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RESEARCH

The Y-linked proto-oncogene TSPY 
contributes to poor prognosis of the male 
hepatocellular carcinoma patients by promoting 
the pro-oncogenic and suppressing 
the anti-oncogenic gene expression
Tatsuo Kido1,2 and Yun‑Fai Chris Lau1,2* 

Abstract 

Background: Liver cancer is one of the major causes of cancer death worldwide, with significantly higher incidence 
and mortality among the male patients. Although sex hormones and their receptors could contribute to such sex 
differences, the story is incomplete. Genes on the male‑specific region of the Y chromosome could play a role(s) in 
this cancer. TSPY is the putative gene for the gonadoblastoma locus on the Y chromosome (GBY) that is ectopically 
expressed in a subset of male hepatocellular carcinomas (HCCs). Although various studies showed that TSPY expres‑
sion is associated with poor prognosis in the patients and its overexpression promotes cell proliferation of various 
cancer cell lines, it remains unclear how TSPY contributes to the clinical outcomes of the HCC patients. Identifying the 
downstream genes and pathways of TSPY actions would provide novel insights on its contribution(s) to male pre‑
dominance in this deadly cancer.

Results: To determine the effects of TSPY on HCC, a TSPY transgene was introduced to the HCC cell line, HuH‑7, and 
studied with RNA‑Seq transcriptome analysis. The results showed that TSPY upregulates various genes associated with 
cell‑cycle and cell‑viability, and suppresses cell‑death related genes. To correlate the experimental observations with 
those of clinical specimens, transcriptomes of male HCCs with high TSPY expression were analyzed with reference 
to those with silent TSPY expression from the Cancer Genome Atlas (TCGA). The comparative analysis identified 49 
genes, which showed parallel expression patterns between HuH‑7 cells overexpressing TSPY and clinical specimens 
with high TSPY expression. Among these 49 genes, 16 likely downstream genes could be associated with survival 
rates in HCC patients. The major upregulated targets were cell‑cycle related genes and growth factor receptor genes, 
including CDC25B and HMMR, whose expression levels are negatively correlated with the patient survival rates. In 
contrast, PPARGC1A, SLC25A25 and SOCS2 were downregulated with TSPY expression, and possess favorable progno‑
ses for HCC patients.

Conclusion: We demonstrate that TSPY could exacerbate the oncogenesis of HCC by differentially upregulate the 
expression of pro‑oncogenic genes and downregulate those of anti‑oncogenic genes in male HCC patients, thereby 
contributing to the male predominance in this deadly cancer.
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Background
The testis specific protein Y-encoded (TSPY) is a tan-
demly repeated gene (> 30 times) located within the 
gonadoblastoma locus on the Y chromosome (GBY), 
which predisposes XY patients with disorders of sexual 
development (DSDs) to gonadoblastoma development 
[1–3]. TSPY encodes a protein harboring a SET/NAP 
domain, initially identified in the SET oncoprotein and 
nucleosome assembly proteins (NAPs) [4, 5]. SET/NAP 
proteins play important roles in transcriptional regula-
tion, chromatin assembly, histone chaperone, and cell-
cycle regulation [6–10]. Previously, we demonstrated 
that TSPY interacts with the cyclin-B/CDK1 complex, 
eukaryotic translation elongation factor 1A (EEF1A), 
and androgen receptor (AR) via its SET/NAP domain, 
and enhances the respective functions of these binding 
partners [11–13]. Overexpression of TSPY accelerates 
cell proliferation in various cancer cell lines [11, 13, 14]. 
Further, TSPY directly binds to the chromatin at its own 
exon-1 region and amplifies its own expression in a pos-
itive-feedback manner [15], suggesting the potential role 
of TSPY as a transcriptional regulator. Others showed 
that TSPY could suppress TP53 functions and enhance 
cell proliferation by inhibiting USP7, a protective deubiq-
uitinase for TP53 [16]. TSPY is predominantly expressed 
at the early-stages of male germ cells, i.e. gonocytes and 
prespermatogonia at fetal testis [17] and spermatogonia 
and spermatocytes in adult testis [18]. It is postulated to 
participate in mitotic proliferation and meiotic division 
of male germ cells [19]. Importantly, TSPY is frequently 
expressed in germ cell tumors including gonadoblastoma, 
seminoma, and the carcinoma-in situ/intratubular germ 
cell neoplasia unclassified (CIS/ITHCNU), the precursor 
for all germ cell tumors [20–24]. Since TSPY is the pri-
mary gene located within GBY locus and is expressed in 
gonadoblastoma, TSPY is the putative gene for this onco-
genic locus and could predispose dysfunctional germ 
cells to tumor development in dysgenetic gonads. Indeed, 
transgenic mouse studies showed that ectopic expres-
sion of TSPY in ovaries resulted in gonadoblastoma-like 
structures in female mice [25]. Significantly, TSPY is also 
expressed in various types of somatic cancer; including 
prostate cancer, lung cancer, and hepatocellular carci-
noma (HCC) [26–30]. Accordingly, TSPY could also pro-
mote oncogenic initiation and/or progression of somatic 
cancers in male patients.

