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Abstract

Imaging of the living human brain is a powerful tool to probe the interactions between brain, gut
and microbiome in health and in disorders of brain—gut interactions, in particular IBS. While
altered signals from the viscera contribute to clinical symptoms, the brain integrates these
interoceptive signals with emotional, cognitive and memory related inputs in a non-linear fashion
to produce symptoms. Tremendous progress has occurred in the development of new imaging
techniques that look at structural, functional and metabolic properties of brain regions and
networks. Standardisation in image acquisition and advances in computational approaches has
made it possible to study large data sets of imaging studies, identify network properties and
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integrate them with non-imaging data. These approaches are beginning to generate brain
signatures in IBS that share some features with those obtained in other often overlapping chronic
pain disorders such as urological pelvic pain syndromes and vulvodynia, suggesting shared
mechanisms. Despite this progress, the identification of preclinical vulnerability factors and
outcome predictors has been slow. To overcome current obstacles, the creation of consortia and the
generation of standardised multisite repositories for brain imaging and metadata from multisite
studies are required.

INTRODUCTION

Functional brain imaging research in gastroenterology has allowed for improved insight into
spontaneous and evoked brain features and into the role of brain—gut interactions in health
and disease.1? Until recently, the focus of brain imaging research in gastroenterology has
been to gain a better understanding of the pathophysiology of disorders of brain-gut
interactions (DBGI),3 also known as functional gastrointestinal disorders.14> DBGIs are
defined as a group of disorders classified by the presence of GI symptoms related to any
combination of motility disturbance, visceral hypersensitivity, altered mucosal and immune
function, altered gut microbiota and altered central nervous system (CNS) processing in the
absence of detectable organic disease.> Common DBGls include IBS, functional dyspepsia
(FD), chest pain of oesophageal origin and functional heartburn. There is considerable
overlap of the DBGIs with each other, with other visceral and somatic ‘functional’ pain
syndromes (including urological pelvic pain syndromes (UCPPS), vulvodynia, fibromyalgia
and chronic back pain36) and with psychiatric disorders, in particular anxiety and
depression.”®

The current diagnostic criteria for DBGIs, as well as illness severity, frequency, duration and
treatment efficacy all rely exclusively on subjective patient reports and not on objective
biomarkers.36 Regardless of the primary aetiology, these subjective symptom reports are
generated in part by the brain from interoceptive signals originating in the Gl tract, from
memories of such signals, and are extensively modulated by emotional (anxiety and
depression), cognitive (attention and expectation) and motivational factors. As pointed out
for all other chronic pain disorders, this translation of objective gut signals into subjective
symptoms is highly non-linear.910 Therefore, multimodal assessment of the brain’s structure,
function and biochemical and receptor properties has the potential to provide more objective
information about pathophysiology, treatment efficacy and biologically based patient
subgroups in these conditions by elucidating the contribution of multiple brain networks to
the subjective symptom reports. Indeed, numerous studies examining brain processing of
visceral sensations have been published in an attempt to identify biomarkers of these
disorders (see details in refs 71112) (reviewed in refs 2913). A comprehensive model of brain-
gut interactions incorporating reported alterations in brain networks (‘brain connectome”)
and networks of interacting systems in the gut (‘gut connectome’)14 is shown in figure 1.

In the last two decades, and in particular since the last Rome Working Team report on this
topic in 2009,” multimodal brain imaging research has greatly improved our understanding
of the brain—gut interactions in DBGlIs and identified commonalities and differences to other
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functional pain syndromes and psychiatric disorders. However, the ultimate goal of
identifying generally agreed on biomarkers for individual syndromes, patient stratification
for treatment trials and assessing treatment efficacy has not been fully realised.131° This
article will review the current literature on the use of brain imaging in DBGI and will
provide recommendations for future studies.

Understanding structural and functional brain alterations and their role in pathophysiology

of DBGils

Although it has long been assumed that specific brain functions, such as pain processing,
emotion and cognition are attributable to the isolated operations of single brain regions,
these processes are now viewed as resulting from the dynamic interactions of distributed
brain areas operating in several large-scale networks (figure 2; box 1). These networks and
their properties have been assessed by using neuroanatomical and neurophysiological studies
in animals,16 as well as different brain imaging techniques and analyses in humans.1’~24 In
humans, several types of networks have been reported: (A) functional brain networks based
on evoked responses’2 or intrinsic connectivity of the brain during rest,1719-212326-30 (B)
structural networks based on grey matter parameters3132 and white matter properties and (C)
anatomical networks based white matter connectivities.33 Both evoked and resting state
studies performed in patients with IBS have demonstrated abnormalities in regions, as well
as in resting state and task related networks related to default mode (DMN),3435 emotional
arousal,2336-38 central autonomic control 17182022 central executive control 172038
sensorimotor processing39-42 and salience detection.#344 (table 1). IBS-related alterations in
these networks have provided plausible neurobiological substrates for several information
processing abnormalities reported in patients with IBS, such as biased threat appraisal
(“catastrophising’) and expectancy of outcomes (eg, salience network), autonomic
hyperarousal (emotional arousal and central autonomic networks) and symptom-focused
attention (central executive network).1°

What are the correlations of these networks with non-brain imaging metadata and how can
these correlations help to gain insights into DBGI pathophysiology

