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Executive Summary

This report summarizes the research results of TO4201, “Robust Lateral Control of

Heavy Duty Vehicles.” This project represents a continuing effort of PATH’s research

on Automated Highway Systems (AHS). Research on the lateral control of heavy

vehicles for AHS was initiated at PATH in 1993 with MOU129, “Steering and Braking

Control of Heavy Duty Vehicles.” It was followed by MOU242, “Lateral Control of

Commercial Heavy Duty Vehicle,” MOU289 (MOU313), “Lateral Control of Heavy

Duty Vehicles for Automated Highway Systems,” and the current project, MOU385

and TO4201, “Robust Lateral Control of Heavy Duty Vehicles.” The earlier projects,

MOU129 and MOU242, emphasized theoretical aspects, such as model development,

analysis of the dynamic model from the lateral control point of view, and the lateral

controller designs. MOU289 (MOU313) focused on the implementation aspects of

the lateral controllers: a tractor-semitrailer vehicle was obtained and instrumented

with all the necessary hardware and software, open-loop experiments were conducted,

system parameters were estimated based on the open-loop tests, and preliminary

closed-loop experiments were performed. The current project, MOU385 (TO4201),

focuses on designing enhanced robust controllers, experimental validations of the

newly designed controllers, and the study of autonomous vehicle following control.

TO4201 is a continuation of MOU385, which makes it necessary to comment on

the nature of the present report. Results on autonomous lateral control obtained

under MOU385 (TO4201), was reported in the final report of MOU385, UCB-ITS-

PRR-2001-35, and they are not part of the present report. It is noted that further

research on autonomous lateral control is in progress under TO4233, “Fault Tolerant

Autonomous Following Lateral Control for Heavy Vehicles.” This report summarizes

all types of nonlinear and adaptive controllers for lateral control of heavy vehicles and

presents an experimental comparative studies of several control algorithms.

Several robust and adaptive controllers are designed to address different aspects

of the lane following maneuvers. As a starting point, a sliding mode controller is



designed. The sliding mode controller provides robust stability for systems subject to

model uncertainties. However, as the model uncertainty increases, as in the case when

both dynamical nonlinear model uncertainty and parametric model uncertainty are

present, the performance of the sliding mode controller severely degrades due to the

inevitable high control gain. The larger the model uncertainty, the larger the control

gain must be set, a consequence of which is the deteriorated control performance.

This motivates us to add adaptation to the robust controller to reduce the size of

model uncertainty. Such an approach is adaptive robust control (ARC) [33]

The adaptive robust controller provides not only robust stability but also robust

performance by taking advantages of both robust controller design technique and

adaptive controller design technique while overcoming their shortcomings. The ARC

approach is applied to the lateral control of heavy vehicle systems in this research.

Another nonlinear robust controller based on feedback linearization is designed

by linearizing the nonlinear lateral vehicle dynamics using a nonlinear state transfor-

mation and redefinition of the input to take advantage of the rich linear controller

design repertoire. It turns out that the resulting controller resembles the sliding mode

controller very closely in appearance. However, they have fundamental differences in

achieving robust stability. The two controllers are compared in detail.

The above mentioned sliding mode controller, adaptive robust controller, and non-

linear robust controller based on feedback linearization ignore the dynamics of the

steering subsystem. To further improve system performance, the dynamics of the

steering subsystem has to be explicitly taken into account in the lateral controller

design. In our study, we model the local closed-loop steering subsystem as a first or-

der linear system with model uncertainty. However, the steering subsystem is subject

to saturation and rate limit. To account for these realistic aspects of the actuator,

we propose a preventive approach, nonlinear loop-shaping. That is, we dynamically

extend the vehicle lateral control system, the cascaded connection of the dynamics of

the local closed-loop steering subsystem and the vehicle body dynamics, with a low-
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pass prefilter, then, design a nonlinear robust controller for the dynamically extended

lateral control system. The controller is based on backstepping technique and modi-

fied robust control design method base on the Lyapunov theory. The actual input to

the steering actuator is the output of the pre-filter. It is proved by simulation that,

by explicitly taking into account the steering subsystem dynamics in the lateral con-

troller design, the system performance is greatly improved in terms of the smoothness

and magnitude of the input as well as the smoothness of transient responses.

We observe an analogy between the vehicle lateral control system and a mechan-

ical system with a coulomb friction. Motivated by this observation, we propse to use

a feedforward compensator to augment the linear robust feedback controllers for re-

ducing lateral tracking errors while sustaining a reasonable passenger comfort. Two

feedforward compensators are designed: a fixed-gain feedforward compensator and

an adaptive feedforward compensator. Simulation results show that the feedforward

compensation effectively reduces the lateral tracking error. Also, by analyzing the

contributing terms of the known nonlinearities which are fed back in most of the

nonlinear controllers, we found that the known nonlinear terms actually involve a

feedforward compensation term corresponding to fixed-gain feedforward compensa-

tion. Therefore, it is concluded that a feedforward compensation in addition to a

robust linear feedback controller is a mid-point between nonlinear controllers and

linear robust controllers in terms of the ease of implementation and the improved

control system performance.

The sliding mode controller, a linear robust controller with feedforward compen-

sation, and the same linear robust controller are implemented on a tractor-semitrailer

combination and compared experimentally.
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Abstract

In this report, achievements under TO4201, “Robust Lateral Control of Heavy Duty

Vehicles,” are presented. The purposes of this project are: to design new controllers

or redesign existing controllers for lateral control of heavy vehicles to improve per-

formance; to evaluate designed controllers by experiments and to study autonomous

vehicle following control. TO4201 is a continuation of MOU385, which makes it

necessary to comment on the nature of the present report. Results on autonomous

lateral control obtained under MOU385 (TO4201), was reported in the final report

of MOU385, UCB-ITS-PRR-2001-35, and they are not part of the present report.

It is noted that further research on autonomous lateral control is in progress under

TO4233, “Fault Tolerant Autonomous Following Lateral Control for Heavy Vehi-

cles.” This report summarizes all types of nonlinear and adaptive controllers for

lateral control of heavy vehicles and presents an experimental comparative studies of

several control algorithms.

The vehicle lateral control model is nonlinear and has two types of model uncer-

tainties: dynamical nonlinear uncertainties and parametric uncertainties. To achieve

robust stability as well as robust performance, various nonlinear robust control tech-

niques such as sliding mode control, adaptive robust control, and robust nonlinear

control based on feedback linearization are sought. To further improve robust perfor-

mance, the dynamics of the steering subsystem is considered in the lateral controller

design. In doing so, to account for the saturation and rate limit in the steering sub-

system, a nonlinear loop-shaping approach is proposed. An analogy between the road

disturbance to a vehicle lateral control system and the Coulomb friction to a mechan-

ical system is observed. Based on this observation, two feedforward compensators are

proposed which can be used in combination with linear robust controllers to further

improve tracking performance of the linear feedback control systems. The sliding

mode controller, a linear robust controller with feedforward compensation, and the

same linear robust controller are implemented on a tractor-semitrailer combination



and compared experimentally.

Keywords: Automated Highway Systems, Model uncertainty, Nonlinear control, Ro-

bust control, Adaptive control, Backstepping design, Lateral control, Heavy duty vehi-

cles
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1 Introduction

The ever-growing needs of increasing traffic capacity and relieving traffic conges-

tion, coupled with the difficulty and cost ineffectiveness of building new highways,

motivated the idea of Intelligent Vehicle-Highway Systems (IVHS). In an Intelligent

Vehicle-Highway System, various combinations of advanced technologies such as con-

trol, communication, networking, computational technology and information technol-

ogy are applied to increase traffic throughput and relieve traffic congestion without

building new highways. Among the various forms of “intelligence” with the different

levels of controls imposed on vehicles and on highway systems, it is argued that only

the fully automated highway systems can achieve significant increase of traffic capac-

ity [17, 15, 25, 2, 3, 1, 13, 16, 24, 28]. The fully automated highway systems are called

Automated Highway Systems (AHS). The benefits of AHS also include the improved

highway safety and fuel economy, and the reduced air pollution.

Although the AHS was studied over half a century, the most extensive and sys-

tematic research was conducted from the mid 1980’s, and until recently, the focus

was on the passenger cars. Research by the Federal Department of Transportation

shows that, in the United States, the transportation of goods by heavy trucks climbed

from the 20% of all freight transportation in 1970 to the 45% in 1990 and it is ex-

pected to grow further. Heavy vehicles usually operate long distance and in groups

on preselected routes. These operational characteristics of trucking industry make

the AHS concept more attractive for heavy vehicles than for passenger cars. Fur-

thermore, because of the cost effectiveness, multi-unit heavy trucks are gaining more

and more attention from trucking industry, and multi-unit commuter buses are under

investigation as an option for public transportation [4].

PATH has been conducting research on the lateral control of heavy vehicles in

the context of AHS since 1993. The research has covered modeling, linear analysis

of the dynamic model, and development of linear and nonlinear control algorithms.

Chen and Tomizuka [5] derived a 5 degree-of-freedom (DOF) model for a tractor-
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semitrailer vehicle system. Wang and Tomizuka [29] analyzed the linear model of

tractor-semitrailer type of vehicles in both time domain and frequency domain and

studied the effects of the look-ahead distance, road adhesion coefficients and vehicle

velocity on the system dynamics. Based on the linear analysis and open-loop test

results, a lead-lag controller was designed and tested [29]. To cope with model un-

certainties in the linearized model, a H∞ loop-shaping controller was designed [30].

As with passenger cars, the vehicle velocity appears in coefficients of heavy vehi-

cle models. Consequently, a gain-scheduling controller with the vehicle velocity as

a scheduling paramter [32] and a Liner Parameter Varying (LPV) controller [12] were

designed so that the vehicle can be robustly operated over a wide range of velocity. To

improve handing property and reduce off-tracking, a coordination between steering

and differential braking was also studied [7, 6, 31].

In the lateral control model of a heavy vehicle system, only the translational mo-

tion and yaw motion of each unit are considered and the road-tire interaction is mod-

eled as a linear function of tire cornering stiffness. So, the lateral control model (by

abuse of terminologies, here and hereafter, we mean the vehicle body dynamics, un-

less otherwise specified) has unmodeled dynamics such as the roll and pitch motions

and their coupling, bouncing motion, suspension dynamics, and nonlinear road-tire

interaction. It also has parametric uncertainties such as uncertainties in the vehicle

inertial parameters (mass and moment of inertia) and dimensional parameters related

to the location of the center of gravities of each unit due to the varying loads on the

trailers, and tire cornering stiffness due to the changing road conditions. As in the

passenger car, due to the centrifugal and Coriolis force terms, the control model of a

heavy vehicle system is nonlinear. Therefore, robust nonlinear control techniques pro-

vide a natural candidate for the lateral controller. Compared to the passenger cars,

each unit of a heavy vehicle system has a higher center of gravity and more easily rolls

over. Multi-unit heavy vehicles have unstable yaw modes such as jackknifing, fishtail-

ing and trailer swinging, and because of the longer length, the off-tracking problem
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is more prominent. Considering all of these aspects, the controllers are required not

only to be robustly stable under the model uncertainties but also to provide robust

performance.

Several controllers are designed to address different aspects of the lane following

maneuver. As a starting point, a sliding mode controller is designed. The sliding

mode controller provides robust stability for systems subject to model uncertainties.

However, as the model uncertainty increases, as in the case when both dynamical

nonlinear model uncertainty and parametric model uncertainty are present, the per-

formance of the sliding mode controller severely degrades due to the inevitable high

control gain. The larger the model uncertainty, the larger the control gain must be

set, a consequence of which is the deteriorated control performance. This motivates

us to add adaptation to the robust controller to reduce the size of model uncertainty.

Such an approach is adaptive robust control (ARC) [33]

The adaptive robust controller provides not only robust stability but also robust

performance by taking advantages of both robust controller design technique and

adaptive controller design technique while overcoming their shortcomings. The ARC

approach is applied to the lateral control of heavy vehicle systems in this research.

Another nonlinear robust controller based on feedback linearization is designed

by linearizing the nonlinear lateral vehicle dynamics using a nonlinear state transfor-

mation and redefinition of the input to take advantage of the rich linear controller

design repertoire. It turns out that the resulting controller resembles the sliding mode

controller very closely in appearance. However, they have fundamental differences in

achieving robust stability. The two controllers are compared in detail.

