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Abstract

Endogenous Spatial Production Networks:
Theory, Estimation, and Evidence from Indian Firm-to-Firm Linkages

by

Piyush Paritosh Panigrahi

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Andrés Rodríguez-Clare, Chair

In modern economies, production is organized in large-scale complex networks of firms
trading intermediate inputs with each other. Larger Indian firms selling inputs to other
firms tend to have more customers, tend to be used more intensively by their customers, and
tend to have larger customers. Motivated by these regularities, I propose a novel empirical
model of trade featuring endogenous formation of input-output linkages between spatially
distant firms. The empirical model consists of (a) a theoretical framework that accommo-
dates first order features of firm-to-firm network data, (b) a maximum likelihood framework
for structural estimation that is uninhibited by the scale of data, and (c) a procedure for
counterfactual analysis that speaks to the effects of micro- and macro- shocks to the spatial
network economy. In the model, differences in production costs across firms arise not just
from differences in productivity but also from finding the most cost-effective suppliers of
intermediate inputs. Firms with low production costs end up larger because they find more
customers, are used more intensively by their customers and in turn their customers lower
production costs and end up larger themselves. The model is estimated using novel micro-
data on firm-to-firm sales between Indian firms. The model’s fit is good. The estimated
model implies that a 10% decline in inter-state border frictions in India leads to welfare
gains ranging between 1% and 8% across districts. Moreover, over half of the variation in
changes in firms’ sales to other firms can be explained by endogenous changes in the network
structure.
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Chapter 1

Introduction

Heterogeneity in production costs across firms is at the heart of modern general equi-
librium models of firm heterogeneity and trade. Yet differences in firms’ production costs
are typically attributed to differences in productivity across firms. With firms operating
in production networks, differences in production costs arise not just from differences in
productivity but also from finding the most cost-effective suppliers of intermediate inputs.
While trade does not directly affect the former, trade in intermediate inputs influences the
latter. General equilibrium theories of trade with firms differing only in productivity do not
grapple with microscopic heterogeneity in the extensive and intensive margins of firm-to-firm
trade in intermediate inputs — who buys from whom and how much? How does endogenous
formation of customer-supplier linkages between firms and the resultant network architecture
drive differences in firms’ overall sales, ability to sell across multiple destinations, and ag-
gregate patterns of trade? How do we evaluate the impact of market integration, technology
improvements, and improvements in allocative efficiency on aggregate outcomes when the
production network of firms reorganizes in response to these shocks?

In this dissertation, I present a novel framework to evaluate the aggregate and firm-level
consequences of micro- and macro- shocks to the spatial economy and answer these questions
in four steps. First, I use novel micro-data to document empirical regularities arising from
a new decomposition of firms’ sales that underscores the salience of endogenous network
formation between firms. Second, I develop a model of trade between multiple locations fea-
turing endogenous formation of firm-to-firm production networks that not only rationalizes
micro-data on firm-to-firm sales but is also consistent with structural gravity at the aggre-
gate level. Third, I devise a procedure to structurally estimate the model that circumvents
computational difficulties pervasive in estimation of network formation models with large
numbers of firms. Fourth, I propose a procedure to evaluate counterfactual outcomes that
accounts for randomness in network formation without requiring simulation of large networks
which can be computationally burdensome due to interdependence in link formation.

Using data on 103 million firm-to-firm relationships assembled from administrative VAT
records spanning across 5 years and pertaining to around 2.5 million Indian firms located
across 141 districts, I find that firms with higher sales to other firms (a) tend to have more
customers, (b) tend to be used more intensively by their customers and (c) tend to sell to
larger customers. The first margin explains 35% of the variation in firms’ sales, an additional
46% is explained by the second margin, leaving 19% for the third. On one hand, the third
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margin suggests that firms’ heterogeneity in input sales is partially driven by demand from
larger customers downstream in the supply chain. On the other hand, the first and the
second margins suggest that firms’ choice of suppliers and the intensity with which to use
their goods potentially influences the attractiveness of the firm as a supplier to its own
potential customers. While the former points to the role of network linkages in driving
differences between firms, the latter highlights the role of endogenous formation of firm-
to-firm linkages in it, both along the extensive and intensive margins. These regularities
suggest that endogenous network formation is pertinent to understanding the origins of firm
heterogeneity.

The starting point of the theory is the Ricardian model of trade between multiple loca-
tions with geographic barriers and imperfect competition as in Bernard et al. (2003). I depart
from their representative agent framework by accommodating heterogeneous consumer pref-
erences, heterogeneous technological requirements by firms, and arbitrary production net-
works between firms.1 Firms’ production processes consist of multiple input requirements.
Potential suppliers differ in the suitability of their goods for each of these requirements.
Firms randomly encounter potential suppliers and select the most cost-effective suppliers for
their production requirements. When selecting their suppliers, firms are more likely to select
(and for a larger proportion of their requirements) a potential supplier that is able to sell
at a lower price and produces a good that is more suitable for its production requirements.
The ability of a potential supplier to sell at a lower price than another is regulated by (a)
its idiosyncratic productivity, (b) the efficiency with which its own suppliers were able to
produce thus affording the firm a lower price for intermediate inputs, and (c) proximity to
location of use thus having to incur lower geographic costs. Firms with lower production
costs thus not only attract more customers but are also used more intensively in their cus-
tomers’ production processes. Since these customers use cheaper inputs, they end up with
lower production costs themselves and become cost-effective suppliers to their customers.
In the cross-section, firms with low production costs end up larger because they have more
customers, are used more intensively by their customers and have larger customers.

Differences in the suitability of potential suppliers’ goods for a firm’s production require-
ments feature as match-specific productivities across firm pairs in a manner similar to the
discrete choice framework. This leads to a multinomial logit model of supplier choice for each
of the firm’s production requirements. The estimation equation recognizes that while there
is a positive probability of a firm sourcing inputs from every other firm, sourcing inputs for
only a discrete number of requirements can give rise to sparsity in firm-to-firm connections.
This sparsity can be extreme as is observed in the data where the number of firm-to-firm
connections are many orders of magnitude lower than its potential given the number of firms
in the economy. Predictions for inter-firm trade then allow estimation of the model utiliz-
ing the full volume of micro-data on firm-to-firm transactions via the method of maximum
likelihood. Semi-parametric estimation of the model implies that firms’ fixed effects serve as
sufficient statistics for their implied marginal costs and bilateral inter-district fixed effects
as a structural gravity specification for estimating trade frictions. Such estimation programs

1While Costinot et al. (2011) and Caliendo and Parro (2014) allow for sectoral heterogeneity and inter-
sectoral linkages in a Ricardian model of trade, they do not allow for arbitrary production networks between
firms and are unable to accommodate the vast heterogeneity in input sourcing patterns at the firm-level
observed in data.
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typically entail a high-dimensional non-linear optimization problem that quickly becomes
cumbersome with large numbers of fixed effects. On the contrary, I show that these fixed
effects can be computed in closed-form thus avoiding the problem altogether.

For counterfactual analysis, I propose a procedure that departs from the exact hat al-
gebra approach commonly used in trade models (see Dekle et al. (2008) and Costinot and
Rodríguez-Clare (2014)). In aggregate models of trade, the exact hat algebra approach eval-
uates the change in aggregate outcomes in response to shocks. In those models, aggregate
data coincides with the expected value of aggregate outcomes in the initial state. In contrast,
my model accommodates granularity and acknowledges that the observed data corresponds
to only one of many possible realizations under the initial state. The data generating process
implied by the model is therefore non-degenerate and hat algebra cannot be used as is. To
evaluate counterfactual outcomes, I therefore use the model to obtain the expected value of
the data generating process in the initial state and use hat algebra to evaluate the expected
value in the counterfactual state. The model and the procedure are rich enough to not only
speak about aggregate effects of aggregate shocks but also firm-level effects of aggregate
shocks and aggregate and firm-level effects of micro-shocks.2

Using the estimated model, I conduct three counterfactual experiments. First, I evaluate
the consequences of reducing inter-state border frictions in the context of the recent Goods
and Services Tax reform in India that aimed to mitigate such barriers to trade. I find that a
10% decline in border frictions leads to sizable welfare gains across districts ranging between
1% and 8%. Moreover, over half of the variation in changes in firms’ sales to other firms can
be explained by endogenous changes in the network structure.

Second, I examine firm-level implications of a uniform decline in external trade frictions.
As trade frictions decline, larger firms with low production costs become more successful
at farther or less remote destinations as they attract more customers or get used more
intensively among existing customers. At the same time, the average size of their customers
decline. This comes at the expense of firms with higher production costs who are now
less successful both locally and elsewhere but the average size of their customers increase.
Consequently, large firms’ sales to other firms shrink where as those of a large majority of
firms in the lower quantiles expands.

Third, policy reforms can sometimes manifest as heterogeneous microeconomic shocks
across firms. To illustrate the effects of micro-shocks on aggregate outcomes through the
lens of the model, I evaluate the consequences of neutralizing firm-level distortions when
they correlate positively versus negatively with size. I find that in either case endogenous
changes in the network structure explain a dominant majority of changes in firms’ sales to
other firms. At the aggregate level, neutralizing positively size-dependent distortions has
smaller welfare gains but positive terms of trade effects for a majority of districts whereas

2In contemporaneous work, Dingel and Tintelnot (2020) take a related approach for counterfactual
analysis in commuting choice models that feature granularity. In their case, non-degeneracy of counterfac-
tual outcomes arises from a finite number of individuals making residential and workplace decisions. In
this dissertation, non-degeneracy of counterfactual outcomes arises from interdependent decisions on input
sourcing made by a finite number of firms. A similar problem of indeterminacy of the trade equilibrium
in relative wages across locations arises in both cases. While they introduce the notion of continuum-case
rational expectations to resolve this issue, I show that relative wages are deterministic under a large network
approximation despite granularity at firm-level.
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neutralizing negatively size-dependent distortions has larger welfare gains but negative terms
of trade effects for a majority of districts.

