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ABSTRACT 

It is shown that when P-wave pion-pion scattering is large at low 

energies, the integral equations previously formulated by the authors require 

a cutoff. Because of the cutoff and the unstable nature of the solution, 

the numerical integration procedure becomes much more involved. The original 

equations are therefore replaced by a series of conditions at the symmetry 

point, and the unphysical cuts of the partial-wave amplitudes are_ replaced 

by a corresponding series of poles. Within this framework one need not 

speak of a cutoff, but one new parameter appears. Self-consistent solutions 

can be found in which a P-wave resonance is spstained by a "bootstrap" 

mechanism; that is, a strong attractive force in the I = 1 state results 

from the exchange of a resonating pair of P-wave pions. The symmetry-point 

conditions used would be modified by the cutoff and quantitative accuracy 

is not attempted; however, this and other corrections are not expected to 

change the qualitative nature of our solutions. Rough estimates of the 

corrections are made. 
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I. INTRODUCTION 

In an earlier paper, 1 hereafter to be referred to as CM-I, a 

single-parameter set of integral equations for the low-energy pion-pion 

scattering amplitudes has been derived. These equations satisfy the 

requirements of analyticity and crossing symmetry but are based on the 

assumption that the imaginary part of the amplitude is adequately represented 

by keeping elastic S and P waves only. It has been shown by explicit 

calculation2 that there exists a class of solutions of these equations 

consistent with this assumption. These solutions, however, have very 

small P phase shifts, whereas the only information available so far about the 

~-~ interaction suggests that there is a low-energy P resonance. 3 In this 

paper we examine the problem further and show that if the P phase shift is 

large at low energies, the original assumption about the imaginary part is 

inconsistent; the CM equations require modification and a new parameter 

appears. 

It is possible to make the necessary modification through a cutoff 

of the partial-wave imaginary parts on the left-hand (unphysical) cut. 

Actually, three cutoffs would be needed, for the I = 0 and I = 2 S states 

* This work was supported in part by the U. S. Atomic Energy Commission 

and in part by the U. S. Air Force under contract No. AF 638-327 

monitored by the AFOSR of the Air Research and Development Command. 
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as well as for the P state, but crossing symmetry may be used to correlate 

the three in terms of a single real parameter. It will be made plausible 

that in a correct calculation, where inelastic processes and the imaginary 

parts of higher partial waves are included, unitarity will make any new 

para"!leters unx1ecessary. 

At the present level of approximation it will be argued that the 

cutoffs of the imaginary parts on the left-hand cut probably occur for 
2 . . 

values of ro = -q substantially greater than 9, the mathematical limit of 

convergence of the polyr1omial expansion~ It will be shown that in such a 

case a strong intermediate-range attractive force capable of producing a 

P-wave resonance occurs in the I 1 state. The force is due to the 

exchange of a pair of P-wave pions resonating in transit (or in other words 

to the left-cut contribution obtained by crossing relations from the P-wave 

absorptive part on the right), so we have a "bootstrap" mechanism. The 

corresponding strong intermediate range force in the I = 0 state is 

repulsive and in the r = 2 case attractive. 

We assume that the short~range contributions from D and higher 

waves, except for their role in producing the cutoff, may be absorbed into 

the parameter A. already introduced in CM-I. That is, we replace them, 

together with all other exchange mechanisms of high energy, by a. 

phenomenological zero-range force. The consistency of such an approach 

can be investigated a posteriori by calculating the higher angular-momentum 

contributions to the force once the S and P phase shifts have been determined. 

Rough estimates of this kind are reported below. 

In Section II, the necessity for the cutoff, when the P wave is 

"bootstrapping" itself, will be demonstrated and the relation of the cutoff 
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to our approximations is discussed. Section III treats certain exact and 

almost exact crossing conditions that put powerful restrictions on the 

scattering amplitudes. In Section IV further conditions at the symmetry 

point; corresponding to the basic approximation of CM-I, are developed and 

used in the replacement of left-hand discontinuities by a small number of 

delta functions. The straightforward iteration procedure previously employed 

does not converge when the P amplitude is large because the "bootstrap" 

character of the mechanism makes the solution very unstable. Section V tests 

the new method on the "known" S-dominant problem, while Section VI deals with 

the P-dominant situation. It is shown that a reasonable choice of the new 

parameter leads to a P resonance with a position and width roughly that 

required by the electromagnetic structure of the nucleon. Our results are 

not quantitatively accurate, because the crossing conditions at the symmetry 

point should be modified by the cutoff, and also because we neglect the S waves 

in the crossing relations. Corrections to the results obtained are discussed 

in Section VII, and future calculations are outlined. 

II. PROPERTIES OF THE INTEGRAL EQUATIONS 

WHEN THERE IS STRONG P-WAVE SCATI'ERING 

To derive the integral equations in CM-I, the partial-wave amplitudes 

were written in the form 

N _/() ) 
= 

n/(v) 
( II.l) 

where N has a cut along the negative real axis and D along the positive 

real axis only. The index £ denotes the angular momentum and I the 

isotopic spin. On defining (J.) = -), E _/((J.)) = D _/()), we found the 

following integral equations [CM-I, Eqs. (V.l4) and V.26)]: 
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1 + (w + ~0 )K(m, - Yo)ai 

( II.2) 

(J.) + -/0 00 K(m, (J.) I ) foi(m') Eo I(m') 
+ J dill I 

1( 
1 m' + ~0 

and 

1 
()) K( (J.)' (J.) I ) f 1 ( (J.) I ) E 1 ( (J.) I ) 

1 
(jj J dill' (II. 3) +· -
1( 

1 m' 

where 

K(m, m') 2 

(II.4) 

In these equations, ai is the S-wave amplitude for isotopic spin I at 

the discontinuity across the cut of A (£)I() ) for 

-().)= 

f I 
£ 

The f's are not known explicitly, but must be calculated by crossing 

symmetry from tbe absorptive parts for positive energies. In CM-I, vie 

denoted the absorptive parts of the complete amplitude by A I(J, cos.e) 
s 

and wrote the necessary equations in the form 

I 
f £ (w) 

w-1 
- ~ J d Y' Pn(l- 2 )' + l) 

(J.) 0 k (J.) 