Liver cancer causes more than 700,000 cancer deaths 
each year worldwide [31, 32]. Significantly the incidence 

and mortality of HCC is much higher in males than 
females, with greater than threefold difference [32–34]. 
Both sex hormones and/or their receptors and the sex 
chromosome genes have been postulated to contribute to 
such sex differences, the mechanisms of which, however, 
could be quite complex [35–40]. As a proto-oncogene 
on the Y chromosome, TSPY is expressed in a subclass 
of male HCC cases (30–40%), frequently associated with 
the global hypomethylation of the genomic DNA, includ-
ing its own promoter sequence [27, 28]. However, beside 
its general functions in cell proliferation and growth, the 
exact mechanism(s) by which TSPY exerts on the onco-
genic processes in HCC patients remains unknown.

In order to determine the effects of TSPY expression on 
HCC, we overexpressed TSPY in the HCC cell line, HuH-
7, and analyzed the differential gene expression patterns 
between HuH-7 cells expressing and non-expressing the 
TSPY transgene using transcriptome analysis, and cor-
related the results with those derived from compara-
tive study between the male HCC cases with high TSPY 
expression and non-expression (silent) from the Cancer 
Genome Atlas (TCGA) [27, 41]. We identified 16 genes 
that were potentially regulated by TSPY and their differ-
ential expression could be correlated with the prognoses 
of the HCC patients. Among these genes, TSPY upregu-
lates cell-cycle regulators and components of cell-divi-
sion machinery, e.g. BUB1, CDC25B, CDC45, CENPA, 
PRC1, PRIM1, RRM2, and SPC24, as well as growth 
factor receptors, e.g. ADGRD1 and HMMR, which are 
associated with unfavorable prognosis and poor surviv-
als of the patients while the expression of PPARGC1A, 
SLC25A25 and SOCS2 are inversely correlated with 
TSPY expression but are associated with favorable prog-
nosis and better survival of the patients. Our results sug-
gest that ectopic expression of the Y-located TSPY could 
promote the expression of pro-oncogenic genes and sup-
pression of anti-oncogenic genes in HCC, thereby con-
tributing to the male predominance of this deadly cancer.

Methods
Cell culture and lentiviruses
HuH-7 cells, a human hepatocellular carcinoma cell 
line, were cultured in DMEM medium containing 10% 
tet system-approved fetal bovine serum (FBS; Clontech) 
and antibiotics cocktail (100 U/mL penicillin and 100 μg/
mL Streptomycin). Lentiviruses for the expression of 
TSPY and EGFP with tet-ON system were prepared as 
described previously [13, 42]. Cells were transduced with 

Keywords: Hepatocellular carcinoma, TSPY, Y‑chromosome, Male predominance, Transcriptome analysis, TCGA 
dataset, Datamining
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lentiviral particles containing the expression vectors, 
FUW-tetO-TSPY-ires-EGFP or FUW-tetO-EGFP with 
pFUW-M2rtTA. The ires sequences in the FUW-tetO-
TSPY-ires-EGFP vector enable ribosome complex-bind-
ing and simultaneous expression of both TSPY and EGFP 
genes in a bicistronic cassette. The transduced cells were 
cultured in the absence of doxycycline (Dox) until analy-
ses. The transduced cells were cultured in the presence of 
1 μg/mL Dox (Sigma-Aldrich) to induce the expression of 
both TSPY and EGFP (Fig. 1a). For cell proliferation anal-
yses, cells were seeded at 2000 cells/well in 96-well plates 
and cultured in the presence of 0.5 μg/mL Dox. The cell 
viability was monitored at the indicated time points using 
the CellTiter 96 Aqueous One Cell Proliferation Assay 
kit (Promega), according to the instructions from the 
manufacturer.