In order to make conclusions about the involvement of structural and functional brain
alterations in the generation of clinical symptoms of IBS and other brain—gut disorders,
associations with subjective clinical (including symptom severity, abdominal pain and bowel
habits) and behavioural measures (including anxiety, depression, stress, early adverse life
events) should be correlated with these brain alterations. Even though such associations have
been reported in most published cross-sectional reports, effect sizes are generally small, and
causality has not been demonstrated for any of these parameters in longitudinal studies.
Reported associations of clinical, behavioural and biological measures with brain parameters
are shown in figure 2.4345-47 Several such associations of specific brain parameters with
genes related to the hypothalamic-pituitary-adrenal axis,*® catecholamine®® and 5-
hydroxytryptamine (5-HT) signalling*® and with gene expression profiles in peripheral
blood mononuclear cells® have been reported. An example of the association of a 5-HT3
receptor polymorphism with amygdala activation is shown in figure 3.4 Preliminary data
suggest correlations of regional brain structural differences with gut microbial taxa,>! even
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though similar to the situation with clinical metadata, it is currently not possible to draw
conclusions about causality from these results.

How do brain signatures differ between male and female subjects and what implications
do these differences have for DBGI pathophysiology and treatment

Sex is increasingly being understood as an important basic variable, influencing the quality
and generalisability of biomedical research.52 Sex differences in IBS-related structural and
functional brain alterations may relate to known sex differences in prevalence, symptom
presentation, comorbidities and response to treatment of patients with IBS.53 Although 1BS
neuroimaging research is predominately female specific or mixed sex,>* an increasing
number of studies have examined sex differences in 1BS-related brain alterations,
demonstrating differences among key regions in the emerging brain networks discussed
above (table 1). In addition, several studies have examined the role of variations in female
sex hormones (related to menstrual cycle or birth control pills) in neural pain processing,
which may explain some of the observed sex related differences.>>-58 These findings
highlight the importance of taking sex differences into account when reporting brain
imaging data in IBS. Reported structural and functional sex differences in several brain
networks may explain the greater prevalence of IBS in women and sex differences in
individual symptoms. Furthermore, sex differences in brain alterations may play a role in
different responsiveness of male and female patients to pharmacological and non-
pharmacological therapies.

Acquisition of multimodal brain imaging data

Several acquisition methods (summarised in table 2) are available to provide complementary
information on the structure and function of the brain in humans. When applied together,
this methodological approach is referred to as multimodal brain imaging.

Contributions to better understanding of the pathophysiology of DBGIs from positron
emission tomography (PET) ligand studies and MRI of brain metabolites (MR
spectroscopy)

Radioligand PET and MR spectroscopy studies have made it possible to elucidate the
involvement of specific neurotransmitter systems or brain metabolites in DBGI
pathophysiology but are only beginning to be applied in this context.

Radioligand PET studies—This technique allows quantification of regional availability
of receptor/transporter systems in the brain by injecting radioactively labelled ligands for
these systems in sub pharmacological doses. Limitations include the availability of ligands
(although they are available for most receptor systems of the major neurotransmitters, and
new ones are being developed continuously), the need for a specialised radiopharmaceutical
facility in close proximity to the study location and the involvement of radiation burden for
the subjects. Some ligands also allow quantification of endogenous release of the
corresponding neurotransmitter. For example, using [11C]-carfentanyl, Ly er a/ demonstrated
that prolonged painful gastric stimulation, contrary to a similar somatic pain stimulus, did
not provoke endogenous opioid release in pain responsive brain regions in healthy
volunteers.>9
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Most studies have compared regional availability of receptor/transporter systems between
DBGI patient populations and healthy controls (HCs). Jarcho er a0 studied neurokinin-1
receptor (NK-1R) availability in a small sample of IBS patients compared with age-matched
and sex-matched samples of HCs and patients with IBD. As shown in figure 4, patients with
gut inflammation showed a widespread reduction in NK-1R availability compared with HCs,
particularly in the basal ganglia, hippocampus, amygdala and cingulate subregions. In
contrast, in patients with IBS, reductions compared with HCs were only found in the
putamen and anterior middle portion of the anterior cingulate cortex (ACC) but did not reach
statistical significance. However, effect sizes were large, suggesting the lack of significance
could be driven by the small sample size.

Ly et a/found widespread increases in cannabinoid-1 receptor (CB1-R) availability in a
small sample of patients with FD compared with age-matched, sex-matched and body mass
index-matched HCs.61 More specifically, significant differences surviving multiple testing
correction, with large effect sizes, were found in subcortical (basal ganglia, amygdala and
brainstem) and cortical (insular, cingulate and prefrontal subregions) areas involved in pain
processing and modulation as well as control of appetite, food intake and nutrient tolerance.
These increases in CB1-R availability were stable after a naturalistic follow-up of on average
3 years in a subsample of the patients. Tominaga et af2 reported preliminary findings,
demonstrating increased serotonin transporter (SERT) availability in the midbrain and the
thalamus in patients with FD compared with HCs. In patients with FD, SERT availability in
these regions correlated with total Gl symptom and abdominal pain levels.

