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THEORY OF THE LOW-ENERGY PION-PION INTERACTION. PART II
Geoffrey F. Chew and Stanley Mandelstam

Lawrence Radiation Laboratory and Department of Physics
University of California, Berkeley, California

March 2k, 1960
ABSTRACT

It is shown that when P-wave pion-pion scattering is large at low
energies, the integral equations previously formulated by the authors require
a cutoff. Because of the cutoff and the unstable nature of the solution,
the numerical integration procedure becomes much more involved. The original
equations are therefore replaced by a series of conditions at the symmetry
point, and the unphysical cuts of the partial-wave amplitudes are replaced
by a corresponding seriés of poles. Within this framework one need not
speak of a cutoff, but one new parameter appears. Self-consistent solutions
can be found in which a P-wave resonance is sustained by a "bootstrap"
mechanism; that is, a strong attractive force in the I = 1 state results
from the exchange of a resonating pair of P-wave pions. The symmetry-point
conditions used would be modified by the cutoff and guantitative accuracy
is not attempted; however, this and other corrections are not expected to
change the qualitative nature of our solutions. Rough estimates of the

corrections are made.



UCRL-9126

*
THEORY OF THE LOW-ENERGY PION-PION INTERACTION. PART IT
Geoffrey F. Chew and Stanley Mandelstam

Lawrence Radiation Laboratory and Department of Physics
University of California, Berkeley, California

March 24, 1960

I. INTRODUCTION

In an earlier paper,l hereafter to be referred to as CM-I, a
single-parameter set of integral equations for the low-energy pion-pion
scattering amplitudes has been derived. These equations satisfy the
requirements of analyticity and crossing symmetry but are based cn the
assumption that the imaginary part of the amplitude is adequately represented
by keeping elastic S8 and P waves only. It has been shown by explicit
calculation2 that there exists a class of solutions of these equations
consistent with this assumption. These solutions, however, have very
small P bhase shifts, whereas the only information available so far about the
n-nt interaction suggests that there is a low-energy P resonance.5 In this
paper we examine the problem further and show that if the P phase shift‘is
large at low energies, the criginal assumption about the imaginary part is
inconsistent; the CM equations require modification and a new parameter
appears.,

It is possible to make the necessary modification through a cutoff
of the partial-wave imaginary parts on the left-hand (unphysical) cut.

Actually, three cutoffs would be needed, for the I = 0 and I = 2 S states

This work was supported in part by the U. 8. Atomic Energy Commission
and in part by the U. S. Air Force under contract No. AF 638-327

monitored by the AFOSR of the Air Research and Development Command.
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as well as for the P state, but érossing symmetry may be‘used to correlate
the three in terms of a single real parameter. It will be made plausible
that in a correct calculation, where inelastic processes and the imaginary
parts of higher partial waves are included, unitarity will make any new . .
parémeters unnecessary.

At the present level of approximation it will be argued that the
cutoffs of the imaginary parts on the left-hand cut probably occur for
values of o =.-q? substantially.greatér than 9, the mathematical limit of
convergence of the;gﬂynemial expansion. It will be shown that in such a
case a strong intermediaﬁewrange attractive force capable of producing a.
P—wavebrésonance cecurs in the I = 1 state. The force is due to the
exchange of a pair of P-wave pions resonating in transit (or in other words
to the left-cut contributicn obtained by crossing relations from the P-wave
absorptive part on %he right), so we have a "bootstrap" mechanism. The
corresponding stfong intermediate range force in the I = O state is
repulsive and in the I = 2 case attractive. |

We assume that the short-range contributions from D and higher
waves, except for their role in produéing the cutoff, may be absorbed into
the parameter A alfeady introduced in CM-I. That is,‘we replace them,
together with allrother exchange mechanisms of high energy, by a
phenomenclogical zeré-range force. The consistency of such an approach

can be investigated a posteriori by calculating the higher angular-momentum

contributions to the force once the S and P phase shifts have been determined.
Rough estimates of this kind are reported below.
In Section II, the necessity for the cutoff, when the P wave is

"bootstrapping” itself, will be demonstrated and the relation of the cutoff
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to our approximations is discussed. Section III treats certain exact and
almost exact crossing conditions that put powerful restrictions on the
scattefing amplitudes. In Section IV further conditions at the symmetry
point; corresponding to the basic approximation of CM-I, are de?eloped and
used in the replacement of left-hand discontinuities by a small number of
delta functions. The straightforward iteration procedure previously employed
does not‘cohverge when‘thevP émplitude is large because the "bootstrap”
character of the mechanism mekes the solution very unstable. Section V tests
the new method on the "known" S-dominant problem, while Section VI deals with
the P-dominant situation. It is shown that a reasonable choice of the new
parameter leads to a P resonance with a position and width roughly fhat
required by the electromagnetic étructure of the nucieon. Our results are
not quantitatively accurate, because the crossing conditions at the symmetry
point should be modifisd by the cutoff, and also because we neglect the S waves
in the érossing relétions; .Cérrections to the results obtained are discussed

in Section VII, and future calculations are outlined.

II. PROPERTIES OF THE INTEGRAL EQUATIONS
WHEN THERE IS STRONG P-WAVE SCATTERING
To derive the integral equations in CM-I, the partial-wave amplitudes
were written in the form
. I \
1 (81 WY
= A7) = S
Y "D, (V)

where N has a cut along the negative real axis and D along the positive

, » | - (1T.1)

real axis only. The index £ denotes the angular momentum and I the
isotopic spin. On defining w = -, EzI(m) = DzI(n)), we found the

following integral equations [CM-I, Egs. (V.14) and V.26)]:
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EOI(w) = 1 + (o+ Vb)KQD) - yg)aI
(I1.2)
w+ o oo Klw, ') £ I(a)') E I(w‘)
. 0 Ta — 0 0
T 1 '+ yg
and
o Ko, o) f.Ho') E. (o)
Ell(a;) =1+ 2 a = L , (11.3)
1 o'
where
K(Z»,w')— 2 \/Pwlzn[-,/—u;7+7/w-l]
lw - w') @ -

; e T, [ 7o o - 11 .
L/<Df n w + \/u
(IT.4)

In these equations, aIv is the S-wave amplitude for isotopic spin I at

‘/ , and T T the discontinuity across the cut of A(z)l(y)) for

)
J <o .

