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ARTICLE

Integrating genomics and metabolomics for
scalable non-ribosomal peptide discovery
Bahar Behsaz1,2,3, Edna Bode4, Alexey Gurevich5, Yan-Ni Shi4, Florian Grundmann4, Deepa Acharya6,

Andrés Mauricio Caraballo-Rodríguez 7, Amina Bouslimani7, Morgan Panitchpakdi7, Annabell Linck4,

Changhui Guan8, Julia Oh8, Pieter C. Dorrestein 2,7, Helge B. Bode 4,9,10✉, Pavel A. Pevzner 3,11✉ &

Hosein Mohimani 3✉

Non-Ribosomal Peptides (NRPs) represent a biomedically important class of natural products

that include a multitude of antibiotics and other clinically used drugs. NRPs are not directly

encoded in the genome but are instead produced by metabolic pathways encoded by bio-

synthetic gene clusters (BGCs). Since the existing genome mining tools predict many putative

NRPs synthesized by a given BGC, it remains unclear which of these putative NRPs are

correct and how to identify post-assembly modifications of amino acids in these NRPs in a

blind mode, without knowing which modifications exist in the sample. To address this

challenge, here we report NRPminer, a modification-tolerant tool for NRP discovery from

large (meta)genomic and mass spectrometry datasets. We show that NRPminer is able to

identify many NRPs from different environments, including four previously unreported NRP

families from soil-associated microbes and NRPs from human microbiota. Furthermore, in

this work we demonstrate the anti-parasitic activities and the structure of two of these NRP

families using direct bioactivity screening and nuclear magnetic resonance spectrometry,

illustrating the power of NRPminer for discovering bioactive NRPs.
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M icrobial natural products represent a major source of
bioactive compounds for drug discovery1. Among these
molecules, non-ribosomal peptides (NRPs) represent a

diverse class of natural products that include antibiotics, immu-
nosuppressants, anticancer agents, toxins, siderophores, pig-
ments, and cytostatics1–4. NRPs have been reported in various
habitats, from marine environments5 to soil3 and even human
microbiome6–9. However, the discovery of NRPs remains a slow
and laborious process because NRPs are not directly encoded in
the genome and are instead assembled by non-ribosomal peptide
synthetases (NRPSs).

NRPSs are multi-modular proteins that are encoded by a set of
chromosomally adjacent genes called biosynthetic gene clusters
(BGCs)10,11. Each NRP-producing BGC encodes for one or more
genes composed of NRPS modules. Together the NRPS modules
synthesize the core NRP in an assembly line fashion, with each
module responsible for adding one amino acid to the growing
NRP. Each NRPS module contains an Adenylation domain
(A-domain) that is responsible for recognition and activation of
the specific amino acid12 that can be incorporated by that module
through the non-ribosomal code10 (as opposed to the genetic
code). At minimum, each NRPS module also includes a Thiola-
tion domain (T-domain) and a Condensation domain
(C-domain) that are responsible for loading and elongation of the
NRP scaffold, respectively. Additionally, an NRPS module
may include additional domains such as Epimerization domain
(E-domain) or dual-function Condensation/Epimerization
domain (C/E domain). An “NRPS assembly line” refers to a
sequence of NRPS modules that together assemble a core NRP.
The core NRP often undergoes post-assembly modifications
(PAMs) that transform it into a mature NRP. The order of the
modules in an NRPS assembly line can be different from the
order of NRPS modules encoded in the BGC through iterative use
of NRPS modules13,14.

In the past decade, genome mining methods have been
developed for predicting the NRP sequences from their BGC
sequences15,16. Genome mining tools, such as antiSMASH17, start
by identifying the NRPS BGCs in a microbial genome using
Hidden Markov Models (HMMs). Afterwards, they identify
NRPS modules and predict the amino acids incorporated by the
A-domain in each module using the substrate prediction algo-
rithms (such as NRPSpredictor2 (ref. 15) or SANDPUMA18)
that are based on machine learning techniques trained on a
set of A-domains with known specificities16,18. For each observed
A-domain, these algorithms predict a set of amino acids poten-
tially recruited by that A-domain, along with the specificity score
reflecting confidence of each amino acid prediction. The use of
genome mining is becoming increasingly popular for discovering
NRPs over the past decade19–21, demonstrating the potential of
large-scale (meta)genomic projects for NRP discovery.

Although genome mining tools like SMURF22 and
antiSMASH17 greatly facilitate BGC analysis, the core NRPs
(let alone mature NRPs) for the vast majority of sequenced NRP-
producing BGCs (>99%) remain unknown23,24. Identification of
NRP-producing BGCs, without revealing the final molecular
products they encode, does not capture its full potential for
finding bioactive compounds25. Thus, integrating (meta)genome
mining with metabolomics is necessary for realizing the true
promise of large-scale NRP discovery4. However, the existing
genome mining strategies fail to reveal the chemical diversity of
NRPs. For example, these methods fall short in correctly identi-
fying PAMs, which are a unique feature of NRPs that make them
the most diverse class of natural products26 and play a crucial role
in their mode of action27,28. As a result, the promise of large-scale
NRP discovery has not yet been realized29.

Discovery of NRPs involves a multitude of challenges such as
PAM identification (with exception of methylation and
epimerization17, genome mining tools fail to identify PAMs) and
accounting for substrate promiscuity of A-domains. The substrate
promiscuity in NRP biosynthesis refers to the ability of an
A-domain in an NRPS to incorporate several different amino
acids into the NRP. The existing genome mining tools often
predict a set of incorporated amino acids and output a ranked list
of multiple amino acids for each A-domain. Allowing for all
amino acid possibilities for each A-domain in an NRPS module
results in a large number of putative NRPs predicted from each
BGC. Without additional complementary data (such as mass
spectra of NRPs), the genome mining approaches cannot identify
the correct NRP among the multitude of putative NRPs29,30.

Another challenge in discovering NRPs is due to the non-
canonical assembly lines. While in many NRPSs each A-domain
incorporates exactly one designated amino acid and the sequence
of amino acids in NRP matches the order of the A-domains in the
BGC13,31,32 (see Supplementary Fig. 1a), there are many NRP
families that violate this pattern7,11,32–39. Since an NRPS system
may have multiple assembly lines40, one needs to consider dif-
ferent combinations of NRPS units encoded by each open reading
frames (ORFs) for finding the core NRPs27,40. In some non-
canonical assembly lines, A-domains encoded by at least one ORF
may be incorporated multiple times (in tandem) in the
NRPS7,34–36 (Supplementary Fig. 1b). For example, during bio-
synthesis of rhabdopeptides34,38 and lugdunins7, a single ORF
encodes for one Val-specific NRPS module that loads multiple
Val in the final NRPs. Moreover, in some NRPS assembly lines,
the A-domains in some ORFs do not contribute to the core
NRP32,37,41 (see Supplementary Fig. 1c). For example, sur-
ugamide BGC30,32,42,43 from Streptomyces albus produces two
completely distinct NRPs through different non-canonical
assembly lines (Supplementary Fig. 2). The non-canonical bio-
synthesis of surugamide makes its discovery particularly difficult
as one need to account for these non-canonical assembly lines by
generating different combinations of ORFs in the process of
building a database of putative NRPs for each BGC.

Other hurdles include lack of sufficient training data for many
A-domains, which can lead to specificity mispredictions18 and
complications in the genome mining due to fragmented assem-
blies (e.g. failure to capture a BGC in a single contig44). These
challenges, in combination with those mentioned above, make it
nearly impossible to accurately predict NRPs based solely on
genome mining. The problem gets even more severe for NRP
discovery from microbial communities.

To address these challenges, multiple peptidogenomics
approaches have been developed for discovering peptidic natural
products by combining genome mining and mass spectrometry
(MS) information30,45. These approaches often use antiSMASH16

to find all NRPS BGCs in the input genome, use NRPSPredictor2
(ref. 15) to generate putative core NRPs encoded by each BGC,
and attempt to match mass spectra against these putative NRPs.
Kersten et al.44 described a peptidogenomics approach based on
manually inferring amino acid sequence tags (that represent a
partial sequence of an NRP) from mass spectra and matching
these tags against information about the substrate specificity
generated by NRPSpredictor2 (ref. 15). Nguyen et al.46,47 and
Tobias et al.31 presented a manual approach for combining
genome mining with molecular networking. In this approach,
which is limited to the identification of previously unreported
variants of known NRPs, molecules present in spectral families
with known compounds are compared to BGCs.

Medema et al.40 complemented the manual approach from
Kersten et al.44 by the NRP2Path40 tool for searching the
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sequence tags against a collection of BGCs. NRP2Path starts with
a set of sequence tags manually generated for each spectrum,
considers multiple assembly lines for each identified BGC, and
forms a database of all possible core NRPs for this BGC. Then,
NRP2Path40 computes a match score between each tag and each
core NRP (using the specificity scores provided by NRPSpre-
dictor2 (ref. 15)) and reports high-scoring matches as putative
core NRPs. The success of this approach relies on inferring long
sequence tags of 4–5 amino acids, which are usually absent in
spectra of non-linear peptides. Such long sequence tags are often
missing in NRPs with macrocyclic backbones and complex
modifications, limiting the applicability of NRP2Path44,48.
Moreover, NRP2Path is not able to identify enzymatic mod-
ifications (e.g. methylation) and PAMs in the final NRPs and is
unable to predict the backbone structure of the mature NRPs (e.g.
linear/cyclic/branch-cyclic).

Mohimani et al.30 developed an automated NRPquest
approach that takes paired MS and genomic datasets as input and
searches each mass spectrum against all structures generated from
putative core NRPs to identify high-scoring peptide-spectrum
matches (PSMs). NRPquest leverages the entire mass spectrum
(instead of just the sequence tags) to provide further insights into
the final structure of the identified NRPs. They proposed using
modification-tolerant search of spectral datasets against the core
NRPs structures, for identifying PAMs in a blind mode (that is
without knowing which PAMs exist in the sample). This is similar
to identifying post-translational modifications in traditional
proteomics49. The presence of covalent modifications in peptides
affects the molecular weight of the modified amino acids; there-
fore, the mass increment or deficit can be detected using MS
data43,49. However, as NRPquest uses a naïve pairwise scoring of
all NRP structures against all mass spectra for PAM identifica-
tion, it is prohibitively slow when searching for PAMs30. Fur-
thermore, NRPquest does not handle non-canonical NRPS
assembly lines and it does not provide statistical significance of
identified NRPs, a crucial step for large-scale analysis.