Related Literature This dissertation contributes to four strands of literature. First, this
dissertation is related to the nascent literature on endogenous production networks in gen-
eral equilibrium which can be broadly classified into two categories. The first (Eaton et al.
(2016); Oberfield (2018); Acemoglu and Azar (2020); Boehm and Oberfield (2020)) models
formation of linkages as the outcome of selection from a discrete menu of choices whereas
the second (Lim (2017); Taschereau-Dumouchel (2017); Huneeus (2018)) models formation
of linkages between firms as the outcome of “love of variety” in input sourcing while being
subject to relationship costs.3 This dissertation is more closely related to the former to
take advantage of extreme value functional forms that allow tractable empirical character-
ization for estimation. While this dissertation shares the mechanism for supplier selection
with Oberfield (2018) and Boehm and Oberfield (2020) and formulation of technology and
preferences with Eaton et al. (2016), none of these papers explicitly characterize both the
extensive and intensive margins of inter-firm trade that the model here delivers. While Ober-
field (2018) and Boehm and Oberfield (2020) do not consider trade between locations, the
model in Eaton et al. (2016) features trade. In contrast to Eaton et al. (2016), where there
are no differences in suitability of goods across firms’ requirements and estimation of the
model requires use of simulation-based methods, the model here uniquely recognizes the fact
that firms’ input sourcing decisions comprise finding the supplier that not only offers the
lowest price but is also the most suitable for production requirements. This feature allows
the model to be estimated directly using the full volume of data on firm-to-firm sales via
maximum likelihood.

Second, this dissertation is related to a long literature on firm heterogeneity (for exam-
ple, Jovanovic (1982); Hopenhayn (1992); Axtell (2001); Melitz (2003); Klette and Kortum
(2004); Luttmer (2007); Arkolakis (2016)) and in particular the branch that studies the het-
erogeneity among firms arising from their engagement in input-output linkages — Oberfield
(2018) and Bernard et al. (2019a). The model here houses two sources of firm heterogeneity
— from idiosyncratic productivities as in Kortum (1997) and from match-specific produc-
tivities and engagement in input-output linkages as in Oberfield (2018). Unlike Oberfield
(2018), the model accommodates heterogeneity in the number of input suppliers across firms
as well as in the intensity of use of suppliers across their customers. The model thus al-
lows for variation in firms’ average intensity of use by their customers. In the data, this
margin explains 46% of the variation in firms’ sales. The modeling approach here is dis-
tinct from Bernard et al. (2019a) who use a fixed cost formulation that necessitates use of
simulation-based estimation methods.

Third, the dissertation also relates to a growing literature on propagation of shocks and
aggregation in distorted production networks including Long and Plosser (1983), Ciccone
(2002), Gabaix (2011), Jones (2011), Acemoglu et al. (2012, 2017), Swiecki (2017), Caliendo
et al. (2017b), Baqaee (2018), Liu (2019), Baqaee and Farhi (2019a,b, 2020), and Bigio and

3Other complementary approaches to endogenous production network formation include Carvalho and
Voigtlander (2014), Chaney (2014) and Tintelnot et al. (2018) and to supply chain formation include Costinot
et al. (2013), Fally and Hillberry (2018), and Antràs and de Gortari (2020).
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LaO (2020). Some of these papers allow for non-Cobb–Douglas technologies and thus endo-
genize the intensity with which different inputs are used. However, they do not investigate
which combinations of inputs will be used—that is, the extensive margin of firm-to-firm
trade —which features prominently in this dissertation.

Finally, this dissertation is related to a rich literature in international trade. In the
model, trade is driven by comparative advantage as in Ricardian trade models (Dornbusch
et al. (1977); Eaton and Kortum (2002); Bernard et al. (2003)). However, since the model
accommodates heterogeneity in consumer preferences and technological requirements across
firms, comparative advantage is determined by each consumer and firm demanding inputs
rather than at the level of each market. This allows the model to rationalize patterns of
firm participation in international trade within the Ricardian framework which are typically
relegated to new trade theory models such as Melitz (2003) and Eaton et al. (2011).4 This
dissertation is also related to the branch of the trade literature that develops firm-level models
of importing that accommodate heterogeneity in input sourcing behavior between firms (for
example, Halpern et al. (2015); Antràs et al. (2017); Blaum et al. (2018); Ramanarayanan
(2020)). While these papers consider models where firms choose the set of locations to source
intermediate inputs or the share of intermediate inputs that are imported, here I develop
a more disaggregated model where firms choose both the set of suppliers across multiple
locations for intermediate inputs and the share purchased from each of them. In terms of
context, it is also related to the branch of the trade literature that studies spatial distribution
of economic activity (for example, Allen and Arkolakis (2014), Redding (2016), and Caliendo
et al. (2017a)) and its branch that studies the welfare consequences of intra-national trade
barriers (for example, Donaldson (2018); Asturias et al. (2018); Fajgelbaum et al. (2018)).
The model also shares features with papers that emphasize the role of granularity in trade
models such as Eaton et al. (2013), Armenter and Koren (2014), and Gaubert and Itskhoki
(2021).

Outline Chapter 2 describes the data and the corresponding empirical regularities. Chap-
ter 3 describes the model and lays out the probabilistic assumptions under which model
predictions on inter-firm trade shares are derived. Chapter 4 begins with the estimation
framework for firms’ marginal costs, trade frictions and dispersion of firms’ raw efficiencies.
It then provides the procedure for conducting counterfactual analysis. Chapter 5 discusses
how the well the model replicates empirical regularities and examines model implications for
counterfactual scenarios, one that leads to improvements in allocative efficiency and another
that causes market integration. Chapter 6 concludes.

Notation Throughout the document, a firm is indexed by s when it is a seller of inter-
mediate inputs or goods for final consumption and by b when it is a buyer of intermediate
inputs. Households are indexed by i. A location is indexed by o when it is the origin of
a trade flow and typically where firm s is located. Similarly, it is indexed by d when it is
the destination of a trade flow and typically where firm b is located or household i resides.

4For example, Eaton et al. (2011) state that the Ricardian framework with a fixed range of commodities
used in Bernard et al. (2003) does not deliver the feature that a larger market attracts more firms as observed
in French data.
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The set of all locations is denoted by J . The set of all firms is denoted by M and the
subset located at o is denoted by Mo. The set of all households is denoted by L and the
subset located at d is denoted by Ld. The number of elements in these sets are denoted as
M = |M|, L = |L|, Mo = |Mo|, and Ld = |Ld|.
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Chapter 2

Data & Empirical Regularities

2.1 Sources of Data
The primary dataset consists of the universe of intra-state firm-to-firm transactions as-

sembled from commercial tax authorities of five Indian states (viz. Gujarat, Maharashtra,
Tamil Nadu, Odisha, and West Bengal) between 2011-12 and 2015-16. Put together, these
states had a nominal GDP of $738 billion in 2015-16, accounting for nearly 40% of national
GDP. Among these states, the largest (Maharashtra) accounts for roughly 14% of national
GDP while the smallest (Odisha) accounts for a little over 2%. I complement this dataset
with data on the universe of inter-state firm-to-firm transactions obtained from the Ministry
of Finance in the Government of India running for the same period. It includes transac-
tions between all firms registered under the value-added tax system in their respective state.
The combined dataset consists of transactions between goods-producing firms and does not
include the services sector. It records 103 million inter-firm relationships between approxi-
mately 2.5 million firms across the years. Firms are located across 141 districts in these 5
states. See Appendix A.1 for summary statistics.1

2.2 Network Margins of Firm Heterogeneity & Trade
Indian firms are vastly heterogeneous in size, a pervasive finding in studies of firm-level

data. Intuitively, firms’ outcomes are shaped not only by their own intrinsic characteristics,
like productivity, but also by the characteristics of the firms – suppliers and customers – that
they connect with. Here, I am concerned with firm heterogeneity arising from their behavior
in production networks along two margins — the upstream and the downstream margins. On
one hand, a firm’s decision of supplier choice on the extensive and intensive margins affects
not only its own marginal cost but potentially that of customers that purchase goods from
it. Firm behavior on the upstream margin thus affects firms downstream to it in the supply

1Other papers using firm-to-firm transactions micro-data include Alfaro-Urena et al. (2019) from Costa
Rica, Demir et al. (2018, 2021) from Turkey, Bernard et al. (2019b); Carvalho et al. (2021); Miyauchi (2019)
from Japan, Bernard et al. (2019a); Tintelnot et al. (2018) from Belgium, Huneeus (2018) from Chile, Carrillo
et al. (2017) from Ecuador, Spray (2019) from Uganda and Gadenne et al. (2019) from the Indian state of
West Bengal.
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chain. On the other hand, a firm’s decision of quantity to produce and sell to customers
affects its suppliers through demand for inputs from them. Firm behavior on the downstream
margin thus affects firms upstream to it in the supply chain. While the downstream margin
is operational in models with exogenous production networks, the upstream margin requires
a model of endogenous network formation between firms — one where firms choose their
suppliers and the intensity with which they use inputs from those suppliers.

To shed light on the economic importance of these margins and guide the main features
of the model I will develop in Chapter 3, I leverage the rich network structure of the dataset
to conduct a simple decomposition of firms’ sales to other firms into three margins: number
of customers, average intensity of use among those customers, and average customer size.
Formally, input sales of firm s located at o can be decomposed into these three factors
according to the following identity.

input saleso(s) = No(s)×
∑

d

∑
b∈Md

πod(s, b)

No(s)
×
∑

d

∑
b∈Md

πod(s, b)× input costsd(b)∑
d

∑
b∈Md

πod(s, b)
.

(2.1)

In this expression, No(s) is the number of customers and πod(s, b) is the intensity with
which firm b located at d uses goods from seller s. Specifically, it is calculated as:

πod(s, b) =
salesod(s, b)

input costsd(b)
,

where salesod(s, b) denotes the value of goods sold by firm s to firm b and input costsd(b) =∑
o

∑
s∈Mo

salesod(s, b). Through variation in number of customers, the first factor captures
the attractiveness of the firm to potential customers looking for input suppliers. Similarly
through variation in intensity of use by customers, the second factor captures the attrac-
tiveness of the firm on the intensive margin of input choice by its customers. The third
factor measures average size of customers as inferred from a weighted average of their input
costs. The first two factors constitute the upstream margin and capture the direct impor-
tance of the firm in the production network since it captures how cost-effective the firm is
irrespective of the characteristics of the customers it sells to. The third factor constitutes
the downstream margin and captures the indirect importance of the firm in the production
network through the importance of its customers, its customers’ customers and so on. In
addition, the upstream margin of firm’s sales also captures the overall intensity of use of the
firm — the sum of cost shares of all firms in the economy that can be attributed purchases
from it.2

I compute the share of variance of firms’ sales that is explained by each of these factors.3
Column (1) in Table 2.1 reports the results of the decomposition. Four-fifths of the variance

2The upstream margin is sometimes referred to as the firm’s weighted out-degree. In recent work,
Acemoglu et al. (2012) coin this term for similar statistics at the industry level.

