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On the Generic Capacity of K-User Symmetric
Linear Computation Broadcast

Yuhang Yao, Graduate Student Member, IEEE, and Syed A. Jafar, Fellow, IEEE

Abstract—Linear computation broadcast (LCBC) refers to a
setting with d dimensional data stored at a central server, where
K users, each with some prior linear side-information, wish
to compute various linear combinations of the data. For each
computation instance, the data is represented as a d-dimensional
vector with elements in a finite field Fpn where pn is a power of
a prime. The computation is to be performed many times, and
the goal is to determine the minimum amount of information
per computation instance that must be broadcast to satisfy all
the users. The reciprocal of the optimal broadcast cost per
computation instance is the capacity of LCBC. The capacity
is known for up to K = 3 users. Since LCBC includes index
coding as a special case, large K settings of LCBC are at
least as hard as the index coding problem. As such the general
LCBC problem is beyond our reach and we do not pursue it.
Instead of the general setting (all cases), by focusing on the
generic setting (almost all cases) this work shows that the generic
capacity of the symmetric LCBC (where every user has m′

dimensions of side-information and m dimensions of demand)
for large number of users (K ≥ d suffices) is Cg = 1/∆g , where
∆g = min

󰁱
max{0, d−m′}, dm

m+m′

󰁲
, is the broadcast cost that

is both achievable and unbeatable asymptotically almost surely
for large n, among all LCBC instances with the given parameters
p,K, d,m,m′. Relative to baseline schemes of random coding or
separate transmissions, Cg shows an extremal gain by a factor of
K as a function of number of users, and by a factor of ≈ d/4 as
a function of data dimensions, when optimized over remaining
parameters. For arbitrary number of users, the generic capacity
of the symmetric LCBC is characterized within a factor of 2.

I. INTRODUCTION

Recent observations of ‘megatrends’ in the communication
industry indicate that the number of devices connected to the
internet is expected to cross 500 billion, approaching 60 times
the estimated human population over the next decade [1]. With
machines set to become the dominant users of future com-
munication networks, along with accompanying developments
in artificial intelligence and virtual/augmented/mixed reality
applications, a major paradigm shift is on the horizon where
communication networks increasingly take on a new role, as
computation networks. The changing paradigm brings with it
numerous challenges and opportunities.

One of the distinguishing features of computation net-
works is their algorithmic nature, which creates predictable
dependencies and side-information structures. To what extent
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can such structures be exploited for gains in communication
efficiency? Answering this question requires an understanding
of the capacity of computation networks.

The study of the capacity of computation networks has
a rich history in information theory, spanning a variety of
ideas and directions that include zero error capacity and
confusability graphs [2], graph entropy [3], [4], conditional
graph entropy [5], multiterminal source coding [6], encoding
of correlated sources [7]–[10], sum-networks [11]–[13], com-
putation over acyclic directed networks [14], [15], compute-
and-forward [16], federated learning [17], private computation
[18], [19], coded computing [20]–[23], and distributed matrix
multiplication [24]–[27], to name a few. However, due to
the enormous scope, hardness, and inherent combinatorial
complexity of such problems, a cohesive foundation is yet to
emerge.

Following the ground-up approach of classical network
information theory which focuses on elemental scenarios, and
taking cues from systems theory that builds on an elegant
foundation of linear systems, it is conceivable that a cohesive
foundation could emerge from the study of the building blocks
of linear computation networks. Linear computation networks
are characterized by the presence of side-information and
demands that are linear functions of the data. Linear side
information and dependencies are quite valuable as theoretical
abstractions because in principle they allow the study of a
complex linear computation network by breaking it down into
tractable components, while retaining some of the critical
relationships between the components in the form of side-
information. For example, multi-round/multi-hop linear com-
putation networks may be optimized one-round/hop at a time,
by accounting for the information from other rounds/hops as
side-information.
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Fig. 1: LCBC
󰀃
Fq,v[K],v

′
[K]

󰀄
with batch-size L. q = pn is a power

of a prime. The coefficient matrices vk ∈ Fd×mk
q , v′

k ∈ Fd×m′
k

q for
all k ∈ [K] specify the desired computations and side-informations,
respectively.
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As a fundamental building block, the linear computation
broadcast (LCBC) problem is introduced in [28]. LCBC refers
to the setting illustrated in Figure 1, where K users, each
with some prior side-information (w′

k = xTv′
k) comprised

of various linear combinations of d-dimensional data (x) over
a finite field (Fq = Fpn ), wish to retrieve other individually
specialized linear combinations (wk = xTvk) of the data,
with the help of a central server that has all the data. The
goal is to determine the minimum amount of information that
the central server must broadcast in order to satisfy all the
users’ computational demands. In addition to its significance
as an elemental building block of computational networks,
the LCBC setting is remarkably powerful by itself, e.g.,
it includes index coding [29]–[31] as a special case, and
generalizes linear coded caching [32]–[34] to allow arbitrary
cached information and demands. The one-to-many topology
represented by LCBC arises naturally in any context where
distributed nodes coordinate with each other [35], [36] with
the help of a master node. Such scenarios may be pervasive
in the future as interactive networked VR environments [37]
become commonplace.

The capacity of LCBC is characterized for K = 2 users in
[28]. More recently, in [38] the capacity is fully characterized
for the K = 3 user LCBC. In addition to such efforts that are
aimed at small number of users, it is also important to develop
insights into the fundamental limits of larger LCBC networks.
However, any such attempt runs into immediate obstacles. In
addition to the combinatorial complexity of large networks, the
LCBC — because it includes index coding as a special case
— is at least as hard as the index coding problem in general.
The difficulty of the index coding problem is well recognized
[31], [39]–[42]. How to overcome this obstacle, is the central
question that motivates our work in this paper.

A key idea that makes this work possible is the distinction
between the general LCBC problem — which includes all
instances, and the generic LCBC problem — which includes
almost all instances. We focus on the latter. While the general
LCBC problem is necessarily at least as hard as the general
index coding problem, the generic LCBC problem may still
be tractable. Such observations are common in many fields,
for example computational complexity theory posits that for
many computation problems, the difficult cases are rare and
most (generic) instances are much easier, thereby motivating
the sub-field of generic-case complexity [43], [44]. Drawing
parallels to the degrees of freedom (DoF) studies of wireless
interference networks, there also the general problem remains
open — for arbitrary channel realizations the DoF are not
known for even the 3-user interference channel. However, the
generic problem is settled for the K-user (any K) interference
channel; we know the DoF for almost all realizations [45]–
[47]. For general MIMO interference channels, even maximiz-
ing linearly achievable DoF is shown to be NP-hard [48], yet it
is tractable in the generic sense [49], [50]. Similarly, while the
index coding problem is hard, index coding instances represent
a negligible fraction of all possible instances of LCBC. Thus,
there remains hope that a foundation for a cohesive theory of
linear computation networks may yet be built by studying the
generic capacity of its building blocks.

With some oversimplification for the sake of intuition,
consider the following toy example. We have a K = 4 user
setting, say over F7, with d = 4 dimensional data represented
by x = (A,B,C,D)T . The users each have 1-dimensional
side-information and demands,

w′
1 = A+B+C+D, w1 = A+ 2B+ 3C+ 4D, (1)

w′
2 = A+ 3B+ 2C+ 5D, w2 = 2A+B+ 4C+ 6D, (2)

w′
3 = 5A+ 4B+C+ 3D, w3 = 6A+ 3B+ 4C+D, (3)

w′
4 = 4A+B+ 5C+ 6D, w4 = 5A+ 2B+ 6C+ 3D. (4)

If we had only the first 2 users to consider, the broadcast cost
of 2 would be trivially achieved, e.g., by broadcasting w1,w2

which satisfies both users. If we had only the first 3 users, the
solution is less trivial, but we still find (see Section IV-C) that
broadcasting (S1,S2) = (2A+6B+3C, 4A+4B+C+D)
incurs a cost of 2, while satisfying all 3 users’ demands –
it is easy to verify that User 1 recovers w1 = 2S1 − 3w′

1,
User 2 recovers w2 = 5S2 − 4w′

2, and User 3 recovers w3 =
S1 + S2, all operations in F7, represented as integers modulo
7. However, as the number of users increases, the problem
becomes much more challenging. It is far from obvious that a
broadcast cost of 2 could still suffice to satisfy all 4 users listed
above, and highly counter-intuitive that the optimal broadcast
cost may still be only 2 for large number of users, e.g., K =
100 users. This surprising conclusion follows from the results
found in this work, with the important caveat that the results
are shown to be true only asymptotically almost surely for
large n. In other words, for this example, suppose we have
the 4 dimensional data (A,B,C,D) over Fq , q = pn for any
arbitrary prime p, and a large number (say K = 100) of users,
and the coefficients of the users’ 1-dimensional demands and
side-informations are chosen uniformly randomly from Fpn ,
each choice representing a particular instance of this LCBC.
Then we prove that as n → ∞, almost all instances have
optimal broadcast cost 2 (in q-ary units). The larger the number
of users K, the larger n may need to be for the convergence
to take effect, but the optimal broadcast cost must ultimately
converge in probability to 2 q-ary symbols.

The main result of this work is the characterization of the
generic capacity, Cg(p,K, d,m,m′) = 1/∆g , where ∆g =

min
󰁱
max{0, d−m′}, dm

m+m′

󰁲
, for a K user LCBC with d

dimensional data over Fpn , in the symmetric setting where
every user has m dimensional demands and m′ dimensional
side-information, for large enough number of users (K ≥ d
suffices) and large n. Informally, ∆g represents a broadcast
cost that is both achievable, and unbeatable, asymptotically
almost surely for large n, among the class of all LCBC
problems with fixed parameters K, p, d,m,m′. Setting aside
the trivial regimes d ≤ m+m′ where random coding is optimal
(∆g = max{0, d−m′}), and d ≥ K(m+m′) where separate
transmissions for each user are optimal (∆g = Km), in the
remaining non-trivial regime where m+m′ < d < K(m+m′),
we have ∆g = dm/(m + m′). Note that this depends only
on d,m,m′, i.e., the dimensions of the data, demands, and
side-information. In particular, our generic capacity results do
not depend on the characteristic p of the finite field, and in
the non-trivial regime with sufficiently large number of users,
the generic capacity also does not depend on the number of
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users K. The converse proofs are information theoretic and
make use of functional submodularity [38], [51], [52]. The
achievability arguments build upon the idea of asymptotic
interference alignment [45], both by adapting it from the
K user wireless interference channel to the K user LCBC
context, and by a non-trivial strengthening of the original
scheme involving an additional symbol-extension overhead
that is needed to harness sufficient diversity in the finite field
setting. The generic capacity characterization reveals that the
capacity can be significantly higher than what is achievable
with the baseline schemes of random coding and/or separate
transmissions. For example, the extremal gain [53] of generic
capacity over baseline schemes, as a function of the number of
users (maximized over the remaining parameters) is K, and
the extremal gain as a function of the data dimension d is
≈ d/4 (Observation 3 in Section IV-D). As an immediate
corollary of the main result, the generic capacity of the
symmetric LCBC is characterized within a factor of 2 for
any number of users K (Observation 1). Notably, an exact
characterization is found (Theorem 3) for any number of users
if the side-information and demands are one-dimensional.
Some extensions to asymmetric settings are obtained as well.

II. NOTATION

A. Miscellaneous

The notation [a : b] represents the set of integers {a, a +
1, . . . , b} if b ≥ a and ∅ otherwise. The compact notation [K]
is equivalent to [1 : K]. For a set of indices S, the notation AS

represents {As, s ∈ S}, e.g., A[K] = {A1, A2 · · · , AK}. |S|
denotes the cardinality of a set S . Fq = Fpn is a finite field
with q = pn a power of a prime. The elements of the prime
field Fp are represented as Z/pZ, i.e., integers modulo p. The
notation Fn1×n2

q represents the set of n1 × n2 matrices with
elements in Fq . Fq is a sub-field of Fqz , and Fqz is an extension
field of Fq for z > 1. N = {1, 2, · · · } is the set of natural
numbers. The greatest common divisor of a, b is denoted
gcd(a, b). (x)+ ≜ max{0, x}. Pr(E) stands for the probability
of the event E. Given an event En that depends on an integer
parameter n, we say that Event En holds asymptotically
almost surely (a.a.s.) if limn→∞ Pr(En) = 1. Throughout this
work when we use a.a.s., the quantity approaching infinity will
be denoted by n. For variables a, b that depend on an integer
n, we use the notation a

a.a.s.
= b to represent the statement,

limn→∞ Pr(a = b) = 1. Similarly, a
a.a.s.

≥ b represents
limn→∞ Pr(a ≥ b) = 1; a

a.a.s.

≤ b represents limn→∞ Pr(a ≤
b) = 1; a

a.a.s.
< b represents limn→∞ Pr(a < b) = 1, and a

a.a.s.
> b

represents limn→∞ Pr(a > b) = 1.

B. Matrix operations

By default we will consider matrices in a finite field Fq .
For two matrices M1,M2 with the same number of rows,
[M1,M2] represents a concatenated matrix which can be
partitioned column-wise into M1 and M2. M[i] denotes the i-
th column of M . The notation M[a:b] stands for the sub-matrix
[M[a],M[a+1], ...,M[b]] if b ≥ a, and [ ] otherwise. The rank
of M ∈ Fm×n

q is denoted by rk(M), and we say that M has

full rank if and only if rk(M) = min{m,n}. 〈M〉q denotes
the Fq-linear vector space spanned by the columns of M . The
subscript q will typically be suppressed as it is clear from the
context. If M has full column rank, then we say that M forms
a basis for 〈M〉. The notation M1 ∩ M2 represents a matrix
whose columns form a basis of 〈M1〉 ∩ 〈M2〉. In addition,
0a×b represents the a × b zero matrix. Ia×a represents the
a× a identity matrix.

C. Conditional matrix notation: (M1|M2)

Say M1 ∈ Fd×µ1
q and M2 ∈ Fd×µ2

q . By Steinitz Exchange
Lemma, there exists a sub-matrix of M1 with full column rank,
denoted by (M1|M2), that is comprised of rk(M1)− rk(M1∩
M2) columns of M1 such that [M1 ∩M2, (M1|M2)] forms a
basis for 〈M1〉. We have,

rk(M1|M2) = rk(M1)− rk(M1 ∩M2)

= rk([M1,M2])− rk(M2) (5)

where we made the use of the fact that rk([M1,M2]) =
rk(M1) + rk(M2)− rk(M1 ∩M2).

III. PROBLEM FORMULATION: LINEAR COMPUTATION
BROADCAST

A. LCBC
󰀃
Fq,v[K],v

′
[K]

󰀄

An LCBC problem is specified by its parameters as
LCBC

󰀃
Fq,v[K],v

′
[K]

󰀄
, where Fq is a finite field with q = pn

a power of a prime, and vk ∈ Fd×mk
q , v′

k ∈ Fd×m′
k

q , for
all k ∈ [K], are matrices with the same number of rows,
d. The value K represents the number of users, d represents
the data dimension, and mk,m

′
k quantify the amounts of

desired computations and side-information corresponding to
User k. The context is as follows. A central server stores
multiple instances of d dimensional data over a finite field
Fq . The ℓth instance of the data vector is denoted as x(ℓ) =
[x1(ℓ), . . . , xd(ℓ)]

T ∈ Fd×1
q , and x = [x(1), ...,x(L)] ∈ Fd×L

q

collects L ∈ N data instances.1 A broadcast link connects
K distributed users to the central server. The coefficient
matrices v′

k and vk specify the side-information and desired
computations for the kth user. Specifically, for all k ∈ [K],
User k has side information w′

k = xTv′
k ∈ FL×m′

k
q , and

wishes to compute wk = xTvk ∈ FL×mk
q . For compact

notation in the sequel it is useful to define,

uk ≜ [v′
k,vk]. (6)

A coding scheme for an LCBC problem is denoted by
a tuple (L,Φ,Ψ[K],S), which specifies a batch size L, an
encoding function Φ : FL×d

q → S that maps the data to the
broadcast information S over some alphabet S , i.e.,

Φ(x) = S (7)

and decoders, Ψk : S ×FL×m′
k

q → FL×mk
q , that allow the kth

user to retrieve wk from the broadcast information S and the
side-information w′

k for all k ∈ [K], i.e.,

wk = Ψk(S,w
′
k) = Ψk(Φ(x),w

′
k), ∀k ∈ [K]. (8)

1The parameter L is referred to as the batch size and may be chosen freely
by a coding scheme.
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A coding scheme that allows successful decoding for all data
realizations, i.e., satisfies (8) for all x ∈ Fd×L

q , is called an

achievable scheme. Let us define A
󰀓
Fq,v[K],v

′
[K]

󰀔
as the set

of all achievable schemes for LCBC
󰀓
Fq,v[K],v

′
[K]

󰀔
.

The broadcast cost (normalized by L and measured in q-ary
units) for an achievable scheme is defined as ∆ = logq |S|/L.
The optimal broadcast cost ∆∗󰀃Fq,v[K],v

′
[K]

󰀄
for an LCBC

problem is defined as,

∆∗󰀃Fq,v[K],v
′
[K]

󰀄
= inf

(L,Φ,Ψ[K],S)∈A
󰀃
Fq,v[K],v

′
[K]

󰀄∆. (9)

The capacity, C∗, of an LCBC problem is the reciprocal of its
optimal broadcast cost,

C∗󰀃Fq,v[K],v
′
[K]

󰀄
= 1/∆∗󰀃Fq,v[K],v

′
[K]

󰀄
. (10)

Note that although the side information and demands are
linear functions of the data, the achievable schemes, i.e., the
encoding and decoding operations are not restricted to be
linear.