On the other hand, development of high-throughput MS-based
experimental and computational natural products discovery
pipelines29 such as the Global Natural Products Social (GNPS)
molecular networking50, PRISM51, GNP52, RODEO53, Derepli-
cator+54, CSI:FingerID55, NAP56, and CycloNovo48 have per-
manently changed the field of peptide natural product discovery.
The GNPS project has already generated nearly half a billion of
information-rich tandem mass spectra (MS), an untapped
resource for discovering bioactive molecules. However, the utility
of the GNPS network is mainly limited to the identification of
previously discovered molecules and their analogs. Currently, only
about 5% of the GNPS spectra are annotated50, emphasizing the
need for algorithms that can annotate such large spectral datasets.

In this work, we present NRPminer a scalable modification-
tolerant tool for analyzing paired MS and (meta)genomic datasets
(Fig. 1). NRPminer uses the specificity scores of the amino acids
appearing in core NRPs to perform an efficient search of all
spectra against all core NRPs. In addition to predicting the amino
acid sequence of an NRP generated by a BGC, NRPminer also
analyzes various non-canonical assembly lines and efficiently
predicts potential PAMs and backbone structures. We show
NRPminer identifies 180 unique NRPs representing 18 distinct
NRP families, including four previously unreported ones, by
analyzing only four MS datasets in GNPS against their corre-
sponding reference genomes.

Results
Outline of the NRPminer algorithm. Figure 1 illustrates the
NRPminer algorithm. All NRPminer’s steps are described in

detail in the “Methods” section. Briefly, NRPminer starts by (a)
identifying the NRPS BGCs in each genome (using
antiSMASH16) and (b) predicting the putative amino acids for
each identified A-domain (using NRPSpredictor2 (ref. 15)). Then,
it accounts for (c) different NRPS assembly lines by considering
various combinations of ORFs in the BGCs. NRPminer (d) filters
the set of all core NRPs based on the specificity scores of their
amino acids and selects those with high scores. It, next, (e)
searches each BGC to find known modification enzymes (e.g.
methylation) and incorporates them in the corresponding core
NRPs. Then, (f) NRPminer constructs a database of putative NRP
structures by considering linear, cyclic, and branch-cyclic back-
bone structures for each core NRP. Afterwards, (g) it performs a
modification-tolerant search of the input spectra against the
constructed database of putative NRPs and computes the statis-
tical significance of PSMs. Finally, (h) NRPminer reports the
statistically significant PSMs. These identifications are then (i)
expanded using spectral networks57 approach.

Datasets. We analyzed four microbial isolate datasets from
Xenorhabdus and Photorhabdus families (XPF), Staphylococcus
(SkinStaph), soil-dwelling Actinobacteria (SoilActi), and a col-
lection of soil-associated bacteria within Bacillus, Pseudomonas,
Buttiauxella, and Rahnella genera generated under the Tiny Earth
antibiotic discovery project58,59 (TinyEarth); all available from
GNPS/MassIVE repository. The process of growth of the isolates
and MS experiments are described in the “Methods” section
(under “Sample preparation and MS experiments). The spectra
collected on each of these datasets are referred to as spectraXPF,
spectraSkinStaph, spectraSoilActi, spectraTinyEarth, and the genomes
are referred as genomeXPF, genomeSkinStaph, genomeSoilActi, and
genomeTinyEarth, respectively.

Summary of NRPminer results. Table 1 summarizes the
NRPminer results for each dataset. NRPminer classifies a PSM as
statistically significant if its p value is below the default con-
servative threshold 10−15. The number of distinct NRPs and NRP
families was estimated using MS-Cluster60 and SpecNets50 using
the threshold cos < 0.7 (see “Methods” section). Two peptides are
considered to be variants/modifications of each other if they differ
in a single modified residue due to changes by tailoring enzymes,
enzyme promiscuity, or through changes in the amino acid spe-
cificity at the genetic level47. Known NRPs (NRP families) are
identified either by Dereplicator42 search against the database of
all known peptidic natural products43 (referred to as PNPdata-
base) using the p value threshold 10−15, and/or by SpecNet57

search against the library of all annotated spectra available on
GNPS50. NRPminer ignores any BGCs with less than three A-
domains and spectra that include less than 20 peaks.

Generating putative core NRPs. Table 1 presents the number of
NRP-producing BGCs and the number of putative core NRPs
generated by NRPminer for each analyzed genome in XPF (before
and after filtering). For example, NRPminer identified eight NRP-
producing BGCs and generated 253,027,076,774 putative core
NRPs for X. szentirmaii DSM genome. After filtering putative
core NRPs based on the sum of the specificity scores reported by
NRPSpredictor2 (ref. 15), only 29,957 putative core NRPs were
retained (see “Methods” section for the details of filtering).
Therefore, filtering putative core NRPs is an essential step for
making the search feasible.

Analysis of the paired genomic and spectral datasets. NRPmi-
ner has a one-vs-one mode (each MS dataset is searched against
a single genomic dataset) and a one-vs-all mode (each MS dataset
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Fig. 1 NRPminer pipeline. a Predicting NRPS BGCs using antiSMASH16. Each ORF is represented by an arrow, and each A-domain is represented by a
square, b predicting putative amino acids for each NRP residue using NRPSpredictor2 (ref. 15), colored circles represents different amino acids (AAs),
c generating multiple assembly lines by considering various combinations of ORFs and generating all putative core NRPs for each assembly line in the
identified BGC (for brevity only assembly lines generated by deleting a single NRPS unit are shown; in practice, NRPminer considers loss of up to two NRPS
units, as well as single and double duplication of each NRPS unit), d filtering the core NRPs based on their specificity scores, e identifying domains
corresponding to known modifications and incorporating them in the selected core NRPs (modified amino acids are represented by purple squares),
f generating linear, cyclic and branch-cyclic backbone structures for each core NRP, g generating a set of high-scoring PSMs using modification-tolerant
VarQuest43 search of spectra against the database of the constructed putative NRP structures. NRPminer considers all possible mature NRPs with up to
one PAM (shown as hexagons) in each NRP structure. For brevity some of the structures are not shown. h Computing statistical significance of PSMs and
reporting the significant PSMs, and i expanding the set of identified spectra using spectral networks57. Nodes in the spectral network represent spectra and
edges connect “similar” spectra (see “Methods”).

Table 1 Summary of NRPminer search results on the XPF, SkinStaph, SoilActi, and TinyEarth datasets.

Dataset #strains #identified PSMs/
#spectra

#distinct NRPs
(families)

#known NRPs
(families)

#preiviously unreported
variants of known NRPs

#previuosly unreported
NRPs (families)

XPF 27 3023/263,768 122 (12) 21 (9) 79 22 (3)
SkinStaph 171 23/2,657,398 3 (1) 2 (1) 1 0
SoilActi 20 206/362,421 24 (2) 7 (1) 14 3 (1)
TinyEarth 28 498/380,414 31 (3) 29 (3) 2 0

Column “#strains” shows the number of microbial strains. Column “#identified PSMs/#spectra” shows the number of PSMs identified by NRPminer and the total number of spectra. The column
“#distinct NRPs (families)” shows the number of unique NRPs (unique families). The number of unique NRPs is estimated using MS-Cluster60, and the number of unique families is estimated using
SpecNets50. The column “#known NRPs (families)” shows the number of known NRPs (families) among all identified NRPs (families). Column “#previously unreported variants of known NRPs” shows
the number of NRPs in the known families that were not reported before. Column “#previously unreported NRPs (families)” shows the number of previously unreported NRPs (families) that are not
variants of any known NRPs.
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is searched against a collection of genomic datasets within a
taxonomic clade). While the one-vs-all mode is slower than the
one-vs-one mode, it is usually more sensitive. For example,
a BGC may be fragmented (or misassembled) in the draft
assembly of one strain, but a related BGC may be correctly
assembled and captured within a single contig in a related
well-assembled strain. If these two BGCs synthesize the same (or
even similar) NRP, NRPminer may be able to match the spectra
from a poorly assembled strain to a BGC from a related well-
assembled strain.

For example, NRPminer search of spectraXPF against geno-
meXPF generated 3023 PSMs that represent 122 NRPs from 12
NRP families. Figure 2 shows the spectral network representing
12 NRP families identified by NRPminer in the XPF dataset.

SpecNet analysis against the annotated spectra in GNPS50 showed
that 9 out of 12 identified NRP families is known (reported by
Tobias et al.31). NRPminer identified PAX-peptides family and
their corresponding BGC in X. nematophila ATCC 19061 in the
XPF dataset even though these NRPs include lipid side chains
that are not predictable via genome mining. NRPminer failed to
identify only one additional known family which was reported by
Tobias et al.31 (xefoampeptides) that has an ester bond between a
hydroxy-fatty acid and the terminal amino acid with total mass
exceeding the default NRPminer threshold (150 Da). Xefoampep-
tides are depsipeptides composed of a 3-hydroxy-fatty acid (total
mass over 200 Da) and only three amino acids, resulting in a
poorly fragmented spectrum that did not generate statistically
significant PSMs against the putative structures generated from
their corresponding core NRPs. Table 2 provides information
about NRPminer-generated PSMs representing known NRP
families. Among the nine known NRP families (in the XPF
dataset) listed in Table 2, eight families have been connected to
their BGCs in the previous studies, and for these families, the
corresponding BGCs discovered by NRPminer are consistent
with the literature31 (see Supplementary Table 2 for the list of
identified BGCs). Supplementary Figure 3 presents an example of
an identified NRP family, szentiamide, and its corresponding
BGC in X. szentirmaii. For one family (xentrivalpeptides) with no
known BGC, we were able to predict the putative BGC
(Supplementary Fig. 4). Furthermore, NRPminer identified 79
previously unreported NRP variants across these nine known
NRP families. In addition to the known NRP families, NRPminer
also discovered three NRP families (protegomycins, xenoinfor-
mycins, and xenoamicin-like family) in XPF dataset that includes
no previously reported NRPs.

We named each identified NRP in a previously unreported
family by combining the name of that family with the nominal
precursor mass of the spectrum representing that NRP (with the
lowest p value among all spectra originating from the same NRP).
In what follows, we describe the four previously unreported NRP
families identified by NRPminer (protegomycin, xenoinformycin,
and xenoamicin-like family in the XPF dataset and aminforma-
tide in SoilActi), as well as the previously unreported variants in
two additional NRP families (lugdunin in SkinStaph and
surugamide in SoilActi).