The f's are not known explicitly, but must be calculated by crossing

==
|

&

symmetry from the absorptive parts for positive energies. In CM-I, we
denoted the absorptive parts of the complete amplitude by ASI(/ , Cos.9)

and wrote the necessary equations in the form

w-1 . R
le(w) - -U% J d;)'Pz(l-elL-;—i) b aII,ASI(,)',l-e"”,l),
0 I'=0,1,2 Y
(II1.5)
(w > 1)
where the crossing matrix o« is

IT'
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Oy = 2/3 1 -5/5 | . (11.6)
2/3 S 1/3 |

1
If ASI in Eq. (II.5) is resolved into partial waves and the expansion

cut off after the P-wave, the formula becomes

o Im A(O)O(y')

* w=1 '
I . 1 . oY *1
£, (w) = - = é aJ! Pz(l 2 X—o ‘) a

+ o, Im A(O)E(aﬁ') + 3(1 -2 EL;—i ) @

Y

1 Im Ay,

(II.7)

The right-hand side of Eq. (11.7) involves the imaginary parts of
the partial-wave amplitudes for positive energies, which are given by the

simple formula,

m al8T )y . \/—1/-5—1 sine’BzI . (1I.8)

The phase shifts, SzI, can be calculated from.fhe functions E by the
formulae CM-I (V.20) and (V.26), so we bave a self-consistency problem; the
functions E are determined in ﬁerms»of the f's by Egs. (II1.2) and (II.3),
while the f's are determined .in terms of the E's from crossing by Egs.
(II1.6) to (II.8).

In our previous calculations an iteration procedure was used to
obtain self-consistency. The convergence was rapid, and the solutions

‘had the property that the P-wave amplitude was extremely small. The reason
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was that the terms Im A(O)O()/’) and Im A(O)e()/‘) in Eq. (II.7) are
bounded by_unitarity and, further, have oppoéite signs for I = 1 so that
le(w) cennot become large. According to CM-I (V.26), the P-wave amplitude
then remains small, and its smallness in turn means that the third térm on
the right of Eq. (II.7) is small. |

| The question now arises whether there are any other sclutions of
our equations. An immediate possibility is a sélufion dominated by the
- P wave, in which fll(w) is large and receives its main contribution from
the third term of Eq. (II.7), i.e., from the imaginary part of the P wave
.itself, Owing to the iarge numerical factor multiplying the third term,
the unitarity_limitgtion’no longer makes fll(w)v small. To determine the
_.sign of the P-wave phase shift in such a solution; we notice that fll{m)
. according to Eg. (II,T) is negative for small o and positive for large w,
and that, as may easily be verified, the positive part always predominates
in the sense that.the dispersion integral
£ (0)

oo+ Y)

o
1 [ aw!
T
is positive. According to our equations, it then follows that the phase
shift is positive. We are led to the possibility of a P-wave resdnance,

3

which Frazer and Fulco” require in order %o bring the calculations on’
nucleon electromagnetic structure into agreement with experiment. Rough . -
examination indicates théﬁ we can achieve self-consistency in our eguations
with such a resoﬁance.

The type of solution suggested here would exist even without any

coupling to the S waves, thcugh of course it becomes modified by such

coupling. For each value of the constant A\ , there are twc solutions--
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one of the type discussed pre;iously with small P waves, and one of the type
under consideration here with large P waves. One might raise the objection
that, if A is interpreted as a coupling constant, 1t would be expected to
define uniquely the solution. However, it must be borne in mind that we are
dealing with a renormalized coupling constant whose definition is largely a
matter of convenience. There seems to be no reason why such a quantity
cannot be the same for two different solutions of our equations. To put it
another way, it would be quite possible that two different values of the
unrenqrmaliZed coupling constént—-if_such a quantity had a meaning--should
give the same value of the renormalized coupling constant. The question as
1o which of the two solutions is actually realized in nature is on the same.
level as the guestion of the value of the coupling constant, and at present
must be determined by experiment.

The qualitative natﬁre of the solution with large P-wave phase shifts
is encouraging from thé point of view of the nucleon electromagnetic structure.
The fact that fll(w) is not positive over its entire range but is negative
if o is sufficiently small has the effect of gonsiderably narrowing the
.resonance, This property follows from Eq. (II.B), or it may be seen by
expressing the problem in more conventional language. The potential
corresPondiﬁg to an fll(w) of our form has a repulsive outer part and
én attracti#e inner part, and it is hardly necessary to remark that such a
potential favors a narrow resonance. Now Frazer and Fulco have shown that
a resonance sufficiently narrow to explain the electromagnetic structure
cannot be obtained with a purely positive fl(w), correspdnding to a purely
attractive force, without making fhe predominant values of  unreascnably
high-~at least 150 and, for a good fit, nearer 600. > If fl changes sign

.in the manner described, a narrow resonance can be obtained without going
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to such high values of « . This class of solutions to the picn-picn problem
seemé ﬁherefore to be qualitatively just what is reguired to fit the
eléctromagpetic structure data. |

There are unfortunately two difficulties'that_must be overccme before
we canvobtain'a solution of the type described in the foregoing paragraphs.
The first is purely practical'in nature; the iteration procedure used
previously does nct converge now, as mentioned in the intrcduction. We shall
_havé to use some triasl-and-error procedure to obtain a coﬁsistent sclution,

-and the numerical ﬁork is'therefore cbnsiderably increased. The second

' difficulty ié one of pfinciple. We have pointed out in CM-I that the integral
Egs. {II.2) and (II.3) above become singular if fOI of vfll approach a
constant value with infinite « . It follows from Eg. (I1.7) that the
contribution to le from the third term dbés approaéh a constant, even if
only a finite range of values of A is taken. The behavicr of le at
infinity is therefore just*bad encugh to make our integral equations singular,
and in such a case the'integral eguation usually has a unigue soclution if

and only ifvthe coefficient of the singular term is sufficlently small.