B. Generic Capacity

Define

Ln

󰀃
p,K, d,m[K],m

′
[K]

󰀄

=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽
LCBC

󰀃
Fq,v[K],v

′
[K]

󰀄

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

q = pn

vk ∈ Fd×mk
q

v′
k ∈ Fd×m′

k
q

∀k ∈ [K]

󰀼
󰁁󰁁󰁀

󰁁󰁁󰀾
, (11)

or Ln in short, as the set of all LCBC instances with the
‘dimensional’ parameters p, n, K, m[K], m′

[K]. Let Λn be a
uniformly randomly chosen instance from Ln, and ∆∗(Λn) be
the optimal download cost of Λn. In order to define generic
capacity, let us fix the parameters (p,K, d,m[K],m

′
[K]) and

allow n to approach infinity.
The generic optimal broadcast cost ∆g , if exists, is defined

as the value that ∆∗(Λn) converges to in probability, i.e.,

lim
n→∞

Pr
󰀓󰀏󰀏∆∗(Λn)−∆g

󰀏󰀏 < ε
󰀔
= 1, ∀ε > 0. (12)

The generic capacity is then defined as the reciprocal, i.e.,

Cg = 1/∆g. (13)

Since ∆g, Cg may not always exist, we further define the
following upper and lower extremal metrics, which always
exist and help in the analysis of generic capacity. We say
that ∆ is achievable asymptotically almost surely (a.a.s) (cf.
Definition 1.1.2(v) [54]) if,

lim
n→∞

Pr
󰀓
∆∗(Λn) ≤ ∆

󰀔
= 1, (14)

which is expressed compactly as ∆∗(Λn)
a.a.s.

≤ ∆. Define the
smallest such ∆ as ∆∗

u

󰀓
p,K, d,m[K],m

′
[K]

󰀔
, or ∆∗

u in short,
i.e.,

∆∗
u ≜ inf

󰁱
∆ : ∆∗(Λn)

a.a.s.

≤ ∆
󰁲
. (15)

Similarly, define ∆∗
l as,

∆∗
l ≜ sup

󰁱
∆ : ∆∗(Λn)

a.a.s.
> ∆

󰁲
. (16)

Thus, ∆∗
u is the infimum of broadcast costs that are achievable

a.a.s. (tightest upper bound), and ∆∗
l is the supremum of

broadcast costs that are not achievable a.a.s. (tightest lower
bound). By definition, ∆∗

u ≥ ∆∗
l . If2 ∆∗

u = ∆∗
l , then they are

equal to the generic optimal broadcast cost ∆g , i.e.,

∆g = ∆∗
u = ∆∗

l (17)

and Cg = 1/∆g exists. If ∆∗
u ∕= ∆∗

l , then ∆g, Cg do not exist.

Remark 1. It is worth noting that the definition of ‘generic
capacity’ connects to the notion of generic subsets in the
literature on generic case complexity [55]. To briefly point out
this connection, following along the lines of Definition 3.1 and
Lemma 3.2 of [55], we may define a generic subset as follows:
Let I be a set of inputs with size3 function σ. Define Ir, the
sphere of radius r, by Ir = {w | w ∈ I,σ(w) = r}, the set
of inputs of size r. A subset R ⊂ I is said to have asymptotic
density α, written ρ′(R) = α, if limr→∞ |R ∩ Ir|/|Ir| = α
where |X| denotes the size of a set X . If R has asymptotic
density 1, it is called generic; and if it has asymptotic density
0, it is negligible. Now, for our problem, the set I = ∪n∈NLn

is the set of all LCBC instances for fixed p,K,m[K],m
′
[K].

The size function σ = n, and the sphere In = Ln. Let
Ru(∆) = {L ∈ I | ∆ ≥ ∆∗(L)} be the subset of LCBC
instances for which the broadcast cost ∆ is achievable. Then
∆∗

u is the infimum of the values of ∆ for which Ru(∆) is
generic. Similarly, ∆∗

l is the supremum of the values of ∆
for which Rl(∆) = {L ∈ I | ∆ < ∆∗(L)} is generic. In
plain words, ∆∗

u is the infimum of broadcast costs that are
generically achievable, while ∆∗

l is the supremum of broadcast
costs that are generically not achievable. When they match, we
have the generic optimal broadcast cost, and as its reciprocal
notion, the generic capacity.

IV. RESULTS: GENERIC CAPACITY

In this work we mainly focus on the symmetric LCBC,
where we have,

m1 = m2 = ... = mK = m,

m′
1 = m′

2 = ... = m′
K = m′. (18)

Note that the generic capacity (if it exists) can only be a func-
tion of (p,K, d,m,m′), since these are the only parameters
left.

A. K = 1, 2, 3 Users

While we are interested primarily in LCBC settings with
large number of users (large K), it is instructive to start with
the generic capacity characterizations for K = 1, 2, 3 users.
Recall that the LCBC problem is already fully solved for K =

2Note that the definition does not automatically preclude strict inequality,
e.g., as a thought experiment suppose one half of all instances have ∆∗ = 1
and the other half have ∆∗ = 2, then ∆∗

u = 2 and ∆∗
l = 1.

3A size function for a set I is a map σ : I → N, the nonnegative integers,
such that the preimage of each integer is finite (Definition 2.4 of [55]).
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2 in [28] and K = 3 in [38]. Therefore, the following theorem
essentially follows from [28], [38]. The K = 1 case is trivial
and is included for the sake of completeness.

Theorem 1. The generic capacity Cg = 1/∆g for the
symmetric LCBC with K = 1, 2, 3 users is characterized as
follows.

K = 1 user:

∆g =

󰀻
󰁁󰀿

󰁁󰀽

0, d ≤ m′;

d−m′, m′ ≤ d ≤ m+m′;

m, m+m′ ≤ d.

(19)

K = 2 users:

∆g =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

0, d ≤ m′;

d−m′, m′ ≤ d ≤ m+m′;

m, m+m′ ≤ d ≤ m+ 2m′;

d− 2m′, m+ 2m′ ≤ d ≤ 2(m+m′);

2m, 2(m+m′) ≤ d.

(20)

K = 3 users:

∆g =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

0, d ≤ m′;

d−m′, m′ ≤ d ≤ m′ +m;

m, m′ +m ≤ d ≤ m+ 1.5m′;

d− 1.5m′, m+ 1.5m′ ≤ d ≤ 1.5(m+m′);

1.5m, 1.5(m+m′) ≤ d ≤ 1.5m+ 2m′;

d− 2m′, 1.5m+ 2m′ ≤ d ≤ 2(m+m′);

2m, 2(m′ +m) ≤ d ≤ 2m+ 3m′;

d− 3m′, 2m+ 3m′ ≤ d ≤ 3(m+m′);

3m, 3(m+m′) ≤ d.

(21)

The proof of Theorem 1 is relegated to Appendix C. The
task left for the proof is to correctly account for the generic
cases (non-trivial for K = 3), after which the capacity results
from [28], [38] can be directly applied.

B. Large K

The main result of this work appears in the following
theorem.

Theorem 2. For the symmetric LCBC with the number of
users satisfying

K ≥ d/gcd(d,m+m′), (22)

the generic capacity Cg = 1/∆g is characterized as follows,

∆g =

󰀻
󰁁󰀿

󰁁󰀽

0, d ≤ m′;

d−m′, m′ ≤ d ≤ m+m′;

dm/(m+m′), m+m′ < d ≤ K(m+m′).

(23)

The proof of converse for Theorem 2 appears in Sec-
tion VI while the achievability is proved in Appendix A.
The main technical challenge is to show the achievability
of dm/(m + m′) + ε, ∀ε > 0 in the non-trivial regime,
m+m′ < d ≤ K(m+m′). Remarkably, in this regime we are

able to show that ∀ε > 0, a broadcast cost of dm/(m+m′)+ε
is achievable a.a.s., regardless of the number of users K,
based on an asymptotic interference alignment (IA) scheme.
Examples to illustrate the asymptotic IA construction are
provided in Section V. The condition (22) on the number
of users in Theorem 2 is needed for our converse bound in
Section VI to match the achievability.

Next, let us briefly address arbitrary number of users and
asymmetric settings through the following corollary of Theo-
rem 2.

Corollary 1. For the (not necessarily symmetric) LCBC with
arbitrary number of users,

∆∗
l ≥ max

K⊂[K]
min

󰀫
d−

󰁛

k∈K
m′

k,
󰁛

k∈K
mk

󰀬
, (24)

∆∗
u ≤ min

󰀻
󰀿

󰀽
mmaxd

mmax +m′
min

, (d−m′
min)

+,
󰁛

k∈[K]

mk

󰀼
󰁀

󰀾 ,

(25)

where mmax ≜ maxk∈[K] mk, and m′
min ≜ mink∈[K] m

′
k.

Proof. (24) follows from a simple cooperation bound. Con-
sider any LCBC instance Λn ∈ Ln. For any subset K ⊂ [K]
let the users in K fully cooperate as one user, and eliminate all
other users [K]\K, to obtain a single user LCBC instance Λn,K
with optimal broadcast cost ∆∗(Λn,K) ≤ ∆∗(Λn). The com-
bined user has demand coefficient matrix vK ≜

󰀅
vk, k ∈ K

󰀆

with d rows and mK ≜
󰁓

k∈K mk columns, and the side-
information coefficient matrix v′

K ≜
󰀅
v′
k, k ∈ K

󰀆
with d rows

and m′
K ≜

󰁓
k∈K m′

k columns. From Theorem 1, based on
the generic capacity for the single user case, we immedi-
ately obtain (24). For (25) note that ∆∗(Λn) ≤

󰁓
k∈[K] mk

because serving the users separately is always an option.
∆∗(Λn) ≤ (d − m′

min)
+ also holds because broadcasting

(d − m′
min) generic linear combinations (over a sufficiently

large field extension) of the data allows each user a total
number of generic equations (d − m′

min)
+ + m′

k ≥ d,
which suffices for each user to recover all d data dimensions.
Finally, it is always possible to mimic a symmetric setting by
adding superfluous demands and discarding some of the side-
information at each user until every user has m′

min generic lin-
ear combinations of side-information and mmax generic linear
combinations of demand. Note that if d ≤ mmax+m′

min then
mmaxd

mmax+m′
min

> (d − m′
min)

+, and if d > K(mmax + m′
min),

then mmaxd
mmax+m′

min
>

󰁓
k∈[K] mk. The only remaining case is

mmax + m′
min < d ≤ K(mmax + m′

min), in which case the
achievability of mmaxd

mmax+m′
min

is shown in the proof of Theorem
2. □

C. One dimensional case: m = m′ = 1

In the special case where the side-information and demands
are one-dimensional, the generic capacity is characterized for
any number of users, as follows.

Theorem 3. For LCBC with m = m′ = 1, the generic
capacity Cg = 1/∆g is characterized as follows.
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1) For even d,

∆g =

󰀫
d/2, 2 ≤ d ≤ 2K;

K, d ≥ 2K.
(26)

2) For odd d,

∆g =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

0, d = 1;

d/2, 3 ≤ d < 2K − 1;

K − 1, d = 2K − 1;

K, d > 2K − 1.

(27)

The result for even d follows directly from Theorem 2
and Corollary 1. Specifically, note that for even d we have
d/gcd(d, 2) = d/2, and thus (23) finds the generic capacity
for even d when K ≥ d/2. Meanwhile, letting K = [K] in
(24), together with (25) proves the capacity for K ≤ d/2.

For cases with odd d, (24) and (25) provide the capacity
for d = 1 and d > 2K − 1 (equivalently, d ≥ 2K). For
the remaining 2 regimes, (25) shows achievability for 1 ≤
d < 2K − 1. (24) provides the converse for d = 2K − 1 by
specifying K = [1 : (d− 1)/2], since min{d− (d− 1)/2, (d−
1)/2} = (d−1)/2 = K−1. To complete the proof of Theorem
3, it remains to show the converse for 3 ≤ d < 2K − 1, and
the achievability for d = 2K − 1. These proofs are provided
in Section VII.

D. Observations

1) The following observations follow directly by specializ-
ing Corollary 1 to the symmetric LCBC with arbitrary
number of users K.

d ≤ m′ =⇒ ∆g = 0; (28)
m′ ≤ d ≤ m+m′ =⇒ ∆g = d−m′; (29)

1 <
d

m+m′ ≤ K =⇒ if ∆g exists, then

max

󰀝
d−m′

󰀛
d

(m+m′)

󰀜
,m

󰀙
d

m+m′

󰀚󰀞

≤ ∆g ≤ md

(m+m′)
; (30)

K(m+m′) ≤ d =⇒ ∆g = Km. (31)

Regarding (30), where ∆g is not fully established, note
that in this regime, if (m + m′) divides d, then ∆g =
md/(m+m′) is settled. On the other hand, if (m+m′)
does not divide d, and if ∆g exists, then we have its value
within a multiplicative factor of 2 because in this regime,

md/(m+m′)

m⌊d/(m+m′)⌋ =
d/(m+m′)

⌊d/(m+m′)⌋ ≤ 2. (32)

Thus, the generic capacity of the symmetric LCBC is
characterized within a factor of 2 when it exists, for
arbitrary number of users K.

2) Theorem 2 and Corollary 1 lead to sharp generic capacity
results for various asymmetric cases as well. For example,
from Corollary 1 we find that for any number of users,
if m′

k ≤ d ≤ mk + m′
k for all k ∈ [K], then ∆g =

d−mink∈[K] m
′
k. If d ≥

󰁓
k∈[K](mk +m′

k) then ∆g =

󰁓
k∈[K] mk. In Theorem 2 the optimal broadcast cost

∆g = dm/(m + m′) for the non-trivial regime (m +
m′) < d ≤ K(m+m′), remains unchanged if we include
another K ′ users, say Users K +1,K +2, · · · ,K +K ′,
with asymmetric demands and side-information such that
mk′ ≥ m′ and mk ≤ m for all k′ ∈ [K + 1 : K +
K ′]. The original converse still holds because additional
users cannot help. The original achievability still holds
because the additional users have more side-information
and less demands than original users, so they can pretend
to be like the original users by discarding some of their
side-information and adding superfluous demands. This
creates a symmetric setting with K + K ′ users, but in
this regime ∆g = dm/(m+m′) does not depend on the
number of users.

3) The generic capacity of the symmetric LCBC
Cg(p,K, d,m,m′) can be quite significantly higher
than the best of the rates achievable through the baseline
schemes of random coding (1/(d − m′)) and separate
transmissions (1/(Km)). Gains up to the order of K
and d in the number of users and data dimensions are
observed. To make this precise, consider the extremal
gain [53] of generic capacity over the baseline schemes
as a function of the number of users, K,

ηK ≜ sup
p,d,m,m′

Cg(p,K, d,m,m′)

max
󰁱

1
(d−m′)+ ,

1
Km

󰁲

= sup
d,m,m′

m+m′

md

max
󰁱

1
(d−m′)+ ,

1
Km

󰁲

= K, (33)

and as a function of the data dimension d,

ηd ≜ sup
p,K,m,m′

Cg(p,K, d,m,m′)

max
󰁱

1
(d−m′)+ ,

1
Km

󰁲

= sup
K,m,m′

m+m′

md

max
󰁱

1
(d−m′)+ ,

1
Km

󰁲

∈ [d/4, d/4 + 1]. (34)

To see (33) note that it is trivial that ηK ≤ K, whereas
with d = Km + m′ and m = 1,m′ → ∞, we have
ηK ≥ limm′→∞ K(1 + m′)/(K + m′) = K. For (34),
setting m = 1,m′ = ⌊d/2⌋ and K > ⌈d/2⌉, we have
ηd ≥ (1 + ⌊d/2⌋)(d − ⌊d/2⌋)/d ≥ d/4, whereas we
also have ηd ≤ (1 +m′)(1 −m′/d) ≤ (d + 1)2/(4d) ≤
d/4 + 1. The strong gains are indicative of the crucial
role of interference alignment in the capacity of linear
computation networks, especially when side-information
is abundant.

4) In all cases where the question of existence of generic
capacity is settled, the answer is in the affirmative.
However, it remains unknown whether this is always true,
e.g., for all p, d,K,m,m′, must we have ∆∗

u = ∆∗
l ? We

conjecture that this is indeed the case.
5) In all cases where the generic capacity of the LCBC is

known, it does not depend on the characteristic, p, i.e.,
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d

∆g(d,m,m′)

K ≥ d
K = 3
K = 2
K = 1

0

m

1.5m

2m

3m

m
′

m
+
m
′

m
+
1.5

m
′

1.5
(m

+
m
′ )

m
+
2m

′

1.5
m

+
2m

′

2(m
+
m
′ )

2m
+
3m

′

3(m
+
m
′ )

md
m+m′

Fig. 2: Functional form of ∆g . The large K setting listed as K ≥ d for brevity, also allows more general K as in (22).

for a fixed K, the generic optimal broadcast cost can be
expressed as ∆g(d,m,m′). The capacity of the general
LCBC should depend on the characteristic, because there
exist examples of network coding problems where such
dependence has been demonstrated, and there exists an
equivalence between network coding and index coding,
which in turn is a special case of the LCBC. However, it
remains unknown whether the generic capacity of LCBC
could depend on the characteristic p.