Discovery of protegomycin (PRT) NRP family in the XPF
dataset. NRPminer matched 28 spectra representing 11 pre-
viously unreported cyclic NRPs to two BGCs. These spectra are
from species X. doucetiae, Xenorhabdus sp. 30TX1, and X. poi-
narii. The BGCs were from X. doucetiae and X. poinarii with
six and five A-domains, respectively, with one PAM (Fig. 3).

novel NRP families  

Rhabdopeptides Xenoamicines Xenobactins

Ambactins GameXPeptides Taxlllaids XentrivalpeptidesSzentiamides

Xenoinformycin Protegomycin Xenoamicin-like family

PAX peptide

Fig. 2 Spectral networks for nine known and three previously unreported
NRP families identified by NRPminer in the XPF dataset. Each node
represents a spectrum. The spectra of known NRPs (as identified by
spectral library search against the library of all known compounds in GNPS)
are shown with a dark blue border. A node is colored if the corresponding
spectrum forms a statistically significant PSM and not colored otherwise.
We distinguish between identified spectra of known NRPs with known
BGCs31 (colored by light blue) and identified spectra of known NRPs (from
xentrivalpeptide family) with previously unknown BGC (colored by dark
green). Identified spectra of previously unreported NRPs from known NRP
families (previously unreported NRP variants) are colored in light green.
Identified spectra of NRPs from previously unreported NRP families are
colored in magenta. Proteogomycins and xenoinformycin subnetworks
represent previously unreported NRP families. The Xenoamicin-like
subnetwork revealed a BGC family distantly related to xenoamicins (6 out
13 amino acids are identical). For simplicity only spectra at charge state +1
are used for the analysis.

Table 2 Predicted amino acids for the eight A-domains appearing on cyclic surugamides A–D assembly line SurugamideAL.

A1 A2 A3 A4 A5 A6 A7 A8

Val (100) Phe (100) Tyr (100) Val (100) Ala (100) Val (100) Val (100) Met (100)
Ile (80) Tyr (90) Phe (100) Ile (100) Ser (87) Ile (100) Ile (100) Apa (100)
Abu (70) Bht (90) Leu (100) Abu (70) Pro (75) Abu (70) Abu (70) Glu (86)

Val (75) Arg (86)
Cys (75) Gln (86)
Phe (75) Lys (86)
Gly (75) Asp (86)

Val (86)
Orn (86)

Ai represents the set of amino acids predicted for the ith A-domain in SurugamideAL. For each Ai at least three amino acids with the highest normalized specificity scores (listed in parentheses) are
presented. Amino acids appearing in surugamide A (IFLIAIIK) are shown in bold. NRPminer considers all amino acids with the same normalized specificity score, as illustrated in the case of the fifth and
the eighth A-domains.
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Additional derivatives were found in large-scale cultivation of
wild type and Δhfq mutants of X. doucetiae (Supplementary Fig. 5
and “Methods” section under “Additional Analyses for Protego-
mycin Family”). No BGC was found in Xenorhabdus sp. 30TX1
due to highly fragmented assembly. The spectra representing the
three protegomycins produced by Xenorhabdus sp. 30TX1 did

not match any core NRP generated from its genome because the
corresponding BGC was not assembled in a single contig in this
genome. However, they were identified with statistically sig-
nificant p values using the one-vs-all search when these spectra
were searched against core NRPs from X. doucetiae genome
(Fig. 3) that included an orthologous BGC in a single contig.

Fig. 3 Identifying protegomycin (PRT) NRP family. a The BGCs generating the NRP in X. doucetiae (top) and X. porinarii (bottom) along with NRPS genes
(shown in red) and A-, C-, PCP-, and E-domains in these NRPSs. The rest of the genes in the corresponding contigs is shown in white. No BGC was found in
Xenorhabdus sp. 30TX1. Three highest-scoring amino acids for each A-domain in these BGCs (according to NRPSpredictor2 (ref. 15) predictions) are shown
below the corresponding A-domains. Amino acids appearing in the NRPs [+99.06]FYYYYW and [+99.06]FYYYW identified by NRPminer (with the
lowest p value) are shown in blue. b Spectral network formed by the spectra that originate from NRPs in the protegomycin family. c Sequences of the
identified NRPs in the protegomycin family (with the lowest p value among all spectra originating from the same NRP). PRT represents protegomycin. For
MS details see Supplementary Table 3. The p values are computed based on MCMC approach using MS-DPR89 with 10,000 simulations. d For each strain,
an annotated spectrum representing the lowest p value is shown. The spectra were annotated based on predicted NRPs [+99.06]FYYWYW, [+99.06]
FYYYYW, and [+99.06]FYYYW from top to bottom. The “+” sign represents the addition of [+99.06 Da]. Colors in parts b and d are coordinated.
Supplementary Figures 6–8 show the annotated spectra for all NRPs shown in part (c). e Key HMBC and HSQC-COSY correlations in PRT-1037.
f Structures for selected PRT derivatives produced by X. doucetiae including amino acid configuration as concluded from the presence of epimerization
domains in the corresponding NRPSs and acyl residues as concluded from feeding experiments (Supplementary Fig. 9). Predicted structures for all
identified PRT derivatives from X. doucetiae, X. poinarii, and 30TX1 are shown in Supplementary Figs. 10 and S11.
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Figure 3, Supplementary Figs. 6–11, and Supplementary Table 3
present information about protegomycin BGC and NRPs.

We further conducted nuclear magnetic resonance (NMR)
spectroscopy on one of the major derivatives (Fig. 3e, f and
Supplementary Figs. 12–18 and Supplementary Table 4). Our
NMR results confirmed the MS results, with the distinction that
NMR revealed a short chain fatty acid like phenylacetic acid
(PAA) as a starting unit (incorporated by the C-starter domain),
followed by a Lys that is cyclized to the terminal thioester by the
C-terminal TE domain. NRPminer predicted Phe instead of the
correct amino acid Lys, since NRPSpredictor2 made an error in
identifying the amino acid for the corresponding A-domain (see
Fig. 3a for the list of predicted amino acids). It has been shown
that NRPSpredictor2 (ref. 15) often fails to predict Lys residues,
due to lack of training data for this amino acid15. Furthermore, as
with any other MS-based method, NRPminer was not able to
distinguish between residues with the same molar mass in the
structure of final NRP, such as the pair Ala and β-Ala. All other
NRPminer predictions of individual amino acids were consistent
with NMR.

Besides PAA, other starter acyl units are isovaleric acid (in
PRT-1012; NRPminer prediction 99.06+Leu; see Fig. 3f) and
butyric acid (in PRT-1037; see Fig. 3e). Supplementary Figure 9
describes labeling data and mass spectra for the identified
protegomycins in X. doucetiae. The isolated derivatives PRT-1037

and PRT-1021 (Fig. 3e, f) were tested against various protozoa
and showed a weak activity against Trypanosoma brucei
rhodesiense (IC50 [mg/L] 79 and 53) and Plasmodium falciparum
(IC50 [mg/L] > 50 and 33) with no toxicity against L6 rat myoblast
cells (IC50 [mg/L] both >100).

Discovery of xenoinformycin (XINF) NRP family in the XPF
dataset. NRPminer matched four spectra representing four cyclic
NRPs X. miraniensis dataset to a previously uncharacterized BGC
in its genome (Fig. 4). NRPminer reported a modification with a
total mass of 99.068 for all the four identified NRPs, which
matches the valine mass. We hypothesize that one of the valine-
specific adenylation domains is responsible for the activation of
two consecutive valine units, suggesting an iterative use of the
Val-incorporating module (similar to stuttering observed in
polyketide synthases61,62) but this is yet to be experimentally
verified. Interestingly, the predicted xenoinformycin producing
NRPS XinfS is highly similar to the widespread NRPS GxpS
found in Xenorhabdus and Photorhabdus, responsible for the
GameXPeptide production31,63. While both XinfS and GxpS
have five modules, XinfS has a C-domain instead of the usual
C/E-domain in the last module, suggesting a different config-
uration of the amino acid Phe or Leu (corresponding to the
second last A-domain on their NRPSs), respectively.

Fig. 4 Identifying xenoinformycin (XINF) NRP family. a The BGC generating the NRP in X. miraniensis along with NRPS genes (shown in red) and the A-,
C-, PCP-, and C/E-domains appearing on the corresponding NRPS. The rest of the genes in the corresponding contigs are shown in white. Three highest-
scoring amino acids for each A-domain in this BGC (according to NRPSpredictor2 (ref. 15) predictions) are shown below the corresponding A-domains.
Amino acids appearing in the NRP VVWFF identified by NRPminer (with the lowest p value) are shown in blue. b Spectral network formed by the spectra
that originate from NRPs in the xenoinformycin family. A node is colored if the corresponding spectrum forms a statistically significant PSM (with p value
threshold 10−15) and not colored otherwise. c Sequences of the identified NRPs in the xenoinformycin family (with the lowest p value among all spectra
originating from the same NRP). XINF represents xenoinformycin. The p values are computed based on MCMC approach using MS-DPR89 with
10,000 simulations. d For each identified NRP, an annotated spectrum forming a PSM with the lowest p value is shown.
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Discovery of xenoamicin-like (XAM) NRP family in the XPF
dataset. NRPminer discovered an NRP family that includes eight
distinct NRPs, along with their BGC (Fig. 5). While the matched
BGC for this family is evolutionary related to the xenoamicin
BGC64 and both BGCs include 13 A-domains, 7 out of 13 amino
acids in XAM differ from the corresponding amino acids in
xenoamicin A (Supplementary Fig. 19). We named this pre-
viously unreported class of xenoamicins class III. Interestingly,
the occurrence of XAM-1237 and XAM-1251 suggest a loss of
Pro in their structure indicating another possibility of NRP
diversification, namely module skipping as previously observed in
other NRPSs61,65,66. We confirmed the sum formula of XAM-
1320 (m/z 1320.793 [M+H+]; C63H109N13O17) and XAM-1334
(m/z 1334.810 [M+H+]; C64H111N13O17) by feeding (Supple-
mentary Figs. 20 and 21) and MS–MS experiments

(Supplementary Fig. 22 and Methods section under “Additional
analysis for xenoamicin-like family”) and were also able to isolate
the major derivative XAM-1320 from Xenorhabdus sp. KJ12.1
and to elucidate its structure by NMR including its 3D solution
structure (Supplementary Tables 5 and 6 and Supplementary Figs.
25–S29) that confirms its β-helical structure from the alternating
D/L configurations (confirmed by the advanced Marfey’s analysis;
Supplementary Fig. 23 and “Methods” section) throughout the
peptide chain from the presence of C/E domains, except for the
C-terminal part shown in Fig. 5. XAM-1320 was also tested
against protozoa and showed a good activity against T. brucei
rhodesiense (IC50 [mg/L] 3.9) but much lower activity against
Trypanosoma cruzi, Plasmodium falciparum and rat L6 cells (IC50

