prediction, anomaly detection and community detection. In this paper, we

focus on the anomaly detection problem based on the learned network representations. We define

the anomaly detection problem in dynamic network as follows: given the vertex representations

fW,b(x
(i)
p ) ∈ Rd or corresponding edge representations, group existing representations into k clus-

ters, and detect any newly arriving vertices or edges that do not naturally belong to any existing

4https://snap.stanford.edu/data/email-Eu-core-temporal.html
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cluster. This may include the following scenarios: 1) the vertex or edge corresponds to an anomaly;

2) the vertex or edge marks the start of a new cluster in the network stream. It is difficult to distin-

guish these two cases unless we receive more streaming data afterwards. So in our model, we find

the closest cluster to each point. We use the Euclidean distance as the similarity measure, given by

||c− f(·)||2, where c is the cluster center and f(·) is the learned representation for each vertex or

edge. The anomaly score for each point is reported as its closest distance to any cluster centers.

When new edges stream in, we need to update cluster centers accordingly. In this paper, we

leverage the streaming k-means clustering [Ailon et al., 2009] which uses parameters to control the

decay of estimates. Here, we introduce a decay factor α when calculating the new cluster centers

after absorbing new point(s). We use the parameter α to control the importance of “older” data

points in existing clusters. Assuming that there are n0 points {xi}n0
i=1 in an existing cluster and n′

new points {x′i}n
′
i=1 at time-stamp T ′ to be absorbed by this cluster, the centroid c can be updated

in the following way

c =
αc0n0 + (1− α)

∑n′

i=1 x
′
i

αn0 + (1− α)n′
, (6.15)

where c0 is the previous cluster center. The decay factor α is chosen as 0.5 and used to ignore

older instances, which is analogous to an exponentially-weighted moving average.

Computational Analysis. With k clusters signified by k center vectors, finding the nearest

cluster takes onlyO(kd) time. It takesO(d) time to compute the anomaly score for each data point.

Updating the centers takes O(d) time with respect to the dimension of vertex/edge representations.

Thus the total time complexity of anomaly detection is O(kd) for each incoming data point.

6.1.4 Evaluation

To verify the performance of the proposed NETWALK model, we conduct experiments on a variety

of dynamic networks from different domains including UCI Msg [Opsahl and Panzarasa, 2009],

Digg, arXiv hep-th [Leskovec et al., 2007] and DBLP. Detailed descriptions of the datasets can be

found in Section A.1. The competing methods used here including four network embedding base-

lines, namely Spectral Clustering (SC) [?], DeepWalk [Perozzi et al., 2014b], node2vec [Grover and Leskovec, 2016]

and SDNE [Wang et al., 2016], and two streaming anomaly detection baselines GOutlier [Aggarwal et al., 2011]
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Table 6.1: Anomaly detection performance comparison

Methods
UCI Msg arXiv hep-th Digg DBLP

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

GOutlier 0.7181 0.7053 0.6707 0.6964 0.6813 0.6322 0.6963 0.6763 0.6353 0.7172 0.6891 0.6460

CM-Sketch 0.7270 0.7086 0.6861 0.7030 0.6709 0.6386 0.6871 0.6581 0.6179 0.7097 0.6892 0.6332

SC 0.6324 0.6104 0.5794 0.6114 0.6034 0.5593 0.5949 0.5823 0.5591 0.6141 0.6245 0.5915

DeepWalk 0.7514 0.7391 0.6979 0.7312 0.7000 0.6644 0.7080 0.6881 0.6396 0.7413 0.7202 0.6657

node2vec 0.7371 0.7433 0.6960 0.7374 0.7137 0.6748 0.7364 0.7081 0.6508 0.7368 0.7193 0.6786

SDNE 0.7307 0.7144 0.6868 0.7221 0.7041 0.6609 0.7160 0.6804 0.6340 0.7342 0.7160 0.6565

NetWalk 0.7758 0.7647 0.7226 0.7489 0.7293 0.6939 0.7563 0.7176 0.6837 0.7654 0.7388 0.6858

and CM-Sketch [Ranshous et al., 2016].

6.1.4.1 Identifying Anomalies

In this section, we evaluate NETWALK in two settings: static and streaming. In the static setting,

the first 50% edges of the network is used for training, and the rest incoming edges are used for

testing. The vertex representations are learned offline. We then use the representations to encode

and cluster the training edges. The test edges are scored and ranked based on their distances to the

closest cluster centers. The goal is to quantify the effectiveness of network representations of NET-

WALK in the anomaly detection task. Due to the challenges in collecting data with ground-truth

anomalies, we use anomaly injection method to create the anomalous edges [Akoglu et al., 2015].

The area under curve (AUC) score is used to measure the predictive power of all methods. We

rank and score all encoded testing edges by calculating the distance to the closest center in the

cluster generated from the training edges based on their representations, as presented in Table 6.1.

The parameters of NETWALK are tuned by 5-fold cross-validation on a rolling basis using the

initial network. Here we set nl, the layers of the autoencoder network, to 6. The latent dimension

of vertex representation is set to 200, 200, 20 for each encoding layer. The walk length l is set to

3. The number of samples per vertex is ψ = 20. The other parameters are chosen as follows: the

weight of reconstruction constraint γ = 5, sparsity ratio ρ = 0.1, the weight of sparsity β = 0.2,

weight decay term λ = 5e−4, number of clusters k = 10. The maximum iteration of NETWALK is

set to 500. For the first four network embedding methods SC, DeepWalk, node2vec and SDNE, we
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Figure 6.6: Accuracy of anomaly detection on dynamic network with 5% anomalies

use the same clustering and ranking method for anomaly detection based on the learned represen-

tations. The testing edges of all datasets are injected 1%, 5% and 10% anomalies, respectively. It

is evident from Table 6.1 that, 1) network embedding-based approaches (e.g. DeepWalk, node2vec

and SDNE) outperform traditional sketch-based models (GOutlier and CM-Sketch), 2) NETWALK

obtains a higher AUC than other baselines on all datasets. And even if 10% anomalies are injected,

the performance of NETWALK is still acceptable.

In the streaming setting, we again use the first 50% edges for training to build the initial net-

work representations and clusters. The testing edges arrive sequentially and are processed online.