MR spectroscopy studies—This MR-based technique allows quantification of regional
metabolite concentrations in brain tissue, including the neurotransmitters glutamate and
GABA, and the inflammatory mediator myo-inositol, based on the differential resonance
frequency of protons in different molecules, although with a much lower spatial and
temporal resolution compared with MRI.53 To the best of our knowledge, only one study
used this technique in DBGI. Niddam ef a/demonstrated a reduction in hippocampal
glutamate-glutamine (GIx) in 15 patients with IBS without psychiatric comorbidity
compared with 15 well-matched controls. GIx concentrations were inversely associated with
stress indicators in IBS patients only, which was interpreted as malfunction of inhibitory
hippocampal feedback on the hypothalamo—pituitary—adrenal axis.4

Analsis of multimodal brain imaging data

IBS brain connectome—Until recently characterising and comparing the brain’s wiring
in DBGIs has been limited to functional and effective connectivity analyses associated with
specific circuitry and functionality of neural subsystems including attention/cognitive
control, emotional arousal and homeostatic afferent brain networks. However, using network
analysis based on graph theory,22 it has become possible to characterise the architecture of
large-scale functional and structural networks in IBS-67 and to examine how these network
properties relate to clinical and other biological parameters (box 2). Network analysis based
characterises of the role of brain regions and their connections in the integrity and
information flow of brain networks. Network metrics are classified into measures that reflect
centrality, integration and segregation.58-70
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Data repositories—It is clear not all labs have the means to produce a large number of
images required to ensure reliability of results. With this in mind, The Pain and

Interoception Imaging Network Repository (painrepository.org’) was developed to
accelerate scientific discovery regarding brain mechanisms in pain and to provide more rapid
benefits to pain patients through the harmonisation of efforts and data sharing. This will
serve as an invaluable research for studying central mechanisms in DBGIs.

In sum, the volume and diversity of neuroimaging data available for analyses has increased
exponentially. These developments and the urgent need for large, well-phenotyped data sets
has become a major limitation to progress in the field. Computational tools in neuroscience
are yielding larger and more complex data sets than ever before. However, determining
which imaging parameters best answers specific questions (biomarkers, outcome predictors,
underlying mechanisms) remains to be determined.

Computational algorithms and tools applied to each type of data acquired via automated and
semiautomated processing pipelines can result in a vast amount of subject-specific data at
the regional or voxel level. For example, from structural MRI volume, cortical thickness,
surface area and mean cortical thickness can be estimated. For diffusion tensor imaging,
workflows result in several measures of microstructural integrity (eg, mean diffusivity and
fractional anisotropy) and connectivity (eg, tractography). Using resting state data, we can
produce measures that reflect oscillatory dynamic and intrinsic connectivity at the voxel or
regional level. Time-efficient neuroimaging data processing and analysis pipelines that
produce an enormous amount of data reflecting white matter properties, brain topology, grey
matter morphometry, anatomical and functional connectivity can be of great benefit.”273

Big Data approaches to study brain—gut interactions

Improvement in computer storage and processing capacity and efficiency has ushered in the
age of ‘Big Data’ (box 2). Nowhere is this more true than in the field of neuroscience and
neuroimaging, which has experienced exponential increases in the scale and speed of data
collection and generation of complex data sets. Concurrently, there has been a shift from
smaller scale, hypothesis-driven science to complementary data-driven methods that apply
machine learning techniques to large-scale data sets to identify underlying networks and
patterns with little or no reference to existing theories. Multivariate data sets (including data
from brain, microbiome, metabolome, symptoms and genetics) permits modelling of
complex interactions between the brain, biology and behaviour to inform disease
phenotypes, diagnosis, prevention and treatment of functional gastroenterological disorders.
In addition to the advantages of generating large-scale data sets, experts in the field strongly
encourage multisite studies and open access repositories in order to promote a culture of
sharing, collaboration and as a consequence the greatest advancements in the field. The
BRAIN Initiative’® and the European Human Brain Project’> mark this paradigm shift and
focus on neurological disorders and psychiatric disease. Other important large data
repositories include the NIH Human Connectome Project (1200 people)® and the UK
Biobank Imaging (100000 brains imaged from 500000 people who have all their genotype
and phenotypes plus lifestyle aspects catalogued).’”
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Analyses of multimodal, large-scale neuroimaging data (figure 5)—Big Data
approaches are needed to analyse the high-dimensional neuroimaging data sets. These so-
called data-driven methods apply supervised and unsupervised machine learning techniques
(also called multivariate pattern analysis and projection methods) to large data sets to find
patterns in the data without referring to theories (summarised in table 3). Big Data analysis
has provided insights into disease mechanisms that have propelled genomic and metabolic
science into the spotlight for unprecedented advances in medical care and having
measureable positive influence financially within the USA. Big Data science has brought
cutting-edge technological advances for patient diagnosis and care including providing
insights into the genetic and immunological underpinning in Alzheimer’s’87° and
Parkinson’s diseases.80

Identifying the neurobiological basis of treatment effects using neuroimaging and its
relevance for dbgi pathophysiology and treatment