By replacing our integral equation by one with the same asymptoti¢
beha#ior-but which is.exactly soluble)'we.can show that a unigue solution
exists provided that the limit of fl(w) as « becomes Infinite is less
than unity. (A& negative limit never gives trouble.) If the function
In ALy on the right of Eq. (II.7) is obtained from a solubion that
has approﬁimatély the characteristics raquired by Frazer and Fulcc,3 the
1limit of fl(w). is fbﬁnd to be considerabl& greater than unity--of the
order of magnitude of six. We are therefore wéll within the range where

the equation does not have a unique solution.
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The situation here is precisely analogous to that occurring in the
relativistic scattering by a potential with a 1/r behavior at the origin.
Again we find a unique solution in the attractive case only if the coefficient
of the singularity is sufficiently small {less than Zﬁé). In the repulsive
case, which corresponds to a negative fll(w), there is of course no trouble.

One may easily see the reason for the limit 1 on fll(w) at infinity
by considering the dispersion relation for A(l)l(ﬂj):

Tm Al(l)ita/;)
Y- y)

(11.9)

1 3
£ (w?) o>
aw’ S v = fa
o' (@ + V) o0

S e % I

2 b

H—g

If 'fl(m’) approaches the constant ¢ without oscillation as «' tends %o
infinity, the first term will behave like % %'log Y as ) tends to
infinity. Since | A(l)l(n)) | 1is bounded by unitarity and cannot be

( + 1

greater than Sy )} in the physical region, this logarithmic behavicr

must be cancelled by an opposite logarithmic behavior of the second term.

(1)1

The function Im A (7/) must therefore approach ¢ as ;) tends te

infinity. However, | Im A<l)l(7/) | is of course also less than { :
sq.that ¢ cannot be greater than unity. This argument seems to apply te
the repulsive as weli as the attractive case, but the presence of "ghosts"
in the former complicates the situation and the singularity at infinity
does not have any further adverse effect. |
The source of the singularity in the integral equation appears to
be the use of the Legeﬁdre expansion for ASI' in Eq. (II.5) at all values
of ® , whereas we know it to be justified only if ® is less than 9. If

we could use the full expression (II.5) and calculate fl(m) correctly at

high values of ® , a uniquely soluble eguation would result. Our procedure
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for calculating fl(w) is, however, nct accurate for high  « At this
stage, therefore, there appears ©o be no altermative to cutting off .fl(w)
at some point. This cutoff is meant tc replace the excluded contributions,
which shouvld remove the difficulty in the integral equation. The cutcff is
a second parameter (in addition to M\), which seems unavoidable et present.
If the calculation could be taken to higher approximations, 1t should be
possible to see the natural cutoff {or high~energy oscillations) appearing,
so that the extra parameter would be unnecessary. It represents our lack of
knowledge at present of processes at high enefgies.

An important physical consideration is whether the cutcff may occur
at such a low value of o as to remove the attractive part of thé interaction

in the I = 1 state. To investigate this point, let us calculate fll(w)

from Eq. (II.7), keeping only the third term on the right and assuming a- .

sharp resonance at v) = v% o 'The functional form of fll(w) is then
roughly
' V., + 1 | |

1 1 _ R w - 1 \
f : ~ - -

L (@) - (1 2 — )(2 7 J) , o > + 1

' ‘ (I1.10)
~ 0, o < y% + 1,

_which changes sign at o = 2(~))R + 1), being attractive for larger values
. . . ' . 3

of » and repulsive for smaller values. According to Frazer and Fulceo,”

the position of the resonancz shouid correspond to ‘)% < 2', so the

attractive region on the left cut begins at w L 6 . Therefore, 1f <the

cutoff occurs at w >, 12 there will be a substantial region of attraction.

H
Now, the polyrnomial expansion of ,ASI in Eg. (IT.5) formally

breaks down at ® = 9, but if there is in fact a P resonance and the higher
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partial waves are not of abnormal size, one expects the S and P waves to give
a reasonable approximation to the full absorptive part up to somewhat higher
values of o . One may easily, ih fact, estimate the D phase "shifts produced
by the exchange of a resonating P-wave pair anhd investigate how large  w
must be before the D-wave contributions to ‘AéI"’becOme‘important. The
result suggests that the cutoff will not occur until'cb 2 20.°
Another consideration 1s the influence of inelastic processes, which

have been neglected but which certainly will be important at high energies.
In CM-I it was estlmated that on the right cut the elastic approx1mat10n
should be adequate for 2}-;5' lQ; The/cross1ng relation (II 5) tells us
that a value' ® on the left corresponds to an average“ value of 3) on the
right equal to 5(@ = 1). Thus a breakdown of the elastic approximation at

7) ~ 10 corresponds to a8 failure of our formulas on the uhphysicai cut at -
®w: ~ 20. On this score as well, therefore, there is reason for confidence

in the intermediate-range attractive force, which is the crucial element in

the problem.

III. EXACT AND AIMOST-EXACT CROSSING CONDITIONS
- AT THE SYMMETRY POINT = .

With no cutoff, the equations of CM-I satisfy crossing symmetry .
exactly. We shall lose this feature if cutoffs are introduced in an
afbitrary fashion into the different partial-wave amplitudee, so it is
desirable to establish in advance certain importantvconseqpences.of-crossing
symmetry that can be used as a guide.

| The general crossing conditione are giveﬁ by Eq. (if:S) to (II.7)
of CM-I. It was also pointed out there that a 51ngular1ty free p01nt of

meximum symmetry in the nx problem occurs at s=1t = %/5 or at
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cos € = 0, ¥ = Vo = -2/3 .

Advantage was taken of the first crossing condition at this point, namely
that A = B = C, in order to define the znn coupling constant through CM-I
(IIr.4). An infinité number of further conditions on the derivatives of the
amplitudes are élSO derivable, as we now show.