In other words, all testing edges are only partially visible at any given time. For convenience

of comparison, we split the streaming edges into several snapshots. The number of edges for

each snapshot are set to 1k, 10k, 6k, 30k respectively for different dataset based on their test set

sizes. For each arriving snapshot, NETWALK updates the corresponding network representations,

clusters, and anomaly scores. For the network embedding baselines, we only include SC and Deep-

Walk since the performance of node2vec and SDNE are close to DeepWalk. These two embedding

baselines are designed for static network (DeepWalk has to generate the new random walks based

on the entire network), thus we adopt two versions in the evaluation. 1)The static version SCs

and DeepWalks: the latent vertex representations are learned only based on the initial network,
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and there are no updates upon receiving new edges; 2) The online version SCo and DeepWalko:

the algorithm is repeated using all previous t − 1 snapshots and tested with the tth snapshot. The

anomaly percentage for all datasets is set to 5%. Other parameters are chosen similarly as men-

tioned above. The accuracies are reported in Figure 6.6. We observe that 1) the online versions

SCo and DeepWalko achieve better accuracy than the corresponding static ones, 2) NETWALK

outperforms other baselines by a large margin. Note that the online version of DeepWalk needs

to store the entire network in memory and repeats the walk generation at each snapshot. So our

method is much more efficient on this aspect (see Section 6.1.4.2).

6.1.4.2 Dynamic Maintenance Performance

In this section we will show that the proposed NETWALK delivers both accurate and efficient

solution in a streaming setting on UCI Msg. Note that NETWALK leverages the reservoir sampling

technique to maintain network representations incrementally. Specifically, NETWALK creates a

reservoir for each vertex which contains its neighbors, and new network walks are generated based

on these reservoirs without storing the entire network in memory. In this part, we test the per-

formance of dynamic representation maintenance by comparing it with a version of NETWALKs

which needs to keep the network in memory and generate walks based the entire network at the

current timestamp on UCI Msg with 5% anomalies.

It can be seen from Figure 6.7 that the average AUC score of NETWALK is 0.7329 which is

higher than NETWALKs (0.7307). However, the walk generation time of NETWALKs is 5.0 to 10.2

times longer than NETWALK. Similar to NETWALKs, DeepWalk and node2vec need to keep the

entire network in memory to update the walks. Therefore, DeepWalk and node2vec take longer

time (5× to 11×) to generate walks than our model. As for SDNE, the calculation of the first-order

proximity on the network level is very time consuming compared with other baselines.
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Figure 6.7: Dynamic maintenance performance evaluation on UCI Messages dataset
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6.1.4.3 Parameter Sensitivity

The NETWALK framework involves a number of parameters that may affect its performance. We

examine such changes in performance on two anomaly detection tasks (UCI Messages and

Digg). We vary the number of samples per vertex (ψ), the dimensions of vertex representation

(d), the training data percentage and the walk length (l) to determine their impacts on anomaly

detection. Except for the parameters being tested, all other parameters assume default values.

We first examine different choices of parameters ψ and d. We choose values of ψ from 5 to 50,

and let d vary from 10 to 60 with an interval 10. The results are summarized in Figure 6.8. It is
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Figure 6.9: Stability over the training percentage of the initial network and the walk length

evident that AUC initially improves with ψ but further improvements are slower beyond a certain

threshold (ψ > 20). It indicates that NETWALK is able to learn meaningful vertex representations

with a small number of network walks. The performance is relatively stable across different values

of d. For both datasets, the AUC increases slightly as d increases, and then drops after d reaches

40. It is because, when d is small, information from the input data may be partially missing in the

representation learning phase; while when d is too high, the performance of the clustering phase

will be weakened.

The training percentage of the initial network and the length of network walk are also important

in the anomaly detection task. Figure 6.9 examines the effects of varying the training percentage

and the length of network walk. We observe from Figure 6.9(a) that the AUC increases sharply

when the training percentage of network goes from 10% to 30%, and then the performance stays

relatively stable. It demonstrates that our model can learn a better representation even trained with

a small number of data instances. The performance slightly increases when l goes from 3 to 4; after

that, the AUC decreases. This is because the clique constraint in Eq. (6.7) forces all the vertices

in the same walk to have similar representations, which is too restrictive for longer walks. Taking

both prediction performance and computational time into consideration, we will choose a relative

small walk length.
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6.2 Link Prediction with Spatial and Temporal Consistency

Evolutionary network analysis [Aggarwal and Subbian, 2014] has become increasingly important

in recent years. One of the major tasks is temporal link prediction which is to predict the future

network structure based on a sequence of observed networks. Formally, in this paper, the problem

of temporal link prediction is defined as: given a sequence of networks from timestamps 1 through

T , the task is to predict the link weights at timestamp T + α, where α ≥ 1. Note that a special

case of this definition is to predict whether a new link will emerge or not (when we restrict the link

weight to be either 0 or 1).

Extensive research efforts have been devoted to the temporal link prediction task including non-

parametric [Sarkar et al., 2012] and parametric [Tylenda et al., 2009, Oyama et al., 2011] models.

The key factors to link prediction task in temporal networks are spatial and temporal consisten-

cies, which mean: 1) a node has higher probability to form a link with a nearby node than with a

remote node in the near future; 2) a network usually evolves smoothly over time. The first factor

is akin to that in static network link prediction [Lü and Zhou, 2011, Al Hasan and Zaki, 2011]. It

encodes the local network propagation constraints from the network topology at each timestamp.

The second one globally enforces the smoothness of network evolution over time [Yu et al., 2017b,

Aggarwal and Subbian, 2014].

Existing approaches, however, seldom unify these two factors to strive for the spatial and tem-

poral consistency in the dynamic network. Their prediction performance thus degrades. Moreover,

most link prediction algorithms focus on the very next timestamp (i.e., α = 1), and are unable to

predict when α > 1. To address the limitation, we propose LIST, a model for link prediction with

spatial and temporal consistency. We leverage the time-dependent matrix factorization technique,

which has shown to be a powerful means to characterizing dynamic structural data [Koren, 2010,

Yu et al., 2017b], to decompose the network adjacency matrices into time-dependent matrices that

capture the features of vertices in the dynamic networks. At the same time, we introduce the

network propagation constraint [Zhou et al., 2003, Kashima et al., 2009, Cheng et al., 2016] which

ensures vertices to be within close proximity to their neighbors in the hidden feature space to be

learned by the time-dependent matrix factorization. As depicted in Figure 6.10, we learn the fea-
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Figure 6.10: Illustration of the LIST model

ture vector of each vertex by simultaneously optimizing the temporal fitting constraint and network

propagation constraint. The temporal fitting constraint can be expressed as time-dependent matrix

factorization with network adjacency matrix, while the propagation constraint preserves similari-

ties between the connected pairs of vertices in the feature space. The learned feature matrices are

parameterized with time and can be used to reconstruct the network structure at any given times-

tamp t. This allows us to make far more general predictions. Additionally, this feature matrix can

be viewed as a complete profile of the network dynamics over time, which may also find its utility

in other application settings of evolutionary network analysis.