Western blot
Western-blot was performed as described previously 
[43], using anti-TSPY mouse monoclonal antibody (clone 
17, generated in our laboratory) and anti-β-actin mouse 
monoclonal antibody (clone AC-15, Sigma-Aldrich). 
Immunoreactive signals were visualized by IRDye680RD 
conjugated anti-mouse IgG antibody, and recorded by 
the Odyssey system (LI-COR, Lincoln, NE).

Immunofluorescence
Immunofluorescence was performed as described 
previously [11]. Briefly, cells were fixed with 4% para-
formaldehyde-PBS solution for 5  min, and permeabi-
lized by methanol treatment. After blocking with 3% 
bovine serum albumin (Sigma)-PBS solution for 1  h, 
the slides were incubated with primary antibodies at 

4  °C overnight. The primary antibodies used for immu-
nofluorescence were anti-GFP goat IgG (Abcam) and 
anti-TSPY mouse monoclonal antibody (clone 17). The 
immunoreactive signals were visualized by Alexa Fluor 
488 conjugated anti-goat IgG antibody (Invitrogen) and 
Alexa Fluor 594 conjugated anti-mouse IgG antibody 
respectively. Nuclear DNA was stained with 4′,6-diami-
dino-2-phenylindole (DAPI) (Roche Applied Science). 
Fluorescent images were recorded with a Nikon Eclipse 
Ti fluorescence microscope and image acquisition work-
station (Nikon instrument Inc., Melville, NY).

RNA preparation and RNA‑Seq transcriptome analysis 
of the transduced HuH‑7 cells
Total RNA was isolated from the cells cultured in a 6-well 
plate (9.6 cm2 surface area) at 24 h after Dox-induction 
using TRIZOL-Plus RNA purification kit (ThermoFisher 
Scientific, NY). One μg total RNA from each triplicate 
sample was used for the library preparation using KAPA 
Stranded mRNA-Seq kit (Kapa Biosystems, MA). Librar-
ies were indexed (bar-coded) with NEBNext multiplex 
primers for Illumina (New England Biolabs, CA). The 
libraries were subjected to 75 single-end read cycles of 
sequencing on the NextSeq 500 (Illumina, CA). All pro-
cedures were performed according to the manufacturer’s 
instructions.

The sequence reads were mapped onto the Ensembl 
GRCh37 (hg19) human reference genome using TopHat 
(version 1.0.1) [44], after quality assessment by FastQC 
program (version 0.11.4) [45]. The mapped reads 
were summarized and calculated to the count reads, 
which were then quantitated as the expression levels 
using the featureCounts (version 1.5.1) program [46]. 

Fig. 1 Overexpression of TSPY in HuH‑7 cells using the Tet‑ON system. a Schematic diagram of the Tet‑ON system, in which the expression levels of 
TSPY and EGFP are upregulated by doxycycline (Dox) treatment via recruitment of the rtTA transcription activator onto the Tet‑responsive promoter. 
b Confirmation of doxycycline‑induced TSPY expression by western‑blot analysis. β‑actin was tested as a reference. c Immunofluorescence analysis 
showed that TSPY (red) and co‑expressed EGFP (green) were expressed in the HuH‑7‑tetON‑TSPY cells cultured with and without Dox. DNA was 
visualized by DAPI staining (blue). d Cell proliferation assay showing HuH‑7‑tetON‑TSPY cells (red line) proliferated faster than HuH‑7‑tetO‑EGFP cells 
(green line) in the presence of 1 µg/mL Dox
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Normalization and differential gene expression analysis 
were performed using an R package TCC [47].

Gene expression enrichment analysis, functional net-
work analyses and pathway analyses were performed 
with Ingenuity Pathways Analysis (IPA) (Ingenuity Sys-
tems, build version 463341M) and DAVID bioinformatics 
resources [48]. A schematic diagram of cell cycle path-
way was downloaded from KEGG website (https ://www.
genom e.jp/kegg/) with permission [49].

Data set and data mining analysis of HCC specimens 
from TCGA 
The RNA-Seq gene expression data and associated clini-
cal information of HCC cases at the Cancer Genome 
Atlas (TCGA) data portal were downloaded from the 
UCSC Xena Browser [50]. The datasets included 50 
non-tumor samples (28 male cases and 22 female cases) 
and 371 tumor samples (250 male cases and 121 female 
cases). The expression levels were calculated as RSEM 
normalized read count [51]. The survival information 
of the respective HCC patients was obtained from the 
Human Protein Atlas (HPA) data portal [52], except for 
classification of the high TSPY-expressing patients and 
the TSPY-silent patients. Statistical analyses were per-
formed with the Prism6 program (GraphPad Software, 
Inc., La Jolla, CA).

