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SUMMARY

Gene expression levels vary across developmental stage, cell type, and region in the brain. 

Genomic variants also contribute to the variation in expression, and some neuropsychiatric 

disorder loci may exert their effects through this mechanism. To investigate these relationships, we 

present BrainVar, a unique resource of paired whole-genome and bulk tissue RNA sequencing 

from the dorsolateral prefrontal cortex of 176 individuals across prenatal and postnatal 

development. Here we identify common variants that alter gene expression (expression 

quantitative trait loci [eQTLs]) constantly across development or predominantly during prenatal or 

postnatal stages. Both “constant” and “temporal-predominant” eQTLs are enriched for loci 

associated with neuropsychiatric traits and disorders and colocalize with specific variants. 

Expression levels of more than 12,000 genes rise or fall in a concerted late-fetal transition, with 

the transitional genes enriched for cell-type-specific genes and neuropsychiatric risk loci, 

underscoring the importance of cataloging developmental trajectories in understanding cortical 

physiology and pathology.

In Brief

Werling et al. analyze gene expression across the span of human cerebral cortical development and 

profile the trajectories of individual genes, coordinated groups of genes, and their relationships to 

disorders. Integration of genetic variation identifies quantitative trait loci that implicate specific 

genes in loci associated with neuropsychiatric traits and disorders.

Graphical Abstract
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INTRODUCTION

The human nervous system develops slowly over several decades, starting during 

embryogenesis and extending postnatally through infancy, childhood, adolescence, and 

young adulthood (Keshavan et al., 2014; Shaw et al., 2010; Silbereis et al., 2016; Tau and 

Peterson, 2010). Over this time, myriads of functionally distinct cell types, circuits, and 

regions are formed (Hu et al., 2014; Lui et al., 2011; Silbereis et al., 2016). To produce 

distinct structures and circuits, neural cells are born in an immature state and undergo a 

variety of molecular and morphological changes as they differentiate, migrate, and establish 

circuits. Consequently, the characteristics of a given cell and brain region at a given time 

offer only a snapshot of organogenesis and brain function, necessitating consistent profiling 

across development.

The molecular and cellular processes underlying development of the nervous system rely on 

the diversity of transcripts and their precise spatiotemporal regulation (Bae and Walsh, 2013; 

Silbereis et al., 2016). Functional genomic analyses of the developing human brain have 

revealed highly dynamic gene expression and epigenetic changes during prenatal and early 

postnatal development (Kang et al., 2011; Li et al., 2018) versus comparative stability over 

several decades of adulthood (Colantuoni et al., 2011; Jaffe et al., 2018; Kang et al., 2011; 

Li et al., 2018; Pletikos et al., 2014). Disruption of developmentally dynamic regulatory 

processes is likely to contribute to neurodevelopmental and neuropsychiatric disorders 

(Birnbaum and Weinberger, 2017; Breen et al., 2016; Geschwind and Flint, 2015; McCarroll 
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and Hyman, 2013; Rosti et al., 2014; Sestan and State, 2018; Turner and Eichler, 2019). In 

keeping with this expectation, spatiotemporal expression patterns have implicated mid-fetal 

brain development as a vulnerable process and the prefrontal cortex as a vulnerable region 

for autism spectrum disorder (ASD) and schizophrenia risk genes (Chang et al., 2015b; 

Gulsuner et al., 2013; Li et al., 2018; Network and Pathway Analysis Subgroup of the 

Psychiatric Genomics Consortium, 2015; Parikshak et al., 2013; Satterstrom et al., 2020; 

Willsey et al., 2013; Xu et al., 2014). More generally, atypical trajectories of brain 

maturation have been described in ASD, schizophrenia, and other neuropsychiatric traits and 

disorders (Birnbaum and Weinberger, 2017; Courchesne et al., 2007; Ecker et al., 2015; 

Insel, 2010; Keshavan et al., 2014; Shaw et al., 2010; Tang and Gur, 2018). Given that 

neuropsychiatric disorders have discrete ages of onset and progression and may arise 

because of genetic or environmental insults at various times during the life of an individual, 

there is a clear need to examine gene expression and neuropsychiatric risk across the span of 

human brain development.

In addition to spatiotemporal variation, genetic sequence variants also affect gene expression 

levels, which can contribute to differences in brain structure, function, and behavior (Elliott 

et al., 2018). Several laboratories and consortia have systematically identified such 

expression quantitative trait loci (eQTLs) in numerous tissues, including the brain (Akbarian 

et al., 2015; Dobbyn et al., 2018; Fromer et al., 2016; Gibbs et al., 2010, GTEx Consortium, 

2015; Heinzen et al., 2008; Jaffe et al., 2018; Liu et al., 2010; Myers et al., 2007; Wang et 

al., 2018; BrainSeq: A Human Brain Genomics Consortium, 2015), but fewer include the 

developing human brain (Colantuoni et al., 2011; Jaffe et al., 2018; Kang et al., 2011; 

O’Brien et al., 2018; Walker et al., 2019). Therefore, developmentally regulated eQTLs are 

sparsely represented in the current catalog of human brain eQTLs, highlighting the need for 

additional resources. Such eQTL catalogs offer the potential to gain insight into the 

functional consequences of the hundreds of coding and noncoding genetic loci that have 

been associated with neuropsychiatric traits and disorders, including developmental delay, 

ASD, educational attainment, schizophrenia, major depressive disorder, and Alzheimer’s 

disease (Deciphering Developmental Disorders Study, 2017, Schizophrenia Working Group 

of the Psychiatric Genomics Consortium, 2014; Grove et al., 2019; Kosmicki et al., 2016; 

Lee et al., 2018; Sanders et al., 2015, 2017; Satterstrom et al., 2020).

To help fill this gap, we generated BrainVar, a unique resource of whole-genome sequencing 

(WGS) paired with bulk tissue RNA sequencing (RNA-seq) of 176 samples from the human 

dorsolateral prefrontal cortex (DLPFC) across development, from 6 post-conception weeks 

to young adulthood (20 years). We focused our analyses on the DLPFC because of its 

importance in higher-order cognition (Silbereis et al., 2016) and the observation that many 

risk genes for ASD and schizophrenia are co-expressed in the DLPFC during mid-fetal 

development (Gulsuner et al., 2013; Li et al., 2018; Network and Pathway Analysis 

Subgroup of the Psychiatric Genomics Consortium, 2015; Parikshak et al., 2013; Willsey et 

al., 2013). We present a systematic description of this resource, including demographics, 

gene expression across development, gene co-expression modules, and eQTLs. We describe 

interactions between these factors and comparisons with the BrainSpan dataset, cell-type-

specific genes, and loci associated with neuropsychiatric traits and disorders. Our analysis 

replicates the late-fetal transition observation, a dramatic shift in gene expression between 
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mid-fetal development and infancy (Li et al., 2018); refines the timing of this event; and 

delineates the degree to which each gene is involved. We also identify 252,629 cis-eQTLs 

affecting 8,421 genes and classify their effects as prenatal-predominant, postnatal-

predominant, or constant across brain development. Finally, we identify eQTLs that co-

localize with genome-wide association study (GWAS) loci, linking specific genes to 

neuropsychiatric phenotypes.

RESULTS

Description of the Cohort and Data Generation

To characterize gene expression across prenatal and postnatal development of the human 

DLPFC and to identify genetic variants associated with expression changes, post mortem 

tissue was obtained from 176 de-identified, clinically unremarkable donors (genotypic sex: 

104 male, 72 female) without known neuropsychiatric disorders or large-scale genomic 

abnormalities, ranging between 6 post-conception weeks and 20 years of age (Figure 1; 

Table S1). In keeping with prior analyses (Kang et al., 2011), we assign these samples to 12 

developmental periods, which we group into four developmental epochs (Figures 1 and 2). 

Gene expression data were generated using RNA-seq from tissue dissected from the DLPFC 

(corresponding mainly to Brodmann area 46) or from the frontal cerebral wall (donors 

younger than 10 post-conception weeks). WGS data (31.5× median coverage) were 

generated simultaneously from DNA isolated from the same individuals.

Data Processing

RNA-seq reads were aligned and converted to log base 2 counts per million (log2CPM) per 

gene (STAR Methods), with 23,782 genes meeting minimum expression criteria. We 

restricted further analysis to these 23,782 cortically expressed genes, of which 16,296 

(68.5%) encode proteins, whereas 7,486 (31.5%) are noncoding, including long noncoding 

RNA (lncRNA) (12.6% of total) and antisense (9.2% of total) genes (Table S2). For the 14 

samples also profiled in BrainSpan (Li et al., 2018), gene expression was highly correlated 

per sample and per gene (Figure S1). In both datasets, the first principal component of gene 

expression is strongly correlated with developmental age (Figures 2A and S1). All samples 

were genotypically concordant between the WGS and RNA-seq data (Regier et al., 2018). 

Ancestry correlated strongly between principal-component analysis clusters and self-report 

(STAR Methods).

Temporal Dynamics of Gene Expression

Prior analysis of the 40 brains in the BrainSpan cohort identified developmental age as the 

greatest source of between-sample variance in gene expression, especially during a “late-

fetal transition” between 22 post-conception weeks and 6 postnatal months (Kang et al., 

2011; Li et al., 2018). We replicate these findings in BrainVar. The first principal component 

explains 42% of the variance in gene expression and is highly correlated with developmental 

age (partial R2 = 0.88; Figures 2A and S2; similar results when excluding the 14 overlapping 

samples), with the greatest changes occurring in late fetal development and early infancy 

(Figure 2A).
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Using the increased resolution from the 176 brains in BrainVar, we show that the late-fetal 

transition begins around 19 post-conception weeks (start of period 6) and that the most 

dramatic changes are complete by 6 postnatal months (end of period 8); we label this 

transitional phase as epoch 2 (Figure 2A). Considering the nine samples younger than 10 

post-conception weeks (periods 1–2), we also observe an “early-fetal transition,” i.e., a 

coordinated shift in embryonic and early fetal development, which we label epoch 0 (Figure 

2A).

To identify the specific genes that change in the late-fetal transition, we performed a 

trajectory analysis on the 167 samples in epochs 1–3; we excluded epoch 0 because of the 

sparse sampling before and during the early-fetal transition. Remarkably, over half of the 

genes expressed in the cortex exhibit a persistent, progressive, and statistically significant 

expression variance across this late-fetal transition (Figure 2B). We identified three distinct 

trajectories, with 6,934 “rising” genes (higher postnatal expression), 5,143 “falling” genes 

(higher prenatal expression), and 11,705 “non-transitional” genes (no statistically significant 

change). Considering more than three trajectories further split gene sets by variance rather 

than developmental profile (STAR Methods). Similar trajectories are observed for these 

three gene lists in the BrainSpan DLPFC data (Figure S2). Emphasizing the magnitude of 

this transition, the first principal component of the 11,705 non-transitional genes explains 

only 18.4% of the variance in gene expression and is weakly correlated with developmental 

age (partial R2 = 0.3; Figure S2).

The magnitude of the changes in individual genes’ expression levels across late-fetal 

transition can be estimated by calculating the difference in log2CPM expression between 

epoch 3 and epoch 1, ranging from 12.1 (OPALIN, a component of myelin) to −9.2 

(IGF2BP1, an IGF2 binding protein); for context, the median epoch 3-to-epoch 1 changes in 

log2CPM values were 2.1, 0.1, and −1.1 for rising, non-transitional, and falling, respectively. 