The above mentioned sliding mode controller, adaptive robust controller, and non-

linear robust controller based on feedback linearization ignore the dynamics of the

steering subsystem. To further improve system performance, the dynamics of the

steering subsystem has to be explicitly taken into account in the lateral controller

design. In our study, we model the local closed-loop steering subsystem as a first or-
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der linear system with model uncertainty. However, the steering subsystem is subject

to saturation and rate limit. To account for these realistic aspects of the actuator,

we propose a preventive approach, nonlinear loop-shaping. That is, we dynamically

extend the vehicle lateral control system, the cascaded connection of the dynamics of

the local closed-loop steering subsystem and the vehicle body dynamics, with a low-

pass prefilter, then, design a nonlinear robust controller for the dynamically extended

lateral control system. The controller is based on backstepping technique and modi-

fied robust control design method base on the Lyapunov theory. The actual input to

the steering actuator is the output of the pre-filter. It is proved by simulation that,

by explicitly taking into account the steering subsystem dynamics in the lateral con-

troller design, the system performance is greatly improved in terms of the smoothness

and magnitude of the input as well as the smoothness of transient responses.

We observe an analogy between the vehicle lateral control system and a mechan-

ical system with a coulomb friction. Motivated by this observation, we propse to use

a feedforward compensator to augment the linear robust feedback controllers for re-

ducing lateral tracking errors while sustaining a reasonable passenger comfort. Two

feedforward compensators are designed: a fixed-gain feedforward compensator and

an adaptive feedforward compensator. Simulation results show that the feedforward

compensation effectively reduces the lateral tracking error. Also, by analyzing the

contributing terms of the known nonlinearities which are fed back in most of the

nonlinear controllers, we found that the known nonlinear terms actually involve a

feedforward compensation term corresponding to fixed-gain feedforward compensa-

tion. Therefore, it is concluded that a feedforward compensation in addition to a

robust linear feedback controller is a mid-point between nonlinear controllers and

linear robust controllers in terms of the ease of implementation and the improved

control system performance.

The sliding mode controller, a linear robust controller with feedforward compen-

sation, and the same linear robust controller are implemented on a tractor-semitrailer
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combination and compared experimentally.

The rest of the report is organized as follows. In the following section, the system

output, the lateral tracking error, is formulated. Different aspects of the lateral

control of heavy vehicles for AHS are investigated in sections 3-7 and experimental

studies are presented in section 8. Section 9 concludes this report.

2 System Model

The complex model used in this research to verify the control algorithms by simulation

and the control model with which the model based control algorithms are developed

are the ones derived under MOU289 and documented in California PATH Research

Report, UCB-ITS-PRR-98-8. In the simulation model, both tractor and semitrailer

are considered as rigid bodies with 6 DOF unless constrained by hitching mechanisms.

The coupling of the roll and pitch motions is modeled from the view point of geometry.

The control model considers only the translational motion of the system and yaw

motions of the tractor and the semitrailer. In this section, we formulate the system

output by introducing a road coordinate system and two-sensor scheme.

2.1 Model in vehicle coordinate system

Throughout this report, we assume that only the tractor’s front wheels are steer-

able for the tractor-semitrailer type of heavy vehicles. In the control model of a

tractor-semitrailer combination given by Eq. (165) of California PATH Research Re-

port, UCB-ITS-PRR-98-8, denote N1
f C1

αf as Cαf , N1
r C1

αr as Cαr and N2
r C2

αr as Cαt,

and let N2
f = 0, δ2 = 0 and δ1 = δf . By abuse of notation, let q = (y, ε1, εf )

T ,

where εf = ε2 − ε1 is the articulation angle and y(t) = y(0) +
∫ t

0
Vy(τ)dτ . Then,

q̇ = (Vy, ε̇f , ε̇f )
T and Eq. (165) can be rewritten as

M(q)q̈ + c(q, q̇, Vx) = 2Cαf (1, lf1, 0)T δf , (1)
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where the right hand side of the equation represents terms contributed from the linear

tire model which are steering angle dependent, M is a 3 × 3 inertia matrix, and c

represents the sum of centrifugal and coriolis forces as well as terms from the linear

tire model which are not steering angle dependent. See Appendix A for details. These

equations of motion are given in the vehicle coordinate system, the U1-frame. Due to

its formulation, y and ε1 do not appear in Eq. (1).

Note that, in Eq. (1), the inertia matrix M is a function of the articulation angle

εf , which shows the coupling between the dynamics of the tractor and that of the

semitrailer. The c term is a set of nonlinear functions of q and q̇, and, Vx and 1
Vx

appear as time varying coefficients.

2.2 Road coordinate system

The purpose of the lateral control of a vehicle in Automated Highway Systems is to

let the vehicle follow a desired trajectory, the road centerline in the lane following

manoeuver and the designed trajectory in the lane changing manoeuver. In this

report, we are exclusively interested in the lane following manoeuver. To achieve

this automated trajectory tracking, first of all, we need a method of measuring the

tracking error. We call it a road reference / sensing system. There are many ways

of doing this. For example, a vision based guidance [23], optical marker-laser radar

based guidance [19, 21], guided by wire [9, 11], GPS [10] or magnetic marker-on board

magnetometer based guidance [20]. PATH adopted a magnetic sensing scheme [35].

That is, we assume that in automated highway systems, all the highways are buried

with magnets and all the vehicles are installed with magnetometers which can measure

the strength of the magnetic field or the lateral deviation of the vehicle at the sensor

location from the road centerline.

To quantify the lateral tracking error, we introduce a road coordinate system as

shown in Fig. 1. At every moment, the intersection of the road centerline and the ray

which connects the center of the road-curve to the c.g. of the tractor is defined to
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be the origin, Or, and the tangent line of the road-curve at Or is defined to be the

Xr-axis with the positive direction pointing to the vehicle travelling direction. The

positive direction of the Yr-axis is chosen such that positive Xr axis, positive Yr axis

and a vector points upward constitute a right-handed cartesian coordinate system

in space. Thus, the road coordinate system, OrXrYr, is a co-rotational coordinate

system in plane with the rotational rate, denoted by ε̇d, determined by the geometry

of the desired trajectory and the longitudinal velocity of the tractor as

ε̇d = Vxρ, (2)

where ρ is the curvature of the road-curve at the origin. Then, εd has the physical

meaning of the inclination angle of the positive Xr axis measured in the inertial

coordinate system, the n-frame. Then, the orientation of the tractor in the road

coordinate system, εr, is given by

εr = ε1 − εd. (3)

Let ir and jr be two unit vectors in the directions of the positive Xr-axis and the

positive Yr-axis, respectively. Then,

d

dt
ir = ε̇djr and

d

dt
jr = −ε̇dir. (4)

Let (xr, yr) be the coordinate of the c.g. of the tractor in the road coordinate system.

Then, the position vector of the c.g. of the tractor, r, is

r = Or + xrir + yrjr (5)

where Or represents the position vector of the origin, Or, of the road coordinate

system in the inertial coordinate system. Then, the velocity of the c.g. of the tractor

is given by

Vc.g. =
d

dt
r =

d

dt
Or + ẋrir + xr

d

dt
ir + ẏrjr + yr

d

dt
jr

=
d

dt
Or + (ẋr − ε̇dyr)ir + (ẏr + ε̇dxr)jr.

(6)
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Figure 1: Road Reference Coordinate System

From the definition of the road coordinate system,

xr = 0, (7)

and
d

dt
Or = (∗)ir. (8)

On the other hand,

Vc.g. = (Vx − εrVy)ir + (Vy + εrVx)jr (9)

for a small εr. By comparing the jr components of Eqs. (6) and (9), and utilizing the

facts given by Eqs. (8) and (7), we get

ẏr = Vy + εrVx. (10)

This relation will be used later in formulating the dynamics of the system output.

2.3 Two-sensor scheme and a look-ahead distance

When formulating the system output, we tried to mimic a human driver. When we

drive, we do not look down to see where the vehicle is on the road, instead, we look

in the front. This can be formulated as the lateral deviation of a point in front of the

vehicle from the road centerline. Or, it can be thought of the output of an imaginary

magnetometer sensor located in front of the vehicle. The imaginary magnetometer
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Figure 2: Two Sensor Scheme

is called a virtual sensor and the distance of the virtual sensor from the center of

gravity of the tractor is called a look-ahead distance. By utilizing two-sensor scheme,

literally, any look ahead distance can be realized. That is, if we have two lateral

error measurements, the lateral deviation, ys, at any look-ahead distance, ds, can be

calculated by

ys = yr + dsεr, (11)

where the lateral deviation of the center of gravity of the tractor from the road

centerline, yr, and the yaw angle of the tractor in the road coordinate system, εr, are

determined from the geometry (cf. Fig. 2) as follows:

yr =
lr1ysf + lf1ysr

lf1 + lr1
(12)

and

εr = tan−1 ysf − ysr

lf1 + lr1
≈ ysf − ysr

lf1 + lr1
, (13)

where the approximation holds when εr is small.

Note that, in formulating the system output, ys, we ignore the effect of the road

curvature. The US highways consist of series of curved sections and straight sections

and the recommended minimum radii for freeways are 5000 feet in rural areas and

3000 feet in urban areas (Highway Design Manual). So, the road curvature is very

small, and if the look-ahead distance is not too large, the effect of the road curvature

can be ignored. Also note that, in order to keep the tractor’s c.g. follow the road
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centerline, the virtual sensor should follow a trajectory, ysd, which is different from

the road centerline.

Some analytical studies show that the larger the look-ahead distance the easier

the control problem becomes in the sense of the increased damping, etc. [29, 22]. We

will show later that the look-ahead distance can not be taken arbitrarily large.

3 Sliding Mode Control

As an initial effort, we designed a sliding mode controller, which will serve as a

starting point and as motivation for other lateral controllers that will be presented in

this report.

3.1 Model reformulation

By differentiating the system output given by Eq. (11), we get

ẏs = ẏr + dsε̇r, (14)

and by substituting ẏr in Eq. (14) with Eq. (10), we have

ẏs = Vy + εrVx + dsε̇r. (15)

The highway roads in the United States are a series of connections of straight sections

and arcs of constant radii. Thus, under the assumption that the longitudinal velocity

Vx is constant, the desired yaw rate, ε̇d, is constant on each road segment and ε̈d

is zero except at discrete connecting points of different segments of roads. So, the

second derivative of ys is

ÿs = V̇y + dsε̈1 + Vxε̇r. (16)

Remember that Eq. (1) is a set of 3 second order differential equations. By sub-

stituting ε̈f obtained from the third equation into the first and second equations, we

10



have

A


 V̇y

ε̈1


 + b = 2Cαf


 1

lf1


 δf , (17)

where

A =


 M11 − M13

M33
M31 M12 − M13

M33
M32

M21 − M23

M33
M31 M22 − M23

M33
M32


 ,

b =


 c1 − M13

M33
c3

c2 − M23

M33
c3


 ,

(18)

and Mij-s are the (i, j) elements of M . Let F = A−1. Then,

V̇y = F11(2Cαfδf − b1) + F12(2Cαf lf1δf − b2),

ε̈1 = F21(2Cαfδf − b1) + F22(2Cαf lf1δf − b2),
(19)

where Fij-s are the (i, j)-elements of F . By substituting Eq. (19) to Eq. (16), the

output dynamics becomes

ÿs = b0(q, q̇)δf + f0(q, q̇) + f̃2(q, q̇), (20)

where

b0(q, q̇) = 2Cαf ((F11 + dsF21) + (F12 + dsF22)lf1) ,

f0(q, q̇) = − ((F11 + dsF21)b1 + (F12 + dsF22)b2) + Vxε̇r

(21)

and f̃2(q, q̇) is added to represent the model uncertainties including both unmodeled

dynamics and parametric uncertainties.

In summary, the control model for a tractor-semitrailer system is given by

ẋ = bx0(x)δf + fx0(x) + f̃x2(x),

ÿs = b0(x)δf + f0(x) + f̃2(x),
(22)

where x = (qT , q̇T )T and the first equation is from Eq. (1). The f̃x2(x) term in the

first equation represents the model uncertainties.