6.2.1 The LIST Model

Let the observed sequence of temporal networks beG(t) = (N ,A(t)), whereN is a set of vertices,

and A(t) is the adjacency matrix of the network at timestamp t ∈ [1, T ], which is defined as a

function of time. We assume that the size of vertex set |N | = n, therefore A(t) ∈ Rn×n. The
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elements aijt of A(t) is the link weight between vertices i and j at timestamp t. Our goal is to

predict the links at timestamp T + α given A(1),A(2), ...,A(T ).

We adopt the label propagation principle [Zhou et al., 2003, Cheng et al., 2016] which states

that two vertices similar to each other are likely to have the same label. We consider a practical

assumption that two vertices that are connected are likely to have similar features. Under this

assumption, each vertex adjusts its feature vector based on its neighbors. Suppose that the initial

feature vector of vertex i is vi(t) and the final state is fi(t) at timestamp t. Then the propagation

process from vi(t) to fi(t) can be modeled by the following optimization problem.

min
f(t)

λ
∑
i,j

Aij(t)‖
1√

Dii(t)
fi(t)−

1√
Djj(t)

fj(t)‖2
2 (6.16)

+ (1− λ)
∑
i

‖fi(t)− vi(t)‖2

where D(t) ∈ Rn×n is the degree matrix of A(t). λ ∈ (0, 1) is the regularization weight. The first

term is the smoothness constraint, which enforces the neighboring vertices to have similar feature

vectors. The second term is the fitting constraint, which penalizes large deviation from the initial

feature vectors. The analytical solution of Eq. (6.16) is:

fi(t) = (1− λ)(I− λÃ(t))−1vi(t) (6.17)

where I ∈ Rn×n is the identity matrix. Ã(t) is the normalized version of A(t) which is defined as√
D(t)A(t)

√
D(t). This explicit solution shows that the final feature vector is a transformation

of the initial one based on the network structure at timestamp t.

Then how do we determine fi(t)? In this paper we leverage the time-dependent matrix factor-

ization method which naturally expresses the evolving network by learning a low rank representa-

tion of the underlying adjacency matrix. Let’s focus on undirected networks for now. In this case,

the symmetric adjacency matrix A(t) can be reconstructed by the feature vectors {fi(t)}ni=1,

A(t) = F(t)F(t)> (6.18)

Here F(t) = [f1, f2, ..., fn] ∈ Rn×k is a time-depend feature matrix.

We then follow a standard approach to set up a least squares optimization problem so that A(t)

and F(t)F(t)> are as close as possible. This can be achieved by minimizing the Euclidean distance
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between all entries in A(t) and F(t)F(t)>. Therefore, the optimization problem can be written as,

min
F

T∑
t=max(1,T−ω)

h(t)

2
‖A(t)− F(t)F(t)>‖2

F (6.19)

Here, h(t) = e−θ(T−t) is an exponential decay function with time t that regulates the importance of

the current timestamp of the network with respect to the past timestamps. ω is the sliding window

size which only takes the recent ω timestamps into consideration. This is pragmatic because there

is no need to store all network timestamps.

As it can be seen from Eq. (6.19), in order to learn F(t), one has to regulate the time-dependent

form of this matrix. Let P(t) = (1 − λ)(I − λÃ(t))−1, we have F(t) = P(t)V(t) based on

Eq. (6.17). Then the optimization problem described by Eq. (6.19) has the following form,

min
T∑

t=max(1,T−ω)

h(t)

2
‖A(t)−P(t)V(t)V(t)>P(t)>‖2

F (6.20)

Here V(t) ∈ Rn×k is a time-dependent matrix including all initial states of vertex feature vectors.

It characterizes the network dynamics by modeling the changes in the vertex feature space. The

function V(t) can take on any canonical form, such as linear models, polynomial models etc.

based on the specific tasks. We choose polynomial function for V(t) because we are trying to fit

the network dynamics within a small sliding window of length ω [?]. Thus V(t) can be represented

as follows:

V(t) = W(0) + W(1)t+ ...+ W(d)td =
d∑
i=0

W(i)ti (6.21)

Here {W(i)}di=0 ∈ Rn×k, d ∈ N+. V(t) is the simple linear function if d = 1.

The challenge of optimizing the objective function defined in Eq. (6.20) is that the network

A(t) could be very large and sparse, and the optimization of a O(n2) objective function is often

too computationally expensive. Generally, the existence of a link provides more information than

the absence of a link which conveys far more noises. Therefore, Eq. (6.20) should be tuned up

to focus on the nonzero entries in the adjacency matrix A(t). Let m be the number of nonzero

entries in A(t). However we still need a sample of zero entries to properly train the model. In this

paper, the sample size is set to be equal to the size of nonzero entries m. Let S(t) be the sample

indices at timestamp t such that aijt = 0,∀(i, j) ∈ S(t). Let E(t) be the set of indices that need
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to be optimize in Eq. (6.20), then we have E(t) = {(i, j)|aijt > 0} ∪ S(t). Note that the size of

E(t) is much smaller than O(n2) because the networks are often very sparse in practice. Then the

aforementioned objective function can be presented as follows,

T∑
t=max(1,T−ω)

h(t)

2

∑
(i,j)∈E(t)

(aijt − (P(t)V(t)V(t)>P(t)>)ij)
2 (6.22)

For directed networks, A(t) can be decomposed into two matrices: a constant matrix U and a

time-dependent matrix V(t), both are n×k matrices. In this case, the optimization problem comes

to be,
T∑

t=max(1,T−ω)

h(t)

2

∑
(i,j)∈E(t)

(aijt − (UV(t)>P(t)>)ij)
2 (6.23)

Note that one can choose both U and V(t) to be time-dependent, but it will double the parameter

space and increase the model complexity. Similar results can be achieved if one choose to make

U time-dependent rather than V(t). In the empirical study section, we focus on the undirected

networks.