Consider the condition

A(s, f, u) = B(t, s, ‘u) .. | (II1.1)

' This may also be written in terms of the variables 2/ and cos 6 which

are connected to s, t; and u through (M-I (II.2). The result is

A(y/, cos 8) = B(Y', cos '), B - (1I1.2)
where . |
AR —%i (L + cos8) - (w) + 1) ' (ITI.3)
and - | | '
: —%L (1L+cos®) + (¥ + 1)
cos e' =L N . 3 : ‘ (III."")
2 (1 +cos0) - (¥ +1) | |
. "o i -
'Evidently, at the symmetry point )J _— = - 3/3' and cos 6 = cos ' = O,
so we have immédiately |
2 | 2 ' |
) A(" 3" O) = B(' "5' ) O) S ) ) (11105)
or, in view of CM-I (II.8), remembering that
(v, cos 8) = B(y, - cos®) , o . (111.6)
we have
1,0, 2 1,2, 2 ’ ‘
5 A7(- 3 0) = 5 A (- 3 0) = N , - - (ITI.7)

the result already stated in CM-I (III.5).
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Next let us differentiate Eq. (III.2) above with respect to 7/ and

evaluate at the symmétry point. We find

34 _ .123B _ 9. 3B ,
dY 2 3y b3 cos 0 (111.8)

2/3

cos 6= 0

Similarly,.by differentiating with respect to cos © we find

_'2; .a._Bi . } 0B » S . . '(III-9)-
3 8y 2 3 cos © )) _.%/3 o '

noi

cos €

Replacing A and B by Al, Ae,vand A5

through CM-I (II.8), one may
then deduce the two symmetry-point conditions,

0 . 1 o , P T
2__1;_ _ g»g.i_e. (%‘) , (ITI.10)
coOs : :
ahd
3 a2 _ o At " .
5 T TFwes V) S

- There are three second-derivative conditions;;correéponding to the
operations, 83/592, Ba/é cos® @ , and’ Bé/é cos 6 33 on Eq. (ITI.1).

Remembering that all odd derivatives of A, and A2 with respect to

0

cos © vanish at cos 6 = 0, as do all even derivatives of Al’ we can write

these three new symmetry-point conditions as

éer - '5, ae-Az o 9 32 S e

- 2 = .2 ( ) (III.12)
3V% 0 2 3575 ¢ 2 3csedd/ v '
YU NN S SE S S Y
d cos® 6 W2y cos” € )2 2 S cos 0d Y 7

(TIT.13)
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and
2 0 2 2 2,0 o 2
"ae () -7 52-(%)__51\24_81\2.
d cos” © )e dcos“® Y ‘ d ) > Y
(IIT.14)

Evidently subh é procedure can be extended indefinitely, giving an
infinite numbef of‘conditions on thé derivatives of the séattering amplitudes.
~ The conditions written above, hdwever, seém the most interestiﬁg for‘the time

being because we shall be concerned-principallyvvith s and P waves; higher
’derivatives'give conditions that mainly iﬁvolve higher £ values.
It was pointed out in CM-I that Eq. (III.7) above implies at
y = - % a simple relation between the two S amplitudes that holds to a
high degree _of accuracy even though if is noti'exaéi:. So long as D ‘and |

higher waves are not of abnormal size, the relation is

aé ~ N . o : ' (1II.15)

ol

.J.: a =~
5 0

Similarly, if we define

5\ _ a (Al - o ( 6
) EETOR (111.16)
: R cos 6 = ' .

then the conditions (II.10) and (II.11), to a good apprqximation, become

1 ' | | | P
58, = o-ey, = A, - (IIIan

t o : '
where a5 and a, are the derivatives of the S amplitudes at ¥ = -

The very simple conditions (IIT.15) and (ITI.1l7), while not exact,

3

Wil

have a higher order of reliability than the other approximations to be

made. Because of them, the low-energy S phase shifts afe'fairly well
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determined once the two constants A and hl are known.
The new constant, kl ,; is closely related to the P amplitude at
the symmetry point. Neglecting F and higher waves, we have
A‘(l)l

al= —;—)7—v=-2/5z

The task of the following sections might be described as that of developing

Wil

S N | (111.18)

a pfocedure for calculating al', the derivative of the P amplitude at the
symmetry point, in terms of A dnd hl. We shall strive, in other words,
for a two-parameter theory, but the symmetry conditions of this section
are already sufficient to allow the construction of reasonable S and P
| éffective-range formulas with a total of no more than three arbitrary
parameters.

‘The second-derivative condition (ITI.12) is more sensitive to the
D wave than our first three cdnditions, but & correction can be made using

condition (ITI.13). We then find

aM - g_a "s o-12a . | | (III.19)

1

Estimates of the D amplitudes, themselves, are given by conditions (III.13)
end (IIT.14) in terms of a,'; &), and aé“.: It does not seem possible,
however, to get conditions on ao" and 'aé"" separately in terms of al'.

This circumstance illustrates again the incompleteness of the exact crossing
relations'if we confine ourself to the symmetry point. Some of the physics

cértainiy lies elsewhere.
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IV. APPROXIMATE CONDITIONS AT THE SYMMETRY POINT

A straightforward approach to the large P-wave problem is to éet
the left-hand partial-wave imaginary parts equal to zefo beyond a certain
value of ® and to use Eq. (IT.7) for smaller values. The integral equations
of CM-I are then nonsingular and can be solved without difficulty. Furthermore,
as explainéd in Section II above, we know that the conseqpence.of the higher
partial wavesis to pfoduce such a cutoff. A complication arises, however,
in the necessity for correlating the cutoffs in the three states (I = 0, 1,
and 2) so as to satisfy the exact crossing conditions (III1.10) and (III.11).
These conditions mean that only one new arbitrary paraﬁeter Qécurs, not
three. (Higher derivative conditlons are relatively inseﬁsitivebtp-the cutoffs.)
A further difficulty is the instability of the large P-wave problem bécause
of its "bootstrap" aspect. It éeems impossible to construct a‘convergent'
iteration procedure by the straightforward approach used in the S~-dominant
problem.

Eventually we hope to solve the cutoff equations by.avmodified
numericai iteration scheme, and progress in this diréction is de;cribed
below. Hdwever, an understanding of the_essential elements of the problem
may be achieved by an analytical approach making maximum use of crossing
- symmetry at the expense of an accurate handlingvof_certain cutoff effects.