Considering the physical properties of the system, we make the following assump-

tions.
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Assumption 1 The unknown nonlinear functions, f̃x2(x) and f̃2(x), are bounded

above by known functions, βx(x) and β(x), respectively, i.e., ‖f̃x2(x)‖ ≤ βx(x) and

‖f̃2(x)‖ ≤ β(x).

Assumption 2 bx0(x) and b0(x) are positive functions.

Note that the first assumption is about the extent of the model uncertainties and

the second assumption is to ensure that the input gains are nonzero all the time.

3.2 Controller design

The vehicle output dynamics described by the second equation of Eq. (22) has relative

degree of two with respect to the given input-output pair, δf and ys. Define the sliding

surface, S, be a stable first order dynamics in terms of the tracking error, e. That is,

S = ė + λe, (23)

where λ is a positive parameter. The tracking error is defined as

e = ys − ysd, (24)

where ysd is the desired trajectory described in the road coordinate system. Then,

the time derivative of S along the system trajectory is

Ṡ = ë + λė

= ÿs − ÿsd + λė

= b0(x)δf + f0(x) + f̃2(x)− ÿsd + λė.

(25)

Choose the control input, δf , as

δf (x) = − 1

b0(x)
(f0(x)− ÿsd + λė + (β(x) + k)sgn(S)) (26)

where k is a positive design parameter, and sgn is a sign function defined as

sgn(S) =





1, S > 0

0, S = 0

−1, S < 0

. (27)

12



Noting Assumption 1, Eqs. (25) and (26) imply

SṠ = Sf̃2(x)− β(x) |S| − k |S|
≤ −k |S| ,

(28)

which forces the sliding surface, S, to go to zero within a finite time, S(t = 0)/k.

Since Eq. (23) defines a stable system for S = 0, the output tracking error will then

asymptotically go to zero. One undesired problem of this kind of discontinuous control

law is the chattering caused by the sign function. Chattering can be eliminated

by substituting the sign function with the continuous saturation function with a

prescribed boundary layer, φ > 0. The saturation function, sat is defined as

sat (S/φ) =





1, S ≥ φ

S/φ, −φ ≤ S ≤ φ

−1 S ≤ −φ

. (29)

The modified control law guarantees that the sliding surface reach the boundary of

the stable manifold defined by S = 0 within a finite time.

3.3 Simulation scenario

For the simulation results of the sliding mode controller, adaptive robust controller

and linear robust feedback controller with feedforward compensation, the simulation

scenarios are the same. Simulation Scenario is described by the desired trajectory

and the longitudinal velocity profile. The desired trajectory is as shown in Fig. 3. It

is the same as the actual test track in Crows Landing, a small town 90miles south

of Berkeley. The test track consists of three curved sections extended by two straight

sections. The radii of the curved sections are 800m. The longitudinal velocity profile

is as given in the upper plot of Fig. 4. It is taken from one of the experiments conduced

at Crows Landing. During experiments, the longitudinal velocity is controlled by the

driver. Given the desired trajectory and the velocity profile, the desired yaw rate, ε̇d,

can be obtained by Eq. (2), and it is shown in the lower plot of Fig. 4.
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Figure 5: Simulation Result of Sliding Mode Controller for Varying ds: Solid: ds =

0.0m, Dashed: ds = 3.5m, Dotted: ds = 7.0m, Dash-Dot: ds = 15.0m

3.4 Simulation results

Figures 5 and 6 are the simulation results of the sliding mode controller when the

control model is subject to various model uncertainties. They both show that the

sliding mode controller robustly stabilizes the lateral dynamics of a tractor-semitrailer

system.

Figure 5 shows the simulation results for various look-ahead distance in the case

that the control model has only the unmodelled dynamics and the system parameters

are assumed to be perfectly known. By increasing the look-ahead distance, the peak

steering angle is reduced, tractor yaw rate, articulation angle, tractor yaw error and

steering input become smoother. On the other hand, with the increase of the look-

ahead distance, the lateral error at tractor’s c.g. is increased. This means, with

only one control input (steering angle), we have to select look-ahead distance which

compromises between the lateral tracking error and the performance. Thus, the look-

ahead distance can not be taken too large.

When the control model has parametric uncertainties in addition to the unmodeled
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Figure 6: Simulation Results of Sliding Mode Controller: Dashed: No Parametric

Uncertainties, Solid: 30% of Parametric Uncertainties in Tire Cornering Stiffness,

Cαf , Cαr and Cαt

dynamics, the model uncertainties are increased, i.e., β(x) takes larger values than

in the previous case. From Fig. 6, we can see that, with the increase of the model

uncertainties, the system performance is dramatically degraded: the steering input

becomes larger and has oscillations, the lateral error at the tractor’s c.g. and yaw

error become larger.

In order to reduce the tracking error, we can increase the control gain, i.e., we

can pick a larger k in Eq. (26). This will inevitably result in even higher a gain

controller and worsen the control performance even further. It’s obvious that the

larger the model uncertainty, the higher the gain is expected to obtain the same level

of tracking error. This motivates adaptive robust control, which is the topic of the

next section.
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4 Adaptive Robust Control

In the control model of a tractor-semitrailer system, there exist two types of model

uncertainties: unmodeled nonlinear dynamical uncertainties and parametric uncer-

tainties. In the robust controllers such as a sliding mode controller, the two types of

model uncertainties are treated in the same manner, that is, they are lumped together

and overpowered by a robust term such as a sign function or a saturation function to

achieve robust stability. The observations in the previous section suggests that the

smaller the uncertainties, the smaller the coefficients of the sign or saturation func-

tions, resulting in a smaller and smoother control inputs. Simulation results in the

previous section indicate that additional parametric uncertainties in the tire corner-

ing stiffness, Cαf , Cαr, and Cαt, significantly degrade the performance of the sliding

mode controller.

To overcome the high gain nature of robust controllers, we resort to the adaptive

control technique and combine it with the robust control techniques. By combining

a robust control and an adaptive control in one controller, we, instead of letting the

robust controller to deal with both unmodeled dynamics and parametric uncertainties,

split the task between the robust controller and the adaptive controller such that the

adaptive controller takes care of the parametric uncertainties and the robust controller

takes care of the unmodeled dynamics. Thus, we can get a reduced uncertainty bound

which the robust controller “sees.”

In combining the two control techniques, first of all, we would like to have some

control over the transient performance. The transient performance of an adaptive

control is not clear and in the presence of dynamical uncertainties, such as unmodeled

dynamics and external disturbances, adaptive control systems may become unstable

unless robustness is explicitly taken into account. In contrast to the adaptive control,

transient performance and final tracking accuracy are guaranteed in a robust control

for both parametric uncertainties and dynamical model uncertainties. So, we choose

a robust controller as the baseline controller to guarantee the transient performance

17



and the final tracking error and on top of that, introduce an adaptive controller to

reduce the model uncertainty bound for the robust controller to overcome. Yet, the

robust controller requires that all the model uncertainties are bounded. However,

the traditional adaptation law does not guarantee the boundedness of the parameter

estimation error. To successfully incorporate the adaptation technique in the robust

controller, the traditional adaptation law is modified by projection method [27, 34]

to ensure the boundedness of the estimation error, therefore, the boundedness of

the total system model uncertainties. The resulting controller is called the Adaptive

Robust Contoller (ARC) [33]. It effectively combines the design methodologies of

robust control and adaptive control to keep the advantages of both the robust control

and adaptive control while overcoming their drawbacks.

In this section, the ARC method is applied to solve the robust control problem of

the vehicle lateral dynamics.

4.1 Model reformulation

To apply adaptive robust control technique to the design of a lateral controller

for a tractor-semitrailer system, we decompose the uncertainty terms in Eq. (22)

into unmodeled dynamical uncertainties and parametric uncertainties. In our ex-

ample, the uncertain parameter, θ, is taken to be the tire cornering stiffness, i.e.,

θ = (Cαf , Cαr, Cαt)
T , where Cαf , Cαr and Cαt are tractor front tire cornering stiffness,

tractor rear tire cornering stiffness and semitrailer tire cornering stiffness, respectively.

Then, b in Eq. (17) becomes

b = g + hθ, (30)
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where

g =


 g1

g2


 =


 k1 − M13

M33
k3

k2 − M23

M33
k3


 , with

k1 = (m1 + m2)Vxε̇1 + m2df2(ε̇1 + ε̇f )
2 sin εf ,

k2 = −m2(dr1 + df2 cos εf )Vxε̇1 −m2df2Vyε̇1 sin εf

− 2m2dr1df2ε̇1ε̇f sin εf −m2dr1df2ε̇
2
1 sin εf ,

k3 = −m2df2Vxε̇1 cos εf −m2df2Vyε̇1 sin εf + m2dr1df2ε̇
2
1 sin εf ,

(31)

and

h =


 h1

h2


 , with

h1 =




2
Vx

(Vy + lf1ε̇1)

2
Vx

(Vy − lr1ε̇1)

2
Vx

[Vy − (dr1 + df2 + lr2) ε̇1 − (df2 + lr2) ε̇f ]− 2εf − M13

M33
χ




T

,

h2 =




2
Vx

(
Vylf1 + l2f1ε̇1

)

2
Vx

(−Vylr1 + l2r1ε̇1)

2
Vx

[−Vyl + l2ε̇1 + (df2 + lr2) lε̇f ] + 2lεf − M13

M33
χ


 ,T

l = (dr1 + df2 + lr2) ,

χ =
2

Vx

[−Vy (df2 + lr2) + l (df2 + lr2) ε̇1 + (df2 + lr2)
2 ε̇f

]
+ 2 (df2 + lr2) εf .

(32)

By substituting Eqs. (19) and (30) to Eq. (16), we have output dynamics in terms of

uncertain parameters as follows:

ÿs = (by0 + by1(x)θ)δf + fy0(x) + fy1(x)θ + f̃y2(x), (33)
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where

by0(x) = 0,

by1(x) =
[

2 (F11 + dsF21) + 2 (F12 + dsF22) lf1 0 0
]
,

fy0(x) = Vxε̇r − (F11 + dsF21) g1 − (F12 + dsF22) lf1g2,

fy1(x) = − (F11 + dsF21) h1 − (F12 + dsF22) lf1h2,

(34)

with f̃y2(x) representing the unmodeled dynamical uncertainties in the output dy-

namics.

In summary, the adaptive robust control model of a tractor-semitrailer system is

ẋ = (bxy0 + bxy1(x)θ) δf + fxy0(x) + fxy1θ + f̃xy2(x),

ÿs = (by0 + by1(x)θ) δf + fy0(x) + fy1θ + f̃y2(x),
(35)

where the first equation is from Eq. (1). The f̃x2(x) term in the first equation rep-

resents the unmodeled dynamical uncertainties. Comparing with the sliding mode

control model given in Eq. (22), we have

bx0(x) = bxy0(x) + bxy1(x)θ,

fx0(x) = fxy0,

f̃x2(x) = fxy1(x)θ + f̃xy2(x),

b0(x) = by0(x) + by1(x)θ,

f0(x) = fy0(x),

f̃2(x) = fy1(x) + f̃y2(x).

(36)

Considering the physical properties of a heavy vehicle system, we make the fol-

lowing assumptions.

Assumption 3 The unknown nonlinear functions, f̃xy2(x) and f̃y2(x), are bounded

above by known functions, βxy(x) and βy(x), respectively, i.e., ‖f̃xy2(x)‖ ≤ βxy(x) and

‖f̃y2(x)‖ ≤ βy(x).
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Assumption 4 bxy0(x) + bxy1(x)(θM − θm) and by0(x) + by1(x)(θM − θm) are positive

functions, where θM and θm are prescribed upper and lower bound vectors of the

uncertain parameter θ.

Note that the first assumption gives bounds for the model uncertainties and the

second assumption guarantees that the input gains are nonzero all the time.