Z a A I'()' 1- 2 w- l) 
I'=0,1,2 II: s ' y' ' 

( II.5) 
(m > 1) 

where the crossing matrix aii' is 
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2 

~I' = 1 (II .6) 

-1 

If A I' in Eq. (II.5) is resolved into partial waves and the expansion s 

cut off after the P-wave, the formula becomes 

I 1 
ill-1 
J f £ (m) :;:: 

(J) 
0 

2 y' 1 ) d-J' P_e(l + 
(J) {~o 

+ "r2 Im A (0)2( ,)•) + 3(1 - 2 ro ,1~ l ) ~l Im A ( l)l(}, )} ' 

(II. 7) 

The right-hand side of Eq. (II.7) involves the imaginary parts of 

the partial-wave amplitudes for positive energies, which are given by the 

simple formula, 

The phase shifts, 

:;:: 
. 2 s:. I 

s~n v£ ( II.8) 

I 5£ , can be calculated from the fUnctions E by the 

formulae CM-I (V.20) and (V.26), so we have a self-consistency problem; the 

functions E are determined in terms of the f's by Eqs. (II.2) and (II.3), 

while the f's are determined in terms of the E's from crossing by Eqs. 

(II.6) to (II.8). 

In our previous calculations an iteration procedure was used to 

obtain self-consistency. The ~onvergence was rapid, and the solutions 

'had the property that the P-wave amplituCie was extremely small. The reason 
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bounded by unitarity andJ further, have opposite signs for I = 1 so that 

f£1(m) cannot become large. According to CM-I (V.26), the P~wave amplitude 

then remains small, and its smallness in turn means that the third term on 

the right of Eq. (II.7) is small. 

~ne question now arises whether there are any other solutions of 

our equations. An immediate possibility is a solution dominated by the 

P wave, in which is large and receives its main contribution from 

the third term of Eq. (II. 7), i.e • , from the imaginary part of the P wave 

itself. Owing to the large w~erical factor multiplying the third term, 

the unitarity limitation no longer mru<es small. To determine the 

sign of the P-wave phase shift in such a solution, we notice that f 1
1(m) 

according to Eq. (II.7) is negative for small m and positive for large m, 

and that, as may easily be verified) the positive part always predominates 

in the sense that the dispersion integral 

1 
1( 

oo f
1

(m') 
f dill' 
1 m'(m' + -)) 

is positive. According to our equations, it then follovrs that the phase 

shift is positive. We are led to the possibility of a P-wave resonance, 

which Frazer and Fulco3 require in order to bring the calculations on 

nucleon electromagnetic structure into agreement with experiment~ Rough 

examination indicates that we can achieve self-·consistency in our equations 

with such a resonance. 

The type of solution suggested here would exist even without any 

coupling to the S waves, though of course it becomes modified by such 

coupling. For each value of the constant ~ , there are two solutions--· 
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one of the type discussed previously with small P waves, and one of the type 

under consideration here with large P waves. One might raise the objection 

that, if ~ is interpreted as a coupling constant, it would be expected to 

define uniquely the solution. Ho·wever, it must be borne in mind that we are 

dealing with a renormalized coupling constant whose definition is largely a 

matter of convenience. There seems to be no reason why such a quantity 

cannot be the same for two different solutions of our equations. To put it 

another way, it would be quite possible that two different values of the 

unreno.rmalized coupling constant--if such a quantity had a meaning--should 

give the same value of the renormalized coupling constant. The question as 

to which of the two solutions is actually realized in nature is on the same 

level as the question of the value of the coupling constant, and at present 

must be determined by experiment. 

The qualitative nature of the solution with large P-wave phase shifts 

is encouraging from the point of view of the nucleon electromagnetic structure. 

The fact that is not positive over its entire range but is negative 

if w is sufficiently small has the effect of considerably narrowing the 

resonance. This property follows from Eq. (II.3), or it may be seen by 

expressing the problem in more conventional language. The potential 

corresponding to an of our form has a repulsive outer part and 

an attractive inner part, and it is hardly necessary to remark that such a 

potential favors a narrow resonance. Now Frazer and Fulco have shown that 

a resonance sufficiently narrow to explain the electromagnetic structure 

cannot be obtained with a purely positive f 1(w), corresponding to a purely 

attractive force, without making the predominant values of w unreasonably 
. 3 

high--at least 150 and, for a good fit, nearer 6oo. If f 1 changes sign 

in the manner described, a narrow resonance can be obtained without going 

• 
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to such high values of w • This class of solutions to the pion-pion problem 

seems therefore to be qualitatively just what is required. to fit the 

electromagnetic structure data. 

There are unfortunately two difficulties that must be overcome before 

we can obtain a solution of the type described in the foregoi:c.g paragraphs. 

The first is purely practical in nature; the iteration procedure used 

previously does net converge now, as mentioned in the introduC:!tion. We shall 

have to use some trial-and-error procedure to obtain a consistent solution, 

and the numerical work is therefore considerably increased. The second 

difficulty is one of principle. We have pointed out in CM-I that the integral 

Eqs. (II.2) and (II.3) above become singular if f I 
0 

of f 1 
1 

approach a 

constant value with infinite ro • It follows from Eq. (II.7) that the 

contribution to f I 
p, from the third term does approach a constant, even if 

only a finite range of values of is taken. The behavior of f I 
p, at 

infinity is therefore just bad enough to make our integral eq-oations singular, 

and in such a case the integral equation usually has a ·o.nique sol-..:.ttion if 

and only if the coefficient of the singular term is sufficiently small. 

By replacing our integral equation by one with the same asymptotic 

behavior but which is exactly soluble) we can show that a unique solution 

exists provided that the limit of f r ro) 
1' 

as w becomes infinite is less 

than unity. (A negative limit never gives trouble.) If the f·..;;:nc:tion 

Im A ( l)l(.)') on the right cf Eq. (II. 7) is obtained from a sobtion that 

has approximately the characteristics required by Frazer and F·ulco, 3 the 

limit of f
1

(m) is found to be considerably greater than unity.c.-of the 

order of magnitude of six. We are therefore well within the range where 

the equation does not have a unique solution. 