Results
TSPY‑overexpression enhances cell proliferation in HuH‑7 
cells
The effects of TSPY in HCC were examined in the HCC 
HuH-7 cells, which were transduced with Tet-On lenti-
viral vectors overexpressing TSPY-ires-EGFP and EGFP 
alone under doxycycline-induced conditions, hereby des-
ignated as HuH-7-tetON-TSPY and HuH-7-tetON-EGFP 
respectively (Fig. 1a). HuH-7-tetON-EGFP cells served as 
a control for all experiments in the study. Western-blot 
analyses confirmed the expression of TSPY and EGFP 
being appropriately induced by Dox in the culture media 
(Fig. 1b). Immunocytochemical analyses showed that the 
TSPY protein was localized in both cytoplasm and nuclei 
(Fig.  1c), consistently with the observations in clinical 
HCC samples [28]. Cell proliferation assays showed that 
overexpression of TSPY promoted cell proliferation in 
HuH-7 cells (Fig.  1d), as previously reported on other 
cancer cell types [13, 14, 16].

TSPY upregulated various cell‑cycle related genes 
and suppressed tumor suppressor genes in HuH‑7 cells
To explore the mechanisms by which TSPY regulates 
the molecular events in HuH-7 cells, we had performed 

a transcriptome analysis using the Illumina RNA-Seq 
platform. The mRNAs were isolated from respective 
HuH-7 cells (n = 3) overexpressing TSPY and EGFP 
alone at 24  h after Dox administration, and analyzed 
in biological triplicates with RNA-Seq strategy [13]. 
The differentially expressed genes (DEGs) between 
HuH-7-tetON-TSPY and HuH-7-tetON-EGFP cells 
were identified with false discovery rate (FDR) < 0.05 
by the TCC analysis, Student’s t-test P-value < 0.05, 
expression level of  log2[expression read count] > 3.32, 
and  Log2[fold change] > 0.6, resulting in a total of 1884 
DEGs consisting of 1139 up-regulated genes and 745 
down-regulated genes (Fig.  2a and Additional file  1: 
Table  S1). The DEGs were subsequently mapped onto 
the KEGG pathway, representing molecular interaction 
and relation network, using the DAVID gene-annota-
tion enrichment analysis software [48, 49]. The results 
showed that the pathways of metabolic pathways, ster-
oid biosynthesis, glycosaminoglycan degradation, cell 
cycle, and bile secretion, were enriched at Benjamini–
Hochberg FDR < 0.05, suggesting that these pathways 
could be affected by TSPY overexpression in HuH-7 
cells (Fig. 2b).

Using a set of DEGs derived from a more stringent 
expression level, we further analyzed the TSPY effects 
with the Ingenuity Pathways Analysis (IPA) program 
[53, 54]. Our results showed that the biological func-
tions remarkably affected by TSPY overexpression were 
pathways associated with cell-cycle and cell viability 
(Additional file  2: Figure S1a and S1b). Noticeably, the 
pathways of necrosis and cell-death were inhibited (Addi-
tional file 2: Figure S1b, blue columns) while the pathways 
associated with cellular interphase processes and cell-
survival were enhanced (Additional file 2: Figure S1b, red 
columns), as indicated by the |z-scores of − and + |> 2 for 
significance in inhibition and activation respectively. The 
IPA hepatotoxicity analysis demonstrated that the TSPY-
induced DEGs were significantly associated with liver 
cancer development (Additional file 2: Figure S1c). Alto-
gether, both gene annotation/ontology programs consist-
ently suggested that the pathways of cell-cycle and cell 
viability could be mostly affected by TSPY overexpres-
sion in HuH-7 cells. To further illustrate the various cell 
cycle genes being affected by TSPY, we mapped the asso-
ciated DEGs onto the KEGG cell-cycle pathway [48, 49]. 
Our results showed that the tumor suppressors CDKN1A 
(also known as Cip1 and p21) and GADD45 were down-
regulated while various positive cell-cycle regulators and 
components for DNA replication, including cyclin-B, 
cyclin-D, CDK1, CDC25B, and MCMs, were upregulated 
by TSPY-overexpression (Fig. 2c).

https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
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Overall, the transcriptome analysis of the HuH-7 cells 
overexpressing TSPY showed that TSPY could promote 
cell proliferation and viability by directly or indirectly 

augmenting a pro-oncogenic gene expression pattern 
consistent with the results of cell-proliferation assay 
(Fig. 1d).