The majority of changes in gene expression reflected relative amplification or attenuation of 

expression levels rather than binary presence/absence of expression, with only 621 rising 

genes and 95 falling genes specific to epoch 3 or 1 (defined as log2CPM ≤ −5 in the other 

epoch; Figure 2C; Table S2).

Characteristics of Transitional and Non-transitional Genes

Compared with rising and non-transitional genes, falling genes had the highest median 

expression in epoch 1 (p < 2 × 10−16) and epoch 3 (p < 2 × 10−16, Wilcoxon rank-sum test 

[WRST]; Figure 2C) and the highest fraction of protein-coding genes (p < 2 × 10−16, 

Fisher’s exact test [FET]; Figure 2D) and were highly enriched for genes with high 

probability loss-of-function intolerant (pLI) scores (p = 5 × 10−11, WRST; Figure 2E). High 

pLI scores reflect detection of fewer protein-truncating variants than expected (Lek et al., 

2016), suggesting that loss-of-function mutations in the gene are disfavored by natural 

selection (i.e., the gene is haploinsufficient). Rising genes had a similar proportion of 

protein-coding genes as falling genes (p = 0.94, FET; Figure 2D) but were depleted for 

genes with high pLI scores (p = 1 × 10−7, WRST; Figure 2E). If the timing of a gene’s 

highest expression corresponds to the timing of its most critical functions, then the pLI 
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difference between falling and rising genes suggests that prenatal development is especially 

sensitive to haploinsufficiency.

Compared with RNA-seq data from 53 adult tissues (GTEx Consortium, 2015), falling genes 

were only enriched in non-cortical tissues (driven by genes related to RNA transcription and 

cell division; Table S2), whereas rising genes were enriched for many brain regions, 

including the adult cortex and excluding cerebellum (Figure 2F), highlighting the 

distinctions between the fetal and adult cortex. Non-transitional genes had the lowest 

proportion of protein-coding genes and were expressed ubiquitously across adult tissues 

(Figure 2).

Cell Type Dynamics across Development

To capture the contribution of changing cell type proportions to gene expression profiles, we 

assessed expression trajectories of genes specific to each of ten cortical cell types from 

prenatal (Nowakowski et al., 2017) and postnatal human brain (Li et al., 2018; Velmeshev et 

al., 2019). The estimated profiles of all ten cell types vary dramatically across epoch 2, with 

radial glia/neural progenitor cells and fetal neurons decreasing as mature neurons and other 

glial cells increase (Figures 2G and 2H); this pattern is replicated in BrainSpan DLPFC 

samples (Figure S2). These analyses support the hypothesis that varying cell type 

proportions are major contributors to the late-fetal transition in the DLPFC (Li et al., 2018), 

but distinguishing cellular composition effects from differential expression within a cell type 

will require single-cell data from across this age range.

Co-expression Modules in the Developing Human Cortex

Tofurthercharacterizetherelationshipsbetweenthe23,782cortically expressed genes, we 

applied a weighted gene co-expression network analysis (WGCNA) (Langfelder and 

Horvath, 2008) to define 19 consensus modules that included 10,459 genes (Figures 3A and 

S3; Table S3). As expected, genes within each module shared functional roles (Figure 3B), 

temporal trajectories of geneexpression(Figures3C and3D),regulatory transcriptionfactors 

(Figure S3), and cell type enrichment (Figures 3E and 3F). Module preservation analysis 

using BrainSpan data (Li et al., 2018) identified similar co-expression patterns across brain 

regions, especially independent DLPFC samples (Figure 3G).

Similar to transitional genes (Figure 2), multidimensional scaling of the module eigengenes 

demonstrated that developmental age accounted for 44.7% and 36.1% of the variance in the 

first two dimensions. Considering the position of the 19 modules along these two 

dimensions and the developmental trajectories of the genes in each module, we identified 

five groups of related modules (Figures 3A and 3B). Group 1 modules (M1 black, M2 royal 

blue, M3 green-yellow, and M4 yellow) are enriched for falling genes, whereas group 5 

modules (M16 blue, M17 silver, M18 light cyan, and M19 turquoise) are enriched for rising 

genes (Figure 3D). The remaining three groups (2, 3, and 4) are enriched for non-transitional 

genes (Figure 3D).

Five modules are of particular note. The M2 royal blue module (group 1) captures cell cycle 

ontology and is enriched in neuroprogenitor cells, radial glia, and intermediate progenitor 

cells. The M4 yellow module (group 1) is enriched for numerous ontology terms related to 
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neuronal development, contains genes specific to neuronal stem cells (e.g., NCAM1/ncam 
and PROM1/cd133), and is highly enriched for genes related to maturing excitatory and 

inhibitory neurons. The M8 red module (group 3) is enriched for ontology terms relating to 

cell fate and morphogenesis, is highly enriched for noncoding genes, and has an expression 

peak in early fetal development, capturing many genes that are involved in early-fetal 

transition (Figure 2A). Several genes associated with regional patterning in non-cortical 

tissues, including the hindbrain (e.g., UNCX and CCDC140) and hypothalamus (e.g., 

DMBX1 and SOX14), are expressed at high levels in this module. The M18 light cyan and 

M19 turquoise modules (group 5) are strongly enriched in glial and other nonneuronal cell 

clusters; accordingly, both modules are enriched for ontology terms related to immune 

responses. The M19 turquoise module is also enriched in excitatory neurons in the postnatal 

cortex and ontology terms relating to synaptic signaling and neurotransmitter transport.

Intersection of Developmental Expression with Human Traits and Disorders

We next considered the intersection between genes associated with developmental 

trajectories, modules, or cell types and genes associated with ten human traits and disorders. 

For ASD and developmental delay with and without seizures, we used gene lists derived 

from exome association studies of rare and de novo variants (Deciphering Developmental 

Disorders Study, 2017; Heyne et al., 2018; Satterstrom et al., 2020). For educational 

attainment, attention deficit hyperactivity disorder (ADHD), schizophrenia, major depressive 

disorder, multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease, we used genes 

within 10 kb of the lead SNP detected in GWASs (Chang et al., 2017; Demontis et al., 2019; 

Beecham et al., 2013; Lambert et al., 2013; Lee et al., 2018; Schizophrenia Working Group 

of the Psychiatric Genomics Consortium, 2014; Wray et al., 2018). For our analyses, we 

excluded genes within the major histocompatibility complex on chromosome 6 because of 

the complicated nature of this region (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014).

Developmental delay, ASD, and educational attainment genes were enriched for falling 

genes (p = 8.5 × 10−6, p = 5.1 × 10−3, and p = 2.4 × 10−4 respectively; FET adjusted for 30 

comparisons), consistent with a prenatal origin for aspects of their neurobiology. A non-

significant trend toward enrichment for rising genes was observed for Parkinson’s disease 

and Alzheimer’s disease (Figure 4A; Table S4). The M4 yellow module was enriched for 

ASD and educational attainment genes, including NRXN1, TCF4, and BCL11A (Figure 4B; 

Table S4), and the M9 brown module (enriched for chromatin organization Gene Ontology 

terms and non-transitional genes; Figure 3) was enriched for genes associated with 

developmental delay and educational attainment, including CDK13, PACS1, and EP300 
(Figure 4B; Table S4).

Across the ten CNS traits and disorders, five cell type clusters (C) (Li et al., 2018; 

Nowakowski et al., 2017) showed significant enrichment in fetal brain (Figure 4C; Table S4) 

and none in adult brain (Figure S4; Table S4). ASD genes were enriched for C18 excitatory 

newborn neurons and C1 striatal interneurons (Figure 4C), in keeping with a role of 

excitatory and inhibitory lineages (Satterstrom et al., 2020). Both lineages were also 

enriched in educational attainment, specifically C3 early excitatory neurons and C6 medial 
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ganglionic eminence (MGE)-derived interneurons, whereas genes associated with 

developmental delay with seizures were enriched in C15 caudal ganglionic eminence 

(CGE)-derived interneurons (Figure 4C). We observed a nominally significant trend toward 

enrichment of C19 microglia genes in multiple sclerosis and Alzheimer’s disease.

Common Genetic Variants Regulating Gene Expression

We identified 6,573,196 high-quality SNPs and insertions or deletions (indels) from the 

WGS data using methods described previously (Werling et al., 2018), with an allele 

frequency of at least 5% in our prenatal (periods 1–6, n = 112) and postnatal (periods 8–12, 

n = 60) samples (Figure 1). To identify eQTLs within 1 Mb of a gene (eGene), we used 

linear regression for adjusted expression level (STAR Methods), with developmental period, 

sex, and the first five principal components for ancestry as covariates. Results were corrected 

for multiple comparisons using Benjamini-Hochberg (false discovery rate [FDR] ≤ 0.05). To 

distinguish temporal-predominant eQTLs, we performed three cis-eQTL analyses: all 176 

samples (complete sample, 216,026 eQTLs of 5,728 eGenes), 112 prenatal samples (periods 

1–6, 154,440 eQTLs of 4,378 eGenes), and 60 postnatal samples (periods 8–12, 51,528 

eQTLs of 2,199 eGenes). These discovery rates are in line with similarly sized cohorts 

(Figure S5). The union of these three analyses identified 252,629 eQTLs of 8,421 eGenes 

(Table S5). As expected, the eQTLs are enriched for markers of active transcription derived 

from the human brain (Figure S5; Li et al., 2018; Reilly et al., 2015; Kundaje et al., 2015). 

We find that eQTL effect size and direction are correlated with prenatal whole brain 

(O’Brien et al., 2018) (Pearson’s r = 0.73, p ≤ 1 × 10−16; Figure 5A) and postnatal (adult) 

frontal cortex (Aguet et al., 2017) (Pearson’s r = 0.73, p ≤ 1 × 10−16; Figure 5A) from 

independent datasets.

Temporal Predominance of eQTLs

We leveraged the consistently processed prenatal and postnatal data in BrainVar to identify 

eQTLs with differing effect sizes across development (Figure 5B; STAR Methods). The 

majority of eQTLs were constant, reaching nominal significance in all three analyses with 

the same direction of effect (161,923 eQTLs, 64.1% of the total). Many eQTLs were 

prenatal-predominant, with significantly greater prenatal than postnatal effect sizes (24,760 

eQTLs, 9.8%). Fewer eQTLs were postnatal-predominant, with significantly greater 

postnatal than prenatal effect sizes (9,352 eQTLs, 3.7%). The remaining 56,593 eQTLs 

(22.4%) showed a trend toward stronger prenatal effects (19.8%) or postnatal effects (2.6%). 

With larger sample sizes, we would expect a greater fraction of constant eQTLs to show 

some degree of temporal specificity, especially postnatal. Although the magnitude of effect 

varied across development for many eQTLs, we did not observe a single eQTL with 

opposing prenatal and postnatal directions of effect.

Temporal Predominance of eGenes

Most eGenes have more than one eQTL (5,538 of the 8,421, 65.8%). Defining the top eQTL 

per eGene as that with the lowest FDR-significant p value in any of the three sample sets 

(Table S5), we identified 2,977 (35.4% of total) constant eGenes, 1,691 (20.1%) prenatal-

predominant eGenes, and 1,145 (13.6%) postnatal-predominant eGenes (Figure 5B). The 

remaining 2,608 eGenes (31.0%) trend toward prenatal (25.1%) or postnatal (5.9%) effects. 
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Because of linkage disequilibrium (LD), cis-eQTLs for an eGene are likely to have a similar 

direction and magnitude of effect; accordingly, the temporal category of the top eQTL 

matched the majority of eQTLs for 88.2% of all eGenes (7,425 eGenes; Figure S5).