• 
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The situation here is precisely analogous to that occurring in the 

relativistic scattering by a potential with a l~r behavior at the origin. 

Again we find a unique solution in the attractive case only if the coefficient 

of the singularity is sufficiently small (less than ~c). In the repulsive 

case, which corresponds to a negative 1 f
1 

(ill), there is of course no trouble. 

One may easily see the reason for the limit 1 on 

by considering the dispersion relation for A(l)l(..)): 

1 A(l)l( J) 1 
CX) f 11( ill I ) 

1 
Q) 

J dcD' J d.J' 7 = -- + --
1{ 

1 ill 1 (ill 1 + y) 1{ 
0 

at infinity 

Im A (l)l( )') 
1 

y'( J' - y) 

(II.9) 

If approaches the constant c without oscillat:i.on as ru' tends to 

infinity, the first term will behave like ~ ~ log y a.s J tends to 

infinity. Since I A ( l)l( -J) I is bounded by unitarity and cannot be 

greater than ~ ( )J + 1 I 
)) ) in the physical region, this logarithmic beha';ric-r 

must be cancelled by an opposite logari tbm·ic behavior of the second term. 

The function Im A ( l) 1( ~ ) must therefore approach c as ) tends to 

infinity. However, I Im A(l)l(-/) I is of course also less than V< Y)' 1 ) , 

so that c cannot be greater than unity. This argument seems to apply to 

the repulsive as well as the attractive case, but the presence of "ghosts" 

in the former complicates the situation and the singularity at infinity 

does not have any further adverse effect. 

The source of the singularity in the integral_equation appears to 

I' be the use of the Legendre expansion for A in Eq. (II.5) at all values 
s 

of ill , whereas we know it to be justified only if ill is less than 9. If 

we could use the full expression (II.5) and calculate f 1(ill) correctly at 

high values of ill , a uniquely soluble equation would result. Our procedure 

() 
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for calcula~ing is~ hmrever, net accurate for high m • At this 

stage, therefore, there appears to be no alternative to cutting off f
1

(m) 

at some point. This cutoff is meant to replace the excluo.ed contributions, 

which should remove the difficul~y in the integral eg_uation. T'.ae cutoff is 

a second parameter (in addi·(~io:n to i~), which seems unavoidable e.t present. 

If the calculation could be taken to higher approximations, it should be 

possible to see the natural cutoff (o?.' high-energy oscillations) appearing, 

so that the extra parameter ·vrould be ur ..... "l.ecessary. It represents our laek of 

knowledge at present of processes at high energies. 

An importan~~ physical consideration is whether the cutoff may occur 

at such a low· value of m as to remove the attractive part of the interaction 

in the I = 1 state. To investigate this point, let us calculate 

from Eg_. (II .• 7), keepj_ng only the third term on the right and assuming a· 

sharp resonance at .)= ,)R. The functional form of 1 
f 

1 
(m) is then 

roughly 

1 1 
(1 - 2 

YR + l )(' m - 1 ]) ~. f 
1 

(m) "' 2--- (),) > + 1 
(J) m y'R 

~R 
( II.lO) 

0 
' 

which changes sign at 

(J) < + 1 ) 

w = 2( -) + 1), being attractive for larger values 
R 

of m and repulsive for s:maller values. According to Frazer and Fulco, 3 

the position of the resonanc'::: should. eorrespond to 

attractive regio;J. on the left cut begins at m ~ 6 • Therefore, if ~he 

cutoff occurs at ill ~ 12 there will be a substantial region of attraction. 

. I' 
Now·, the polynomial e:x.:pans:i.on of. As in Eq. (II.5) fo:-:."'Illally 

breaks down at m = 9, but if there is in fact a P resonance and the higher 
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partial waves are not of abnormal size, one expects the S and P waves to give 

a reasonable approximation to the full absorptive part up to somewhat higher 

values of ill. One may easily, ih fact, estimate the D phase'shifts produced 

by the exchange Of a resonating P-wave pair and investigate how large ill 

must be before the D-wave contributions to A·I' ·become important. The· 
s 

result suggests that the cutoff will not occur until ill ~ 20. 

Another consideration is the influence of inelastic processes, which 

have been neglected but which certainly will be important at high energies. 

In CM-I it was estimated that on the right cut the elastic approximation 

should be adequate for ;) ~ 10. 
/ 

The crossing relation (II.5) tells us 

that a value ill on the left corresponds to an naverage" value of .,) on the 

right equal to 1 
-(ill- 1). 
2 

Thus a breakdown of the elastic approximation at 

~ - 10 corresponds to a failure of our formulas on the unphysical cut at 

ill·"' 20. On this score as well, therefore, there is reason for confidence 

in the intermediate-range attractive force, which is the crucial element in 

the problem. 

III. EXACT AND ALMOST-EXACT.CROSSING CONDITIONS 

AT THE SYMMETRY POINT 

With no cutoff, the equations of CM-I satisfy crossing symmetry 

exactly. We shall lose this feature if cutoffs are introduced in an 

arbitrary fashion into the different partial-wave amplitudes, so it is 

desirable to establish in advance certain important consequences of crossing 

symmetry that can be used as a guide. 

The general crossing conditions are given by Eq. (II~5) to (II.7) 

of CM-I. It was also pointed out there that a singularity :free point of 

maxinri.un symmetry in the :n::n: problem occurs at s = .t = u = 4/3 or at 
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cos e = o , 

Advantage was taken of the first crossing condition at this point, namely 

that A = B = C, in order to define the ~~ coupling constant through CM-I 

(III.4). An infinite number of further conditions on the derivatives of the 

amplitudes are also derivable, as we now show. 