6.2.1.1 Model Learning

In this section, we describe the algorithm to learn the LIST model. The aforementioned objective

function depends on the number of links in the networks which is easy to compute. We also need

to add weight-decay terms to reduce the variance of our model. Consider the objective function

J(W) for undirected networks with weight-decay terms,

T∑
t=max(1,T−ω)

h(t)

2
‖1E(t)(A(t)−P(t)V(t)V(t)>P(t)>)‖2

F +
d∑
i=0

βi
2
‖W(i)‖2

F (6.24)

where 1E(t)(M) =


Mij if (i, j) ∈ E(t)

0 if (i, j) /∈ E(t)

, {βi}di=0 are the weights. In order to infer the parame-

ter W, we leverage the symmetric matrix factorization technique [Kuang et al., 2012] to compute

the derivatives of Eq. (6.24). We introduce an “error term” ψ(t) for each timestamp t of undirected

networks as follows:

ψ(t) = 1E(t)(A(t)−P(t)V(t)V(t)>P(t)>) (6.25)

124



Note that the error matrix in ψ(t) has already projected to indices set defined byE(t). Consider the

derivative calculation of a simplified loss function J = 1
2
‖A−PVV>P>‖2

F without timestamp t,

∂J

∂V
=−P>APV −P>A>PV + 2P>PVV>P>PV

=−P>((A−PVV>P>) + (A−PVV>P>)>)PV

Here we extract the common factor A−PVV>P> for each term in J . The reason is that we can

apply projection 1E(t)(·) on this common factor. So that,

∂J(W)

∂W(i)
=
∂J(W)

∂V(t)

∂V(t)

∂W(i)
=

T∑
t=max(1,T−ω)

h(t)P(t)>
(
−ψ(t)− ψ(t)>

)
P(t)V(t)ti + βiW

(i)

(6.26)

We now have the derivative over W needed to run gradient descent. The pseudocode for LIST

model is presented in Algorithm 8.

Algorithm 8 Algorithm for LIST model
Input: temporal adjacency matrices {A(t)}Tt=max(1,T−ω), the order d of V(t), latent dimension k.

Output: factor matrices {W(i)}di=1 and the prediction A(T + 1).

1: Set k, d and ω.

2: Randomly initialize {W(i)}di=0.

3: while not stopping criterion do

4: Compute “error term” ψ(t) for each time stamp t.

5: Compute partial derivatives ∂J(W)

∂W(i) using ψ(t) by Eq. (6.26).

6: Determine the step size λ by line search.

7: for i in {1, ..., d} do

8: Update W(i) = W(i) − λ∂J(W)

∂W(i) .

9: Compute prediction result A(T + 1) = (
∑d

i=0 W(i)(T + 1)i)(
∑d

i=0 W(i)(T + 1)i)>.

10: end for

11: end while
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6.2.1.2 Computational Speed-up

Observe that the update of W(i) in Algorithm 8 has to compute the inverse of an n × n matrix

I − λÃ(t) which runs in time O(n3). In this section, an iterative method is used to approximate

the matrix inverse calculation.

Theorem 4. Given that the eigenvalues of Q ∈ Rn×n in [−1, 1], 0 < γ < 1, and the iteration

number B, the inverse of matrix I − γQ can be approximated by summing up (γQ)b across all

iterations [Zhou et al., 2003], which is

(I− γQ)−1 = lim
B→∞

B∑
b=1

(γQ)b−1 (6.27)

Given λ ∈ (0, 1) and Ã(t) (normalized by degree matrix D(t)), the approximate solution for

P(t) is,

P(t) = (1− λ)(I− λÃ(t))−1 = (1− λ)
B∑
b=1

(λÃ(t))b−1 (6.28)

Assume that the number of nonzero entries in the sparse matrix Ã(t) is m. The complexity

upper-bound of sparse matrix multiplication is O(mn) [Yuster and Zwick, 2005]. Therefore the

above solution takes O((b − 1)mn) in time for each iteration, b ∈ [1, B], which results in an

overall complexity O(B2mn) for the calculation of P(t). If we cache the computed results in

previously iteration, then the time complexity is reduced to O(Bmn).

6.2.1.3 Complexity Analysis

We assume that the gradient-descent method in Algorithm 8 is implemented for M iterations,

and the rank of the factorization is k. The bottleneck step is to update all parameters for d + 1

matrices in each of these iterations. It can be seen from Eq. (6.26) that there are ω timestamps

within each sliding window, and in each timestamp the complexity for matrix manipulation is

O(Bmn) + O(n2k). Thus, the asymptotic running time is O(Mω(d + 1)(Bmn + n2k)). In

empirical study settings, M , ω, d, B and k are much smaller than n and m, therefore the time

complexity is approximately O(mn+ n2).
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6.2.2 Evaluation

The ability to predict link weights at a specific time is almost trivial using the LIST model. Once

we obtain the factor matrices {W(i)}di=1, the predicted structure of the network can be effectively

reconstruct by V(T + α)V(T + α)> for any α ≥ 1. Of course, as the value of α becomes larger

and larger, one can expect the reconstruction to become increasingly challenging. In this section,

we will compare with the baselines on single-timestamp link weight prediction (α = 1), and show

the advantages of the LIST model on multiple-timestamp link weight prediction (α > 1).

To verify the performance of the LIST model, we conduct experiments on four dynamic net-

works, namely Infectious [Isella et al., 2011], UCI Msg [Opsahl and Panzarasa, 2009], Digg5 and

DBLP, as described in Section A.1. For comparison, we consider the canonical link prediction

method Weighted Common Neighbors (WCN) [Zhao et al., 2015], as well as recent algorithms

High-performance Link Prediction (HPLP) [Lichtenwalter et al., 2010], CP Tensor Model (CP-

Tensor) [Dunlavy et al., 2011] and Temporal Matrix Factorization (TMF) [Yu et al., 2017b]. Note

that the HPLP algorithm used here is a modified version that trains a regression model to predict

the link weights. We analyze all algorithms by measuring the accuracy of link weight prediction

based on root mean-squared error (RMSE).

