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Abstract 

Since its definition by McCarthy in 1969, the Frame Problem 
(FP) has been one of the more heavily debated problems in 
AI. Part of the debate has been on the exact definition of what 
the FP really is. The computational aspect of the FP can be 
thought of as reasoning about what changes and what doesn’t 
change in a dynamic world. The “sleeping dog strategy” is 
considered to be a viable solution to this aspect of the FP. We 
intend to show that this strategy has a weakness that can be 
partially solved using diagrammatic reasoning, under certain 
conditions. A related and equally important problem, called 
the Ramification Problem, is to be able to reason about the 
indirect effects of an action in the world. Our proposal 
provides a more efficient solution to the Ramification 
Problem when reasoning about spatial relations. To illustrate 
our solution, we introduce a problem solving architecture 
based on Soar that is augmented with a diagrammatic 
reasoning component. A problem state in this augmented Soar 
is bi-modal in nature, one part being symbolic and the other 
diagrammatic. We describe its use in certain problems and 
show how the use of diagrams can handle the frame and 
ramification problems with respect to spatial relations. 

Keywords: Multi-modal; Cognitive Architectures; 
Diagrammatic Reasoning; Frame Problem 

Introduction 
In their 1969 paper, McCarthy and Hayes discuss a number 
of philosophical issues in artificial intelligence. One of the 
issues they identified is the Frame Problem. As formulated 
by McCarthy and Hayes (now referred to as the logical or 
technical aspect of the FP), the FP is the problem of 
axiomatizing the Common Sense Law of Inertia - the 
understanding that an action is assumed to not have changed 
a property of a situation unless there is evidence to the 
contrary (Shanahan, 2004). A different problem involves 
how to reason about an action’s consequences without 
having to go over the entirety of its (the agent’s) knowledge. 
McDermott calls this the computational aspect of the FP 
(McDermott, 1987).  Later discussions have identified other 
distinct, but related problems, including the Philosopher’s 
aspect of the FP and the Ramification Problem, lurking 
where just one problem was first seen. There is broad 
consensus today that the frame problem in its logical guise 
has been solved (Shanahan, 1997) (Reiter, 2001). However, 
the computational aspect still remains problematic. For the 

remainder of the paper, when we refer to the FP, we mean 
its computational aspect. 

In the logic framework, information about the world and 
the objects in it is represented as sentences in a symbolic 
language. When a problem solving system is built in this 
framework, the various actions that the agent can take in the 
world are represented as rules that have pre-conditions that 
decide when the rule applies and post-conditions that 
explicitly capture the changes. While various heuristics and 
strategies might mitigate the problem, there is a consensus 
that the FP and its variants are unavoidable in the sentential 
knowledge representation framework. This has resulted in 
suggestions that perhaps alternative representative 
frameworks might exist that avoid the problem. One such 
proposal by Janlert (1996) is that analog representations 
such as pictorial representations might be the answer. In 
such systems, a rule only encodes the basic action. The 
other changes are implicitly captured by the representation 
(as in the external world). Unfortunately, analog 
representations suffer from problems too, one of which is 
their tendency to over-specify. Due to this, the possibility 
exists that conclusions drawn within the framework could 
be wrong. To avoid this, agents using such representations 
usually perform additional reasoning that verifies any 
conclusions. As Pylyshyn (1996) has mentioned, when this 
additional reasoning is combined with the problem of 
converting problems into equivalent ones that have a spatial 
character, we end up trading one problem for another 
equally difficult problem.  

Our proposal is two-fold. While reformulating every 
problem into a spatial one has prohibitive costs and is not 
always possible, we believe there is a small subset of 
problems, namely those that are already spatial or have a 
natural spatial analog that have no need for conversion. 
Analog representations can indeed be of help in these cases. 
Secondly, analog representations have another advantage. 
The sleeping dog strategy, the preferred technique for 
handling the problem in the logic framework, has the 
drawback that any addition to the vocabulary of operations 
in the world results in changes to the existing knowledge in 
the system. A diagrammatic representation does not have 
the same problem. We take an existing, well established 
general problem solving architecture – Soar (Laird et al., 
1987) – and augment it with a diagrammatic reasoning 
component. We then compare how traditional Soar and this 

1646



new Soar (called bi-Soar) perform in the blocks world 
domain when new relations are introduced in the world.  