[mg/L] 25.5, 56.2, and 46.0, respectively). Supplementary Figure
24 provides information about the isolation and structure
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Fig. 5 Identifying xenoamicin-like (XAM) NRP family. a The BGCs generating the NRP in Xenorhabdus sp. KJ12 along with NRPS genes (shown in red) and
A-, C-, PCP-, and E-domains in these NRPSs. The rest of the genes in the corresponding contigs are shown in white. Three highest-scoring amino acids for
each A-domain in these BGCs (according to NRPSpredictor2 (ref. 15) predictions) are shown below the corresponding A-domains. Amino acids appearing
in the NRP [+99.06]TAVLLTTLLAAPA identified by NRPminer (with the lowest p value) are shown in blue. b Spectral network formed by the spectra that
originate from NRPs in the XAM family. c Sequences of the identified NRPs in this family (with the lowest p value among all spectra originating from
the same NRP). The p values are computed based on MCMC approach using MS-DPR89 with 10,000 simulations. d For each strain, an annotated
spectrum representing the lowest p value is shown. The spectra were annotated based on predicted NRPs [+99.06]TAVLLTTLLAAPA and [+99.06]
TAVLLTTLVAAPA from top to bottom. The “+” sign represents the addition of [+99.06]. Supplementary Figures 23 and S24 show the annotated spectra
for the other NRPs shown in part (c). e NMR-based correlations of XAM-1320 (m/z 1320.8 [M+H]+) produced by Xenorhabdus KJ12.1 (Supplementary
Table 5 and Supplementary Figs. 25–29). HSQC-TOCSY (bold lines) and key ROESY correlations (arrows) are shown. f 3D structure of XAM-1320 derived
from 121 ROE-derived distance constraints (Supplementary Table 6), molecular dynamics, and energy minimization. Peptide backbone is visualized with a
yellow bar (left). Predicted hydrogen bonds stabilizing the β-helix are shown as dashed lines. View from above at the pore formed by XAM-1320 (right).
NRPminer identified this NRP with p value 8.4 × 10−50.
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elucidation of XAM-1320, XAM-1278, XAM-1292, and XAM-
1348 that differed in the starter acyl unit and the following amino
acid (Ala or Gly).

Discovery of aminformatide NRP family produced by Amy-
colatopsis sp. aa4 in the SoilActi dataset. Supplementary Table 7
presents the number of NRP-producing BGCs and the number of
putative core NRPs generated by NRPminer for each analyzed
genome in XPF (before and after filtering). NRPminer identified
11 PSMs (representing three NRPs) when searching the SoilActi
spectral dataset against Amycolatopsis sp. aa4 genome (Fig. 6).
Previously, another NRP family, siderophore amychelin, and
its corresponding BGC was reported from this organism67.
Using the NRPSpreidctor2 (ref. 15)-predicted amino acids
NRPminer predicted a modification of ~0.95 Da on the Glu in
aminoformatide-1072 VVII[E-1.0]TRY. Since NRPSpredictor2 is
the least sensitive in recognizing Lys (as compared to other
amino acids)15, we hypothesize that this amino acid is in fact a
Lys as we have seen in the case of protegomycins (with Lys), but
this is yet to be determined.

Identifying lugdunin NRP family in the SkinStaph dataset.
Antibiotics lugdunins7 represent the only NRP family reported in

the human commensal microbiota. NRPminer matched nine
spectra representing three NRPs from a single family in the
spectraSkinStaph dataset against Staphylococcus lugdunensin gen-
ome. In addition to the two known cyclic variants of lugdunin,
NRPminer also discovered a previously unreported lugdunin
variant with precursor mass 801.52 (Supplementary Fig. 30). Due
to a +18.01 Da mass difference, NRPminer predicted a linear
structure for this variant that represents the linear version of the
known one. Since NRPminer predicts sequence VWLVVVt for
the linear lugdunin, with the breakage between valine and Cys-
derived thiazolidine, we hypothesize that this is a naturally
occurring linear derivative in the lugdunin family. Lugdunins,
synthesized by a non-canonical assembly line, were predicted
using the non-canonical assembly line feature of NRPminer
(Fig. 7).

Identifying lipopeptides in the TinyEarth dataset. Our
NRPminer analysis of the TinyEarth dataset generated 498 PSMs
representing 31 NRPs from three families, using the 200 Da
threshold for PAM identification. Supplementary Table 9 pro-
vides information about the NRPminer-generated PSMs repre-
senting these three NRP families. Bacillus derived surfactins68

and plipastatin69 are bioactive lipopeptide with wide variety

Fig. 6 Identifying aminformatide (AMINF) NRP family discovered by NRPminer in the SoilActi dataset. a The BGC generating the core NRP in
Amycolatopsis sp. AA4 along with NRPS genes (shown in red) and the A-, C-, PCP, and E-domains appearing in the corresponding NRPS. The rest of the
genes in the corresponding contigs are shown in white. Three highest-scoring amino acids for each A-domain in this BGC (according to NRPSpredictor2
(ref. 15) predictions) are shown below the corresponding A-domains. Amino acids appearing in the NRP VVIVETRY identified by NRPminer (with the
lowest p value) are shown in blue. b Spectral network formed by spectra that originate from the AMINF NRPs. A node is colored if the corresponding
spectrum forms a statistically significant PSM and not colored otherwise. The p values are computed based on MCMC approach using MS-DPR89 with
10,000 simulations. c Sequences of the NRPs identified by NRPminer in the aminformatide family (with the lowest p value among all PSMs originating from
the same NRP). NRPminer predicted a PAM with loss of ~0.96 Da on E, represented by E*. AMINF represents aminformatide. d For each identified NRP, an
annotated spectrum representing the lowest p value is shown.
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of activities. Surfactins are reported to have anti-viral70,71,
anti-tumor72, anti-fungal73, and anti-microbial74 functions75–78

and plipastatins have known anti-fungal activities79. In the
analysis of Bacillus amyloliquefaciens sp. GZYCT-4-2, NRPminer
correctly reported all known surfactins (17 NRPs) and plipas-
tatins (9 NRPs) identified in this dataset (PSMs listed in Sup-
plementary Table 10). Moreover, NRPminer search of
spectraTinyEarth against putative NRP structures generated from
Pseudomonas baetica sp. 04-6(1) genome identified 63 PSMs
representing the arthrofactins (ARF) NRP family (Fig. 8).
NRPminer identified the known branch-cyclic arthrofactins80

that only differ in the fatty acid tail (namely ARF-1354 and ARF-
1380) and a known linear arthrofactin ARF-1372 (the linear
version of ARF-1354). Furthermore, it identified two previously
unreported arthrofactin variants: ARF-1326 (predicted to only
differ in its side chain from the known branch-cyclic ARF-
1354 shown in Fig. 8e) and ARF-1343 (predicted to be the linear
version of the putative ARF-1326). NRPminer missed one known
NRP family identified in spectraTinyEarth (xantholysins81) since
the xantholysin BGC was split among multiple contigs in the
Pseudomonas plecoglossicida sp. YNA158 genome assembly.

Identifying surugamides in the SoilActi dataset. NRPminer
identified 183 spectra representing 25 NRPs when searching
spectraSoilActi against S. albus J10174 genome, hence extending the
set of known surugamide variants from 8 to 21 (Supplementary
Table 8 and Supplementary Fig. 2). Spectral network analysis
revealed that these spectra originated from two NRP families.
VarQuest search of this spectral dataset against PNPdatabase43

identified only 14 of these 21 NRPs. The remarkable diversity of
surugamide NRPs, which range in length from 5 to 10 amino
acids, is explained by the non-canonical assembly lines13,43. Using
the “orfDel” option when analyzing surugamide BGC, with four
ORFs (see Fig. S31), NRPminer generated 11 assembly lines.
Supplementary Table 12 presents the number of core NRPs
generated from the assembly line formed by SurA and SurD
genes, based on their scores; 1104 core NRPs are retained out of
45,927 possible core NRPs generated from this assembly line. In

total, 14,345 core NRPs from the original 3,927,949,830 core
NRPs of the 11 assembly lines of surugamide BGC are retained.
In addition to the surugamides synthesized by the SurA-SurD
pair, NRPminer also discovered Surugamide G synthesized by the
SurB-SurC pair (Supplementary Fig. 2d). In comparison with
surugamide F from Streptomyces albus32, this NPR lacks the N-
terminal tryptophan. Surugamide F was not identified in the
spectral dataset from Streptomyces albus.

Discussion
We developed the scalable and modification-tolerant NRPminer
tool for automated NRP discovery by integrating genomics and
metabolomics data. We used NRPminer to match multiple pub-
licly available spectral datasets against 241 genomes from
RefSeq82 and genome online database (GOLD)83. NRPminer
identified 55 known NRPs (13 families) whose BGCs have been
identified previously, without having any prior knowledge of
them (Figs. 2 and 7, Supplementary Fig. 2, S3, and S25, and
Supplementary Table 2 and S8). Furthermore, NRPminer iden-
tified the BGC for an orphan NRP family (xentrivalpeptides) with
previously unknown BGC. In addition to the known NRPs,
NRPminer reported 121 previously unreported NRPs from a
diverse set of microbial organisms. Remarkably, NRPminer
identified four NRP families, representing 25 previously unre-
ported NRPs with no known variants, three families in the XPF
dataset (Figs. 3–5) and one in the SoilActi dataset (Fig. 6), illus-
trating that it can match large spectral datasets against multiple
bacterial genomes for discovering NRPs that evaded identification
using previous methods. We further validated two of the pre-
viously unreported families predicted by NRPminer using NMR
and demonstrated their anti-parasite activities.

Existing peptidogenomics approaches are too slow (and often
memory-intensive) to conduct searches of large MS datasets
against many genomes. Moreover, these approaches are limited to
NRPs synthesized by canonical assembly lines and without
PAMs, which limits the power of these methods for discovering
NRPs. NRPminer is the first peptidogenomics tool that efficiently
filters core NRPs based on their specificity scores without losing

Fig. 7 Lugdunin BGC and the assembly lines formed by NRPminer using the OrfDup option. a Lugdunin BGC with the four ORFs shown in different colors.
The squares represent the A-domains. b Assembly lines formed by duplication of a single NRPS subunit (corresponding to each ORF) zero, one, and two
times are pictured. NRPminer explores all assembly lines generated by duplicating each ORF up to two times when the “OrfDup” option is selected. c The
NRPS assembly lined (with A-, C-, PCP-, and E-domains pictured) appearing in the NRPS that synthesizes lugdunin, where one Val-specific A-domain loads
three amino acids (valines) to the growing peptide. Amino acids corresponding to lugdunin structure are shown below each A-domain. Circles represent
amino acids (different amino acids are shown by different colors). d Cyclic structure of lugdunin with the amino acids highlighted in blue. The “Cys*”
represent Cys-derived thiazolidine in lugdunin structure.
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sensitivity and enables searching millions of spectra against
thousands of microbial genomes. Furthermore, NRPminer can
identify NRPs with non-canonical assembly lines of different
types (e.g., surugamides, xenoinformycin, and lugdunin) and
PAMs (e.g. surfactins, arthrofactins, plipastatins, protegomycins,
and PAX peptides).