6) The functional form of ∆g(d,m,m′) is plotted in Fig-
ure 2 for K = 2, K = 3 and for large K. While
∆g(d,m,m′) characterizations are only defined for non-
negative integer values of d,m,m′, the functional form
is shown as a continuous plot for simplicity. There exist
three slightly different forms of the plot for K = 3,
depending on the relationship between m and m′. The
K = 3 plot shown in Figure 2 assumes m < m′. While
the lengths of the steps for K = 3 are determined by the
relative sizes of m,m′, d, the plot always takes the shape
of a staircase function with alternating horizontal (slope
= 0) and slanted (slope = 1) edges. The slope of the outer
envelope is m/(m′ +m).

7) A remarkable scale-invariance property is evident in
∆g(d,m,m′), in the sense that scaling d,m,m′ by the
same constant results in a scaling of ∆g(d,m,m′) by the
same constant as well. Specifically,

∆g(λd,λm,λm′) = λ∆g(d,m,m′). (35)

This is reminiscent of scale-invariance noted in DoF
studies of wireless networks [56].

8) The initial (where d ≤ m + m′) and final stages (d ≥
K(m+m′)) represent somewhat trivial regimes that are
the same for all K. In the remaining non-trivial regime,
while ∆g for K = 2 and K = 3 takes the shape of a
slanted staircase function, for large number of users we
obtain a smooth ramp function instead. A comparison of
K = 2 with K = 3 suggests that the number of steps
in the staircase increases with K, bringing the staircase
closer to its upper linear envelope (md/(m+m′)), until
K exceeds a threshold, beyond which the stairs disappear
and ∆g is equal to that linear envelope.

9) In the non-trivial regime 1 < d/(m + m′) < K for
large K (e.g., K ≥ d) it is remarkable that ∆g does
not depend on K. In other words, once the number of
users exceeds a threshold (e.g., K ≥ d), additional users
do not add to the generic broadcast cost of the LCBC.
The achievable scheme in this parameter regime relies
on linear asymptotic interference alignment (IA) [45]
over a sub-field of Fq , and while ∆g remains unaffected
by additional users, the cost of additional users may be
reflected in the need for larger n values to approach the
same broadcast cost, as the number of users increases.
As usual with asymptotic IA schemes, the achievable
scheme is far from practical, and serves primarily to
establish the fundamental limit of an asymptotic metric,
in this case ∆g . What is possible with practical schemes,
e.g., with limited n and other coding-theoretic complexity
constraints, remains an important open problem.

10) The generic capacity explored in this work is for LCBC
instances over Fpn where we allow large n but p is
arbitrary. This formulation is appealing because the large
n limit allows Fpn to be interpreted as high dimensional
vector subspaces over subfields of Fpn , e.g., Fp. This fa-
cilitates linear vector coding schemes, allows dimensional
analysis from vector space perspectives, and leads to
new insights from linear interference alignment schemes,
that may be broadly applicable. The alternative, where
p is allowed to be large but n is arbitrary (especially
n = 1) remains unexplored. By analogy with wireless
DoF studies, the latter is somewhat reminiscent of alge-
braic interference alignment schemes based on rational
dimensions [46], i.e., non-linear IA schemes.

11) Linear asymptotic IA has been used previously for net-
work coding problems, e.g., distributed storage exact
repair [57], and K user multiple unicast [58], under the
assumption of large ‘q’. Note that since q = pn, a large-
q assumption is more general than a large-n assumption,
e.g., large-q also allows n = 1 with large p. So at first
sight it may seem that our IA schemes that require large-n
are weaker than conventional asymptotic IA schemes that
only require large-q. This interpretation however misses
a crucial aspect of our construction, which is some-
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what subtle but technically quite significant. Conventional
(large-q) constructions of asymptotic IA schemes rely on
a diagonal structure of underlying linear transformations
(matrices), based on symbol extensions (batch process-
ing), and most importantly require these diagonal matri-
ces to have sufficient diversity, which is possible with
time-varying coefficients [45]. In fact, such constructions
are also possible for LCBC if we allow time-varying
demands and side-information, e.g., new coefficient ma-
trices are drawn i.i.d. uniform for each ℓ ∈ [L]. However,
for the LCBC with fixed demands and side-information,
i.e., fixed coefficient matrices vk,v

′
k, symbol extensions

only give rise to diagonal matrices that are scaled versions
of the identity matrix (consider large p and n = 1), i.e.,
they lack the diversity that is needed for linear asymptotic
IA schemes. Our construction works with fixed coefficient
matrices, consistent with the original LCBC definition.
In this regard, a key technical contribution of this work
is to show that the large-n assumption allows sufficient
diversity for linear asymptotic IA. For this we modify
the conventional asymptotic IA construction to include
an additional overhead (see Remark 2 in Section V-A),
and then show that while this overhead has a negligible
impact on ∆g , it gives us sufficient diversity a.a.s.

V. EXAMPLES

In this section let us present two examples to convey the
main ideas of our asymptotic IA constructions, with somewhat
simplified notation. The complete achievability proof for The-
orem 2 appears later, in Appendix A. The first example that
is presented in Section V-A is perhaps the smallest example
where asymptotic alignment is needed. However, the proof
in this limited case hides too many of the details that are
needed in the general case, so we provide a larger example
in the following subsection which may be more useful in
understanding the general proof.

A. Example 1: (p,K, d = 4,m = 1,m′ = 1)

Let L = 1. For q = pn, we will interpret Fq as an n-
dimensional vector space over Fp, and design a linear scheme
over Fp. Accordingly, let us clarify the notation as follows.

1) The elements of the data and coefficient matrices are
chosen from Fq = Fpn .

2) The data xT = [x1, x2, x3, x4] ∈ F1×4
q , is equivalently

represented over Fp as XT = [XT
1 , X

T
2 , XT

3 , X
T
4 ]

∈ F1×4n
p , where Xi ∈ Fn×1

p is the n × 1 vector
representation of xi over Fp.

3) User k has side information xTv′
k ∈ Fq and wishes

to compute xTvk ∈ Fq , where the elements of
(v′

k)
T = [v′k1, v

′
k2, v

′
k3, v

′
k4], vT

k = [vk1, vk2, vk3, vk4],
are drawn i.i.d. uniform in Fq . Equivalently, over
Fp, User k has side information XTV′

k ∈ F1×n
p

and wishes to compute XTVk ∈ F1×n
p , where

(V′
k)

T =
󰀅
(V ′

k1)
T , (V ′

k2)
T , (V ′

k3)
T , (V ′

k4)
T
󰀆

∈ Fn×4n
p ,

(Vk)
T =

󰀅
(Vk1)

T , (Vk2)
T , (Vk3)

T , (Vk4)
T
󰀆

∈ Fn×4n
p

and V′
ki,Vki are the n× n matrix representations in Fp

of v′ki and vki, respectively.

4) Let r be uniformly randomly chosen in Fq , and denote
by R ∈ Fn×n

p the matrix representation of r in Fp.
5) Define the set of variables,

V ≜
󰁱
vki : k ∈ [K], i ∈ [4]

󰁲

∪
󰁱
v′ki : k ∈ [K], i ∈ [4]

󰁲
∪
󰁱
r
󰁲
, (36)

and note that |V| = 8K + 1.
Our goal is to show that ∆∗

u ≤ dm/(m + m′) = 2. For all
k ∈ [K] and for all i ∈ [4], let us define tki ∈ Fq as,

tki ≜ v′ki − vkir, (37)

so that we have 󰀵

󰀹󰀹󰀷

v′k1
v′k2
v′k3
v′k4

󰀶

󰀺󰀺󰀸 =

󰀵

󰀹󰀹󰀷

vk1
vk2
vk3
vk4

󰀶

󰀺󰀺󰀸 r +

󰀵

󰀹󰀹󰀷

tk1
tk2
tk3
tk4

󰀶

󰀺󰀺󰀸 . (38)

Let Tki ∈ Fn×n
p denote the n×n matrix representation of tki

in Fp, so that we have in Fp,
󰀵

󰀹󰀹󰀷

V ′
k1

V ′
k2

V ′
k3

V ′
k4

󰀶

󰀺󰀺󰀸

󰁿 󰁾󰁽 󰂀
V′

k∈F4n×n
p

=

󰀵

󰀹󰀹󰀷

Vk1

Vk2

Vk3

Vk4

󰀶

󰀺󰀺󰀸

󰁿 󰁾󰁽 󰂀
Vk∈F4n×n

p

R+

󰀵

󰀹󰀹󰀷

Tk1

Tk2

Tk3

Tk4

󰀶

󰀺󰀺󰀸

󰁿 󰁾󰁽 󰂀
Tk∈F4n×n

p

, (39)

and Tk is defined as in (39).
Next let us construct a matrix, H ∈ Fn×η

p , whose column-
span over Fp is almost invariant under linear transformations
Vki and Tki for all k ∈ [K], i ∈ [4], i.e., 〈VkiH〉p ≈ 〈H〉p and
〈TkiH〉p ≈ 〈H〉p. In addition, we want η/n ≈ 1/2, so that the
columns of H span approximately half of the n-dimensional
vector space. For this, we invoke the asymptotic IA scheme
of [45].

For a natural number N whose value (as a function of n)
will be specified later, let us start first by constructing the
vector h ∈ F1×η

q as follows,

h =

󰀥
K󰁜

k=1

4󰁜

i=1

vαki

ki tβki

ki , s.t. 0 ≤ αki,βki ≤ N − 1

󰀦
(40)

≜ (h1, h2, . . . , hη), (41)

and similarly define h ∈ F1×η
q as follows,

h =

󰀥
K󰁜

k=1

4󰁜

i=1

vαki

ki tβki

ki , s.t. 0 ≤ αki,βki ≤ N

󰀦
(42)

≜ (h1, h2, . . . , hη). (43)

Note that we have,

η = N8K , η = (N + 1)8K . (44)

This construction ensures that the elements of vkih and tkih
are contained among the elements of h for all k ∈ [K], i ∈ [4].
Now let H1, H2, ..., Hη ∈ Fn×n

p be the matrix representations
in Fp of h1, h2, ..., hη ∈ Fq , and H1, H2, ..., Hη ∈ Fn×n

p be
the matrix representations in Fp of h1, h2, ..., hη ∈ Fq . Define,

H =
󰀅
H11, H21, . . . , Hη1

󰀆
∈ Fn×η

p , (45)
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and

H =
󰀅
H11, H21, . . . , Hη1

󰀆
∈ Fn×η

p , (46)

where 1 denotes the n× 1 vector of 1’s. By construction, the
columns of VkiH and TkiH are subsets of the columns of H,
which implies that ∀k ∈ [K], i ∈ [4],

〈VkiH〉p ⊂ 〈H〉p, 〈TkiH〉p ⊂ 〈H〉p. (47)

Consider the matrix [H, RH] ∈ Fn×2η
p , and define the event

En as,

En ≜
󰀓

rk([H, RH]) = 2η
󰀔
. (48)

The next steps, (49)-(64) show that En holds a.a.s., which will
subsequently be essential to guarantee successful decoding by
each user.
[H, RH] ∈ Fn×2η

p has full column rank if and only if for
all c = [c1, . . . , cη]

T , c′ = [c′1, . . . , c
′
η]

T ∈ Fη×1
p such that󰀅

cT , c
′T
󰀆
∕= 01×2η ,

0n×1

∕= [H, RH]

󰀗
c
c′

󰀘
(49)

=
󰀅
H11, H21, . . . , Hη1, RH11, RH21, . . . , RHη1

󰀆 󰀗c
c′

󰀘
(50)

=
󰀃
c1H11+ c2H21+ · · ·+ cηHη1

󰀄

+
󰀃
c′1RH11+ c′2RH21+ . . .+ c′ηRHη1

󰀄
(51)

=
󰀃
c1H1 + c2H2 + . . .+ cηHη

+ c′1RH1 + c′2RH2 + . . .+ c′ηRHη

󰀄
1 (52)

≜ Fc,c′1 (53)

where Fc,c′ is an n × n matrix in Fp, which has a scalar
representation in Fq as,

fc,c′ = c1h1 + c2h2 + ...+ cηhη󰁿 󰁾󰁽 󰂀
η

+ c′1rh1 + c′2rh2 + ...+ c′ηrhη󰁿 󰁾󰁽 󰂀
η

∈ Fq. (54)

Note that since Fp is a sub-field of Fq , the scalars ci, c
′
i in

Fp, are also scalars ci, c
′
i in Fq . Thus, Fc,c′1 ∈ Fn×1

p can be
equivalently represented in Fq as the product of fc,c′ with the
scalar representation in Fq , of 1 (the all 1 vector in Fp). Since
the Fq representation of 1 is not 0, we obtain that

Fc,c′1 ∕= 0n×1 ⇐⇒ fc,c′ ∕= 0. (55)

Therefore, [H, RH] has full column rank if and only if,

P ≜
󰁜

[cT ,c′T ]∈F1×2η
p \{0}

fc,c′ ∕= 0. (56)

To distinguish polynomials from polynomial functions, let us
indicate polynomials with square parentheses around them. For
example, [fc,c′ ] ∈ Fp[V] is a polynomial in the indeterminate
variables V , with coefficients in Fp, and fc,c′(V) : F|V|

q → Fq

is a function that maps the variables V , which take values
in Fq , to a scalar value in Fq . Similarly, [P ] ∈ Fp[V] is a
polynomial, whereas P (V) : F|V|

q → Fq is a function. The
condition (56), which is equivalent to the event En, says that

a uniformly random evaluation of the function P (V) produces
a non-zero value. We will show that this is true a.a.s. in n.

First let us show that [fc,c′ ] ∈ Fp[V] is a non-zero polyno-
mial for all

󰀅
cT , c

′T
󰀆
∈ F1×2η

p \ 0. We consider two cases.
1) Case I: At least one of c1, c2, ..., cη is not zero. Let us

set r = 0, which implies tki = v′ki by (38). Meanwhile,
h1, h2, ..., hη are different monomials in the elements of
v′ki and vki due to (40). Since different monomials are
linearly independent, we have that [fc,c′ ] = c1h1+c2h2+
. . .+ cηhη is a non-zero polynomial.

2) Case II: c1 = c2 = ... = cη = 0 and thus at least one
of c′1, c

′
2, ..., c

′
η ∕= 0. For this case, we have [fc,c′ ] =

r(c′1h1 + c′2h2 + ... + c′ηhη), which is also a non-zero
polynomial since it is a product of r with a non-zero
polynomial.

Thus, [fc,c′ ] ∈ Fp[V] is a non-zero polynomial. It has degree
not more than 12K(N − 1) + 1. Therefore, [P ] ∈ Fp[V] is
a non-zero polynomial with degree not more than (p2η −
1)[12K(N − 1) + 1]. By Schwartz-Zippel Lemma, when all
the variables V are assigned i.i.d. uniformly chosen values in
Fq ,

Pr
󰀓
P (V) ∕= 0

󰀔
≥ 1− (p2η − 1)[12K(N − 1) + 1]

q
(57)

= 1− (p2η − 1)[12K(N − 1) + 1]

pn
(58)

≥ 1− 12K
N

pn−2η
(59)

→ 1 (60)

as n → ∞ if limn→∞
N

p(n−2η) = 0.
Now let us specify the value of N as follows,

N =

󰀧󰀕
n−

√
n

2

󰀖1/(8K)
󰀨
, (61)

from which it follows that,

N ≤
󰀕
n−

√
n

2

󰀖1/(8K)

(62)

and

n− 2η = n− 2N8K ≥
√
n. (63)

Therefore,

lim
n→∞

N

pn−2η
≤ lim

n→∞

󰀓
n−

√
n

2

󰀔1/(8K)

p
√
n

= 0 (64)

and since N ≥ 0, we have limn→∞
N

pn−2η = 0. Thus, we
have shown that En holds a.a.s., i.e., [H, RH] ∈ Fn×2η

p has
full column rank 2η, a.a.s.

Now let Z = (In×n|[H, RH]) ∈ Fn×(n−2η)
p , so that

[H, RH,Z] ∈ Fn×n
p has full rank n. Let the server broadcast

S = (S0,S1,S2, · · · ,SK) ∈ F1×(4η+K(n−2η))
p , such that,

S0 = XT

󰀵

󰀹󰀹󰀷

H 0 0 0
0 H 0 0
0 0 H 0
0 0 0 H

󰀶

󰀺󰀺󰀸 ∈ F1×4η
p (65)
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and for all k ∈ [K],

Sk = XTVkZ ∈ F1×(n−2η)
p . (66)

Remark 2. From (63) we note that n ≥ 2η +
√
n. The

√
n

term represents an overhead that is not present in conven-
tional asymptotic IA constructions. The overhead is evident in
the separate transmissions, of the projections of the desired
information along the columns of Z, for each of the K
users, as in S1,S2, · · · ,SK . Digging deeper, this overhead
is essential for our scheme to ensure that En holds a.a.s.
Note that it is because of this

√
n overhead that we have

limn→∞
N

p(n−2η) = 0 in (60),(64), because in the fraction
N

pn−2η , the numerator is sub-linear in n (roughy n1/8K), while
the denominator is super-polynomial in n, roughly (p

√
n).

Fortunately, the extra broadcast cost of K
√
n due to this

overhead, is negligible compared to n for large n, so it does
not affect the asymptotic achievability.

The decoding process works as follows. User k is able to
compute XTV′

kH directly from its side information XTV′
k.

