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We study the statistical equilibrium properties of the recently developed Anti-symmetrized 
Molecular Dynamics model for heavy-ion reactions. We consider A non-interacting fermions 
in one dimension, either bound in a common harmonic potential or moving freely within 
an interval, a.nd perform a Metropolis sampling of the corresponding parameter space. 
Generally the average excitation and the specific heat, considered as functions of the i~posed 
temperature,' behave in a classical manner when the canonical weight is calculated in the 
mean-field approximation. ,However, it is possible to obtain results that are much closer to 
the quanta} behavior by modifying the weight to take approximate account of the energy 
fluctuations within the individual wave packets. 

*'This work wa.s supported in part by the Director, Office of Energy Research, Office of 
High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of . 
Energy under Contract No~ DE-AC03-76SF00098. The calculations were supported in part 
by RCNP, Osaka University, as RCNP Computational Nuclear Physics Project No.92-B-06. 
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1 Introduction 

There is currently significant effort devoted to the exploration of nuclear collisions at 
intermediate energies, where the beam energy is comparable to the nucleonic Fermi en
ergy. These reactions create transient physical environments that have fairly unique 
characteristics and they may provide experimental information on general nuclear 
properties, such as the equation of state. This undertaking poses significant chal
lenges. On the experimental side, it is necessary to build large detection arrays in 
order to achieve as complete event information as possible. On the theoretical side, 
the variety of physical conditions, including the absence of equilibrium, makes it 
difficult to develop quantitatively reliable models. Moreover, because of the high 
complexity of the reactions, it is necessary to rely on microscopic simulation models, 
which makes considerable demands on computational resources. 

One of the most successful theoretical approaches is based on the nuclear Boltz
mann equation in which the reduced single-nucleon phase-space density f(r,p) is 
evolved in its self-consistent effective one-body field, while subjected to the average 
effect of residual Pauli-blocked two-body collisions, analogous to the treatment first 
employed by Nordheim for the transport of electrons in solids [1]. An alternative 
description is based on the method of molecular dynamics in which the A nucleons 
in the system interact by pairwise forces and are evolved by classical equations of 
motion, possibly augmented by a collision term. An guide to these models can be 
found in ref. [2]. 

Neither one of these two classes of approach provides a fully satisfactory descrip
tion of the nuclear dynamics. The static limit of the one-body transport treatment 
is the self-consistent Thomas-Fermi model and thus the nucleon number is not quan
tized; consequently the interpretation of the final multi-fragment state is not straight
forward and only sufficiently smooth observables can be addressed. As for molecular 
dynamics, the absence of Fermi motion in the ground state leads to a somewhat 
unsatisfactory description of the nuclei. 

A succession of attempts have been made to remedy this latter problem. Wilets 
et al. suggested that one might introduce a momentum-dependent repulsion to keep 
the nucleons apart in phase space and thus simulate the e.ffect of the Pauli exclusion 
principle [3]. Later on, this idea was further developed and considerable improvement 
was achieved with respect to arriving at a molecular dynamics models that mimics the 
most important nuclear properties [4, 5, 6,'7]. However, the Pauli potential is merely 
an ad hoc devise that is not derivable from any physical principle and, furthermore, 
the resulting model still has a n~mber of serious shortcomings. 

A formally more satisfactory approach was then taken by Feldmeier (8] who de
veloped the Fermionic Molecular Dynamics model (FMD) in which each nucleon is 
described as a gaussian wave packet whose parameters (its position, velocity, and 
width) are considered as dynamical variables. Constraining the total A-body wave 
function to be an anti-symmetric product of such gaussian wave packets, the cor
responding equations of motion are then derived from a time-dependent variational 
principle. This approach appears to be very promising, but its practical utility has so 
far been limited by the fact that the associated equations of motion are very computer 

. . 
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demanding to solve. 
A simplified and more tractable approach has subsequently been taken in which 

the gaussian width parameter is kept fixed in time [9]. This simplified model has been 
named Anti-symmetrized Molecular Dynamics (AMD) and has already been success
fully applied to reactions involving light nuclei. (Although the AMD model is more 
tractable than FMD, it still requires fairly heavy computing and the treatment of 
heavier reaction systems has therefore not yet been made.) For example, the excita
tion spectra of light nuclei can be reasonably well accounted for [10], the nuclear shell 
effects are automatically included in the dynamics, and an almost perfect reproduc
tion of isotopic yields has been obtained, including the significant enhancement of a 
particles [9]. One of tlie most important advantages of fixing the gaussian width is 
that the. residual nucleon-nucleon collisions can be incorporated into the simulation 
by employing the physical variables that have been developed in the context of the 
time-dependent cluster model [11]. 