Majority of the spectral datasets in GNPS are currently not
accompanied by genomics/metagenomics data. To address this
limitation, NRPminer can search a spectral dataset against all
genomes from RefSeq82 or GOLD databases83 within a user-
defined taxonomic clade. This one-vs-all mode enables analysis of
spectral datasets that are not paired with genomic/metagenomic
data by searching them against multiple genomes. This mode,
which relies on the scalability of NRPminer, enabled NRPminer
to identify the lugdunin family (by searching the SkinStaph
spectral dataset) even though the paired genome sequence from
the same strain was not available.

In contrast to the previous peptidogenomics approaches,
NRPminer is robust against errors in specificity prediction in
genome mining tools and can efficiently identify mature NRPs
with PAMs. This feature was crucial for discovering protego-
mycins that include a PAM (lipid chain) and a mis-prediction
(Phe instead of Lys), as well as for identifying the lipopeptide
biosurfactant in the TinyEarth dataset. While NRPminer is a
powerful tool for discovering NRPs it can only succeed if the
genome mining algorithms successfully identify an NRP-
encoding BGC and predict the correct amino acids for nearly
all A-domains. One of the bottlenecks of genome mining meth-
ods for NRP discovery is the lack of training data for many non-

standard amino acids from under-explored taxonomic clades. We
anticipate that more NRPs will be discovered using automated
methods, and these discoveries will increase the number of A-
domain with known specificity, which in turn will pave the path
toward the development of more accurate machine learning
techniques for A-domains specificity prediction.

In case of metagenomic datasets, NRPminer’s one-vs-all
function allows for searching the spectral dataset against all the
metagenomic assemblies generated from the same sample.
However, the success of genome mining crucially depends on
capturing the entire BGCs in a single contig during genome
assembly. NRPS BGCs are long (average length ~60 kb45) and
repetitive (made up of multiple highly similar domains), making
it difficult to assemble them into a single contig. Meleshko et al.45,
recently developed the biosyntheticSPAdes tool for BGC recon-
struction in short-read isolate assemblies, but at the same time
acknowledged that short-reads metagenome assemblies are not
adequate for full-length BGC identification. Even with
biosyntheticSPAdes45, it remains difficult to capture long and
repetitive BGCs within a single contig. With recent advances in
long-read sequencing technologies, more contiguous microbial
genome assemblies are becoming available84,85, increasing the
power of NRPminer.

Another challenge in applications of NRPminer to complex
microbiome data is that, with the current state of MS technology,
many spectra originate from host molecules (in the case of host-
associated microbiomes) or environmental contaminations. For
example, the majority of spectra collected on human skin
microbiome correspond to deodorants, shampoos, and other

Fig. 8 Arthrofactin (ARF) NRP family. a The BGCs generating the NRP in Pseudomonas baetica sp. 04-6(1) along with the NRPS genes (shown in red) and
A-, C-, C/E-, PCP-, and E-domains in these NRPSs. The rest of the genes in the corresponding contigs are shown in white. Three highest-scoring amino
acids for each A-domain in these BGCs (according to NRPSpredictor2 (ref. 15) predictions) are shown below the corresponding A-domains. Amino acids
appearing in the known NRP ARF-1354 with amino acid sequence [+170.13]LDTLLSLSILD are shown in blue. b Spectral network formed by the spectra that
originate from NRPs in the ARF family. The known arthrofactins are shown in blue, while the purples nodes represent the previously unreported variants
identified by NRPminer. All identified athrofactins share the same core NRP LDTLLSLSILD. c Sequences of the identified NRPs in this family (with the lowest
p value among all spectra originating from the same NRP). Column “structure” shows if the predicted structure for the identified NRPs is linear or branch-
cyclic (shown by b-cyclic). The p values are computed based on MCMC approach using MS-DPR89 with 10,000 simulations. d Two annotated spectra
representing the PSMs (with the lowest p values among spectra originating from the same NRPs) corresponding to ARF-1354 and 1326. The two spectra
were annotated based on predicted NRPs [+170.13]LDTLLSLSILD (PSM p value 2.7 × 10−39) and [+142.11]LDTLLSLSILD (PSM p value 6.5 ´ 10−55), from
top to bottom. The “+” and “*” signs represent the addition of [+170.13] and [+142.11], respectively. e The 2D structure of known arthrofactin ARF-1354
(ref. 80). NRPminer identified this NRP with p value 2.7 × 10−39.
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beauty products, rather than microbial products86. The advent of
sensitive MS data acquisition techniques could enable capturing
low abundant microbial products from complex environmental
and host-oriented samples.

NRPminer only considers methylation and epimerization tai-
loring enzymes in the BGCs and does not recognize any other
modification enzymes that modify NRPs, such as glycosylation
and acylation87. These modifications can only be predicted as
blind modifications using the modification-tolerant search of
their corresponding spectral datasets against the input genomes.

Currently, NRPminer identifies ~1% of spectra of isolated
microbes as NRPs. However, ~99% of spectra in these datasets
remain unidentified, representing the dark matter of metabo-
lomics. These spectra could represent primary metabolites (e.g.
amino acids), other classes of secondary metabolites (e.g. RiPPs,
polyketides, lipids, terpenes), media contaminations, and lower
intensity/quality spectra that are difficult to identify. Thus, further
advances in experimental and computational MS are needed
toward a comprehensive illumination of the dark matter of
metabolomics.

Methods
Outline of the NRPminer algorithm. NRPminer expands on the existing tools for
automated NRP discovery30,40 by utilizing algorithms that enable high-throughput
analysis and handle non-canonical assembly lines and PAMs. Below we describe
various steps of the NRPminer pipeline:

(a) Predicting NRPS BGCs in (meta)genome sequences by genome mining.
NRPminer uses Biopython88 and antiSMASH17 to identify the NRP-producing
BGCs in the assembled genome. Given a genome (or a set of contigs), antiSMASH
uses HMMs to find NRP-producing BGCs. The NRPminer software package also
includes biosyntheticSPAdes45, a specialized short-read BGC assembler.

(b) Predicting putative amino acids for each A-domain in the identified BGCs.
NRPminer uses NRPSpredictor2 (ref. 15) to predict putative amino acids for each
position in an NRP. Given an A-domain, NRPSpredictor2 uses support vector
machines (trained on a set of A-domains with known specificities) to predict the
amino acids that are likely to be recruited by this A-domain. NRPSpredictor2
provides a specificity for each predicted amino acid that is based on the similarity
between the analyzed A-domain and the previously characterized A-domains16,18.
NRPminer uses NRPSpredictor2 (ref. 15) predictions to calculate the specificity
scores for each predicted amino acid (see “Methods” section under “Specificity
Scores of Putative Amino Acids)”.

(c) Generating multiple NRPS assembly lines. NRPminer generates multiple
NRPS assembly lines by allowing for the option to either delete an entire ORFs,
referred to as “orfDel” (Fig. 1c) or duplicate A-domains encoded by an ORF,
referred to as “orfDup” (Fig. 1b). In the default “orfDel” setting, NRPminer
considers all assembly lines formed by deleting up to two ORFs. With “orfDup”
option, NRPminer generates non-canonical assembly lines that tandemly duplicate
all A-domains appearing in a single ORF.

We represent an NRPS assembly line as a sequence of sets of amino acids, A1,
…,Ak where each Ai represents the set of amino acids predicted for the ith A-
domain of this assembly line along with their specificity scores. Given an NRPS
assembly line with k A-domains and the corresponding setsA1,…,Ak, the set of all
possible core NRPs for this assembly line is given by the cartesian product
A1 ´… ´Ak. See “Methods” section under “Generating Assembly-lines Using
NRPminer” for more information.

(d) Filtering the core NRPs based on their specificity scores. Supplementary
Table 1 and Supplementary Table 7 illustrate that some BGC-rich genomes give
rise to trillions of putative core NRPs. NRPminer uses the specificity scores of
amino acids in each core NRP to select a smaller set of core NRPs for downstream
analyses. Given an assembly line A1,…,Ak, for each amino acid a 2 Ai (i= 1,…,
k), NRPminer first divides the specificity score of a by the maximum specificity
score observed across all amino acids inAi (see “Methods” section under “Filtering
the Core NRPs Based on their Specificity Scores)”; we refer to the integer value of
the percentage of this number as the “normalized specificity score” of a. We define
the score of a core NRP to be the sum of the normalized scores of its amino acids.

NRPminer uses a dynamic programming algorithm to efficiently find N
highest-scoring core NRPs for further analyses (the default value is N= 1000),
which enables peptidogenomics analysis of BGCs with many A-domains. The
“Methods” section provides more information.

(e) Identifying domains corresponding to known modifications and incorporating
them in the core NRPs. NRPminer searches each BGC for methylation domains
(PF08242) and accounts for the possible methylations on corresponding residues
for all resulting core NRPs (corresponding to +14.01 Da mass shift). NRPminer
also searches for epimerization domains in each BGC (as well as dual
condensation-epimerization domains) that provide information about the structure
of the final NRP (D- or L-amino acids).

(f) Generating linear, cyclic, and branch-cyclic backbone structures for each core
NRP. NRPminer generates linear and cyclic structures for all core NRPs. Similar to
NRPquest30, whenever NRPminer finds a cytochrome P450 domain, it also
generates branched-cyclic NRPs by considering a side-chain bond between any pair
of residues in the peptide.

(g) Modification-tolerant search of spectra against the constructed backbone
structures. Similar to PSMs in proteomics, a PSM in peptidogenomics is scored
based on similarities between the theoretical spectrum of the peptide and the mass
spectrum43 (see “Methods” section under “Forming Peptide-Spectrum-Matches
(PSMs) and Calculating PSM score)”. The standard search of a spectrum against a
peptide database refers to finding a peptide in the database that forms a highest-
scoring PSM with this spectrum. Similarly, the modification-tolerant search of a
spectrum against the peptide database refers to finding a variant of a peptide in the
database that forms a highest-scoring PSM with this spectrum. In the case of NRPs,
it is crucial to conduct modification-tolerant search in a blind mode in order to
account for unanticipated PAMs in the mature NRP.