The Frame Problem 
As mentioned earlier, the FP is faced by an agent reasoning 
in a dynamic world. Consider the blocks world domain. 
When a block A, resting on a block B, is moved to a block 
C, not only does the new world have A on top of C, it also 
no longer has A on top of B. Further, there could be other 
relations that have changed, like A may have been to the left 
of other blocks but after the move it could be to their right. 
To complicate things, there may also be a lot of relations 
that don’t change as a result of the move, such as A’s color, 
size, shape etc. The relations between B and C don’t change 
either. Hayes (1987) provides a more comprehensive 
introduction to the frame problem. Without getting into too 
much detail about the history of the problem, it is easy to 
see that one possible way of handling it is to keep track of 
what changes are made by each action and that anything not 
explicitly mentioned as changing is assumed to not have 
changed. McDermott (1987) calls this the “sleeping dog” 
strategy. One way to implement such a strategy is using 
suitably parameterized add and delete lists to keep track of 
the consequences of actions. When the precondition of a 
rule was met, everything in the add list is added to memory 
and everything in the delete list is removed from memory. 
In order to control the lists from becoming too big, relations 
in the modeled world were divided into primitive and non-
primitive relations. Non-primitive relations are those that 
can be inferred from primitive relations and hence, add and 
delete lists need contain only the changes to primitive 
relations.  

Add and delete lists do indeed provide a solution to the 
FP, but have certain drawbacks. Consider the blocks world 
example described above. Each add and delete list describes 
which primitive relations are changed by an action. As more 
and more primitive relations are added to the world, the 
number of entries in the lists also increases. At some point, 
the lists will grow so large that the agent spends a 
significant amount of time simply updating the state of the 
world using these lists. Another problem is that the number 
of inferences required to derive a non-primitive relation 
from the primitive relations may turn out to be expensive 
and repeated application of such inferences could slow 
down the system. These drawbacks are well documented in 
the FP literature.  

We believe that there is yet another drawback not 
identified by earlier discussions on the topic. Assume we 
want the representation to capture the new (primitive) 
relation right-of. This would naturally involve a new 
predicate right-of and a new action with add and delete lists 
that allows the agent to move blocks to the right of other 
blocks.  But, that is not enough because moving a block to 
be on top of another block can also change its right-of 
relation to other blocks. Thus, to fully capture the effects of 
the new relation, the agent’s add and delete lists for the 
action to move a block to be on top of another has to be 

modified too. In the worst case, adding a new relation to the 
agent would involve changing every add and delete list. 

External Representations 
Consider the same blocks world scenario as before. Except 
that the agent now has a piece of paper and a pencil and the 
ability to draw and erase shapes on the paper. Instead of 
representing blocks A, B and C using predicates, the agent 
instead draws them as blocks on the paper. If the agent 
needs to know the relationship between any of the blocks, it 
simply looks at the diagram and extracts the required 
information from it. If the agent has to move block A from 
B to C, it simply erases block A from its previous position 
above B in the diagram and redraws it on top of C. One can 
see how the FP does not exist in this representation and 
consequently there are no add and delete lists to update after 
a move. Now consider the example of adding a new relation 
right-of to the vocabulary of the world. This would involve 
adding perception and action routines that tell the agent how 
to check for the right-of relation and how to move 
something to the right-of another respectively. And that’s 
all. There is no need to modify any other relation.  

What makes this form of representation so powerful is a 
combination of factors – One, the nature of the problem 
allows the use of a spatial representation. There are many 
problems that can’t be transformed into such a 
representation and cannot be solved using this technique. 
Two, the structure of the physical world ensures that the 
causality of space is applied to the diagrammatic 
representation. Three, the perceptual abilities of the agent 
are capable of carrying out the tasks that are required for 
perceiving, creating and modifying diagrams. This ability of 
diagrammatic representations (and spatial representations in 
general) to make explicit certain implicit consequences of 
an operation, has been referred to variously as free rides and 
emergent properties (Chandrasekaran et al., 2004).  