Because of these successes and the further promise of the AMD model, it is im
portant to ascertain its statistical properties. These are especially important in con
nection with the simulation of fragment production processes, because the relative 
fragment yields will to a large extent be governed by the corresponding statistical 
weights, due to the complexity of the dynamics. This essential feature can be further 
elucidated as follows. 

Consider an idealized finite system, such as a field-free periodic system in D spatial 
dimensions. The systems consists of A nucleons whose parametrized anti-symmetric 
wave function is evolved in time according to the AMD equations of motion for the 
parameters. Imagine running the AMD code for a long time, and then occasionally 
observing certain properties of the system. If the system is ergodic, then this sampling 
in time will be equivalent to a statistical sampling of the phase space, carried out 
according to the appropriate measure. If the system is large enough, i.e. many mean 
free paths across, then each nucleon will suffer many collisions on each traversal, 
and these collisions will provide an agency for phase-space mixing, so that ergodicity 
should be expected. · 

Imagine now further that the interaction between the nucl(:X)ns is of typical van 
der Waals form, so that clusters may be formed, provided the density is sufficiently 
low. We shall assume that the average density of nucleons is so low that the system, 
at most times, appears as a dilute vapor of nucleons in which well-separated quasi
fragments are imbedded. The mean free path is then long and the periodicity must 
be even larger still. (The term quasi-fragment is meant to remind of the fact that the 
clusters may be unbound and would then deexcite by evaporation if left in isolation.) 

Under such hypothetical circumstances it is relatively easy to describe what to 
. expect. Due to the ergodicity, the system will approach and then maintain statisti

cal equilibrium, and the occasional snapshots will sample this statistical equilibrium 
distribution. In particular, the observer may take note of the relative frequency with 
which certain quasi-fragments occur. In statistical equilibrium the multiplicity of a 
given quasi-fragment will, at sufficiently low' densities, be given by the appropriate . 
partition function. Or, more correctly, since the considered system is isolated and 
hence energy and momentum conserving, the quasi-fragment population· is propor-
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tional to the the corresponding microcanonical quantity: the statistical weight (which 
will be practically the same when the system is much larger than the particular quasi- , 
fragment considered). 

The above idealized example illustrates the following key point: If AMD is used 
to calculate (or predict) such quantities as prefragment multiplicities, then the sta
tistical properties of the model are likely to be important. With reference to the 
above illustration, this point is clear when the process is so complex that statistical 
equilibrium is approached: the relative prefragment yields will then be given by the 
appropriate statistical weights. Even when statistical equilibrium is not fully estab
lished, as is generally the case in heavy-ion collisions, the inherent statistical weights 
of the model will manifest themselves in the calculated relative yields. It is therefore 
essential to understand the statistical weights associated with the AMD model. 

It is to this task that the present investig~tion is devoted. Specifically, for a few 
selected model systems, for which the desired quantum-statistical properties are cal
culable, we perform a statistical sampling of the A-body phase-space (i.e. the space of 
the associated wave-pa~ket parameters) and determine the dependence of the average 
excitation energy and the specific heat as a function of the imposed temperature. As 
it will turn out, the thermal properties of the AMD model are essentially classical, 
when the canonical weight is calculated on the basis of the mean-field approxima
tion. Hence the associated partition function, or the statistical weight of a given 
prefragment species, must be expected to be correspondingly inaccurate. This fea
ture obviously has an important bearing on the interpretation of AMD simulations 
of heavy-ion collisions. 

We also analyze the origin of the problem and find that it is associated with the 
overestimation of the mean energy that is expected to occur in any time-dependent 
mean-field theory, including the time-dependent Hartree-Fock theory, since it origi
nates in the energy dispersion of the individual wave function, or, in other words, it 
arises from the time dependence itself. Finally, we <;J.iscuss a method by which it is 
possible to largely correct for this problem, in an equilibrium situation. 