Consider the condition 

A(s, t, u) = B(t, Sj u) ( III.l) 

This may also be written in terms of the variables ~ and cos e which 

are connected to s, t.J and u through CM-I (II.2). The result is 

where. 

and 

A( ) , cos e) = B( ) ' , cos e' ) 

1' = ~ (1 + cos e) ( -J + 1) 

cos 9' 
..:L ( 1 + cos e) + ( .) + 1) 

2 

-f ( 1 + cos e) ( -J + 1) 

( III.2) 

(III. 3) 

( III.4) 

Evidently, at the symmetry point ~ ~' = - ~3 and cos e = cos 8' = o, 

so we have immediately 

·c 2 A--, 
3 

0) 2 = B(--
3 

0) 

or, in viewof CM-I (II.8), remembering that 

we have 

c( v, cos e) = B( ..; , - cos e) 

0) 1 2 2 
= 2 A (- 3' 0) 

' 

= /1. ' 

the.result already stated in CM-I (III.5). 

( III.5) 

( III.6) 

(III. 7) 
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Next let us differentiate Eq. (III.2) above with respect to ) and 

evaluate at the symmetry point. We find 

1 d B _ 2_ 

2 d >' 4 
o B j 

d cos 9 
-) = - 2/3 

cos 9= 0 

Similarly, by differentiating with respect to cos 9 we find 

1 
+ -

2 
- 2/3 
d 

. . 

( III.8) 

( III.9) 

Replacing A . and B by A1, A2, and A
3 

through CM-I (II.8), one may 

then deduce the two symmetry-point conditions, 

o A0 
2 d ( 

Al 
) -- = )7' ' d y 

(III.lO) 
d cos e 

and 

(j A2 d ( 
Al 

= )7) 
d yi 

(II'I.ll) 
d cos e 

There are three second-derivative conditions;. ·corresponding to the 

operations, 2) 2 o 1 o cos e , and· o:y'o cos 9 d y on Eq. (III~l). 

Remembering that . .all.oddderivatives of A0 and A2 wit,h, respect to 

cos e vanish at cos e = o, as do all even derivatives of A1, we can write 

these three new symmetry-point conditions as 

J ( III.l2) 

d2 ·o 
.2. d2 A2 .2 d2 Al 

(~ ) . - ( J2 ) = ( 7) 
d 

2 .· 2 .· 2 2 ~ 
J 

cos 9 d cos 9 d cos 9 d 
(III.13) 
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and 

2 o cos e 
= 

o2AO 

d ~2 
+ 

(III.l4) 

Evidently such a procedure can be extended indefinitely, giving an 

infinite number of conditions on the derivatives of the scattering amplitudes. 

The conditions written above, however, seem the most interesting for the time 

being because we shall be concerned principally with S and P waves; higher 

derivatives give conditions that mainly involve higher £ values. 

It was pointed out in CM-I that Eq. (III.?) above implies at 

2 - 3 a simple rela~ion between the two S amplitudes that holds to a 

high degree of accuracy even though it is not exact. So lorig as D and 

higher waves are not of abnormal size, the relation is 

1 1 
A. ao ""' 2 a2 ""' 5 

(III.l5) 

Similarly, if we define 

[ a c~s Al )] "/1.1 9 (- ,) ' y , = - 2/3 
(III.l6) 

cos 9 = 0 

then the conditions (II.lO) and (II.ll), to a good approximation, become 

- a 
2 ' (III.l7) 

where a0 and a2 .are the derivatives of the S amplitudes at ~ = ~ 

The very simple conditions (III.l5) and (III.l7), while not exact, 

have a higher order of reliability than the other approximations to be 

made. Because of them, the low-energy S phase shifts are fairly well 
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determined once the two constants A and Al are known. 

The new constant, Al , is closely related to the P amplitude at 

the symmetry point. Neglecting F and higher waves, we have 

(III.l8) 

The'task of the following sections might be described as that of developing 
I 

a procedure for calculating a1 , the derivative of the P ampli tud.e at the 

symmetry point, in terms of A and A1• We shall strive, in other words, 

for a two-parameter theory, but the symmetry conditions of this section 

are already sufficient to allow the construction of reasonable S and P 

effective-range formulas with a total of no more than three arbitrary 

parameters. 

The second-derivative condition (III.l2) is more sensitive 'to the 

D wave than our first three conditions, but a correction can be made using 

condition (III.l3). We then find 

a " 0 
2 a" 
2 2 - 12 a ' 

1 (III.l9) 

Estimates of the D amplitudes, themselves, are given by conditions (III.l3) 

and (III.l4) in terms of a
1
', 

however, to get conditions on 

a n 
0 ) 

a " 0 

and It does not seem possible, 

and a2" · separately in terms of a1'. 

This circumstance illustrates again the ihcompleteness of the exact crossing 

relations if we confine ourself to the symmetry point. Some of the physics 

certainly lies elsewhere. 
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IV. APPROXIMATE CONDITIONS AT THE SYMMETRY POINT 

A straightforward approach to the large P-wave problem is to set 

the left-hand partial-wave imaginary parts equal to zero beyond a certain 

value of oo and to use Eq. (II.7) for smaller values. The integral equations 

of CM-I are then nonsingular and can be solved without difficulty. Furthermore, 

as explained in Section II above, we know that the consequence of the higher 

partial waves is to produce such a cutoff. A complication arises, however, 

in the necessity for correlating the cutoffs in the three states (I = 0, 1, 

and 2) so as to satisfy the exact crossing conditions (III.lO) and (III.ll). 

These conditions mean that only one new arbitrary parameter occurs, not 

three. (Higher derivative condi1ons are relatively insensitive to the cutoffs.) 

A further difficulty is the instability of the large P-wave problem because 

of its "bootstrap" aspect. It seems impossible to construct a convergent 

iteration procedure by the straightforward approach used in the S-dominant 

problem. 

Eventually we hope to solve the cutoff equations by a modified 

numerical iteration scheme, and progress in this direction is described 

below. However, an understanding of the essential elements of. the problem 

may be achieved by an analytical approach making maximum use of crossing 

symmetry at the expense of an accurate handling of certain cutoff effects. 

If the functions are approximated by a finite number of 

delta functions--a procedure that corresponds to replacing the left-hand 

branch cuts by a series of poles--then the integral Eqs. (II.2) and (II.3) 

become algebraic and trivially soluble in terms of the residues of the 

poles. It will be verified below that the S-dominant solutions obtained 

by numerical integration of the original CM-I equations can be well 

approximated in this way, 2 and there seems no reason why such an approach 
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should be less accurate when the P wave is large. The essential question, 

then, is how to determine the residues and positions of the poles, or in 

other words the strength and range of the various contributing interactions. 