While the use of external analog representations is non-
controversial, there has been much debate about the 
presence and availability of internal analog representations 
for reasoning. Without getting into the debate, our 
internalization of this representation can be justified simply 
as an AI solution to an AI problem. The idea of 
diagrammatic representations as a solution to the frame 
problem has been proposed before, most notably by Lindsay 
(1995). But, while Lindsay does lay out his vision of such a 
diagrammatic system, he merely mentions that “One may 
view perception as offering a solution to the frame problem 
by allowing “the world” to make appropriate inferences 
which are then “read” by the brain/mind.” Our work takes a 
closer look at the frame problem space and identifies exactly 
where diagrammatic representations can make a 
contribution. Also, we propose diagrammatic 
representations as a solution to the drawback of the sleeping 
dog strategy and lastly, we show how a general purpose 
reasoner, namely Soar, can be augmented with 
diagrammatic representations to create a multi-modal 
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cognitive architecture that can be used to solve a variety of 
problems. 

While the proposal is for an agent that is multimodal, we 
restrict our attention in the rest of the paper to bi-modal 
agents in which the predicate-symbolic component is 
augmented with a visual component.  We next describe a 
representational system that is the functional equivalent of 
an external diagram. 

The Diagrammatic Representation System 
(DRS) and the Bi-modal State 

We make use of a data type called DRS, proposed in 
(Chandrasekaran et al., 2004), to represent a diagram.  A 
physical diagram (on a screen or on paper) is an image that 
contains diagrammatic objects, each to be interpreted as a  
point, curve or a region, that represent objects of interest in 
the domain of discourse. That is, the diagram is viewed not 
as an un-interpreted image, but as a configuration of 
diagrammatic objects. Note too that while in the physical 
diagram all the objects are regions, so that they can be 
perceived, DRS captures the intended diagram.  If an object 
in the physical diagram appears as a circle, in DRS it would 
be treated as a Euclidean point object with just location to 
characterize it.   DRS is domain-independent – the only 
objects are points, curves or regions.  Interpreting them in 
domain terms is the job of the user of the representation.  
The objects in DRS have associated with them information 
about their spatiality -- locations for point objects, and 
representations that are functionally equivalent to the sets of 
points that constitute the objects for curves and regions.  
Associated with the DRS are a set of perception and 
diagram construction/modification capabilities; following 
Ullman (1984), these are called routines. All these routines 
are visual, but we use the more general term so that it will 
apply to the more general multi-modal view. 

Perception Routines take diagrammatic elements as 
arguments and return information about specified spatial 
properties or spatial relations.  There are two types of 
perception routines: the ones in the first type re-perform the 
figure-ground separation on the image – rather than on the 
DRS – perceiving emergent objects (e.g., the two sub-
regions that emerge when a curve intersects a region.) 
Routines of the second type return specified spatial 
properties of objects, e.g., the length of a curve; and 
evaluate specified spatial relations between objects, e.g., 
Inside(Region1, Region2). These routines work from 
descriptions in DRS. DRS thus is an intermediate 
representation that supports reconstituting the image, a 
capability needed for emergent object identification, and 
also the perceptual routines that perceive properties of and 
relations between objects.  

Routines that help in constructing or modifying the 
diagram are action routines.  They create diagrammatic 
objects that satisfy specific perceptual criteria, such as “a 
curve object that intersects a given region object,” and “a 
point object inside the region object.” The sets of routines 
are open-ended, but routines that are useful across a number 

of domains are described in Chandrasekaran (2004), which 
also contain more information on DRS.     