We should emphasize that the question under scrutiny is a rather general and 
qualitative one which is not expected to. depend on the dimensionality of the system 

·or its detailed features, such as the confining agency (the parabolic field in the case of 
the oscillator and the periodic boundary conditions in the case of matter). We there
fore limit the present exploratory investigation to idealized one-dimensional systems, 
which are relatively tractable, yet sufficiently instructive. 
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2 Formalism 

We start by recalling the most relevant features of the AMD model as developed 
in ref. [Q]. In the present study we limit our considerations to systems of fermions 
that all have the same. spin-isospin compone:J;lt. The wave function for such an A
fermion system is given by the anti-symmetrized product of single-particle gaussian 

·wave packets <Pz(r), parametrized by the complex number z, 

2v D/4 ( z )2 1 2) <Pz(r) =< rlz >= (-:;;:-) e:p -v(r- Vv + 2~ , (1) 

where D is the dimensionality of the physical space and the parameter v is related 
to the dispersion a of the gaussian wave packet by v = 1/4a2

• The A-particle wave 
function is then the corresponding Slater determinant, 

(2) 

(4) 

where z denotes the complex conjugate of z. It follows from this relation that the 
normalization of the single-particle wave packets depend on the centroid parameter 
z and, moreover, the normalization of the A-body wave function is 

N =< ZIZ >= det(B) . (5) 

The equations of motion for the A-particle centroid parameter Z is then obtained 
by perf?~ming a variation of the action [9, 11]. The associated Lagrange function is 

"= < Zliofot ~ HIZ > -= ·tz· . _!__ 1 ~r _ '1J 

J_, < z I z > zn a z og JV I L ' 

where 1t is the expectation value of the Hamiltonian, 

'H= < ZIHIZ > 
- < ZIZ > 

Therefore the equations of motion are 

. . oH 
.zhC· Z = az, 
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where the coefficient matrix C is given by 

[)2 
c,i = 

0
_ 

0 
logN. 

Zi Zj 
(9) 

The equations of motion (8) are not of canonical form, because Cis not diagonal, 
and the measure associated with the parameter Z is therefore non-trivial. However, it 
is possible to introduce canonical variables W = (wt, ... , WA) so that the equations 
of motion take on a canonical form, 

'i< • 81-l 
znwk = --. 

owk 
(10) 

These equations can be written in a physically more transparent form, 

. 81-l . 81-l 
qk = apk , Pk = - oqk , \ 

(11) 

where we have made a decomposition analogous to (3), 

z 
Wk = Vvqk + 2hyVPk · (12) 

It is apparent from (11) that the canonical variables (qk,Pk) behave in a classical 
manner. 

When expressed in terms of the canonicaJ variables W, the phase-space measure 
should be uniform, 

df "'dW = dw1 ... dwA = dq1 . .. dqAdp1 ... dpA 
~DA hDA ' (13) 

and the corresponding canonical weight is exp ( -/37-l). Consequently, when using the 
centroid parameters Z, the appropriate measure is modified by the corresponding 
Jacobian J = loW joZI = det(C) [12], as shown in Appendix A. It is noteworthy 
that this Jacobian can be calculated even wheri the specific form of the canonical 
variables is unknown, as is the case when A> 2. 

Therefore, in the mean-field approximation, the partition function can be written 
as 

Zmr = j df exp(-/31-l) = j dZ det(C) exp(-{37-l), (14) 

where dZ = dz1 ... dzA/~DA, and, for example, the mean energy of a canonical 
ensemble of such A-part'icle states is given by 

a 1 J Emr(T) =-< 1-l >--=-of3log Zmr = zA dZ det(C) 1-l exp(-f37i) , (15) 

where -< · >-- denotes the average over the canonical ensemble of A-particle states. 
Furthermore, the specific heat Cv is the derivative of the energy with respect to 
temperature, for fixed '"volume", and can be written as 

mr 8 Emr 2 0
2 

· 2 2 2 2 2 ( ) 
Cv = oT = f3 ofP log Zmi = {3 (-< 'H >-- - -< 'H >-- ) = f3 (JE , 16 
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where UE is the statistical. dispersion of the energy over the canonical ensemble of 
AMD states. · 

Once the appropriate AMD measure has been determined, the canonical distri
bution of A-particle states can be sampled by means of the Metropolis method [13]. 
This method executes a random walk in the space of the employed parameters Z and 
thus generates a sequence of state { Z k} sampled in accordance with the associated. 
statistical .weight, Pk "' det( C k)l exp(,BHk)· The algorithm for choosing the next 
member of the sample is as follows: Once a given state Z k has been accepted, a ten
tative new state Z' is constructed by changing Zk in a random (and usually small) 
fashion .. If the corresponding statistical weight P' is smaller than Pk then, with the 
probability 1 - P' I Pk the previous state Z k is used again as the next state Z k+I; 
otherwise, Z' is"accepted as the next state. . 