To validate the prenatal- and postnatal-predominant eQTLs, we evaluated their performance 

in independent datasets. In prenatal whole brain (O’Brien et al., 2018), we observed stronger 

correlation for the effects of prenatal-predominant (r = 0.54, p = 3.9 × 10−22) than postnatal-

predominant eGenes (r = 0.36, p = 1.1 × 10−3; Figure 5C). In contrast, in postnatal frontal 

cortex (Aguet et al., 2017), stronger correlations were observed for the effects of postnatal-

predominant (r = 0.60, p = 4.0 × 10−24) than prenatal-predominant eGenes (r = 0.37, p = 1.1 

× 10−6;Figure 5C).

Characteristics of Genes Influenced by eQTLs

The top eQTL for constant eGenes is closer to the transcription start site than that for 

temporal-predominant eGenes (median: 92,223 bp versus 403,702 bp, p ≤ 2 × 10−16, two-

sided WRST; Figure 5D). However, −log10(P) values increased with proximity to the 

transcription start site for constant and temporal-predominant eQTLs (for both sets, p ≤ 2 × 

10−16, linear regression), as did eQTL effect size to a small degree (constant p = 1.0 × 10−12, 

temporal-predominant p = 0.03, linear regression). Compared with constant eGenes, 

temporal-predominant eGenes also included a higher proportion of protein-coding genes 

(odds ratio [OR] = 1.56, 95% confidence interval [CI]: 1.40–1.74), p = 3.7 × 10−16, two-

sided FET; Figure 5E), genes with high pLI scores (pLI ≥ 0.995; OR = 1.45 [95% CI: 1.12– 

1.90], p = 0.004, two-sided FET; Figure 5F), and greater connectivity in protein-protein 

interaction (PPI) networks (median Z score 1.45 versus 0.91, p ≤ 2 × 10−16, two-sided 

WRST;Figure 5H).

Given the dynamic expression profiles over development (Figure 2), we expected prenatal-

predominant eGenes to be enriched for falling genes and postnatal-predominant eGenes to 

be enriched for rising genes. We did not observe these effects (Figure 5I). Instead, the 

prenatal-predominant eGenes are enriched for rising genes (OR = 1.5 [95% CI: 1.3–1.6], p = 

1.1 × 10−10, two-sided FET; for example, Figure 5J), and pre- and postnatal-predominant 

eGenes are depleted for falling genes (prenatal OR = 0.79 [95% CI: 0.69–0.9], p = 4.2 × 

10−4; postnatal OR = 0.85 [0.73–0.997], p = 0.04; two-sided FET). Instead, we observed 

coordination between the timing of eQTLs’ strongest effects and the timing of eGenes’ 

greatest expression variation between samples (STAR Methods). Prenatal-predominant 

eGenes are strongly enriched for genes with greater prenatal variance (OR = 2.3, p = 4.0 × 

10−52, two-sided FET) and depleted for genes with greater postnatal variance (OR = 0.36, p 

= 1.6 × 10−15, two-sided FET). Postnatal-predominant eGenes show a complementary but 

weaker pattern of enrichment for genes with greater postnatal variance (OR = 1.1, p = 0.25, 

two-sided FET) and depletion of genes with greater prenatal variance (OR = 0.76, p = 7.0 × 

10−5, two-sided FET). Considering the role of selective pressure, we observed that genes 

with higher pLI scores also had lower eQTL effect sizes (p = 4.0 × 10−36; two-sided WRST; 

Figure 5J) as well as lower expression variance between samples (Figure 5K).
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eQTLs in Human Traits and Disorders

The differences in constant and temporal-predominant eGenes led us to consider how genes 

associated with neuropsychiatric traits and disorders (Figure 4) fit into this classification. 

Gene sets associated with traits by GWAS loci or exome sequence association followed the 

patterns of temporal-predominant eGenes but to a greater extent, with a higher proportion of 

protein-coding genes (Figure 5E), higher pLI scores (Figure 5F), and stronger clustering 

within PPI networks (Figure 5H).

At the variant level, we expect GWAS loci to be enriched for eQTLs in relevant tissues 

(Fromer et al., 2016; Nicolae et al., 2010). Using a permutation-based method accounting 

for LD structure, minor allele frequency (MAF), and gene density (STAR Methods), we 

tested four of the larger GWASs and observed eQTL enrichment for educational attainment, 

schizophrenia, and multiple sclerosis but not Alzheimer’s disease (Figure S6; Table S6). We 

did not see evidence of the reverse hypothesis that eGenes are enriched for GWAS signals 

(Figure S6). Using a colocalization analysis, we looked for overlap between specific eQTL 

loci with educational attainment and schizophrenia GWAS loci using a posterior probability 

of colocalization threshold of 0.8. In the schizophrenia GWAS, 13 of 108 loci (12.0%) 

showed evidence of colocalization, including two prenatal-predominant and two postnatal-

predominant eQTLs (Table S6). A lower proportion of educational attainment loci showed 

evidence of colocalization (4.1%, 52 of 1,271), including 14 prenatal-predominant and two 

postnatal-predominant eQTLs (Table S6). Focusing on multigenic loci with the strongest 

evidence of colocalization, we implicate specific genes and expression changes as the likely 

mechanism underlying the GWAS loci. SNPs associated with educational attainment at a 

chromosome 14 locus (Figure 6A) colocalized only with eQTLs for the lncRNA 

LOC101926933 (also called RP11–298I3.1, AL132780.1, or ENSG00000257285; Figure 

6B). Across the locus, the p values for the GWAS SNPs and LOC101926933 eQTLs are 

highly correlated, resulting in a posterior probability for colocalization of 0.92 (Figure 6C); 

for this locus, eQTL effect size is similar across development (Figure 6D). We also observe 

colocalization of prenatal-predominant eQTLs with educational attainment or schizophrenia 

GWAS loci. For example, SNPs contributing to an educational attainment GWAS locus on 

chromosome 12 (Figure 6E) overlap specifically with eQTLs for the protein-coding gene 

RHEBL1, which encodes a brain-enriched G-protein activator of the mTOR pathway (Figure 

6F). GWAS and RHEBL1 eQTL prenatal p values are highly correlated and result in a 

posterior probability for colocalization of 0.97 (Figure 6G). We see a significantly greater 

eQTL effect size in prenatal compared with postnatal samples (p = 0.003; Figure 6H), with 

higher RHEBL1 expression associated with increased educational attainment.

DISCUSSION

In this manuscript, we describe BrainVar, a unique resource of paired genome (WGS) and 

transcriptome (bulk tissue RNAseq) data derived from 176 human DLPFC samples across 

prenatal and postnatal development (Figure 1). We identify 23,782 genes expressed during 

human cortical development, gene lists relating to developmental trajectories and co-

expression, and common variants that alter gene expression (eQTLs). Our analyses show 

how these datasets relate to each other and to gene expression in cell types derived from 

Werling et al. Page 12

Cell Rep. Author manuscript; available in PMC 2020 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



single-cell RNA-seq data and to CNS traits and disorders derived from genomic analyses 

(exome sequencing and GWAS). In addition to developing a resource with utility for future 

studies of human development, neurobiology, and neuropsychiatric disorders, we also 

describe key biological insights, including the nature of the late-fetal transition in gene 

expression (Figures 2 and 3), an early-fetal transition (Figures 2 and 3), developmental 

processes and cell types implicated in CNS traits and disorders (Figure 4), eQTLs split by 

effect size across development (Figure 5), differing characteristics of genes with constant 

versus temporal-predominant eQTLs (Figure 5), and the application of this dataset to 

implicate specific genes at GWAS loci (Figure 6).

Principal component analysis identifies developmental age as the most important factor 

underlying the variance in gene expression in this dataset. The majority of this temporal 

variance occurs in two transitional phases (Figure 2), the early-fetal and late-fetal transitions. 

The early-fetal transition is a coordinated decrease in expression of multiple genes in early 

development (epoch 0; periods 1–2; 6–10 post-conception weeks) that coincides with the 

establishment of regional identity across the brain. Concordant with a possible role of the 

early-fetal transition in this process, the expression of several genes associated with non-

cortical tissues (e.g., UNCX and DMBX1) is decreased during this period. In addition, we 

found that the early-fetal transition is captured in the M8 red module (Figure 3), which is 

enriched for lncRNA transcripts and Gene Ontology terms related to morphogenesis and cell 

fate.

The late-fetal transition between mid-fetal development and infancy involves over 12,000 

genes with similar numbers rising and falling (Figure 2). Prior reports of humans (Li et al., 

2018) and primates (Zhu et al., 2018) associated this transition with a reduction in intra- and 

inter-regional variation evident at the levels of bulk tissue and individual cell types. Our data 

similarly suggest that this transition represents a combination of changes in the relative 

proportions of various cell types and biological processes within these cells (Figures 2 and 

3). Critically, the larger BrainVar sample set allowed us to define 19 post-conception weeks 

as the inflection point at which the late-fetal transition begins (Figure 2), further 

distinguishing the late-fetal transition from previously reported organotypic changes 

(Domazet-Loso and Tautz, 2010; Kalinka et al., 2010; Li et al., 2018).

Although previous analyses have identified eQTLs in human brain tissue postnatally 

(Fromer et al., 2016; GTEx Consortium, 2015) and prenatally (Jaffe et al., 2018; O’Brien et 

al., 2018; Walker et al., 2019), no prior study has assessed the effect of genomic variation on 

gene expression across the whole of brain development, from embryogenesis through fetal 

development, infancy, childhood, and adolescence and into young adulthood. Consequently, 

we were able to identify temporal-predominant eQTLs that have a greater effect on 

expression prenatally or postnatally (Figure 5B). The eQTLs identified here were highly 

correlated with prior eQTL catalogs (Aguet et al., 2017; O’Brien et al., 2018) despite 

differing cohorts, methods, and analysis (Figures 5A and 5B). Furthermore, comparison with 

these independent catalogs support our temporal categorization of eQTLs, with prenatal-

predominant eQTL effects more correlated in prenatal whole-brain and postnatal-

predominant eQTL effects more correlated in the postnatal frontal cortex (Figure 5C).
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Across multiple metrics, we observe dramatic differences between eGenes with constant and 

temporal-predominant eQTLs (Figures 5D–5G). Compared with other genes expressed in 

the cortex, genes affected by constant eQTLs are more likely to be noncoding and have low 

pLI scores and few protein-protein interactions. In contrast, genes regulated by eQTLs with 

a degree of temporal specificity are similar to genes for which we did not detect eQTLs. 

Critically, we find that pLI score, a measure of sensitivity to variation in genetic sequence, 

and eQTL effect size are inversely related (Figure 5J). Furthermore, prenatal-predominant 

eGenes are more common among rising genes, which have their highest expression during 

postnatal time. These observations suggest that developmental and evolutionary constraints 

limit the population frequency or effect of eQTLs on key developmental processes, a 

hypothesis that might be testable in future studies as additional information concerning 

spatiotemporal and cell type specificity of enhancers and eQTLs becomes available for a 

variety of tissues. Under this model, constant eQTLs with high effect sizes tend to influence 

genes that tolerate variation in expression (e.g., non-rate-limiting metabolic steps) or are 

non-critical to brain function, whereas temporal-predominant eQTLs tend to influence genes 

with critical roles that are sensitive to variation in genetic sequence but only to a small 

degree or at a stage in development when variation in expression of the gene is tolerated.