DRS is the functional equivalent of a diagram in the sense 
that it has the same information that a diagram has – objects 
and their spatiality – and can be operated on by routines that 
are equivalent to perception on external diagrams.  DRS will 
provide us the representational medium for the visual 
modality of the bi-modal state.  The symbolic component in 
the standard architectures may be transformed in two ways: 
by rules as in traditional symbolic representations and by 
the relational predicates generated by perceptual routines 
operating on DRS.  The visual component of the state may 
be transformed by action routines invoked during problem 
solving to create or modify aspects of the diagram.  
Functionally, the bi-modal states are exemplified by Figures 
1 and 2, both of which represent the same world state.  The 
predicate-symbolic representations on the left of each of the 
figures are the usual state descriptions.  The diagrams on the 
right are the visual modality.  The diagrammatic part is 
represented in DRS.   The fact that diagrams are the same in 
the figures, while the descriptive components are different 
leads us to an important point about how perceptual 
representations partially help with the Frame Problem.  
With respect to the spatial aspects of the problem, the 
diagrammatic component is complete in a way that the 
symbolic component is not, and cannot be.  We can apply 
different perceptions and extract different descriptive pieces 
from the diagrammatic component.   Diagrammatic 
representations (and similar things such as scale models) 
can often provide a partial solution to the Frame Problem 
for the spatial components, provided perceptions are 
available for the information of interest.  Thus, while 
contemplating the world state corresponding to Fig. 1, the 
agent can simply check the diagrammatic component – or 
the external world –  perceptually to see if the required 
spatial relations are satisfied, e.g., Above(A, C), at the point 
when such information is needed.  In fact, there is no real 
reason to carry the complete set of symbolic descriptions 
from state to state. 

Bi-modal Augmentation of Cognitive State in 
Soar 

Soar 
Soar is an architecture for constructing general cognitive 
systems (Laird et al., 1987) that perform a wide variety of 
tasks. For achieving this goal, Soar provides representations 
for short and long-term memory, mechanisms for interacting 
with the external world, a subgoaling strategy that is 
independent of the problem and a learning mechanism that 
allows Soar to learn as a result of success in solving 
subgoals. The Soar architecture also provides a rule-based 
programming language that can be used to program the 
intelligent agent. Soar’s long-term memory is in the form 
these rules or productions of the language. The agent’s 
cognitive state is called Working Memory (WM) in Soar. 
For our immediate purposes, we do not need many of the 
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details about WM, which we will simply model as 
containing any goal state, description of the state of the 
world it is solving a problem about, and active operators.  
Soar’s design belief is that all deliberate goal-oriented 
behavior can be cast as the selection and application of 
operators to the current problem state; and a goal is the 
desired outcome of the problem solving activity.  All state 
representations in Soar make use of predicate-symbolic 
descriptions.   

For comparison purposes, we constructed biSoar, that is a 
Soar with a diagrammatic component available to represent 
various states.  The resulting problem state is a bi-modal 
problem state with part (or whole) of the information 
represented symbolically and part diagrammatically. The 

diagram or diagrams used in the solver can be initialized as 
part of the initialization production of biSoar. A perceptual 
routine can be executed on a diagram by calling the routine 
in the RHS of a biSoar production. Due to the generic 
domain-independent nature of the DRS, the problem solver 
in biSoar needs to translate from the domain dependent 
nature of the perceptual questions to the generic ones 
supported by DRS. 

For example, if biSoar asks a question “Is block A inside 
of box B1?”, the question is translated into “Is region A 
inside of region B1?” During problem solving, the biSoar 
problem solver can modify the diagram by invoking the 
action routines, and modify the symbolic components by 
applying perceptual routines to the diagram. 

In biSoar, when solving problems concerning some 
external situation, WM may contain several elements each 
of which may be augmented with a diagrammatic 
component.  It is useful to distinguish between world state, 
goal state, and cognitive state.  World state is simply the 
state of the world which is the subject of problem solving.  
Goal state is a state in the world that we wish to achieve.  
Cognitive state is the contents of the WM of the agent. WM 
may contain the goal state the agent is working towards, and 
the world state that is the result of any action being 
contemplated by the agent.  In traditional implementation, 
each of these components of WM would be represented in a 
form similar to the left sides of Figures 1 and 2. In the 
augmented version, these parts of WM will each be 

augmented with the corresponding diagrammatic 
component when such a representation is appropriate and 
available.  In the rest of the paper, the term Soar will refer to 
the traditional symbolic version, while biSoar will refer to 
the augmented version. 