Can structural and functional brain signatures be used as biomarkers in
treatment prediction and outcome?—There is considerable potential to use
neuroimaging-based measures of brain structure and function as predictors (moderators) of
treatment selection and outcome (box 3). In addition, brain imaging measures can be used
also to estimate a chronic pain or disease trajectory, that is, identifying who might be
vulnerable towards getting certain conditions based on their brain functional and structural
networks. Outside of the field of DBGI, several studies have identified that patients
transiting from acute to chronic back pain show differences in their reward and corticolimbic
brain networks (identified functionally and structurally) at baseline that are highly sensitive
and specific for predicting the development of chronic pain.81-83 Other areas proposed as
conferring vulnerability include the descending pain modulatory system that includes the
brainstem’s inhibitory and facilitatory arms.84 A major caveat of these studies to date is their
failure to identify causality. For brain—gut related conditions, which are more complex in
terms of the beginning of their trajectory (often in childhood), longitudinal studies, Big Data
initiatives and consortia alongside the supervised and unsupervised classification methods
will be required to generate similar information. Therefore, for now studies are taking a
different approach and attempting to characterise whether ‘non-pain’-related features are
present in cross-sectional studies that correlate with differential brain activity or structure
compared with HCs. For example, identifying potential pre-existing vulnerabilities due to
neuroticism, a stable personality trait characterised by a propensity for negative affect has
shown a correlation between white matter connectivity strength and neuroticism in 1BS.8°
Also, IBS patients with a tendency to predict worst outcomes with high likelihood
(catastrophising) showed reduced dorsolateral prefrontal cortex (PFC) thickness and
increased hypothalamic grey matter.86 These studies suggest that aspects of an individual’s
personality might be associated with differential brain structure and connectivity in areas
relevant to chronic pain. Such presymptomatic brain alterations in healthy individuals could
include the sensorimotor cortex (making healthy individuals more sensitive to visceral and
somatic stimuli),8” the PFC and the emotional arousal system (compromising a healthy
person’s ability to downregulate emotional circuits), and the endogenous pain modulation
system (limiting an individual’s ability to counter regulate acute pain). Interestingly, the
research exploring sex differences described in the earlier section might be seen as
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conferring a differential vulnerability. An alternative hypothesis about chronic pain
vulnerability is related to the responsiveness of patients with acute pain to pharmacological
intervention. For example, studies in HCs and animals have shown that baseline reward
circuitry and normal endogenous opioid activity in the anterior cingulate, respectively, is
predictive of and necessary for analgesic outcome with pharmacological agents in somatic
pain.8889 These findings suggest a reinterpretation of the “vulnerability’ question from
predicting chronic pain development towards perhaps resistance to positive analgesic
outcome.9 It remains to be determined if such observations pertain to chronic visceral pain
conditions. To date, there is little human data and mostly from non-GlI conditions to inform
how such brain measures, whether identified as precondition vulnerability or disease
relevant factors and responsiveness to treatment, predict treatment outcome. The
experimental challenge is getting adequate signal to noise to perform such prediction studies
for individual patients—a necessary condition for patient stratification and personalised
medicine approaches.

A recent study®? in a small cohort of female fibromyalgia patients highlights how brain
imaging may be used to distinguish drug from placebo effects in patients with DBGI. The
study showed that glutamate/glutamine (right posterior insula (INS) only), connectivity of
anterior and posterior INS to a key region of the DMN and deactivation of some DMN
regions to evoked pressure pain were altered by pregabalin but not placebo. Many of the
pretreatment baseline levels of these measures correlated with the magnitude of clinical pain
at that time. In addition, the study showed that clinical pain changes were predicted by
resting connectivity and evoked neural activity (deactivation) in the DMN, whereas
glutamate within the posterior INS predicted behavioural changes in evoked pain only. This
study highlights the potential for neuroimaging to aid the prediction of treatment outcomes.
Together with the baseline reward network/opioid analgesia prediction study,8? it illustrates
that neuroimaging might aid treatment selection by identifying networks more amenable to
one treatment over another. This principle holds also for non-pharmacological treatment
interventions and identifying patients who will benefit most from either a cognitive—
behavioural treatment (CBT)-based approach rather than acupuncture, hypnosis or
mindfulness-based stress reduction.

How do pharmacological therapeutic interventions affect brain network alterations in

DBGIs?

In contrast to many chronic pain disorders that have well-defined peripheral disease
mechanisms (eg, neuropathic pain and inflammatory pain), issues of how therapeutic
interventions affect brain systems in patients with DBGI remains more challenging due to
the lack of agreed on brain® or other biomarkers for each condition,? a relatively poor
understanding of how pharmacological agents affect brain systems, the multifaceted and
complex nature of the disease involving sensory, emotional, cognitive and modulatory
networks as well as complex psychosocial issues independent of potential biological
processes that may be the target of pharmacological agents. In the following sections we
briefly review: (1) brain measures of pharmacological effects and (2) putative mechanisms
of drugs on brain networks.
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Unlike some brain disorders that are characterised by a major abnormality in a particular
neurotransmitter system (eg, the dopamine system in Parkinson’s disease), there is currently
no such discrete neurobiological abnormality in DBGIs. The ideal pharmacological agent or
combination of agents (or other adjunctive therapies) should normalise an altered brain state.
Currently, our best objective measure of such an altered brain state is the normalisation of
resting state networks (RSNs) as well as grey matter changes that has been noted to respond
to treatment in other chronic pain conditions (see refs 499). A few papers have evaluated
altered functional networks®6-98 and grey matter changes8599190 in patients with DBGIs2°
and have been discussed at the beginning of this review.

Network modules and functional specialisation and grey matter changes

As discussed in detail earlier, brain networks provide an integrated measure of neural
systems that define behaviour and are made up of modules. The complexity is intricate given
the anatomical connectivity of any specific brain region with multiple local and distant brain
regions. These processes will provide targets for pharmacological measures. Numerous
processes including sex, comorbidities, age, duration of disease, pain intensity or treatment
resistance are issues that need to be defined in the context of potential pharmacological
targets given the ongoing changes in the brain connectome (https://
www.humanconnectome.org).