The user is able to compute XTVkH and XTTkH from S0,
since,

〈VkH〉p =

󰀭
󰀵

󰀹󰀹󰀷

Vk1H
Vk2H
Vk3H
Vk4H

󰀶

󰀺󰀺󰀸

󰀮

p

⊂
󰀭
󰀵

󰀹󰀹󰀷

H 0 0 0
0 H 0 0
0 0 H 0
0 0 0 H

󰀶

󰀺󰀺󰀸

󰀮

p

(67)

and

〈TkH〉p =

󰀭
󰀵

󰀹󰀹󰀷

Tk1H
Tk2H
Tk3H
Tk4H

󰀶

󰀺󰀺󰀸

󰀮

p

⊂
󰀭
󰀵

󰀹󰀹󰀷

H 0 0 0
0 H 0 0
0 0 H 0
0 0 0 H

󰀶

󰀺󰀺󰀸

󰀮

p

(68)

due to (47). Thus, User k is able to compute

XTVkRH = XTV′
kH−XTTkH (69)

according to (39). Together with Sk, User k thus obtains,

[XTVkH, XTVkRH, Sk] = XTVk[H, RH,Z] (70)

and since [H, RH,Z] ∈ Fn×n
p is invertible (has full rank)

a.a.s., User k is able to retrieve its desired computation,
XTVk ∈ F1×n

p a.a.s.
For q = pn, the cost of broadcasting each p-ary symbol is

1/n in q-ary units. Thus, the broadcast cost of this scheme is,

∆n =
4η +K(n− 2η)

n
. (71)

The next few steps (72)-(77) show that limn→∞ ∆n = 2.
By (61), we have that,

η = N8K ≤ n−
√
n

2
≤ (N + 1)8K = η (72)

which implies that

lim
n→∞

η

n
= lim

n→∞

N8K

n
≤ lim

n→∞

n−
√
n

2n
=

1

2
. (73)

On the other hand,

lim
n→∞

η

n
= lim

n→∞

(N + 1)8K/((1 + 1/N)8K)

n

≥ lim
N→∞

1

(1 + 1/N)8K
lim
n→∞

n−
√
n

2n

= 1× 1

2
=

1

2
. (74)

Thus, we have that

lim
n→∞

η

n
=

1

2
, (75)

which also implies that

lim
n→∞

η

n
= lim

n→∞

η

n
× lim

N→∞
(1 + 1/N)8K =

1

2
× 1 =

1

2
.

(76)

Combining (71) with (75) and (76) we have

lim
n→∞

∆n = 4× 1

2
+ 0 = 2 (77)

since K is independent of n. Thus, for any ε > 0, ∃n0 > 0
such that ∆n ≤ 2+ε for all n ≥ n0. Recall that the broadcast
cost ∆n is achievable if En holds, i.e., ∆∗(Λn) ≤ ∆n ≤ 2+󰂃
if n ≥ n0 and En holds. Now let us show that 2 + 󰂃 is
achievable a.a.s., by evaluating the limit in (14) as follows,

lim
n→∞

Pr
󰀓
∆∗(Λn) ≤ 2 + 󰂃

󰀔

≥ lim
n→∞

Pr

󰀣󰀓
∆∗(Λn) ≤ 2 + 󰂃

󰀔
∧ En

󰀤
(78)

= lim
n→∞

Pr(En)Pr
󰀓
∆∗(Λn) ≤ 2 + 󰂃

󰀏󰀏󰀏 En

󰀔
(79)

= 1 (80)

which implies that limn→∞ Pr
󰀓
∆∗(Λn) ≤ 2 + 󰂃

󰀔
= 1. Since

this is true for all ε > 0, according to (15) we have ∆∗
u ≤

inf{2 + 󰂃 | 󰂃 > 0} = 2.

B. Example 2: (p,K, d = 4,m = 2,m′ = 1)

Let L = 1. For q = pn, we will interpret Fq as an n-
dimensional vector space over Fp, and design a linear scheme
over Fp. Accordingly, let us clarify the notation as follows.

1) The elements of the data and coefficient matrices are
chosen from Fq = Fpn .

2) The data xT = [x1, x2, x3, x4] ∈ F1×4
q , is equivalently

represented over Fp as XT = [XT
1 , X

T
2 , XT

3 , X
T
4 ]

∈ F1×4n
p , where Xi ∈ Fn×1

p is the n × 1 vector
representation of xi over Fp.

3) User k has side information xTv′
k ∈ Fq and

wishes to compute xTvk = xT
󰀅
v1
k,v

2
k

󰀆
∈ F1×2

q ,
where the elements of (v′

k)
T = [v′k1, v

′
k2, v

′
k3, v

′
k4],

(vµ
k )

T = [vµk1, v
µ
k2, v

µ
k3, v

µ
k4], µ ∈ [2] are drawn i.i.d.

uniform in Fq . Equivalently, over Fp, User k has side
information XTV′

k and wishes to compute XTVk,
where (V′

k)
T =

󰀅
(V ′

k1)
T , (V ′

k2)
T , (V ′

k3)
T , (V ′

k4)
T
󰀆

∈
Fn×4n
p , Vk = [V1

k,V
2
k] and (Vµ

k )
T =󰀅

(V µ
k1)

T , (V µ
k2)

T , (V µ
k3)

T , (V µ
k4)

T
󰀆

∈ Fn×4n
p .
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V ′
ki, V

µ
ki, µ ∈ [2] are the n × n matrix representations in

Fp of v′ki and vµki, respectively.
4) Let r, θ1, θ2 be uniformly randomly chosen in Fq . De-

note by R the matrix representations of r, θ1, θ2 in Fp,
respectively.

5) Define the set of variables,

V ≜
󰁱
vjki : k ∈ [K], i ∈ [4], j ∈ [2]

󰁲

∪
󰁱
v′ki : k ∈ [K], i ∈ [4]

󰁲
∪
󰁱
r, θ1, θ2

󰁲
, (81)

and note that |V| = 12K + 3.
Our goal is to show that ∆∗

u ≤ dm/(m + m′) = 8
3 . For all

k ∈ [K], i ∈ [4], µ ∈ [2], let us define tµki such that
󰀵

󰀹󰀹󰀷

v′k1
v′k2
v′k3
v′k4

󰀶

󰀺󰀺󰀸 =

󰀵

󰀹󰀹󰀷

vµk1
vµk2
vµk3
vµk4

󰀶

󰀺󰀺󰀸 r +

󰀵

󰀹󰀹󰀷

tµk1
tµk2
tµk3
tµk4

󰀶

󰀺󰀺󰀸 . (82)

Let Tµ
ki ∈ Fn×n

p denote the n× n matrix representations of
tµki in Fp, so that we have in Fp,

󰀵

󰀹󰀹󰀷

V ′
k1

V ′
k2

V ′
k3

V ′
k4

󰀶

󰀺󰀺󰀸

󰁿 󰁾󰁽 󰂀
V′

k∈F4n×n
p

=

󰀵

󰀹󰀹󰀷

V µ
k1

V µ
k2

V µ
k3

V µ
k4

󰀶

󰀺󰀺󰀸

󰁿 󰁾󰁽 󰂀
Vµ

k∈F4n×n
p

R+

󰀵

󰀹󰀹󰀷

Tµ
k1

Tµ
k2

Tµ
k3

Tµ
k4

󰀶

󰀺󰀺󰀸

󰁿 󰁾󰁽 󰂀
Tµ

k∈F4n×n
p

(83)

for all k ∈ [K], µ ∈ [2], and Tµ
k , µ ∈ [2] are defined as in

(83).
Since m = 2 > 1 in this example, unlike what we did

in the previous m = 1 example, this time we will need
to create two H matrices, namely, H1 and H2, such that
H1 is almost invariant under linear transformations V j

ki and
T 1
ki, ∀k ∈ [K], i ∈ [4], j ∈ [2], i.e., 〈V j

kiH1〉p ≈ 〈H1〉p
and 〈T 1

kiH1〉p ≈ 〈H1〉p. H2 is almost invariant under linear
transformations V j

ki and T 2
ki, ∀k ∈ [K], i ∈ [4], j ∈ [2], i.e.,

〈V j
kiH2〉p ≈ 〈H〉p and 〈T 2

kiH2〉p ≈ 〈H2〉p. In addition, we
want η/n ≈ 1/3 so that the columns of Hµ, µ ∈ [2] span
approximately one third of the n-dimensional vector space.
Moreover, H1 and H2 are required to be linearly independent
a.a.s. For these, we invoke the asymptotic IA scheme of [45],
and design hµ,hµ, µ ∈ [2] in the following way,

h1×η
µ =

󰀥
θµ

K󰁜

k=1

󰀣󰀓 4󰁜

i=1

2󰁜

j=1

(vjki)
αj

ki

󰀔󰀓 4󰁜

i=1

(tµki)
βµ
ki

󰀔󰀤
,

s.t. 0 ≤ αj
ki,β

µ
ki ≤ N − 1

󰀦
(84)

≜ (h1
µ, h

2
µ, ..., h

η
µ), ∀µ ∈ [2], (85)

h
1×η

µ =

󰀥
θµ

K󰁜

k=1

󰀣󰀓 4󰁜

i=1

2󰁜

j=1

(vjki)
αj

ki

󰀔󰀓 4󰁜

i=1

(tµki)
βµ
ki

󰀔󰀤
,

s.t. 0 ≤ αj
ki,β

µ
ki ≤ N

󰀦
(86)

≜ (h
1

µ, h
2

µ, ..., h
η

µ), ∀µ ∈ [2]. (87)

Note that we have,

η = N12K , η = (N + 1)
12K

. (88)

This construction ensures that for µ ∈ [2], the elements of
vjkihµ and tµkihµ are contained among the elements of hµ

for all i ∈ [4], j ∈ [2]. Now let H1, H2, . . . , Hη ∈ Fn×n
p be

the matrix representations in Fp of h1, h2, . . . , hη ∈ Fq , and
H1, H2, . . . , Hη ∈ Fn×n

p be the matrix representations in Fp

of h1, h2, . . . , hη ∈ Fq . Define,

Hµ =
󰀅
H1

µ1, H
2
µ1, . . . , H

η
µ1

󰀆
∈ Fn×η

p , µ ∈ [2] (89)

and

Hµ =
󰀅
H

1

µ1, H
2

µ1, . . . , H
η

µ1
󰀆

∈ Fn×η
p , µ ∈ [2], (90)

where 1 denotes the n× 1 vector of 1’s. By construction, the
columns of V j

kiHµ and Tµ
kiHµ are subsets of the columns of

Hµ, which implies that ∀µ ∈ [2], k ∈ [K], i ∈ [4], j ∈ [2],

〈V j
kiHµ〉p ⊂ 〈Hµ〉p, 〈Tµ

kiHµ〉p ⊂ 〈Hµ〉p. (91)

Consider the m = 2 matrices, [H1,H2, RH1] ∈ Fn×3η
p and

[H1,H2, RH2] ∈ Fn×3η
p , and define the event En as,

En ≜ (rk([H1,H2, RH1]) = 3η)

∧ (rk([H1,H2, RH2]) = 3η) . (92)

The next steps (93)-(108), show that En holds a.a.s., which
will subsequently be essential to guarantee successfully de-
coding by each user. In fact, due to symmetry, it suffices to
prove that rk([H1,H2, RH1])

a.a.s.
= 3η.

[H1,H2, RH1] ∈ Fn×3η
p has full column rank if and only

if for all c1 = [c11, c
2
1, . . . , c

η
1 ]

T , c2 = [c12, c
2
2, . . . , c

η
2 ]

T , c′ =
[c′1, c′2, . . . , c′η]T ∈ Fη×1

p such that cT = [cT1 , c
T
2 , c

′T ] ∕=
01×3η ,

0n×1 ∕= [H1,H2, RH1]c (93)
= H1c1 +H2c2 +RH1c

′ (94)

=

η󰁛

j=1

cj1H
j
11+

η󰁛

j=1

cj2H
j
21+

η󰁛

j=1

c′jRHj
11 (95)

=

󰀳

󰁃
η󰁛

j=1

cj1H
j
1 +

η󰁛

j=1

cj2H
j
2 +

η󰁛

j=1

c′jRHj
1

󰀴

󰁄1 (96)

≜ Fc1 (97)

where Fc is an n × n matrix in Fp, which has a scalar
representation in Fq as,

fc =

η󰁛

j=1

cj1h
j
1 +

η󰁛

j=1

cj2h
j
2 +

η󰁛

j=1

c′jrhj
1 ∈ Fq. (98)

Note that since Fp is a sub-field of Fq , the scalars cj1, c
j
2, c

′j

in Fp are also scalars cj1, c
j
2, c

′j in Fq .
Thus, Fc ∈ Fn×1

p can be equivalently represented in Fq as
the product of fc with the scalar representation in Fq , of 1
(the all 1 vector in Fp). Since the Fq representation of 1 is
not 0, we obtain that

Fc1 ∕= 0n×1 ⇐⇒ fc ∕= 0. (99)
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Therefore, [H1,H2, RH1] ∈ Fn×3η
p has full column rank if

and only if,

P ≜
󰁜

c∈F3η×1
p \{0}

fc ∕= 0. (100)

The condition of (100), which is equivalent to the event En,
says that a uniformly random evaluation of the function P (V)
produces a non-zero value. We will show that this is true a.a.s.
in n.

1) Case I: c1 or c2 is not the zero vector. Let us set
r = 0, which implies fc =

󰁓η
j=1 c

j
1h

j
1 +

󰁓η
j=1 c

j
2h

j
2,

and that tµki = v′ki, ∀µ ∈ [2], i ∈ [4] by (82). Meanwhile,
h1
1, h

2
1, . . . , h

η
1 are different monomials in the elements

of vjki, v′ki and θ1. Similarly, h1
2, h

2
2, . . . , h

η
2 are dif-

ferent monomials in the elements of vjki, v′ki and θ2
due to (84). Moreover, since any hj

1 has the factor θ1
but does not have the factor θ2, and any hj

2 has the
factor θ2 but does not have the factor θ1, it follows that
h1
1, h

2
1, . . . , h

η
1 , h

1
2, h

2
2, . . . , h

η
2 are different monomials.

Since different monomials are linearly independent, we
have that [fc] is a non-zero polynomial.

2) Case II: c1 = c2 = 0 and thus c′ ∕= 0. For this case,
we have [fc] = r(c′1h1

1 + c′2h2
1 + . . .+ c′ηhη

1), which is
also a non-zero polynomial since it is a product of r with
a non-zero polynomial (since h1

1, h
2
1, . . . , h

η
1 are linearly

independent).
Thus, [fc] is a non-zero polynomial. Since hj

i has degree not
more than 16(N − 1)K + 1, [fc] has degree not more than
16NK + 2. Therefore, [P ] ∈ Fp[V] is a non-zero polynomial
with degree not more than (p3η−1)(16NK+2). By Schwartz-
Zippel Lemma, when all the variables V are assigned i.i.d.
uniformly chosen values in Fq ,

Pr
󰀃
P ∕= 0

󰀄
≥ 1− (p3η − 1)[16(N − 1)K + 2]

q
(101)

= 1− (p3η − 1)[16(N − 1)K + 2]

pn
(102)

≥ 1− 16K
N

pn−3η
(103)

→ 1 (104)

as n → ∞ if limn→∞
N

pn−3η = 0.
Now let us specify the value of N as follows,

N =

󰀧󰀕
n−

√
n

3

󰀖1/(12K)
󰀨
, (105)

from which it follows that,

N ≤
󰀕
n−

√
n

3

󰀖1/(12K)

(106)

and

n− 3η = n− 3N12K ≥
√
n. (107)

Therefore,

lim
n→∞

N

pn−3η
≤ lim

n→∞

󰀓
n−

√
n

3

󰀔1/(12K)

p
√
n

= 0, (108)

and since N ≥ 0, we have limn→∞
N

pn−3η = 0. Thus,
rk([H1,H2, RH1])

a.a.s.
= 3η, and due to symmetry it can

be proved that rk([H1,H2, RH2])
a.a.s.
= 3η. Thus, we have

shown that En holds a.a.s. Now for µ ∈ [2], let (Zµ =

In×n|[H1,H2, RHµ]) ∈ Fn×(n−3η)
p , so that

󰀅
H1,H2, RHµ,Zµ

󰀆
(109)

has full column rank n. Let the server broadcast S =󰀃
S0,S

1
[K],S

2
[K]

󰀄
∈ F1×(8η+2K(n−3η))

p , where

S0 = XT

󰀵

󰀹󰀹󰀷

H1 H2 0 0 0 0 0 0
0 0 H1 H2 0 0 0 0
0 0 0 0 H1 H2 0 0
0 0 0 0 0 0 H1 H2

󰀶

󰀺󰀺󰀸

∈ F1×8η
p (110)

and for k ∈ [K], µ ∈ [2],

Sµ
k = XTVµ

kZµ. (111)

The decoding process works as follows. User k is able to
compute

XTV′
kHµ, µ ∈ [2] (112)

directly from its side information XTV′
k. Meanwhile, it is

able to compute

XTVj
kHµ, j ∈ [2], µ ∈ [2] (113)

and

XTTµ
kHµ, µ ∈ [2] (114)

from S0, since for j ∈ [2], µ ∈ [2],

󰁇
Vj

kHµ

󰁈

p
=

󰀭
󰀵

󰀹󰀹󰀷

V j
k1Hµ

V j
k2Hµ

V j
k3Hµ

V j
k4Hµ

󰀶

󰀺󰀺󰀸

󰀮

p

⊂
󰀭
󰀵

󰀹󰀹󰀷

Hµ 0 0 0
0 Hµ 0 0
0 0 Hµ 0
0 0 0 Hµ

󰀶

󰀺󰀺󰀸

󰀮

p

, (115)

and for µ ∈ [2],

󰀭
󰀵

󰀹󰀹󰀷

Tµ
k1Hµ

Tµ
k2Hµ

Tµ
k3Hµ

Tµ
k4Hµ

󰀶

󰀺󰀺󰀸

󰀮

p

⊂
󰀭
󰀵

󰀹󰀹󰀷

Hµ 0 0 0
0 Hµ 0 0
0 0 Hµ 0
0 0 0 Hµ

󰀶

󰀺󰀺󰀸

󰀮

p

(116)

due to (91). Thus, User k is able to compute

XTVµ
kRHµ = XTV′

kHµ −XTTµ
kHµ, µ ∈ [2] (117)

according to (83). Together with Sµ
k , User k thus obtains,

󰀅
XTVj

kHµ,X
TVµ

kRHµ,S
µ
k

󰀆
, j ∈ [2], µ ∈ [2] (118)

which are

XTV1
k

󰀅
H1,H2, RH1,Z1

󰀆
, XTV2

k

󰀅
H1,H2, RH2,Z2

󰀆

(119)
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and since
󰀅
H1,H2, RH1,Z1

󰀆
∈ Fn×n

p and󰀅
H1,H2, RH2,Z2

󰀆
∈ Fn×n

p are invertible (have full
rank) a.a.s., User k is able to retrieve its desired computation,
XTVk =

󰀅
XTV1

k,X
TV2

k

󰀆
∈ F1×2n

p a.a.s.
For q = pn, the cost of broadcasting each p-ary symbol is

1/n in q-ary units. Thus, the broadcast cost of this scheme is,

∆n =
8η + 2K

󰀃
n− 3η

󰀄

n
. (120)

The next few steps (121)-(128) show that limn→∞ ∆n = 8
3 .