Blocks World in Bi-modal Soar 

Example 1 
Let us start with an extremely simple example, Fig 3, to 
illustrate the basic ideas and issues.  The situation has only 
two blocks – A and B and a Table, one relation on-top-of 
and a move-on-top-of operator.  The goal is to create a 
domain state that satisfies the description ON(A,Table).    

We will run through the representations in Soar, 
describing its problem space and working memory at each 
point in problem solving, and repeat the sequence for 
biSoar1.  

Fig 4 shows the starting state of working memory in Soar. 
It contains a description of the world state, and the current 
goal. During the proposal phase, the production for 
proposing a move operator fires and a move operator is 
proposed to move A onto the Table. Fig 5 shows the state of 

                                                           
1 For our purposes, a content description of Soar’s WM is all that is 
required. This is what the figures represent and should not be 
mistaken for an exact replica of Soar’s WM. 

Fig 4: Initial contents of 
Soar’s WM 

Goal State: 
 
 
World State: 
 
 
 
 
 
 
 
 
Operators: 

Block(A) 
Block(B) 
Table(T1) 
On(A,B) 
On(B,Table) 

On(A,Table)

Fig 5: Soar’s WM after 
operator proposal

Goal State: 
 
 
World State: 
 
 
 
 
 
 
 
Operators: move(A,Table) 

Block(A) 
Block(B) 
Table(T1) 
On(A,B) 
On(B,Table) 

On(A,Table)

Fig 6: Soar’s WM after 
Move applied

Goal State: 
 
 
World State: 
 
 
 
 
 
 
 
Operators: 

Block(A) 
Block(B) 
Table(T1) 
On(A,Table) 
On(B,Table) 

On(A,Table) 

Fig 3: A simple blocks 
world example

B

A

Table 

Fig.2. Alternate symbolic description 
of same world state as in Fig. 1.  

On(A,B), 
On(B,C),  
On(C, Table), 
Above(A,C)  

 A

B

C

Table  

Fig 1. A bi-modal state 

On(A,B), 
On(B,C), On(C, 
Table)  

 A

B

C

Table  
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Soar after the operator proposal phase. During the 
application phase, shown in Fig 6, the rule for applying the 
move operator fires and removes On(A,B) from the state 
and adds On(A,Table) to it.  

Fig 7 shows the starting state for biSoar. There are two 
blocks – A and B and a table T. The problem state now has 
a diagram, represented in DRS, attached to it. In the Figure, 
the goal to be achieved is represented both symbolically and 
diagrammatically, but either alone might be sufficient2. 
Unlike in standard Soar, in biSoar there is no requirement 
for the symbolic part of the state to contain predicates 
describing the initial state world state, if the diagrammatic 
component depicts the situation. During the proposal phase, 
the rule that proposes the Move operator fires (this state is 
not shown in any of the figures). During the application 
phase, instead of updating the symbolic part, the rule calls 
the action routine to update the diagram to reflect 
Move(A,Table). Checking for preconditions can be done 
directly by the relevant perceptual routines.  Fig 8 shows the 
final state after the move operator has been applied. Unlike 
standard Soar, biSoar does not need add or delete lists to 
keep track of the state of the world. The diagrammatic part 
does it instead. 

Example 2 
Let us add the following new relations to the world: under, 
above, below, imm-right-of, imm-left-of, right-of, left-of and 
inside-of. These relations are interpreted in their natural 
meanings, so we forego formal descriptions of them.  The 
goal state to be achieved is described in terms of above and 
right-of relations.  

                                                           
2because of the ambiguity inherent in diagrammatic representations 
about what is intended, we only use symbolic goal descriptions. 

For our list of relations, on-top-of, under, imm-right-of, 
imm-left-of and inside-of are the primitive relations while 
above, below, right-of and left-of are the non-primitive 
relations. In Soar, the primitive relations, from which all 
other relations may be derived, are updated after each 
change in the world.  If a non-primitive relation is needed, 
the solver performs inference to find the answer.  