3In short, if a variable X can be decomposed into R factors, {Xr}Rr=1 such that X = X1 · X2 · · ·XR,
then the share of variance of X that can be attributed to any factor Xr is

Cov(lnX,lnXr)
V ar[lnX] . While these shares

sum to unity by additivity of the covariance operator, they are not constrained to be positive individually.
For example, see Klenow and Rodríguez-Clare (1997) for use in growth accounting and Eaton et al. (2004)
for regression-based decomposition of margins of trade.
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in firms’ sales can be attributed to the upstream margin leaving the rest for the downstream
margin. It implies that larger firms are likely to have more customers (explains 35% of the
variance), be used more intensively by those customers (46%), and have larger customers
(19%). All three factors covary positively with sales and contribute a non-trivial share to
the variance. The positive covariance of the downstream margin can be rationalized as
follows. Firms with higher demand for their own goods produce larger quantities and to do
so they purchase higher quantities of inputs from their suppliers. In turn, their suppliers
end up with higher demand and they source larger quantities from their own suppliers and
so on. Therefore, in the cross-section one observes that larger firms have larger customers
on average. This points to the importance of supply chain linkages between firms even when
the network structure is exogenously fixed.

However, it is the outsized contribution of the upstream margin that highlights the im-
portance of endogenous network formation through two potential channels. First, when
firms choose to source from more cost-effective suppliers, they are likely to inherit lower
marginal costs from their suppliers. This makes them attractive to their own customers who
become larger in turn. Therefore, in the cross-section one would observe a positive correla-
tion between firms’ sales and number of customers. This suggests that the endogeneity of
production networks along the extensive margin of inter-firm trade is important. Second,
when suppliers’ goods are substitutable in a firms’ input demand system, more cost-effective
firms will account for a larger share of material costs of their customers. Since those cus-
tomers source cheaper inputs intensively, they are likely to inherit lower marginal costs from
their suppliers. This makes them attractive to their own customers and they become larger
themselves. Therefore, in the cross-section one would observe a positive correlation between
firms’ sales and average intensity of use by customers. This suggests that the endogeneity
of production networks along the intensive margin of inter-firm trade is important.

Furthermore, trade across space is costly and economic activity across space exhibits
large dispersion. How does the relative position of firms across space affect their outcomes?
How does geography affect the aforementioned margins of firm heterogeneity? To investigate
this, I construct a similar decomposition at a more disaggregated level for firms’ destination-
specific sales and at a more aggregated level for trade flows between districts.4 Column (2) in
Table 2.1 reports results of variance decomposition of firm’s destination-specific sales while
controlling for firm-level fixed effects. This is done to capture the variation in individual
firms’ sales across multiple destinations. The upstream margin accounts for 94% of the
variation leaving 6% for the downstream margin. Column (3) in Table 2.1 reports results of
variance decomposition of aggregate trade flows between districts while controlling for origin
fixed effects. The upstream margin accounts for 87% of the variation leaving 13% for the
downstream margin. Since the upstream margin explains the lion’s share of the variation
in both cases, these results underscore the salience of geography in endogenous network
formation between firms.

Taking stock, I find that firms that are larger also tend to have more customers, tend to be
used more intensively by their customers, and tend to have larger customers. Of course, these
decompositions capture equilibrium relationships and are not causal; nevertheless, they make
clear that understanding the characteristics of firms’ network is key to understanding origins

4Further details are provided in Appendix A.
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Table 2.1: Network Margins of Firm Heterogeneity & Trade

(1) (2) (3)

# Customers 35% 37% 67%
Intensity per Customer 46% 57% 20%
Average Customer Size 19% 6% 13%

Fixed Effects:
Seller×Year — X —
Origin×Year — — X

Data Level:
Seller×Year • — —
Seller×Destination×Year — • —
Origin×Destination×Year — — •

# observations 5.6×106 18.2×106 58,390

Note. Column (1) reports the contribution of factors: # customers, intensity per customer, and average
customer size, to the variance of firms’ sales (as per equation (2.1)). Column (2) reports the contribution of
those factors to the variance of firms’ destination-specific sales (as per equation (A.1)). Column (3) reports
the same for trade flows between districts (as per equation (A.2)). See Appendix A for details and alternative
specifications.

of firm heterogeneity. While the economic intuition behind these results is straightforward,
the decomposition results are, to the best of my knowledge, new to the literature.5 With this
in mind, I develop a model of endogenous production network formation in the next chapter
that expressly takes these findings into account and leads to a multinomial logit model of
supplier choice for estimation.

5In related work, Huneeus (2018) and Bernard et al. (2019a) use Chilean and Belgian production network
micro-data respectively to decompose firms’ sales to other firms into # customers and sales per customer.
At the aggregate level using trade flows, it is also related to the decomposition into extensive and intensive
margins of trade such as in Eaton et al. (2011, 2016) and Fernandes et al. (2018). Here, I show that sales per
customer in the former and the intensive margin in the latter can be further decomposed into two factors
such that the decomposition delineates the role of endogenous network formation.
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Chapter 3

Theoretical Framework

In this chapter, I first describe a model of trade between multiple locations that accom-
modates heterogeneity in consumer preferences, heterogeneity in technological requirements
of firms and arbitrary production networks. Subsequently, I employ functional form as-
sumptions that make the model tractable and allow to derive aggregate implications before
proceeding to describe the framework for estimation in the next chapter.

3.1 Economic Environment
The model economy E ≡ {M,L,J } consists of many firms and households at many

locations. Firms produce using local labor and intermediate inputs sourced from suppliers
potentially spread across multiple locations. Each household supplies one unit of labor
inelastically to local firms. Firms rebate any profits to local households. Trade between
locations is subject to iceberg trade costs denoted by τod ≥ 1. That is, a firm producing at
o needs to ship τod units of a good for one unit of good to arrive at d.

Technology and Market Structure

Firms’ production processes involve combining labor and accomplishing a set of tasks.
To accomplish tasks, firms source intermediate inputs from other firms. In particular, the
production function for any firm b at location d is defined over labor and a discrete number
of tasks (indexed by k ∈ Kd(b) ≡ {1, · · · , Kd(b)}) as:

yd(b) = zd(b)Qd (ld(b), {md(b, k) : k ∈ Kd(b)}) ,

md(b, k) =
∑

s∈Sd(b)

mod(s, b, k),

where ld(b) is the amount of labor input used by firm b, md(b, k) is the quantity of materials
utilized to accomplish task k, zd(b) is the idiosyncratic Hicks-neutral productivity with which
firm b produces, and Kd(b) is the number of tasks in firm b’s production function. Qd (•)
is strictly quasi-concave, exhibits constant returns to scale and is increasing and continu-
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ous in ld(b) and {md(b, k) : k ∈ Kd(b)}. Labor is an essential factor of production, that is,
Qd (0, {md(b, k)}k) = 0.

Materials sourcing is subject to search frictions. Among all the firms in the economy,
firm b encounters only a few and can source intermediate inputs to accomplish tasks only
from those firms. This restricted set of potential suppliers is denoted by Sd(b). While
outputs of potential suppliers are perfectly substitutable for accomplishing any task, they
differ in their suitability for the task in question, captured by their respective match-specific
productivities. For each of its tasks, firm b selects the supplier that offers the lowest effective
price. Importantly, firm b may choose the same supplier for more than one tasks.

The market structure for intermediate inputs and final consumption is characterized by
Bertrand competition. Firms face limit pricing behavior when sourcing intermediate inputs
and engage in limit pricing themselves when supplying their goods for intermediate input
use by other firms and for final consumption by households. This means that the lowest
cost supplier for a firm or household sets a limit price to just undercut the next lowest
cost supplier available to the firm for intermediate input use or to the household for final
consumption.1

I now turn to firms’ cost minimization problem. For firm b, selecting the cost-minimizing
input bundle consists of first selecting the most cost-effective supplier for each task among
the set of potential suppliers, then choosing the quantity of inputs to purchase from those
selected suppliers for each of the tasks and the amount of labor to hire. In other words, firm
b first chooses who to source inputs from and then how much to buy from each of them.

For any particular task k in firm b’s production function, the cost-effectiveness of a
supplier s from location o in Sd(b) depends on four factors: (a) the marginal cost of s,
denoted co(s); (b) the trade cost faced by s of shipping goods to d, τod; (c) the match-
specific productivity when b utilizes the output of s to accomplish the task, denoted by
aod (s, b, k), and (d) the markup charged by s when it sells its output to b for accomplishing
the task, denoted m̄od (s, b, k). For task k, firm b chooses the supplier that offers the cheapest
price, that is,

s∗d(b, k) = arg min
s∈Sd(b)

{
m̄od (s, b, k) co(s)τod

aod(s, b, k)

}
. (3.1)

With limit pricing, the markup is determined by how much lower the effective cost faced
by the best supplier is relative to the second best. Hence, the effective price faced by b for
task k, denoted by pd(b, k), is given by

pd(b, k) = min
s∈Sd(b)\{s∗d(b,k)}

{
co(s)τod
aod(s, b, k)

}
. (3.2)

Now, taking wage wd and effective prices {pd(b, k) : k ∈ Kd(b)} as given, the firm’s unit cost
function can be defined as:

cd(b) = min
{ld(b),{md(b,k):k∈Kd(b)}}

wdld(b) +
∑

k∈Kd(b)

pd (b, k)md (b, k) (3.3)

1This market structure assumption traces back to Grossman and Helpman (1991) and also appears in
Bernard et al. (2003), Klette and Kortum (2004), and Peters (2020).
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subject to zd(b)Q (ld(b), {md(b, k) : k ∈ Kd(b)}) = 1

With the cost function as defined above, the profit of a firm s located at o can be expressed
as

Πo(s) =
∑
d

∑
b∈Md

∑
k∈Kd(b)

(m̄od (s, b, k)− 1)
co(s)τod
aod(s, b, k)

mod(s, b, k)

+
∑
d

∑
i∈Ld

∑
n∈Nd(i)

(m̄od (s, i, n)− 1)
co(s)τod
aod(s, i, n)

qod(s, i, n),

where mod(s, b, k) denotes the quantity of goods sold by firm s to customer b for task k and
qod(s, i, n) denotes the quantity of goods sold by firm s to households i for need n (described
below). The quantity of goods sold mod(s, b, k) or qod(s, i, n) is positive if s is the most
effective supplier for task k or need n respectively and zero otherwise.

Household Preferences

Households consume goods produced by firms to fulfill a set of needs. In particular, the
utility function for any household i at location d is defined over a discrete number of needs
(indexed by n ∈ Nd(i) ≡ {1, · · · , Nd(i)}) as:

ud (i) = U ({qd(i, n) : n ∈ Nd(i)}) ,

qd(i, n) =
∑

s∈Sd(i)

qod(s, i, n),

where qd(i, n) is the quantity of goods consumed to fulfill need n and Nd(i) is the number
of needs in the utility function. U (•) is continuous, differentiable, increasing, and strictly
quasi-concave in {qd(i, n) : n ∈ Nd(i)} and all needs are normal.