Fig. 2 Transcriptome and DAVID analyses of the HuH‑7‑tetOn‑TSPY cells. a MA‑plots showing the differentially expressed genes (DEGs) between 
HuH‑7‑tetOn‑TSPY cells and HuH‑7‑tetOn‑EGFP cells. Genes plotted within the areas of  Log2[expression level] > 3.32 and |log2[fold change]| > 0.6 
(red) were analyzed as differentially expressed genes (DEGs). b DAVID gene‑annotation enrichment analysis identified top 5 KEGG pathways 
enriched in DEGs with FDR < 0.05; FDR = false discovery rate or corrected P‑value. c Mapping of the 26 DEGs on the KEGG cell‑cycle pathway [49]. 
Red indicates the upregulated genes and green indicates the downregulated genes in the Dox‑treated HuH‑7‑tetON‑TSPY cells
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High expression of TSPY is associated with poor survival 
rate in male HCC patients
To correlate the effects of TSPY on the gene expression 
patterns and clinical outcomes in the HCC patients, we 
had examined the transcriptomes and the correspond-
ing clinical data of the HCC samples from the Cancer 
Genome Atlas (TCGA) [27, 41]. Among the 250 male 
HCC cases, the top 34 cases expressed TSPY at the high-
est level (expression read count > 50) and were classified 
as the male TSPY-high group, and 180 cases without 
TSPY expression were classified as the male TSPY-silent 
group (Fig.  3a). The survival data showed that the sur-
vival rate of the male TSPY-high group was significantly 
lower than that of male TSPY-silent group (Log-rank test 
P-value = 0.0005) (Fig.  3b), suggesting that TSPY could 
be directly or indirectly involved in the progression of 
HCC and survival of the patients. Further and impor-
tantly, the survival rate of the male TSPY-high group was 
significantly lower than that of female group (Log-rank 
test P-value = 0.0164), while there was not significant 
difference between male TSPY-silent group and female 
group (Log-rank test P-value = 0.0671) (Fig. 3b).

Correlation of the differentially expressed genes 
between the TSPY overexpression in HuH‑7 cells 
and TSPY‑high group male HCC patients
To identify the common DEGs associated with both 
TSPY overexpression in HuH-7 cells and TSPY high 
expression in HCC patients, we had analyzed the dif-
ferential gene expression patterns of HuH-7 cells over-
expressing TSPY versus EGFP and those of TSPY-high 
group versus TSPY-silent group in clinical HCC tissue 
samples. The datamining of the TCGA datasets identi-
fied 692 DEGs with a cut-off differential expression level 
at |log2[difference]| > 0.6 and a P value < 0.05 between 
the male TSPY-high group and the male TSPY-silent 
group of HCC (Fig. 3c and Additional file 3: Table S2). By 
comparing these DEGs in HCCs to those derived from 
HuH-7 overexpressing TSPY (Fig.  2a), 49 DEGs were 
identified to share similar expression patterns, i.e. either 
up or down, between HuH-7 overexpressing TSPY and 
TSPY-high group in clinical HCC specimens (Fig.  3d 
and Additional file 4: Table S3). To further identify those 
potentially play important roles in HCC, these 49 genes 
were further analyzed with respect to the correlation 