By (105), we have that

η = N12K ≤ n−
√
n

3
≤ (N + 1)12K = η (121)

which implies that

lim
n→∞

η

n
= lim

n→∞

N12K

n
≤ lim

n→∞

n−
√
n

n
× 1

3
=

1

3
. (122)

On the other hand,

lim
n→∞

η

n
= lim

n→∞

(N + 1)12K/(1 + 1/N)12K

n
(123)

≥ lim
N→∞

1

(1 + 1/N)12K
lim
n→∞

n−
√
n

n
× 1

3
(124)

=
1

3
. (125)

Thus, we have that

lim
n→∞

η

n
=

1

3
(126)

which also implies that

lim
n→∞

η

n
= lim

n→∞

η

n
× lim

N→∞
(1 + 1/N)12K =

1

3
. (127)

Combining (120) with (126) and (127) we have

lim
n→∞

∆n = 8× 1

3
+ 0 =

8

3
(128)

since K is independent of n. Thus, for any ε > 0, ∃n0 > 0
such that ∆n ≤ 8

3 +ε for all n ≥ n0. Recall that the broadcast
cost ∆n is achievable if En holds, i.e., ∆∗(Λn) ≤ ∆n ≤ 8

3+󰂃
if n ≥ n0 and En holds. Now let us show that 8

3 + 󰂃 is
achievable a.a.s., by evaluating the limit in (14) as follows,

lim
n→∞

Pr
󰀓
∆∗(Λn) ≤

8

3
+ 󰂃

󰀔

≥ lim
n→∞

Pr

󰀣󰀓
∆∗(Λn) ≤

8

3
+ 󰂃

󰀔
∧ En

󰀤
(129)

= lim
n→∞

Pr(En)Pr
󰀓
∆∗(Λn) ≤

8

3
+ 󰂃

󰀏󰀏󰀏 En

󰀔
(130)

= 1 (131)

which implies that limn→∞ Pr
󰀓
∆∗(Λn) ≤ 8

3 + 󰂃
󰀔
= 1. Since

this is true for all ε > 0, according to (15) we have ∆∗
u ≤

inf{ 8
3 + 󰂃 | 󰂃 > 0} = 8

3 .

VI. PROOF OF CONVERSE: THEOREM 2
Recall that uk ≜ [v′

k,vk], ∀k ∈ [K], and the data x ∈ Fd×L
q

for a scheme with batch size equal to L. Since a scheme must
work for all data realizations, it must work if x is uniformly
distributed. The decoding constraint (8) implies

H(S,xTv′
k) = H(S,xTuk), ∀k ∈ [K]. (132)

The converse for d ≥ K(m + m′) is obtained trivially by
allowing all K users to cooperate fully, see proof of (24) in
Corollary 1. The converse for d ≤ m+m′ is obtained as

∆∗(Λn) ≥ H(S)/L (133)

≥ H(S | xTv′
1)/L (134)

= H(S,xTu1 | xTv′
1)/L (135)

≥ H(xTu1 | xTv′
1)/L (136)

≥
󰀃
H(xTu1)−H(xTv′

1)
󰀄
/L (137)

= rk(u1)− rk(v′
1)

a.a.s.
= (d−m′)+ (138)

Step (133) is due to Shannon’s source coding theorem. Steps
(134), (136) and (137) follow from basic information inequal-
ities. Step (135) is because User 1 must decode xTu1 from S
and xTv′

1. Step (138) applies the useful connection between
entropy and ranks, that H(xTu) = L · rk(u) for a uniformly
distributed x and a deterministic matrix u. This leaves us with
the only non-trivial regime, (m+m′) < d < K(m+m′), for
which we will show that ∆∗(Λn)

a.a.s.

≥ dm/(m + m′) in the
remainder of this section.

Let us provide an intuitive outline before launching into
the technical details. Recall that Theorem 2 considers K ≥
d/ gcd(d,m+m′). If m+m′ divides d, it immediately follows
that K ≥ d/ gcd(d,m+m′) = d/(m+m′) =⇒ d ≥ K(m+
m′). Therefore, the non-trivial cases must be that m + m′

does not divide d. What we want for the converse argument,
intuitively, is to still have the first d/(m+m′) users cooperate
fully. This is not directly possible because d/(m+m′) is not a
natural number, but let us set that concern aside for a moment.
The d/(m+m′) users together already have side information
that is equivalent to m′d/(m+m′) dimensional projection of
the data, which together with the broadcast symbol S allows
them to recover (m+m′)d/(m+m′) = d dimensions of the
data. If so, then we would have that H(S)/L ≥ d−m′d(m+
m′) = dm/(m+m′) as the desired converse bound. Now, how
do we overcome the obstacle that we cannot have a fractional
number of users? Intuitively, this is achieved by invoking
functional submodularity (Lemma 1 of [38], [51], [52]). The
idea is that functional submodularity helps to identify and
introduce additional entropic terms of certain (linear) functions
of the side information and demands. These functions are
essentially the projection of the data into finer subspaces. If
we regard the entropies of the subsets of the side information
and demands as a set of regular building blocks, the additional
entropies introduced by functional submodularity are similar to
finer fragments. By rearranging and combining these regular
building blocks and fragments in a more efficient way, we
are able to derive a better converse bound. To make the
details concrete, the readers may refer to the following proof
sketch for the example with m + m′ = 6, d = 10 and
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K = d/ gcd(d,m + m′) = 5. For this example, we want
to show that ∆∗(Λn)

a.a.s.

≥ md/(m+m′) = 5m/3.
In the following, steps labeled (∗) uses functional submod-

ularity (Lemma 1 of [38], [51], [52]). We proceed as follows.

H(S,xTv′
1) +H(S,xTv′

2)󰁿 󰁾󰁽 󰂀
T12

(132)
= H(S,xTu1) +H(S,xTu2) (139)

(∗)
≥ H(S,xT [u1,u2]) +H(S,xT (u1 ∩ u2)) (140)

≥ H(xT [u1,u2]) +H(S,xT (u1 ∩ u2)) (141)
a.a.s.
= 10L+H(S,xT (u1 ∩ u2)) (142)

The last step is because as n → ∞ the rank of [u1,u2] is
equal to 10 a.a.s. (The proof is omitted here but can be found
in the proof for the general case). Then,

T12 +H(S,xTv′
3)󰁿 󰁾󰁽 󰂀

T123

(132)
= T12 +H(S,xTu3) (143)

(∗)
≥ 10L+H(S,xT [u1 ∩ u2,u3]) +H(S) (144)

It follows that,

T123 +H(S,xTv′
4)󰁿 󰁾󰁽 󰂀

T1234

(132)
= T123 +H(S,xTu4) (145)

(∗)
≥ 10L+H(S) +H(S,xT [u1 ∩ u2,u3,u4])

+H(S,xT [(u1 ∩ u2,u3) ∩ u4]) (146)

≥ 10L+H(S) +H(xT [u1 ∩ u2,u3,u4])

+H(S,xT [(u1 ∩ u2,u3) ∩ u4]) (147)
a.a.s.
= 20L+H(S) +H(S,xT [(u1 ∩ u2,u3) ∩ u4]) (148)

The last step is because as n → ∞ the rank of [u1∩u2,u3,u4]
is equal to 10 a.a.s. Then,

T1234 +H(S,xTv′
5)󰁿 󰁾󰁽 󰂀

T12345

(132)
= T1234 +H(S,xTu5) (149)

≥ 20L+H(S) +H(S,xT [(u1 ∩ u2,u3) ∩ u4])

+H(S,xTu5) (150)
(∗)
≥ 20L+ 2H(S) +H(S,xT [(u1 ∩ u2,u3) ∩ u4,u5])

(151)

≥ 20L+ 2H(S) +H(xT [(u1 ∩ u2,u3) ∩ u4,u5]) (152)
a.a.s.
= 30L+ 2H(S) (153)

The last step is because as n → ∞ the rank of [(u1∩u2,u3)∩
u4,u5] is equal to 10 a.a.s.

On the other hand,

T12345 = H(S,xTv′
1) +H(S,xTv′

2) + · · ·+H(S,xTv′
5)

(154)

≤ H(S) +H(xTv′
1) +H(S) +H(xTv′

2) + · · ·

+H(S) +H(xTv′
5) (155)

≤ 5H(S) + 5m′L (156)

We thus obtain

5H(S) + 5m′L
a.a.s.

≥ 30L+ 2H(S)

=⇒ ∆∗(Λn) ≥ H(S)/L
a.a.s.

≥ (30− 5m′)/3 = 5m/3 (157)

as desired.
The general proof starts as follows. Let us start with a useful

lemma, whose proof is relegated to Appendix D.

Lemma 1. Consider any M ′ ∈ Fd×µ′

pn , (µ′ ≤ d) that has
full column rank µ′. Let M ∈ Fd×µ

pn . If the elements of
M are chosen i.i.d uniform in Fpn , then [M ′,M ] has rank
min{d, µ′ + µ} a.a.s.

Define m, and the constants K0,K1, · · · ,Km as follows,

m ≜ m+m′

gcd(d,m+m′)
, (158)

Ki ≜
󰀛

id

m+m′

󰀜
, ∀i ∈ [0 : m], (159)

so that,

1) K0 = 0, Km =

󰀛
md

m+m′

󰀜
=

d

gcd(d,m+m′)
, (160)

2) (Ki − 1)(m+m′) < id ≤ Ki(m+m′), ∀i ∈ [m], (161)
3) Ki −Ki−1 > 0, ∀i ∈ [m]. (162)

Define the matrices Υ0, · · · ,Υm, Π1, · · · ,Πm, and
Γ1, · · · ,Γm, as follows,

Υ0 ≜ [ ] (163)

Γ1 ≜ [Υ0,uK0+1,uK0+2, . . . ,uK1−1],

Υ1 ≜ Γ1 ∩ uK1
, Π1 ≜ [Γ1,uK1

], (164)

Γ2 ≜ [Υ1,uK1+1,uK1+2, . . . ,uK2−1],

Υ2 ≜ Γ2 ∩ uK2 , Π2 ≜ [Γ2,uK2 ] (165)
...

Γi+1 ≜ [Υi,uKi+1,uKi+2, . . . ,uKi+1−1],

Υi+1 ≜ Γi+1 ∩ uKi+1 , Πi+1 ≜ [Γi+1,uKi+1 ] (166)
...

Γm ≜ [Υm−1,uKm−1+1,uKm−1+2, . . . ,uKm−1],

Υm ≜ Γm ∩ uKm , Πm ≜ [Γm,uKm ] (167)

so that for all i ∈ [m],

Γi ∈ Fd×(rk(Υi−1)+(Ki−Ki−1−1)(m+m′))
q , (168)

Πi ∈ Fd×(rk(Υi−1)+(Ki−Ki−1)(m+m′))
q . (169)

Define the event En as follows,

En ≜
󰀓

rk(v′
k) = m′, ∀k ∈ [K]

󰀔

∧
󰀓

rk(Πi) = d, ∀i ∈ [m]
󰀔
. (170)

The next steps (171)-(179) show that En holds a.a.s.
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From Lemma 1 (let M ′ = [ ], M = v′
k), we have rk(v′

k)
a.a.s.
=

m′, since m′ ≤ m+m′ ≤ d. Similarly by Lemma 1, (letting
M ′ = [ ] and M = Γ1, M = uK1

, M = Π1, respectively),
we have

rk(Γ1)
a.a.s.
= (K1 − 1)(m+m′), (171)

rk(uK1)
a.a.s.
= m+m′, (172)

rk(Π1)
a.a.s.
= d, (173)

where (171) and (173) are due to (161), and (172) follows from
m+m′ ≤ d. Then since rk(Υ1) = rk(Γ1)+rk(uK1)−rk(Π1),
we have that

rk(Υ1)
a.a.s.
= K1(m+m′)− d. (174)

Next, to set up an inductive argument, suppose for some i,
1 ≤ i < m,

rk(Υi)
a.a.s.
= Ki(m+m′)− id. (175)

Conditioned on
󰀓

rk(Υi) = Ki(m+m′)− id
󰀔

, from Lemma
1 and (161),(168),(169) we have

rk(Γi+1)
a.a.s.
= (Ki+1 − 1)(m+m′)− id, (176)

rk(Πi+1)
a.a.s.
= d, (177)

rk(uKi+1
)

a.a.s.
= m+m′, (178)

rk(Υi+1)
a.a.s.
= Ki+1(m+m′)− (i+ 1)d. (179)

where in order to obtain (179), we used the property
rk(Υi+1) = rk(Γi+1) + rk(uKi+1) − rk(Πi+1), along with
(176), (177) and (178). By induction, we obtain rk(Πi)

a.a.s.
=

d, ∀i ∈ [m], which implies that En holds a.a.s.
Figure 3 may be useful in understanding the construction

above and the proof.

〈Υ1〉 〈Υ2〉

〈u1〉 〈u2〉 〈u3〉 〈u4〉 〈u5〉

〈Π1〉
〈Π2〉

〈Π3〉

m+m′ = 6

d = 10

m = 3

Km = 5

K1 = 2

K2 = 4

K3 = 5

Fig. 3: Illustration of the converse proof for m +m′ = 6, d = 10.
Each dot represents one dimension. The number of dots represents
the dimension for the corresponding space a.a.s. 〈uk〉, k ∈ [5] has
dimension 6 a.a.s. 〈Υ1〉 is the intersection of 〈u1〉 and 〈u2〉, which
has dimension 2 a.a.s. 〈Υ2〉 is the intersection of 〈[Υ1,u3]〉 and 〈u4〉,
which has dimension 4 a.a.s. 〈Π1〉 is the union of 〈u1〉 and 〈u2〉,
which has dimension 10 a.a.s. 〈Π2〉 is the union of 〈[Υ1,u3]〉 and
〈u4〉, which has dimension 10 a.a.s. 〈Π3〉 is the union of 〈Υ2〉 and
〈u5〉, which has dimension 10 a.a.s.

For the next stage of the proof, we consider any
given LCBC

󰀃
Fpn ,v[K],v

′
[K]

󰀄
where En holds. Note that

v[K],v
′
[K] are now arbitrary constant matrices that satisfy

En. Our goal now is to bound the optimal broadcast cost
∆∗󰀃Fq,v[K],v

′
[K]

󰀄
. Let x be uniformly distributed to facilitate

entropic accounting. Recall that there is no loss of generality
in this assumption, because x is independent of En and any
achievable scheme must work for all data realizations, so it
must also work for all data distributions. Thus, we have,

2mH(S) +KmLm′ (180)

(a)
= 2mH(S) +

Km󰁛

k=1

H(xTv′
k) (181)

=

m−1󰁛

i=0

󰁫󰀓
H(S) +H(xTv′

Ki+1) +H(xTv′
Ki+2) + . . .

+H(xTv′
Ki+1−1)

󰀔
+

󰀓
H(S) +H(xTv′

Ki+1
)
󰀔󰁬

≥
m−1󰁛

i=0

󰀓
H(S,xT [v′

Ki+1,v
′
Ki+2, . . . ,v

′
Ki+1−1])

+H(S,xTv′
Ki+1

)
󰀔

(182)

(b)
=

m−1󰁛

i=0

󰀓
H(S,xT [uKi+1,uKi+2, . . . ,uKi+1−1])

+H(S,xTuKi+1)
󰀔

(183)

= H(S,xT [u1,u2, . . . ,uK1−1]) +H(S,xTuK1)

+

m−1󰁛

i=1

󰀓
H(S,xT [uKi+1,uKi+2, . . . ,uKi+1−1])

+H(S,xTuKi+1)
󰀔

(184)

= H(S,xTΓ1) +H(S,xTuK1)

+

m−1󰁛

i=1

󰀓
H(S,xT [uKi+1,uKi+2, . . . ,uKi+1−1])

+H(S,xTuKi+1)
󰀔

(185)

(c)

≥ H(xTΠ1) +H(S,xTΥ1)

+

m−1󰁛

i=1

󰀓
H(S,xT [uKi+1,uKi+2, . . . ,uKi+1−1])

+H(S,xTuKi+1)
󰀔

(186)

= H(xTΠ1) +H(S,xTΥ1)

+H(S,xT [uK1+1,uK1+2, . . . ,uK2−1]) +H(S,xTuK2)

+

m−1󰁛

i=2

󰀓
H(S,xT [uKi+1,uKi+2, . . . ,uKi+1−1])

+H(S,xTuKi+1)
󰀔

(187)

(c)

≥
󰀓
H(xTΠ1) +H(S)

󰀔
+H(S,xTΓ2) +H(S,xTuK2)

+

m−1󰁛

i=2

󰀓
H(S,xT [uKi+1,uKi+2, . . . ,uKi+1−1])

+H(S,xTuKi+1)
󰀔

(188)

...

