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AUTOMATIC QUBIT CHARACTERIZATION AND GATE
OPTIMIZATION WITH QubiC

Yilun Xu, Gang Huang∗, Jan Balewski, Alexis Morvan, Kasra Nowrouzi, David I. Santiago
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Ravi K. Naik, Brad Mitchell, Irfan Siddiqi
University of California at Berkeley, Berkeley, CA 94720, USA

ABSTRACT

As the size and complexity of a quantum computer increases, quantum bit (qubit) characterization and
gate optimization become complex and time-consuming tasks. Current calibration techniques require
complicated and verbose measurements to tune up qubits and gates, which cannot easily expand to the
large-scale quantum systems. We develop a concise and automatic calibration protocol to characterize
qubits and optimize gates using QubiC, which is an open source FPGA (field-programmable gate
array) based control and measurement system for superconducting quantum information processors.
We propose mutli-dimensional loss-based optimization of single-qubit gates and full XY-plane
measurement method for the two-qubit CNOT gate calibration. We demonstrate the QubiC automatic
calibration protocols are capable of delivering high-fidelity gates on the state-of-the-art transmon-type
processor operating at the Advanced Quantum Testbed at Lawrence Berkeley National Laboratory.
The single-qubit and two-qubit Clifford gate infidelities measured by randomized benchmarking are
of 4.9(1.1)× 10−4 and 1.4(3)× 10−2, respectively.

Keywords FPGA · gateware · quantum gate calibration · qubit control · NISQ · engineering software

1 Introduction

Quantum computers, which harness and exploit the laws of quantum mechanics to process information, have the
potential to revolutionize computation by making solvable certain types of classically intractable problems [1, 2]. In the
near term noisy intermediate-scale quantum (NISQ) computing era, a lot of quantum algorithms have been developed
on a broad range of applications [3–5]. Quantum algorithms are most commonly described by quantum circuits, which
consist of quantum gates performed on one or more quantum bits (qubits). The calibration of a quantum processor is
the process of finding optimal control parameters to construct quantum gates to steer the evolution of quantum systems.
Since many of the most severe errors emerge from imprecise calibration and system drift, qubit characterization and
gate optimization are essential for successful to quantum computations [6, 7].

Initial setup of a physical multi-qubit system is a complex procedure which involves multiple instruments and multiple
optimizations [8, 9]. As the size and complexity of the quantum system increases, the manual qubit characterization and
gate optimization will be a time-consuming and not extensible task. The physical qubit must be carefully calibrated
routinely because quantum information processors are sensitive to the environment [10] and the control hardware can
have slow drift with time [11] so as to impact the gate fidelity. However, existing calibration techniques [12–15] require
complicated and verbose measurements to tune up multiple parameters of each gate independently, which cannot easily
expand to the large-scale quantum systems. Furthermore, a concise calibration protocol has the possibility to be fully
automated, which is a very desired feature for the multi-qubit system.

Here we present an automatic qubit characterization and gate optimization method with QubiC (Qubit Control) system
to tackle the calibration challenges and keep pace with rapidly evolving classical control requirements. QubiC system is
an open source, FPGA (field-programmable gate array) based, control and measurement system for superconducting
quantum information processors [16,17]. The system consists of electronics hardware, FPGA gateware, and engineering
software. Leveraging the state-of-the-art FPGA technology, QubiC provides fully parametric waveform generation,
analog response acquisition and manipulation, and classical signal post-processing. QubiC allows researchers to control
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all levels of the software stack, which enables the execution of a broader class of computation experiments while also
facilitating the implementation co-design at each level of the control stack in next generation systems.

2 Single-qubit Characterization and Gate Optimization

The qubit bias point and the waveform of pulses driving gates on a qubit require per-qubit calibration. The calibration
values depend on the various details of the chip manufacturing process, the readout and control circuitry, and in-fridge
connectivity. Every qubit requires an initial detailed calibration, supplemented by a frequent re-calibration process. An
arbitrary single-qubit U3-gate, parametrized by 3 arbitrary angles, can always be decomposed into a sequence of two
rotations of the quantum state by 90 deg along the X-axis and 3 virtual-Z gates with 3 arbitrary angles [18]. Since the
virtual-Z gate is applied in software it does not require a calibration. Therefore, obtaining a high fidelity X(90) gate 2 is
the primary objective of the single-qubit calibration, allowing for an arbitrary U3-gate to be executed on this qubit.