Goods sourcing is subject to search frictions and is modeled similar to firms sourcing
inputs. Outputs of potential suppliers are perfectly substitutable for fulfilling any need
but differ in match-specific taste shocks. For each of its needs, household i selects the
supplier that offers the lowest effective price and can sometimes select the same supplier
for more than one needs. For household i, selecting the utility-maximizing consumption
bundle comprises of first selecting the most cost-effective supplier for each need among the
set of potential suppliers and then of choosing the quantity of goods to purchase from those
selected suppliers for each of the needs. For any particular need n in i’s utility function, the
cost-effectiveness of a supplier s from location o in Sd(i) depends on four factors similar to
those that affect firms sourcing inputs. In particular, for need n, household i chooses the
supplier that offers the cheapest price, that is,

s∗d(i, n) = arg min
s∈Sd(i)

{
m̄od (s, i, n) co(s)τod

aod(s, i, n)

}
(3.4)

The markup is again determined by how much lower the effective cost faced by the best
supplier is relative to the second best. The effective price faced by i for need n denoted by
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pd(i, n) is then given by

pd(i, n) = min
s∈Sd(i)\{s∗d(i,n)}

{
co(s)τod
aod(s, i, n)

}
. (3.5)

Now, taking {pd(i, n) : n ∈ Nd(i)} as given, the household’s indirect utility function can
be defined as:

Vd(i) = max
{qd(i,n):n∈Nd(i)}

U ({qd(i, n) : n ∈ Nd(i)}) (3.6)

subject to
∑

n∈Nd(i)

pd(i, n)qd(i, n) = wd + Πd

where Πd =
∑
s∈Md

Πd(b)

Ld
is the per capita profit rebated to households residing at o.

Equilibrium Definition and Characterization

Let σ ≡ {z,K,N , τ ,S,a} denote the aggregate state of the economy. Here z denotes
the vector of idiosyncratic productivities of firms, K denotes the numbers of tasks of all
firms, N denotes the numbers of needs of all households, τ denotes the vector of trade
costs across all pairs of locations, S denotes the sets of potential suppliers of all firms and
households, and a denotes the vector of all match-specific productivities and match-specific
taste shocks. All of these objects are exogenous and defined below.

z ≡ {zo(s) : s ∈Mo, o ∈ J } ,
K ≡ {Kd(b) : b ∈Md, d ∈ J } ,
N ≡ {Nd(i) : i ∈ Ld, d ∈ J } ,
τ ≡ {τod : (o, d) ∈ J × J } ,
S ≡ {Sd(b) : b ∈Md, d ∈ J } ∪ {Sd(i) : i ∈ Ld, d ∈ J } ,
a ≡ {aod(s, b, k) : k ∈ Kd(b), (s, b) ∈Mo ×Md, (o, d) ∈ J × J }
∪ {aod(s, i, n) : n ∈ Nd(i), (s, i) ∈Mo × Ld, (o, d) ∈ J × J } .

An allocation in this economy is represented as ξ ≡ {l (σ) ,m (σ) , q (σ) ,y (σ)} and is
defined as a set of functions,

l (σ) ≡ {ld(b;σ) : b ∈Md, d ∈ J } ,
m (σ) ≡ {mod(s, b, k;σ) : k ∈ Kd(b), (s, b) ∈Mo ×Md, (o, d) ∈ J × J } ,
q (σ) ≡ {qod(s, i, n;σ) : n ∈ Nd(i), (s, i) ∈Mo × Ld, (o, d) ∈ J × J } ,
y (σ) ≡ {yo(s;σ) : s ∈Ms, o ∈ J } ,
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that map the realization of the state to intermediate input and labor quantities, quantities
consumed and quantities produced. A price system is represented as % ≡ {c (σ) ,p (σ) ,w (σ)}
and is defined as a set of functions,

c (σ) ≡ {co(s;σ) : s ∈Mo, o ∈ J } ,
p (σ) ≡ {pd (i, n;σ) : n ∈ Nd(i), i ∈ Ld, d ∈ J } ∪ {pd (b, k;σ) : k ∈ Kd(b), b ∈Md, d ∈ J } ,
w (σ) ≡ {wd (σ) : d ∈ J } ,

that map the realization of the state to tasks’ prices for firms, needs’ prices for households,
wage at each location and marginal costs of firms. This leads to the definition of equilibrium
in this economy as follows.

Definition 1. For any given state σ, an equilibrium in this economy is defined as an allo-
cation and price system, (ξ, %) such that (a) households select suppliers for needs and firms
select suppliers for tasks according to equations (3.1) and (3.4) respectively; (b) firms set
prices for other firms and households according to equations (3.2) and (3.5) respectively; (c)
households maximize utility according to equation (3.6); (d) firms minimize costs according
to equation (3.3); and (e) market clears for each firm’s goods and for labor at each location,

∑
d∈J

τod

∑
b∈Md

∑
k∈Kd(b)

mod(s, b, k) +
∑
i∈Ld

∑
n∈Nd(i)

qod(s, i, n)

 = yo(s),∑
b∈Md

ld(b) = Ld.

This completes description of the economic environment in the model. Moving ahead, the
aggregate state can be divided into two parts. The first comprises of firms’ productivities,
firms’ numbers of tasks, households’ numbers of needs, and trade costs; this is denoted
by σ0 ≡ {z,K,N , τ}. The second part comprises of sets of potential suppliers for firms
and households and match-specific productivities and taste shocks; this is denoted by σ1 ≡
{S,a}. While σ0 narrows down the set of networks that could be realized as an outcome
of the network formation process, σ1 pinpoints the exact network of firms that is realized.
In the following sections, I specify a probabilistic model so as to characterize the aggregate
trade equilibrium between locations for any given σ0.

3.2 Probabilistic Model
The probabilistic model is specified in four parts. First, I state distributional assump-

tions on firms’ productivities, firms’ numbers of tasks, and households’ numbers of needs.
This reduces the dimensionality of the firm-level state variables z and K and household-
level state variables N so that they are characterized by parameters at the location level.
Second, I describe the stochastic assumptions that govern random encounters with potential
suppliers and the choice of suppliers thereof. This specifies the distribution of the numbers
of potential suppliers available to each firm and each household (S) and that of the match-
specific productivities and match-specific taste shocks associated with those suppliers (a).
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Third, I make functional form assumptions on technology {Qd (·) : d ∈ J } and preferences
U (·). Finally, I characterize the large economy limit of the model that enables aggregation
and leads to the definition of the aggregate trade equilibrium.

Firms’ productivities are drawn independently from Fréchet distributions parametrized
such that the mean and dispersion across firms vary by location and are given by the following
assumption.2

Assumption 1. Idiosyncratic ex ante productivities {zo(s) : s ∈Mo} are drawn indepen-
dently according to the following Fréchet distribution:

P (zo(s) ≤ z) = e−Toz
−θo

1 {z ≥ 0} .

where To and θo are respectively the scale and shape parameters of the productivity distribution
at location o.

For any location o, the average productivity of firms is determined by To and dispersion
in productivities is determined by θo. A higher To implies higher average productivity and a
higher θo implies lower dispersion in productivities. Firms’ numbers of tasks and households’
numbers of needs are drawn from zero-truncated Poisson distributions such that all firms
have at least one task in their production function and all households have at least one need
in their utility function.

Assumption 2. The number of tasks {Kd(b) : b ∈Md} are drawn independently according
to the following zero-truncated Poisson distribution:

P (Kd(b) = Kd) =
e−κdκKdd

(1− e−κd)Kd!
.

The number of needs {Nd(i) : i ∈ Ld} are drawn independently according to the following
zero-truncated Poisson distribution:

P (Nd(i) = Nd) =
e−ηdηNdd

(1− e−ηd)Nd!
.

The distributions of the number of tasks across locations is parametrized such that the
intensity κd varies by location. A higher κd implies that firms at d have a larger number of
tasks on average and hence the potential to source inputs from a larger number of suppliers.
A similar explanation holds for how households’ number of needs depends on ηd.

Next, I turn to stochastic assumptions that govern random encounters with potential
suppliers and the choice of suppliers thereof. Search frictions in the model are characterized
by firms and households encountering potential suppliers via independent Bernoulli trials.
The set of sets of potential suppliers S is therefore completely determined as the outcome of
these Bernoulli trials for meeting each firm. The success probabilities associated with these
trials are given by the following assumption.

2This functional form for heterogeneity in firm productivity comes from Bernard et al. (2003) and can
be derived from deeper assumptions on the process of innovation (for details, see Kortum (1997) and Eaton
and Kortum (2001)).
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Assumption 3. The probability with which firm b encounters firm s is given by

P (s ∈ Sd(b)) =
λ

M
,

where λ > 0. Similarly, the probability with which household i encounters firm s is also given
by P (s ∈ Sd(i)) = λ/M.

These success probabilities are decreasing in the total number of firms in the economy. In
economies with sufficiently large number of firms, these search frictions approximate Poisson
processes where firms and households encounter potential suppliers with rate λ for their
tasks and needs respectively.3 Match-specific productivities and taste shocks are drawn
independently for all potential suppliers for each of the tasks in firms’ production functions
and needs in households’ utility functions from a Pareto distribution.

Assumption 4. Match-specific productivities and taste shocks a are drawn independently
according to the following Pareto distribution:

Fa(a) =
(

1− (a/a0)
−ζ
)

1 {a > a0}

with ζ < θo∀o ∈ J .

The shape parameter of this distribution ζ regulates the thickness of the right tails of the
match-specific productivity and taste shock distributions. The lower ζ is, the higher is the
likelihood of particularly high draws of match-specific productivities. With higher likelihood
of high draws, the choice of supplier (according to equations 3.1 and 3.4) is less sensitive
to marginal cost of the supplier or trade costs. The restriction that ζ < θo for all locations
implies that the likelihood of very high draws of idiosyncratic productivities is less than that
of very high match-specific productivities. This ensures that the price index is well-defined
in the limiting economy.

I now turn to functional form assumptions on technology and preferences. Production
functions of firms are Cobb-Douglas in labor and tasks such that the materials share of costs
of firms, denoted by αd, varies by location. Similarly, utility functions defined on needs
are also of the Cobb-Douglas functional form. Tasks in production functions and needs in
utilities feature symmetrically.