Existing peptidogenomics methods utilize a brute-force approach for
modification-tolerant search, by creating a database of all possible unanticipated
modifications30. For example, given a spectrum and a core NRP structure with n
amino acids, these methods consider a modification of mass δ on all possible amino
acids in the NRP, where δ is the mass difference between the spectrum and the
NRP. Gurevich et al.43 developed the VarQuest tool for modification-tolerant
search of large spectral datasets against databases of peptidic natural products that
is two orders of magnitude faster than the brute-force approach. NRPminer utilizes
VarQuest for identification of PAMs with masses up to MaxMass with the default
value MaxMass=150 Da (see “Methods” section for more informatoin). This
approach also allows NRPminer to identify loss or addition of an amino acid (for
amino acids with molecular mass up to MaxMass Da). Note that, similar to
identification of PAMs in linear proteomics30, MS-based methods for NRP
discovery are limited to finding modification masses and cannot provide
information about the exact chemistry of the identified modifications.

NRPminer has the one-vs-one mode for searching a spectral dataset against the
genome corresponding to its producer. Additionally, NRPminer features the one-
vs-all mode that a spectral dataset is searched against all genomes in the
corresponding taxonomic clade (or any given set of genomes). One-vs-all is useful
in cases when an entire BGC is not assembled in a single contig in the producer’s
genome, but well-assembled in a related genome.

In scoring PSMs, NRPminer has a user-adjustable threshold for the accuracy of
precursor and products ions, thus improving the accuracy of PSM scoring in the
case of modification-tolerant search of high-resolution spectral datasets. This
feature improves on NRPquest whose applications are largely limited to low-
resolution spectra.

(h) Computing statistical significance of PSMs. NRPminer uses MS-DPR89 to
compute p values of the identified PSMs. Given a PSM, MS-DPR computes the
probability (p value) that a random peptide has a score greater than or equal to the
PSM score (see “Methods” section under “Computing P-values and Peptide-
Spectrum-Matches”). The default p value threshold (10−15) is chosen based on the
previous studies where the p value cut-off 10−15 was necessary for reaching a false
discovery rate (FDR) below 1% against NRPs42,43. Furthermore, NRPminer filters
the PSMs based on the FDR values reported by VarQuest (default threshold 1%).
The user can change the p value and FDR thresholds (using “—p value” and “—fdr”
handles) depending on their study. E-values are also calculated by multiplying p
values with the number of spectra and NRPs computed.

(i) Expanding the set of identified NRPs using spectral networks. Spectral datasets
often contain multiple spectra originating from the same compound. NRPminer
clusters similar spectra using MS-Cluster60 and estimates the number of distinct
NRPs as the number of clusters. It further constructs the spectral network50,57 of all
identified spectra and estimates the number of distinct NRP families as the number
of connected components in this network.

Spectral networks reveal the spectra of related peptides without knowing their
amino acid sequences57. Nodes in a spectral network correspond to spectra, while
edges connect spectral pairs, i.e. spectra of peptides differing by a single
modification or a mutation. Ideally, each connected component of a spectral
network corresponds to a single NRP family57 representing a set of similar NRPs.
In this study, we only report an identified NRP family if at least one NRP in the
family is identified with a PSM p value at least 10−20. NRPminer utilizes spectral
networks for expanding the set of identified NRPs.

Sample preparation and MS experiments. General experimental procedures. 1H,
13C, HSQC, HMBC, HSQC-COSY, HSQC-TOCSY, and ROESY spectra were
measured on Bruker AV500, AV600, and AV900 spectrometers, using DMSO-d6
and CDCl3 as solvent. Coupling constants are expressed in Hz and chemical shifts
are given on a ppm scale. HRESIMS was performed on an UltiMate 3000 system
(Thermo Fisher) coupled to an Impact II qTof mass spectrometer (Bruker Daltonik
GmbH). Preparative HPLC was performed on an Agilent 1260 HPLC/MS system
with a ZORBAX StableBond 300 C18 (21.2 mm × 250 mm, 7.0 µm, Agilent). Semi-
preparative HPLC was performed on an Agilent 1260 HPLC/MS system with a
ZORBAX StableBond 300 C18 (9.4 mm × 250 mm, 5.0 µm, Agilent).

Below we describe sample preparation and mass spectra generation for all
analyzed datasets in more details.
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XPF: A total of 27 strains from soil nematode symbiont Xenorhabdus and
Photorhabdus families were grown in lysogeny broth and agar and were extracted
with methanol as described previously (Supplementary Table 1). Briefly, the crude
extracts were diluted 1:25 (vol/vol) with methanol and analyzed by UPLC-ESI
coupled with Impact II qTof mass spectrometer. MS dataset spectraXPF31 contains
27 spectral sub-datasets representing each sample for a total of 263,768 spectra
across all strains (GNPS-accession #: MSV000081063). The genomeXPF dataset
contains 27 draft genomes generated by DNA sequencing from the same samples
as reported by Tobias et al.31 (available from RefSeq82). See the sections below for
detailed information about experiments regarding protegomycin and xenoamicin-
like families, respectively.

SkinStaph: A total of 171 Staphylococcus strains isolated from skin of healthy
individuals were grown in 500 mL Tryptic Soy Broth (TSB) liquid medium in Nunc
2.0 mL DeepWell plates (Thermo Catalog# 278743) by Zhou et al.90. An aliquot of
each culture was used to measure optical density. Cultures that effectively grew
were transferred to a new deep well plate. Cultures were placed in a −80 °C freezer
for 10 min and then allowed to thaw at room temperature three times, to lyse
bacterial cells. Two hundred microliters of the supernatant collected from cell
cultures were filtered using a Phree Phospholipid Removal kit (Phenomenex).
Sample clean up was performed following the manufacturer’s protocol described
here (https://phenomenex.blob.core.windows.net/documents/c1ac3a84-e363-416e-
9f26-f809c67cf020.pdf). Briefly, the Phree kit plate was conditioned using 50%
MeOH; bacterial supernatant were then added to the conditioned wells followed by
sample clean up using 100% MeOH (a 4:1 v/v ratio of MeOH:bacterial
supernatant). The plate was centrifuged 5 min at 500g and the clean up extracts
were lyophilized using a FreeZone 4.5 L Benchtop Freeze Dryer with Centrivap
Concentrator (Labconco). Wells were resuspended in 200 µL of resuspension
solvent (80% MeOH spiked with 1.0 µM Amitriptyline), vortexed for 1 min, and
shaken at 2000 r.p.m. for 15 min at 4 °C. One hundred and fifty microliters of the
supernatant was transferred into a 96-well plate and maintained at 20 °C prior to
liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Bacterial
extracts were analyzed using a ThermoScientific UltiMate 3000 UPLC system for
liquid chromatography and a Maxis Q-TOF (Quadrupole-Time-of-Flight) mass
spectrometer (Bruker Daltonics), controlled by the Otof Control and Hystar
software packages (Bruker Daltonics) and equipped with ESI source. Untargeted
metabolomics data were collected using a previously validated UPLC-MS/MS
method91,92. The spectraSkinStaph dataset contains 2,657,398 spectra from bacterial
extracts of 171 Staphylococcus strains (GNPS- accession #: MSV000083956). The
genomeSkinStaph dataset contains draft genomes of these species (available from
RefSeq).

SoilActi: A total of 20 strains of soil-dwelling Actinobacteria were grown on A1,
MS, and R5 agar, extracted sequentially with ethyl acetate, butanol, methanol, and
analyzed on Agilent 6530 Accurate-Mass QTOF spectrometer coupled with Agilent
1260 LC System. The spectraSoilAct dataset contains 362,421 spectra generated from
extracts of these 20 Actinobacteria strains (GNPS-accession #: MSV000078604
(ref. 93)) includes 20 sub-datasets representing each strain. The genomeSoilActi
dataset contains draft genomes of these strains (available via RefSeq).

TinyEarth: A total of 23 bacterial strains extracted from the soil in Wisconsin
were grown in microscale liquid cultures and extracted using solid phase extraction
with in methanol. These samples were and analyzed by LC-MS/MS on a Thermo
Fisher Q-Exactive mass spectrometer coupled with a Thermo Fisher Vanquish
UPLC system. The spectraTinyEarth dataset contains 380,414 spectra generated from
extracts of these 23 strains (GNPS-accession #: MSV000084951) includes 23 sub-
datasets representing each strain (4 Bacillus, 16 Pseudomonas, 1 Buttiauxella, and 1
Citrobacter). The genomeTinyEarth dataset contains draft genomes of these strains
(available via Gold OnLine Database83 under study ID Gs0135839).

Additional analyses for protegomycin family. X. doucetiae-Δhfq was constructed
as described before94. Exchange of the natural promoter against the inducible PBAD
was performed as described95. Briefly, the first 598 base pairs of prtA were
amplified with primer pEB_317-fw TTTGGGCTAACAGGAGGCTAGCATAT
GAGAATACCTGAAGGTTCG and PEB_318-rv TCTGCAGAGCTCGAGCA
TGCACATCGTAATGAAACGAGTTCAGG (Supplementary Table 11). The
resulting fragment was cloned via hot fusion cloning into pCEP-km. The resulting
construct pCEP prtA-km was transformed into E. coli S17-1 λpir resulting in E. coli
pCEP_prtA. Conjugation of this strain with X. doucetiae wt or X. doucetiae-Δhfq
was followed by integration of pCEP_prtA-km into the acceptors genome via
homologous recombination94,95. In X. doucetiae-Δhfq-PBAD-prtA the production of
protegomycin was induced by adding 0.2% L-arabinose into the fresh inoculated
medium94.

For large-scale production of protegomycin, 6 × 1 L LB medium was inoculated
with X. doucetiae-Δhfq_PBAD-prtA preculture 0.02%. Two percent Amberlite®

XAD-16 adsorber resin was added and the production was induced with 0.2% L-
arabinose. The cultures were constantly shaked at 130 r.p.m. at 30 °C. After 72 h the
XAD beads were harvested and protegomycins extracted using 3 L of methanol.
The solvent was evaporated, and the crude extract was used for isolation and
analysis of protegomycin derivatives. Part of the crude extraction was purified by
preparative HPLC with a gradient mobile from 5 to 95% ACN in H2O (v/v) in
30 min followed by semi-preparative HPLC (ACN–H2O, 35–45% in 30 min, v/v) to
yield PRT-1037 (24.4 mg).