We are focusing on superconducting transmon-type qubits [19], readout via coupling capacitance, and controlled by a
5-6 GHz microwave pulses. The 4 initial calibration parameters, aka qubit bias, are: qubit frequency, readout resonator
frequency, qubit drive amplitude, and readout drive amplitude. A typical qubit driving pulse induces Rabi oscillations
between the ground and the 1st excited state. The functional form of the Rabi oscillations is expected to follow the
cosine shape with the amplitude decaying exponentially

P (t) = C +A exp(−τt) sin(2πft+ φ0) (1)

where t is the length of the the Rabi waveform and C,A, τ, f, φ0 parameters are fitted to the data.

QubiC contains the software and established procedures allowing for the initial calibration and re-calibration of the
X(90) and X(180) gates.

The initial survey of the response of each qubit is done by sequentially exciting the resonator and next, by inducing a
mensurable Rabi oscillations of the qubit, as shown in Fig. 1a. The resonator readout amplitude is chosen based on
linearity of the qubit response and is set at the possible high value to achieve good separation of the 0- and 1-states in
the IQ-plane but not too high to avoid cross-talk between the qubits or populating the the 2nd quantum state [20].

0 50 100 150 200
Rabi pulse width (ns)

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n

0 50 100 150 200
Rabi pulse width (ns)

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n

Figure 1: Rabi oscillations induced on a qubit fitted with shape defined in eq. 1. Left: A crude initial calibration of the
Rabi waveform results with a low amplitude, quickly decaying Rabi oscillations. The poor agreement of measured data
(+) with the fitted shape (line) results with a large χ2. Right: The calibration from autoRabi optimizer yields much
better signal. The maximal observed population is not reaching 1.0 because of the intrinsic hardware limitations. The
readout correction has not been applied.

2.1 Automatic X(90) Gate Calibration

The qubit-resonator system responds to the qubit and the resonator driving pulses in a complex, non-linear fashion.
Often, the 3 parameters: qubit frequency (fq), Rabi drive amplitude (AR), and readout frequency (fr) are optimized
sequentially, what prevents adjustment of say fr while optimizing for fq , etc.

2In the Bloch sphere representation the X(90) and X(180) gates rotate qubit state around the X-axis by 90 and 180 deg,
respectively.
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We develop the autoRabi procedure which aims to calibrate the X(90) gate by simultaneous adjustment of all 3
parameters. autoRabi minimizes the χ2-type loss function (Ltot) over the vector of the unit-less quantities of concern
(
−→
∆)
Ltot = LF + LAC + LT + LBIC (2)

=
∑

∆2
i (3)

−→
∆ =

[√
χ2
NDF ,

|A| − 0.5

0.03
,
C − 0.5

0.05
,

TX(90)

ns − 32

4.0
,
σ (δBIC(1))

0.5
,
σ (δBIC(3))

0.5
,
σ (δBIC(4))

0.5

]
(4)

The total loss Ltot is composed of 4 unit-less terms:

• LF term assures the measured population matches the expected Rabi shape (eq. 1). If the fit is poor, as in
Fig. 1a, this term is large and dominates the loss.

• LAC expresses our preference for maximizing the Rabi amplitude (A) and the equal average population (C) of
0- and 1-states. The normalization constants of 0.03 and 0.05 are found empirically and are meant to reflect a
subjective trade-off between the goodness of the fit and the magnitude of the Rabi contrast.

• LT enforces the quantum state is rotated by 90 deg by the Rabi waveform of the length of 32 ns. The choice of
normalization results with a 4 ns deviation of the Rabi period (equivalent to 360 deg rotation) is as important
as a change of the χ2

NDF by 1 unit.
• LBIC ensures the hypothesis of the existence of 2-and-only-2 clusters in the IQ-plain is the most probable

hypothesis. It is computed from Bayesian Information Criterion (BIC) [21].
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Figure 2: Top: Bayesian Information Criterion BICk as function of assumed number of clusters (k) in the IQ-plane. 3
columns correspond to 3 types of data-sets with the true 1, 2, and 3 clusters, respectively. BIC has the minimum for the
correct hypothesis of number of clusters. Bottom: raw IQ-pairs data-sets used as inputs, the log of counts is represented
by the gray scale.