Assumption 5. For any firm b, Qd (·) takes the following Cobb-Douglas functional form:

Qd (ld (b) , {md(b, k) : k ∈ Kd(b)}) =

(
ld(b)

1− αd

)1−αd
(∏

k∈Kd(b)md(b, k)1/Kd(b)

αd

)αd

The marginal cost function is then given by:

cd (b) =
w1−αd
d

(∏
k∈Kd(b) pd(b, k)1/Kd(b)

)αd
zd(b)

(3.7)

3For any firm b, the number of potential suppliers follows a binomial distribution, i.e., P (|Sd(b)| = Sd) =(
M
Sd

) (
λ
M

)Sd (
1− λ

M

)M−Sd . For sufficiently large values of M , |Sd(b)|∼ Poisson (λ).
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For any household i, U (·) takes the following Cobb-Douglas functional form:

U ({qd(i, n) : n ∈ Nd(i)}) =
∏

n∈Nd(i)

qd(i, n)
1/Nd(i)

The price index is then given by Pd (i) =
∏

n∈Nd(i) pd(i, n)1/Nd(i).

Firms (or households) spend equal shares of costs across tasks (or needs). Although the
elasticity of substitution between tasks (or needs) is equal to unity, this formulation captures
richer patterns of substitution across outputs of other firms that are used to accomplish tasks
(or fulfill needs). This is because a potential supplier charging a lower price is likely to be
selected for a higher number of tasks by any firm and hence is likely to account for a higher
cost share of the firm. The extensive margin of firms’ input sourcing is determined by
whether a potential supplier is chosen for at least one of the tasks whereas the intensive
margin is determined by how many tasks the potential supplier gets selected for. Both these
margins of inter-firm trade are determined endogenously in equilibrium.

To enable the theoretical model to make aggregate predictions, I consider a limiting
economy where firms and households are arranged on a continuum. In the limiting economy,
the trade equilibrium conditional on σ0 which is characterized by wages across locations
{wd : d ∈ J }, is deterministic.4 Thus, there is no aggregate uncertainty at any location in
the limiting economy. In particular, I adopt the large economy model due to Al-Najjar
(2004) which is characterized by a sequence of finite but increasingly large economies that
progressively discretizes the unit continuum. The distribution of firms and households along
the sequence is uniform. This allows use of the law of large numbers in the limiting continuum
to derive cross-sectional distributions of effective prices and marginal costs for given wages.
While effective prices of firms’ tasks and marginal costs of firms might individually vary
across realizations of σ1, their cross-sectional distributions at each location are invariant
across all such realizations in the limiting economy. The following definition formalizes the
notion of the limiting economy in the current context.

Definition 2. Consider a sequence of finite economies {Et : t ∈ N} where Et ≡ {Mt,Lt,Jt} is
such that the tth economy has the formMt = {m1, · · · ,mMt} ⊂ [0, 1] , Lt = {`1, · · · , `Lt} ⊂
[0, 1] and Jt = J . The uniform distribution on Mt is given by UMt (M0

t ) =
M0
t

Mt
for all

M0
t ⊂ Mt. Similarly, the uniform distribution on Lt is given by ULt (L0

t ) =
L0
t

Lt
for all

L0
t ⊂ Lt. Then, {Et : t ∈ N} is a discretizing sequence of economies if it satisfies:

1. Mt ⊂Mt+1 and Lt ⊂ Lt+1 for all t,

2. limt→∞ UMt (Mt ∩ [al, ah]) = U ([al, ah]),

3. limt→∞ ULt (Lt ∩ [al, ah]) = U ([al, ah]),

where U (•) denotes the uniform distribution with support over [0, 1] and [al, ah] ⊂ [0, 1].

4Existence and uniqueness of the trade equilibrium in the limiting economy can be shown in a manner
analogous to Theorems 1-3 in Alvarez and Lucas (2007).
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Along the sequence {Et : t ∈ N} as the economy becomes more discretized, I make ad-
ditional assumptions on σ1 so that the model has a well-defined limit. The probability of
meeting potential suppliers increases, i.e., limt→∞ λt = ∞, but at a rate slower than that
at which the economy is discretized, i.e., limt→∞

λt
Mt

= 0. At the same time, match-specific
productivities are drawn from stochastically worse distributions as limt→∞ a0,t = 0. While
the number of potential suppliers grows arbitrarily large and the match-specific productivity
associated with any single supplier is drawn from a stochastically worse distribution, the
limit is well behaved because the probability of encountering a supplier with match-specific
productivity greater than a does not change in the limiting economy, i.e., limt→∞ λta

ζ
0,t = 1.5

Furthermore, the economy becomes discretized in a manner such that the proportion of firms
and households at every location is non-zero and finite. The following assumption states this
formally.

Assumption 6. The discretizing sequence of economies {Et : t ∈ N} satisfies the following
conditions:6

1. {λt, a0,t : t ∈ N} is such that λt = o (Mt) and λtaζ0,t = Θ(1)

2. {Md,t, Ld,t : d ∈ J , t ∈ N} is such that Md,t = Θ (Mt) and Ld,t = Θ (Lt) for all d ∈ J

This completes the description of the probabilistic model. Let T ≡ {Td : d ∈ J }, θ ≡
{θd : d ∈}J , κ ≡ {κd : d ∈ J }, η ≡ {ηd : d ∈ J }, and α ≡ {αd : d ∈ J }. Through As-
sumptions 1 and 2, the part of the aggregate state contained in σ0 in the limiting economy
can then be redefined as σ0 ≡ {T ,θ,κ,η, τ}.

3.3 Aggregate Implications
I now proceed to characterize equilibrium prices % ≡ {p (σ) , c (σ) ,w (σ)} in the limiting

economy, i.e., limt→∞ Et. In the limiting economy, for any given realization of σ0, wages and
cross-sectional distributions of effective prices and marginal costs at all locations are invariant
across all realizations of σ1. Therefore, equilibrium prices in the limiting economy can be
expressed as % ≡ {p (σ0) , c (σ0) ,w (σ0)}. I begin with distributional properties of effective
prices and marginal costs. Next, I provide model implications for firm-to-firm trade and
trade between locations which lead to the characterization of wages in the trade equilibrium.

Distributions of Effective Prices and Markups

With limit pricing, the distribution of effective prices faced by a firm for any of its tasks
or that faced by a household for any of its needs is characterized by the distribution of the
offer with the second lowest effective cost to the supplier. The following proposition provides
the distribution of effective prices in the limiting economy.

5This kind of assumption was shown to have a well-defined limit by Kortum (1997) and put to use for a
similar purpose by Oberfield (2018).

6For any two functions f(n) and g(n), f(n) = o (g(n)) =⇒ limn→∞
f(n)
g(n) = 0 and f(n) = Θ(g(n) =⇒

lim supn→∞
|f(n)|
g(n) <∞ and lim supn→∞ |

f(n)
g(n) |> 0.
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Proposition 1. For any realization of σ0, the effective prices of materials used by firm b to
accomplish any task, pd(b, k), and that of goods consumed by household i to satisfy need n,
pd(i, n), converge to the following distribution as t→∞:

Fpd (p) =
(

1− e−Adpζ − Adpζe−Adp
ζ
)

1 {p > 0} ,

where A ≡ {Ad : d ∈ J } is the unique positive solution to the following fixed point problem:7

Ad =
∑
o∈J

τ−ζod µoΓ

(
1− ζ

θo

)
T

ζ
θo
o w−ζ(1−αo)o E{Ko}

[
Γ

(
2− αo

Ko

)Ko]
Aαoo , (3.8)

where µo denotes the proportion of firms at o and E{Ko} [·] denotes the expectation over all
realizations of numbers of tasks Ko across firms at o.

Proof. See Appendix B.1.

The distribution of effective prices conditional on σ0 is obtained by appealing to a law
of large numbers afforded by Definition 2. While the effective price faced by individual
firms and households varies across realizations of σ1, the cross-sectional distribution in the
limit economy does not. These distributions are parametrized by a scale parameter Ad and
a shape parameter ζ. Market access, given by Ad, is a key object of interest because it
summarizes the probabilistic access of firms at d to inputs from all locations. The functional
form suggests that firms at a location with higher market access face stochastically lower
effective prices. Specifically, if Ad > Ad′ , the distribution Fpd′ (·) first-order stochastically
dominates Fpd (·).

Focussing on equation (3.8), market access Ad is a trade friction (τ−ζod ) weighted sum of
the attractiveness of all locations o ∈ J , i.e., nearer locations receive higher weights because
of lower trade costs τod and vice versa. The attractiveness of a location o for sourcing inputs
is determined by four factors: (a) density of firms µo; (b) average productivity among firms
To; (c) its own market access Ao; and (d) wages wo. Locations with higher density, higher
average productivity, higher market access or lower wages are more attractive. In addition,
the attractiveness of a location o is more sensitive to its market access Ao and less so to
wages wo if materials share of costs αo is higher at o and vice versa.

Although the effective price is characterized by the distribution of the offer with the
second lowest effective cost to the supplier, it is still the supplier with the lowest effective
cost that is selected. The distribution of markups faced by the firm or the household is
characterized by that of the ratio of the second lowest to the lowest effective costs incurred
by the second best and the best suppliers respectively. In addition, Assumption 6 implies that
in the limiting economy, every firm or household encounters at least two potential suppliers
with probability approaching one and this ensures that markups are well-behaved.8 The
following proposition provides the distribution of markups.

7The gamma function Γ (·) is defined as Γ(x) =
∫∞

0
e−xmx−1dm.

8To see this clearly, note that for any firm b, P (|Sd(b)| < 2) =
(

1− λt
Mt

)Mt

+
(
Mt

1

) (
λt
Mt

)(
1− λt

Mt

)Mt−1

.
It then follows that limt→∞ P (|Sd(b)| < 2) = 0.
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Proposition 2. Markups over marginal cost of lowest cost supplier m̄od(·, ·, ·) are distributed
according to the following Pareto distribution:

Fm̄(m̄) =
(
1− m̄−ζ

)
1 {m̄ > 1} .

Proof. See Appendix B.2.

The shape parameter of the distribution of potential markups is ζ, the same parameter
that governs dispersion in match-specific productivities. With lower ζ, higher markups are
more likely since high match-specific productivities are more likely and hence are larger gaps
between costs to the best and second best suppliers. Moreover, the distribution of markups
is the same in any destination. An aggregate implication that follows from the distribution
of markups is that the share of variable costs in gross output is given by 1

1+1/ζ
at all locations.