≥
󰀓
H(xTΠ1) +H(S)

󰀔
+ . . .+

󰀓
H(xTΠm−1) +H(S)

󰀔

+H(S,xTΓm) +H(S,xTuKm) (189)
(c)

≥
󰀓
H(xTΠ1) +H(S)

󰀔
+ . . .+

󰀓
H(xTΠm) +H(S)

󰀔

(190)
(a)

≥ m
󰀃
Ld+H(S)

󰀄
(191)
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=⇒ mH(S) +KmLm′ ≥ mLd (192)

Steps labeled (a) hold because En holds. Steps labeled (b)
follow from the decodability constraint, i.e., H(S,xTuk) =
H(S,xTv′

k). Steps labeled (c) use functional submodularity
(Lemma 1 of [38], [51], [52]).

Note that (160) implies that

Km

m
=

d

m+m′ . (193)

Thus, we obtain that

∆ ≥ H(S)

L
≥ d− Km

m
m′ = d− d

m+m′m
′ =

md

m+m′ .

(194)

This in turn implies that for any ε > 0,

lim
n→∞

Pr

󰀕
∆∗(Λn) >

md

m+m′ − 󰂃

󰀖
(195)

≥ lim
n→∞

Pr

󰀕󰀗
∆∗(Λn) >

md

m+m′ − 󰂃

󰀘
∧ En

󰀖
(196)

= lim
n→∞

Pr(En)Pr
󰀓
∆∗(Λn) >

md

m+m′ − 󰂃
󰀏󰀏󰀏 En

󰀔
(197)

= 1. (198)

Thus ∆∗(Λn)
a.a.s.
> md/(m+m′)− ε. Since this is true for all

ε > 0, according to (16) we have ∆∗
l ≥ md/(m+m′). □

VII. PROOF OF THEOREM 3

In this section, let us show the converse for odd d with
3 ≤ d < 2K − 1, and the achievability for d = 2K − 1.

A. Converse for odd d with 3 ≤ d < 2K − 1

The condition for this regime is equivalent to 2 ≤ d+1
2 < K.

Since the generic capacity for this regime is only a function
of d, and assuming a smaller K will not hurt the converse,
it suffices to show the converse for K = d+1

2 + 1, that is,
∆∗

l ≥ d/2. We start with the following lemma.

Lemma 2. For LCBC(Fq,v[K],v
′
[K]), the broadcast cost ∆

satisfies,

∆ ≥ 1

2

󰀣
rk(v′

1 ∩ [u1 ∩ uK1 ,u1 ∩ uK2 ]) + rk([u1,uK1 ])

+ rk([u1,uK2 ])− 2rk(v′
1)− rk(v′

K1
)− rk(v′

K2
)

󰀤
,

(199)

where K1 and K2 are subsets of [K].

Proof. For simplicity, we will make use of the converse in
[59]. Denote the original LCBC as Λ and its optimal download
cost as ∆∗(Λ). Now, consider another LCBC setting L′ with
3 users, where User 1 has side information xTv′

1 and desires
xTv1; User 2 has side information xTv′

K1
and desires xTvK1 ;

User 3 has side information xTv′
K2

and desires xTvK2 .
Denote by ∆∗(Λ′) the optimal download cost of Λ′. We have
∆∗(Λ) ≥ ∆∗(Λ′) since for any scheme that works for Λ, we
can construct another scheme that works for Λ′ with a same

download cost by letting the users in K1 cooperate, and the
users in K2 cooperate. Note that K1 and K2 can have a non-
empty intersection. Also note that although the capacity result
in [59] is only for mk = m′

k = 1, ∀k ∈ [3], the converse
holds for any LCBC with 3 users. Now let us make use of the
converse in [59]. Since ∆∗(Λ) ≥ ∆∗(Λ′), by (7) of [59], and
by rearranging the terms, we have the desired bound.

Next we show the converse for the generic capacity, i.e.,
∆∗

l ≥ d/2 for K = d+1
2 +1. Note that d+1

2 +1 = 3+ d−3
2 . Let

K0 = [K− d−3
2 +1 : K], K1 = {2}∪K0 and K2 = {3}∪K0.

Note that K0 = ∅ if d = 3. Since the converse bound in
Lemma 2 is composed of ranks of certain matrices, we then
finds these ranks in the a.a.s. sense.

First, since 2(1 + |K1|) = 2(1 + |K2|) = d + 1 > d, by
Lemma 1,

rk([u1,uK1 ])
a.a.s.
= d, rk([u1,uK2 ])

a.a.s.
= d, (200)

and

rk(v′
1)

a.a.s.
= 1, rk(v′

K1
)

a.a.s.
=

d− 1

2
, rk(v′

K2
)

a.a.s.
=

d− 1

2
. (201)

This leaves us the only non-trivial term, rk(v′
1∩[u1∩uK1 ,u1∩

uK2
]). To avoid complex notations, within this section let

A = u1 ∈ Fd×2
q , (202)

B = uK1 = [uK0 ,u2] ∈ Fd×(d−1)
q , (203)

C = uK2
= [uK0

,u3] ∈ Fd×(d−1)
q . (204)

Then let

D = [A,0d×(d−2)]
󰀃
[A,B[1:d−2]]

󰀄∗
B[d−1] ∈ Fd×1

q , (205)

E = [A,0d×(d−2)]
󰀃
[A,C[1:d−2]]

󰀄∗
C[d−1] ∈ Fd×1

q , (206)

where M∗ denotes the adjugate matrix of a square matrix
M such that MM∗ = det(M)I. By construction, we have
〈D〉 ⊂ 〈A〉 and 〈E〉 ⊂ 〈A〉. Then note that

D + [0d×2, B[1:d−2]]
󰀃
[A,B[1:d−2]]

󰀄∗
B[d−1]

= det([A,B[1:d−2]])B[d−1]. (207)

We obtain that 〈D〉 ⊂ 〈B〉. Similarly, we have 〈E〉 ⊂ 〈C〉.
Therefore, 〈D〉 ⊂ 〈A ∩ B〉 and 〈E〉 ⊂ 〈A ∩ C〉. Next, let
Z ∈ Fd×(d−2)

q . We claim that

P = det([D,E,Z]) (208)

is a non-zero polynomial in the elements of u[K], Z. To see
this, specify

u1 = Id×d
[1:2], uK0

= I[3:d−1], (209)

u2 = [Id×d
[d] , Id×d

[1] ], (210)

u3 = [Id×d
[d] , Id×d

[2] ], (211)

Z = Id×d
[3:d]. (212)

We then have

[A,B[1:d−2]] = [A,C[1:d−2]] = Id×d, (213)

and it follows that

D = I[1], E = I[2] =⇒ det([D,E,Z]) = det(Id×d) = 1.
(214)
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Therefore, P is a non-zero polynomial, with degree not more
than 2(d + 1) + (d − 2). By Schwartz-Zippel Lemma, the
probability of P evaluating to a non-zero value is not less
than

1− 2(d+ 1) + (d− 2)

pn
(215)

which approaches 1 as n → ∞. Thus,

rk([D,E])
a.a.s.

≥ 2 =⇒ rk([u1 ∩ uK1 ,u1 ∩ uK2 ])
a.a.s.

≥ 2. (216)

Since 〈[u1 ∩ uK1 ,u1 ∩ uK2 ]〉 ⊂ 〈u1〉, and rk(u1) ≤ 2, we
have that

〈[u1 ∩ uK1 ,u1 ∩ uK2 ]〉
a.a.s.
= 〈u1〉. (217)

Since 〈v′
1〉 ⊂ 〈u1〉, we obtain that

rk(v′
1 ∩ [u1 ∩ uK1 ,u1 ∩ uK2 ])

a.a.s.
= rk(v′

1)
a.a.s.
= 1. (218)

Now let us consider (199) in the a.a.s. sense. We have

∆n

a.a.s.

≥ 1 + 2d− 2− (d− 1)

2
=

d

2
, (219)

or, equivalently,

∆∗
l ≥ d

2
, (220)

which proves the desired converse.

B. Achievability for odd d with d = 2K − 1

Consider the following K matrices

Mk = [v′
[K],v[K]\{k}] ∈ Fd×d

q , k ∈ [K]. (221)

By Lemma 1, we have,

rk(Mk)
a.a.s.
= d, ∀k ∈ [K]. (222)

For any LCBC instance that satisfies rk(Mk) = d, ∀k ∈ [K],
we are able to find non-zero Fq elements α1,α2, ...,αK−1 and
Fq elements α′

1,α
′
2, ...,α

′
K such that

vK =

K−1󰁛

k=1

αkvk +

K󰁛

k=1

α′
kv

′
k. (223)

To see this, first note that since rk(MK) = d, vK can be
represented by a linear combination of the 2K − 1 vec-
tors v1,v2, ...,vK−1,v

′
1,v

′
2, ...,v

′
K . Now let us show that

the coefficients α1,α2, ...,αK−1 are non-zero. We prove by
contradiction. Suppose αi = 0. We then have

󰁛

k∈[1:K−1]\{i}

αkvk +

K󰁛

k=1

α′
kv

′
k − vK = 0, (224)

which implies that Mi does not have full column rank d. This
contradiction proves that αk ∕= 0, ∀k ∈ [1 : K − 1]. Let the
batch size L = 1. The server broadcasts S = S[K−1], where

Sk = xT (αkvk + α′
kv

′
k) ∈ Fq, k ∈ [K − 1]. (225)

User k, k ∈ [K−1] can get its desired computation by xTvk =
(1/αk)(Sk−α′

kx
Tv′

k). User K can get its desired computation
by xTvK =

󰁓K−1
k=1 Sk+α′

KxTv′
K . The broadcast cost is then

∆ = K − 1. By (222), we conclude that

∆∗
u ≤ K − 1. (226)

which is the desired upper bound.

VIII. CONCLUSION

The take home message of this work is optimistic. While
a general capacity characterization of the LCBC for large
number of users remains out of reach because it includes
recognized hard problems such as index coding, a generic
capacity characterization is shown to be tractable. As such, the
LCBC setting that generalizes index coding, combined with
the generic capacity formulation that focuses on almost all
instances of the LCBC, presents a promising path forward for
future progress. This is analogous to DoF studies of wireless
networks where much progress has come about by focusing on
generic settings (‘almost all’ channel realizations rather than
‘all’ channel realizations) while the DoF of arbitrary instances
still remain largely open.

The latter limitation is worth emphasizing. While a generic
capacity characterization reveals the capacity of most LCBC
settings, it is notable that the LCBC settings that have received
the most attention thus far, say index coding and coded caching
for example, have specialized demand and side-information
structures that are not generic. Thus, open questions in index
coding and caching remain open and as important as ever for
future work. The study of generic capacity is not intended
to supersede the studies of caching, index coding or other
specialized applications, but to complement those efforts with
an understanding of what is missed in the study of specializa-
tions — the generic case. Understanding the capacity limits
for structureless, i.e., generic side-information and demands
is especially important because the scope of possible linear
computation scenarios that may arise in future applications is
far too broad to be understood through studies of specialized
structures alone. For example, arbitrary linear filters may
be applied by different users on large datasets held by a
central server, with side-information arising from previously
retrieved outputs of other filtering operations on the same
datasets. Depending on the application, there may be little or
no freedom to optimize the structure of the demand and side-
information. Also, a theory cannot be built out of special cases
while ignoring the generic case. So if a cohesive information
theoretical understanding of communication networks used for
computation tasks is to ever emerge, the generic case has to
be at its foundation.

Promising directions for future work include the exploration
of generic capacity for asymmetric settings, analysis of the
LCBC download cost vs complexity tradeoff, and generic
capacity in the large q sense (especially for n = 1). Extensions
of finite field results to degrees of freedom (DoF) results over
real/complex numbers, and studies of the tradeoffs between
precision and communication cost in the GDoF sense (as in
[60]) are promising as well. Last but not the least, while
the capacity results in this work establish the information
theoretic fundamental limits, asymptotic IA schemes are far
from practical. Therefore, the extent to which the fundamental
limit can be approached with practical coding schemes, is a
most interesting open question where future coding-theoretic
analysis can shed light.
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APPENDIX A
THEOREM 2: PROOF OF ACHIEVABILITY

Let us recall the compact notation uk ≜ [v′
k,vk], ∀k ∈ [K].

For d ≥ K(m+m′), the broadcast cost Km is trivially achiev-
able, simply by broadcasting each user’s demand separately,
i.e., S = xT [v1, . . . ,vK ]. The achievability for the remaining
regimes is shown next.

A. Achievability for d ≤ m+m′

Define the event

En ≜
󰀓

rk(v′
k) = min{m′, d}

󰀔
∧
󰀓

rk(uk) = d
󰀔
. (227)

In Lemma 1, letting M ′ = [ ], M = v′
k and M = uk,

respectively, we obtain that En holds a.a.s. The following
argument is true if En holds.

1) If d ≤ m′, each of the K users is able to compute x,
since rk(v′

k) = d. This implies that ∆∗ = 0.
2) Using field extensions (cf. Appendix B of [38]), let us

consider the equivalent LCBC with field size qz = pnz . If
m′ < d ≤ m+m′, for each k ∈ [K], let uc ∈ Fd×(d−m′)

qz .
We claim that Pk = det([uk,u

c]) is a non-zero poly-
nomial in the elements of uk,u

c. To see this, for each
k, we can choose uc = (Id×d|uk) ∈ Fd×(d−m′)

qz such
that [uk,u

c] spans 〈Id×d〉. It follows that P =
󰁔

k Pk

is a non-zero polynomial in the elements of u[K],u
c.

By Schwartz-Zippel Lemma, if the elements of uc are
chosen uniformly in Fqz , the probability of P evaluating
to zero is not more than degree of P

qz ≤ K(d−m′)
qz . Thus,

by choosing z > logq(K(d−m′)), we ensure that there
exists such uc that satisfies det([uk,u

c]) ∕= 0 for all
k ∈ [K]. Broadcasting S = xTuc, we have ∆ = d−m′,
and each User k is able to compute x with S and its side
information xTv′

k.

Thus we have the desired achievability, ∆∗(Λn)
a.a.s.

≤
max{0, d−m′}.

B. Achievability for (m+m′) < d < K(m+m′)

Let L = 1. For q = pn, we will interpret Fq as an n-
dimensional vector space over Fp, and design a linear scheme
over Fp. Accordingly, let us clarify the notation as follows.

1) The elements of the data and coefficient matrices are
chosen from Fq = Fpn .

2) The data xT = [x1, x2, . . . , xd] ∈ F1×d
q , is equiva-

lently represented over Fp as XT = [XT
1 , X

T
2 , . . . , X

T
d ]

∈ F1×dn
p , where Xi ∈ Fn×1

p is the n × 1 vector
representation of xi over Fp.

3) User k has side information xTv′
k ∈ F1×m′

q and wishes
to compute xTvk ∈ F1×m

q , where

vk =
󰀅
v1
k v2

k . . . vm
k

󰀆
(228)

=

󰀵

󰀹󰀹󰀹󰀷

v1k1 v2k1 . . . vmk1
v1k2 v2k2 . . . vmk2

...
...

. . .
...

v1kd v2kd . . . vmkd

󰀶

󰀺󰀺󰀺󰀸
∈ Fd×m

q (229)

and

v′
k =

󰀅
v′1
k v′2

k . . . v′m′

k

󰀆
(230)

=

󰀵

󰀹󰀹󰀹󰀷

v′1k1 v′2k1 . . . v′m
′

k1

v′1k2 v′2k2 . . . v′m
′

k2
...

...
. . .

...
v′1kd v′2kd . . . v′m

′

kd

󰀶

󰀺󰀺󰀺󰀸
∈ Fd×m′

q (231)

4) Let r1, r2, . . . , rm′ , θ1, θ2, . . . , θm be chosen i.i.d uni-
formly in Fq .

5) Define the set of variables,

V ≜
󰁱
vjki : k ∈ [K], i ∈ [d], j ∈ [m]

󰁲

∪
󰁱
v′j

′

ki : k ∈ [K], i ∈ [d], j′ ∈ [m′]
󰁲

∪
󰁱
r1, r2, . . . , rm′ , θ1, θ2, . . . , θm

󰁲
, (232)

and note that |V| = (m+m′)(dK + 1).
6) We will also introduce the corresponding n × n matrix

representations in Fp for several Fq variables (some of
the Fq variables will be introduced later). The following
table specifies them.