The BICk is a criterion for model selection among a finite set of models; the model with the lowest BIC is the most
likely. In our case we vary the number of clusters (k), as shown in Fig. 2(top). Since the magnitude of BIC is very large
and also depends on the sample size a regularization is needed before it can be added to the total loss Ltot in a robust
fashion. We decided to combine the 3 BIC-based constraints

BIC2 < BICk for k ∈ [1, 3, 4] (5)
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using the sigmoid function σ(.) applied on the scaled difference of BICs

σ(x) =
1

1 + e−x
(6)

δBIC(k) = (BICk −BIC2)/10 (7)

where the factor of 10 is chosen to attenuate the changes of BIC with k. Combining all the above leads to LBIC which
vanishes if all constraints in eq. 5 are meat, otherwise LBIC never exceeds the 4 units of χ2

NDF to not overwhelm the
Ltot.
To summarize, this definition of the total loss Ltot simultaneously pushes the qubit bias point toward (i) fit to the Rabi
spectrum is good (χ2

NDF ∼ 1), (ii) Rabi contrast is good(A ∼ C ∼ 0.5), (iii) the Rabi period is on target, (iv) the
2-and-only-2 clusters are most likely in the measured IQ-pairs distribution.

The muti-dimensional optimization procedure is using COBYLA 3 minimizer [22]. It requires a prior knowledge of the
approximate qubit bias point at which a recognizable Rabi oscillations are observed, as shown in Fig. 1a. We have
bracket of the range of changes of the qubit and readout frequencies (fq, fr) at 2 MHz, and the Rabi drive amplitude
change (AR) at 0.3 of the full scale. For each iteration of COBYLA the following steps are executed:

1. COBYLA proposes a new set of values for: fq, fr, AR,
2. QubiC generates appropriate wave-forms, drives the qubit for the fixed number of shots, records and saves to

discs the raw IQ-pairs,
3. 4 GMM 4 [23] fits are executed, assuming k=[1..4] clusters, needed to collect δBIC(k) information,
4. GMM(k=2) is used to digitize the IQ-pairs into 0 or 1 bits and the probability of the 1-state is computed as a

function of the length of the Rabi waveform,
5. Rabi oscillation parameters (A,C) and the χ2

NDF are extracted from the fit to the measured data,
6. value of loss Ltot is computed based on eq. 2 and feed back to the next iteration of COBYLA.

Typically, autoRabi converges in about half an hour, after 40 iterations, each requiring QubiC to take 400 shots for 50
widths of the Rabi waveform. A typical improvement in the Rabi contrast is illustrated in Fig. 1b.

2.2 Fine Tuning of X(90) and X(180) Gates

The fq, fr, AR values found by the autoRabi define the X(90) gate with a precision of 1-2 deg of the state rotation.
To achieve a better accuracy we stack large numbers of the same gate and adjust the amplitude AR, while keeping
the duration of the gate constant 5. We prepare the initial qubit state to be 0 and stack the X(90) gate N*4 times to
achieve a nominal identity gate. We sweep the AR values in the vicinity of the value from autoRabi and fit the measured
population probability with the sin-function. The optimal gate amplitude is found as the arg minimum of the fit, shown
as vertical red (dashed) line in Fig. 3a. The optimal amplitudes for X(90) and X(180) differ a little because of the
difference in the ratio of the length of the rising edge to the gate duration.

The single-gate calibration procedures discussed in this section can be performed using QubiC software stack and allow
for implementation of an arbitrary U3-gate. QubiC software also contains tools to calibrate the DRAG corrections [24],
fine-tune the qubit drive frequency with T2 Ramsey measurement, as well as measure T1 and T2 spin-echo.

The ultimate test of the fidelity of quantum gates is provided by the randomized benchmarking protocol and is discussed
in the following section 4.

3 Two-qubit Gate (CNOT) Calibration

3.1 Full Entanglement of Cross Resonance

Cross resonance (CR) is one of the methods to realize the two-qubit entanglement gate for the superconducting
fixed-frequency transmon qubits [25]. We optimize the CR pulse of the cosine edge envelope with fixed ramp length to
achieve maximal entanglement on the control and target qubits. To tune up a CR gate, we prepare the initial states of

3Constrained Optimization By Linear Approximation
4Gaussian Mixture Model
5Due to the QubiC hardware limitation any waveform length must be a multiplicity of 4 ns, tied to the fixed frequency of the

FPGA clock
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Figure 3: Stacking of 16 X(90) gates (left) and 16 X(180) (right) gates applied on the 0-state qubit is equivalent to an
identity-gate and allows for the fine-tuning of the waveform amplitude. The blue (solid) line is the initial value from
autoRabi, the red (dashed) line is the optimal amplitude.
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Figure 4: CR measurement to search for the full entanglement. One and three CR pulses are employed for coarse and
fine identification respectively. The optimal value is found as arg maximum of the parabola fit.