This in turn implies that value-added share of gross output at location o is given by:9

(V A/GO)o =
1− αo + 1/ζ

1 + 1/ζ
. (3.9)

Distributions of Marginal Costs

The marginal cost of a firm determines (albeit, partially) whether it is selected by po-
tential customers and if so, the intensity with which it is used. It is therefore a key variable
governing network formation between firms. The marginal cost of the firm is itself deter-
mined by its own productivity, wage faced by it for hiring labor, and the effective price faced
by it for its tasks. Since productivity, number of tasks and effective price faced for each
task are randomly drawn for each firm, the marginal cost of any given firm is a random
variable that is itself the product of a random number (number of tasks) of random vari-
ables (effective price for each task). In lieu of the distribution function which does not have
a closed-form characterization, I provide closed-form expressions for moments of marginal
costs distribution in the following proposition.

Proposition 3. For any realization of σ0, the distribution of marginal costs at any location
o satisfies the following moment conditions:

E [log co(s)] =
αoψ

(0)(2)

ζ
+
ψ(0)(1)

θo
+ (1− αo) logwo −

αo
ζ

logAo −
1

θo
log To, (3.10)

E [co(s)] = Γ

(
1 +

1

θo

)
T
− 1
θo

o w1−αo
o E{Ko}

[
Γ

(
2 +

αo
ζKo

)Ko]
A
−αo

ζ
o , (3.11)

V ar [log co(s)] =
ψ(1)(1)

θ2
o

+ E{Ko} [1/Ko]
α2
oψ

(1)(2)

ζ2
, (3.12)

9This result is similar to that obtained in Bernard et al. (2003). In their case, markups were distributed
according to a Pareto distribution with shape parameter inherited from the productivity distribution. In
contrast, here the markup distribution inherits the shape parameter from the distribution of match-specific
productivities, not the distribution of productivities.
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CV [co(s)]
2 =

Γ
(

1 + 2
θo

)
Γ
(

1 + 1
θo

)2 ·
E{Ko}

[
Γ
(

2 + 2αo
ζKo

)Ko]
E{Ko}

[
Γ
(

2 + αo
ζKo

)Ko]2 − 1, (3.13)

where ψ(n)(·) denotes polygamma functions and CV denotes the coefficient of variation.10

Proof. See Appendix B.3.

What factors affect average marginal costs of firms at a location? Intuitively, firms’
marginal costs will be low on average if they are more productive, are able to source inter-
mediate inputs at lower prices, and face lower cost of hiring labor. Equations (3.10) and
(3.11) suggest that average marginal costs are lower at locations where firms (a) have higher
average productivity (higher To); (b) face stochastically lower effective prices for their tasks
thanks to better market access (higher Ao); and (c) face lower costs of hiring labor (lower
wo). Further, average marginal costs are more sensitive to market access and less so to wages
if materials share of costs αo is higher and vice versa. Of these factors that influence aver-
age marginal costs, {T ,α} are exogenous location characteristics whereas {A,w} constitute
endogenous price variables.

What factors affect dispersion of marginal costs in equilibrium at a location? Marginal
costs of firms differ from one another due to differences in productivity and due to differences
in effective prices faced for their respective tasks. Equations (3.12) and (3.13) shed light on
the role of these two channels. The first term of the sum in equation (3.12) and of the
product in equation (3.13) reveal the contribution of differences in productivities across
firms. Locations where dispersion in productivities is higher (lower θo) will have a higher
dispersion in marginal costs.11 More importantly, the second term of the sum in equation
(3.12) and of the product in (3.13) reveal the contribution of differences in effective prices
faced by firms. Focussing on equation (3.12), its contribution is governed by three factors.
First and foremost, the contribution is decreasing in ζ. A lower ζ increases the likelihood
of high draws of match-specific productivities and therefore generates higher dispersion in
effective prices. This factor is common across all locations. Second, the contribution is
higher at locations with higher materials share of costs (higher αo). Naturally, if materials
form a larger share of costs, dispersion in price of materials plays a larger role. Finally, the
contribution is lower at locations with higher numbers of tasks (lower E [1/Ko] or higher κo).
With higher numbers of tasks, for one firm’s price of materials to be substantially higher than
another, it requires a larger number of high draws of match-specific productivities. Since
such an occurrence is unlikely, locations with higher κo have lower dispersion in materials
prices across firms. A similar explanation also holds for equation (3.13).

10Polygamma functions ψ(n)(·) are defined as ψ(n)(x) = dn+1 ln Γ(x)
dxn+1 .

11In equation (3.12) the first term is clearly decreasing in θo. The first term in equation (3.13) is also
decreasing in θo. For example, consider two locations o and o′ with Fréchet shape parameters of productivity
distributions given by θo = 5 and θo′ = 6 respectively. The first term in equation (3.13) takes values 1.052
and 1.037 at o and o′ respectively.
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Conditional Choice Probabilities & Firm-to-Firm Trade

I turn to predictions for firm-to-firm trade. Since these are not aggregate implications
but rather are at the firm-to-firm level, it is not meaningful to consider the limiting economy.
Therefore, I consider a sufficiently large economy along the sequence in Definition 2 such that
Assumption 6 holds, i.e., λ/M � 1, |λaζ0−1| < ε1, and |a0| < ε2 for arbitrarily small values of
ε1 and ε2. Recall from equation (3.1) that firms choose suppliers for tasks based on suppliers’
marginal costs, trade costs faced by them, and match-specific productivities associated with
the task under consideration. While trade costs τ constitute σ0, match-specific productivities
are unknown and suppliers’ marginal costs co(s) are determined endogenously. I therefore
characterize conditional choice probabilities for supplier choice, i.e., probabilities for choice
of supplier conditional on its marginal cost but in expectation over match-specific productiv-
ities that are yet to be realized. Let π0

od(s, b) denote the probability with which firm b selects
firm s for any one of its tasks. Prior to realizing the match-specific productivities for each
task {aod (s, b, k)}k∈Kd(b), the probability of firm s getting selected for any one of the tasks by
firm b is common across all tasks. That is, π0

od (s, b) = π0
od(s, b, k) = E{a} [1 {s = s∗d(b, k) | a}]

where the expectation operator is over all realizations of aod (s, b, k). The following proposi-
tion provides expressions for conditional choice probabilities π0

od (s, b) as well as for ρ0
od(s, b),

the probability with which firm b selects firm s for at least one of its tasks – thereby deter-
mining the extensive margin of firm-to-firm trade. As it turns out, these probabilities are
independent of the identity of the buyer at the destination and therefore can be written as
π0
od(s,−) and ρ0

od(s,−).

Proposition 4. For any realization of σ0, conditional on firm s’s marginal cost being co(s),
the probability with which any firm located in d selects firm s located in o for any given task
is

π0
od(s,−) =

co(s)
−ζτ−ζod∑

s′∈M co′(s′)−ζτ
−ζ
o′d

. (3.14)

Further, conditional on firm s’s marginal cost being co(s), the probability with which any firm
located in d selects firm s located in o for at least one of its tasks is

ρ0
od(s,−) =

1− e−κdπ0
od(s,−)

1− e−κd
. (3.15)

Proof. See Appendix B.4.

The above proposition is key to understanding what drives network formation among
firms in the model and how it enables the model to match empirical regularities described in
Chapter 2. On one hand, equation (3.14) highlights the factors that influence the likelihood
of a supplier s from o getting selected by a buyer at d for any one of its tasks. Firms
with lower marginal costs, denoted by co(s), are more likely to get selected for more tasks.
Firms that are located nearer to the buyers and face lower trade costs, denoted by τod,
are more likely to get selected for more tasks. Moreover, the elasticity of the likelihood of
getting selected with respect to marginal costs or trade costs is decreasing in ζ. That is,
∂ lnπ0

od(s,−)

∂ ln co(s)
=

∂ lnπ0
od(s,−)

∂ ln τod
= −ζ. With lower ζ, Assumption 4 implies that high match-specific

productivities are more likely and the choice of supplier is less sensitive to other factors, i.e.,
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its marginal cost and the trade cost faced by it. On the other hand, equation (3.15) shows
that the same factors also influence whether a supplier s from o gets selected by a buyer at
d for at least one of its tasks or none at all, i.e., the extensive margin of firm-to-firm trade.
Since ρ0

od(s,−) is increasing in π0
od(s,−), marginal costs co(s), trade costs τod and dispersion

in match-productivities governed by ζ affect the extensive margin of supplier choice in the
same manner as above. In addition to these factors, equation (3.15) also suggests that firms
are more likely to find customers at destinations where buyers have higher numbers of tasks
(higher κd). Naturally, if buyers have larger numbers of tasks, the supplier draws a larger
number of match-specific productivities, has a better chance of getting high draws and hence
get selected by a buyer.

In summary, this proposition channels the role of the upstream margin — at any location
d, firms with lower marginal costs are likely to find more customers and are also likely to
be used intensively by them. The role of geography in the upstream margin comes from the
dependence of these probabilities on trade costs — firms from o are less likely to be successful
both at the extensive and intensive margins of firm-to-firm trade across potential customers
at d if o is farther, i.e., τod is higher. These results then lead to predictions for trade between
locations. Since those are aggregate predictions, they are derived for the limiting economy.

Sourcing Probabilities & Trade between Locations

Conditional choice probabilities of supplier choice naturally aggregate to sourcing proba-
bilities. That is, the probability with which any buyer sources inputs from o for any one its
tasks can be obtained as the sum of conditional choice probabilities associated with all the
suppliers located at o. The limiting economy assumption comes in handy here as it allows
aggregation across firms within a location. Conditional choice probabilities from Proposition
4 together with properties of the cross-sectional distributions of effective prices and marginal
costs from Propositions 1 and 3 lead to the next proposition. This proposition characterizes
sourcing probabilities across origins by firm b, denoted by π0

od (•, b), as well as ρ0
od(•, b), the

probability with which firm b sources from o for at least one of its tasks. As in the previous
proposition, these probabilities are independent of the identity of the buyer at the destination
and therefore can be written as π0

od(•,−) and ρ0
od(•,−).

Proposition 5. For any realization of σ0, the probability with which any firm located in d
selects a supplier from o for any given task is

π0
od(•,−) =

µoΓ
(

1− ζ
θo

)
T

ζ
θo
o w

−ζ(1−αo)
o E{Ko}

[
Γ
(

2− αo
Ko

)Ko]
Aαoo τ

−ζ
od

Ad
. (3.16)

Further, the probability with which any firm located in d selects a supplier from o for at least
one of its tasks is

ρ0
od(•,−) =

1− e−κdπ0
od(•,−)

1− e−κd
. (3.17)

Proof. See Appendix B.5.