4.2 Controller design

The ARC design utilizes both the proper control structure and the parameter adap-

tation to reduce the tracking error. The way to accomplish it is to use robust control

techniques such as SMC to design a baseline controller (proper control structure)

to guarantee transient performance and prescribed final tracking accuracy for both

parametric uncertainties and uncertain nonlinearities, and add adaptive control on

top of it to update the parameter estimates on-line to reduce the model uncertainties

that the robust controller “sees”. To do so, one has to solve the conflicts between

the two design methodologies. Robust control assumes that model uncertainties are

bounded, but the parameters estimated by adaptive control may not be bounded in

the presence of unknown nonlinear functions. Thus, one has to modify the conven-

tional parameter adaptation law in such a way that it guarantees that the estimated

parameters stay in a prescribed range all the time even in the presence of unknown

nonlinear functions. Such a modification should not damage the correct estimation

process for parametric uncertainties. In [33], it is achieved by generalizing the smooth

projection used in [27]. Here, since the system under consideration does not require

any backstepping design, the following simple discontinuous projection method can

be used. Suppose ν is the calculated parameter update law,
˙̂
θ, then, the projection

mapping is defined as

projθ̂(ν) =





0 when θ̂ = θM and ν > 0

0 when θ̂ = θm and ν < 0

ν otherwise

. (37)
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It is shown in [34] that the above robust adaptation law guarantees that θ̂ always

stays within the bound defined by θM and θm, and θ̃ (projθ̂(ν)− ν) < 0 for all ν,

where θ̃ = θ̂ − θ.

We use the same sliding variable as in section 3. Define a scalar Lyapunov function

V as

V =
1

2
S2 +

1

2Γ
θ̃2. (38)

Then, the time derivative of V along the system trajectory is

V̇ = SṠ +
1

Γ
θ̃

˙̂
θ

= S
(
(by0(x) + by1(x)θ̂)δf + fy0(x) + fy1(x)θ̂ + f̃y2(x) + λė

)

+ θ̃

(
1

Γ
˙̂
θ − S (by1(x)δf + fy1(x))

)
.

(39)

Choose the control law for δf as

δf = − 1

(by0 + by1θ̂)

(
fy0 + fy1θ̂ + λė +

β2
y1S

4ε
+ kS

)
, (40)

where ε > 0 and k > 0 are design parameters, and choose the adaptation law as

˙̂
θ = projθ̂ (ΓS(by1δf + fy1)) . (41)

Then, V̇ ≤ ε−kS2 = ε−2kV . This implies that V will exponentially converge to a

region whose size can be made arbitrarily small, which in turn means the convergence

of the output tracking error to an arbitrarily small region.

4.3 Simulation results

In Fig. 7, the solid lines show the simulation results of the sliding mode controller

designed in the previous section when, in addition to the unmodeled dynamics, there

is 30% of parametric uncertainties, and the dashed lines show the simulation results

of the adaptive robust controller under the same conditions. In both cases, the look-

ahead distance is chosen to be ds = 3.5m. Apparently, the ARC achieves not only

good tracking but also better transient performances with a much smoother steering

input than the SMC.
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Figure 7: Simulation Results: Dashed:ARC, Solid:SMC

5 Robust Feedback Linearization Control

Other than direct linearization about an operating point, feedback linearization can

also convert a nonlinear system to a linear system. When the nonlinear system

dynamics are exactly known and the relative degree is definite, there exists a nonlinear

state transformation and an input redefinition which transforms the original nonlinear

system to a linear system in the new coordinate system [14]. This enables us to

take advantage of linear controller design method without sacrificing the accurate

representation of system dynamics. In feedback linearization, it is assumed that the

exact model of the nonlinear system is known, which is very hard to be satisfied.

Nonetheless, the uncertain tractor-semitrailer model in the road coordinate system

assumes a canonical form enabling the nonlinear uncertain model be transformed to

a linear model with uncertainties. It is noted that the standard SMC implicitly uses

feedback linearization.
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In this section, we explore the use of feedback linearization in the design of two

closely related but different nonlinear robust controllers for lateral guidance of tractor-

semitrailer vehicles. One design resembles the ultimate bounded control approach

originally proposed by [8]. The other is based on sliding mode control. The basic

philosophy behind the use of nonlinear robust control is to build robustness into the

control algorithm. The controllers rendered above are designed to robustly maintain

small lateral tracking error. The other control objective, passenger comfort, is not

directly addressed in controller design, and it must be checked and the controllers be

fine tuned by simulations and experiments. Thus, in this section, we will also examine

implementation issues of nonlinear controllers.

5.1 Controller design

The dynamics of a tractor-semitrailer system described by Eq. (22) is nonlinear and

has model uncertainties. Thus, it violates the assumption of the traditional feedback

linearization method which assumes an exact knowledge of the system dynamics.

However, the system model satisfies matching conditions, i.e., the control action and

uncertainties are in the same channel. Therefore, if we let

δf =
1

b0(x)
(−f0(x) + v), (42)

then, the system output dynamics becomes

ÿs = v + f̃2(x, ε̇d). (43)

The resulting system is a second order linear system with an uncertainty term. By

further letting y = [ys, ẏs]
T , we have

ẏ = Ay + Bv + Bf̃2(x, ε̇d), (44)

where,

A =


 0 1

0 0


 , B =


 0

1


 . (45)
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Note that the pair (A,B) is controllable. If there is no model uncertainty, i.e.

f̃2(x, ε̇d) = 0, then there exits a stabilizing state feedback controller, v = −Ky,

where K is chosen such that A − BK has eigenvalues with negative real parts. To

deal with the uncertainty term, we use the robust control law

v = −Ky −W, (46)

where W is a scalar to be designed. Then,

ẏ = (A−BK)y + Bf̃2(x, ε̇d)−BW. (47)

Let a candidate Lyapunov function be given by V (y) = yT Py, where P ∈ R2×2,

P T = P , P Â 0 and P satisfies

(A−BK)T P + P (A−BK) + Q ¹ 0, (48)

for some Q ≺ 0. Then, the time derivative of V (y) along the system dynamics (47) is

V̇ = ẏT Py + yT P ẏ

= yT [(A−BK)T P + P (A−BK)]y

− 2yT PB(W − f̃2(x, ε̇d))

≤ −yT Qy − 2yT PB(W − f̃2(x, ε̇d)).

(49)

Let

W = β(x)sgn(yT PB), (50)

then

−2yT PB(W − f̃2(x, ε̇d)) ≤ 0. (51)

From Eqs. (49) and (51), we have

V̇ ≤ −yT Qy < 0. (52)

By combining Eqs. (42), (46) and (50), the control input becomes

δf =
1

b0(x)
(−f0(x)−Ky − β(x)sgn(yT PB)), (53)
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which, in turn, guarantees V > 0 and V̇ < 0. Based on the robust nonlinear stability

theory, we have the following theorem.

Theorem 1 (53) is an asymptotically stabilizing control law for system (22).

5.2 Comparison of the robust feedback linearization con-

troller with the sliding model controller

The robust feedback linearization based controller given by Eq. (53) is a robust dis-

continuous controller with a close resemblance to the sliding mode controller given

by Eq. (26). If we let the desired trajectory be ysd = 0 (corresponding to the lane

following case), and denote the sliding mode controller as δfs to differentiate from the

robust feedback linearization based controller, then,

δfs =
1

b0(x)
(−f0(x)− λẏs − (β(x) + k)sgn(ẏs + λys)). (54)

On the other hand, the controller (53) can be rewritten as

δf =
1

b0(x)
(−f0(x)− k2ẏs − k1ys − β(x)sgn(p22ẏs + p12ys))

=
1

b0(x)

(
−f0(x)− k2ẏs − k1ys − p22β(x)sgn

(
ẏs +

p12

p22

ys

))
,

(55)

where we expand the matrices K and P in their components as

K =


 k1

k2


 and P =


 p11 p12

p21 p22


 . (56)

In terms of the matrix components, the condition that P is symmetric positive

definite is equivalent to

p11 > 0,

p22 > 0,

p12 = p21,

p11p22 − p12p21 > 0.

(57)
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Comparing Eqs. (54) and (55), we see that p12

p22
corresponds to λ which defines the

sliding surface in the sliding mode control. In the sliding mode control, λ is chosen in

such a way that it defines a stable manifold, i.e, λ > 0. Interestingly, in the feedback

linearization design, p12 could be a negative number. This is because of the different

stabilizing principles in the two controllers. In SMC, the robust control law for δf

given by Eq. (54) only guarantees that the first order dynamics of the sliding surface,

S, is robustly stable, and on the manifold defined by S = 0, the choice of λ ensures

the stability. It is a two step stabilization strategy. However, in the robust feedback

linearization control, the control law for δf given by Eq. (55) guarantees the stability

of the second order system dynamics by itself.

In the sliding mode control, the coefficient of the discontinuous term is β(x) + k,

whereas in the proposed control, the coefficient of the discontinuous term is p22β(x).

Note that the matrix inequality (48) holds even when it is mulitplied by a scalar.

Therefore, without loss of generality, we can always assume that p22 = 1. In sliding

mode control, the additional positive parameter k is added in the coefficient of the

discontinuous term to ensure the finite time convergence of the sliding variable S to

the sliding surface defined by S = 0, and therefore it is not desirable to select k too

small. Once the sliding surface is reached in a finite time, the system states go to the

equilibrium asymptotically while staying on the manifold. In feedback linearization,

all the states goes to the equilibrium point asymptotically in the state space. It

is not difficult to see that the sliding mode controller inevitably results in a higher

gain controller and degrades riding comfort. The situation remains the same when

saturation functions replace the sign functions to reduce chattering in both feedback

linearization controller and sliding mode controller.

For fairness of comparison, we modify the SMC as

δf =
1

b0(x)
(−f0(x)− λẏs − k(ẏs + λys)− β(x)sgn(ẏs + λys)). (58)

Comparing the modified sliding mode controller (58) and the feedback linearization

controller (55) and assuming that there is no model uncertainties, i.e. β(x) = 0,
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we note that both Eq. (55) and (58) stabilize the linear system (44). In the case of

modified sliding mode control, the characteristic equation of the closed loop system

is

s2 + (λ + k)s + λk = 0, (59)

and in the case of feedback linearization based control, it is

s2 + k2s + k1 = 0. (60)

As we can see, in the modified sliding mode control, the dynamics of the sliding

surface/manifold and that of the nominal system is coupled, whereas, in the robust

feedback linearization control, the dynamics of the “sliding surface” and that of the

nominal plant are decoupled. If we can find a positive definite matrix P satisfying

the linear matrix inequality(48) with p22 < 1, we are equivalently “minimizing” the

bound of the model uncertainties. It is obvious that we always can find such a P , by

simultaneously scaling P and Q in (48).

Both in the robust feedback linearization control and SMC, we assume that the

zero dynamics of the system is exponentially stable and the designed controllers ro-

bustly stabilize the dynamics in the r dimensional controllable subspace, where, r

is the relative degree of the system dynamics. In the SMC, the r dimensional con-

trollable subspace is described as a set of r − 1 dimensional stable submanifolds, i.e.

one dimensional vector space, and the stability is achieved in two stages: first the one

dimensional submanifold space is forced to converge to 0, i.e. the stable sliding sur-

face, by the robust term in the sliding mode control law and then, from the stability

of the sliding surface, the system states converge to zero while staying within the

sliding surface. In the robust feedback linearization controller, the controller forces

the states in the r dimensional controllable subspace go to zero. Hence, there is no

stability requirement for the submanifold, yT PB = 0.

Another thing that we would like to point out is that, we can optimally select

the control parameters in the robust feedback linearization control method based
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on some performance criteria, possibly using Linear Matrix Inequality (LMI) based

computational tools such as Semi-Definite Programming (SDP).

5.3 Simulation results

In the design of robust controllers, we assumed that the model uncertainties are

bounded by a know function (Assumption 1). In practice it is very hard to evaluate

the uncertainty bounds. In our simulations, the tire cornering stiffness is perturbed

by 30% to introduce more uncertainties in addition to the unmodeled nonlinear dy-

namical uncertainties. We assume that the uncertainty bound for f̃2(q, q̇) is time

and state invariant, i.e. β(x) = β. To estimate the uncertainty bound, the control

parameter k is set to zero in the sliding mode controller (54), and we repeatedly run

simulations by increasing β by a small amount (∆β) each time. We expect that when

β changes from some value smaller than the true bound, say β∗, to some value larger

than the true value, the system will change from an unstable system to a stable one.

Since, β is increased by a finite amount in each simulation, the uncertainty bound

is determined to be the value at which stability is attained for the first time. This

procedure should be repeated for each selected simulation scenarios.