Ideally, any pharmacological agent should have the following effects on brain systems: (1)
modify functional connectivity towards a ‘normal’ state and (2) induce plastic changes in
brain morphology (including white matter connections) or grey matter volume.
Pharmacological agents are known to have effects on brain systems as evaluated by
functional MRI approaches.101102 Commonly used pharmacotherapies aimed at the CNS
(neuromodulators) include antidepressants (tricyclic antidepressants (mechanisms of action
(MOASs): noradrenergic and serotonergic but also antimuscarinic and antihistaminic
properties); selective serotonin uptake inhibitors (MOA: blocking uptake of 5-HT); and
cyproheptadine (MOA: antihistaminic, anticholinergic and antiserotonergic properties).

Madification of functional connectivity in DBGIs by pharmacological agents
(box 4)—The main brain targets of current pharmacological action of commonly used drugs
for DBGIs include: serotonergic, noradrenergic and histaminergic mechanisms. These are
well defined in the mammalian brain1%3 but how changing one affects modular or more
diverse brain circuits in DBGIs is not known. Previous brain imaging studies have
demonstrated the effects of several candidate compounds for IBS treatment (antagonists for
the CRF-R1 receptor,104105 5.HT3 receptorl96107 and neurokinin 1 (NK1) receptor60108
which are no longer pursued for IBS drug development. Figure 6 shows the reported effect
of a CRF-R1 receptor antagonist on the activity of the hypothalamus and on functional
connectivity within the emotional arousal network in IBS and HC subjects. Levels of
specific neurotransmitters in one brain region may predict responses in other brain regions
using RSN analysis'9 or the effects on brain RSNs evaluated by pharmacological
manipulation of a specific system, for example, dopamine.110111 |n the case of dopamine,
changes have provided insights into specific network changes'? and symptoms (eg, pain).
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Maodification of structural changes in DBGIs by pharmacological agents—
Several alterations in brain grey matter volume have been reported in DBGIs (see above). As
such, these findings represent an enormous opportunity to target and understand functional
changes. Changes in structure are linked to changes in functional connectivity.113 Structural
changes in grey matter volume have been considered to reflect levels of dendritic
complexity.114 The notion that pharmacotherapies alter morphology is not new (see ref 115)
and offers a robust measurable approach to understanding effective treatments.116 Dendritic
plasticity may be very rapid to induce remodelling and consequently new connections. How
to maintain such changes if effective are still now well defined. However, changes in
dendritic complexity may provide insights into drug resistance or disease modification.

In summary, pharmacological approaches may contribute to alterations in brain systems
whether their effects are central or peripheral in action. Such changes may reflect processes
that are dependent on drug—receptor interactions but may also affect dendritic plasticity
acutely or in a more disease modulatory role. Effective pharmacotherapies have the potential
to change the brain. Brain pharmacoimaging may help dissect systems that may be targets to
recapitulate altered brain morphology and connections to define the development of new
pharmacological therapeutic strategies.

How do non-pharmacological therapeutic interventions affect brain network alterations?

Neuroimaging is at its most powerful when it can reveal an insight and understanding to a
phenomenon that has been either a mystery or not believed due to the subjectivity of
response measures. In terms of lending credence to the efficacy of non-pharmacological
therapeutic interventions by identifying the neurophysiological basis, neuroimaging has been
a powerful advocate. An early study showed that CBT in IBS was associated with reduced
activity in emotion-related brain regions (parahippocampal gyrus and inferior portion of the
right ACC, Gl-related symptoms and anxiety.11” A more recent study using moxibustion-
induced analgesia in IBS with diarrhoea showed improved symptoms and quality of life in
the active treatment group compared with sham, with a decrease in the perception of rectal
distention and a decreased PFC and ACC activation to rectal distension.118 The majority of
studies in this area have been done in HCs or small patient cohorts with very few in DBGI.
Several excellent reviews and articles have been written that summarise the findings to date
across non-pharmacological interventions (eg, refs 119120) or focus exclusively on one type
of intervention (eg, acupuncture and opioidst21; acupuncture and brain connectivity
normalisation in chronic painl22; acupuncture and the human brainl23). A recent review
suggests that brain mechanisms underlying the modulation of pain perception under
hypnotic conditions involve cortical as well as subcortical areas including anterior cingulate
and prefrontal cortices, basal ganglia and thalami.1241t has been suggested that hypnosis
modulates pain perception and tolerance by affecting cortical and subcortical activity in
brain regions involved in these specific processes with the ACC playing a central role in
modulating pain circuitry activity under hypnosis. Most studies also showed that the neural
functions of the prefrontal, insular and somatosensory cortices are consistently modified
during hypnosis-modulated pain conditions. From these reviews, authors conclude that
findings from neuroimaging studies support the clinical use of hypnosis.12> While there have
been several reasonably sized studies exploring how mindfulness therapies produce benefits
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in patients with IBS, none to date have combined this with neuroimaging.126127 However,
several neuroimaging studies aimed to identify brain changes underlying mindfulness
interventions and symptom improvement are currently under way.