Fig. 3 Identification of the TSPY downstream genes associated with clinical outcomes in primary HCC. a Based on the TSPY expression level, male 
HCC cases were classified into the TSPY‑high group (n = 36, expression count > 50) and the TSPY‑silent group (n = 180, expression count = 0). b 
Survival curves showing that the survival rates of the male TSPY‑high group (red), male TSPY‑silent group (blue), and female group (gray). Log‑rank 
test P‑values are indicated.  c Volcano plot representing the DEGs between TSPY‑high and TSPY‑silent HCC groups (red plots). d The diagram shows 
the workflow to identify the downstream genes regulated by TSPY in HCC tissues. The genes whose expression levels consistently correlated with 
the TSPY expression level in both HuH‑7 cells and clinical TSPY‑high HCC tissue samples were selected as described in the body text. Sixteen genes 
(red), whose expression patterns correlated with that of TSPY, were identified to be associated with clinical outcomes.
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of their expression patterns with the mortality of HCC 
patients (Fig. 3d) [52]. Such additional analysis identified 
16 DEGs whose expression levels were associated with 
the survival rates of HCC patients (Fig. 3d and Table 1). 
Three genes, PPARGC1A, SLC25A25 (also known as 
MCSC), and SOCS2, associated with favorable prognoses 
and good patient survivals were downregulated by TSPY. 
PPARGC1A and SOCS2 are considered to be tumor sup-
pressors in liver cancer [55–59], while SLC25A members 
are involved in mitochondrial  Ca2+ signaling important 
for hepatocyte physiology [60, 61]. The expression pat-
terns of the remainder 13 genes were unfavorable for 
patient survival and were upregulated by TSPY (Table 1, 
and Figs. 3, 4, Additional file 5: Figure S2, and Additional 
file  6: Figure S3). These pro-oncogenic genes included 
various cell-cycle related genes, e.g. BUB1, CDC25B, 
CDC45, CENPA, PRC1, PRIM1, RRM2, and SPC24, that 
participate in DNA replication and  G2/M-phases progres-
sion respectively (Table 1 and Additional file 7: Table S4), 
which are consistent with our previous observations that 

TSPY accelerates  G2/M-transition [14] and enhances the 
mitotic cyclin B-CDK1 phosphorylation activities [12, 
62]. In addition, growth factor receptors, e.g. ADGRD1 
(also known as GPR133) and HMMR (also known as 
RHAMM), and components of DNA repair machinery, 
e.g. EXO1 and RAD51, were also upregulated by TSPY 
and negatively associated with patient survival (Table  1 
and Figs. 3, 4, Additional file 5: Figure S2, and Additional 
file  6: Figure S3). These results suggest that the ectopi-
cally expressed TSPY could exacerbate oncogenesis and 
progression in HCC by stimulating downstream unfa-
vorable (pro-oncogenic) but repressing favorable (anti-
oncogenic) gene expression in the tumors.

TSPY promotes pro‑oncogenic gene expression and poor 
survival of male HCC patients
Comparison of the gene expression levels among respec-
tive TSPY-related groups showed that the expression 
levels of the unfavorable/pro-oncogenic genes, e.g. 
ADGRD1, CDC25B, CDC45, EXO1, HMMR, PRIM1, 

Table 1 Sixteen downstream genes potentially regulated by TSPY and associated with prognosis in HCC patients

Full table is presented as Additional file 7: Table S4
a The role of EGLN3 in HCC seems to be controversial

Category Gene symbol (alias) Function Effect by TSPY Effect to HCC survival

DNA replication CDC45 An initiator for chromosomal DNA replication by 
recruiting DNA polymerase to chromatin

Upregulated Unfavorable

PRIM1 A component of the DNA polymerase synthesizing 
RNA primers for the Okazaki fragments

Upregulated Unfavorable

RRM2 A ribonucleotide reductase catalyzing the biosyn‑
thesis of deoxyribonucleotides from ribonucleo‑
tide

Upregulated Unfavorable

G2/M progression BUB1 A Ser/Thr protein kinase playing a central role in the 
spindle checkpoint.

Upregulated Unfavorable

CDC25B A Thr protein phosphatase activating CDC2 and 
CDK1, playing key roles in initiation of G2/M phase

Upregulated Unfavorable

CENPA A centromere protein required for the recruitment 
of kinetochore proteins to centromere

Upregulated Unfavorable

PRC1 A key regulator of cytokinesis by forming spatiotem‑
poral midzone with KIF14, central spindle and 
midbody

Upregulated Unfavorable

SPC24 A component of NDC80 complex organizing the 
stable microtubule binding sites of the kine‑
tochore

Upregulated Unfavorable

Membrane receptors ADGRD1 (GPR133) A G‑protein‑coupled membrane receptor Upregulated Unfavorable

HMMR (RHAMM) A receptor of hyaluronic acid (HA); intracellular 
HMMR plays a role in cytokinesis

Upregulated Unfavorable

DNA repair and recombination EXO1 A DNA exonuclease functioning in DNA mismatch 
repair

Upregulated Unfavorable

RAD51 A component of the DNA repairing machinery in 
homologous recombination

Upregulated Unfavorable

Others EGLN3 (PDH3) A prolyl hydroxylase regulating the activities of HIFs Upregulated Unfavorablea

PPARGC1A (PGC‑1a) A transcriptional coactivator of PPARgammma Downregulated Favorable