3 Harmonic oscillator 

We first consider A fermions confined in an external one-dimensional harmonic po
tential. This system is interesting for AMD, since, in the case of one particle, the time 
evolution of the wave function is exact. Furthermore, light nuclei are well described 
by harmonic-oscillator wave functions. The Hamiltonian operator is then 

A '""' m 22 .( 1i2 ) H=L: -2m~+2wr ' (17) 

where A is the Laplace differential operator and w is the natural frequency of the 
oscillator. It is then possible to show that the expectation value of the Hamiltonian 
is given by 

(18) 

where the la.st expression holds when the width parameter v is chosen to correspond 
to the natural width of the oscillator (i.e. when v = mwl21i). 

For each value of A and each specified temperature T, we perform the Metropolis 
sampling as follows. The step from the old state to the tentative new one is made by 

choosing the new centroid as Z' = Z +t:q, where E = /TihE0 (Eo= hw is the energy 
unit) and 11 is a set of A complex random numbers whose real and imaginary parts 
have a normal distribution with zero mean and unit variance. The first 10000 states 
are rejected, in order to achieve sufficient thermalization before sampling, and from 

. then on every second state is kept, until a total of 50000 states have been sampled. 
We show in fig. lathe Metropolis sampling results of the mean excitation energy 

per particle, E* I A, of a canonical ensemble of A-body AMD states in an external 
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harmonic-oscillator potential, as a function of the temperature T. Figure 1b shows 
the corresponding specific heat per particle, Cv /A. The classical a.nd quantal results 
are also shown to provide a reference. It is evident that, regardless of the particle 
number A, the results are very close to the classical relationship E* /A = T. This is 
remarkable in view of the fact that the A-body states are described by exactly anti
symmetric wave functions. Moreover, the Hamiltonian is different from the classical 
one and, furthermore, the Pauli forbidden region exists in the canonical phase-space. 
For example, if the Jacobian is ignored then the mean excitation energy lies below 
the classical result, for A ~ 2. We mention for _completeness that calculations carried 
out with other values of the wave packet width parameter v yield results that are 
very similar, so they need not be discussed. 

In order to understand the effect of the transformation to the canonical variables 
it is instructive to consider the case of A = 2. Since this problem is separable, it is 
convenient to introduce the centroids for the CM and relative motions, 

(19) 

The excitation energy of the relative motion is then E* = nw (Zcoth(Z)- 1), where 
we have defined Z = z · z ~ 0. This quantity is shown in fig. 2 (dashed curve). It 
has an approximately quadratic behavior in the region Z ~ 1 and attains a unit slope 
when Z is well above unity. This behavior reminds of a typical quanta! behavior .. 
However, the Jacobian (dotted curve iii fig. 2), which in one dimension is given by 

J = coth(Z)- Zsech(Z) 2 < 1 , (20) 
( 

starts out linearly and so reduces the statistical weight of the region Z ~ 1. As a 
consequence, the mean excitation energy becomes a linear function of the tempera
ture. 

This situation can be more simply described by the associated canonical variables, 

1 

Wo = zo , w = coth( z · z) 2 z , (21) 

in terms of which the excitation of the relative motion can be expressed as E* = 
nw( iiJ · w - 1). This quantity is also shown in fig. 2 (solid curve) as a function of 
W = w · w > 1 .. Furthermore, since 1-l = 1iw( w0 • w 0 + w · w + 1), the partition 
function ( 14) can be expressed analytically, 

z = [ dwodw e-f31i = (f3nw)-2 e-2f31iw ' 
JIWI>l 71"

2 
(22) 

where the condition lwr I > 1 represents the Pauli allowed region. It readily foilows 
that the mean energy is given by E(T) = 2T + 21tw. In this simple example, the 
classical form of the Hamiltonian is restored after rewriting it in terms of the canonical 
variables w 0 and w, and the role of the Pauli forbidden region is only to increase the 
ground-state energy. It is plausible that this situation prevails also for A > 2, and 
that the excitation energy behaves like that of a classical system. 
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4 Matter 

The harmonic oscillator is a particularly simple case that has special relevance for 
light nuclei. Another instructive extreme is provided by nuclear matter, in which there 
is no external field and the particles are constrained only by the imposed boundary 
conditions. Nuclear matter provides a useful reference system and, moreover, approx
imates the conditions prevailing in the interior of large nuclei. 