In conclusion, while no consensus has been reached yet regarding a unified set of
mechanisms underpinning how non-pharmacological interventions produce their effects—
and certainly not specifically for DBGIs—there is evidence that such interventions have
specific neurophysiological effects that can be detected using neuroimaging tools. It appears
that different psychological and non-pharmacological treatment modalities are associated
with activations of executive-cognitive and affective-motivational brain networks, with some
evidence for decreased pain-related activations in afferent pain regions (sensorimotor
network) and emotional structures (emotional arousal network), with the descending pain
modulatory system as a potential key system recruited by several interventions. Future
classification methods employing multivariate pattern analyses will help identify whether
common underlying modulatory mechanisms exist or if each therapy relates to a specific
brain mechanism.

Identifying gaps in current knowledge and goals for future research (box 5)

Psychological factors and specificity—There is a general consensus that DBGIs are
heterogeneous group of disorders with respect to GI symptoms, and a large proportion of
patients are characterised by psychological and behavioural alterations such as psychiatric
comorbidity, dysfunctional symptom-related cognitions (catastrophising) and symptom-
related anxiety. These cognitive and emotional factors modulate central processing both
during expectation and during the actual delivery of visceral stimuli and contribute to altered
structural and functional brain connectivity, as well as to the associated alterations in
autonomic nervous system outflow to the gut. However, many studies on emotional and
cognitive modulation of symptom perception have been carried out in HCs, and more studies
are needed to determine if and how psychological modulation of central pain processing is
altered in patients with chronic visceral pain. Innovative paradigms involving psychological
stress or administration of stress mediators, placebo/nocebo intervention or conditioning
studies are emerging and awaiting application in patient studies.

In order to address whether brain alterations are specific to chronic visceral pain rather than
to the associated anxiety or depression, future studies should include carefully selected
patient control groups, such as patients with chronic somatic pain or patients with a
diagnosis of anxiety or depression. Finally, while brain imaging studies in the Gl field have
already successfully begun to unravel how psychological trait and state factors shape brain
structure and function, future work will need to address how trait factors (such as depression
or anxiety), interact with state factors (such as negative emotions) and determine how these
factors contribute to symptom generation and maintenance. This knowledge may reveal if
chronic symptoms are primarily driven by central alterations or peripheral changes in
specific patient subgroups, which could be a basis for individualised treatment approaches.

Increased perception of visceral stimuli (visceral hypersensitivity)—Although
visceral hypersensitivity (the increased perception or response to visceral stimuli) plays an
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important role in the pathophysiology of the functional Gl disorders, especially IBS, and has
inspired much mechanistic work, the number of brain imaging studies addressing visceral
hypersensitivity remains very small. Like in other chronic pain condition, there is strong
evidence that visceral hypersensitivity is a consequence of altered central pain processing in
IBS128 and FD.129 However, altered neural activation in response to visceral stimuli has also
been reported in normosensitive 1BS,130 and both perceptual ratings and central arousal
appear to habituate over time.*4 Future brain imaging work is needed to clarify which
peripheral and/or central processes may underlie visceral hypersensitivity in the
pathophysiology of DBGIs.

Combining central and peripheral measures

One of the greatest challenges of the field will be to conduct innovative and highly
interdisciplinary research to address the interactions between peripheral alterations,
including gut microbiota and their metabolites, permeability or Gl transit and changes at the
level of the brain. For example, in healthy subjects, perturbation of the gut microbiota by
regular intake of a probiotic mix was shown to result in an altered brain response to an
emotion recognition task.131 Preliminary results show correlation of gut microbial taxa with
brain structure and function in both HCs!32 and IBS subjects.>! Multimodal brain imaging
approaches, including MR spectroscopy, with peripheral measures, hold this promise and
innovative approaches are emerging in related fields.133 Along the same lines, a combination
of structural and functional brain imaging techniques reveal sensitivity of specific brain
measures to treatment.134

Understanding similarities and differences between different types of chronic
pain conditions—The cerebral processing of clinical pain shares many similarities across
different conditions with different sources of nociceptive input. This is not surprising, given
that the perception of pain, in acute and potentially even more so in chronic situations, is
influenced and shaped to a large extent by supraspinal processes, such as emotions,
cognitions and memories. Imaging research has started to tease out contributions of
supraspinal modulatory influences to an individual’s subjective experience. Depending on
the emotional and cognitive states of a patient, specific modulatory areas might be engaged
to a variable extent, relatively independent of the type of pain. Nevertheless, pain
characteristics influence how pain is processed supraspinally. For example, pain that is
uncontrollable and unpredictable is processed differently than controllable and predictable
pain.13> Such pain characteristics vary systematically across different clinical conditions:
patients with episodic migraine, for instance, experience frequent unavoidable and
unpredictable pain attacks, whereas an osteoarthritis patient who only experiences pain on
movement is able to avoid pain and is therefore in control. Therefore, future studies could
investigate how pain characteristics shape supraspinal pain processing across different
clinical pain conditions. At present, the knowledge on differences in brain processing of
controllable and uncontrollable pain stems from several experimental pain studies in HCs
and studies in patients are lacking. Furthermore, it is unknown how patient characteristics
(degrees of anxiety, depression and sense of control) and pain characteristics interact. It is
tempting to speculate that individuals with premorbid high anxiety levels are more
vulnerable when faced with unpredictable stressors compared with individuals with low
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anxiety. Future work could address this for different clinical pain conditions, also because it
might impact to what extent ‘controllability” of pain should be addressed therapeutically and
weighted against other (life) goals. In addition to pain characteristics, the type of afferent
input influences how the brain processes pain and how the organism copes with the input.
For example, activation of superficial A8-fibres promotes active coping, such as escape or
avoidance behaviour, whereas activation of C-fibres originating in deeper tissues triggers
quiescence and passivity.138 This neurobiological phenomenon becomes apparent every time
when a patient with visceral pain curls up and does not move, but it is virtually never taken
into account when pain coping is investigated. Given that for most chronic pain conditions,
including DBGiIs, an active coping style is far more adaptive than passivity,137138 which is
not the neurobiologically ‘innate’ response; it is important that future imaging studies
investigate pain coping for different types of afferent input and their interaction with top
modulation.