If the functions fzI(w) ‘are approximated by a finite number of
delta functions--a procedure fhét cqrresponds‘to replacing the left-hand
branch cuts by a series of poles--then the integrai Egs. (II.2) and (II.3)
become algebraic and trivially soluﬁle in terms of the reéidues of the
poles. It will be verified below that the S-dominant solutions obtained
by numerical integration of the original CM-I equations can be well

approximated in this way,2 and there seems no reason why such an approach
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should be less accurate when the P wave is large. The essential qpestion,‘
then, is how to determine the residues and positions of the pbles, or in
other words the strength and range of the various contributing interactions.

Since the poles are inserted as an approximation to the left-hand
branch cﬁts, the equations used to determine them will be relations between
the left and right cuts. From these relations it is possible to obtain
sufficient equations to determine the positions and residues of the poles
in terms of the parameters A and hl . These equations contain more
information than the exact cfossing relations at the symmetry point, which
we showed in the last section to be insufficient.

To achieve our object, let us first consider not quite the S and P

0,2

amplitudes but A“’" and 5——9——5 AJ‘ evaluated at cos © = O . From

cos
Egs. (IV.10) and (IV.11) of CM-I, keeping only S and P imaginary parts, we

may derive the foilowing formulas, which show the relative contributions to

these functions from the right- and left-hand cuts:lL

i

0,2 -5 V- e a1 a0
570?2<u> = 2750/, 0) = oM Iy
V- 3), a " /2 Im A‘O)O())')

1
ol
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.1‘ d A*(5), cos 6 | 1 P ,.:ImA‘(.l)l )t
j;l())) = 3| Jcos 6 ( )).co ) = % fd’) )}v(;js(z)))g
cos & =0 | 0 S
P AT 1y 5 {S— 1 (00
O W=k 5 (-]

-)' - ;é +‘2(1/ - vé) 
, i

-3 m a2 0y . In A(l)l(.s/')} :
(Iv.2)
Evidently, the first integral in each case is the contribution from the right
cut and the second integral that from the left.
The impoftance of these formulas lies in the fact that at the
symmetry point the contributions from the left are simply related to those

from the right. Defining

(1v.3)

(o)1
W) - IR T el ma
and
(1)1
At () 1 ® gh omaMY )y
Y T = éJ'-V‘ V' ’ (xr-1)

where the meaning of the notation is obvious, we see by ins'pe'ction of

Egs. (IV.1) and (IV.2) that at > = /), ve have "

a 2/5\ 4 -5/3
o | o) e () 2
1)1
co [t ) (= )
-1/2 (Iv.5)
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— %= _ 5'92 A ) Eﬁ5§ A\

-9l ] 5 KAR), o (Tv.e)

(1)1
SRR RS R B e
an@ .
5 5 (1)1
S5 B A R A S (B
o e

There are, in fact, relations of this kind for all derivatives at the
_symmetry~point, but these four will suffice for Our.purposes. Tt may
easily be verified‘that they satisfy the exact conditionév(III;lO) to {III.12)
of the preceding section. Of course the above conditions héve more content
and correspondinglyAare not exact; the imaginary parts of amplitudes for
£ > ‘l- h;ve been drqpped—in their derivation. The chief error is
associated withvthe cﬁt-off effect. That is to say, in (IV.1) and (IV.2)
we should reduce the contribution from the left branch cuts by an amount
that varies inversely with the cutoff. An estimate made below shows that
this error is nonnegligible fof the eipected positién of the cutoff; howe&er,
the qualitative featﬁres of'the problem are not changéd‘b& disregarding
the effect of a cutoff in these formulas.

Accepting thé'derivative‘relétions,(IVO5) to (IV.8), we can calculate

the positions and residues of the poles which are to replace the unphysical
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cuts of the partial-wave amplitudes. It is easy to establish that at the
symmetry point the valués of % 0’1,2())), as well as the first two
derivatives, are well approximated by the S+ and P-wave parts of these
functions. One may make the correction in a self-consistent calculation
through formulas of the type (V.18) of CM~I, but here we ignore such

refinements. If we remember that

A%y o e )+ a0 (17.9)
e (- (1)
1)1 1)l A 1)1

A( )(V)) ’= AR-)) * L)) , (IV.].O)

the symmetry-point conditions (IV.5) to (IV.8) become approximately

% AL(o)I ) % AR(o) . dd AR(O)g
- ]/5 - 1/6
1 A (1)1
+ 9 _RT ‘
- %/b
(Iv.11)
6 6
@ (o)1 /l/ a° (0)o o/ \ a° (0)2
5 AL = T2 R + | 5 A
a /6 ) ¢ \1/12/ d
-1 1)1
o s
ay Y ’
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A (1 | (1)1
A 1 a (0o . 5 4 ,(0) 1 AR
Y =5 37 ™ - W Iy A 3 ’
(IV.13)
and
— [y (11N (1)1
d A ) _ 1 48° (0o . 5 _gf_, p(0)2, 1 4 .
ay ) ] ANE AR B4 152 R 2 dv/ )

 (IV°lh)

' The relations (IV.11) to (IV.14) could also have been derived from
the fundamental crossing formula (V.8) of CM-I (or (II.T) above). Had we
done so, the effect of a cutoff clearly would have been to reduce the
e s (1)1 e ) :

coefficient of AR ;) on the right-hand side of relations (IV,ll)_and
(1v.13). (At the same time the change in the higher derivative relations is
much less important.) If the'sharp resonance form (IT.10) for fll(w) is

cutoff at = ®, & simple calculation shows that coefficient of AR(l)}(Q
OZR

w
c

consider such a reduction factor when evaluating the validity of results

in (IV.13) is reduced roughly by a factor 1 - 12 » We shall have to

based on the above formilas.