Fq variable
Fn×n
p matrix

representation Comment

vjki V j
ki

k ∈ [K],
i ∈ [d],
j ∈ [m]

v′j
′

ki V ′j′
ki

k ∈ [K],
i ∈ [d],
j′ ∈ [m′]

rj′ Rj′ j′ ∈ [m′]

tµj
′

ki Tµj′

ki

k ∈ [K],
i ∈ [d],
µ ∈ [m],
j′ ∈ [m′]

hj
µ Hj

µ
j ∈ [η],
µ ∈ [m]

h
j

µ H
j

µ
j ∈ [η],
µ ∈ [m]

Our goal is to show that ∆∗
u ≤ dm/(m + m′). Note that if

d = 0 or m = 0, ∆ = 0 is trivially achieved for all cases.
If m′ = 0, then ∆ ≤ d is trivially achieved for all cases by
broadcasting S = X. Thus, in the following we consider the
cases when d > 0,m > 0,m′ > 0. First, for k ∈ [K], µ ∈
[m], j′ ∈ [m′], let us define

󰀵

󰀹󰀹󰀹󰀹󰀷

v′j
′

k1

v′j
′

k2
...

v′j
′

kd

󰀶

󰀺󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀹󰀹󰀷

vµk1
vµk2

...
vµkd

󰀶

󰀺󰀺󰀺󰀸
rj′ +

󰀵

󰀹󰀹󰀹󰀹󰀷

tµj
′

k1

tµj
′

k2
...

tµj
′

kd

󰀶

󰀺󰀺󰀺󰀺󰀸
. (233)

We have
󰀵

󰀹󰀹󰀹󰀹󰀷

V ′j′
k1

V ′j′
k2
...

V ′j′
kd

󰀶

󰀺󰀺󰀺󰀺󰀸

󰁿 󰁾󰁽 󰂀
V′j′

k ∈Fdn×n
p

=

󰀵

󰀹󰀹󰀹󰀷

V µ
k1

V µ
k2
...

V µ
kd

󰀶

󰀺󰀺󰀺󰀸

󰁿 󰁾󰁽 󰂀
Vµ

k∈Fdn×n
p

Rj′ +

󰀵

󰀹󰀹󰀹󰀹󰀷

Tµj′

k1

Tµj′

k2
...

Tµj′

kd

󰀶

󰀺󰀺󰀺󰀺󰀸

󰁿 󰁾󰁽 󰂀
Tµj′

k ∈Fdn×n
p

(234)
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by (233), and Tµ,j′

k , µ ∈ [m], j′ ∈ [m′] are defined as in (234).
Next, construct hµ ∈ Fη×1

q ,hµ ∈ Fη×1
q , µ ∈ [m] as,

h1×η
µ =

󰀥
θµ

K󰁜

k=1

󰀣󰀓 d󰁜

i=1

m󰁜

j=1

(vjki)
αj

ki

󰀔󰀓 d󰁜

i=1

m′󰁜

j′=1

(tµj
′

ki )β
µj′
ki

󰀔󰀤
,

s.t. 0 ≤ αj
ki,β

µj′

ki ≤ N − 1

󰀦
(235)

≜ (h1
µ, h

2
µ, ..., h

η
µ), ∀µ ∈ [m]. (236)

h
1×η

µ =

󰀥
θµ

K󰁜

k=1

󰀣󰀓 d󰁜

i=1

m󰁜

j=1

(vjki)
αj

ki

󰀔󰀓 d󰁜

i=1

m′󰁜

j′=1

(tµj
′

ki )β
µj′
ki

󰀔󰀤
,

s.t. 0 ≤ αj
ki,β

µj′

ki ≤ N

󰀦
(237)

≜ (h
1

µ, h
2

µ, ..., h
η

µ), ∀µ ∈ [m]. (238)

Note that we have,

η = NKd(m+m′), η = (N + 1)Kd(m+m′). (239)

This construction ensures that for µ ∈ [m], the elements of
vjkihµ and tµ,j

′

ki hµ are contained among the elements of hµ

for all i ∈ [d], j ∈ [m], j′ ∈ [m′]. Define,

Hµ =
󰀅
H1

µ1, H
2
µ1, . . . , H

η
µ1

󰀆
∈ Fn×η

p , µ ∈ [m]
(240)

and

Hµ =
󰀅
H

1

µ1, H
2

µ1, . . . , H
η

µ1
󰀆

∈ Fn×η
p , µ ∈ [m],

(241)

where 1 denotes the n× 1 vector of 1’s. By construction, the
columns of V j

kiH and Tµ
kiH are subsets of the columns of Hµ,

which implies that ∀µ ∈ [m], k ∈ [K], i ∈ [d], j ∈ [m], j′ ∈
[m′],

〈V j
kiHµ〉p ⊂ 〈Hµ〉p, 〈Tµ

kiHµ〉p ⊂ 〈Hµ〉p. (242)

Consider the m matrices,
󰀅
H1,H2, . . . ,Hm, R1H1, R2H1, . . . , Rm′H1

󰀆
∈ Fn×(m+m′)η

p

(243)
󰀅
H1,H2, . . . ,Hm, R1H2, R2H2, . . . , Rm′H2

󰀆
∈ Fn×(m+m′)η

p

(244)
...

󰀅
H1,H2, . . . ,Hm, R1Hm, R2Hm, . . . , Rm′Hm

󰀆
∈ Fn×(m+m′)η

p .
(245)

Define event En as,

En =

m󰁡

µ=1

󰀓
rk
󰀃
[H1,H2, . . . ,Hm, R1Hµ, R2Hµ, . . . , Rm′Hµ

󰀆󰀄

= (m+m′)η
󰀔
. (246)

The following lemma establishes a sufficient condition when
En holds a.a.s., which will subsequently be essential to
guarantee successfully decoding by each user.

Lemma 3. If limn→∞
N

p[n−(m+m′)η] = 0, then En holds a.a.s.

Proof. See Appendix B.

Let us specify the value of N as follows,

N =

󰀧󰀕
n−

√
n

m+m′

󰀖 1
Kd(m+m′)

󰀨
, (247)

from which it follows that

N ≤
󰀕
n−

√
n

m+m′

󰀖 1
Kd(m+m′)

(248)

and

n− (m+m′)η ≥
√
n. (249)

Therefore,

lim
n→∞

N

pn−(m+m′)η
≤ lim

n→∞

󰀓
n−

√
n

m+m′

󰀔 1
Kd(m+m′)

p
√
n

= lim
n→∞

O(nα)

p
√
n

= 0 (250)

where α is independent of n. Since N ≥ 0, we have
limn→∞

N
pn−(m+m′)η = 0. Applying Lemma 3, we have

that En holds a.a.s. Now for µ ∈ [1 : m], let Zµ =

(In×n|[H1, . . . ,Hµ, R1H, . . . , Rm′H]) ∈ Fn×(n−(m+m′)η)
p ,

so that
󰀅
H1,H2, . . . ,Hm, R1Hµ, R2Hµ, . . . , Rm′Hµ,Zµ

󰀆
(251)

has full rank n. For compact notation, let

H ≜ [H1,H2, . . . ,Hm]n×mη. (252)

Let the server broadcast S =
󰀃
S0,S

1
[K], . . . ,S

m
[K]

󰀄
∈

F1×[mdη+Km(n−(m+m′)η)]
p , where

S0 = XT

󰀵

󰀹󰀹󰀹󰀷

H 0 . . . 0
0 H . . . 0
...

...
. . .

...
0 0 . . . H

󰀶

󰀺󰀺󰀺󰀸
∈ Fnd×mdη

p (253)

and for k ∈ [K], µ ∈ [m],

Sµ
k = XTVµ

kZµ. (254)

The decoding process works as follows. User k is able to
compute

XTV′j′
k Hµ, j′ ∈ [m′], µ ∈ [m] (255)

directly from its side information. Meanwhile, it is able to
compute

XTVj
kHµ, j ∈ [m], µ ∈ [m] (256)

and

XTTµj′

k Hµ, j′ ∈ [m′], µ ∈ [m] (257)

from S0, since for j ∈ [m], µ ∈ [m],

󰁇
Vj

kHµ

󰁈

p
=

󰀭
󰀵

󰀹󰀹󰀹󰀷

V j
k1Hµ

V j
k2Hµ

...
V j
kdHµ

󰀶

󰀺󰀺󰀺󰀸

󰀮

p

⊂
󰀭
󰀵

󰀹󰀹󰀹󰀷

Hµ 0 0 0
0 Hµ 0 0
...

...
. . .

...
0 0 0 Hµ

󰀶

󰀺󰀺󰀺󰀸

󰀮

p

,

(258)
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and for j′ ∈ [m′], µ ∈ [m],

󰀭
󰀵

󰀹󰀹󰀹󰀹󰀷

Tµj′

k1 Hµ

Tµj′

k2 Hµ

...
Tµj′

kd Hµ

󰀶

󰀺󰀺󰀺󰀺󰀸

󰀮

p

⊂
󰀭
󰀵

󰀹󰀹󰀹󰀷

Hµ 0 0 0
0 Hµ 0 0
...

...
. . .

...
0 0 0 Hµ

󰀶

󰀺󰀺󰀺󰀸

󰀮

p

(259)

due to (242). Thus, User k is then able to compute

XTVµ
kRj′Hµ = XTV′j′

k Hµ −XTTµj′

k Hµ (260)

for all j′ ∈ [m′], µ ∈ [m] according to (234). Together with
Sµ
k , User k is able to compute

XTVj
kHµ, XTVµ

kRj′Hµ and Sµ
k , (261)

for all j ∈ [m], j′ ∈ [m′], µ ∈ [m], which are

XTV1
k

󰀅
H1,H2, . . . ,Hm, R1H1, R2H1, . . . , Rm′H1,Z1

󰀆
, (262)

XTV2
k

󰀅
H1,H2, . . . ,Hm, R1H2, R2H2, . . . , Rm′H2,Z2

󰀆
, (263)

...

XTVm
k

󰀅
H1,H2, . . . ,Hm, R1Hm, R2Hm, . . . , Rm′Hm,Zm

󰀆
.

(264)

Since
󰀅
H1,H2, . . . ,Hm, R1Hµ, R2Hµ, . . . , Rm′Hµ,Zµ

󰀆
is

invertible (has full rank) a.a.s. for µ ∈ [m], User k
is able to compute its desired computation, XTVk =
XT

󰀅
V1

k,V
2
k, . . . ,V

m
k

󰀆
a.a.s.

For q = pn, the cost of broadcasting each p-ary symbol is
1/n in q-ary units. Thus, the broadcast cost of this scheme is,

∆n =
mdη +Km

󰀃
n− (m+m′)η

󰀄

n
. (265)

By (247), we have that

η = NKd(m+m′) ≤ n−
√
n

m+m′ ≤ (N + 1)Kd(m+m′) = η

(266)

which implies that

lim
n→∞

η

n
= lim

n→∞

NKd(m+m′)

n

≤ lim
n→∞

n−
√
n

n
× 1

m+m′

=
1

m+m′ . (267)

On the other hand,

lim
n→∞

η

n
= lim

n→∞

(N + 1)Kd(m+m′)/(1 + 1/N)Kd(m+m′)

n
(268)

≥ lim
N→∞

1

(1 + 1/N)Kd(m+m′)
× lim

n→∞

n−
√
n

n

× 1

m+m′ (269)

=
1

m+m′ . (270)

Thus, we have that

lim
n→∞

η

n
=

1

m+m′ (271)

which also implies that

lim
n→∞

η

n
= lim

n→∞

η

n
× lim

N→∞
(1 + 1/N)Kd(m+m′) =

1

m+m′ .

(272)

Combining (265) with (271) and (272) we have

lim
n→∞

∆n = md× 1

m+m′ + 0 =
md

m+m′ (273)

since K,m,m′, d are independent of n. Thus, for any ε > 0,
∃n0 > 0 such that ∆n ≤ md

m+m′ + ε for all n ≥ n0. Recall
that the broadcast cost ∆n is achievable if En holds, i.e.,
∆∗(Λn) ≤ ∆n ≤ md

m+m′ + 󰂃 if n ≥ n0 and En holds. Now
let us show that md

m+m′ + 󰂃 is achievable a.a.s., by evaluating
the limit in (14) as follows,

lim
n→∞

Pr
󰀓
∆∗(Λn) ≤

md

m+m′ + 󰂃
󰀔

≥ lim
n→∞

Pr

󰀣󰀓
∆∗(Λn) ≤

md

m+m′ + 󰂃
󰀔
∧ En

󰀤
(274)

= lim
n→∞

Pr(En)Pr
󰀓
∆∗(Λn) ≤

md

m+m′ + 󰂃
󰀏󰀏󰀏 En

󰀔
(275)

= 1 (276)

which implies that limn→∞ Pr
󰀓
∆∗(Λn) ≤ md

m+m′ + 󰂃
󰀔
= 1.

Since this is true for all ε > 0, according to (15) we have
∆∗

u ≤ inf{ md
m+m′ + 󰂃 | 󰂃 > 0} = md

m+m′ .

APPENDIX B
PROOF OF LEMMA 3

By Lemma 1.1.3(v) [54], it suffices to prove that ∀µ ∈ [m],

rk
󰀃󰀅
H1,H2, . . . ,Hm, R1Hµ, R2Hµ, . . . , Rm′Hµ

󰀆󰀄

a.a.s.
= (m+m′)η. (277)

Due to symmetry, without loss of generality, we will show the
proof for µ = 1, which is

rk
󰀃󰀅
H1,H2, . . . ,Hm, R1H1, R2H1, . . . , Rm′H1

󰀆󰀄

a.a.s.
= (m+m′)η. (278)

Note that
󰀅
H1,H2, . . . ,Hm, R1H1, R2H1, . . . , Rm′H1

󰀆
has

full column rank (m + m′)η if and only if for all
ci = [c1i , c

2
i , . . . , c

η
i ]

T ∈ Fη×1
p , i ∈ [m], and c′i =

[c′1i , c
′2
i , . . . , c

′η
i ]T ∈ Fη×1

p , i ∈ [m′] such that cT =󰀅
cT1 , c

T
2 , . . . , c

T
m, c′T1 , c′T2 , . . . , c′Tm′

󰀆
∕= 01×(m+m′)η ,

0n×1 ∕= [H1,H2, . . . ,Hm, R1H1, R2H1, . . . , Rm′H1]c

(279)
= H1c1 +H2c2 + . . .+Hmcm

+R1H1c
′
1 +R2H1c

′
2 + . . .+Rm′H1c

′
m′ (280)

=

η󰁛

j=1

cj1H
j
11+ . . .+

η󰁛

j=1

cjmHj
m1

+

η󰁛

j=1

c′jR1H
j
11+ . . .+

η󰁛

j=1

c′jRm′Hj
11 (281)
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=

󰀣
η󰁛

j=1

cj1H
j
1 + . . .+

η󰁛

j=1

cjmHj
m

+

η󰁛

j=1

c′jR1H
j
1 + . . .+

η󰁛

j=1

c′jRm′Hj
1

󰀤
1 (282)

≜ Fc1 (283)

where Fc is an n × n matrix in Fp, which has a scalar
representation in Fq as,

fc =

η󰁛

j=1

cj1h
j
1 + . . .+

η󰁛

j=1

cjmhj
m

+

η󰁛

j=1

c′j1 r1h
j
1 + . . .+

η󰁛

j=1

c′jm′rm′hj
1 ∈ Fq. (284)

Note that since Fp is a sub-field of Fq , the elements of c in
Fp are also in Fq . Thus, Fc ∈ Fn×1

p can be equivalently repre-
sented in Fq as the product of fc with the scalar representation
in Fq , of 1 (the all 1 vector in Fp). Since the Fq representation
of 1 is not 0, we obtain that

Fc1 ∕= 0n×1 ⇐⇒ fc ∕= 0. (285)

Therefore, [H1,H2, . . . ,Hm, R1H1, R2H1, . . . , Rm′H1] ∈
Fn×(m+m′)η
p has full column rank if and only if,

P ≜
󰁜

c∈F(m+m′)η×1
p \{0}

fc ∕= 0. (286)

The condition of (286), which is equivalent to the event En,
says that a uniformly random evaluation of the function P (V)
produces a non-zero value. We will show that this is true a.a.s.
in n.

1) Case I: At least one of {c1, c2, . . . , cm} is not 0η×1,
then set r1 = r2 = . . . = rm′ = 0, which implies
fc =

󰁓η
j=1 c

j
1h

j
1 + . . . +

󰁓η
j=1 c

j
mhj

m, and that tµ,j
′

ki =

v′j
′

ki , ∀µ ∈ [m], i ∈ [d], j′ ∈ [m′] by (233). Meanwhile,
h1
µ, h

2
µ, . . . , h

η
µ are different monomials in the elements of

vjki, v
′j′
ki and θµ. Moreover, since any hj

µ has the factor θµ
but does not have the factor θµ′ if µ′ ∕= µ, it follows that
h1
1, h

2
1, . . . , h

η
1 , h

1
2, h

2
2, . . . , h

η
2 , . . . , h

1
m, h2

m, . . . , hη
m (mη

in total) are different monomials. Since different mono-
mials are linearly independent, we have that [fc] is a
non-zero polynomial.