6.2.2.1 Single-timestamp Link Weight Prediction

To compare the performance of single-timestamp link weight prediction (α = 1), we utilize the

network timestamps from T − ω to T − 1 as the training set, and the T th timestamp as the test

set, T ∈ [2, T ], where T is the total number of timestamps in each dataset. We set the order d of

time-dependent matrix V(t) to 1. As reported in [Yu et al., 2017b], hight order of d may slightly

improve the performance, but not always. The other parameter settings are as follows: iteration

numberB = 100 for the computation of P(t), latent dimension k = 20, exponential decay θ = 0.3,

sliding window size ω = 5, propagation balancing weight λ = 0.3, regularizer weights βi = 0.01.

The maximum number of iterations of the LIST model is set to 200. We analyze the algorithms by

measuring the prediction RMSE at different timestamps as shown in Figure 6.11.

5http://konect.uni-koblenz.de/networks

127



Infectious

2 3 4 5 6 7 8
0

1

2

3

R
M
SE

UCI Msg

2 3 4 5 6 7
0

0.2

0.4

0.6

Digg

2 3 4 5 6 7 8 9 10 11 12 13
T

0

0.005

0.01

0.015

0.02

0.025

R
M
SE

DBLP

2 5 8 11 14 17 20 23 26 29 32
T

0

0.01

0.02

0.03

WCN HPLP CPTM TMF LIST

Figure 6.11: Prediction RMSE at timestamp T while training with previous ω timestamps

Table 6.2: Average RMSE across all timestamps

Method Infectious UCI Msg Digg DBLP

WCN 0.9719±0.8300 0.2719±0.2064 0.0161±0.0048 0.0160±0.0104

HPLP 0.5883±0.6767 0.2702±0.2034 0.0064±0.0012 0.0056±0.0147

CP-Tensor 0.8847±0.9367 0.2196±0.2469 0.0133±0.0136 0.0128±0.0099

TMF 0.5309±0.1185 0.1840±0.1311 0.0032±0.0011 0.0017±0.0028

LIST 0.3824±0.1114 0.1345±0.0930 0.0026±0.0005 0.0009±0.0009

We have several key observations from Figure 6.11. Firstly, the proposed LIST model outper-

forms all baselines, which are consistent across all four dynamic networks. It demonstrates the

advantages of leveraging network propagation in predicting link weights, and shows that the LIST

model can capture the underlying structure of the network evolution. We also notice that the LIST

model achieves a higher accuracy margin against the TMF model at early timestamps. It is because

there is no enough data to train the TMF model, but the LIST model makes full use of the network

structure through the propagation constraint.

Table 6.2 displays the average prediction RMSE across all timestamps of each dataset. It is
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Figure 6.12: Multiple-timestamp prediction RMSE on Infectious and UCI Msg datasets

evident that the LIST model has a better average RMSE than all four competing methods. Note

that the performance of the LIST model is about 18× better than WCN on the DBLP dataset.

6.2.2.2 Multiple-timestamp Link Weight Prediction

Notably, the LIST model has the capability to effectively reconstruct the structure of the network at

any given time. In this section, we run experiments to measure the prediction accuracy in predicting

link weights for multiple timestamps. The task is to predict the link weights at timestamp T + α,

where α = {1, 2, 3} in the experiments. That is, we are using the LIST model to predict the next

three timestamps. The rest of the parameters are set as Section 6.2.2.1. The multiple-timestamp

prediction RMSE is presented in Figure 6.12.

Since we are predicting the link weight of the upcoming three timestamps, each short dash

line has three dots (or fewer than three at the last two timestamps) which plot the RMSE of link

prediction at timestamp T + 1, T + 2 and T + 3. There are T − 2 dash lines in total for each

dataset (T is the total number of timestamps). The dots on solid lines indicate the single-timestamp

prediction RMSE of LIST and TMF, which are used as references. It can be seen that, even when

α > 1, the LIST prediction accuracy is still better than the baseline TMF most time. It is also

worth mentioning that several predictions made by multiple-timestamp link prediction are better

than single-timestamp predictions.
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Figure 6.13: Prediction RMSE at timestamp T with different λ

6.2.2.3 Parameter Analysis

Propagation Balancing Parameter λ: The parameter λ defined by Eq. (6.16) specifies the relative

amount of the information from its neighbors (propagation constraint) and its initial feature vectors

(fitting constraint). By varying the parameter λ, we want to examine the relative importance of

network structure in single-timestamp link weight prediction task. The special case of λ = 0

indicates that no network structure information will be considered. We choose different values of

λ which varies from 0 to 1 with step size 0.1, and compute the prediction RMSE at timestamp

T on Infections and UCI Msg datasets. All the remaining parameter settings are the same as

Section 6.2.2.1. The results are summarized in Figure 6.13. The RMSE curves of both datasets

follow a broad “U” shape. This means that as λ increases from 0 to 1, the prediction accuracy

increases till an optimal value, after which it starts to decline. It is evident that the propagation

constraint can help improve the performance of link prediction in dynamic networks. We also

observe that λ ∈ [0.1, 0.4] gives the optimal prediction RMSE.

Exponential Decay θ and Factorization Rank k: In this section, we conduct the parameter anal-

ysis on θ and k. θ regulates the exponential decay function h(t). A larger θ represents that less

weights are assigned to the previous timestamps. k is the latent dimension of the feature matrix

F(t). We choose different values of θ varies from 0 to 1 with interval 0.1, and k varies from 20 to

100. We show the results on datasets Infectious and UCI Msg. The prediction RMSE is presented

as a heat-map in Figure 6.14. It depicts that θ has a significant impact on prediction accuracy, and

it is sensitive to the dataset. For the Infectious dataset, as θ increases, the proposed model has a
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Figure 6.14: Prediction RMSE at timestamp T with different parameter pairs θ and k

better RMSE. This means a better prediction can be achieved when less weights are assigned to

early timestamps. For the UCI Msg dataset, we observe a totally opposite trend. It also can be seen

that RMSE improves with the increase of k. This is because larger k preserves more information

when performs the matrix factorization. But from the complexity analysis in Section 6.2.1.3 we

can see that a relatively small k takes less running time. Taking both running time and prediction

accuracy into consideration, we choose a relative small k ranged from 20 to 100.