The eQTLs identified here also provide insights into CNS traits and disorders, with co-

localization in 13 of 108 GWAS loci for schizophrenia and 52 of 1,271 GWAS loci for 

educational attainment, including the lncRNA LOC101926933 and the protein-coding gene 

RHEBL1 (Figure 6). LOC101926933 remains largely uncharacterized, whereas RHEBL1 
(Ras homolog enriched in brain-like 1) is a highly conserved G-protein that activates mTOR 

(Bonneau and Parmar, 2012), a pathway that has been implicated previously in 

neurodevelopmental and neurodegenerative disorders (Lipton and Sahin, 2014). Our results 

suggest that higher expression of RHEBL1, which may lead to greater mTOR activation, is 

associated with increased educational attainment. Of note, RHEBL1 has a pLI score of 0, 

suggesting that loss of one allele does not lead to a selective disadvantage. Higher-resolution 

datasets across development, including single cells, additional brain regions, and larger 

sample sizes, along with complementary analyses of brains of individuals with 

neuropsychiatric disorders and rare genetic disorders, are likely to provide additional 

insights. The combination of genomic and transcriptomic data across development allows us 

to interrogate human cortical development from a molecular perspective at a higher 

resolution than before. Understanding patterns of temporal and cell type specificity, along 

with eQTL colocalization to resolve GWAS loci, has already provided insights into the 

pathology underlying neuropsychiatric disorders. Further delineation of these patterns is 

likely to be critical for a detailed understanding of etiology as a foundation for therapeutic 

development.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by Stephan Sanders (stephan.sanders@ucsf.edu).

This study did not generate new unique reagents.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study was conducted using postmortem human brain specimens from tissue collections 

at the Department of Neuroscience at Yale University School of Medicine. Additional 

specimens were procured from the Birth Defects Research Laboratory at the University of 

Washington, Advanced Bioscience Resources Inc., Human Brain Collection Core (HBCC), 

the Brain and Tissue Bank at the University of Maryland, the MRC-Wellcome Trust Human 

Developmental Biology Resource at the Institute of Human Genetics, University of 

Newcastle, UK, and the Human Fetal Tissue Repository at the Albert Einstein College of 

Medicine (AECOM). Tissue was collected after obtaining parental or next of kin consent 

and with approval by the institutional review boards at the Yale University School of 

Medicine, the National Institutes of Health, and at each institution from which tissue 

specimens were obtained. Tissue was handled in accordance with ethical guidelines and 

regulations for the research use of human brain tissue set forth by the NIH (https://

oir.nih.gov/sites/default/files/uploads/sourcebook/documents/ethical_conduct/guidelines-

biospecimen.pdf and the WMA Declaration of Helsinki (https://www.wma.net/policies-post/

wma-declaration-of-helsinki-ethical-principles-for-medical-researchinvolving-human-

subjects/).

All available non-identifying information was recorded for each specimen in Table S1. In 

total, 176 postmortem brain specimens (104 male, 72 female; postmortem interval of 21.7 ± 

15.9 (mean ± SD) hours and pH, 6.41 ± 0.35) ranging in age from 6 post-conception weeks 

to 20 postnatal years (Figure 1; Table S1) were included in this study. Fetal age was 

extrapolated based on the date of the mother’s last menstruation, characteristics of the fetus 

noted upon ultrasonography scanning, foot length of the fetus, and visual inspection. The 

postmortem interval (PMI) was defined as hours between time of death and time when tissue 

samples were frozen.

METHOD DETAILS

Tissue dissection—Tissue was dissected as described previously (Kang et al., 2011). 

Samples collected from 6 – 9 post-conception weeks specimens contained the entire 

thickness of the cerebral wall. Samples collected from 12 to 22 post-conception weeks 

specimens contained the cortical plate. Samples from 35 post-conception weeks to 20 

postnatal years were dissected such that the entire gray matter (layer 1–6) and part of the 

underlying subplate (4 – 12 postnatal months) or white matter (1 – 20 postnatal years) were 

collected.

RNA extraction and quality assessment—Total RNA was extracted using mirVana kit 

(Ambion) with some modificationsto the manufacturer’s protocol, as described below. Each 

tissue sample was pulverized with liquid nitrogen in a prechilled mortar and pestle and 

transferred to a chilled safe-lock microcentrifuge tube (Eppendorf). Per tissue mass, equal 

mass of chilled stainless-steel beads (Next Advance, catalog # SSB14B) along with one 

volume of lysis/binding buffer were added. Tissue was homogenized for 1 min in Bullet 

Blender (Next Advance) and incubated at 37°C for 1 min. Another nine volumes of the lysis/

binding buffer were added, homogenized for 1 min, and incubated at 37°C for 2 min. One-

tenth volume of miRNA Homogenate Additive was added, and extraction was carried out 
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according to the manufacturer’s protocol. RNA was treated with DNase using TURBO 

DNA-free Kit (Ambion/Life Technologies) and RNA integrity was measured using Agilent 

2200 TapeStation System.

RNA-seq library preparation and sequencing—Barcoded libraries for RNA-seq were 

prepared with 5ng of RNA using TruSeq Stranded Total RNA HT Sample Prep Kit with 

Ribo-Zero Gold kit (Illumina) per manufacturer’s protocol. Paired-end sequencing (100 bp × 

2) was performed on HiSeq 4000 sequencers (Illumina) at Yale Center for Genome 

Analysis.

DNA extraction—Genomic DNA was isolated using the QIAamp DNA Mini Kit 

(QIAGEN). In detail, approximately 25 mg of brain tissue was transferred to a chilled safe-

lock microcentrifuge tube (Eppendorf) and equal mass of chilled stainless-steel beads (Next 

Advance, catalog # SSB14B) along with 90 μl of buffer ATL were added. Tissue was 

homogenized for 1 min in Bullet Blender (Next Advance) and incubated at 37°C for 1 min. 

Another 90 ul of buffer ATL was added and blended for an additional minute. After 

incubation on ice for 5 min, tubes were gently centrifuged to collect beads at the bottom. 

Supernatant was transferred to a new tube and 20 μl of Proteinase K was added. Sample was 

incubated at 56°C for 3 hours in a shaking heat block. After incubation, genomic DNA was 

further purified following the manufacturer’s protocol. DNA was eluted in nuclease free 

water and concentration was estimated by nanodrop.

Whole-genome sequencing—DNA library preparation and sequencing were carried out 

at GENEWIZ (New Jersey). Before library preparation, the concentration of the DNA was 

measured using a fluorescent assay and DNA quality was assessed by visualization on 

agarose gels. PCR-free DNA library preparation was performed and resulting libraries were 

sequenced at 2×150 bp to achieve mean coverage of 30x (Table S1).

QUANTIFICATION AND STATISTICAL ANALYSIS

WGS variant calling—Using the pipeline from the Centers for the Common Disease 

Genomics project (Regier et al., 2018), FASTQ reads were aligned to the GRCh38 reference 

from the 1000 Genomes Project using BWA-MEM version 0.7.15 (Li and Durbin, 2009). 

Reads were sorted and duplicates were removed with Picard, version 2.17.5 (https://

github.com/broadinstitute/picard/); base quality score recalibration was then performed with 

the Genome Analysis Toolkit (GATK), v3.8–0-ge9d806836 (McKenna et al., 2010). Variant 

calling and joint genotyping were done with the Haplotyper and Genotyper tools from 

Sentieon v201711.01, a toolkit containing modules that are mathematically equivalent to 

their counterparts in the GATK (Freed et al., 2017). SNP and indel recalibration were 

performed on the joint genotyped VCF file. Variant Quality Score Recalibration (VQSR) 

metrics were created from a training set of highly validated variant resources: dbSNP build 

138, HapMap 3.3, 1000 Genomes OMNI 2.5, and 1000 Genomes Phase 1. For the following 

analyses, we excluded: variant calls with any VQSR tranches (keeping “PASS” only), 

variants located in low-complexity regions (Li, 2014), variants located on non-canonical 

chromosomes (decoy chromosomes or contigs), indels > 50 bp, single nucleotide variants 

(SNVs) with allele balance > 0.78 or < 0.22 (indels > 0.8 or < 0.2), variants with < 90% call 
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rate, and variants and genotypes that did not meet high quality thresholds as identified in an 

ROC-based optimization procedure using family-based WGS data (Werling et al., 2018).

Variants with a minor allele frequency of ≥ 5% in both the prenatal (periods 1–6; N = 112) 

and postnatal (periods 8–12; N = 60) samples and Hardy Weinberg equilibrium p value ≥ 

1×10−12, were included in downstream expression quantitative trait locus (eQTL) analysis 

(N = 6,573,196 variants). For annotation and subsequent analyses, we converted the final 

VCF into Variant Dataset Format using Hail version 0.1. SNPs and insertions/deletions (up 

to 50bp) annotation based on the GENCODE comprehensive version 21 (Harrow et al., 

2012) using Ensemble VEP version 90 (McLaren et al., 2016).

RNA-seq alignment and gene-level read count quantification—RNA-seq reads 

were aligned to the human genome (hg38/GRCh38) using STAR aligner (Dobin et al., 2013) 

and gene-level read counts were calculated using HTSeq (Anders et al., 2015) based on 

GENCODE v21 annotation (Harrow et al., 2012).

Read counts per gene were then converted to counts per million (CPM), which were 

logarithmically scaled to base 2 (log2CPM). Of the 60,155 genes assessed, 23,782 were 

defined as being cortically expressed, based on CPM ≥ 1 in at least 50% of samples of either 

sex in at least one of the 12 developmental periods (Table S2). For these 23,782 genes, the 

median log2CPM ranged from −5.9 to 12.3, with a median of 2.3.

RNA-seq normalization and technical artifact correction—The read count data 

matrix of 176 samples by 60,155 genes (Table S2) was normalized as follows:

• Step 1: Read count data matrix converted to counts per million (CPM).

• Step 2: Genes with CPM ≥ 1 CPM in at least 50% of the samples in any one sex 

in any one period were included; 23,782 genes passed these criteria.

• Step 3: CPM values were transformed to log2(CPM) using the voom function in 

the limma R package (Law et al., 2014; Ritchie et al., 2015).

• Step 4A: In order to correct for the technical artifacts, we performed hidden 

covariate analysis on the residuals of the expression matrix after developmental 

period and sex were subtracted from the log2(CPM) data matrix using the hidden 

covariate analysis method (HCP) (Mostafavi et al., 2013).

• Step 4B: In parallel, we performed surrogate variable analysis (SVA) on 

residuals of the expression matrix after developmental period and sex were 

subtracted from the log2(CPM) data matrix using the SVA R package (Leek et 

al., 2012).

• Step 5: In each of Step 4A and 4B, we subtracted contributions from 20 hidden 

covariates (HCP) and 2 surrogate variables (SVA) from the log2(CPM) data 

matrix.

Unadjusted log2CPM gene expression data for 176 samples by 23,782 genes was used for 

expression trajectory (Figure 2) and WGCNA analyses (Figure 3), while the adjusted (HCP/

SVA) values were used for eQTL analysis.
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DATA QUALITY AND SAMPLE IDENTITY ASSESSMENT

To confirm that the WGS and RNA-seq data from each sample were of sufficient quality for 

downstream analysis and corresponded to the same individual, a series of quality metrics 

and checks were performed (Table S1).