Fig 9 shows the initial state for our blocks world problem. 
The final state is laid out as a sequence of goals to be 
achieved by the problem solver, while the initial state is 
simply a DRS representation of Fig 9. The goals to be 
achieved are: B inside-of B1, E above A, F above A, H 
above A, D above B, G above A. The problem solving 
sequences for the standard Soar problem solver and bi-
modal Soar are shown in Fig 10. The solvers try to achieve 
each goal in the sequence in which it is presented. We 
examine one slice of this sequence. Consider the final sub-
goal of the problem “G above A”. To achieve this sub-goal, 
standard Soar first checks if Block A is clear. Since it’s not, 
the solver sets up a sub-goal to find the topmost block above 
A. In order to find the topmost block, the solver performs 
inference by moving up the stack starting with block A. It 
finds that E is on-top-of A, that F is on-top-of E, H is on-
top-of F and that there is nothing on-top-of H. Instead of 
just 3 blocks above A, if the stack had 20, the solver would 
have had to go through 20 such steps to find the topmost 
block. Consider the same sub-goal being solved in bi-modal 
Soar. The sequence does not vary from any of the other sub-
goals. The solver calls a perceptual routine to check if A is 
clear. Since A is not, it calls the perceptual routine topmost 
to find the topmost block above A. The routine returns H 
and the solver calls the move routine to move G onto H. 
This sequence of problem solving steps is independent of 
the number of blocks in the stack. If there were 20, the 
solver would still call the topmost routine just once to find 
the topmost block. 

Adding these new relations also means that we have to 
add the corresponding move operators for each of these 
relations as well as modify the existing move-on-top-of 
operator. For example, consider adding the imm-right-of 
relation. The corresponding move-imm-right-of operator will 
update the state of the world by adding and deleting the 
appropriate imm-right-of() predicates. It will also have to 
maybe add and delete some ON predicates depending on 
whether the block being moved was on or is being moved 
on to a block. But this is not enough. We also need to 
modify the existing move-on-top-of operator, because now, 
moving a block on top of another block could change its 
imm-right-of relations with other blocks. Similarly, now 
adding imm-left-of means that we need to modify both 
move-on-top-of and move-imm-right-of operators.  

In biSoar, instead of modifying the symbolic content, we 
add perceptual and action routines corresponding to the 
imm-right-of and imm-left-of to the diagrammatic 
component. The move-on-top-of operator however was left 
untouched.  According to Janlert (1996) “A sign that the 
frame problem is under proper control is that the 

Figure 7: Initial contents of biSoar’s WM 

Figure 8: biSoar’s WM after Move applied 
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representation can be incrementally extended: A 
conservative addition to the furniture of the world would 
involve only a conservative addition to the representation.” 
In our case, the world is the blocks world and an addition to 

the world can be in the form of objects and/or relations. The 
examples show that biSoar handles both additions well 
without exponential additions to the agent or modifications 
to its knowledge of existing objects and relations. 

Using a diagrammatic component does come with its 
share of costs. Though each access to a routine is presented 
as taking only a single Soar cycle, the cycle itself could be 
considerably longer than normal. It is also worth mentioning 

that while the complexity of perceptual routines is 
independent of the number of blocks and relations only up 
to a certain limit. There are also, important conceptual 
issues that remain.  One relates to the aforementioned over-
specificity of perceptual representations. While it seems to 
be a daunting task, we seem to be able to use diagrams 
without falling into the trap of over-specificity. It doesn’t 
seem too hopeful to assume that agents could perform the 
same way and in comparable time. At the very least it is 
possible to specify what can be trusted for a particular 
domain. 

Conclusion 
Most of the approaches to solving the frame problem have 
been to find clever heuristics to restrict the explosion of 
causal effects in a dynamic world. A smaller section of these 
problems, namely those that depend on the causal structure 
of the world can be solved by the use of   diagrams. There 
are serious drawbacks to this approach. However, it also has 
the advantage that changes to the vocabulary of the world 
can be incrementally added without a reworking of the 
existing parts of an agent. We have presented a multi-modal 
architecture that combines the predicate symbolic reasoning 
power of Soar with a diagrammatic component and reasons 
both symbolically and diagrammatically and shown that the 
agent is capable of dealing with a change in the number 
of/type of objects and relations without having to modify 
the existing knowledge of the agent.  
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