6.3 Summary

In this chapter, we first present NETWALK to detect anomalies in dynamic networks, by learning

faithful network representations which can be updated dynamically as the network evolves over

time. The latent network representations are learned using a number of network walks extracted

from the initial network. The representations are obtained by clique embedding, which jointly

minimizes the pairwise distance of vertex representations from each network walk, and the auto-

encoder reconstruction error that serves as a global regularization. Based on the low-dimensional

vertex representations, a clustering-based technique is employed to incrementally and dynamically

detect network anomalies. Quantitative validation on anomaly detection task using four read-

world datasets shows that NETWALK is computationally efficient and outperforms state-of-the-

art techniques in anomaly detection. We then present a novel link prediction model, LIST, for

dynamic networks which simultaneously incorporates network propagation and temporal matrix

factorization techniques. This is guaranteed by the joint minimization of the network propagation
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loss and the temporal network reconstruction error. The proposed model utilizes a user-defined

sliding window to learn the parameters, thus supports streaming link prediction as well. Extensive

experiments show that the LIST model outperforms the state-of-the-art techniques.
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Part III

Conclusion and Future Directions
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CHAPTER 7

Conclusion

The ubiquity and the emergence of complex networks provide computer science with a unique

opportunity to build and design methods and applications upon. So, it is important to understand

how such complex networks work, what is their structure, and how the structure of the networks

influence the dynamical properties inside the networks. This thesis presents a combination of the

methods and applications in static network analysis (PART I) and evolutionary network analysis

(PART II). The research focus of this thesis is to analyze and model the structure, evolution and

dynamics in the static and evolutionary information networks. Our contributions so far are the

following,

On the analysis of static network side, we introduced the NETRA model to learn the network

representations with adversarially regularized autoencoders. The resultant vertex representations

can well capture the network structure through jointly considering both locality-preserving and

global reconstruction constraints. The joint inference is encapsulated in a generative adversarial

training process to circumvent the requirement of an explicit prior distribution, and thus obtains

better generalization performance. We also introduced a novel scoring function called intensity

score to measure the competitiveness of an advertiser, and proposed a community detection algo-

rithm MAXINTENSITY to detect communities which have the maximum intensity score.

On the analysis of evolutionary network side, we introduced two novel time-dependent matrix

factorization based models, TMF and COEVOL. These model have the advantage of significant

generality in addressing various temporal applications because of its ability to explicitly represent

the networks as a function of time. As specific examples, we provided results for temporal weight

trend prediction, link prediction, dynamic community detection and event detection within the

TMF framework, and we evaluated the extraordinary generality of COEVOL in terms of its appli-
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cability to cross-network link prediction, lag correlation detection and community detection tasks.

Even though we provided more general models, our results showed that their specific instantiations

to different prediction tasks perform better than state-of-the-art techniques, thereby demonstrated

the generality and effectiveness of the TMF and COEVOL frameworks. As for the applications

in evolutionary network analysis, we proposed NETWALK for anomaly detection and LIST for

link prediction. Compared with existing approaches, NETWALK has several advantages: 1) the

network embedding can be updated dynamically, 2) streaming network nodes and edges can be en-

coded efficiently with constant memory space usage, 3). flexible to be applied on different types of

networks, and 4) network anomalies can be detected in real-time. And the advantages LIST have

are: 1) LIST uses a generic model to express the network structure as a function of time, which

makes it also suitable for a wide variety of temporal network analysis problems beyond the focus

of this paper; 2) by retaining the spatial and temporal consistency, LIST yields better prediction

performance.

In the long run, we would like to model the evolution of networks both with attributes and

label information, because a vast majority of real-world networks are coupled with a rich set of

vertex attributes and labels, which could be potentially complementary in learning better network

representations. Additionally, we also want to study the robustness of the network representation

learning models against adversarial attacks. This is highly critical because adversaries are common

and false data is easy to inject in the network-based learning applications. Next, we give a summary

of contributions and the possible directions for future research.

7.1 Summary of Contributions

We summarize our contributions by grouping them into methods and applications under static and

dynamic settings, as summarized in Table 7.1. In the methods column, we proposed NETRA

to learn network representations under static setting, while TMF and COEVOL are proposed for

evolutionary network analysis based on time-dependent matrix factorization. In the Applications

column, we proposed MAXINTENSITY for community detection, NETWALK for anomaly detec-

tion and LIST for temporal link prediction.
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Table 7.1: Structure of the thesis with references to the chapters

Thesis Parts Methods Applications

PART I: Static Network Analysis
Chapter 3 Chapter 4

NETRA (KDD’18) MAXINTENSITY (ICDM’15)

PART II: Evolutionary Network Analysis

Chapter 5 Chapter 6

TMF (WSDM’17) NETWALK (KDD’18)

COEVOL (SDM’18) LIST (IJCAI’17)

Methods:

1. We proposed a new deep network embedding model with adversarially regularized autoen-

coders, NETRA, to learn vertex representations by jointly minimizing locality-preserving

loss and global reconstruction error using generative adversarial training process. The resul-

tant representations are robust to the sparse inputs derived from the network. Experimental

results demonstrate the effectiveness and efficiency of NETRA.

2. We developed TMF, a novel temporal matrix factorization model for dynamic network anal-

ysis. TMF has the advantage of significant generality in addressing various temporal appli-

cations because of its ability to explicitly represent the network as a function of time.

3. We proposed COEVOL to utilize a shared temporal matrix factorization framework to model

co-evolution across multiple networks, which decomposes the adjacency matrix of each co-

evolving network into a product of network-independent shared factor and a set of network-

specific temporal factors, and impose a non-negativity constraint on the factors for greater

interpretability.

Applications:

1. We proposed a new weighted bi-partite graph metric, intensity score, which captures the

competition of the advertiser-keyword network better, and introduced a novel algorithm,

MAXINTENSITY, based on intensity score, that detects advertiser communities with high

competition.
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2. We proposed NETWALK to detect anomalies in dynamic networks, by learning faithful net-

work representations which can be updated dynamically as the network evolves over time.

Quantitative validation on anomaly detection task showed that NETWALK is computation-

ally efficient and outperforms state-of-the-art techniques.

3. We proposed a novel temporal link prediction model, LIST, for dynamic networks which

simultaneously incorporates network propagation and temporal matrix factorization tech-

niques. Extensive experiments show that the LIST model outperforms the state-of-the-art

techniques.