We have therefore also considered a simple one-dimensional system of free fermions 
confined within a specified interval. The centers of the A wave packets are constrained 
to lie in the interval (0, L ), and the system can thus be regarded as a rough model of 
a one-dimensional nucleus having surface regions.1 

In the absence of periodicity, it is straightforward to write down the overlap matrix 
Bii and the Jacobian J. Furthermore, the numerical treatment poses no special 
problems, provided the particle number A is not too large (we have had no difficulty 
obtaining reliable results for up to twenty particles). We have performed a series of 
Metropolis samplings for this type of system as well. -

In fig. 3a we sh~w the resulting excitation energy per particle as a function of the 
imposed temperature, for A= 1, 3, 5, 10, and fig. 3b shows the corresponding specific 
heat. (Because of its reflection symmetry that leads to a two-fold degeneracy, the 
system exhibits an odd-even effect as a function of A; therefore we have considered 
only odd values of A, until A= 10 ~ 1 when the effect has subsided.) The manner of 
sampling is the same as for the harmonic oscillator, except that the periodic condition 
on the centroid positions dk is implemented by taking all positions modulo the interval 
length L = Ad. Furthermore, the unit of energy is Eo = (hfd)2 /2m, the energy of 
the lowest excited quantum level in a box of side length equal to the average particle 
separation d. It is seen that the system quickly attains a classical behavior as the 
temperature is raised. For high temperatures the excitation energy is displaced by an 
approximately constant amount (depending on the particle number), as a consequence 
of the anti-symmetrization. 

The behavior at low temperatures is more intricate and a magnification of this 
region is shown in fig. 4 for A = 5. It can be seen that for low temperatures the 
mean excitation energy per particle is approximately equal to the temperature, as 
for the harmonic osCillator, and its increase is then gradually reduced and the slope 
approaches one half at high temperatures, as one would expect for a free gas. 

This remarkable behavior is easy to understand qualitatively: In the ground state 
the particles are situated at nearly equidistant intervals (and at rest), because the 
anti-symiT!etrization makes it energetically preferable for the system to keep the in
terparticle separations as large as possible. Indeed, each individual particle finds 
itself at the bottom of a potential well generated by the anti-symmetrization. For 
low temperatures the system can only make small excursions away from the ground 
state and each particle is therefore constrained to remain in its local potential well. 
Consequently, the system behaves as an assembly of coupled oscillators and the spe-

1 We have also considered periodic boundary conditions, i.e. a one-dimensional torus, but have 
found that the ensuing numerical problem is relatively ill-behaved; however, the results are similar 
t.o those presented. 
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cific heat is unity. As the temperature is further raised, a particle may gain sufficient 
energy to liberate itself from its lattice site and is then able to roam the entire vol
ume. This corresponds effectively to a phase transition from the original condensed 
phase in which the constituents are localized into a vapor phase in which they are 
delocalized. Once this transition has occurred, the system behaves like a gas of nearly 
free particles and the specific heat drops to one half. 

5 Quantal correction 

In the previous sections,. we have shown that the mean excitation energy in AMD 
behaves classically when the mean-field expression (15) is employed. However, this 
does not necessarily mean that the time-development of AMD wave function is wrong. 
For example, in the single-particle case of harmonic-oscillator potential, the time 
development of AMD wave function is exact, while it overestimates the quantal mean 
excitation energy. We discuss below the origin of the problem and explore ways to 
remedy the situation. ._ 

5.1 General discussion 

The key to understanding the problem lies in the difference between the quantal 
partition function ZQ and its mean field approximation Zmr; 

ZQ - j df WQ, 

Zmr - j df Wmr , 

WQ =< exp( -(3H) > , 

Wmr = exp(-(3 < fi >). 

(23) 

(24) 

As is already known [14), the mean field approximation to the canonical weight rep
resents an underestimate arid, accordingly, the mean energy is overestimated (see 
Appendix B), 

(25) 

where 

a 
£Q - - {}(31og WQ = < fi exp( -(3H) > /WQ , (26) 

a 
£mf - aplogWrni = < fi >= 1{.. (27) 

The equalities hold if and only if the states are eigenstates of the Hamiltonian. These 
relations imply that eq. (15) must lead to an overestimate of the mean excitation 
energy. This feature is quite general and the problem is therefore present in any 
mean field theory (including, for example, TDHF). Consequently, special care must 
be exercised when estimating the excitation energy. 