Since the poles are inserted as an approximation to the left-hand 

branch cuts, the equations used to determine them will be relations between 

the left and right cuts. From these relations it is possible to obtain 

sufficient equations to determine the positions and residues of the poles 

in terms of the parameters ~ and ~l • These equations contain more 

information than the exact crossing relations at the symmetry point, which 

we showed in the last section to be insufficient. 

To a,chieve our object, let us first consider not quite the S and P 

amplitudes but A 0_' 2 and d c~s 9 A 1 evaluated at cos e = 0 • From 

Eqs. (IV.lO) and (IV.ll) of CM-I, keeping only S and P imaginary parts, we 

may derive the following formulas, which show the relative contributions to 

4 these functions from the Tight- and left-hand cuts: 

.Y-Y. 0 

J- -}, CO d ..)r C/3) 1 Im A(o)o(~') 0 I - 2 1( 0 ~I .:. -) + '1:.(,}- '})) y'. - ')) 
0 2 0 2/3 ° 

(10/3) ImA(0)26J') (-:) Im A(l)l~,)l 
+ + 9 y' 

1/3 
-/ - 0' 

(IV.l) 
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A:j.(.) ~cos 8) ] 

cos 9 = 0 

2 
[~ I - ~ + ! ( ")) - ~ ) ] 0 2 0 
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1 00 
1, Im A Cl)l( __ ~') 

= 1{ ~ d)/ ;;I ( )) I :). J 

5 (0)2 J -)' - :lo + 2(-y'- )0) .Im A(l)l(_· J,)1. 
- §" ImA (. ') + . })' y J 

(IV.2) 

Evidently, the first integral in each case is the contribution from the right 

cut and the second integral that from the left. 

The importance of these formulas lies in the fact that at the 

symmetry point the contributions from the left are simply related to those 

from the right. Defining 

Ap. (0) I( .,) ) 
,J- .Vo 00 a)t ImA(O)I 

= I ,)' -y ~' .;. j)o 1t 
0 

(IV.;) 

and 

~(l)l(>t') 
l' 00 dJ' Im A ( l) l~ J ' ~ 

I j) = ~' - y ))' ' 1{ 
0 

(IV.4) 

where the meaning of the notation is obvious, we see by inspection of 



UCRL-9126 

-20-

(5/6) 
. 13/12. 

( 

:/2) 
I ~(l)l) 

9 \-

d 

\ y (f)7 ;· (rv.6) 

.£1 
1 d ~(0)0 5 d ~(0)2 + 2 

~(1)1 
·= 9 d"i7 -w d)J ~ 2 

(IV.7) 

and 

(~ (1)1) 
)) . 

(IV.8) 

There are, in fact, relations of this kind for all derivatives at the 

symmetry point, but these four will suffice for our purposes. It may 

easily be verified that they satisfy the exact conditions (III.lO) to (III.l2) 

of the preceding section. Of course the above conditions have more content 

and correspondingly are not exact; the imaginary partp of amplitudes for 

£ > 1· have been dropped in their derivation. The chief error is 

associated with the cut-off effect. That is to say, in (IV.l) and (IV.2) 

we should reduce the contribution from the left branch cuts by an amount 

that varies inversely with the cutoff. An estimate made below· shows that 

this error is normegligible for the expected position of the cutoff; however, 

the qualitative features of the problem are not changed by disregarding 

the effect of a cutoff in these formulas. 

Accepting the derivative relations. (IV.5) to (IV.8), we can calculate 

the positions and residues of the poles which are to replace the unphysical 
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cuts of the partial-wave amplitudes. It is easy to establish that at the 

symmetry point the values of ~ 
0 1 2() ), as well as the first two 

' ' 
derivatives, are well approximated by the S• and P-wave parts of these 

functions. One may make the correction in a self-consistent calculation 

through formulas of the type (V.l8) of CM-I, but here we ignore such 

refinements. If vre remember that 

and 
~(1)1 

")) + 

(IV.9) 

A (1)1 
I, 

(IV .10) 

the symmetry-point conditions (IV.5) to (IV.8) become approximately 

cl/3)d~ ~(o)o + c 5/3) d A (O)I d ~(0)2 
dlJ L 

1/6 
0 - J/3 

+ 
9
c ) ( AR(l)l) 

- v2 ) 
' 
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A (1)1 
1 d ~(0)0 5 d ~(0)2 1 

~(1)1 
L 

7J = d;7 - w· d7" + - )) J 9 2 
(IV .13) 

and 

d ( ~~)1) 1 d2 ~(0)0 5 d2 A (0)2 1 d ( ~;1)1). 
dY = -w aJ2 + 75b d ,12 + 2d7 ..., "R 

(IV .14) 

The relations (IV.ll) to (IV.l4) could aiso have been derived from 

the fundamental crossing formula (v.8) of CM-I (or (IL7) above). Had we 

done so, the effect of a cutoff clearly would have been to reduce the 

co~fficient of ~(l))/~ on the right-hand side of relations (IV.ll) and 

(IV.l3). (At the same time the change in the higher derivative relations is 
. . . 1 

much less important~) If the sharp resonance form (II.lO) for f 1 (m) is 

cutoff at m = mc' a simple calculation shows that coefficient of ~(l);;J 
~ 

in (IV.l3) is reduced roughly by a factor 1 - 12 ___ R_ • We shall have to 
m c 

consider such a reduction factor when evaluating the validity of results 

based on the above formulas. 

V. 'I'HE S-WAVE PROBlEM BY 'I'HE POLE APPROXIMATION 

These formulas, (IV.ll) to (IV.l4)J for the contribution from the 

left cuts of the partial-wave amplitudes tell us what we need to know· about 

the equivalent poles. Consider first the S waves, where we attempt to 

represent the left cuts in each case by a single pole: 

(V .1) 
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By the use of Eqs. (IV.ll) and (IV.l2), the values of bi and ro8I may be 

determined, since at the symmetry point we have 

and 

bi = d A (O)I n 1 

= 

(V .2) 

It may be seen from Eq. (IV.ll) 5 that b2 is always negative, corresponding 

to attractive forces in the I = 2 state, but the sign of _b0 depends on 

the relative magnitudes of S- an~ P-wave scattering. The force in the 

I = 0 state due to S-pair exchange is attractive, but that due to P-pairs 

is repulsive. 