24



Sourcing probabilities in equation (3.16) hark back to market access defined in equation
(3.8). Recall that market access is a weighted sum of attractiveness of all locations for a
particular destination. Equation (3.16) suggests the probability with which a buyer from
d sources intermediate inputs from o for any one of its tasks is given by the contribution
of location o towards market access of firms at d. Firms at d are more likely to source
inputs from o if there are a larger number of firms at o (higher µo), firms at o have higher
productivities on average (higher To), wage wo is lower, or firms at o have better market

access (higher Ao). Other factors Γ
(

1− ζ
θo

)
and E{Ko}

[
Γ
(

2− αo
Ko

)Ko]
capture that fact

that when materials share αo is higher or dispersion parameter θo is lower supply chains
routed through firms at o are likely to be more efficient. The same factors also affect the
likelihood of a buyer at d sourcing from o for at least one of its tasks or none at all. Since
ρ0
od(•,−) is increasing in π0

od(•,−), a similar explanation holds for origin selection at the
extensive margin. In addition to these factors, equation (3.17) also suggests that firms at
d are more likely to source from o if they have higher numbers of tasks (higher κd). The
explanation for this parallels that of how equation (3.15) affects the extensive margin of
firm-to-firm trade.

Under the additional assumption that θo = θ, αo = α, and κd = κ at all locations o, the
sourcing probabilities in equation (3.16) can be simplified as follows.

πod =

µo

(
Tow

−θ(1−α)
o A

α· θ
ζ

o τ−θod

) ζ
θ

Ad
, (3.18)

where Ad =
∑

o

(
µoTow

−ζ(1−α)
o Aαo

)
τ−ζod denotes the market access at location d. This bears

resemblance to aggregate trade shares between locations obtained in Eaton and Kortum
(2002) and Bernard et al. (2003). In their case, aggregate trade share is given by

πod =
Tow

−θ(1−α)
o Aαo τ

−θ
od

Ad
,

where Ad =
∑

o

(
Tow

−θ(1−α)
o Aαo

)
τ−θod denotes the market access at location d, α denotes the

materials share of costs while To and θ are parameters of the Fréchet productivity distribution
at location o given by P (zo(s) ≤ z) = e−Toz

−θ
1 {z ≥ 0}.

The sourcing probabilities also bear resemblance to aggregate trade shares between loca-
tions obtained in Melitz (2003) and Chaney (2008). In their case, aggregate trade share is
given by

πod =
µo

(
Tow

−θ(1−α)
o Aαo τ

−θ
od

)
f
−( θ

σ−1
−1)

od

Ad
,

where Ad =
∑

o

(
µoTow

−θ(1−α)
o Aαo

)
τ−θod f

−( θ
σ−1
−1)

od denotes the market access at location d,
fod denotes fixed costs of exporting from location o to location d, σ denotes the elasticity
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of substitution across differentiated goods while To and θ are parameters of the Pareto
productivity distribution at location o given by P (zo(s) ≤ z) =

(
1− Toz−θ

)
1
{
z ≥ T

1/θ
o

}
.

In this context, two facts are worth noting about Equation (3.18): (a) the elasticity of
trade shares with respect to trade costs comes from the shape parameter of match-specific
productivities ζ and not the dispersion of productivities θ, and (b) trade shares are increasing
in the density of firms at the origin µo. The former unlinks the dispersion in idiosyncratic
productivities from the trade elasticity while the latter introduces a probabilistic notion of
“love of variety” within the Ricardian framework.

Trade Equilibrium

Equation (3.16) suggests that the probability of sourcing from a particular origin o is
common for all tasks across all firms at a destination d and that the choice is conditionally
independent across firms at the destination. Therefore, the law of large numbers implies that
in the limiting economy aggregate trade shares converge to the sourcing probabilities, i.e.,
limt→∞ π

0
od (Et) = π0

od(•,−). This brings us to the proposition below which states that the
trade equilibrium in the limiting economy is satisfied with trade shares given by π0

od(•,−)
for all networks that are realized for any given σ0.

Proposition 6. For any realization of σ0, w ≡ {wd : d ∈ J } solves the following system of
equations for all realizations of σ1:

woLo
1− αo

=
∑
d∈J

π0
od (•,−)

wdLd
1− αd

(3.19)

Proof. See Appendix B.6.

This concludes the characterization of equilibrium prices and brings us to the definition
of the trade equilibrium below.

Definition 3. For any given σ0, the trade equilibrium in the limiting economy is defined as
the vector of wages w such that (a) market access at each location satisfies equation (3.8);
(b) trade shares coincide with sourcing probabilities in equation (3.16) and (c) the market
clearing condition in equation (3.19) holds.

The trade equilibrium along with tractable expressions for firm-to-firm trade and ag-
gregate trade in Propositions 4 and 5 give rise to transparent estimating equations for the
model, to which I turn next.
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Chapter 4

Empirical Framework

This chapter lays out the procedure for estimation of the model and counterfactual anal-
ysis. The objective of estimation is to infer the aggregate state σ0 that consists of trade
costs, firms’ idiosyncratic productivities, and firms’ task intensities given the observed data.
Estimation relies on Proposition 4. With the estimated model, counterfactual analysis for
large economies is then conducted by relying on Proposition 6 to evaluate the change in ag-
gregate outcomes that results in response to shocks deriving from a change in the aggregate
state σ0 to σ′0. For clarity, state variables ∆, parameters Θ, and data D are grouped as
follows:

∆ ≡
{{
co(s)

−ζ : s ∈M
}
,
{
τ−ζod : (o, d) ∈ J × J

}}
Θ ≡ {ζ,α,θ,κ}
D ≡ {{πod(s, b) : (s, b) ∈Mo ×Md} ,Xod : (o, d) ∈ J × J }

where πod(s, b) denotes the share of firm s in firm b’s material costs and Xod denotes the
vector of bilateral origin-destination observables such as distance and borders etc. In what
follows, terms with superscript (·)0 denote true values and those with superscript (·)∗ denote
corresponding estimates. Changes in quantities are denoted by (̂·).1 For example, π0

od(s, b)
denotes true values of conditional choice probabilities, π∗od(s, b) denotes estimates of condi-
tional choice probabilities , and ̂π0

od(s, b) denotes changes in conditional choice probabilities
from the initial to the counterfactual state.

4.1 Estimation of Marginal Costs and Trade Frictions,
∆

I reformulate the economic model developed in the previous chapter as a multinomial logit
model of supplier choice for tasks of each of the firms and estimate it semi-parametrically.
Firm’s marginal costs are estimated as firm fixed effects and bilateral origin-destination fixed

1For any variable x that changes it value to x′ in a counterfactual state, change in x is denoted as
x̂ = x′/x.
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effects correspond to a structural gravity specification for estimating trade frictions. Trade
frictions are then estimated by projecting bilateral fixed effects on observables. Together,
these provide estimates of conditional choice probabilities for firm-to-firm trade as well as
sourcing probabilities for trade between locations.

Marginal Costs & Structural Gravity The econometric model can be motivated using
the balls and bins problem. Consider the multinomial random variable characterized by a
firm b located at d throwing Kd(b) balls (one for each of its tasks) intoM bins. Each of these
bins corresponds to a potential supplier, denoted by s. The probability with which any of
these balls falls into the bin indexed s is given by the expression for π0

od(s,−) from Proposition
4. A realization of this random variable consists of the proportion of balls that landed in
each of the bins. Since tasks are symmetric and the production function of firm b takes the
Cobb-Douglas functional form (Assumption 5), the model counterpart of this realization is
the vector of cost shares of firm b across all suppliers in the economy. In other words, the
cost share of firm b that can be attributed to firm s stands in for the relative frequency of
firm s’s successes in getting selected across firm b’s tasks. Since there are a discrete number
of tasks, π0

od(s, b) is only the expected share of tasks for which firm b uses the output of firm
s. Any given realization may deviate from this expected value for particularly high or low
realizations of match-specific productivities and from randomness in buyer-seller encounters
between firms.2 Therefore, making use of Proposition 4, the estimating equation can be
expressed as a multinomial logit function:3

E [πod(s, b)] =
co(s)

−ζτ−ζod∑
s′∈M co′(s′)−ζτ

−ζ
o′d

(4.1)

This multinomial logit specification is non-standard because of two reasons. On one
hand, firms’ marginal costs (included as firm fixed effects) are endogenously determined in
the model through supplier choice decisions of all the firms in the economy. Since match-
specific productivities are independent across firms and tasks in their production function,
the supplier choice decision is however conditionally independent. Therefore, firm fixed
effects estimated using this specification can be treated as the conditional distribution of
marginal costs without resorting to full solution methods to estimate the model. This is

2One could draw an analogy by reinterpreting the Eaton and Kortum (2002) model of trade between
countries as the representative agent in the destination country throwing infinitely many balls (one for each
commodity arranged on a continuum) into a finite number of bins (one for each origin country). Since the bins
are finite in number while balls are infinitely many, sourcing probabilities coincide with aggregate trade shares
deterministically. In contrast, the model here is of trade between firms where the customer firm throws a finite
number of balls (one for each task) into potentially infinitely many bins (one for every firm in the economy).
Since the bins are infinitely many in number while balls are finite in number, neither conditional choice
probabilities determine firm-to-firm trade shares deterministically nor do sourcing probabilities determine
aggregate trade shares deterministically.

3In related work, Eaton et al. (2013) also specify a multinomial likelihood function for international trade
between countries derived from a different economic model and conduct estimation using pseudo-maximum
likelihood estimation à la Gourieroux et al. (1984). The dimensionality of their estimation program is
determined by the number of countries which is a much smaller number compared to the specification here
where the dimensionality is determined by the number of firms that runs into millions.
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analogous to the estimation of conditional choice probabilities in dynamic discrete choice
models following Hotz and Miller (1993) and its application to network formation with
many agents in Menzel (2015). On the other hand, since there are a large number of firms
in the economy, estimation of the multinomial logit model would typically require high-
dimensional non-linear optimization over a very large number of parameters to solve for the
estimates. This can be computationally infeasible using standard Newton methods when the
number of fixed effects runs into millions. However, this issue can be avoided by appealing
to several special features of the multinomial likelihood function. First, estimates can be
obtained using the Poisson likelihood function with additional fixed effects (see Baker (1994)).
Second, Poisson likelihood estimation automatically satisfies adding up constraints implied
by the model (see Fally (2015)). Third, Poisson likelihood specification allows solving for
fixed effects in closed-form (for example, see Hausman et al. (1984)). Finally, subsequent
estimation of trade frictions using bilateral fixed effects does not suffer from the incidental
parameters problem (for details, see Neyman and Scott (1948)) and hence can be conducted
through the conditional maximum likelihood approach (see Andersen (1970)). Formally, the
estimation problem is as follows:

∆∗ = arg max
∆

1

M

∑
b∈M

ln fMNL (D | ∆) , (4.2)

fMNL (D | ∆) ∝
∏
s∈M

(
co(s)

−ζτ−ζod∑
s′∈M co′(s′)−ζτ

−ζ
o′d

)πod(s,b)

The above specification with fixed effects however presents a problem of perfect multi-
collinearity in regressors. Note that dummy variables associated with

{
co(s)

−ζ : s ∈Mo

}
and

{
τ−ζod : d ∈ J

}
are collinear for all such locations o. Hence, I make the following nor-

malizations so that these fixed effects are identified up to scale.