SLC25A25 A calcium‑dependent mitochondrial solute carrier Downregulated Favorable

SOCS2 (MCSC) A negative regulator of cytokine receptor signaling Downregulated Favorable
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RAD51, RRM2, and SPC24, were significantly higher 
in the male TSPY-high group HCCs than female HCCs, 
while the expression level of the favorable/anti-oncogenic 
gene, e.g. PPARGC1A, was significantly lower in the male 
TSPY-high group HCCs than the female HCCs (Fig.  4 
and Additional file 6: Figure S3). However, there was no 
significant difference in the expression levels of the 16 
downstream genes between the male TSPY-silent group 
HCCs and female HCCs, except EGLN3 and SPC24 
(Fig. 4 and Additional file 6: Figure S3). These results sug-
gest that TSPY could differentially affect the expression 
levels of pro-oncogenic and unfavorable genes in male 
HCCs, as compared to those in female HCCs. Indeed, 
as described above, the survival data indicate that, while 
there was no significant difference between female HCC 
group and the male TSPY-silent HCC group, the survival 
ratio of the male TSPY-high HCC group was significantly 
lower than that of female HCC group (Log-rank test 
P-value = 0.0164) with 3  years survival ratio of 35% in 
the male TSPY-high HCC group and 60–70% in female 
HCC and the male TSPY-silent HCC groups respectively 

(Fig.  3b). These observations support the hypothesis 
that TSPY could be a male-specific genetic risk factor 
and its aberrant and epigenetic activation contributes to 
the oncogenic processes and the male predominance of 
HCC.

Discussion
Recent studies have provided significant evidence dem-
onstrating the sex differences in various diseases, includ-
ing cardiovascular, inflammatory and neurodegenerative 
diseases, as well as numerous types of cancer [38, 63–69]. 
Currently, the mechanisms contributing to such sex dif-
ferences are still largely unknown. Liver cancer is one 
of the most male predominant cancers with men hav-
ing approximately three to sixfolds higher incidence and 
mortality than women, depending on the geographic 
locations [32–34]. The sex hormones and their recep-
tors have been postulated to play key roles in such sex 
difference in HCC [39, 40, 70, 71]. Female hormones, 
i.e. estrogen and prolactin, have been proposed to sup-
press HCC development by reducing the activities of 

Fig. 4 Representative expression patterns and associated with survival rates of TSPY downstream genes in HCC. a TSPY stimulated the expression 
levels of CDC25B, HMMR, and PPARGC1A, in HuH‑7 cells. The results of transcriptome analysis (n = 3) were presented with the P‑values by 
Student t‑tests. b–d Left panels, expression levels of TSPY and selected downstream genes, e.g. CDC25B, HMMR, and PPARGC1A, among female 
non‑tumor liver (NT), female HCC, male non‑tumor liver (NT), male TSPY‑silent HCC (TS(−)), and male TSPY‑high HCC (TS(++)), in the TCGA 
transcriptome dataset. Y‑axis indicates the expression level as RSEN normalized count. Right panels, survival analyses of the TCGA data, comparing 
the high‑expresser HCC patients (red lines) and the low‑expresser HCC patients (blue lines) for the respective genes. Both male and female cases 
were included in these analyses. Log‑rank test P‑values are indicated. Abbreviations; **t‑test P‑value < 0.005; *P‑value < 0.05; nd, P‑value > 0.05. See 
Additional file 5: Figure S2 and Additional file 6: Figure S3 for same analyses for all 16 potential TSPY downstream genes
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inflammatory pathways, such as IL-6 and TNF signal-
ing cascades in liver [36, 37, 72]. In contrast, male hor-
mones, i.e. androgens, could stimulate hepatitis B virus 
replication and expression of the HBV viral oncoprotein 
HBx via androgen receptor actions, resulting in exacerba-
tion of HCC development [73–77]. Since it is estimated 
that 50–80% of HCC patients could be associated with 
HBV-infection, the androgen-dependent upregulation of 
the viral oncoprotein HBx might contribute to the male 
predominance of HCC. Notably, sex differences in HCC 
still observed between men and women after menopause 
age, and various clinical trials targeting androgen recep-
tor showed limited effects on HCC progression [33, 78]. 
Hence, in addition to sex hormones and their receptors, 
genetic factors could also be important for the male pre-
dominance of HCC. Such genetic factors include sin-
gle nucleotide polymorphisms (SNPs) on autosomal 
genes correlating with the sex difference of HCC [79, 
80]. Further, we demonstrated that an X-encoded tumor 
suppressor TSPX, the homologue of TSPY on the X chro-
mosome, could bind to and promote the proteasomal 
degradation of the viral oncoprotein HBx [81]. Since men 
have only one X-chromosome, inactivation and/or muta-
tion of such tumor suppressor gene could increase the 
risk of HBx-medicated HCC in men [38, 81].