Preclinical brain imaging studies—Significant technical progress has been made in the
use of brain imaging modalities in preclinical studies.13%-141 The usefulness of such studies
is their ability to identify cellular and molecular mechanism underlying the more descriptive
findings reported from human studies. For example, such preclinical studies will be required
to identify mechanism underlying neuroplastic brain changes observed in human studies and
to identify the mechanism by which certain gut microbial metabolites can modulate brain
structure and function. A major limitation in performing disease-relevant studies in rodents
is the poor homology between mouse and human brain and the absence of a rodent model
with great validity for IBS and other DBGls.

SUMMARY AND CONCLUSIONS

Considerable progress has been made since the last Rome Neuro-imaging Working Group
report in 20097 in the characterisation of altered neural mechanisms in the development and
maintenance of chronic visceral pain. This progress has been driven by several factors,
including the evolution of novel imaging modalities, the development of novel analytical
techniques and the study of large, homogeneous patient populations made possible through
national funding agencies.142-144 Structural and functional alterations in brain regions and in
the network properties that include these regions have been reported (see above and figure
1), and several studies are under way to assess the effect of therapeutic interventions on
these alterations. Similarities of some observed brain changes have been identified in other
chronic pain populations such as the often comorbid UCPPS interstitial cystitis and chronic
prostatitis.2 Despite this progress, challenges remain that include the likely heterogeneous
nature of DBGI and its overlap with equally heterogeneous visceral and somatic syndromes;
methodological differences in stimulation and recording techniques; and lack of control for
psychological, physiological, gut microbial, dietary and genetic factors that are known to
influence sensory perception and emotional reactivity. There is clearly a need for
standardising brain imaging studies and the acquisition of metadata across different centres,
as has happened in other fields.142-144 The growing use of complimentary and multimodal
brain imaging modalities such as resting state imaging, arterial spin labelling, brain
morphometry, spectroscopy and tractography, and analytical techniques such as connectivity

Gut. Author manuscript; available in PMC 2020 February 04.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Mayer et al. Page 14

analysis and machine learning approaches coupled with the use of large data sets obtained
from standardised studies in homogenous populations from multiple centres has great
promise to contribute to a full understanding of the CNS alterations and better treatment
outcomes in DBGls.
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Box 1

Understanding structural and functional brain alterations and their role in
the pathophysiology of disorders of brain—gut interactions

. Specific brain functions, including the perception and modulation of visceral
pain, can best be understood as the result of multiple interacting brain
networks.

. Networks most relevant to symptoms of IBS include salience, attentional,

emotional arousal, central autonomic and sensorimotor networks.

. Sex differences in 1BS-related structural and functional brain alterations may
relate to known sex differences in prevalence, symptom presentation,
comorbidities and response to treatment of patients with IBS.

. Several acquisition methods for brain imaging data, including MRI, diffusion
tensor imaging, positron emission tomography and MRS are available to
provide complementary information on the structure, function and
biochemistry of the human brain.
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Box 2

Analysis of multimodal brain imaging data

Advanced network analysis applied to structural and functional brain imaging
data has made it possible to characterise the architecture of large-scale
functional and structural networks in IBS and examine relationships of these
networks with clinical and other biological data.

Data-driven analysis methods (Big Data approaches) apply supervised and
unsupervised machine-learning techniques (also called multivariate pattern
analysis and projection methods) to large data sets to find patterns in the data
without referring to theories or prior hypotheses.

An essential prerequisite for Big Data approaches is the generation of
multisite data repositories for standardised multimodal brain imaging,
biological and clinical metadata.
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Box 3

Identifying the neurobiological basis of treatment effects using
neuroimaging and its relevance for disorders of brain—gut interactions
pathophysiology and treatment

. Specific network alterations have the potential to become biomarkers for IBS
or for IBS subtypes, as well as predictors (moderators) of treatment outcomes,
replacing existing symptom-based classifications.

. Specific brain alterations are potential targets for pharmacological and non-
pharmacological treatments.

. Future treatment goals include modification of altered functional connectivity
patterns, the induction of network specific neuroplastic changes and the
normalisation of altered metabolite patterns in the brain.
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Box 4
Clinical implications

Data driven analyses of large multimodal brain imaging data sets obtained at multiple
time points has the potential to identify:

. The biological basis of individual disorders of brain-gut interactions,
including IBS.
. The biological mechanisms underlying common comorbidities with other

chronic pain and affective conditions.

. The causative role of gut microbial metabolites in IBS symptom generation.

. Subgroups of patients responsive to specific pharmacological and non-
pharmacological therapeutic interventions.
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Box 5
Identifying gaps in current knowledge and goals for future research

To realise the full potential of multimodal brain imaging approaches to the study of
disorders of brain—gut interactions and to revolutionise the understanding and treatment
of IBS, the following goals have been identified:

. Longitudinal studies in large patient cohorts with specific pharmacological
and non-pharmacological approaches, including medications, diet and mind
based therapies.