V. THE S-WAVE PROBLEM BY THE POLE APPROXTMATION
These formulas, (IV.11) to (IV.1h), for the contribution from the
left cuts of the partial-wave amplitudes tell us what we need to know about
the equivalént poles. Consider first the S wavés, where we attempt to
represent the left cuts in each case by a single pdle: |

CPgr '”%'

%) - *bﬂv)-%)ag;rr R 2
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By the use of Egs. (IV.11l) and (IV.12), the values of by and Wgp may be

determined, since at the symmetry point we have

by = % AI}O)I , (V.2)
and
e _ .1 ra o (01 (V.3)
Ggr * 2 g2 L7 .
It may be seen from Eq. (IV.ll)5 that_.b2 is always negatiﬁe, corresponding

tQ attractive forces in the T =2 state, but the sign of _bO depends on
the relative magnitudes of S- and P-wave scattering. The force in the
..I = 0 state due to S-pair exchange is attractive, but that due to P-pairs
is repulsive.

Using the N/D technique of CM-I, we may immediately write ‘dov.m the
S-wave amplitudes corresponding to Eq. (V.1l). Equations (V.11) and (V.1h)

of CM~-I then become

nHY) = e, (u)-))o)f::i__% B . (V)
and | | |
EOI(a)) = ;_+ (w + 00) {K(w, =) + (ogr + 1) Klogy, ®) BIf ,
(v.5)
where
Br = bI,EoI(“’SI) . (v.6).

To implement the conditions (V.2) and (V.3), we first remember Eq. (IV.9)

which allows us to write
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(o)x n rAY n .
Q;aé—-- . ARKO)I P A, 0T (v.7)
ay” ay ayooom
In particular, at thé symmetry point we have
(1 (o)1
g;é;___ = AR + bT , (V,8)
ay ay =
so that from Eq. (IV.11),
(0) a2 [ 208
d 0)0 d 0)2 : 10 .
— A = =2 — A = = b, = = b, - 18]
ay Ay >0 3 E \ Y »)
(v.9)

From Egs. (V,h)»énd (V.5) we can calculate the derivative of the S amplitudes

at the symmetry point:

E%T.A(O)I = B + aI'{,K(u W, - )%)&I + Aogp + o) KK&EI’ - ))B .

Equations (V.9) and (V.10), together Wlth (V 6), determlne b and b
once

ST and A (l)//;) are given.

To establish the positions of the poles, we must consider the second

derivative of the amplitudes. Again ét’the.symmetry point, from Eq. (V.T7),

we have
2 (0)I a2 AR(O)I 2o,
A T X : .
___:)__2_ = — - ._...._,.___.;7_ , . - (v.11)
d ay P T Yo

so that from Eg. (V.3), we can write
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42 A(o)I 2/3 by - 1‘0/5 b,
= - +
Og + 2 Ogp * 3

: 54 .
__%/, 6 9 4

(v.12)

The secohd derivative of the S amplitudes may be calculated from Egs. (v.4)
and (V.5), so we have enough conditions to determine Wgg gnd wSQ if
AR(I)}/)) _and its derivative are given.

In general the problem is one of self-consistency, involving the -
P wave. Let us consider first, however, the situation when the low-energy

P phase-shift is so small that AR(l)l

and its derivatives may be set egpal
to zero. Such is the case for the solutions determined in reference 2 by
numerical integration and iteration of the CM-I eqpations.v One possible
procedure for determining bo, b2, Oy ana Do in this simple case will
now be,described.'

The first leg of Eq. (V.9), together with Eq. (V.10), gives a

linear relation between BO and 32 s

" where

b = a K(2/3, 2/3) (V.14)

and
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= 1+ aleg - 2/5) Klog, 2/3) . (V.15)

°r

The second leg of Eq. (V.9), together with Eq. (V.6), yields a quadratic

relation,
' B B '
- L 0 10 2
6. B+ E = m ——— . 2 (v.16)
070 0 3 Py *+ 4y By 3 Pyt Ay By o
where
_ - 2
b = (o - 2f5FK(egr, og) - (v.17)

Taken together, Eqs. (V.16) and (V.1l3) correspond to a cubic equation for

5 separately, which can easily be solved once aI and

either Bo or B
are given. It turns out that there is only one real root of the equation.

wSI
The relations (V.12) are transcendental, so our procedure is to

guess and .., solve Eq. (V.13) and (V.16) for B. and B, , and then
S0 s2 0 2

check to see how badly Eq. (V.12) is violated. The two pole positions are

then adjusted until Eq. (V.12) is finally'satisfied. For small values of A ,

it can easily be shown that

PRSP
{ dw ( 3 ®) © = %/3

g = 25 = oy - 2/ = 2 ' = 343
k( 2/3, 2/3)
or
Wey = wbe = k.1 .
As A increases in the negative (attractive) direction, both and

30 52

decrease, the latter slightly faster than the former. However, at the time
the I = 0 bound state is reached (A = -0.46), the two poles are still

quite close together. For example, at A = -0.43% we find wSO.= 2;5
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and. Bop = 2.7. At the same time, we have bO = 0.42 and b2 =;O.27. In
Fig. 1 is shown, for this value cf X , a comparison between the pole
approximation and the numerical solution obtained in reference 2. One
observes that there are no imporitant differences.

The value of A we have chosen for our example, =-0.433, is barely
small enough not to give a bound state, and the error in fhe pole approximation
is consequently a maximum. This circumstance occurs not only because the
relative importance of the left-hand cut is greater for greater magnitudes
of N, but also because the dominant part of the right-hand cut is now at the
lowest possiblé energy. It follcws by crossing symmetry that the "average
position™ of the left~hand cut will be close to the lowéenergy physical

region and the erfor in replacing it by a pole will be relatively large.

VI. THE P-DOMINANT PROBLEM IN THE POLE APPROXIMATION

Our task now is. to repeat the approach of the preceding section
when the low-energy P-wave phase shift is‘allowed to become large. The
coupled S-P problem is guite complicated, so we begin by assuming that the
contribution of S-pair exchange tc the left cut of the P wave is small and
that the main force in the P state comes from the exchange of a P-wave pair.
In other words, we neglect the contribution to Eq. (IV.13) from the S-wave
terms oa the right} Such an approximation is not gquantitatively reliable, but
it serves to show certain essential features of the large P-wave situation.
In any case, an accurate calculation must include a cutoff correction as
well as the S wave.