Using the Njn technique of CM-I, we may immediately write _down the 

S-wave amplitudes corresponding to Eq. (V.l). Equations (V.ll) and (V.l4) 

of CM-I then become 

(.1) +..J. 
+ (-.) _ ..) ) SI . J 

= ai 0 roSI + 

and 

(V .4) · 

Eo I(ro) = 1 + (w + ~0 ) [ K(w, - ~)ai + (w8I + vi0 ) K(wSI' w) Br} 

(V.5) 

where 

(v.6) 

To implement the conditions (V.2) and (V.3), we first remember Eq. (IV.9) 

which allows us to write 
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= 

In particular, at the symmetry point we have 

d A(O)I 

d.J 
= 

d ~(O)I 

dY 

so that fromEq. (IV.ll), 

- 2 

A (O)I 
L . 

From Eqs. (V.4) and (V.5) we can calculate the derivative of the S amplit'l.ldes 

at the symmetry point: 

- \ ',a + ( m + 1 
) K(m ~ I ' SI ~ SI' 

(V.lO) 

Equations (V.9) and (V.lO), together with (V.6), determine b0 and b
2 

once m
8

I and AR( l) f J are given. 

'l'o establish the positions of the poles, we must consider the second 

derivative of the amplitudes. Again at the symmetry point; from Eq~ (V .7), 

we have 

= ' 
(V .11) 

so that from Eq. (V.)), we can write 
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d2 A(O)I (2/3) bo ( ~/3) b2 

d ~2 roso + Jo + }6 
B/3 2/3 

(1)82 + 

c1/) d 
54 d"Y 

( ~;)1) 
(V.l2) 

The second derivative of the S amplitudes may be calculated from Eqs. (V.4) 

and (V.5), so we have enough conditions to determine ro80 and ro82 if 

A_. (1)1; l -~ 1 y and its derivative are given. 

In general the problem is one of self-consistency, involving the · 

P wave. Let us consider first, however, the situ~tion when the low-energy 

P phase-shift is so small that ~(l)l and its derivatives may be set equal 

to zero. Such is the case for the solutions determined in reference 2 by 

numerical integration and iteration of the CM-I equations. One possible 

procedure for determining b0, b2, ro80 and ro82 in this simple case will 

now be described. 

The first leg of Eq. (V.9), together with Eq. (V.lO), gives a 

linear relation between B0 and B2 , 

(V.l3) 

where 

' 
(V.l4) 

and 
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(V.l5) 

The second leg of Eq. (V.9), together with Eq. (V.6), yields a quadratic 

relation, 

Po Bo so 
4 Bo 10 B2 

+ = 
+ .eo Bo 

- 3 + £2 B2 3 Po p2 
(V.l6) 

where 

.ei = (roSI - 2/3 )2 K( roSI' roSI) (V.l7) 

Taken together, Eqs. (V.l6) and (V.l3) correspond to a cubic equation for 

either B0 or B2 separately, which can easily be solved once ai and 

ro8I are given. It turns out that there is only one real root of the equation. 

The relations (V.l2) are transcendental, so our procedure is to 

guess ro80 and ro82, solve Eq. (V.l3) and (V.l6) for B0 and B2 , and then 

check to see how badly Eq. (V.l2) is violated. The two pole positions are 

then adjusted until Eq. (V.l2) is finally satisfied. For small values of ~ 

it can easily be shown that 

K( 2/3, 2/3) 

or 

4.1 

As ~ increases in the negative (attractive) direction, both ro80 and ro82 

decrease, the latter slightly faster than the former. However, at the time 

the I = 0 bound state is reached (~ = -0.46), the two poles are still 

quite close together. For example, at ~ = -0.433 we find ro80 = 2.5 
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and m
82 

= 2.7. At the same time, we have b0 = 0.42 and b2 = 0.27. In 

Fig. 1 is shown, for this value of f... , a comparison betvreen the pole 

approximation and the numerical solution obtained in reference 2. One 

observes that there are no important differences. 

The value of f... we have chosen for our example, -0.433, is barely 

small enough not to give a bound state, and the error in the pole approximation 

is consequently a maximu~. ~~is circumstance occurs not only because the 

relative importance of the left-hand cut is greater for greater magnitudes 

of 'A. , but also because the dominant part of the right-hand cut is now at the 

lowest possible energy. It follows by crossing symmetry that the "average 

position" of the left-hand cut will be close to the l01tT-energy physical 

region and the error in replacing it by a pole will be relatively large. 

VI. THE P-DOMINANT PROBlEM IN THE POIE APPROXIMATION 

Our task now is to repeat the approach of the preceding section 

when the low-energy P-wave phase shift is allowed to become large. The 

coupled 8-P problem is quite complicated, so we begin by assuming that the 

contribution of 8-pair exchange to·the left cut of the P wave is small and 

that the main force in the ~ ste.te comes from the exchange of a P-wave pair. 

In ot.her 1vords, vre neglect the contribution to Eg_. (IV.l3) from the 8-wave 

terms o~ the right. Such an approximation is not quantitatively reliable, but 

it serves to show certain essential features of the large P-wave situation. 

In any case, an accurate calculation must include a cutoff correction as 

well as the S vrave. 

The S)~etry-point conditions (IV.l3) and (IV.l4) become, in this 

approximation, 



and 

A (1)1 
L 

1 ~ (1)1 

2 j) ' 

= 
1 d 
2 d},) 
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(VI.l) 

(VI.2) 

and we may add the corresponding second-derivative condition, 

= (VI.3) 

which is easily obtained from Eq. (IV.2). Now, the fact that both A
1
(l)lJ 

and its first derivative at the synnnetry point are positive means that a 

single pole cannot represent the left cut, 5 since a function of the type 

c 
ill + y 

p 

has the opposite sign to its first derivative so long as m + ) is 
p 

positive. We shall therefore need two poles, the outer one attractive 

and the inner one repulsive in order to satisfy conditions (VI.l) and (VI.2). 