For the WGS data, coverage metrics were assessed using PicardTools (v2.18.1). Mean 

coverage per sample ranged from 22.7–65.4x, with a cohort median of 31.5x. Across all 

samples, 92.1%–93.6% of the mapped genome was covered at 10x or greater (mean of 

92.8%). The FREEMIX metric from VerifyBamId (v1.1.3; Jun et al., 2012) was used to 

identify samples with potential contamination, with a maximum observed FREEMIX score 

of 0.064, suggesting no contamination (Lek et al., 2016).

Sample identity was verified by comparing sex and genotype between the WGS and RNA-

seq data. In the WGS data, sex was determined from chromosome X heterozygosity using 

Peddy (v0.3.2; (Pedersen and Quinlan, 2017)), with the Peddy hg19.sites converted to 

GRCh38 using the UCSC Genome Browser LiftOver utility. High-quality variants with an 

allele frequency ≥ 1% were exported from the VCF using Hail for input into Peddy. In the 

RNA-seq data, sex was determined from the expression levels of XIST and the 18 most 

highly expressed genes on chromosome Y: KDM5D, DDX3Y, ZFY, TBL1Y, PCDH11Y, 
PRKY, USP9Y, RPS4Y1, TXLNGY, NLGN4Y, TTTY14, UTY, EIF1AY, GYG2P1, 
TTTY10, TTTY15, KALP. Based on gene-specific expression thresholds determined by 

visual inspection of bi-modal expression histograms, each sample’s sex was predicted 

according to the expression level of all 19 genes. Sex was consistent in the WGS and RNA-

seq data for all 176 samples and matched the recorded sex in 132 out of 134 samples with 

such data (55/56 females, 77/78 males).

To confirm identity by genotype, we compared the genotypes from 289 common, coding 

SNPs with high fixation index (FST) (Sanders et al., 2015), called from both the WGS and 

RNA-seq data. Genotypes were callable in both data types for 118–206 SNPs per sample 

(40.8%–71.3% of 289 SNPs; median = 177, 61.2%). SNP variant genotypes were highly 

concordant between the WGS and RNA-seq data (median 87.4% concordance between 

WGS and RNA-seq for the corresponding sample; lowest concordance 73%), with 

corresponding samples showing higher concordance than comparisons between all 

discordant samples. There was no evidence of duplicate or closely related samples (SNP-

based relatedness coefficients from Peddy: −0.000332 to 0.1481).

To confirm the approximate accuracy of samples’ reported age, the expression level of the 

doublecortin gene (DCX) was examined. DCX is involved in neuron migration, and is 

expressed most strongly during prenatal development, with distinctly decreased postnatal 

expression. All 176 samples showed the expected DCX expression levels given samples’ 

reported age. Similar results across all expressed genes were obtained using principal 

component analysis (below).

Ancestry estimation—Ancestry was estimated using principal component analysis of 

common SNPs and indels in the WGS data, run alongside 3,804 additional individuals of 

known ancestry with WGS data (parents from the Simons Simplex Collection; An et al., 
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2018). From 10,688,106 SNPs and indels with allele frequency ≥ 5% in either this dataset, 

one of the three batches of Simons Simplex Collection data, or GnomAD genomes, variants 

were pruned for independence with linkage disequilibrium r2 < 0.1 and then randomly 

downsampled to 118,849 variants. Principal component analysis was run using Hail 0.1. The 

first two principal components were used to classify samples by ancestry, and the first five 

principal components were used as covariates in the identification of eQTL loci (Figure S1).

Using the first two principal components of SNP-based ancestry estimated above, we 

identified clusters corresponding to African American ancestry (42 samples, 24% of cohort), 

European ancestry (82 sample, 47%), and Asian ancestry (4 samples, 2%), while 48 samples 

(27%) were outside of these clusters and enriched for individuals who identified as Hispanic, 

Alaskan native, or mixed ancestry (Figure S1; Table S1). Analyzing the first principal 

component of ancestry shows ancestry groups were differentially represented across 

developmental periods (F = 3.4, df = 5, p = 0.006, ANOVA), with post hoc analysis showing 

a greater representation of African American samples in later developmental periods 

compared with samples of Hispanic, Alaskan native, or mixed ancestry (p.adj = 0.02, 

TukeyHSD).

Estimation of biological and technical covariates in RNA-seq data—PCA was 

performed on the covariance matrix of 23,782 cortically expressed genes in 176 samples. A 

secondary PCA was performed on the 11,705 Non-transitional genes in 167 samples 

(excluding Period 1 and 2 samples) to assess the extent to which removing the late-fetal 

transition accounted for variance in gene expression. For each PCA, the variance explained 

by each principal component was assessed (Figure S2).

To quantify the relative contributions of biological and technical covariates, we calculated 

the partial R2 of each covariate with each principal component using the rsq R package, in a 

generalized linear model where loadings of principal components are considered as a 

response and biological and technical covariates (such as developmental period, sex, 

sequencing batch, sequencing depth, RNA integrity number (RIN), mitochondrial RNA 

proportion, ribosomal RNA proportion, intronic reads proportion, intergenic reads 

proportion) are considered as predictor variables (Figure S2).

Comparison between BrainVar and BrainSpan—While the BrainVar bulk tissue 

RNA-seq dataset catalogs gene expression in the DLPFC of 176 donors across development 

(6 post-conception weeks to 20 years of age), BrainSpan catalogs gene expression across 16 

brain regions, including DLPFC, in 40 brains ranging from 8 post-conception weeks to 40 

postnatal years (Li et al., 2018). Of note, data were generated for 14 brains in both BrainVar 

and BrainSpan. To compare the data from the 14 samples profiled in both BrainSpan (Li et 

al., 2018) and BrainVar, we reprocessed the entire BrainSpan dataset using the BrainVar 

RNA-seq analysis pipeline, transforming raw read counts to log2CPM values. We then 

filtered to genes that passed BrainVar minimum expression criteria and calculated sample-

to-sample and geneto-gene Pearson correlation coefficients. We performed principal 

component analysis on a covariance matrix of the 14 commonly sequenced samples and the 

23,782 BrainVar-expressed genes for both datasets. Despite differences in library 
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preparation, with BrainSpan using poly-A priming compared to TruSeq random priming in 

BrainVar, gene expression was highly correlated per-sample and per-gene.

BrainSpan also generated ChIP-seq datasets of histone 3 lysine 27 acetylation (H3K27ac), a 

marker of active genes, in DLPFC samples (Li et al., 2018). These H3K27ac data mirror the 

expression profiles in BrainVar, with Falling genes enriched for fetal-biased H3K27ac peaks 

and depleted for adult-biased H3K27ac peaks, while Rising genes show the opposite pattern 

of enrichment (Figure S2).

Transcriptome temporal trajectory estimation—Statistically, the temporal dynamics 

of the expression of genes can be modeled as a mixture of K distinct trajectories, each with 

Gaussian noise (Jones et al., 2001; Roeder et al., 1999). To delineate the temporal dynamics 

for K groups of genes, we used the Flexmix R package, which provides the expected 

trajectory for each group and the soft group assignments of individual genes to groups.

The expression of 23,782 genes was transformed as log2(CPM) and normalized by the 

interquartile range. The samples in epoch 0 were excluded to avoid biased estimation due to 

very few samples. To identify the overall trend of expression over age, first we fitted the 

model on all the 23,782 genes assuming there are three groups and that the expected 

trajectories for each group can be represented with degree-4 polynomials on age. Three 

typical trajectories were identified, including a group of 6,941 genes with Rising expression 

levels, a group of 5,173 with Falling expression levels, and a group of 11,705 genes with 

roughly flat (fitted) expression over time, which we called Non-transitional (Figure 2B).

We considered whether fewer or more trajectory groups described the data better. If we input 

more than four groups, adjacent classes are automatically combined due to the estimated 

priors falling below the minimum threshold leaving a maximum of four groups. Using the 

Akaike information criterion (AIC) and Bayesian information criterion (BIC) we observe the 

lowest values, indicating a better fit to the data, for four groups, followed closely by three 

groups, but not for two groups. However, the additional group does not reveal a new profile 

(e.g., genes rising to period 8/9 then falling for 10–12), instead it distinguishes two Rising 

groups based on gene variance. Since our objective was to identify temporal gene 

trajectories, not differences in variance, we selected three groups for the final model to avoid 

overfitting and ensure interpretability.

Gene ontology functional enrichment for temporal trajectories—For functional 

enrichment, we characterized genes sets for each trajectory using the R package, gProfiler 

(Reimand et al., 2011). The pathway enrichment test was performed using Gene Ontology 

Biological Process terms, which contain between 10 and 2,000 genes, and all 23,782 

cortically expressed genes were used as background. Enrichment tests were subject to the 

“moderate” hierarchical filtering parameter, and the FDR multiple correction in the gProfiler 

(Figure 2F).

Assessing enrichment in tissue-specific genes from GTEx—To assess enrichment 

across tissues, 27,546 transcripts with an RPKM ≥ 0.5 in 80% of samples one or more 

tissues in GTEx (https://gtexportal.org/home/) were defined and log-transformed 
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(log2[RPKM+1]). For each gene, expression between each tissue and all other tissues was 

assessed using a moderated t-test (R package limma), with models adjusted for age, RIN, 

gender, and surrogate variables. The Benjamini and Hochberg method was used to estimate 

false discovery rate (FDR) and tissue enriched genes were defined as: log fold-change > 0.5 

and FDR < 0.05. The enrichment of the Falling, Non-transitional, and Rising genes was 

assessed with using Fisher’s exact test with 23,782 cortically expressed genes as a 

background (Figure 2).

Identifying genes enriched in cell types from single cell data—To identify cell 

type-enriched genes we calculated a tau metric (Kryuchkova-Mostacci and Robinson-

Rechavi, 2017) from the per gene log2TPM of log2UMI values for genes within cell type 

clusters in prenatal forebrain (Nowakowski et al., 2017) and postnatal cortex (Li et al., 

2018). Each gene was also ranked across all clusters within the dataset on the basis of TPM/

UMI, so that the cluster with the highest TPM/UMI was ranked as “1,” while the cluster 

with the second highest TPM/UMI for that gene was ranked as “2,” etc. The genes were 

sorted by TPM/UMI rank and visually inspected for cell type specificity or substantial 

enrichment in single cell RNA-seq data from the prenatal and postnatal human cortex 

(https://cells.ucsc.edu/?ds=cortex-dev#). For each cell type, the top ten genes that showed 

clear specificity/enrichment were selected.

Enrichment of gene trajectories in temporal putative cis-regulatory elements
—H3K27ac peaks present in more than two samples of fetal or adult dorsal frontal cortex in 

BrainSpan (Li et al., 2018) were tested for fetal versus adult temporal bias using DESeq2 

(Love et al., 2014). Temporally biased genes were defined as adjusted p < 0.01 and fold 

change ≥ 2. A category of “non-temporal” H3K27ac peaks was generated with peaks 

showing p > 0.05. All peaks were annotated using the gene with the closest transcription 

start site in Gencode v21. Genes were classified as only-fetal or only-adult if they were 

associated with fetal or adult-only H3K27ac peaks, respectively. Enrichments of each 

category of H3K27ac-genes in each category of eGenes were tested by means of a Fisher 

Exact’s test and p-values were adjusted using Benjamini-Hochberg, using genes associated 

to non-variant H3K27ac peaks as a reference background.