The above relation (25) brings out the importance of the energy dispersion of 
the individual wave packet. The mean field approximation (24) ignores this energy 
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dispersion. This is justified when the temperature is much larger than the quantal 
fluctuation an of the Hamiltonian, where 

(28) 

Therefore, one possible way to obtain a more accurate statistical weight is to expand 
Wq in powers of {3, 

(29) 

The mean field approximation (24) corresponds to the linear approximation to log Wq. 
From a time-dependent point of view, the quantal weight Wq can be rewritten by 

the use of time-dependent wave functions, 

Wq = j 2i7r dt t + 
1
if31i < q>(O)I<I>(t) > , (30) 

where 

(31) 

The mean field approximation (24) then corresponds to keeping only the first term 
in this expansion. Consequently, if we want to overcome the problem of eq. (25) in a 
time-dependent theory, we need to make an approximate inclusion of the higher-order 
time-dependent terms in (31). 

5.2 Application 

We now discuss a specific approximation to the quantal statistical weight Wq. In 
addition to the high-temperature expansion (29), Wq satisfies the following low-
temperature limit, -

Wq -+ I < <I>Ig.s. > 1
2 ({3-+ oo) , (32) 

where lg.s. > is the ground state of the system. In the case of a single particle in an 
external harmonic-oscillator potential, Wq can be written on analytical form, 

Wq = exp( -/31-l) -+ exp( -z · z) = I < zlg.s. > 12 I < zlz > , (33) 

where /3( a) = (1 - exp( -a/3)) I a and a = a'h 11-l ( = nw for the oscillator), with the 
ground-state energy having been subtracted from the Hamiltonian. 

In more general cases the above result does not hold. However, the form of j3 
coincides with.~he expansion in {3 up to the second order. Therefore, we have adopted 
the form of eq. (33) as an approximation to the quanta.l statistical weight Wq, 

Wqc = exp( -/31-l) , (34). 

with /3( a) given as above. 
We have applied the modified weight (34) to the examples considered above: an 

external harmonic oscillator potential and free particles in a box. The partition 
function is then obtained as follows, 

Zqc = j dp,(Z) < ZIZ > Wqc. ~ 

10 
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This measure is chosen so that the resolution of unity takes the form 

I=! dJi(Z) jZ>< Zl, (36) 

where 

(37) 

In fig. 5 we show the resulting , temperature dependence of the mean excitation 
energy and specific heat of A fermions in an external harmonic-oscillator potentiaL 
(Apart from the modification of the weight, and its derivative with respect to /3, 
the sampling procedure is the same as before.) These results reproduce the quantal 
calculation remarkably well, not only for the case of A = 1, in which the modified 
treatment is exact, but also for the case of A > 1. 

Figure 6 shows the· results for free fermions in a box after the same quantal cor
rection. Again, the quantal results are well reproduced, except for the the low
temperature behavior for A= 1. This limited failure arises because a single gaussian 
wave packet does not adequately approximate a plane wave. However, when many 
wave packets are present, the anti-symmetrization produces a good overlap with the 
corresponding plane waves. For example, near the ground state the wave function for 
the lowest single-particle energy 'level becomes 

(38) 

which is quite flat, and the wave function of the most energetic level becomes 

A 

<!JA "'2:)-lt</Jzn, (39) 
n=l 

which provides a good approximation' to the corresponding high-momentum plane 
wave. (Here we have labeled the particles according to their position.) 

The. above results show that the statistical behavior of AMD is drastically im
proved when account is taken of the /32 term in the quantal statistical weight or, 
equivalently, the t 2 term in the time propagation. 
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6 Concluding remarks 

We have examined the statistical limit of the microscopic Anti-symmetrized Molecular 
Dynamics simulation model, which provides a quantum-mechanical description of the 
nuclear A-body system (for exaz;nple, the shell effects are automatically included) 
and which has been successful for understanding and reproducing various heavy-ion 
reaction data. 

By statistical sampling of the appropriate canonical distribution, we have cal
culated some of the key thermodynamic properties, such as the dependence of the 
average energy on temperature, whose derivative is the specific heat and which is 
closely related to the partition function. 