For structure elucidation and determination of incorporated C- and N-atoms
and amino acids into protegomycins, cultivation of X. doucetiae-Δhfq_PBAD-prtA
and X. doucetiae_ PBAD-prtA, induced with 0.2% L-arabinose was performed in
5 mL LB (12C), 13C-, and 15N-isogro® medium (Sigma-Aldrich). The cultures were
supplemented with 2% Amberlite® XAD-16 adsorber resin. To analyze the
incorporated amino acids, induced mutants were grown in LB medium
supplemented with selected 13C-labeled amino acids with a concentration of 2 mM.
After 48 h cultivation at 30 °C, constantly shaking at 200 r.p.m., Amberlite® XAD-
16 beads were harvested and extracted with 5 mL MeOH for 45 min. Samples were
taken from the filtered extracts and centrifuged for 15 min at 17,000g for further
HPLC-MS analysis (Dionex Ultimate 3000 coupled to a Bruker AmaZon X ion
trap). Generated HPLC-MS data were interpreted as described previously94,96.

Additional analyses for Xenoamicin-like family. Cultivation of strains: Xenor-
habdus KJ12.1 was routinely cultivated in Luria-Bertani (LB) medium (pH 7.0) at
30 °C and 200 r.p.m. on a rotary shaker and on LB agar plates at 30 °C. Inverse
feeding experiments were applied in either ISOGRO® 13C medium, ISOGRO® 15N
medium. Fifty microliters ISOGRO® medium was prepared with ISOGRO® powder
(0.5 g), K2HPO4 (1.8 g/L), KH2PO4 (1.4 g/L), MgSO4 (1 g/L), and CaCl2 (0.01 g/L)
solved in water. Feeding experiments in ISOGRO® 13C medium supplemented with
12C amino acids was inoculated with ISOGRO® washed overnight cultures.

Production cultures were grown in LB media containing 2% Amberlite® XAD-
16 resin inoculated with 1% overnight culture. Promotor exchange mutants were
induced with 0.2% arabinose at the beginning of the cultivation. Resin beads and
bacterial cells were harvested by centrifugation after 72 h cultivation time, washed
twice with one culture volume methanol. The crude extracts were analyzed by
means of MALDI-MS and HPLC-MS (Bruker AmaZon).

HPLC-based purification: XAM-1320 was isolated by a two-step
chromatography. Strain KJ12.1 was cultivated in a BIOSTAT A plus fermenter
(Sartorius) equipped with a 2-L vessel in 1.5 L of LB broth at 30 °C for 12 h. For the
inoculation, 1% overnight preculture was used and 2% XAD-16 were added.
Additionally, 10 g of glucose and 5 mL Antifoam 204 (Sigma-Aldrich) were added.
The fermentation was performed with an aeration of 2.25 vvm, constant stirring at
300 rpm and at pH 7, stabilized by the addition of 0.1 N phosphoric acid or 0.1 N
sodium hydroxide. The XAD resin was washed with methanol to get the extract
after evaporation. Xenoamicin III A was isolated by a two-step chromatography. In
the first step the extract was fractionated with a 5–95% water/acetonitrile gradient
over 15 min on a Luna C18 10 μm 50 × 50 mm column (Phenomenex). In the
second step XAM-1320 was isolated with a 40–60% water–acetonitrile gradient
over 19 min on Luna C18 5 μm 30 × 75 mm column (Phenomenex).

MS analysis: MS analysis was carried out by using an Ultimate 3000 LC system
(Dionex) coupled to an AmaZon X electronspray ionization mass spectrometer
(Bruker Daltonics). Separation was done on a C18 column (ACQITY UPLC BEH,
1.7 mm, 2.1 × 50 mm, flow rate 0.4 mL/min, Waters). Acetonitrile/water containing
0.1% formic acid was used as a mobile phase. The gradient started with 5%
acetonitrile continuous over 2 min. Over 0.5 min under a linear gradient
acetonitrile reaches 40%. Following an equilibration phase over 1.5 min with 40%
acetonitrile takes place. For separation a linear gradient from 40–95% acetonitrile
over 10.5 min was used. The gradient ends up with 95% acetonitrile continuous
over 1.5 min. Collision-induced dissociation (CID) was performed on ion trap in
the AmaZon X in positive mode. HR-ESI-HPLC-MS data were obtained on a LC-
coupled Impact II ESI-TOF spectrometer (Bruker Daltonics).

Advanced Marfey’s method: The advanced Marfey’s method to determine the
configurations of the amino acid residues was performed as described previously64.

Calculating specificity scores of putative amino acids. During NRP synthetase,
the A-domains recognize and activate the specific amino acid that will be appended
to the growing peptide chain by other NRPS enzymes. Conti et al.97 showed that
some residues at certain positions on each A-domain are critical for substrate
activation and bonding; they reported 10 such positions. Stachelhaus et al.98

showed that for each A-domain AD, the residues at these decisive 10 positions can
be extracted to form a specificity-conferring code called non-ribosomal code of AD.
They demonstrated that the specificity of an uncharacterized A-domain can be
inferred based on the sequence similarity of its non-ribosomal code to those of the
A-domains with known specificities98.

Given an input A-domain AD, NRPSpredictor2 (ref. 15) first compares the
sequence of the non-ribosomal code of AD to those of the already characterized
A-domains in the NRPSpredictor2 (ref. 15) database. Afterwards, for each amino
acid a, NRPSpredictor2 (ref. 15) reports the Stachelhaus score of (specificity of) a
for A-domain AD, that is (the integer value of) the percentage of sequence identity
between the non-ribosomal code of AD and that of the most similar A-domain
within NRPSpredictor2 (ref. 15) search space that encodes for a.

Furthermore, Rausch et al.99 expanded the set of specificity-conferring positions
on A-domains to 34 residue positions and proposed a predictive model trained on
residues at these 34 positions (instead of just the 10 included in Stachelhaus code)
to provide further specificity predictions15. Given an A-domain, they used a
Support Vector Machine (SVM) method trained on previously annotated A-
domains. For each input A-domain, this approach99 predicts three sets of amino
acids in three different hierarchical levels based on the physio-chemical properties
of the predicted amino acids: large clusters99 (each large cluster is at most eight
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amino acids), small clusters99 (each small cluster is at most three amino acids), and
single amino acid prediction (the single amino acid most likely to be activated by
the given A-domain), as described by Rausch et al.99 For a given A-domain AD, we
use the terms large cluster, small cluster, and single prediction of AD to describe
the sets of amino acids predicted at each of these hierarchical levels. While Rausch
et al.99 demonstrated that their approach reports better specificity predictions for
less commonly observed A-domains, they also showed that integrating their score
with the sequence similarity approach described by Stachelhaus et al.98 results in
the highest accuracy99.

Similar to the approach used by NRP2Path40, NRPminer combines the two
predictions provided by NRPSpredictor2 (ref. 15). Given an A-domain AD and an
amino acid a, NRPminer defines the SVM score of a for AD to be 100 if a matches
the single amino acid prediction, 90 if a appears in the small cluster predictions,
and 80 if a appears in the large cluster. If a does not appear in any of these sets,
NRPminer defines the SVM score of a for AD to be 0. The total number of amino
acids per A-domain with SVM score above 0 is at most 12 (considering all three
sets of amino acids). For a given A-domain AD, NRPminer only considers amino
acids with a predicted Stachelhaus score>50 and a predicted SVM score>0 for AD.
Finally, NRPminer defines the specificity (or NRPSpredictor2) score of a for AD as
the mean of Stachelhaus and SVM scores of a for AD.

Generating NRPS assembly lines using NRPminer. Given a BGC, an assembly
line refers to a sequence of NRPS modules in this BGC that together assemble the
core NRP. NRPminer represents an assembly line as the sequence of A-domains
appearing in its NRP modules and allows a user to explore various assembly lines
using OrfDel and OrfDup options. Each portion of an NRPS that is encoded by a
single ORF is an NRPS subunit. With OrfDel option, NRPminer considers skipping
up to two entire NRPS subunits. Figure S31b illustrates the assembly lines gener-
ated from surugamide BGC by deleting A-domains appearing on zero, one, and
two NRPS subunits, out of the four NRPS subunits encoded by the four ORFs
appearing in this BGC. For example, for surugamide BGC with four ORFs (shown
in yellow in Fig. S31a), with “orfDel” option, NRPminer generates six NRP
assembly lines formed by two ORFs (Fig. S31b), four assembly lines formed by
three ORFs, and one canonical assembly line formed by all four ORFs. Figure S31c
illustrates that for surugamide NRPS assembly line formed by SurA and SurD
genes, A1= {val, ile, abu}, A2= {phe, tyr, bht}, etc.

Using the OrfDup option, NRPminer also considers assembly lines that are
generated by multiple incorporation of A-domains appearing on a single NRPS
subunit. For example, Supplementary Fig. 7 shows the lugdunin BGC with four
ORFs encoding for five A-domains. This figure illustrates that using OrfDup
option, NRPminer forms nine assembly lines: one representing the canonical
assembly line (each NRPS subunit appears once), four assembly lines that are
generated by duplicating the A-domains appearing in one NRPS subunit once (one
subunit appearing two times in tandem), and four non-canonical assembly lines by
duplicating them twice (one subunit appearing three times in tandem). NRPminer
considers all assembly lines made up of at least three and at most 20 NRPS
modules.

Filtering the core NRPs based on their specificity scores. Given an NRPS
assembly line A= A1,…,An, where Ai is the set of amino acids predicted for the ith
A-domain of A, for every a ∈Ai (i= 1,…,n), let SpecificityScore(Ai) (a) be the
specificity score of a for the ith A-domain of A as described in Supplementary Note
3. Then, for each integer 1≤ i≤ n and a ∈Ai, we define normalized specificity score
of a for ith A-domain of A, denoted by SA (i,a), to be the nearest integer to the
following value:

Specificity ScoreAi
ðaÞ

max
b2Ai

Specificity ScoreAi
ðbÞ ´ 100

We use this scoring function (instead of SpecificityScore) to reduce the bias
towards the more frequently observed A-domains that usually result in higher
specificity scores compared to the less commonly observed ones, which do not have
closely related A-domains in NRPSpredictor2 training datasets15. Consider the
assembly line of cyclic surugamides A–D shown in Fig. S31c (corresponding to
SurA-SurD gene pairs in surugamide BGC) which is made up of eight A-domains,
we refer to this assembly line by SurugamideAL. Table 2 presents the values of
SSurugamideAL for integers 1 ≤ i ≤8 and (at least) the three amino acids with the
highest normalized specificity scores for each A-domain in this assembly line.