WGCNA network construction and module definition—To assess the functional 

topology in cortical samples, we applied Weighted Gene Co-Expression Network Analysis 

(WGCNA) (Langfelder and Horvath, 2008) to 23,782 cortically expressed transcripts. 

Network analysis was performed with WGCNA (version 1.63) using a signed network, 

choosing a soft-threshold power, the mean connectivity less than 50, and scale-free topology 

greater than 0.8. To reduce the bias driven by a few sample outliers, we applied the 

blockwiseConsensusModules function, which detects consensus modules across 100 

subsampled networks. We used the average linkage hierarchical clustering of the topological 

overlap dissimilarity matrix (1-TOM) to generate the network dendrogram. Modules were 

defined as branches of the dendrogram using the hybrid adaptive tree cut with the following 

parameters: minimum module size = 200, negative pamStage, height cut = 0.999, and deep 

split = 2 (Langfelder and Horvath, 2007). Modules were summarized by their first principal 
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component (ME, module eigengene), followed by merging modules with high correlations 

(eigengene value ≥ 0.9).

WGCNA functional enrichment for module characterization—For functional 

enrichment, we characterized WGCNA module genes using the gProfiler R package 

(Reimand et al., 2011), as described above in the analysis of temporal trajectory genes. To 

identify WGCNA module genes that are regulatory targets, we searched for transcription 

factor binding targets using the ChEA (Lachmann et al., 2010; Satterstrom et al., 2020), and 

TRANSFAC (Matys et al., 2003), and microRNA using the mirTarbase database (Chou et 

al., 2018).

WGCNA module preservation—To assess whether 19 co-expression modules in our 

samples were preserved in other, independent DLPFC or frontal cortex expression datasets, 

we compared our dataset with non-overlapping samples from the BrainSpan dataset (Li et 

al., 2018) and applied the module preservation function from the WGCNA R package 

(Langfelder et al., 2011). From the BrainSpan dataset, we selected DLPFC (n = 30), 10 non-

DLPFC neocortical regions (n = 317), and subcortical regions excluding the cerebellum (n = 

140). Given the original co-expression network constructed above, we used 

modulePreservation to calculate module preservation statistics from 100 permutations (Table 

S3).

Clustering analysis in protein-protein interaction network—To examine functional 

association of a group of genes/proteins, we performed a clustering analysis of a protein-

protein interaction network implemented in SANTA R package (Cornish and Markowetz, 

2014). Ripley’s K function provides a measure of whether points are clustered together or 

randomly dispersed (homogeneous) in a network and the SANTA R package reformulated 

Ripley’s K function for a protein-protein interaction network. Clustering can be indicative of 

functional association between the genes/proteins under consideration. To test departure 

from homogeneity of a given gene set, we drew an empirical null distribution of clustering 

from 1,000 random samples of matching sized gene sets from the BioGRID protein-protein 

interaction network data (Stark et al., 2006; Winter et al., 2011) (v3.4.132). We reported 

departure from null distribution as a Z-score (i.e., Z > 0: level of clustering of a gene set 

greater than null expectation and Z < 0: level of clustering of a gene set less than null 

expectation).

Cis-eQTL detection and classification—Cis-eQTLs were identified for all high 

quality, common variants (N = 6,573,196) within 1 Mb of a gene boundary using the linreg 

function in Hail 0.1, with period, sex, and the first five principal components of common 

variant ancestry as covariates. This analysis was run on three cuts of the BrainVar dataset: 

complete sample (N = 176, periods 1–12), prenatal-only (N = 112, periods 1–6), and 

postnatal-only (N = 60, periods 8–12). Separately for the results of each analysis, false 

discovery rate (FDR) was calculated for all gene-variant pairs using the Benjamini-

Hochberg procedure.

We then classified all gene-variant pairs with FDR ≤ 0.05 from at least one analysis into 

groups defined by the temporal specificity of their eQTL effects. To do this, we first 
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identified one variant per gene with the smallest, FDR-significant p value, from any of the 

three analyses. We then used a Z-test to compare the regression coefficients for these 

variant-gene pairs from the prenatal and postnatal analyses:

Z =
βPre − βPost

SEPre
2 + SEPost

2

Using the results from the eQTL analyses and from this prenatal-postnatal comparison, we 

then classified each of these top (one per gene) gene-variant pairs and their corresponding 

target gene (eGene) into one of five groups:

1. Constant eQTLs/eGenes, characterized by consistent effects across this 

developmental dataset: FDR ≤ 0.05 in the complete sample analysis, same 

direction of effect and unadjusted p ≤ 0.05 in both the prenatal and postnatal 

analyses

2. Prenatal-predominant eQTLs/eGenes, with strongest effects during prenatal 

development: FDR ≤ 0.05 in the prenatal analysis, unadjusted p > 0.05 in the 

postnatal analysis, pre-post comparison Z-test FDR-adjusted p ≤ 0.05

3. Postnatal-predominant eQTLs/eGenes, with strongest effects during postnatal 

development: FDR ≤ 0.05 in the postnatal analysis, unadjusted p > 0.05 in the 

prenatal analysis, pre-post comparison Z-test FDR-adjusted p ≤ 0.05

4. Prenatal-trending eQTLs/eGenes, which did not fit into earlier categories, but 

had higher prenatal effects (BPre > BPost)

5. Postnatal-trending eQTLs/eGenes, which did not fit into earlier categories, but 

had higher prenatal effects (BPost > BPre)

All FDR-significant variants associated with the expression of a single gene were classified 

into one of these five groups according to the classification of the top variant for the same 

gene (Figure 5).

Alternative approaches for assigning eGenes to temporal categories—Many 

eGenes are associated with multiple eQTLs, each of which could individually meet criteria 

for any one of the five temporal categories. As described above, we categorized eGenes into 

temporal categories based on the performance of their top eQTL (smallest p-value), but we 

assessed the performance against three alternative approaches: (1) eGene assigned to the 

same category as a majority of their eQTLs (“majority eQTL” approach), with ties assigned 

in the order Constant, Prenatal-predominant, Postnatal-predominant, Prenatal-trending, 

Postnatal-trending, (2) for eGenes with ≥ 1 eQTL, category assignment based on the 

performance of the second most significant variant (“second eQTL” approach), and (3) each 

eQTL individually assigned to categories (“individual eQTL” approach). For each of these 

alternative approaches, we calculated the percent of eGenes or eQTLs from each top variant-

based category that were assigned to each category using the majority eQTL, the second 

eQTL, or the individual eQTL approach (Figure S5).
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Assessment of ancestry differences in prenatal and postnatal sample sets 
using genomic control—To validate that our eQTL discovery analyses were adequately 

adjusted for differences in sample ancestry, we calculated genomic control, or lambda, an 

estimate of inflation of genetic association signal (Devlin and Roeder, 1999), from the 

results of each of the three analyses (complete sample, prenatal-only, postnatal-only). To do 

this, we randomly sampled 500 gene-variant pairs that occur on the same chromosome but 

are located 10–100 Mb apart, under the assumption that these distant gene-variant pairs 

would be unlikely to be enriched for true gene expression association. Using the eQTL 

signals for these 500 gene-variant pairs from the three analyses, we calculated lambda for 

analysis. We repeated this procedure for 100 random selections of 500 distant gene-variant 

pairs. We find that the median lambda values across 100 permutations for each are near 1, in 

keeping with a test has been properly corrected for population structure (specifically, 1.01 

for prenatal, 0.99 for postnatal, and 1.00 for the complete sample).

Comparison with published eQTL studies—To assess the sensitivity of our cis-eQTL 

discovery analysis relative to previous work, we evaluated the relationship between sample 

size and eGene discovery for: the BrainVar prenatal, postnatal, and complete sample 

analyses as run using the HCP- and SVA-adjusted expression data, GTEx v7 analyses by 

tissue (gtexportal.org), postnatal human frontal cortex by the CommonMind Consortium 

(Fromer et al., 2016), and prenatal human whole brain (O’Brien et al., 2018). Using the 

sample size reported in each analysis, or for each tissue (GTEx), and the number of genes 

with at least one eQTL reaching significance of FDR ≤ 0.05, we plotted the relationship 

between eGene discovery and sample size (Figure S5). We observe a strongly positive 

relationship across BrainVar and the published analyses, in keeping with prior reports that 

eQTL and eGene discovery is positively associated with sample size (Aguet et al., 2017).

We evaluated the performance of the eQTLs that we identified in our analyses with 

published sets of eQTLs identified in the human postnatal frontal cortex (Aguet et al., 2017) 

and in the human prenatal whole brain (O’Brien et al., 2018). For the postnatal frontal cortex 

data, we downloaded significant variant-gene pairs from the GTEx v7 data release from 

gtexportal.org and used R to write out the variant locations to a bed file format. We then 

used the command line LiftOver utility from the UCSC Genome Browser to convert the 

hg19 variant positions to GRCh38. For the prenatal brain data, we downloaded the eQTL 

summary statistics, results for the top eQTLs per gene, and SNP positions bed file from the 

study data repository on Figshare (https://figshare.com/articles/

Summary_statistics_for_expression_quantitative_trait_loci_in_the_developing_human_brai

n_and_their_enrichment_in_neuropsychiatric_disorders/6881825). We then used each 

gene’s nominal significance threshold from the top eQTLs file to identify the full set of 

variant-gene pairs meeting significance.

Using variant (GRCh38 position, reference, and alternate alleles) and gene (Ensembl gene 

IDs) identifiers, we matched significant variant-gene pairs separately from GTEx frontal 

cortex and prenatal brain to the variant-gene pairs meeting FDR significance (%0.05) in the 

BrainVar analyses. For all significant eQTLs in BrainVar that overlapped with the reference 

datasets, we then compared the effect of the variant on the expression of its associated gene 

to determine the percentage of overlapping eQTLs with concordant direction of effect, as 
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well as the Pearson correlation between the eQTL effects (beta from BrainVar, slope from 

GTEx or prenatal whole brain). The significance of this correlation was evaluated using the 

cor.test function in R.

Distance between eQTLs and transcription start site—The distance between each 

significant eQTL and the transcription start site (TSS) of its associated eGene was calculated 

by comparing the variant position to the TSS position and strand of the gene according to 

Gencode v21. Positive distances indicate variants downstream of the TSS, negative distances 

indicate upstream variants. Comparison between groups of eQTLs was run using only the 

top eQTL per gene and the absolute value of distance from the associated gene’s TSS.

Overlap of eQTLs with H3K27ac—We tested the global overlap between eQTLs and 

H3K27ac from human fetal, infant and adult dorsal frontal cortex and cerebellum and 

embryonic cortex from BrainSpan (Li et al., 2018) and Reilly et al. (2015). Intersection 

between sets of coordinates were performed using Bedtools (Quinlan and Hall, 2010). We 

tested three sets of variants: (1) best eQTL per eGENE, (2) all significant eQTLs with FDR 

< 0.05 in the corresponding eQTL category of Prenatal-predominant, Postnatal-predominant 

or Constant, and (3) a background group composed by all variants tested for eQTL, 

excluding those with a p < 0.05 to any gene at any time period tested. 95% confidence 

intervals were obtained by bootstrapping variants 100 times (Figure S5).