. Developmental studies starting in infancy to identify the aetiology of IBS,
including the role of early life experiences (diet, antibiotics and stress) in the
development of brain alterations.

. Understanding the relative causative role of central and peripheral alterations
in children and adults in IBS pathophysiology.

. Understanding similarities and differences between different types of chronic
pain conditions.
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Figure 1.
Proposed integrative model for disorders of gut-brain Interactions. Replacing the

conventional focus on individual brain regions and cell types in the gut, this integrative
model posits reciprocal interactions between brain networks (brain connectome) and
networks made up of multiple cells in the gut, including the gut microbiota (gut
connectome). Gut-to-brain communication is mediated by neural, endocrine and
inflammatory pathways, while brain-to-gut communication relies mainly on autonomic
nervous system output to the gut. Modified with permission from Enck er a/.14
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Figure 2.
Brain networks involved in centrai processing and modulation of visceral pain. Shown are

the default mode network (DMN) and four task-related brain networks that have been
described in the literature, for which structural and functional alterations and correlations
with clinical and behavioural measures have been reported in IBS subjects. Correlations of
the listed clinical and behavioural measures have been reported for the salience network,
435065145146 gensorimotor network,*6100147 emotional arousal network, 404547145147 centrg|
executive network,*3 central autonomic network#34547 and DMN.146 Arrows indicate: (A)
shift of activity from the DMN to the task-related networks in response to input from the
salience network; (B) switching between DMN and central executive network depending on
input from the salience network; (C) engagement of emotional arousal network in response
to central executive network activation; (D) engagement of central autonomic network in
response to emotional arousal network activation; (E) central autonomic network activation
with output in the form of descending pain modulation and autonomic nervous system
activity to Gl tract; (F) ascending viscerosensory signals from gut to sensorimotor network;
and (G) assessment of information from sensorimotor network by salience network. The
functions of these networks are described in detail in the text. Modified with permission
from Mayer et al®
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Figure 3.
Effect of the HTR3A polymorphism c. -42C>T on amygdala reactivity to emotional and

non-emotional stimuli. C/C genotype subjects displayed greater amygdala responses during
an emotion matching and form matching task, suggesting a role of this gene polymorphism
in influencing the emotional response to different laboratory tasks. With permission from
Kilpatrick et a/4
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A. Healthy Control > IBD

Figure 4.
Reduced neurokinin-1 receptor binding in IBD. Whole-brain voxel-wise statistical

parametric mapping analysis shows regions with lower levels of neurokinin-1 receptor
binding in several brain regions in subjects with IBD (A) and patients with IBS (B), relative
to healthy controls (voxel extent threshold p<0.001; cluster extent threshold >20). With
permission from Jarcho et a/.%0
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Brain Image Acquisition and Multiomics Integration
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Figure 5.
Schematic of workflow from multimodal brain image acquisition to multiomics integration

of brain and metadata. Acquisition of structural, anatomical (DTI), functional (resting state
oscillations) and metabolic (MR spectroscopy, not shown) is followed by image processing
and parcellation into multiple regions of interest (ROIs). These parcellated data undergo
multiomics integration of different image modalities and clinical, behavioural and non-brain
metadata using machine learning approaches. Such data-driven analysis approaches are
expected to reveal distinct patters of brain-gut interactions. DT, diffusion tensor imaging.
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IBS Patients

Effect of a CRF-R1 antagonist on amygdala response and emotional arousal circuit. (A).
Error plot showing standard mean errors for beta contrasts (threat — safe) following placebo
(PLA) versus a 20 mg or a 200 mg dose of the CRF-R1 antagonist GW876008 for the left
locus coeruleus complex in patients with IBS and healthy controls (HCs) during an
experimental pain threat. Results show a dose-dependent reduction in the threat-induced
amygdala response by the CRF-R1 antagonist. (B). Path coefficients for the effective
connectivity analysis of an emotional-arousal circuit during a pain threat following placebo
versus high dose of the CRF-R1 antagonist (200 mg GW876008) In healthy controls and
IBS subjects. Significantly different parameter estimates are shown by green arrows, while
those not significantly different are shown in black. With permission from Hubbard er a/.104
alNS, anterior insula; aMCC, anterior midcIngulate cortex; AMYG, amygdala; HPC,
hippocampus; HT, hypothalamus; LCC, locus coeruleus complex; OFC, orbitomedial

prefrontal cortex; sgACC, subgenual anterior cingulate cortex.
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Table 2

Imaging modality

Description

Positron emission tomography

Arterial spin labelling
Electroencephalogram

Magnetoencephalography

Measures regional glucose utilisation, cerebral blood flow (both measures of regional brain activity) and
receptor occupancy.

Cerebral blood flow.
Cerebral electrical activity.

Measures magnetic fields produced by electrical activity of the brain.

Magnetic resonance spectroscopy ~ Measures brain concentration of brain metabolites and neurotransmitters.

Structural MRI
Functional MRI

Diffusion tensor imaging

Provides high spatial resolution and soft tissue contrasts to measure brain morphometry.
Measures brain activity by detecting changes in blood oxygenation and flow during rest or an evoked task.

Assesses the microstructure of white matter and anatomical connectivity and integrity.
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