both qubits to be |0>, and then apply the CR gate, followed by the target qubit state projection onto X, Y, and Z axis.
The same process is repeated for the control qubit in |1>. We fix the CR pulse length and sweep the CR pulse amplitude,
resulting with 6 independent measurements which are combined into one value: the Bloch vector length |~R| of the
target qubit:

|~R| = 1

2

√
(X0 −X1)2 + (Y0 −Y1)2 + (Z0 − Z1)2, (8)

where X, Y, Z are the expectation values of the corresponding components of the target qubit, while the subscript
0, 1 are preparation states of the control qubit. The goal of the CR pulse amplitude sweeping is to achieve the full
entanglement, where |~R| is maximized. We can stack multiple CR pulses to make the |~R| curve sharper to find the
maximum more accurately. As shown in Fig. 4, we implement one CR pulse for coarse identification and stacked three
CR pulses for precise determination in the real measurement.
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Figure 5: Full XY-plane measurement schematic. Circuits are operated on the control qubit line and the target qubit
line. The gate rotation angle is in the unit of degree. M represents a measurement.
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Figure 6: Full XY-plane measurement (star points) and fitting (dashed lines) results. Four different colors represent four
basis states |00 >, |01 >, |10 >, |11 > of control and target qubits. We can see four unique patterns as a function of
rotation angle φ among the four basis states, which can be distinguished by curve fitting. Each data point is an average
of ∼2000 shots. The full XY-plane measurement and fitting only take ∼1.5 minutes.

3.2 Full XY-plane Measurement and Fitting of CNOT

The CR pulse of particular length and amplitude can set two qubits in the fully entangled state, but typically additional
single-qubit rotations are induced on each of the participating qubits. We need to attach a set of appropriate single-qubit
gates before and after the CR pulse to obtain the real CNOT gate. It is common practice to project the qubit state to
X/Y/Z axis for diagnosis. This is enough to evaluate if the state is good or not, but it would be good to gather more
information about the state to help the optimization. Here we develop a method called full XY-plane measurement,
which projects both qubits states onto the measurement axis at the same angle in the XY-plane, sweeps the angle, and
extracts the CNOT parameters from the curve fitting.

As shown in Fig. 5, firstly we need to prepare states for both control and target qubits. In general, the qubit state can be
randomly chosen, as long as it is not sitting at the south pole or north pole on the Bloch sphere. A CNOT gate with
zero initial values is employed after the state preparation. We then apply a virtual Z(φ) gate on a degenerate prepared
state for both the control and target qubits, followed by an X(90) gate for rotation, and we measure. Scanning the Z
phase (φ) will project both states to any angle on the XY-plane. By scanning over the full XY-plane, we spread the
noise among different angles, enabling us to extract the CNOT parameters from curve fitting by only executing one set
of measurement, as shown in Fig. 6.

We assume, the CNOT gate relates to CR gate as follows:

CNOT = IX(θ4) · ZZ(θ1, θ2) · CR · IZ(θ3), (9)

where the CR represents the unitary for the CR pulse. If we describe the IX, ZZ, and IZ terms in the matrix form, we
will have

IX(θ4) = I ⊗RX(θ4) =

(
1 0
0 1

)
⊗
(

cos θ42 −isin θ42
−isin θ42 cos θ42

)
, (10)
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Figure 7: Full XY-plane fitting schematic.

ZZ(θ1, θ2) = RZ(θ1)⊗RZ(θ2) =

(
e−i

θ1
2 0

0 ei
θ1
2

)
⊗

(
e−i

θ2
2 0

0 ei
θ2
2

)
, (11)

IZ(θ3) = I ⊗RZ(θ3) =

(
1 0
0 1

)
⊗

(
e−i

θ3
2 0

0 ei
θ3
2

)
, (12)

where θ1, θ2, θ3, and θ4, are ZI phase, IZ phase, ZX phase, and IX phase respectively. These four single-qubit
parameters around the CR pulse need to be calculated from the curve fitting. RX , RZ represent the single-qubit rotation
about the X, Z axis, while I is the identity gate. The symbol ⊗ denotes the tensor product between two single-qubit
rotation matrices. Since the CR pulse starting phase is not accumulated in the phase calculation, we add a constraint
θ2 + θ3 = 2π in order to use θ2 to cancel out θ3.