7.2 Future Directions

Based on the recent results described in previous chapters and the research experience in infor-

mation network analysis, we believe that the study of networks both with attributes and label

information will be a promising and practical direction to develop information network analy-

sis methods and applications, because the side information could be potentially complementary

in learning better network representations. Additionally, we plan to study the robustness of the

network representation learning models against adversarial attacks.

Attributed Network Embedding: A vast majority of real-world networks are coupled with a

rich set of vertex attributes, which could be potentially complementary in learning better embed-

dings. Existing attributed network embedding models, with shallow or deep architectures, typically

seek to match the representations in topology space and attribute space for each individual vertex

by assuming that the samples from the two spaces are drawn uniformly. The assumption, however,

can hardly be guaranteed in practice. Due to the intrinsic sparsity of sampled vertex sequences

and the incomplete vertex attributes, the discrepancy between the attribute space and the network

topology space inevitably exists. Furthermore, the interactions among vertex attributes, a.k.a cross

features, have been largely ignored by existing approaches. It is important to develop an attributed

network embedding model to address the above issues in order to achieve better generalization

performance and robustness.
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Dynamic Network Embedding: Network is dynamic and evolving over time in real world.

Network analysis algorithms that ignore the dynamics of a given network can hardly capture suf-

ficient information. The dynamic changes of networks are complex, including the addition and

removal of vertices and edges, and the update of edge weights. It is challenging to design a frame-

work for all these changes in an online fashion. A naive solution is to apply static embedding

algorithms to each time-stamp of the evolutionary networks, which may face two issues: 1) la-

tent representation space can hardly be aligned, 2) high computational cost to train the embedding

models. We observe that a network may not change much in a short period of time, therefore the

representation space should not change too much. A dynamic network embedding model is needed

to efficiently update the representations against the small changes in the evolutionary networks.

Towards Robustness of Network Embedding Models: Deep learning models for graphs

have achieved strong performance such as vertex classification and link prediction. Despite their

proliferation, very few study of their robustness to adversarial attacks. Currently researches show

that deep learning models for graphs can be easily fooled. Thus it is essential to develop a defense

model to protect network embedding models from adversarial attack, especially in domains where

network-based learning is used.
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APPENDIX A

Appendix

A.1 Description of Datasets

In this section, we give brief descriptions and some of the basic statistics of the datasets used in

this thesis from different domains, as shown in Table A.1.

• Infectious [Isella et al., 2011]: This network contains the daily dynamic contact networks

collected during the Infectious SocioPatterns event that took place at the Science Gallery

in Dublin, Ireland. Nodes represent exhibition visitors; edge weights represent face-to-face

contact times.

• UCI Message (UCI Msg) [Opsahl and Panzarasa, 2009] is a directed communication net-

work containing sent messages (edges) between the users (vertices) of an online community

of students from the University of California Irvine.

• arXiv hep-th [Leskovec et al., 2007]: This collaboration network is from arXiv and covers

scientific collaborations between authors and papers submitted to High Energy Physics -

Theory category (hep-th). Vertices represent the authors, and edge weights between two

authors represents the number of coauthored publications. Time-stamps denote the date of a

publication.

• Digg1: This is the reply network of the news aggregator website digg.com. Each vertex is a

Website user, and each weighted edge denotes the number of replies.

1http://konect.uni-koblenz.de/networks
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Table A.1: Description of network datasets

Dataset #Vertex #Edge Avg. Degree Max. Weight |T | Type #Label

Infectious 410 2,765 21.43 191 8 hours Undirected -

UCI Msg 1,899 13,838 14.57 98 7 months Directed -

arXiv hep-th 6,798 214,693 63.16 66 7 years Undirected -

Digg 30,360 85,155 5.61 25 14 days Directed -

Epinions 131,828 841,372 12.77 1 32 months Directed -

DBLP 315,159 743,709 4.72 159 34 years Undirected -

JDK 6,434 53,892 46.93 1 - Directed -

Blogcatalog 10,312 333,983 32.96 1 - Undirected -

PPI 3,890 76,584 19.69 1 - Directed 50

Wikipedia 4,777 184,812 38.69 1 - Directed 40

• Epinions [Massa and Avesani, 2006]: This is the trust and distrust network of Epinions, an

online product rating site. The network contains individual users connected by directed trust

and distrust links. Edges have the weight 1 for trust and −1 for distrust.

• DBLP2 is an undirected collaboration graph of authors from the DBLP computer science

bibliography. The vertices in this network represent the authors, and the edges represent the

co-authorships between two authors.

• JDK dependency (JDK)1 is the software class dependency network of the JDK 1.6.0.7 frame-

work. The network is directed, with vertices representing Java classes and an edge between

two vertices indicating there exists a dependency between the two classes.

• Blogcatalog [Tang and Liu, 2009] is an undirected social network from BlogCatalog website

which manages the bloggers and their blogs. The vertices represent users and edges represent

friendship between users.

• Protein-Protein Interactions (PPI) [Breitkreutz et al., 2007] is a subgraph of the PPI network

2http://dblp.uni-trier.de/xml
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for Homo Sapiens, which is a network depicting interactions between human proteins. The

vertex label indicates biological states of proteins.

• Wikipedia [Grover and Leskovec, 2016] is a directed word network. Vertex labels represent

the Part-of-Speech (POS) tags inferred using the Stanford POS-Tagger [Toutanova et al., 2003].

A.2 Description of Baselines

This section summaries the baselines used in this thesis, including baselines for link prediction,

community detection, anomaly detection and network embedding.

Link prediction baselines:

Let Γ(x) denote the set of neighbors of vertex x in network G(N,A(t)), and wx,y denote the

link weights between nodes x and y.

• Common Neighbors (CN) [Liben-Nowell and Kleinberg, 2007]: For any pair of nodes x

and y, the link prediction strategy is to define the score(x, y) = |Γ(x) ∩ Γ(y)|, the num-

ber of common neighbors between x and y. The weighted version of common neigh-

bors (WCN) [Murata and Moriyasu, 2007, Zhao et al., 2015] is defined as score(x, y) =∑
z∈Γ(x)∩Γ(y)

wx,z+wy,z
2

, but here we normalize the score by the size of common neighbors,

thus score(x, y) = 1
|Γ(x)∩Γ(y)|

∑
z∈Γ(x)∩Γ(y)

wx,z+wy,z
2

.