TSPY is a male specific proto-oncogene on the Y 
chromosome and is ectopically expressed in a sub-
class of male HCC cases (30–40% of cases) [27, 28, 
30]. Although such TSPY expression could be related 
to its pro-oncogenic functions, such as acceleration of 
cell proliferation, stimulation of protein synthesis and 
cell growth, suppression of TP53 functions, and exac-
erbation on androgen receptor transactivation [11–14, 
16], its downstream molecular effects have not been 
fully explored. We previously identified the TSPY co-
expression network genes that are frequently upregu-
lated together with TSPY in multiple somatic cancers, 
including HCC, and are associated with global DNA 
hypomethylation [27]. Using transcriptome analyses on 
the HuH-7 HCC cells overexpressing TSPY and those of 
clinical HCC specimens from the TCGA database, we 
identified 16 genes that were likely regulated directly 
or indirectly by TSPY in HCC cells and contributed 
to poor prognosis of HCC patients (Table 1, and Fig. 4 
and Additional file 5: Figure S2). These TSPY-regulated 
genes include numerous cell-cycle related genes and 
growth factor receptors (Table  1 and Fig.  5). Impor-
tantly, the expression levels of the unfavorable genes, 
e.g. ADGRD1, CDC25B, CDC45, EXO1, HMMR, 
PRIM1, RAD51, RRM2, and SPC24, were significantly 

higher in the male TSPY-high group HCCs than TSPY-
silent/female group HCCs, while the expression level of 
the favorable gene, e.g. PPARGC1A, was significantly 
lower in the male TSPY-high group HCCs than female 
HCCs (Fig.  4 and Additional file  6: Figure S3). Previ-
ous studies demonstrated the oncogenic properties of 
ADGRD1, CDC25B, HMMR, PRIM1, RAD51, RRM2, 
and SPC24, in HCC and/or other somatic cancers 
[82–91] (Additional file 7: Table S4). Indeed, the small 
molecule inhibitors against CDC25 and RRM2 signifi-
cantly inhibited cell proliferation in HuH-7 cells, and 
the TSPY-overexpression relieved the effects of these 
inhibitors (Additional file  8: Figure S4). Our results 
strongly suggest that TSPY is a male-specific genetic 
factor that exacerbates HCC oncogenesis by stimulat-
ing the expression of these downstream pro-oncogenic 
genes, thereby contributing to the male predominance 
of HCC. Such postulation is supported by the fact that 
the survival rate of the male TSPY-high HCC group was 
significantly lower than those of male TSPY-silent and 
female HCC groups (Fig. 3b).

HMMR was originally identified as the receptor for 
hyaluronan (HA), a component of extracellular matrix, 
and it is frequently upregulated in various cancer types, 
including colon cancer, bladder cancer, prostate cancer, 
and liver cancer [83, 92–95]. The high HMMR expres-
sion correlates with cancer growth, metastasis, and 
poor prognosis in these types of cancer [83, 92–95]. 
The level of extracellular HA is elevated according 
to the progression of liver fibrosis, which is a patho-
logical precondition for HCC [96]. The intracellular 
HMMR participates in mitotic spindle pole formation 
and cytokinesis [97]. The identification of HMMR as a 
downstream gene upregulated by TSPY suggests that it 
could be involved in the initiation and progression of 
HCC via its stimulation of the HA-HMMR signaling 
cascade, in addition to oncogenic activities as noted 
above.

Conclusion
The present study shows that TSPY is a male-specific 
genetic risk factor, whose ectopic expression could con-
tribute partially to the male predominance of HCC. The 
ectopically expressed TSPY upregulates the expression 
of genes involved in cell-cycle progression, especially 
 G2/M-phase, in HCC. In addition, TSPY may promote 
liver fibrosis and expedite an oncogenic transition to 
HCC via activation of the HA-HMMR signaling cas-
cade, among others. Future studies on the mechanisms 
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of TSPY-mediated differential regulation of its down-
stream genes will provide novel insights on its oncogenic 
actions, prognostic values and potential therapeutic tar-
gets for effective clinical treatments of HCC.
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