The symmetry-point conditions (IV.13) and (IV.1L) becomé, in this

approximation,
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A (1)1 AR(1)1
L - 2 (VI.1)
V 2 Y, ’
and
(1)1 _ (1)1
dy Y T2 4y Y ’ *
and we may add the corresponding second-derivative condition,
L, (D (1)1
d2 AL = - g. _.9'_2__ A_B_.___ (VI.5)
ay® v ] ay @ Y

which is easily obtained from Eq. (IV.2). Now, the fact that both AL(I)}G)
and its first derivative at the symmetry point are positive means that a

single pole cannot represent the left cut,5 since a function of the type

C

et ———————————.

w +
o Y

has the.opposite sign to its first derivative so long as wb +-’) is
positive. We shall therefore need two poles, the outer one attractive

and the inner one repulsive in order to satisfy conditions (VI.1) and (VI.2).
This circumétance couid have beén anticipated from fofmulay(II.iO)..

We write, then,

(1)1 |
AL _ . wA + ’)O i u)R + ;)O (VI u).
Ty T A YT Ra Y .

where the subscripts A and R stand for "attractive" and "repulsive "
’ J

respectively. Here cA and cR are defined so as to be both positive,

and the normalization is such that at Y\: ))

o Ve have
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(V1.5)

d L R A
v \TT) T &E T ag g e

and
1 &° ‘A‘L(l)l °R A (v
"2 2 - A - I.7)
ay Y (&? + y%) (@A + ))O)

Observe now that the repulsive pole will dominate both in Egs. (VI.6) and
(VI.7) if wP is substantially smaller than wA ,° 80 there is effectively
. only the one condition (VI.5) restricting the attractive-pole position and
residue, and one parameter remains arbitrary.

This free pérameter corresponds to the cutoff that would have to be
introduced in (II.7) if we were to attempt to solve the equations of CM-I.
In our pole approach here we do not speak of a cutoff, but the position of
the outer (attractive) pole is a closely related concept. Actually it is
more convenient to introduce the free parameter as the value of kl s
defined by Eq. (IIT.16), a procedure that through Eq. (III.18) amounts to
specifying qx- %V It should be noted that xl will not have an unlimited

range of possible values. For example, in the approximation (VI.1), we

have
(1)1

3 PR

i - 2
M T2 Ty

" 80 kl is necessarily positive. (When S waves and the cut-off correction

are included, small negative values for xl may become possible.)
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Corresponding to Eq. (VI.4) we find, from Eq. (V.24) and (V.26) of

CM-I,
©p * ’é wp * | -
S S A A (V1.8)
and : .
B0) = 1w (@) o o Koy 0) ¢ o Koy =)
- CR[wR K((DR: (1)) + '))O K(wRJ - ))O)] P)
(vI.9)
wheré
CA = CA'El((DA) s
and (VI.10)
Ck = ©°p El(mh) .

By using Eq. (IV.10) at the symmetry point, it is then a straightforward if
R 7 wk , and ®e that

satisfy conditions (IV.1) to (IV.3) for various choices of A

tedious calculation to find values of CA ; C
1

Carrying out this program, we found that as hl varies from
zero to unity, the position N of the repulsive pole moves only slightly
--from 5 to about 3.5--while the attractive pole moves from infinity down
to about 8. It was decided then, for simplicity, to fix the position of
the repulsive pole at 4.0 and to ignore the second-derivative condition
(VI.3). The maximum violation of the second derivative condition is never
worse than about 20% under these circumstances, and in Fig. 2 the
insensitivity of the solution to the position of tﬁe.:epulsiVe pole is

demonstrated. The two functions shown correspond to the same value of Ay (0.84),



UCRL-9126

-3~

and both satisfy the conditions (VI.1) and (VI.2). In one case, however, the
pole positiens are o, = 10, Wy = 4, while in the other they are ®y = T,

Wy = 6 . In the first instance the violation of the second-derivative
condition (VI.3) is 18%, while in the second it is 40%; nevertheless, the
difference in the‘thSical region is negligible. This insensitivity shows
that the detailed form of the left-hand discontinuity is unimportant so long
as the symmetry-point conditions on the fﬁnction and its first derivative are
satisfied! Thus the replacement of the left—cut'by poles seems justified.
Unfortunetely, the main error in our apﬁroaeh stems from a cut-off.modification
of the symmetry-point condition (VI.1).

In Fig. 3 are shown P-wave solutions with oy = 4, satisfying (VI.1)

and (VI.2) for three different values of Vxl . One sees that with QA in

the anticipated range, these are of a resonance character, although the

phase shift never actually passes through 90 deg. The resonance position

is satisfactory for xl ~ 1, but the width is about twice that implied by
nucleon electromagnetic structure, according to the‘calculatidns of Frazer

and Fulco.5 However, the presence of the.repuisiveﬂpole has been tremendously
effective in narrowing the resonance. Without it, we would not even approach
the required width, and when the repulsioﬁ is augmented by S-wave contributions
and the cut-off cqrrection included, it may be possible to achieve the
- desired additional narrowing through reduction of hl .

The. cut-off correction to Eq. (VI.1l) produces a substantial

narrowing of the resonance. For example, the uncoupled P—weve eguations

of CM;I with a cutoff have been solved numerically for %l = 0.53, with

the result showvn in Fig. 4. Here the phase shift actually passes through

90 deg. and the resonance is about hO% narrower than in the family of
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solutions shown in Fig. 3. -The method of solutidn was to use as a trial
function a two-pole P amplitude of the form (VI.8) and (VI.9), but with Cp >

C and. wh completely arbitrary. These'four ﬁaraméters were then

R’ “p
varied until one complete cycle of the CM-I equations (with a cutoff and no
S wave) approximately reproduced the trial function inithe physical region.
No attempt was made to get the'best'possible reproduction. Figure 4 shows
the pole function for C, = 0.3%8, Cp = 0.20, @, =25, and ap = L
compared to the first iteration of the uncoupled P equations, with the cutoff
at o = 44, Also shown is a solution satisfying conditions (IV.1l) and
(VI.2) for a comparable value of Mo