This circumstance could have been anticipated from formula (rr.io). 

We write, then, 

A (1)1 
IDA + ~0 IDR +Yo L (vr.4) = CA )) ~ )) y IDA + ~ + 

where the subscripts A and R stand for "attractive" and "repulsive," 

respectively. Here cA and lR are defined so as to be both positive, 

and the normalization is such that at ~ = y
0 

, we have 



and 

A (1)1 
L 

d 
dY' 

1 

= 

( AL(;)l) 
= 

d2 
- 2 d ~2 

(AL~)l) 
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(VI.5) 

cR cA 
(vr.6) 

~ + )}0 +Yo rnA 

cR CA 
(VI. 7) 

(~ + ~0)2 (rnA + Jo)2 

Observe now that the repulsive pole will dominate both in Eqs. (VI.6) and 

(VI.7) if ~ is substantially smaller than rnA , so there is effectively 

only the one condition (VI.5) restricting the attractive-pole position and 

residue, and one parameter remains arbitrary. 6 

This free parameter corresponds to the cutoff that would have to be 

introduced in (II.7) if we were to attempt to solve the equations of CM-I. 

In our pole approach here we do not speak of a cutoff, but the position of 

the outer (attractive) pole is a closely related concept. Actually it is 

more convenient to introduce the free parameter as the value of Al , 

defined by Eq. (III.l6), a procedure that through Eq. (III.l8) amounts to 

specifying CA - Ck· It should be noted that Al will not have an unlimited 

range of possible values. For example, in the approximation (VI.l), we 

have 

1 
3 Al 

A_ ( 1)1 
~ -"R 
2 y ' 

·so Al is necessarily positive. (When S waves and the cut-off correction 

are included, small negative values for Al may become possible.) 
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Corresponding to Eq. (VI.4) 1-re find, fromEq. (V.24) and (V.26)of 

CM-I, 

(vr.8) 

and 

- >/,)]} ' 
(VI.9) 

where 

CA cA El (mA) 

and (VI.lO) 

CR == cR El (mR) 

By using Eq. (IV.lO) at the symmetry point, it is then a straightforward if 

tedious calculation to find values of CA , CR , rnA , and mR that 

satisfy conditions (IV.l) to (IV.3) for various choices of ~l • 

Carrying out this program, vre found that as ~l varies from 

zero to unity, the position ~ of the repulsive pole moves only slightly 

--from 5 to about 3·5--while the attractive pole moves from infinity down 

to about 8. It vras decideCI. then, for simplicity, to fix the position of 

the repulsive pole at 4.0 and to ignore the second-derivative condition 

(VI.3). The maximum violation of the second derivative condition is never 

worse than about 20% under these circumstances, and in Fig. 2 the 

insensitivity of the solution to the position of the repulsive pole is 

demonstrated. The two functions shown correspond to the same value of Al (0.84), 
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and both satisfy the conditions (VI.l) and (VI.2). In one case, however, the 

pole positions are rnA = 10, mR = 4, >vhile in the other they are rnA = 7, 

~ = 6 • In the first instance the violation of the second-·derivative 

condition (VI.3) is 18%, while in the second it is 40%; nevertheless, the 

difference in the physical region is negligible. This insensitivity shows 

that the detailed Torm of the left-hand discontinuity is unimportant so long 

as the symmetry-point conditions on the function and its first derivative are 

satisfied! Thus the replacement of the left-cut by poles seems justified. 

Unfortunately, the main error in our approach stems from a cut-off modification 

of the symmetry-point condition (VI.l). 

In Fig. 3 are shown P-wave solutions with ~ = 4, satisfying (VI.l) 

and (VI.2) for three different values of 11.1 • One sees that with rnA in 

the anticipated range, these are of a resonance chara~ter, although the 

phase shift never actually passes through 90 deg. The resonance position 

is satisfactory for 11.
1 
~ 1, but the width is about twice that implied by 

nucleon electromagnetic structure, according to the. calculations of Frazer 

and Fulco.3 However, the presence of the repulsive pole has been tremendously 

effective in narrowing the resonance. Without it, we would not even approach 

' the required 1vidth, and when the repulsion is augmented by S-vrave contributions 

and the cut-off correction included, it may be possible to achieve the 

desired additional narrowing through reduction of 11.1 • 

The cut-off correction to Eq. (VI.l) produces a substantial 

narrowing of the resonance. For example, the uncoupled P-wave equations 

of CM-I with a cutoff have been solved numerically for ~l = 0.53, with 

the result shovm in Fig. 4. Here the phase shift actually passes through 

90 deg. and the resonance is about 40% narrower than in the family of 
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solutions shown in Fig. 3. The method of solution was to use as a trial 

function a two-pole P amplitude of the form (VI.8) and (VI.9), but with CA , 

CR , illA , and ~ completely arbitrary. These four parameters were then 

varied until one complete cycle of the CM-I equations (with a cutoff and no 

S wave) approximately reproduced the trial function in the physical region. 

No attempt was made to get the best possible reproduction. Figure 4 shows 

the pole function for CA = 0.38, CR = 0.20, illA = 25, and ~ = 4 

compared to the first iteration of the uncoupled P equations, with the cutoff 

at ill = 44. Also shown is a solution satisfying conditions (IV.l) and c 

(VI.2) for a comparable value of ~l • 

One may ask how badly our solution of the cut-off equations violates 

the condition (VI.l). The answer is in rough 

of Section IV that a cut-off correction factor 

be applied to the right-hand side of condition 

agreement with the estimate 

YR 
of N (1 - 12--- ) should ill c 
(VI.l). In the example of 

Fig. 4, we have ill = 44 and c JR N 3 • 

A (1)1~ 
L 

It is not surprising then to find 

that for our solution we·have 0 ; in other words, the contributions 

from the attractive and repulsive interactions now just about cancel each 

other at the symmetry point. One can show from conditions (VI.l), (VI.2), 

and (VI.3) that, before the cut-off correction, the contribution from the 

attractive pole is generally about twice that of the repulsive. Thus, the 

cutoff reduced the attraction by about a factor of two (and of course left 

the repulsion alone). 