It has been found that with regard to these properties, the AMD. equilibrium 
behaves in a classical manner, when we adopt the mean field approximation for the 
canonical weight, Wmr = exp( -(3 < fi > ), even though the underlying many-body 
states are described by anti-symmetric wave functions. We wish to emphasize that it 
is this weight Wmr that is reflected in the equilibrium achieved in a dynamical AMD 
simulation, since the equations of motion can be rewritten into a classical canonical 
form. It is important that practitioners in the area of molecular dynamics simulations 
be aware of this general feature of this class of models, and the confrontation with 
data must be made in a correspondingly cautious manner. 

We have discussed the origin of this shortcoming, and have found that an over
estimate of the mean excitation energy arises from the energy dispersion of each 
wave packet, or in other words, the time-dependence of the wave function itself. 
This key point is brought out by the difference between the quanta} canonical weight 
Wq =:< exp( -{31!) > and its mean field appr~ximation Wmr. These weights grow 
inore similar to one another the smaller the dispersion of the. Hamiltonian operator 
is. However, a small dispersion of the Hamiltonian corresponds to a quasi-static situ
ation, and thus it is does not occur in· actual time-dependent processes. This feature 
is quite general and applies to any time-dependent mean field theory, such as the 
time-dependent Hartree-Fock theory and Fermionic Molecular Dynamics. 

We have also discussed a method by which this problem can be largely remedied, 
in the context of statistical equilibrium: For each wave packet, a .corrected canonical 
weight Wqc is obtained by use of the quantal dispersion of the Hamlitonian, a'k. 
The mean excitation energy and specific heat calculated in this manner exhibit a 
remarkably improved statistical behavior. However, it still needs to be studied how 
to treat this problem in a time-dependent context. 

This work was supported in part by the Director, Office of Energy Research, Office of 
High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. Department 
of Energy under Contract No. DE-AC03-76SF00098. The calculations were supported 
in part by RCNP, Osaka University, as RCNP Computational Nuclear Physics Project 
No. 92-B-06. The authors thankAkira Ono for permitting us to use his s'uggestion and 
proof, and A.O. also thanks the members ofnuclear theory group for their hospitality 
during his· stay at LBL. 
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A Canonical variables 
! 

To aid the interested reader, we show in this Appendix how it is possible to transform 
the equations of motion (8) to canonical form and derive the explicit expression for 
the associated Jacobian. The suggestion that the Jacobian can be expressed without 
invoking the specific form of the canonical variables was first made by Akira Ono, 
who also gave the derivation summarized below [12]. 

The equations of motion (8) and their conjugates can be written in a combined 
fashion on the following matrix form, 

in ( c o ) . ( ~ ) = ( o I) . ( 81-l/8~ ) . 
o C z -I o 81if8Z (40) 

Assume now that the relationship between the canonical variables W and the centroid 
parameters Z is known, Z(W). The above equa~ion can then be written as 

. ( C o ) - ( W ) ( o I ) ( 81if8W ) zn. o C . J . . W " = -I o . J . 81-l/ 8W ' (41) 

where the jacobian matrix J and its conjugate J are given by 

_ ( aw;8z· aw;8z) - _ ( 8Zf8W 8Zf8W) 
J = 8Wf8Z 8Wf8Z 'J = aZ;8w .8Zf8w (42) 

We note that det( J) det( J) = 1. . 
It is now easy to see that in order for these equations of motion to be of the 

canonical form (10), the following matrix relation must hold, 

J-1 . ( c-
1 

o_1 ) ( o I ) , J = ( o I ) . 
o C -I o , -I o 

(43) 

Consequently, the modulus of the determinant of the product on the left must be 
unity, and it readily follows that the Jacobian associated with 'the transformation 
from the. centroid variables Z to the canonical variables W is J = det( J) = det( C). 

B Statistical mean energy in mean field theories 

We show here that the mean energy is generally overestimated when only the expec
tation value of the Hamiltonian is used in the calculation of the canonical weight of 
a given state, even when the theory gives the correct quantaltime evolution. This is 
a special case of the Peierls-Bogoliubov inequality which holds for any observable H 
(see, for example, ref. [14]). 