2) Case II: c1 = c2 = . . . = cm = 0 and thus at
least one of {c′1, c′2, . . . , c′m′} is not 0n×1. For this case,
we have fc =

󰁓η
j=1 c

′j
1 r1h

j
1 + . . . +

󰁓η
j=1 c

′j
m′rm′hj

1.
From the discussion in the previous case, we know that
h1
1, h

2
1, . . . , h

η
1 are non-zero polynomials, and none of

them has a factor in {r1, r2, . . . , rm′} (because otherwise
letting r1 = r2 = . . . = rm′ = 0 would evaluate that
polynomial to 0, which is a contradiction). Thus, we
obtain that r1h

1
1, r1h

2
1, . . . , r1h

η
1 , r2h

1
1, r2h

2
1, . . . , r2h

η
1 ,

. . . , rm′h1
1, rm′h2

1, . . . , rm′hη
1 are linearly independent. It

then follows that [fc] is a non-zero polynomial.
Thus, [fc] is a non-zero polynomial. Since hj

i has degree not
more than (N−1)Kd(2m′+m)+1, [fc] has degree not more
than (N − 1)Kd(2m′ +m) + 2. Therefore, [P ] ∈ Fp[V] is a

non-zero polynomial with degree not more than (p(m+m′)η −
1)[(N − 1)Kd(2m′ +m) + 2]. By Schwartz-Zippel Lemma,
when all the variables V are assigned i.i.d. uniformly chosen
values in Fq ,

Pr
󰀃
P ∕= 0

󰀄

≥ 1− (p(m+m′)η − 1)[(N − 1)Kd(2m′ +m) + 2]

q
(287)

= 1− (p(m+m′)η − 1)[(N − 1)Kd(2m′ +m) + 2]

pn
(288)

≥ 1−Kd(2m′ +m)
N

pn−(m+m′)η
(289)

→ 1 (290)

as n → ∞ if limn→∞
N

pn−(m+m′)η = 0.

APPENDIX C
PROOF OF THEOREM 1

For compact notation, let us define,

γ1 ≜
󰀃
min{3(m+m′)− d,m+m′, d}

󰀄+
(291)

γ2 ≜
󰀃
min{2(m+m′)− d,m+m′, d}

󰀄+
(292)

γ3 ≜
󰀃
min{3(m+m′)− 2d,m+m′, d}

󰀄+
(293)

and define En ≜ C1 ∧ C2 ∧ · · · ∧ C6 as the event that the
following conditions hold. We will show that En holds a.a.s.
The values of ∆g for K = 1, 2, 3 then follow by evaluating
the capacity expression from [38] by applying conditions C1
to C6 for the symmetric LCBC with K ≤ 3.
C1 rk(v′

k) = min{m′, d}, ∀k ∈ [1 : K];
C2 rk(uk) = min{m+m′, d}, ∀k ∈ [1 : K];
C3 rk([v′

i,uij ]) = min{m′ + γ2,m + m′, d}, ∀i ∕=
j, i, j ∈ [1 : K], K ≥ 2;

C4 rk([v′
k,u123]) = min{m′+γ3,m+m′, d}, ∀k ∈ [1 :

3], K = 3;
C5 rk([v′

i,uij ,uik]) = min{m′ + 2γ2,m + m′, d}, for
distinct i, j, k ∈ [1 : 3], K = 3;

C6 rk([v′
i,ui(j,k)]) = min{m′ + γ1,m + m′, d}, for

distinct i, j, k ∈ [1 : 3], K = 3,

where

uij ≜ ui ∩ uj , ∀i, j ∈ [1 : K], i ∕= j, (294)

u123 ≜ u1 ∩ u2 ∩ u3, if K = 3. (295)

By Lemma 1.1.3(v) [54], we then show that En holds a.a.s.
by showing that each of the conditions C1 to C6 holds a.a.s.

A. Conditions C1,C2,C3 and C6

In Lemma 1, let M ′ = [ ], M = v′
k,uk, respectively. We

obtain that Conditions C1 and C2 hold a.a.s. Then let M =
[uj ,v

′
i], M = [ui,uj ], respectively. We obtain that

rk([uj ,v
′
i])

a.a.s.
= min{m+ 2m′, d}, (296)

rk([ui,uj ])
a.a.s.
= min{2(m+m′), d}. (297)

Since

rk([ui,uj ])− rk([uj ,v
′
i])
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= rk(ui) + rk(uj)− rk(uij)

− [rk(uj) + rk(v′
i)− rk(uj ∩ v′

i)] (298)
= rk(ui) + rk(uj)− rk(uij)

− [rk(uj) + rk(v′
i)− rk(uj ∩ ui ∩ v′

i)] (299)
= rk(ui)− [rk(uij) + rk(v′

i)− rk(uij ∩ v′
i)] (300)

= rk(ui)− rk([v′
i,uij ]), (301)

it follows that

rk([v′
i,uij ])

a.a.s.
= min{m+m′, d}−min{2(m+m′), d}+min{m+ 2m′, d}

(302)

= min{m′ + γ2,m+m′, d} (303)

which proves the result for C3. Next, let M = [uj ,uk,v
′
i],

M = [ui,uj ,uk], respectively. We obtain that

rk([uj ,uk,v
′
i])

a.a.s.
= min{2m+ 3m′, d}, (304)

rk([ui,uj ,uk])
a.a.s.
= min{3(m+m′), d}. (305)

Since

rk([ui,uj ,uk])− rk([uj ,uk,v
′
i])

= rk([uj ,uk]) + rk(ui)− rk(ui(j,k))

− [rk([uj ,uk]) + rk(v′
i)− rk([uj ,uk] ∩ v′

i)] (306)
= rk([uj ,uk]) + rk(ui)− rk(ui(j,k))−

[rk([uj ,uk]) + rk(v′
i)− rk([uj ,uk] ∩ ui ∩ v′

i)] (307)
= rk(ui)− [rk(ui(j,k)) + rk(v′

i)− rk(ui(j,k) ∩ v′
i)] (308)

= rk(ui)− rk([v′
i,ui(j,k)]), (309)

it follows that

rk([v′
i,ui(j,k)])

a.a.s.
= min{m+m′, d}−min{3(m+m′), d}

+min{2m+ 3m′, d} (310)
= min{m′ + γ1,m+m′, d} (311)

which proves the result for C6.

B. Condition C4

To see that C4 holds a.a.s., we need the following lemma.

Lemma 4. Let A ∈ Fd×µ′

pn , B,C ∈ Fd×µ
pn , such that µ′ ≤ µ.

Denote

M =

󰀗
A B 0
A 0 C

󰀘
. (312)

If the elements of A,B,C are chosen i.i.d uniform, then M
has full rank min{2d, µ′ + 2µ} a.a.s.

Proof. Consider the following cases.
1) If 2d ≥ µ′ + 2µ, which implies µ′ ≤ µ ≤ d and

thus µ′ + µ ≤ 2d. Let P1 = det([M,Z]), where
Z ∈ F2d×(2d−(µ′+2µ))

q , be a polynomial in the elements
of A,B,C, Z. To verify that it is not the zero polynomial,
consider the following realizations of A,B,C, Z for
which P1 ∕= 0. Let A = Id×d

[1:µ′], B = C = Id×d
[µ′+1:µ].

Let va ∈ Fµ′×1
q , vb, vc ∈ Fµ×1

q . Then M [va, vb, vc]
T =

0 =⇒ ([A,B][va, vb]
T = 0) ∧ ([A,C][va, vc]

T =
0) =⇒ va = vb = vc = 0. Therefore, M has indepen-
dent columns. Let Z = (Id×d|M) ∈ F2d×[2d−(µ′+2µ)]

q , so
that [M,Z] has full rank, which yields a non-zero evalu-
ation for P1. Now, since P1 is not the zero-polynomial, if
the elements of A,B,C, Z are chosen i.i.d uniform, then
by Schwartz-Zippel Lemma, we obtain that as n → ∞,
the evaluation of P1 is almost surely non-zero, which
implies that rk(M)

a.a.s.
= µ′ + 2µ.

2) If 2µ ≤ 2d < µ′ + 2µ, then we have 2µ − d >
d − µ′ ≥ d − µ ≥ 0. Let P2 = det([MT , ZT ]T ),
where Z ∈ F(µ′+2µ−2d)×(µ′+2µ)

q . Let I1 = Id×d
[1:2µ−d],

I2 = Id×d
[2µ−d+1:µ], I3 = Id×d

[µ+1:d], B = [I1, I2], C =

[I1, I3], A0 = [I2, I3]. Then we have 〈A0∩B∩C〉 = {0},
which implies that the following matrix has full rank.

M2d×2d
0 =

󰀗
A0 B 0
A0 0 C

󰀘
. (313)

To see this, let va ∈ F(2d−2µ)×1
q , vb, vc ∈ Fµ×1

q . Then
M0v = M0[va, vb, vc]

T = 0 =⇒ A0va = −Bvb =
−Cvc ∈ 〈A0 ∩ B ∩ C〉. Since A0, B, C have only
trivial intersection, the only solution for v is 0. Letting
A = [0d×(µ′+2µ−2d), A0], we obtain that M has 2d
linearly independent rows. Let ZT = (Id×d|MT ) ∈
F(µ′+2µ−2d)×(µ′+2µ)
q , which is constituted by (µ′+2µ−

2d) rows of I(µ
′+2µ)×(µ′+2µ), so that

󰀅
MT , ZT

󰀆T
has

full rank. Therefore, P2 is not the zero polynomial. By
Schwartz-Zippel Lemma, we obtain that for i.i.d. uniform
A,B,C, Z, as n → ∞, P2 will evaluate to a non-zero
value almost surely, which implies that rk(M)

a.a.s.
= 2d.

3) If d < µ, then by Lemma 1, we have that rk(B) =
rk(C) = d =⇒ rk(M) ≥ 2d holds asymptotically
almost surely. Since M has 2d rows, we conclude that
rk(M)

a.a.s.
= 2d.

In Lemma 4 let

M =

󰀗
u1 u2 0
u1 0 u3

󰀘
. (314)

We obtain that rk(M)
a.a.s.
= min{3(m+m′), 2d}. It then follows

from [61] that,

rk(u123) = rk(u1 ∩ u2 ∩ u3) (315)
= rk(u1) + rk(u2) + rk(u3)− rk(M) (316)
a.a.s.
= 3min{(m+m′), d}−min{3(m+m′), 2d} (317)
= γ3, (318)

Then applying Lemma 4 to

M =

󰀗
v′
1 u2 0

v′
1 0 u3

󰀘
, (319)

we obtain that rk(M ′)
a.a.s.
= min{2m+ 3m′, 2d}. By [61],

rk(v′
1 ∩ u123) = rk(v′

1 ∩ u2 ∩ u3) (320)
= rk(v′

1) + rk(u2) + rk(u3)− rk(M ′) (321)
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Therefore,

rk([v′
1,u123]) (322)

= rk(v′
1) + rk(u123)− rk(v′

1 ∩ u123) (323)
= rk(u123)− rk(u2)− rk(u3) + rk(M ′) (324)
a.a.s.
= γ3 − 2min{m+m′, d}+min{2m+ 3m′, 2d} (325)
= min{m′ + γ3,m+m′, d} (326)

C. Condition C5

Finally let us prove for C5. In Lemma 1, let M = [ui,uj ].
We have

rk([ui,uj ])
a.a.s.
= min{2(m+m′), d}, (327)

By the result for C2 and (327), we have that for distinct i, j ∈
[1 : 3],

rk(uij) = rk(ui) + rk(uj)− rk([ui,uj ]) (328)
a.a.s.
= 2min{m+m′, d}−min{2(m+m′), d} (329)

=
󰀃
min{2(m+m′)− d,m+m′, d}

󰀄+
(330)

= γ2 (331)

To prove that C5 holds asymptotically almost surely, due to
symmetry, it suffices to prove for i = 1, j = 2, k = 3. Let us
consider the following cases.

If γ2 = 0, then we almost surely have rk([v′
1,u12,u13]) =

rk(v′
1) = min{m′, d} = min{m′+2γ2,m+m′, d}, as desired.

Otherwise, let us consider two sub-cases.
1) γ2 = min{m+m′, d} > 0. By C2,

rk([v′
1,u12,u13]) ≤ rk(u1)

a.a.s.
= min{m+m′, d} (332)

On the other hand, by C3,

rk([v′
1,u12,u13]) ≥ rk([v′

1,u12])
a.a.s.
= min{m+ γ2,m+m′, d} (333)
= min{m+m′, d} (334)

This implies that

rk([v′
1,u12,u13])

a.a.s.
= min{m+m′, d}
= min{m′ + 2γ2,m+m′, d} (335)

as desired.
2) γ2 = 2(m +m′) − d > 0. This implies that m +m′ ≤

d < 2(m+m′). Denote A = u1, B = u2, C = u3. Then
v′
1 = A[1:m′]. Denote a = d− (m+m′), and let

D = [A,0d×a][A,B[1:a]]
∗B[a+1:m+m′], (336)

E = [A,0d×a][A,C[1:a]]
∗C[a+1:m+m′]. (337)

Recall that M∗ denotes the adjoint matrix of the square
matrix M . We claim that 〈D〉 ⊂ 〈u12〉 and 〈E〉 ⊂ 〈u13〉.
It is obvious that 〈D〉 ⊂ 〈u1〉 and 〈E〉 ⊂ 〈u1〉. To see
that 〈D〉 ⊂ 〈u2〉 and 〈E〉 ⊂ 〈u3〉, note that

D + [0d×(m+m′), B[1:a]][A,B[1:a]]
∗B[a+1:m+m′] (338)

= [A,B[1:a]][A,B[1:a]]
∗B[a+1:m+m′] (339)

= det([A,B[1:a]])B[a+1:m+m′], (340)

where we used the fact that for any square matrix M , the
product of M and its adjoint M∗ is equal to the product
of the determinant of M and the identity matrix. Thus,
every column of D is a linear combination of the columns
of B = u2, which implies that 〈D〉 ⊂ 〈u2〉. Similarly,

E + [0d×(m+m′), C[1:a]][A,C[1:a]]
∗C[a+1:m+m′] (341)

= det([A,C[1:a]])C[a+1:m+m′], (342)

which implies that 〈E〉 ⊂ 〈u3〉.
Let us now show that rk([A[1:m′], D,E]) ≥ min{m′ +
2γ2,m+m′} holds asymptotically almost surely. Denote
b = min{m, γ2} and c = min{m, 2γ2}. Let Z ∈
Fd×(d−m′−c)
q . The following determinant is a polynomial

in the elements of (A,B,C, Z).

P = det([A[1:m′], D[1:b], E[1:(c−b)], Z]). (343)

To prove that this is not the zero polynomial, let

I1 = Id×d
[1:m′], I2 = Id×d

[m′+1:m′+b],

I3 = Id×d
[m′+b+1:m′+c], I4 = Id×d

[m′+c+1:m′+m],

I5 = Id×d
[m+m′+1:d], (344)

and then consider the following evaluation,

A = [I1, I2, I3, I4] =⇒ A′ = I1, (345)

B = [I5, I2,0
d×(γ2−b)], (346)

C = [I5, I3,0
d×(γ2−c+b)], (347)

Z = [I4, I5]. (348)

Note that [A,B[1:a]] = [A,C[1:a]] = [I1, I2, I3, I4, I5] =
Id×d. Thus,

D = [A,0]B[a+1:m+m′] (349)

= [I1, I2, I3, I4,0
d×a][I2,0

d×(γ2−b)] (350)

= [I2,0
d×(γ2−b)], (351)

which implies that D[1:b] = I2. Similarly,

E = [A,0]C[a+1:m+m′] (352)

= [I1, I2, I3, I4,0][I3,0
d×(γ2−c+b)] (353)

= [I3,0
d×(γ2−c+b)], (354)

which implies that E[1:(c−b)] = I3.
Therefore P = det([I1, I2, I3, I4, I5]) = det(Id×d) =
1 ∕= 0. Since P is not the zero polynomial, by Schwartz-
Zippel Lemma, we obtain that rk([A′, D,E]) ≥ m′ +
b + (c − b) = m′ + c = min{m′ + 2γ2,m + m′}
holds asymptotically almost surely. This implies that
rk([v′

1,u12,u13])
a.a.s.

≥ min{m′ + 2γ2,m + m′}. Since
rk(v′

1)
a.a.s.
= m′, rk(u12) = rk(u13)

a.a.s.
= γ2, from the

result for C1 and (328) and note that 〈[v′
1,u12,u13]〉 ⊂

〈u1〉, we conclude that rk([v′
1,u12,u13])

a.a.s.
= min{m′ +

2γ2,m+m′} = min{m′ + 2γ2,m+m′, d}.
Therefore, Ci, i ∈ [6] holds asymptotically almost surely.
We conclude that En holds asymptotically almost surely. The
proof is completed by evaluating (15) of [38] with conditions
C1 to C6 to get ∆∗

g for the symmetric GLCBC with K ≤ 3.



24

APPENDIX D
PROOF OF LEMMA 1

If d ≥ µ′ + µ, let Z ∈ Fd×(d−µ′−µ)
pn . Then P =

det([M ′,M,Z]) is a non-zero polynomial in the elements of
M and Z. To see this, let [M,Z] = Id×d|M ′, which will then
yield that det([M ′,M,Z]) ∕= 0 since 〈[M ′, (Id×d|M ′)]〉 =
〈Id×d〉. By Schwartz-Zippel Lemma, if the elements of M and
Z are chosen i.i.d uniform, Pr(P ∕= 0) ≥ 1 − degree of P

pn ≥
1 − d

pn → 1 as n → ∞, which implies that the probability
that [M ′,M ] has full rank µ′ + µ goes to 1 as n → ∞.
If d < µ′ + µ, denote by M1 the first d − µ′ columns of
M . It suffices to show that rk([M ′,M1])

a.a.s.
= d. Note that

P = det([M ′,M1]) is a non-zero polynomial in the elements
of M1, and thus M . To see this, let M1 = Id×d|M ′, which
will then similarly yield that det([M ′,M1]) ∕= 0. By Schwartz-
Zippel Lemma, if the elements of M1 are chosen i.i.d uniform,
Pr(P ∕= 0) ≥ 1 − degree of P

pn ≥ 1 − d
pn → 1 as n → ∞,

which implies that rk([M ′,M1])
a.a.s.
= d as desired. □
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