• Adamic Adar (AA) [Adamic and Adar, 2003]: This method assigns larger weights to less-

connected neighbors. The measure is score(x, y) =
∑

z∈Γ(x)∩Γ(y)
1

log|Γ(z)| . The weighted

version (WAA) [Zhao et al., 2015] is score(x, y) =
∑

z∈Γ(x)∩Γ(y)
wx,z+wy,z

2
× 1

log(1+sz)
, where

sz =
∑

z′∈Γ(z)wz,z′ .

• High-performance Link Prediction (HPLP) [Lichtenwalter et al., 2010]: This is a supervised

classification framework to predict the new links. The weighted version is using the same

features to train a regression model to predict the link weights.
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• Preferential Attachment (PA) [Mitzenmacher, 2004]: This unweighted method corresponds

to the measure score(x, y) = |Γ(x)| · |Γ(y)|. The basic premise is that the probability that a

new edge involves node x is proportional to |Γ(x)|.

• Nonparametric Link Prediction (NP) [Sarkar et al., 2012]: This method predicts links based

on the features of its endpoints, as well as those of the local neighborhood around the end-

points.

• Link Prediction via Matrix Factorization (Fact-Sq) [Menon and Elkan, 2011]: This method

solves the link prediction problem in graphs using a matrix factorization based approach.

This baseline uses the square loss and the same latent dimension k as the proposed model in

this thesis.

• CP Tensor Model (CP-Tensor) [Dunlavy et al., 2011]: This is a tensor-based method for

predicting future links for bipartite graphs that evolve over time. In our problem setting, we

apply this method to homogeneous graphs.

Community detection baselines:

• Information Maps (Infomap) [Rosvall and Bergstrom, 2007] is an information theoretic com-

munity detection approach that can be used with weighted and directed networks.

• Multilevel [Blondel et al., 2008] is a heuristic method based on modularity optimization that

finds high modularity partitions of large networks in short time and discovers a hierarchical

community structure for the network.

• Leading Eigenvector (Eigen) [Newman, 2006a] leverages a modularity matrix to maximize

the modules in a network.

• Max Permanence [Chakraborty et al., 2014] detects the community structure by maximizing

permanence score, a new vertex-based metric that can quantitatively give an estimate of the

community-like structure of the network.
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• Bi-partite Permanence (Bi-Permanence) is a modified version of Max-Permanence that de-

tects the communities in a bipartite graph.

Anomaly detection baselines:

• GOutlier [Aggarwal et al., 2011] uses a structural connectivity model in order to define out-

liers in dynamic network. It designs a sampling method to maintain structural summaries of

the underlying network.

• CM-Sketch [Ranshous et al., 2016] is an outlier detection model based on global and local

structural properties of an edge stream. It utilizes Count-Min sketch for approximating these

properties.

Network embedding baselines:

• Spectral Clustering (SC) [Tang and Liu, 2011] is an approach based on matrix factoriza-

tion, generating the vertex representation with the smallest d eigenvectors of the normalized

Laplacian matrix of the graph.

• DeepWalk [Perozzi et al., 2014b] is a skip-gram [Mikolov et al., 2013b] based model which

learns the graph embedding with truncated random walks.

• node2vec [Grover and Leskovec, 2016] combines the advantage of breadth-first traversal and

depth-first traversal algorithms. The random walks generated by node2vec can better repre-

sent the structural equivalence.

• Structural Deep Network Embedding (SDNE) [Wang et al., 2016] is a deep learning based

network embedding model which uses autoencoder and locality-preserving constraint to

learn vertex representations that capture the highly non-linear network structure.

• Adversarial Network Embedding (ANE) [Dai et al., 2017] proposes to train a discriminator

to push the embedding distribution to match the fixed prior.
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[Isella et al., 2011] Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., and Van den Broeck,
W. (2011). What’s in a crowd? analysis of face-to-face behavioral networks. Journal of theo-
retical biology, 271(1):166–180.

[Kashima et al., 2009] Kashima, H., Kato, T., Yamanishi, Y., Sugiyama, M., and Tsuda, K. (2009).
Link propagation: A fast semi-supervised learning algorithm for link prediction. In SDM, pages
1100–1111. SIAM.

[Kim et al., 2017] Kim, Y., Zhang, K., Rush, A. M., LeCun, Y., et al. (2017). Adversarially regu-
larized autoencoders for generating discrete structures. arXiv preprint arXiv:1706.04223.

[Kipf and Welling, 2016] Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907.

[Kloster and Gleich, 2014] Kloster, K. and Gleich, D. F. (2014). Heat kernel based community
detection. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1386–1395. ACM.

[Kloumann and Kleinberg, 2014] Kloumann, I. M. and Kleinberg, J. M. (2014). Community
membership identification from small seed sets. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1366–1375. ACM.

[Koren, 2010] Koren, Y. (2010). Collaborative filtering with temporal dynamics. Communica-
tions of the ACM, pages 89–97.

[Kuang et al., 2012] Kuang, D., Park, H., and Ding, C. H. (2012). Symmetric nonnegative matrix
factorization for graph clustering. In SDM, volume 12, pages 106–117. SIAM.

[Lee and Seung, 1999] Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788–791.

[Lee and Seung, 2001] Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix
factorization. In NIPS, pages 556–562.

148



[Leskovec et al., 2007] Leskovec, J., Kleinberg, J., and Faloutsos, C. (2007). Graph evolution:
Densification and shrinking diameters. TKDD, 1(1):2.

[Levy and Goldberg, 2014] Levy, O. and Goldberg, Y. (2014). Neural word embedding as implicit
matrix factorization. In NIPS, pages 2177–2185.

[Li et al., 2014] Li, X., Du, N., Li, H., Li, K., Gao, J., and Zhang, A. (2014). A deep learning
approach to link prediction in dynamic networks. In SDM. SIAM.

[Liben-Nowell and Kleinberg, 2007] Liben-Nowell, D. and Kleinberg, J. (2007). The link-
prediction problem for social networks. JASIST, 58(7):1019–1031.

[Lichtenwalter et al., 2010] Lichtenwalter, R. N., Lussier, J. T., and Chawla, N. V. (2010). New
perspectives and methods in link prediction. In Proceedings of the 16th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 243–252. ACM.
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