Now we take the inverse step of measurement schematic, adjusting the θ1, θ2, θ3, θ4 to find the curve to match the
measurement as shown in Fig. 7. In the real measurement, we start with all the parameters (θ1, θ2, θ3, θ4) equal to 0,
as if the CR is a CNOT. The fitting of the parameters will tell us how far away the CR is from the real CNOT. If we
describe the CR matrix as

CR = ZZ(θF1 , θ
F
2 ) · IX(θF4 ) · CNOT · IZ(θF3 ), (13)

the CNOT matrix can be derived as

CNOT = IX−1(θF4 ) · ZZ−1(θF1 , θ
F
2 ) · CR · IZ−1(θF3 ) = IX(−θF4 ) · ZZ(−θF1 ,−θF2 ) · CR · IZ(−θF3 ), (14)

where the superscript F represents the fitting parameters. The negative sign before the fitting parameters means that the
final θ parameter will be the difference between the initial value and the fitted value, that is θ = θinit − θfit. As shown
in Fig. 6, the measurement result agrees well with the matrix calculation, so that the CNOT parameters can be extracted
from the curve fitting by only implementing one set of measurement. It is noted that the full XY-plane measurement
method will yield two sets of parameters for the CNOT gate, with a global phase of π/2 between them:

CNOT = IX(θ4) · ZZ(θ1, θ2) · CR · IZ(θ3), (15)

ei
π
2 CNOT = IX(−θ4) · ZZ(θ1 − π, θ2 − π) · CR · IZ(θ3 + π). (16)

4 Validation by Randomized Benchmarking

In order to validate the performance of the automatic qubit characterization and gate optimization protocol, we implement
randomized benchmarking (RB) [26] sequences on an 8-qubit quantum information processor [27] at the Advanced
Quantum Testbed (AQT) in Lawrence Berkeley National Laboratory (LBNL), and evaluated the single-qubit and
two-qubit gate fidelities. The streamlined randomized benchmarking (SRB) [28] is the standard protocol to characterize
the probability of an error occurring during a gate, while the interleaved randomized benchmarking (IRB) [29] enhances
SRB by estimating the average gate fidelity of specific gates. The extended randomized benchmarking (XRB) [30]
enables us to distinguish unitary errors from stochastic errors in combination with SRB. As an illustration, the single-
qubit X(90) and two-qubit CNOT gates are optimized using QubiC automatic calibration protocol, and evaluated by
SRB, IRB, and XRB, as shown in Fig. 8. Table 1 illustrates the single-qubit and two-qubit Clifford gate infidelities and
errors, which demonstrate that the automatic calibration protocol has the capability to deliver high-fidelity gates on
state-of-the-art processors.

5 Conclusion

We develop an efficient and systematic method to automatically characterize qubits and optimize gates with QubiC,
which is a customized FPGA-based Qubit Control system at LBNL. For the single-qubit calibration, the mutli-
dimensional loss-based optimization is proposed to characterize each qubit on the quantum processor. With the stacking
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(a) Single-qubit Streamlined RB.
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(b) Single-qubit Interleaved RB.
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(c) Single-qubit Extended RB.
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(d) Two-qubit Streamlined RB.
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(e) Two-qubit Interleaved RB.
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(f) Two-qubit Extended RB.

Figure 8: RB results. We perform three kinds of RB protocols (SRB, IRB, XRB) on single qubit (Q3) and two qubits
(Q2 and Q3) respectively. In each plot, each point corresponds to a measurement result of a random quantum circuit.
The SRB and IRB curves are fitted with an exponential decay function Apm, while XRB curve is fitted with the function
of Aum, where p or u is the decay parameter. A is a constant which encapsulates the common state preparation and
readout errors. The sequence length m is expressed in terms of Clifford gates. The RB data collected with QubiC are
passed to the True-Q software [31] to fit the data and extract the parameters.

Table 1: Gate infidelities and errors.

Gate Gate Infidelity † Process Infidelity Unitary Error Stochastic Error

Single-qubit Clifford 4.9(1.1)× 10−4 1.3(1)× 10−3 1.9(9)× 10−4 1.2(1)× 10−3

Two-qubit Clifford 1.4(3)× 10−2 3.5(2)× 10−2 1.7(2)× 10−2 1.7(1)× 10−2

† The gate infidelity was calculated as 3
4
(1− pIRB

pSRB
), where pIRB and pSRB are IRB and SRB decay parameters

of Apm curves [29].

of consecutive identical gates, the drive amplitude is optimized to finely tune the single-qubit gate. For the two-qubit
CNOT gate calibration, we stack multiple CR pulses and sweep CR pulse amplitude to achieve the full entanglement
of the two qubits. We propose a full XY-plane measurement to project the qubit state to any angle on the XY-plane,
and extract the CNOT parameters from curve fitting by only implementing one set of measurement. The automatic
qubit characterization and gate optimization protocols are validated by performing RB sequences on a superconducting
quantum information processor. The measurement results demonstrate our method is capable of delivering high-fidelity
gates on state-of-the-art processors.
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