The simulation scenario for a tractor-semitrailer travelling at a velocity of 60mph

is as follows. Initially the vehicle travels on a straight section for 0.5 second; at

t = 0.5sec, it enters a curved section with a radius of 600m; and at t = 3sec, it

leaves the curved section and continues to run on a straight section. By the method

mentioned above, we conclude that the uncertainty bound β is 0.30. In Fig. 8, the

four dotted lines, from large to small excursions, are the simulation results of the

SMC with k = 0.01 and β = 0.30, 0.33, 0.35 and 0.37, respectively, similarly the four

solid lines are the simulation results of the robust feedback linearization controller

with K = [2, 1]T , Q = [1 0; 0 1] and β = 0.30, 0.33, 0.35 and 0.37, respectively. The

upper left plot is the designed control input, the lower left plot is the lateral error at

the center of gravity of the tractor, the upper right plot is the relative yaw error of
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Figure 8: Simulation Results–Solid:Feedback Linearization Control; Dashed:Sliding

Model Control

the tractor and the lower right plot is the lateral acceleration of the tractor.

From the plot of the lateral error and the relative yaw error of the tractor, we see

that SMC is very sensitive to the knowledge of the uncertainty bound, and once the

bound is known, any positive number k stabilizes the system. In the robust feedback

linearization control, due to the −yT Qy term in V̇ , even a use of smaller estimate of

the uncertainty bound can stabilize the system. SMC is a robust stabilizing controller

and it is very hard to incorporate performance criteria in controller design, while

in the case of the robust feedback linearization control, it is easy to incorporates

performance criteria in the controller design with different selections of K and Q and

there is possibility of optimally selecting the control parameters based on performance

criteria using the semidefinite programming.
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6 Nonlinear Robust Loop-Shaping Controller Con-

sidering Steering Subsystem Dynamics

In the above mentioned controllers, the sliding mode controller, adaptive robust con-

troller and the robust feedback linearization controller, the control input is the front

wheel steering angle designed based on the vehicle body dynamics. In practice, the

control signals are feeded into the steering actuator mounted on the steering column,

and the steering actuator moves the front steering wheel through the torsion bar on

the steering column, the hydraulic power assist unit and the front wheel assembly.

The dynamics of the steering subsystem is very complicated 1. Therefore, the dynam-

ics of the vehicle lateral control system can be thought of a cascaded connection of the

steering subsystem dynamics and the vehicle body dynamics. We adopt a nested con-

trol structure, i.e., we first design a controller (called an inner-loop controller) for the

steering subsystem so that the local closed-loop steering subsystem has a very good

tracking performance, and then design a controller (called an outer-loop controller)

for the vehicle body dynamics by either ignoring the closed-loop steering subsystem

dynamics or by approximating it by a simple lower order dynamics. The previously

designed controllers belong to the former case. In this section, we model the dy-

namics of the closed-loop steering subsystem as a first order linear dynamical system

with model uncertainty. To prevent the actuator saturation and reduce chattering

while explicitly taking into account the vehicle model uncertainty and actuator model

uncertainty in the controller design, we propose to extend the vehicle lateral control

system dynamics with a low-pass filter (in this study, we use first order filter) at the

input side of the steering actuator. The added pre-filter is also to filter sensor noise.

The input to the augmented system is the input to the pre-filter and because the

model uncertainties are not in the same channel as control input, the robust slid-

1The steering subsystem of the tractor-semitrailer type of heavy vehicle systems was studied

under MOU 313 and reported in California PATH Working Paper UCB-ITS-PWP-2000-1
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ing mode control technique can not be directly applied. We apply the constructive

backstepping method [18] together with the smooth robust control technique to the

extended system. The actual control input to the steering actuator is the output of

the pre-filter.

6.1 Model description

Steering subsystem: The steering system is a critical component of the vehicle lat-

eral control system. From the viewpoint of vehicle lateral control, the front wheel

steering angle is often regarded as the control input. The actual control input, how-

ever, is the command signal to the actuator which is set by the lateral controller.

Thus, to improve the system performance, the dynamics of the steering subsystem

must be considered along with the vehicle lateral body dynamics in the design of

vehicle lateral controllers.

As mentioned already, the California PATH uses a Freightliner class 8 truck as an

experimental test vehicle. The existing steering system on the Freightliner truck has

been retrofitted with an electric steering actuator mounted directly on the steering

column of the existing steering system. Then, an inner-loop controller is designed

for the steering subsystem to let the steering wheel track the desired trajectory set

by the vehicle lateral controller. With the inner-loop controller, the local closed-loop

steering system is modeled as a first order linear system with model uncertainty as

δ̇f =
1

τa

(δa − δf ) + ∆(x, δf ), (61)

where δa is the input to the steering actuator and τa is the time constant.

Augmented lateral control model: The steering system has a physical limit in

the steering angle and the steering actuator has a limit in the slew rate. To prevent

the actuator saturation and reduce chattering while explicitly taking into account the

vehicle model uncertainties and actuator model uncertainties in the controller design,
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the vehicle lateral dynamics is augmented by a first order pre-filter,

δa(S) =
1

τ1S + 1
u(S), (62)

at the input side of the steering actuator, where u is the control input we are going

to design.

From Eqs. (22), (61) and (62), the lateral control model of the tractor-semitrailer

system with steering system dynamics and pre-filter can be written as

ẋ = bx0(x)δf + fx0(x) + f̃x2(x),

ÿs = b0(x)δf + f0(x) + f̃2(x, t),

δ̇f =
1

τa

(δa − δf ) + ∆(x, δf ),

δ̇a =
1

τ1

(u− δa).

(63)

In the above system, x is the state variable, bx0(x), fx0(x), b0(x) and f0(x) are known

functions, and f̃x2(x), f̃2(x, t) and ∆(x, δf ) are functions used to represent model

uncertainties including both unmodeled nonlinear dynamical uncertainties and para-

metric uncertainties. Considering the physical properties of the system, the following

reasonable assumptions are made.

Assumption 5 The unknown nonlinear functions are bounded above by known func-

tions, i.e.,

‖f̃2‖ ≤ β(x),

‖f̃x2‖ ≤ βx(x),

‖∆‖ ≤ β1(x, δf ),

(64)

where β(x) ∈ C3(x), βx(x) ∈ C3(x) and β1(x, δf ) ∈ C3(x, δf ) are known functions.

Assumption 6 b0(x) and bx0(x) are positive functions.

Note that the first assumption is about the extent of model uncertainties. The

second assumption is to ensure that the input gain for the first two equations of (63)
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are nonzero all the time. The objective is to design a control law for u such that the

output ys tracks the desired trajectory ysd(t) as close as possible. Since the model

uncertainties, f̃x2, f̃2 and ∆, do not satisfy the model matching condition, we use the

backstepping method.

6.2 Controller design

The lateral position at the virtual sensor location, ys, has relative degree of two with

respect to the front wheel steering input, δf . Let the sliding variable2 be defined as

S = ė + λe, (65)

where e = ys − ysd is the output tracking error and λ is a positive constant design

parameter. To avoid large input when the initial tracking error e(0) is large, we

modify the sliding variable as

S̄ = S − S(0)exp(−λ1t), (66)

where λ1 is a positive number. Define

δ̃f (x, δf , t) = α1(x, t)− δf , (67)

where α1(x, t) is the desired front wheel steering angle which will be synthesized later.

From Eq. (63),

˙̄S = b0(x)δf + f0(x) + f̃2(x, t)− ÿsd + λė + λ1S(0)exp(−λ1t)

= b0(x)α1(x, t) + f0(x)− ÿsd + λė + λ1S(0)exp(−λ1t)

+ f̃2(x, t)− b0(x)δ̃f (x, δf , t).

(68)

Choose α1(x, t) as

α1(x, t) = − 1

b0(x)

(
f0(x)− ÿsd + λė + λ1S(0)exp(−λ1t) +

(
c1 +

β2(x)

4ε1

)
S̄

)
, (69)

2S is called the sliding variable although the exact sliding is not attempted here in order to avoid

chattering. For example, Eq.(69) involves a term proportional to S instead of a sign function of S
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where c1 and ε1 are positive constants. Define the candidate Lyapunov function be

V1 =
1

2
S̄2. (70)

Then, from Eqs. (67), (68), (69) and (70), we have

V̇1 = S̄ ˙̄S

≤ −c1S̄
2 + f̃2S̄ − β2

4ε1

S̄2 − b0(x)S̄δ̃f

≤ −c1S̄
2 + ε1 − b0(x)S̄δ̃f ,

(71)

which means that if δ̃f = 0, i.e., if the output of the steering system tracks the

desired front wheel steering angle α1 exactly, then the sliding variable asymptotically

converges to a ball whose size is defined by ε1. From Eq. (69),

α̇1(x, t) =
∂α1

∂x
ẋ +

∂α1

∂t

=
∂α1

∂x
(bx0(x)δf + fx0(x) + f̃x2(x)) +

∂α1

∂t
.

(72)

Define ˆ̇α1 and ˜̇α1 as

ˆ̇α1(x, t) =
∂α1

∂x
(bx0(x)δf + fx0(x)) +

∂α1

∂t
,

˜̇α1(x, t) =
∂α1

∂x
f̃x2(x),

(73)

then

α̇1(x, t) = ˆ̇α(x, t) + ˜̇α1(x, t). (74)

Modify the Lyapunov function candidate V1 to

V2 = V1 +
1

2Γ1

δ̃2
f , (75)
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where Γ1 is a positive control parameter. Then,

V̇2 = V̇1 +
1

Γ1

δ̃f
˙̃δf

≤ −c1S̄
2 + ε1 − b0(x)S̄δ̃f

+
1

Γ1

δ̃f

(
ˆ̇α1(x, t) + ˜̇α1(x, t)− 1

τa

(δa − δf )−∆(x, δf )

)

≤ −c1S̄
2 + ε1

+
1

Γ1

δ̃f

(
−Γ1b0(x)S̄ + ˆ̇α1(x, t) + ˜̇α1(x, t)− 1

τa

(δa − δf )−∆(x, δf )

)
.

(76)

Let the desired input to the steering actuator be

α2(x, δf , t) = δf + τa

(
−Γ1b0(x)S̄ + ˆ̇α1(x, t) + Γ1

(
c2 +

β2
2(x, δf , t)

4ε2

)
δ̃f

)
, (77)

where c2 and ε2 are positive control parameters and β2(x, δf , t) is a know function

satisfying ∥∥∥∥
1

Γ1

( ˜̇α1(x, t)−∆(x, δf ))

∥∥∥∥ ≤ β2(x, δf , t). (78)

Define

δ̃a(x, δf , δa, t) = α2(x, δf , t)− δa, (79)

then, from Eqs. (76), (77), (78) and (79),

V̇2 ≤ −c1S̄
2 + ε1 − c2δ̃f

2
+

1

Γ1

(
˜̇α1 −∆

)
δ̃f − β2

2

4ε2

δ̃2
f +

1

Γ1

δ̃f
δ̃a

τa

≤ −c1S̄
2 + ε1 − c2δ̃f

2
+ ε2 +

1

Γ1τa

δ̃f δ̃a.

(80)

From Eq. (77),

α̇2(x, δf , t) =
∂α2

∂x
ẋ +

∂α2

∂δf

δ̇f +
∂α2

∂t

= ˆ̇α2(x, δf , t) + ˜̇α2(x, δf , t),

(81)

where

ˆ̇α2(x, δf , t) =
∂α2

∂x
(bx0(x)δf + fx0(x)) +

∂α2

∂δf

δa − δf

τa

+
∂α2

∂t
,

˜̇α2(x, δf , t) =
∂α2

∂x
f̃x2(x) +

∂α2

∂δf

∆(x, δf ).

(82)
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Now, we design the control input u such that the input to the steering actuator

follows α2. Define the candidate Lyapunov function as

V = V2 +
1

2Γ2

δ̃2
a, (83)

where Γ2 is a positive control parameter. Then,

V̇ = V̇2 +
1

Γ2

δ̃a
˙̃δa

= −c1S̄
2 + ε1 − c2δ̃

2 + ε2

+
1

Γ1τa

δ̃f δ̃a +
1

Γ2

δ̃a( ˆ̇α2(x, δf , t) + ˜̇α2(x, δf , t)− 1

τ1

(u− δa))

= −c1S̄
2 + ε1 − c2δ̃

2 + ε2

+
1

Γ2

δ̃a

(
Γ2

Γ1τa

δ̃f + ˆ̇α2(x, δf , t) + ˜̇α2(x, δf , t)− 1

τ1

(u− δa)

)
.