In order to prove this we first wish to show that the following relation holds for 
any particular quantum state 14> >, 

< <PIH exp ( -j3H)I<P > ~ 1i exp ( -j31i), (44) 
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where 1{ =< c/>IHI¢> >. The state 1¢ > can be expanded on the energy eigenstates 
In > which form a complete basis. The associated spectral function of the state is 
then 

(45) 
n 

The expectation value of H can then be expressed in terms of this spectral function, 

1{ =I dE E f(E). (46) 

For simplicity, we choose this expectation value as the reference for the energy, i.e. 
we put 1{ equal to zero. We then find 

<c/>IHexp(-(JH)Ic/>>- ldEJ(E)Eexp(-(JE) (47) 

- I dE f(E) E (exp ( -(JE)- 1) ~ 0, (48) 

which corresponds to eq. (44). In order to rewrite the first line to the second line, we 
have used the fact that the expectation value 1{ is set to zero. It is easy to see that the 
quantity cannot be positive, since in the region of negative E, the weight is positive 
and vice versa. The equality holds if and only if the state 1¢ > is an eigenstate of the 
Hamiltonian fi. 

In a similar manner it can be seen that 

< c/>1 exp ( -,BH)Ic/> > 2: exp ( -(31l) . (49) 

We note that when ,8 --+ 0 the two sides are equal and the derivative of the relation 
with respect to (3 becomes the negative of eq. (47). Then we have, for the quantum 
state I¢ >, 

< c/>IH exp ( -,8!!)1¢> > < 1{. 

< c/>1 exp ( -(JH)Ic/> > -
(50) 

In order to derive the analogous relation when the expectation val tie is with respect 
to a canonical ensemble, we use the inequalities ( 44) and ( 49). The canonical averages 
can be evaluated by employing a resolution of the unit operator and the inequalities 
can then be used for the individual integrands, . 

H I dr < ii exp( -,BH) > < I dr 1i exp( -,81i) 1i 
~ >--Q= I dr < exp(-(3H) > -·I drexp(-,81i) =-< >- (5l) 

The equality is achieved only if all the states used in the resolution of unity are eigen
states of the Hamiltonian (which, however, cannot occur in a truly time-dependent 
situation). . 
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Figure 1: Harmonic oscillator. 
a) The mean excitation energy per particle E* I A of a canonical ensemble of A
body AMD states in an external one-dimensional harmonic-oscillator potential, as 
a function of the temperature T at which the statistical Metropolis sampling has 
been done. The energy unit is Eo ..:_ nw, where w is the natural frequency of the 
oscillator, and the width parameter of the gaussian wave packets has been chosen as 
v = mw f2n. In addition to the calculated results for A = 1, 2, 3, 4, the figure also 
shows the classical result E = T (dashed line) and the quantal results (solid curves).
b) The specific heat per particle Cv I A corresponding to the results in part a. 

Figure 2: Two particles in an oscillator. 
For the special case of A = 2, in a one-dimensional harmonic oscillator, is shown 
the excitation energy of the relative motion E* as a function of either the centroid 
variable Z = z · z (dashed) or the canoncial variable W = iiJ • w (solid), and the 
corresponding Jacobian J(Z) (dotted). 

Figure 3: Free particles in a box. 
a) The mean excitation energy per particle E* I A for a canonical ensemble of A-body 
AMD states for which the centroids of the wave packets are constrained to lie within 
a specified interval of length Ad. The energy unit is E0 = (hid? /2m, the excitation 
energy of the lowest level for a particle confined to an interval of length d. The results 
of the Metropolis sampling are shown for A= 1, 3, 5, 10. The solid curves show the 
corresponding quanta} results, the dashed line shows the classical result E* I A = T 12, 
and the dotted line shows the result for a classical oscillator, E* I A= T. 
b) The specific heat per particle, Cv I A, corresponding to the results in part a. 

Figure 4: Free particles at low temperature. 
Magnification of the low-temperature part of fig. 3 for the case of A= 5. 

~ Figure 5: Quantal correction for harmonic oscillator. 
a) The result of performing the Metropolis sampling with the modified statistical 
weight (34), for the same cases as shown in fig. 1 and using a similar display. 
b) The corresponding specific heat per particle: 

Figure 6: Quantal correction for free particles. 
a) The result of performing the Metropolis sampling with the modified statistical 
weight ( 34), for the same cases as shown in fig. 3 a.nd using a similar display. 
b) The corresponding specific heat per particle. 

Figure 7: Quantal correction for five free' particles. 
Magnification of the low-temperature part of fig. 6 for the case of A ' 5. 
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