Enrichment of eQTLs in functional genomic elements—We tested the enrichment 

of different categories of eQTLs in sets of genomics elements using GREGOR (Schmidt et 

al., 2015). We tested all best eQTL per gene in: (1) dorsal frontal cortex H3K27ac peaks 

from fetal and adult brain samples, and (2) 18 chromatin states whole-genome segmentation 

of sample E073-Medial Frontal Cortex Lobe from The Roadmap Epigenomics Project 

(Kundaje et al., 2015). We reported observed/expected number of overlapping eQTLs and 

BH adjusted p-values (Figure S5).

Test for differential expression variance in prenatal and postnatal stages—We 

used an F test to compare prenatal variance (periods 1–6) and postnatal variance (periods 8–

12) in gene expression level, correcting for age (period), sex, and five ancestry principal 

components within each stage. At a Benjamini-Hochberg-adjusted p value ≤ 0.05, we 

identified 8,094 genes with greater prenatal variance, and 1,752 genes with greater postnatal 

variance.

Gene sets associated with CNS traits and disorders—To compare with 23,782 

cortically expressed genes, we created the list of gene sets for previous trait and disorder 

association and functional properties. Gene identifiers were converted between studies based 

on the complete HUGO Gene Nomenclature Committee dataset. Autism spectrum disorder 

(ASD) risk genes were obtained from Satterstrom et al. (2020), an exome sequencing based 

gene discovery refining to high-confidence genes (n = 99) at a false discovery rate (FDR) ≤ 

0.1. Genes associated with developmental delay (n = 93) were selected from the exome 

sequencing analysis of the Deciphering Developmental Disorders project (Deciphering 

Developmental Disorders Study, 2017). From Heyne et al. (2018), we chose 33 genes as 

high-confidence epilepsy candidates, where multiple de novo variants were seen.
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We used significant loci from the genome-wide association studies (GWAS) of attention 

deficit hyperactivity disorder (ADHD) (Demontis et al., 2019), Alzheimer’s disease 

(Lambert et al., 2013), educational attainment (Lee et al., 2018), schizophrenia 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014), major 

depressive disorder (Wray et al., 2018), multiple sclerosis (Beecham et al., 2013), 

Parkinson’s disease (Chang et al., 2017). We selected loci from a summary statistics file if 

publicly available, otherwise we used the table of genome-wide significant loci from each 

study. We retrieved genes harboring loci or within 10kb from loci. We excluded the extended 

major histocompatibility complex region on the chromosome 6, known to have a substantial 

number of genes due to high linkage disequilibrium (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014) for downstream enrichment analyses.

Constrained genes were defined as probability of loss-of-function intolerant (pLI) score ≥ 

0.995 in the ExAC database (Lek et al., 2016). Genes specific to cell types in the mid-fetal 

cortical development were selected from Nowakowski et al. (2017) and BrainSpan (Li et al., 

2018). For all gene lists, see Table S2 and Table S4.

Enrichment of DLPFC eQTLs in SNPs associated with complex phenotypes—
We tested for enrichment of DLPFC eQTLs among GWAS significant SNPs using a 

permutation-based procedure. GWAS SNPs were taken from published GWAS summary 

statistics at a significance threshold of p < 5 × 10−8. The following procedure was repeated 

separately for summary statistics from GWAS of four phenotypes: schizophrenia 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014), educational 

attainment (Lee et al., 2018), multiple sclerosis (Beecham et al., 2013), and Alzheimer’s 

disease (Lambert et al., 2013). First, SNPs in the summary statistics and the list of SNPs 

tested for eQTL discovery were filtered to those in 1000 Genomes Project data. SNPs in the 

GWAS summary statistics were then filtered to variants also tested for eQTL discovery, 

using direct (same SNP) or proxy (r2 > 0.8 in CEU 1000 Genomes samples) as defined by 

the PLINK 1.9 – r2 command (Chang et al., 2015a). To estimate the proportion of eQTL 

SNPs among phenotype associated SNPs versus among all SNPs (or a sample of null SNPs), 

we recognized three important factors that could differ between null SNP sets and the 

phenotype-associated SNPs: LD structure, MAF distribution, and gene density. First, to 

account for LD structure, we used PriorityPruner version 0.1.4 (http://

prioritypruner.sourceforge.net) to LD prune SNPs supervised by GWAS p-value in order to 

preferentially retain as many phenotype-associated SNPs as possible while adequately 

removing SNPs in high LD (r2 > 0.7 within a sliding 500kb window) using in 1000 

Genomes CEU sample data. Second, the remaining SNPs were grouped according to their 

MAF decile. Third, each remaining SNP was grouped into decile of gene density to allow 

for differential opportunity to be identified as an eQTL. Gene density was determined by the 

number of genes within the 1MB eQTL detection window as defined by the annotation 

package “TxDb.Hsapiens.UCSC.hg38.knownGene” from R Bioconductor (Huber et al., 

2015). SNPs in the ~3.2 MB HLA region (hg38 coordinates: chr6:29,751,784–32,915,731) 

as defined by the “GWASTools” R Bioconductor package (Gogarten et al., 2012) and UCSC 

genome browser (Kent et al., 2002) were excluded from enrichment testing. Next, 1 million 

null SNP sets were drawn by matching each phenotype-associated SNP (GWAS p < 5 × 
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10−8) to a random SNP matched on both MAF and gene density. Enrichment fold statistics 

were computed as the proportion of eQTLs in the phenotype-associated set divided by the 

mean proportion of eQTLs across null sets. P values were calculated as the proportion of 

null set fold-enrichment statistics as or more extreme than the observed phenotype-

associated fold enrichment statistic. This permutation procedure was repeated for each of six 

eQTL SNP lists: all, Constant, Prenatal-predominant, Prenatal-trending, Postnatal-

predominant, and Postnatal-trending.

Gene-set analysis of eGenes and GWAS data—To assess whether eQTL targets 

(eGenes) are enriched for GWAS signal, we performed competitive gene set enrichment 

analysis for each group of eGenes using the MAGMA software (de Leeuw et al., 2015). We 

input the eGene lists from Prenatal-predominant, Postnatal-predominant, Constant, Prenatal-

trending, and Postnatal-trending (Table S5) and summary statistics from published GWAS of 

schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2014), autism spectrum disorder (Grove et al., 2019), educational attainment (Lee et al., 

2018), multiple sclerosis (Beecham et al., 2013), Alzheimers disease (Lambert et al., 2013), 

triglycerides (Willer et al., 2013), and height (Wood et al., 2014). First, SNPs from the 

GWAS summary statistics files were annotated to NCBI protein-coding genes that passed 

RNA-seq QC in our DLPFC expression data with a 10kb window on either side of the gene 

boundaries. Next, a gene-level analysis was done to determine the strength of association for 

each gene with phenotype of interest. To assess whether genes in the eGene gene-sets are 

more strongly associated with the phenotype of interest than other genes, gene-based z-

scores are regressed on a gene-set indicator variable and MAGMA default covariates (gene 

size, gene density, sample size, 1/MAC, and the log of each of these). The beta coefficient 

for the gene-set indicator variable is tested for significance HA : β1 > 0. Results from this 

analysis are reported in Table S6. We did not observe significant enrichment of GWAS 

signal from any of the six phenotypes tested in any of the five temporally assigned eGene 

gene sets. However, we repeated a similar test, annotating GWAS summary statistics SNPs 

to NCBI protein-coding genes with 10kb flanking region that passed RNA-seq QC in our 

DLPFC expression data and had an assigned pLI score, and found that a gene-set defined as 

pLI score > = 0.995 showed significant enrichment for stronger GWAS association in all 

tested phenotypes except for multiple sclerosis, compared to genes with pLI score < 0.995.

Co-localization analysis of CNS traits and disorders—Coloc (Giambartolomei et 

al., 2014) was used to formally test for co-localization of GWAS signal from schizophrenia 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014) and 

educational attainment (Lee et al., 2018) summary statistics with our five eQTL categories. 

Coloc tests five hypotheses (H0: no association, H1: GWAS association only, H2: eQTL 

association only, H3: both but not co-localized, H4: both and co-localized) and returns a 

posterior probability for each hypothesis in each region. Posterior probably of H4 > = 0.8 is 

strong Bayesian evidence of co-localization.

DATA AND CODE AVAILABILITY

Open source scripts used in this study are referenced throughout. The pipeline for whole-

genome analysis is available online at: https://github.com/sanderslab/psychcore-compute-
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platform. The accession number for the raw RNA-seq and WGS data reported in this paper, 

along with processed files, is PsychENCODE Knowledge Portal: syn21557948 on 

Synapse.org (https://www.synapse.org/#!Synapse:syn4921369).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highligts

• Whole-genome and RNA sequencing across human prefrontal cortex 

development

• Gene-specific developmental trajectories characterize the late-fetal transition

• Identification of constant, prenatal-predominant, and postnatal-predominant 

eQTLs

• Integrated analysis implicates genes in loci associated with educational 

attainment
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Figure 1. Overview of the Dataset and the Analysis
(A) 176 samples from the dorsolateral prefrontalcortex (DLFPC) of the developing human 

brain were processed to generate RNA-seq gene expression data and WGS data (top). The 

distribution of the samples is shown by sex (color) and developmental stage (x axis). Periods 

were defined previously (Kang et al., 2011), and epochs are defined as a superset of periods 

based on principal component analysis of these RNA-seq data (Figure 2).

(B) Analyses conducted using these data. Thewidth of each box corresponds to the samples 

included in each analysis.

See also Table S1 and Figure S1.
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Figure 2. Temporal Trajectories of Gene Expression in the Human DLPFC
(A) Gene expression log base 2 counts per million (log2CPM) for each sample was used to 

calculate principal components (Figure S2). The first principal component (PC1) explains 

42% of the variance between samples, and 81% of variance in PC1 is explained by 

developmental stage (Figure S2). The changes in PC1 over time were used to define four 

“epochs” of gene expression. Dotted lines represent the boundaries of the indicated 

developmental period as defined previously (Kang et al., 2011).

Werling et al. Page 37

Cell Rep. Author manuscript; available in PMC 2020 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(B and C) Trajectory analysis identifies three sets of genes with similar developmental 

profiles across the late-fetal transition in epoch 2 (B; Table S2). For each group, the 

expression over time, normalized by the interquartile range and locally estimated scatterplot 

smoothing (LOESS), is shown as a line, with the narrow 95% CI in gray. These three groups 

are further characterized by plotting (C) the median log2CPM across all samples in epoch 1 

and epoch 3, with the difference for each gene shown as a line.

(D) The relative proportion of Gencode protein-coding and noncoding genes with gene 

counts.

(E) The distribution of probability loss-of-function intolerance (pLI) scores for protein-

coding genes (Lek et al., 2016) with gene counts.

(F) Enrichment in the most tissue-specific genes from the 53 tissues with bulk tissue RNA-

seq data from the Genotype-Tissue Expression Consortium (GTEx) (GTEx Consortium, 

2015).

(G) Pattern of expression for ten cell type-specific genes (Table S2) for each of five neuronal 

lineage cell types (LOESS with 95% CI).

(H) Analysis in (G) repeated for five glial lineage cell types.

OPC, oligodendrocyte progenitor cell. Statistical analyses: (A) principal component 

analysis; (B) longitudinal mixture model with Gaussian noise; (D) FET; (E) two-sided 

WRST; (F) t-test. See also Table S2 and Figures S1 and S2.
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Figure 3. Co-expression Modules in the Developing Human Cortex
(A) Weighted genome co-expression network analysis (WGCNA) identified 19 modules 

comprised of 10,459 of 23,782 expressed genes. Modules are shown ascolored nodes plotted 

based on the first two dimensions from multidimensional scaling. The weight of the 

connecting lines (edges) represents the degree of correlation between module eigengenes.