(84)

Choose u as

u(x, δf , δa, t) = δa + τ1

(
Γ2

Γ1τa

δ̃f + ˆ̇α2(x, δf , t) + Γ2(c3 +
β2

3(x, δf , t)

4ε3

)δ̃a

)
, (85)

where c3 and ε3 are positive constants and β3(x, δf , t) is a known function satisfying

‖ 1

Γ2

˜̇α2(x, δf , t)‖ ≤ β3(x, δf , t). (86)

From Eqs. (84), (85) and (86), we finally have

V̇ = −c1S̄
2 + ε1 − c2δ̃

2
f + ε2 − c3δ̃

2
a + ε3. (87)

The following theorem can readily be proved using the above arguments.

Theorem 2 If the internal dynamics of the system given by Eq. (63) is stable, then

the robust backstepping control law (85) guarantees that the resulting closed-loop sys-

tem is globally stable and the output tracking error e converges to a ball, whose size

depends on ε1, ε2 and ε3.
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6.3 Simulation results

We have simulated two controllers for two different plants under different road condi-

tions and results are shown in Figs. 9, 10 and 11. Controller-A is a controller designed

without explicitly taking into account the steering actuator dynamics, i.e., α1 given

by Eq. (69) is considered to be the steering input, δf . Controller-B is the controller

proposed in this section which includes the steering actuator dynamics in the system

model and dynamically extends it with a first order filter. The two plants we consid-

ered are: Plant-A, without actuator dynamics, and Plant-B, with first order actuator

dynamics. Figures 9 and 10 show the simulation results when the vehicle model has

only unmodeled nonlinear dynamical uncertainties and the system parameters are

all known. Figure 11 shows the simulation results of the vehicle model with 30% of

parametric uncertainty in the tire cornering stiffness, Cαf , Cαr and Cαt, in addition

to the unmodeled nonlinear dynamical uncertatinties. Each figure shows, from the

left-upper plot to the right-bottom plot, the front wheel steering angle, tractor yaw

error relative to the road, lateral error at the c.g. of the tractor, lateral acceleration

of c.g. of the tractor, articulation angle and tractor yaw rate.

As we can see from the simulation results, when Controller-A is applied to Plant-

B (actual system) it has severe oscillations (dashed lines in Fig. 9, c1 = 4.0); as we

decrease the controller gain, c1, the oscillation mode becomes less severe, but, the

magnitude of the front wheel steering angle becomes larger (dashdotted (c1 = 8.0)

and dashed (c1 = 20.0) lines in Fig. 10). On the other hand, Controller-B (solid line

in Fig. 10) provides smoother response and smaller front wheel steering angle. When

there are parametric uncertainties in the tire cornering stiffness (Fig. 11), similar phe-

nomena show up as in the case when there is no parametric uncertainties. In Fig. 11,

dotted lines represent the simulation results of Controller-B; solid, dashed and dash-

dotted lines represent the simulation results of Controller-A with the feedback gain,

c1, in the increasing order. The larger the size of the model uncertainties, the higher

the resulting control gain of the traditional robust controllers such as SMC [26]. Ac-
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Figure 9: Simulation Results-1 of the Nonlinear Robust Loop-Shaping Controller
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Figure 10: Simulation Results-2 of the Nonlinear Robust Loop-Shaping Controller

39



0 2 4 6 8 10
−5

0

5

δ f(d
eg

)

t(sec.)
0 2 4 6 8 10

−1

−0.5

0

0.5

1

ε r(d
eg

)

t(sec.)

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

Y
r(

m
)

t(sec.)
0 2 4 6 8 10

−0.05

0

0.05

0.1

0.15

La
t.A

cc
._

1(
g)

t(sec.)

0 2 4 6 8 10
−2

−1

0

1

ε f(d
eg

)

t(sec.)
0 2 4 6 8 10

−0.05

0

0.05

0.1

0.15

dE
ps

_1
(r

ad
/s

)

t(sec.)

Figure 11: Simulation Results-3 of the Nonlinear Robust Loop-Shaping Controller

cordingly, in the case of larger model uncertainties, the effective control gain reduction

for assurance of stability and riding comfort (smootheness) is more imperative. Note

that Controller-B has a larger tracking error than Controller-A in each simulation

scenarios, though they are all within the acceptable limit, 0.2m.

7 Linear Robust Feedback Controller with Feed-

forward Compensation

Nonlinear controllers are usually designed based on a more detailed nonlinear model

of a system and assumes more knowledge of the system to be controlled. Therefore,

in theory, they should provide better performances than linear controllers designed

based on an approximated, linearized model of the actual system. However, nonlinear

controllers are more costly in terms of implementation and sometimes it is impractical

to implement them at all. On the other hand, there are rich design methodologies

40



and software tools are available for the design of linear controllers.

In this section, we investigate a possible mid-ground for ease of implementation

and high performance by exploring and taking advantages of the inherent structure

of the vehicle lateral control system with an example of a tractor-semitrailer heavy

vehicle system with an example of a tractor-semitrailer combination.

7.1 Linear model of a tractor-semitrailer vehicle system

From Eq. (3), we get

ε1 = εr + εd,

ε̇1 = ε̇r + ε̇d,

ε̈1 = ε̈r + ε̈d,

(88)

and from Eq. (10), we have

Vy = ẏr − εrVx. (89)

By substituting Eqs. (88) and (89) in Eq. (1) and linearizing it, we get the linear

control model of a tractor-semitrailer vehicle system in the road coordinate system

as

Mrq̈r + Drq̇r + Krqr = Frδf + E1ε̇d(t) + E2ε̈d(t),

ys =
(

1 ds 0
)T

qr,
(90)

where

qr =
(

ys, εr, εf

)T

. (91)

The matrices, Mr, Dr, Kr, Fr, E1 and E2, are as given in Appendix B. In the above

generalized coordinates, yr is the lateral displacement of the tractor’s center of gravity,

εr is the tractor’s yaw error in the road coordinate system and εf is the articulation

angle. The system input is tractor’s front wheel steering angle δf and the system

output ys is the lateral tracking error of the virtual sensor located at the look-ahead

distance of ds. In Eq. (90), ε̇d and ε̈d are desired tractor’s yaw rate and rate of change
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of the desired yaw rate, respectively, and they are treated as disturbances to the

system. ε̇d is related to the vehicle speed Vx and road curvature ρ by Eq. 2. Defining

a 6× 1 state vector as

xr =


 qr

q̇r


 . (92)

Then, the linear state-space model of the vehicle lateral control system is obtained as

ẋr =


 0 I

−M−1
r Kr −M−1

r Dr


 xr +


 0

M−1
r Fr


 δf

+


 0

M−1
r E1


 ε̇d +


 0

M−1
r E2


 ε̈d.

(93)

It is noted that the system matrices in Eqs. (90) and (93) depend on the vehicle speed,

tire cornering stiffness and load configuration on the trailer. Details of this aspect

are documented in [29].

Notice that the desired yaw rate, ε̇d, appears in the linearized model. In design-

ing linear controllers, the ε̇d-related terms are treated as disturbances coming from

the road, and linear controllers are designed so that they not only reject the road

disturbances but also other disturbances such as wind gust. In the presence of such

disturbances, the steady-state tracking error is directly affected by the P gain of the

controller. The larger the P gain, the smaller the steady-state tracking error. On

the other hand, a lager P gain may excite unmodeled dynamics and may induce

oscillations.

7.2 Controller design

By examining the sources of the road disturbances and the ways they enter the model

equations, we find the following analogy between the lateral dynamics of a vehicle

system and the dynamics of a mechanical system with Coulomb friction.

When a vehicle is riding on a straight road section, ε̇d is zero, and therefore there

is no road disturbance. When the vehicle is negotiating a curve and turning left,
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Figure 13: Coulomb Friction in a Mass-Spring-Damper System

there are centrifugal forces acting at the centers of gravity of the tractor and of the

semitrailer. These centrifugal forces point right and their magnitude is proportional

to Vxε̇1 as shown in Fig. 12(a). When the vehicle is turning right, the centrifugal

forces are proportional to Vxε̇1 and they point left as shown in Fig. 12(b). In other

words, the centrifugal forces are proportional to −Vxε̇1 and are discontinuous.

Recall that, for mechanical systems with Coulomb friction (cf. Fig. 13), the Coulomb

friction forces are proportional to−ẋ and discontinuous. That is, the centrifugal forces

of a vehicle negotiating a curve are analogous to the Coulomb friction forces.

For a mechanical system with Coulomb friction forces, if they can be obtained

or estimated, adding a feedforward term to compensate for the disturbances (the

friction forces) is a practical and efficient approach. Motivated by this, we design a

feedforward controller to compensate for the road disturbances in addition to a linear
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robust feedback controller as shown in Fig. 14. We take the input to the feedforward

compensator as Vxε̇d. As such, the feedforward compensator has a built-in switch

to turn on and off the compensator based on needs. That is, when the vehicle is

negotiating a curve, ε̇d is nonzero and therefore the feedforward compensator is on,

and when the vehicle is travelling on a straight section, ε̇d is zero and therefore the

switch is off.

A possible candidate for the feedforward compensator is the inverse dynamics of

the system, from the road disturbances Vxε̇d to the output ys. But, as we have learned,

the vehicle dynamics has model uncertainties and it may not exactly compensate for

the disturbances as we expect. We propose to use a constant gain feedforward com-

pensator with the constant equal to the inverse of the linear gain of the disturbance

dynamics. This gain is a function of vehicle inertia and dimensional parameters as

well as tire cornering stiffness. To account for the parametric uncertainties in the

constant feedforward compensator, we introduce an adaptation to the constant gain

based on the lateral tracking error at the c.g. of the tractor.
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7.3 Simulation results

The simulation scenario is as given in subsection 3.3. We simulated three con-

trollers: a) without feedforward compensation, b) with a constant gain feedforward

compensation, and c) with adaptive feedforward compensation. The feedback con-

troller used in simulations of the three controllers is a linear robust loop-shaping

controller. From Fig. 15, we see that the feedforward compensator effectively reduces

the lateral tracking error and provides a smoother control input. The adaptive feed-

forward compensator reduces the tracking error even further.

7.4 Comparison with nonlinear robust controllers

Recall that the nonlinear robust controllers, such as a sliding mode controller, involve

a feedback linearization term. From Eq. (16), the output dynamics of the vehicle

lateral control system can be reformatted as

ÿs = V̇y + dsε̈1 + Vxε̇r

= (V̇y + Vxε̇1 + dsε̈1)− Vxε̇d

= f(x) + b(x)δf − Vxε̇d.

(94)

Then, the nonlinear controllers have the form of

δf = − 1

b(x)
(f(x)− Vxε̇d + · · · ) + · · ·

=
1

b(x)
(Vxε̇d)− 1

b(x)
(f(x) + · · · ) + · · · .

(95)

Equation (95) suggests that the nonlinear controllers inherently have a feedforward

compensation which corresponds to the fixed gain feedforward control. For compari-

son, Fig. 16 shows the simulations results of a sliding mode controller and the above

mentioned three linear robust controllers. As we can see from the figure, the sliding

mode controller offers the best tracking performance as expected. However, as we

will see in section 8, the implementation of nonlinear controllers is not trivial and

much harder than that of linear controllers. Therefore, linear robust controllers with
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Figure 15: Simulation Results of Linear Robust Controllers with Feedforward Com-

pensation: Solid: Without Feedforward Compensation, Dashed: With Constant Gain

Feedforward Compensation, Dash-Dot: With Adaptive Feedforward Compensation

feedforward compensators are a mid-point between liner feedback controllers and non-

linear controllers from the view point of ease of implementation and control system

performance.

8 Experiments

This section presents various experimental aspects of the lateral control of heavy

vehicles for automated driving such as the hardware and software setup of the exper-

imental vehicle, the open-loop tests and system parameter estimation, experimental

issues, and closed-loop tests for different controllers. Three controllers, a sliding mode

controller, a linear feedback controller with a feedforward compensation and a linear

feedback controller, are compared by analysis and by experiments. These three con-

trollers are closely related to one another by means of the constituting terms of the

controllers. The experiments were conducted on the test vehicle, a tractor-semitrailer

combination, at a 2000m long test track at Crows Landing.
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Figure 16: Comparison of Nonlinear Controllers with Linear Robust Controllers with

Feedforward Compensation: Solid: Without Feedforward Compensation, Dashed:

With Constant Gain Feedforward Compensation, Dotted: With Adaptive Feedfor-

ward Compensation, Dash-Dot: Sliding Mode Controller

8.1 Structural analysis of sliding mode controller and the

three controllers

A sliding mode controller with the sgn function replaced by the sat function is (see

section 3)

δf = − 1

b0(x)
(f0(x)− ÿsd + λė + (β + k)sat(S/φ)) , (96)

where ÿsd is the desired output and e is the tracking error, e = ys − ysd. For the

vehicle lateral control problems, the desired output is zero in the road coordinate

system, i.e., ysd = 0.