If one takes literally the results of Frazer and Fulco,3 some further 

narrowing of the P resonance is desirable. This might be accomplished 

through an incr~ of our long-range repulsion as a result of S-pair 

exchange. Our experience with S-dominant solutions showed that the force 
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due to S-pair exchange cannot by itself produce a P-resonance, 2 but if exchange 

in the I = 2 S state is more important than that for I = 0, there will be 

a net long-range repulsion in the I = 1 state than can narrow the P resonance, 

provided the basic intermediate-range attraction is supplied by some other 

source. We have shown above that P-pair exchange can provide the necessary 

intermediate-range attraction as well as ~ long-range repulsion. It will 

require further calculation to establish whether values for ~ and ~l 

actually can be found that make the I = 2 S-pair exchange sufficiently 

important to give the desired additional repulsion. Such calculations are 

being undertaken and will be described in a later paper. Qualitatively it 

seems likely that if P-resonance narrowing requires a preponderance of I = 2 

over I= 0 S pairs, the value of ~ will be positive (repulsive). One 

sees from formula (IV.ll) that in this case a strong P-exchange force alters 

the 2:5 symmetry-point ratio of the I = 2 and I = 0 amplitudes so as to 

favor the former in the physical region. 

VII. CONCLUSION 

The reader may well find confusing the question as to how many 

independent parameters there are in the ~~ problem. On a completely 

fundamental level, when all other particles and interactions are considered, 

there may be none; even the pion mass may someday be related to other masses. 

However, one does not see at present even the outline of a procedure for 

calculating m , and the same statement may be made for the constant ~ • 
~ 

This constant is not supposed to be calculable in conventional field theory, 

and in the s-matrix dispersion-theory approach one correspondingly finds 

that the combined requirements of Lorentz invariance, analyticity, and 

unitarity permit ~ independent real parameter in the ~-~ interaction. 
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Further independent parameters are not allo>-red, but as explained in Section II, 

our definition of "A. is somewhat arbitrary, so it is possible that more than 

one solution exists for a given "A. • 

In this paper we have introduced a second parameter, "A.
1 

, which has 

been treated as independent of "A. for the large P-wave type of solution. 

However, we .believe that "A.1 represents parts of the interaction that are 

at present difficult to calculate, and that eventuaily it will be possible to 

determine "A.1 once "A. is given. For the S-dominant type of solution, the 

procedure for calculating "A.1 has already been established, 

The question still remains, assuming that "A.1 is a function of "A. , 

as to whether the large P-wave solutions can be reached bya continuous 

variation of "A. , starting with S-dominant solutions. We do not know the 

answer to this question, and it appears that the answer will not be k..YJ.own 

until enough of the high-energy contributions can be included to produce a 

natural cutoff. 

On the practical level, a further possible source of confusion 

arises from the circumstance that for the large P-wave solution, we have 

here discussed a crude approximation in which the P phase shift is controlled 

entirely by "A.1 , without any specification of "A. • Needless to say, such 

is not the case in general. It is also worth emphasizing that in this 

second type of solution, the S phase shifts will depend as much on "A.1 

as on "A. • In a later paper this dependence will be investigated, together 

with the P phase-shift dependence on ~ • 

In conclusion we remind the reader that if an as yet undiscovered 

"elementary" particle exists, with the quantum numbers of a two-pion 

system and a mass greater than 2m (so that it is unstable), then the~~ 
1( 

scattering amplitude must include further independent parameters associated 
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with this particle. Our approach could be generalized to accommodate such a 

situation, but for the moment we may hope that there are no "hidden" 

elementary particles. 

Note added in proof: 

Calculations of the coupled S-P problem in the pole approximation 

have turned out to be less difficult than anticipated and will be described 

in a supplement to this report. 
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FOOTNOTES 

1. G. F. Chew and s. Mandelstam, Theory of the LowMEnergy Pion-Pion Interaction, 

UCRL-8728, April 1959; Phys. Rev., to be published (1960). 

2: G. F. Chew, s. Mandelstam, and H. P. Noyes, S-Wave Dominant Solutions of 

the Pion-Pion Integral Equations, UCRL-9001, November 1959; Phys. Rev., to 

be published (1960). 

3. w. R. Frazer and J. R. Fulco, Effect of a Pion-Pion Scattering Resonance 

on Nucleon Structure, UCRL- 8880, August 1959; Phys. Rev., to be published 

( 1960). 

4. In deriving these formulas, we use the fact that the contribution to the 

5· 

first term of Eqs. (IV.lO) and (IV.ll) of CM-I from the left-hand cut 

just cancels the integral over the logarithm in these equations. 

Note that from Eq. (IV.4), at the 

co dn ~(O)I n! -- = I d :)) I 

dJl rc 0 

for n ~ 1 and 

n! 
= rc 

for n 'l 0 , 

symmetry point, we have 

{Ejl I 

. 2 5 r sJ.n 0 

2 n+l 
(y I + -) 

3 

. 2 S::. I SJ.n u 1 

so all "right-hand" functions and derivatives are positive. 

6. If higher-derivative conditions were invoked, these would serve only 

to determine the parameters of new poles that are closer to the physical 

region than ~ • 
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FIGURE LEGENDS 

1. The single-pole approximation to the S-dominant solution for ~ = 0.433, 

compared to the numerical solution of reference 2. 

2. Two double-pole, P-wave solutions for ~l = 0.84. Both solutions satisfy 

conditions (VI.l) and (V.2) but violate (VI.3) by widely varying amounts. 

3. Double-pole solutions based on conditions (VI.l) and (VI.2) for three 

different values of Al , with the repulsive-pole position fixed at 

~ = 4. 

4. Numerical solution of the uncoupled and cut-off P-wave equations for 

~l = 0.54. A double-pole solution based on conditions (VI.l) and (VI.2) 

for Al = 0.50 is shown for comparison. 
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A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, ~ompleteness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa~ 

ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, app~ratusi method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes an~ employee or contractor of the Cdm­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant.to his employme~t or contract 
with the Commission, or his employment with such contractor . 