One may ask how badly cur solution of the cut-off equations violates
the condition (VI.l). The ansﬁer is in rough agreement with the eétimate

Jr

of Section IV that a cut-off correction factor of ~ (1 - 12 = should
be applied to the right-hand side of condition (VI.l);v‘In thecexample of
Fig. 4, we have ®, = 44 and y% ~ 3 , It is not surprising then to find
that for our solution we have AL(l)lié 0 ; in other words, the contributions
from the attractive and repulsive interactions now just about cancel each
other at the symmetry point. Ohe can show from conditions (VI.1l), (VI.2),

and (VI.3) that, before the cut-off correction, the contribution from the
attractive pole is generally about twice that of the repulsive. Thus, the
cutoff reduced the attraction by about a facﬁof of two (and of course left

the repulsion alone). |

3

If one takes literally the results of Frazer and Fulco, some further
narrowing of the P resonance is desirable. This might be accomplished
through an increase of our long-range repulsion as a result of S-pair

exchange., Our experience with S-dominant solutions showed that the force
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due to S-pair exchange. cannot by itself produce a P-resonance,2 but if exchange
in the I = 2 S state is more important thén that for I = O, there will be

a net long-range repulsion in the I = 1 state than can narrow the P resonance,
provided the basic intermediate-range attraction is supplied by some other
source. We have shown above that P-pair exchange can provide the necessary
intermediate-range attraction as well as some long-range repulsion. It will
require further calculation to establish whether values for A\ and kl
actually can be>found that make the I = 2 S-palr exchange sufficiently
important to give the desired additional repulsion. Sﬁch calculations are
being undertaken and will be described in a later paper. Qualitatively it
seems likely that if P-resonance narrowing requires a preponderance of I = 2
over I =0 S pairs, the value of A will be positive (repulsive). One

sees from formula (IV.1l) that in this case a strong P-exchange force alters
the 2:5 symmetry-point ratio of the I = 2 and T = 0 amplitudes so as to

favor the former in the physical region.

VII., CONCLUSION

The reader may well find confusing the question as to how many
independent parameters there are in the nnx problem. On a completely
fundamental level, when all other particles and intéréctions are considered,
there may be none; even the pion mass may someday be rélated to other masses.
However, one does not see at present even the outline of a'procedure for
calculating m. and the same statement may be made for the constant A\ .
This constant is not supposed to be calculable in conventional field theory,
and in the S~-matrix dispersion-theory approach one correspondingly finds
that the combined reqpiremeﬁts of Lorentz invariance, analyticity, and

unitarity permit one independent real parameter in the x-n interaction.
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Fﬁrthgr independeﬁt parameters are not allowed, but as explained in Section II,
our‘definition of A is somewhat arbitrary; so it is peossible that more than
one éolution exists for a given X\ .

- In this paper we have introduced a second parémeter, hl s which has
‘been treated'as independent of A for the large P-wave type of solution.
waever, Welhelieve that xl represents parts of the interaction that are
at present difficult to calculate; and that eventually it will be possible‘to
determine Ll once ‘x is given. For the S-dominant type of SOlution, the
procedure for calculafing A, has already been established.

The gquestion still remains, assuming that hl is a function of M\ ,
~ as to whether the large P-wa#e solﬁtioné can be reached bya cohtinuous
variation of A , starting ﬁith S-dominant solutions. We do not know the
'anSWér to ﬁhis‘question; dnd it appéars that the answer will not be known
- until enough of the high~energy contributions can be included to produce a
_natural cﬁtoffa

On the practical level, a further possible source of confusion .
arises from the cichmstahce that for the large P-wave sclution, we have
here discusséd a cfude approximation in which the P phase shift is controlled
.entirely by-’%.:L ,.Qithout ahy specificatipn of N . DNeedless to say, such
is not the case in general, It is also worth emphasizing that in this
second type of solution, the S phasé shifts will depend as much on xl
as on N . In a later paper this dependepce will be investigated, together
with the P phase;shift dependence on A .

In conclusion we remind the reader that if an as yet uandiscovered
“elementary" particle exists, with the guantum numbers of a two-pion
system and & mass greater than 2m_ (so that it is unstable), then the mx

scattering amplitude must include further independent parameters associated

/
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with this particle. Our approach could be generalized to accommodate such a
situation, but for the moment we may hope that there are no "hidden"

elementary particles.

Note added in proof:

Calculations of the coupled S-P problem in the pole approximation
have turned out to be less difficult than‘anticipated and will be described

in a supplement to this report.
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In deriving these formulas, we use the fact that the contribution to the
first term of Egs. (IV.10) and (IV.1l) of CM-I from the left-hand cut

Just cancels the integral over the logarithm in these equations.

Note that from Eq. (IV.h), at the symmetry point, we have
I

. 2
_dri_ (0)T _ _n! j.'o a5 )+ 1 sin 8,
a P g T V. Y' o %)n+l

for =n > 1 ang

—_— 2 '
8l

_in—- (1)1 )} ' =. n! ?d;)' /‘). + 1 sin
dfﬂn (AR // ) b 0 \ 9!5 . (v} + %)

n+l
for n Z; o,

so all "right-hand" functions and derivatives are positive.
If higher~derivative conditions were invoked, these would serve only
to determine the parameters of new poles that.are.closer to the physical

region than wR .
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FIGURE IEGENDS

The single-~pole approximation to the S-dominant solution for A = 0.433,
compared to the numerical solution of reference 2,

Two double-pole, P-wave solutions for Xl = 0.84., Both solutions satisfy
conditions (VI.1) and (V.2) but violate (VI.3) by widely varying amounts.
Double-pole solutions based on conditions (VI.1l) and (VI.2) for three
different values of xl , with the repulsivegpole pdsition fixed at

@ = L,

Numerical solution of the uncoupled and cut-off P-wave equations for

A = 0.54. A double-pole solution based on conditions (VI.1l) and (VI.2)

for kl = 0,50 is shown for comparison.
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus,; method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or émp]oyee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant.to his employment or contract
with the Commission, or his employment with such contractor.