It is pointed out in section 7 that the nonlinear term f0(x) can be splitted into

two parts as

f0(x) = f(x)− Vxε̇d. (97)

47



Then the sliding mode control law given by Eq. (96) can be rewritten as

δf = − f(x)

b0(x)
+

1

b0(x)
Vxε̇d +

1

b0(x)
λẏs − 1

b0(x)
(β + k)sat(S/φ). (98)

For the lateral control of heavy vehicles, the desired output is zero, i.e., ysd = 0;

the vehicle articulation angle εf is very small at highway operations and b0(x) is a

function of εf only, and thus, it may be approximated by a constant. So, when the

sliding variable is within the boundary layer, i.e., S ≤ φ, Eq. (98) can be approximated

by

δf = −f(x)

b0

+
1

b0

Vxε̇d − 1

b0

(
λ +

β + k

φ

)
ẏs − λ

b0

β + k

φ
ys

= −f(x)

b0

+
1

b0

Vxε̇d − k1ẏs − k1λys.

(99)

In Eq. (99), the last two terms represent linear feedback control, the PD control;

the second term represents feedforward compensation whose magnitude is propor-

tional to the centrifugal force; and the first term is nonlinear and represents all the

modeled dynamics of the vehicle lateral control system including the Coriolis terms

as well as terms contributed by the linear tire model. Apparently, the sliding mode

controller is more involved than linear controllers. It consists of three parts: linear

feedback control terms, a feedforward compensation term and a nonlinear feedback

linearization term. In this section, we compare the following three controllers by ex-

periments.

A. Linear controller,

δf = −k1ẏs − k1λys; (100)

B. Linear controller with a fixed gain feedforward compensator,

δf =
1

b0

Vxε̇d − k1ẏs − k1λys; (101)

C. Sliding mode controller given by Eq. (99).

The relationships among these three controllers are: controller B is obtained from

controller A by adding a fixed gain feedforward compensation term and controller C is
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Figure 17: Experimental Vehicle: Tractor-Semitrailer Combination

obtained from controller B by adding a nonlinear term which represents the modeled

dynamics of the plant.

8.2 Test vehicle and instrumentation

The experimental vehicle shown in Fig. 17 is a combination of a Freightliner FLD

120 class 8 tractor and a Great Dane semitrailer, completed with a custom designed

steering actuator, engine-throttle actuator, brake actuator, and on-board sensors.

The sensors and actuators for the lateral and longitudinal control are as shown in

Fig. 18.

Steering actuator: The steering actuator is developed by the NSK Corporation

of Japan and it is mounted on the steering column. A robust inner-loop controller

is designed for the sub-system represented by the input–output pair, input to the

NSK motor driver–steering column angle (studied under MOU313 and reported in

California PATH Working Paper UCB-ITS-PWP-2000-1). A front wheel steering

angle sensor is installed on the pitman arm, the output of the hydraulic power assist
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Figure 18: Sensors and Actuators for the Lateral and Longitudinal Control (*: Mag-

netometer Arrays)

unit of the steering system.

Brake actuator: The vehicle is installed with brake actuators with electronic

control units as shown in Figs. 19 and 20. The electronic unit controls the pressure

in the brake chambers. A brake chamber diaphragm is connected to an “S” cam by

linkages such that an increase of pressure in the brake chamber pushes the brake shoe

against the brake drum via the “S” cam and other linkages. At present, only the

trailer brake actuators have the left and right independent braking capability which

can be utilized in the lateral controller designs to stabilize the trailer yaw dynamics.

Lateral error sensors: PATH adopted a road-reference system based on mag-

netic markers. The primary sensors for the lane guidance are the magnetometers. On

each of the front end of the tractor, the rear end of the tractor, and the rear end of

the semitrailer, there is an array of magnetometers. Each magnetometer array has

five magnetometers (see Fig. 21) that allow for a sensing range of 0.8m on either side

of the road centerline along which magnets are buried in every 1.2m. An algorithm

is designed to obtain the lateral error at the middle sensor location with respect to
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Figure 19: Brake Actuator

Figure 20: Brake Actuator: Air Pressure Transducer
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Figure 21: Lateral Position Sensor: Magetometer Array

the road centerline from the signals of the magnetometers in an array.

Other sensors: Secondary/subsidiary sensors are also installed either for the con-

troller synthesis or for the fault detection or for the safety and passenger comfort

monitoring. They include:

• accelerometers: one on each of the tractor and semitrailer,

• gyroscopes: one on each of the tractor and semitrailer,

• wheel angle sensor: on the pitman arm, the output shaft of the hydraulic power

assist unit of the steering system, and

• articulation angle sensor: around the fifth-wheel.

Hardware interface: A personal computer in the driver cabin of the tractor is in

charge of communicating with sensors and actuators through National Instruments’

DAQ board. The software for the real time implementation of controllers is based on

the previous PATH software architecture and is suitably modified to accommodate

new sensors and actuators. The QNX realtime operating system is used.
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8.3 Open-Loop test and system parameter estimation

Open-loop tests were conducted to estimate some system parameters and verify the

linear dynamic model given by Eq. (93). The experiments were conducted at Crows

Landing. The test track is about 2000m long consisting of 3 curved sections and

two straight sections at the beginning and at the end. As we previously pointed

out, the linear vehicle model is a Linear Time Varying system (LPV) due to the

appearance of the vehicle longitudinal velocity Vx in the system coefficients. To

obtain the frequency response of the vehicle lateral dynamics, the frequency sweep

tests are conducted at the velocities of 20mph, 40mph and 60mph. The steering

actuator is given a sinusoidal reference command ranging in frequencies from 0.1Hz

to 2.5Hz. The recorded output signals are the lateral accelerations and the yaw rates

of the tractor and the semitrailer, the articulation angle and the front steering wheel

angle.

The system parameters are obtained as follows. Measured dimensional parameters

are the distance between tractor’s front wheel axle and rear wheel axle (lf1 + lr1 =

5.35m), the distance from tractor’s rear axle to the fifth-wheel (lr1 − dr1 = 3.67) and

the distance from the fifth-wheel to the semitrailer’s rear axle (df2 + lr2 = 10.22m).

The inertia parameters are provided by the manufacturer: the mass of the trac-

tor (m1 = 7956Kg) and the mass of the empty semitrailer (5682Kg). The semitrailer

is loaded with 5000Kg of concretes at the front end, therefore, the total mass of

the semitrailer is m2 = 10682Kg. Based on some heavy vehicle design specifications

and guidelines, the location of the center of gravity of the tractor and that of the

semitrailer are estimated. From the estimation and the dimensional measurements,

we have lf1 = 1.68m, lr1 = 3.67m, dr1 = 3.56m, lr2 = 7.32m and df2 = 2.90m. The

rest of the parameters such as the moment of inertia of the tractor (I1
zz) and semi-

trailer (I2
zz), the tire cornering stiffness (Cαf , Cαr and Cαt) and the location of the

accelerometer on the tractor from the estimated c.g. of the tractor (ds) are estimated

by comparing the frequency response of the linear model at the velocities of 20mph,
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Figure 22: Frequency Response of the Tractor-Semitrailer System from the Steer-

ing Wheel to the Yaw Rate of the Tractor; Lines: Model; Marks: Experiments;

20mph: Solid and *; 40mph: Dashed and o; 60mph: Dash-Dot and +

40mph and 60mph with that of the experimental data at the corresponding velocities.

The estimated parameters are as follows: I1
zz = 32000Kg ·m2, I2

zz = 482790Kg ·m2,

µ = 0.75, Cαf = µ ∗ 236904N/rad, Cαr = µ ∗ 947618N/rad, Cαr = µ ∗ 947618N/rad

and ds = −1m.

As shown in Figs. 22–25, the model, with the above system parameters, matches

pretty closely the experimental frequency responses from the steering input to the yaw

rate of the tractor, the yaw rate of the semitrailer, the acceleration at the tractor’s

accelerometer and the articulation angle. These provide us with confidence in design-

ing model based controllers. The experimental data deviates from the linear model

at higher frequencies due to the unmodeled dynamics of the road-tire interaction and

the suspension system, among others.
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8.4 Closed-loop test and comparison of three controllers

In this section, we first describe some implementation issues of controllers and then

present the experimental results of the three different controllers.

8.4.1 Implementation issues

As we can see from the vehicle model and the sensors installed, not all the system state

variables are measurable. The unmeasured state variables have to be synthesized,

estimated or observed from the sensor measurements.

Controller A needs two variables: ys and ẏs. The system output ys is given by

Eq. (11) where yr and εr are obtained from the front and rear magnetometer mea-

surements based on the geometry [26]. ẏs is obtained by numerically differentiating

ys.

In addition to the variables that controller A uses, controller B needs two more

variables:Vx and ε̇d. The vehicle longitudinal speed Vx is measured and ε̇d is obtained
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from the equation

ε̇d = ε̇1 − ε̇r (102)

where the tractor yaw rate ε̇1 is measured by gyro installed on the tractor and ε̇r is

obtained by numerically differentiating εr. The accuracy of this approach is readily

verified from the experimental data as explained in subsection 8.4.2.

Nonlinear control algorithms such as controller C depend on the lateral errors

measured at the front and rear ends of the tractor as well as many other sensors

primarily for the computation of the feedback linearization term.

While feedback linearization is a sound analytical idea, the computation of the

necessary terms requires many state variables which must be measured or estimated.

Controller C needs 4 more variables than controller B: Vy, ε1, εf and ε̇f . The tractor

yaw rate ε̇1 and the articulation angle εf are measured. The articulation angle rate,

ε̇f , is obtained from

ε̇f = ε̇2 − ε̇1, (103)

where the yaw rates of the tractor and the semitrailer, ε̇1 and ε̇2, are measured. As for

the estimation of the lateral velocity of the tractor’s center of gravity, Vy, the lateral

error measurements may be fused with the output of the lateral accelerometer, but it

is not very satisfactory due to the bias and high noise level in the acceleration signal.

However, noticing the relation,

ẏs = Vy + εrVx + dsε̇r, (104)

we can estimated tractor’s lateral velocity from Eq. (104) as

Vy = ẏs − εrVx − dsε̇r, (105)

where all the signals on the right hand side of the equation can be obtained as

explained in above.

Besides, all the signals but the magnetometer measurements at the front and

rear bumper of the tractor are filtered using lowpass filters. While the lateral error
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measurements by magnetometers are inherently intermittent, they are least contam-

inated by measurement noise, which is one of reasons that the implementation of

linear control algorithms has been relatively easy compared to that of nonlinear con-

trol algorithms.

8.4.2 Experimental results

The major control objectives in vehicle lateral control are to maintain small lateral

errors and to ensure passenger comfort. While there are not many passengers on

tractor-semitrailer vehicles, the lateral acceleration and jerk must remain at reason-

able levels. In robust nonlinear control algorithms, there is no explicit method of

incorporating controller performance into the controller design. The smoothness of

the steering input is one of the most important aspects from the viewpoint of public

acceptance of automated driving. Most passengers do not like oscillatory steering mo-

tions even when it does not adversely affect the lateral acceleration and jerk. Thus,

the final tuning of controller parameters must be performed by experiments. Selec-

tion of these parameters requires a good understanding of vehicle dynamics, control

objectives, and limitations of the actuators.

The test track at Crows Landing consists of three curved sections extended by

two straight sections. The radii of the curved sections are 800m. Figures 26–31 show

the experimental results of controllers A, B and C. The data were collected on the

same day to ensure the same experimental environments such as the road condition,

the vehicle condition the wind disturbance.