Given A=A1,…,An we call the set of all core NRPs generated by the cartesian
product A1×…×An as the core NRPs of A. For each core NRP of A, a1a2…an, we
define the adenylation score of a1a2…an, denoted by ScoreA(a1a2…an), to be the
sum of the normalized specificity scores of all of its amino acids:

ScoreAða1a2 ¼ anÞ ¼ ∑
n

i¼1
SAði; aiÞ

Therefore, given assembly line SurugamideAL and core NRP, P=IAIIKIFL (the
core NRP corresponding to surugamide A), ScoreSurugamideAL(P)= 80+ 100+
100+ 100+ 100+ 100+ 100+ 86= 766. Note that, for any assembly line A, the
maximum value of ScoreA denoted by maxScoreA=∑n

i¼1maxai2Ai
SAði; aiÞ ¼ 100n.

For many organisms, the total number of possible core NRPs is
prohibitively large, making it infeasible to conduct search against massive
spectral repositories. Currently, even the fastest state-of-the-art spectral search
methods are slow for searching millions of input spectra against databases with
over 105 peptides in a modification-tolerant manner as the runtime grows
exceedingly large when the database size grows43. Supplementary Tables S2
and S7 shows that for 24 (22) out for 27 organisms in XPF dataset and 9 (7) out
of 20 organisms in SoilActi dataset, the total number of core NRPs exceed 105

(106). Therefore, to enable scalable peptidogenomics for NRP discovery, for
each constructed assembly line NRPminer, selects a set of candidate core
NRPs. To do so, NRPminer starts by finding the number of core NRPs of A
according to their adenylation scores (Problem 1) and then it uses these
numbers for generating all core NRPs of A with adenylation scores higher than
a threshold (Problem 2).

Problem 1. Given A= A1,…,An and a positive integer s, find the number of all
core NRPs of A with adenylation score equal to s.

Let k ¼ max
i2f1;:::;ng

ðjAijÞ where |Ai| shows the number of amino acids in Ai. For any

positive integers i and s satisfying,1 ≤ i≤ n and s ≤maxScoreA, let numCoreNRPsA
(i, s) denote the number of core NRPs, of assembly line A1,...,Ai with ScoreA1 ;:::;Ai

equal to s. Let numCoreNRPsA (0,s)= 0 for any positive integer s, and
numCoreNRPsA (i, s)= 0 for any integer s < 0, across all possible values of i. Then,
for any positive integers i and s satisfying 1 ≤ i ≤ n and 0 < s ≤maxScoreA, we have

numCoreNRPsAði; sÞ ¼ ∑
ai2Ai

numCoreNRPsAði� 1; s� SAði; aiÞÞ ð1Þ
Using recursive formula (1), NRPminer calculates numCoreNRPsA using

parametric dynamic programming in a bottom-up manner: NRPminer first,
computes numCoreNRPsA(1,s), for all positive integers s≤maxScoreA. then
proceeds to numCoreNRPsA(2,s) for all such s, and so on, computing
numCoreNRPsA(n,s) for all such 0 < s. Using this approach, for each value of i and
s, NRPminer computes numCoreNRPsA (i,s) by summing over at most k values.
Therefore, NRPminer calculates all values of numCoreNRPsA with time complexity
O(k × n ×maxScoreA).

Given a positive integer N < 105, let scor(A,N) be the greatest integer s′ ≤
maxScoreA such that, N ≤ Σs'≤s≤maxScorenumCoreNRPsA (n,s).

Then, we define

thresholdScoreAðNÞ ¼ scoreN if scoreN < score105

scoreN � 1 if scoreN ¼ score105

�
ð2Þ

NRPminer selects, candidateCoreNRPsA(N), defined as the set of all core NRPs
of A, with adenylation score at least thresholdScoreA (N). NRPminer selects core
NRPs candidateCoreNRPsA(N) for downstream spectral analyses. Using this
approach, NRPminer is guaranteed to be scalable as at most 105 candidate core
NRPS are explored per assembly line.

Table 3 presents the values of numCoreNRPsSurugamideAL(8,s) for various values
of s. Note that, this table presents the number of core NRP only for a single
assembly line, SurugamideAL, corresponding to cyclic surugamides (surugamide
A–D). In total, 14,345 core NRPs were retained from the original 3,927,949,830
core NRPs of the 11 assembly lines of surugamide’s BGC.

Problem 2. Given an assembly line A and a positive integer N, generate
candidateCoreNRPsA(N), defined as all core NRPs of A with adenylation scores at
least thresholdScoreA(N).

NRPminer follows a graph-theoretic approach to quickly generate
candidateCoreNRPsA(N) by using the computed values of numCoreNRPs. Let G
(A) be the acyclic directed graph with nodes corresponding to pairs of
positive integers i ≤ n and s≤maxScoreA, such that numCoreNRPsA(i,s) > 0,
denoted by vi;s. For every node vi;s (i= 1,…,n) and every a 2 Ai such that
numCoreNRPsA(i−1,s−SA(i,a)) > 0, there exists a directed edge from vi�1;s�SAði;aÞ to

Table 3 Number of core NRPs of SurugamideAL (assembly line corresponding to cyclic surugamides A–D) according to their
adenylation scores.

s 800 790 788 786 780 778 776 774 772 Total
numCoreNRPsSurugamideALð8; sÞ 24 48 24 192 24 48 384 192 168 1104

Only values of s with non-zero number of cores and corresponding to the top 1000 high-scoring core NRPs are shown103.
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vi;s . Let Source be v0;0 and let Sink be the set of all nodes vn;s such that
thresholdScoreA(N) ≤ s. We call each directed path in G(A) from Source to the
nodes in Sink as a candidate path of G(A).

Each candidate path of G(A) corresponds to a distinct core NRP of A with
adenylation score at least thresholdScoreA(N) and vice versa. Therefore, the
problem of finding all core NRPs of A with adenylation score at least
thresholdScoreA(N) corresponds to the problem of finding all candidate paths of G
(A). While enumerating all paths with n nodes in a directed acyclic graph can grow
exponentially large (as there can be exponentially many such paths), but due to our
choice of thresholdScoreA(N), the number of candidate paths of G(A) is bound by
105 (or N if scoreN ¼ score105 ). NRPminer uses the default value N= 1000.
Moreover, n≤ 20 (only assembly lines made up of up to 20 A-domains are
considered) and k ≤ 12.

Forming PSMs and calculating PSM scores. PSMs and their PSM scores are
described by Gurevich et al.43. Given a peptide P (with any backbone structure), we
define Mass(P) as the sum of masses of all amino acids present in P. Furthermore,
we define the graph of P as a graph with nodes corresponding to amino acids in P
and edges corresponding to generalized peptide bonds as described in Mohimani
et al.100. Then, we define theoretical spectrum of P (as opposed to the experimental
spectrum) is the set of masses of all fragments generated by removing pairs of
bonds corresponding to two-cuts in graph of P or by removing single bonds
corresponding to the bridges in the graph of P as described by Mohimani et al.100.
Each mass in this set is called a theoretical peak. Then, given the spectrum S, if
precursor mass of S and Mass(P) are within a threshold Δ Da (where the default
value of Δ is 0.02), we define the score of P against S, shown by SPCScore(P,S), as
the number of peaks in theoretical spectrum of P that are within ε Da of a peak in S
(where the default value of ε is 0.02). NRPminer only considers high-
resolution data.

If (A1, …, An) is the list of amino acid masses in a peptide P, we define Variant
(P,i,δ) as (A1,…, Ai+ δ,…, An), where P and Variant(P,i,δ) have the same topology
and Ai+ δ ≥ 0. VariableScore(P,S) is defined as

ðSPCScoreðVariantðP; i;ωÞ; SÞÞ
where ω is Mass(P)−Mass(S) and i varies from 1 to n (n stands for the number

of amino acids in the peptide P)43. We define a variant of peptide P derived from a
spectrum S as Variant(P,i,ω) of peptide P, which maximizes SPCScore(Variant(P,i,
ω),S) across all positions i in P. For simplicity, we refer to this variant as Variant(P,
S). Given P and S, VarQuest43 uses a heuristic approach to efficiently find Variant
(P,S).

NRPminer uses VarQuest43 to perform modification-tolerant search of the
input spectral datasets against the constructed peptide structures generated from
selected core NRPs (see the NRPminer step “generating linear, cyclic, and branch-
cyclic backbone structures for each core NRP” in Fig. 2 and “Method section”).
Given a positive number MaxMass representing the maximum allowed
modification mass (default value of MaxMass= 150), for each constructed
structure P and input spectrum S, if |Mass(P)−Mass(S)| ≤MaxMass, NRPminer
uses VarQuest43 to find the Variant(P, S). In this context, Variant(P,S) represents
the mature NRP with a single PAM on P that resulted in the mass difference |Mass
(S)−Mass(P)|. Similar idea has been applied to identification of post-translational
modifications in traditional proteomics49,101.

Computing P values of PSMs. NRPminer uses the MS-DPR89 to compute the
statistical significance (p value) of each identified PSM. Given PSMðP; SÞ where P is
a peptide with length n and S is a spectrum, MS-DPR estimates the probability that
a random peptide, say P0 , with length n, has SPCScoreðP0; SÞ≥ SPCScoreðP; SÞ. We
refer to this probability as p value of PSMðP; SÞ. Monte Carlo approach can esti-
mate the p value by generating a population of random peptides with length n, and
scoring them against the spectrum S.

In case of MS-based experiments for identifying NRPs102, we are often
interested in PSMs with p value < 10−12 (the p values corresponding to high-
scoring PSMs)102. But naive Monte Carlo approach is infeasible for evaluating such
rare events as the number of trials necessary for exploring such low p value is too
large to practically explore. To resolve this issue, MS-DPR89 uses multilevel
splitting technique for estimating the probability of rare event (i.e. high-scoring
PSMs). MS-DPR89 constructs a Markov Chain over the scores of all peptides with
length n and then uses multilevel splitting to steer toward peptides that are more
likely to form high PSM scores against S. Using this approach, MS-DPR89 can
efficiently estimate an extreme tail of the scores of all possible peptides against S
which is then used to compute the p value of the PSMðP; SÞ.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All described datasets are available through the corresponding public repositories. XPF,
SkinStaph, SoilActi, and TinyEarth datasets are available via MSV000081063,
MSV000083956, MSV000078604, and MSV00084951 GNPS-accessions, respectively.

Code availability
NRPminer is available as both a stand-alone tool (https://github.com/mohimanilab/
NRPminer) and as a web application via GNPS in silico toolbox. We used NPDtools,
antiSMASH 3.5.0 and Biopython 1.78.
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