(B) LOESS expression values across development are shown with 95% CIs for the 19 

modules arranged in five groups based on proximaity in (A) and similartemporal trajectories.
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(C) Gene Ontology enrichment analysis for each module, showing only biological processes 

with the lowest false discovery rate (FDR).

(D) Mosaic plot showing the relationship between the five groups of co-expression modules 

(from A) and genes with falling, rising, or non-transitional temporaltrajectories (Figure 2). 

The area is proportional to the number of genes in each bin. Detailed relationships between 

modules and temporal trajectories are shown in Figure S3.

(E) Enrichment between the 19 modules and the 200 genes most specific to 19 cell type 

clusters defined by single-cell RNA-seq data in the developing humancortex (Nowakowski 

et al., 2017).

(F) Enrichment between the 19 modules and the 200 genes most specific to 29 cell type 

clusters defined by single nucleus RNA-seq data in the adult humanDLPFC (Li et al., 2018).

(G) Module preservation in independent BrainSpan samples (Li et al., 2018) from the same 

brain region (left), other cortical regions (center), and five subcortical regions (right).

SRP, signal recognition particle; C, cluster of single nuclei; L, cortical layer; ND, layer not 

defined; RG, radial glia; IPC, intermediate progenitor cell; NN, newborn neuron; ExN, 

excitatory neuron; InN, inhibitory neuron; CGE, caudal ganglionic eminence; MGE, medial 

ganglionic eminence. Statistical analysis: (A) WGCNA with consensus module detection 

from 100 random resamplings; (C) FET, corrected for gProfiler Gene Ontology pathways 

(10–2,000 term size); (E) FET corrected for 361 comparisons; (F) FET corrected for 551 

comparisons; (G) FET corrected for 19 comparisons. See also Table S2 and S3 and Figure 

S3.
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Figure 4. Expression of Genes Associated with CNS Traits and Disorders
(A) Genes from genome-wide significant loci were collated for ten CNS traits and disorders 

from exome sequencing or genome-wide association studies (GWASs). The enrichment is 

shown for the three trajectory groups (Figure 2).

(B) The analysis in (A) repeated for co-expression modules.

(C) The analysis in (A) repeated for genes enriched for cell type clusters from single-cell 

RNA-seq of the prenatal human brain.

Statistical analysis: (A) FET corrected for 30 comparisons; (B) FET corrected for 190 

comparisons; (C) FET corrected for 190 comparisons. See also Table S2 and S4, and Figure 

S4.

Werling et al. Page 41

Cell Rep. Author manuscript; available in PMC 2020 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Common Variant cis-eQTLs
(A) Effects of the top expression quantitative trait locus (eQTL) per gene regulated by an 

eQTL (eGene) with FDR ≤ 0.05 in the BrainVar analyses (x axis, union of results from 

complete sample, prenatal-only, and postnatal-only analyses) versus effects observed in the 

prenatal whole brain (O’Brien et al., 2018) (left) and postnatal frontal cortex (Aguet et al., 

2017) (right, y axis).
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(B) Prenatal (x axis) and postnatal (y axis) effects for the eQTLs with the smallest p value 

for 8,421 eGenes (points). The eQTLs are split into five categories basedon temporal 

predominance using effect size and statistical thresholds; categories are represented by color.

(C) Effects of the top eQTL per eGene with FDR ≤ 0.05 from the prenatal-predominant (red) 

or postnatal-predominant (blue) eQTL categories from BrainVar (x axis) versus effects 

observed in the published datasets described in (A) (y axis).

(D) Density plot of the distance of top eQTLs per eGene from the transcription start site by 

eGene temporal category.

(E–G) Characteristics of non-eGenes, temporal-predominant eGenes, and disorder-

associated genes are shown by plotting the (E) proportion of coding and noncoding genes, 

(F) proportion of genes with pLI scores in different bins, and (G) BioGRID protein-protein 

interactions (permuted Z scores from Ripley’s K-net function; Cornish and Markowetz, 

2014; the black line is the non-eGene median).

(H) Mosaic plot of the proportion of genes in each temporal trajectory with eGenes split by 

temporal category.

(I) Expression data binned by genotype for the top prenatal-predominant eQTL for CHD1L, 

a gene with a rising trajectory. Main panel: gene expression by sample age across 

development. Lines represent LOESS trajectories for expression in samples with each of 

three genotypes for rs138586968. Inset: boxplots for prenatal (left) and postnatal (right) 

samples with each of three rs138586968 genotypes.

(J) Distribution of eQTL effect size for eGenes binned by pLI scores. The black line 

represents the median of the transcripts with no pLI score.

(K) Distributions of between-sample variance in the expression level of expressed genes 

binned by pLI scores. The black line represents the median variance ofthe transcripts with 

no pLI score.

TSS, transcription start site; Statistical analysis: (A) and (C) Pearson correlation; (D) and 

(G), two-sided WRST test for constant versus other eGenes; (E) and (F), two-sided FET for 

constant versus other eGenes; (J) and (K), two-sided WRST test for each of four pLI bins 

versus genes with no pLI score. See also Tables S2 and S5 and Figure S5.
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Figure 6. Colocalization of Two eQTLs with Educational Attainment GWAS Loci
(A) Statistical evidence of association with educational attainment for SNPs (points) 

alongside the recombination rate (blue line). Color shows the correlation withthe SNP 

rs1043209 (Pruim et al., 2010).

(B) The statistical evidence for the SNP rs1043209 being an eQTL is shown for each gene 

within proximity of the locus. No other genes had high posteriorprobabilities for 

colocalization.

(C) The statistical evidence for being an eQTL for the noncoding RNA LOC101926933 (x 

axis) is shown against the evidence for association with educational attainment (y axis) for 

each SNP (points).

(D) The expression of LOC101926933 is shown for each sample across development with 

genotype at rs1043209, indicated by color.

(E–H) Another educational attainment locus that colocalized with the gene RHEBL1 in the 

prenatal period only is shown, as in (A)–(D).
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Statistical analysis: (B) colocalization analysis; (D) inset, ANOVA; (E) colocalization 

analysis; (H) inset, ANOVA. See also Tables S2 and S6 and Figure S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

See Table S1 for a list of human post-mortem 
tissue included in the study.

N/A

Chemicals, Peptides, and Recombinant Proteins

Agencourt AMPure XP beads Beckman Coulter A63881

RNAClean XP beads Beckman Coulter A63987

RNA ScreenTape Agilent 5067–5576

RNA ScreenTape Sample Buffer Agilent 5067–5577

D1000 ScreenTape Agilent 5067–5582

D1000 Sample Buffer Agilent 5067–5602

Stainless Steel Beads 0.9 – 2.0 mm blend Next Advance SSB14B

Critical Commercial Assays

mirVana miRNA Isolation Kit, with phenol Thermo Fisher Scientific AM1560

TURBO DNA-free Kit Thermo Fisher Scientific AM1907

TruSeq Stranded Total RNA HT Sample Prep 
Kit with Ribo-Zero Gold kit

Illumina 20020599

QIAamp DNA Mini Kit (250) QIAGEN 51306

Deposited Data

Raw WGS data https://www.synapse.org/#!
Synapse:syn4921369

syn21557948

Processed WGS data https://www.synapse.org/#!
Synapse:syn4921369

syn21557948

Raw RNA-seq data https://www.synapse.org/#!
Synapse:syn4921369

syn21557948

Processed RNA-seq data https://www.synapse.org/#!
Synapse:syn4921369

syn21557948

Software and Algorithms

HTSeq v.0.6.0. Anders et al., 2015 https://htseq.readthedocs.io/en/master/

STAR v.2.4.2a Dobin et al., 2013 https://github.com/alexdobin/STAR

limma v.3.36.5 Ritchie et al., 2015 http://bioconductor.org/packages/release/bioc/
html/limma.html

HCP Mostafavi et al., 2013 https://github.com/mvaniterson/Rhcpp

SVA v. 3.28.0 Leek et al., 2012 https://www.bioconductor.org/packages/release/
bioc/html/sva.html

rsq v.1.1 Zhang Lab, Purdue https://cran.r-project.org/web/packages/rsq/
index.html

igraph v.1.2.2 RStudio, Inc., Boston https://cran.r-project.org/web/packages/igraph/
index.html

SANTA v.2.14.0 Cornish and Markowetz, 2014 https://bioconductor.org/packages/release/bioc/
html/SANTA.html

WGCNA v 1.63 Langfelder and Horvath, 2008 https://horvath.genetics.ucla.edu/html/
CoexpressionNetwork/Rpackages/WGCNA/

BWA v0.7.15 Li and Durbin, 2009 https://github.com/lh3/bwa/releases
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http://bioconductor.org/packages/release/bioc/html/limma.html
https://github.com/mvaniterson/Rhcpp
https://www.bioconductor.org/packages/release/bioc/html/sva.html
https://www.bioconductor.org/packages/release/bioc/html/sva.html
https://cran.r-project.org/web/packages/rsq/index.html
https://cran.r-project.org/web/packages/rsq/index.html
https://cran.r-project.org/web/packages/igraph/index.html
https://cran.r-project.org/web/packages/igraph/index.html
https://bioconductor.org/packages/release/bioc/html/SANTA.html
https://bioconductor.org/packages/release/bioc/html/SANTA.html
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://github.com/lh3/bwa/releases
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REAGENT or RESOURCE SOURCE IDENTIFIER

Picard v2.17.5 for sorting & removing duplicate 
reads, v2.18.1 for checking sample sequencing 
depth

Broad Institute, Boston https://github.com/broadinstitute/picard/

GenomeAnalysisToolKit GATK v3.8-0-
ge9d806836

McKenna et al., 2010 https://github.com/broadgsa/gatk

Sentieon v201711.01 Freed et al., 2017 https://www.sentieon.com/products/

VerifyBamId v1.1.3 Jun et al., 2012 https://github.com/statgen/verifyBamID/

Peddy v0.3.2 Pedersen and Quinlan, 2017 https://github.com/brentp/peddy

Hail v0.1 Github https://github.com/hail-is/hail

coloc Giambartolomei et al., 2014 http://cran.r-project.org/web/packages/coloc

MAGMA v1.07b de Leeuw et al., 2015 https://ctg.cncr.nl/software/magma

gProfileR v0.6.7 Reimand et al., 2011 https://github.com/cran/gProfileR/releases

GREGOR Schmidt et al., 2015 http://csg.sph.umich.edu/GREGOR/index.php/
site/download

Whole-genome analysis pipeline Sanders Lab, UCSF https://github.com/sanderslab/psychcore-
compute-platform

Other

GENCODE annotation v21 (GRCh38) Harrow et al., 2012 https://www.gencodegenes.org/human/
release_21.html

HUGO Gene Nomenclature Committee 
Complete dataset (2018)

European Bioinformatics Institute, 
Cambridge, UK

ftp://ftp.ebi.ac.uk/pub/databases/
genenames/new/tsv/hgnc_complete_set.txt

BioGRID (v3.4.132) Stark et al., 2006 https://downloads.thebiogrid.org/BioGRID/
Release-Archive/BIOGRID-3.4.132/

ENSEMBLE VEP (v90) McLaren et al., 2016 https://github.com/Ensembl/ensembl-vep/
releases
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