During experiments, the vehicle longitudinal velocity, Vx, was controlled by the

driver. In Figs. 26, 28 and 30, plots (a)–(f) show the vehicle longitudinal speed Vx,

the estimated yaw rate ε̇d, the steering angle command at the handwheel (δf ) which

is the output of the controller, the lateral tracking error at the tractor’s front bumper

ys1 (solid line) and rear bumper ys2 (dashed line), the yaw rate of the tractor ε̇1 and

the orientation of the tractor in the road coordinate system εr, respectively.
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Figure 26: Experimental results of Controller A (1)
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Figure 27: Experimental results of Controller A (2)
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Figure 28: Experimental results of Controller B (1)
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Figure 29: Experimental results of Controller B (2)
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Figure 30: Experimental results of Controller C (1)
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Figure 31: Experimental results of Controller C (2)
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In the experiments with controller A, the vehicle longitudinal speed at the curved

section was about 49mph. Noting that the radius of the curve was 800m, the desired

yaw rate was about 0.027rad/s. The estimated desired yaw rate in plot (b) of Fig. 26

is very close to this value, which verifies our estimation method.

In plot (c)’s of Figs. 26, 28 and 30, at the initial stage when Vx = 0mph, there is a

large steering action. This is because, when we switch to the automatic driving mode,

the inner-loop controller calibrates the front steering wheel to the “zero” position,

i.e., the straight driving position, before turning on the lateral controller, and for the

inner-loop controller to calibrate the steering wheel, the driver is asked to manually

give a large steering angle to let the front steering wheel to pass through the “zero”

position. In plot (d)’s of Figs. 26, 28 and 30, the lateral tracking error at the front

and rear bumpers at the straight sections are nonzero. This is because, the current

calibration algorithm is unreliable and often finds a wrong “zero” position. Whenever

this happens, the steering command has to maintain a nonzero value at the straight

road to let the front steering wheel point the actual “zero” position. The nonzero

steering command is achieved by forcing the vehicle to have a nonzero lateral tracking

error. Therefore, had the calibration algorithm found the correct “zero” position, the

“ideal case”, the actual tracking error should have been the data shown by the plot

(d)’s minus the steady state tracking error at the straight sections as shown in the

lower plots of Figs. 27, 29 and 31. In the following, whenever we say a lateral tracking

error, we refer to the “ideal” case.

The upper plots of Figs. 27, 29 and 31 show the steering action of the steering

column relative to the alleged “zero” position measured by the encoder.

With controller A, the maximum velocity we could reach was about 50mph. It is

linear and is very sensitive to the control parameters. Furthermore, the parameter

range for which the controller can stabilize the vehicle lateral control system is rather

small. In other words, the controller A is simple but not robust.

With controller B, the linear controller with a feedforward compensation, the max-
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imum velocity we could reach while maintaining a reasonable performance such as

small oscillation was bout 55mph. It was not as sensitive as controller A to the con-

troller parameters. Furthermore, controller B shows improved steady state tracking

error (16cm) at the curved sections than controller A (20cm).

Controller C, the sliding mode controller, was tested at speeds as high as 60mph

without letting the vehicle go unstable or go out of the magnetometer measurement

range. For the data shown in Fig. 31, the steady state lateral tracking error is about

12cm, the best among the three controllers.

9 Conclusions

In this report, we present lateral control, both control algorithm design and imple-

mentation, of heavy vehicle systems in the context of the automated highway systems.

The major accomplishments of this research are summarized below.

Advanced robust control: To quantify lateral tracking error, a road coordinate

system is defined, and to model the system output mimicing a human driver, a two-

sensor scheme is introduced. The output dynamics is given in the road coordinate

system.

Five controllers, a sliding mode controller, an adaptive robust controller, a nonlin-

ear robust feedback linearization controller, a nonlinear loop-shaping controller and a

linear robust feedback controller with a feedforward compensation, are designed and

different controllers are compared by simulations whenever possible.

The sliding mode controller provides the basic robust stability. However, as the

model uncertainty increases, the performance of the closed-loop system degrades dra-

matically. In the presence of parametric uncertainties in addition to the dynamical

model uncertainties, the adaptive robust controller, by taking advantages of both ro-

bust and adaptive control techniques while overcoming their shortcomings, effectively

lowers the control gain and improves the system performance.
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we presented a new nonlinear robust controller for lateral control of tractor-

semitrailer heavy vehicles. The new approach is to directly synthesize the robust-

ness term based on a quadratic Lyapunov function. The control law resembled the

ultimate bounded control approach. It was compared with another nonlinear robust

controller based on sliding mode control. The design of robust nonlinear controllers

was based on the Lyapunov’s stability theorem and therefore they were robustly sta-

ble controllers. In either approach, feedback linearizaiton played a key role. The

robust performances are usually achieved by fine tuning of controller parameters by

simulations or experiments. The structure of the RFLC controller, however, suggests

that there is a possibility of optimally choosing controller parameters in the design

stage.

The nonlinear robust controller based on feedback linearization (RFLC) directly

synthesizes the robustness term based on a quadratic Lyapunov function and it re-

sembles the sliding mode controller. They are, however, fundamentally different in

the ways of achieving robust stability. The two controllers are compared in the terms

of their structure, the working principles and relative ease of tuning control parame-

ters by simulations. In either approach, feedback linearizaiton played a key role. The

robust performances are usually achieved by fine tuning of controller parameters by

simulations or experiments. The structure of the RFLC controller, however, suggests

that there is a possibility of optimally choosing controller parameters in the design

stage.

By explicitly taking into account the steering subsystem dynamics and dynami-

cally extending the systems to reduce chattering and prevent saturation in the front

steering wheel, a robust controller is designed based on backstepping and modified

robust control design approach. Simulation results show the effectiveness of the pro-

posed controller in neutralizing the high control gain nature of robust controllers and

improving the closed-loop performance.

An analogy between the vehicle lateral control system and a mechanical system
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with a Coulomb friction is identified. Motivated by the friction compensation prac-

tices for the latter, feedforward compensators, a fixed again one and an adaptive one,

are designed to enhance the linear feedback controllers in achieving a better tracking

without sacrificing other performances. It is also pointed out that the nonlinear con-

trollers actually involve the feedforward compensator corresponding to the fixed gain

case. It is concluded that a linear robust feedback controller with a feedforward com-

pensation of the road disturbance is a mid-point in terms of ease of implementation

and control performances.

Implementation. It is shown that the sliding mode controller consists of three

parts, linear feedback control term, a feedforward compensation term and a non-

linear feedback linearization term, and experimentally compared three controllers, a

linear controller (controller A), a linear controller with a feedforward compensation

(controller B) and a sliding mode controller (controller C). The comparison of exper-

imental results of controller A and B not only verifies the results of section 7 that

the feedforward compensation term in the feedback controller improve steady state

tracking error without sacrificing system performance, but also shows that the feed-

forward compensation lifts the performance limit of the linear feedback controller and

improves performance robustness to the control parameters. It is also shown that the

sliding mode controller may provide as good performance as linear controllers.

It is, however, noted that the implementation of nonlinear controllers such as a

sliding mode controller are much more complicated than that of linear controllers.

Therefore, we conclude that the linear feedback controller with a feedforward com-

pensation is a middle point between linear controllers and nonlinear controllers in

terms of ease of implementation and control system performance, among the three

controllers compared in this study. Finally, we note that the performance under

linear control may be significantly improved by introducing more terms for better

loop-shaping.
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A Nonlinear Control Model of a Tractor-Semitrailer

Vehicle System in the Vehicle Coordinate Sys-

tem

The control model of a tractor-semitrailer vehicle in the vehicle coordinate system is

given by

M(q)q̈ + c(q, q̇, Vx) = 2Cαf (1, lf1, 0)T δf (106)

where q = (
∫

Vy, ε1, εf )
T ,

M(q) =




m1 + m2 −m2(dr1 + df2 cos εf ) −m2df2 cos εf

−m2(dr1 + df2 cos εf ) I1
zz + I2

zz + m2(d2
r1 + d2

f2) + 2m2dr1df2 cos εf I2
zz + m2d

2
f2 + m2dr1df2

−m2df2 cos εf I2
zz + m2d

2
f2 + m2dr1df2 I2

zz + m2d
2
f2




(107)
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c1(q, q̇, Vx) = (m1 + m2)Vxε̇1 + m2df2(ε̇1 + ε̇f )2 sin εf

+
2
Vx

(Cαf + Cαr + Cαt)Vy +
2
Vx

(lf1Cαf − lr1Cαr − (dr1 + df2 + lr2)Cαt)ε̇1

− 2
Vx

(df2 + lr2)ε̇f − 2Cαtεf

(108)

c2(q, q̇, Vx) = −m2(dr1 + df2 cos εf )Vxε̇1 −m2df2Vy ε̇1 sin εf − 2m2dr1df2ε̇1ε̇f sin εf −m2dr1df2ε̇
2
1 sin εf

+
2
Vx

(lf1Cαf − lr1Cαr − (dr1 + df2 + lr2)Cαt)Vy +
2
Vx

(l2f1Cαf + l2r1Cαr + (dr1 + df2 + lr2)2Cαt)ε̇1

+
2
Vx

(df2 + lr2)(dr1 + df2 + rr2)Cαtε̇f + 2(dr1 + df2 + lr2)Cαtεf

(109)

c3(q, q̇, Vx) = −m2df2Vy ε̇1 sin εf −m2df2Vxε̇1 cos εf + m2dr1df2ε̇
2
1 sin εf

− 2
Vx

(df2 + lr2)CαtVy +
2
Vx

(df2 + lr2)(dr1 + df2 + lr2)Cαtε̇1

+
2
Vx

(df2 + lr2)2Cαtε̇f + 2(df2 + lr2)Cαtεf

(110)

with c = (c1, c2, c3)
T .

B Linear Model of a Tractor-Semitrailer Vehicle

System in the Road Coordinate System

The linear model of a tractor-semitrailer in the road coordinate system is given by

Mrq̈r + Drq̇r + Krqr = Frδf + E1ε̇d(t) + E2ε̈d(t) (111)

where qr = (yr, εr, εf )
T ,

Mr =




m1 + m2 −m2(dr1 + df2) −m2df2

−m2(dr1 + df2) I1
zz + I2

zz + m2(dr1 + df2)2 I2
zz + m2d

2
f2 + m2dr1df2

−m2df2 I2
zz + m2d

2
f2 + m2dr1df2 I2

zz + m2d
2
f2


 (112)
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Dr(1, 1) =
2

Vx

(Cαf + Cαr + Cαt)

Dr(1, 2) =
2

Vx

(lf1Cαf − lr1Cαr − (dr1 + df2 + lr2)Cαt) + (m1 + m2)Vx

Dr(1, 3) = − 2

Vx

(df2 + lr2)Cαf

Dr(2, 1) =
2

Vx

(lf1Cαf − lr1Cαr − (dr1 + df2 + lr2)Cαt)

Dr(2, 2) =
2

Vx

(l2f1Cαf + l2r1Cαr + (dr1 + df2 + lr2)
2)Cαt −m2(dr1 + df2)Vx

Dr(2, 3) =
2

Vx

(df2 + lr2)(dr1 + df2 + lr2)Cαt

Dr(3, 1) = − 2

Vx

(dr2 + lr2)Cαt

Dr(3, 2) =
2

Vx

(df2 + lr2)(dr1 + df2 + lr2)Cαt −m2df2Vx

Dr(3, 3) =
2

Vx

(df2 + lr2)
2Cαt

(113)

Kr =




0 −2(Cαf + Cαr + Cαt) −2Cαt

0 −2(lf1Cαf − lr1Cαr − (dr1 + df2 + lr2)Cαt) 2(dr1 + df2 + lr2)Cαt

0 2(df2 + lr2)Cαt 2(df2 + lr2)Cαt




(114)

Fr =




2Cαf

2Cαf lf1

0


 (115)

E1 =




− 2
Vx

(lf1Cαf − lr1Cαr − (dr1 + df2 + lr2)Cαt)− (m1 + m2)Vx

− 2
Vx

(l2f1Cαf + l2r1Cαr + (dr1 + df2 + lr2)
2)Cαt + m2(dr1 + df2)Vx

− 2
Vx

(df2 + lr2)(dr1 + df2 + lr2)Cαt + m2df2Vx


 (116)
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E2 =




m2(dr1 + df2)

−(I1
zz + I2

zz + m2(dr1 + df2)
2)

−(I2
zz + m2d

2
f2 + m2dr1df2)


 (117)
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