Assumption 7. For all s ∈Mo, o ∈ J , let co(s) = coc̃o(s) such that
(∑

s∈Mo
c̃o(s)

−ζ)−1/ζ
=

1.

The above assumption normalizes the power average
(∑

s∈Mo
c̃o(s)

−ζ)−1/ζ of firms’ marginal
costs relative to their location average to unity. It separates within and between location
heterogeneity in firms’ marginal costs. The within location component is captured by differ-
ences in c̃o(s) while the between location component is captured by differences in co across
locations.4 Under this assumption, the first order conditions implied by the likelihood max-
imization problem in equation (4.2) can be solved to obtain closed-form estimators for fixed
effects as described in the proposition below.

Proposition 7. Under Assumption 7, estimates from equation (4.2) are given by:

4The between location component captures both differences in average marginal cost between locations
and also differences arising from having a higher number of firms at one location than another. To see
this clearly, note that if marginal costs are identical across firms at location o, i.e., co(s) = c̄o . Then,
co = M

−1/ζ
o c̄o, which depends on both the number of firms and the average marginal cost.
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(
c̃o(s)

−ζ)∗ =

∑
d πod(s, •)∑

s′∈Mo

∑
d πod(s

′, •)
∀s ∈Mo, o ∈ J , (4.3)(

c−ζo τ−ζod∑
o′ c
−ζ
o′ τ

−ζ
o′d

)∗
=

1

Md

∑
b∈Md

πod (•, b) ∀(o, d) ∈ J × J (4.4)

where πod (s, •) ≡
∑

b∈Md
πod (s, b) and πod (•, b) ≡

∑
s∈Mo

πod (s, b).

Proof. See Appendix C.1.

The estimators for firm fixed effects in equation (4.3) neatly bridge theoretical predic-
tions on firm-to-firm trade in equation (3.14) and empirical regularities arising from the
decomposition in equation (2.1). The decomposition in equation (2.1) suggested that larger
firms also tend to have higher intensity of use. Conditional choice probabilities in equation
(3.14) predict that firms with low marginal costs are likely to have higher intensity of use.
Equation (4.3) shows that firms’ intensity of use is a sufficient statistic for its marginal costs,
albeit scaled with an elasticity ζ. In addition, the theoretical expression for bilateral origin-
destination fixed effects in equation (4.4) corresponds to a structural gravity specification.
For any pair of locations (o, d), the estimator for this specification is the simple average of
the cost share across firms at d that can be attributed to purchase of goods from firms in o.
This is the empirical counterpart of sourcing probabilities in equation (3.16).

Trade Frictions, Conditional Choice Probabilities, and Sourcing Probabilities
With firm fixed effects out of the way, thanks to equation (4.3), trade frictions can now
be estimated by projecting bilateral origin-destination fixed effects (from equation (4.4)) on
bilateral observables such as distance, borders etc., similar to gravity regressions, with the
following estimating equation:

E

[(
c−ζo τ−ζod∑
o′ c
−ζ
o′ τ

−ζ
o′d

)∗]
=

exp
(
ln
(
c−ζo
)

+X ′odβ
)∑

o′ exp
(

ln
(
c−ζo′
)

+X ′o′dβ
) . (4.5)

This delivers estimates of origin fixed effects
(
c−ζo
)∗ and trade frictions

(
τ−ζod

)∗
= exp (X ′odβ

∗).
The manner in which trade frictions are estimated here differs from the standard approach
of projecting aggregate trade flows on distance and border dummies (for example, see Ag-
nosteva et al. (2019)). The dependent variable implied by the model is not aggregate trade
flows (for example, Santos Silva and Tenreyro (2006)) or aggregate trade shares (as in Eaton
et al. (2013)) but average trade share across buyers at the destination. More specifically,
the dependent variable 1

Md

∑
b∈Md

πod (•, b) is an unweighted average of the sourcing share
from o across all buyers at a destination. While this is not comparable to aggregate trade
flows, it closely related to aggregate trade shares. In contrast to average trade shares which
is a simple average of sourcing shares across firms, the aggregate trade share is a weighted
average of individual sourcing probabilities where each individual buyer is weighted by its
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size.5 To the extent that size of buyers is correlated with their sourcing probabilities from
an origin, aggregate trade shares bias the estimates of the trade frictions faced by individual
firms for the purposes of estimation here.

Fitted shares from the gravity regressions are the estimates of sourcing probabilities.
Estimates of conditional choice probabilities are then obtained from firm fixed effects and
estimates of sourcing probabilities. Formally, the estimates of conditional choice probabilities
and sourcing probabilities are respectively given by

π∗od(s,−) =
(
c̃o(s)

−ζ)∗ · π∗od(•,−), (4.6)

π∗od(•,−) =

(
c−ζo
)∗ (

τ−ζod

)∗
∑

o′∈J

(
c−ζo′
)∗ (

τ−ζo′d

)∗ . (4.7)

4.2 Estimation of Structural Elasticities, Θ

Trade Elasticity ζ Since the model satisfies structural gravity at the aggregate level (see
Equation (3.16)) and the dispersion of match-specific productivities ζ coincides with the
elasticity of trade with respect to trade costs, I calibrate the value of this parameter to 5
from median of the estimates of price elasticity in structural gravity equations (see Head and
Mayer (2014)).

Materials Share α The distribution of markups from Proposition 2 provides expressions
for value-added share of gross output (V A/GO)o. Using equation (3.9), materials share αo is
calibrated as αo = (1 + 1/ζ) (1− (V A/GO)o) , where (V A/GO)o across districts are constructed
using aggregate production statistics as described in Appendix C.2.

Task Intensities κ Estimation of task intensities κ relies on equation (3.15). The expres-
sion for ρ0

od (s,−) shows how κd regulates the number of customers a firm s finds at location
d given its conditional choice probabilities π0

od(s,−). Since both ρ0
od (s,−) and π0

od(s,−)
are independent of the identity of buyer at d, the empirical counterpart of ρ0

od(s,−) is the
fraction of firms at d that buy goods from s. The theoretical value of ρ0

od(s,−) in terms
of κd is computed using estimated conditional choice probabilities π∗od(s,−). Estimates of
task intensities κ are obtained by minimizing the distance between theoretical and empirical
values of ρ0

od(s,−).

5To see this clearly, note that measured aggregate trade share can be expressed as

πod =

∑
b∈Md

purchasesd(b)× πod (•, b)∑
b′∈Md

purchasesd(b′)
.

=
1

Md

∑
b∈Md

πod (•, b) +
Cov (πod(•, b), purchasesd(b))

1
Md

∑
b′∈Md

purchasesd(b′)
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Productivity Dispersion θ The squared coefficient of variation of marginal costs from
equation (3.13) can be extended to derive the same for the squared coefficient of variation
of co(s)−ζ which are estimated as firm fixed effects in equation (4.2). In particular, the
theoretical expression for the squared coefficient of variation of co(s)−ζ is given by:

CVo
(
co(s)

−ζ/2)2
=

Γ
(

1− ζ
θo

)
Γ
(

1− ζ
2θo

)2 ·
E{Ko}

[
Γ
(

2− αo
Ko

)Ko]
E{Ko}

[
Γ
(

2− αo
2Ko

)Ko]2 − 1

For any value of θ, the theoretical value is evaluated using estimates of task intensities κ
and materials shares α, as per the above expression. For each district, the empirical value
of the squared coefficient of variation is obtained using the estimator proposed in Breunig
(2001) from estimates

{(
co(s)

−ζ)∗ : s ∈M
}
. Estimates of θ are obtained by minimizing the

distance between the theoretical and the empirical values of squared coefficient of variation.

4.3 Counterfactual Analysis
For counterfactual analysis, I consider the limiting economy as described in Definition 2.

To operationalize Proposition 6 for counterfactual analysis, it is useful to express the trade
equilibrium in changes. The following definition states that and motivates the algorithm for
evaluating counterfactual outcomes in response to shocks that derive from a change in the
aggregate state σ0 to σ′0.

Definition 4. For any change in aggregate state σ0 to σ′0, equilibrium change in wages
ŵ ≡ {ŵd : d ∈ J } and welfare V̂ ≡

{
V̂d : d ∈ J

}
are characterized the following system of

equations for all realizations of σ1 or σ′1:6

Âd =
∑
o

π0
od (•,−) δ̂odŵ

−ζ(1−αo)
o Âαoo

̂π0
od (•,−) =

δ̂odŵ
−ζ(1−αo)
o Âαoo

Âd
ŵowoLo
1− αo

=
∑
d

̂π0
od (•,−)π0

od (•,−)
ŵdwdLd
1− αd

V̂d = ŵdÂ
1/ζ
d

where δ̂ ≡
{
δ̂od : (o, d) ∈ J × J

}
is function of shocks that capture the resultant effect of

change from σ0 to σ′0.

With this definition of the equilibrium in changes in the limiting economy, the procedure
for computing counterfactual outcomes consists of three steps. First, I evaluate the expected
value of aggregate and firm-level outcomes such as intensity of use and sales in the initial

6The expression for welfare changes is derived in Appendix C.3.
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state. Second, I evaluate changes in aggregate outcomes when going from the initial state
to the counterfactual state. This is done using a tâtonnement algorithm similar to Alvarez
and Lucas (2007) and Dekle et al. (2008). Finally, I evaluate the expected value of aggregate
and firm-level outcomes in the counterfactual state. Details of the procedure are stated in
Appendix C.4.

33



Chapter 5

Estimation Results & Quantitative
Analysis

This chapter first goes over estimates of trade frictions and conditional choice probabil-
ities, and then model predictions for firms’ sales and intensity of use.1 Then, I evaluate
the model by seeing how well it replicates empirical regularities documented in Chapter 2.
Finally, I illustrate how the model can be used to assess the consequences of micro- and
macro- shocks to the spatial economy.

5.1 Estimates
Trade frictions are estimated using gravity regressions. Table 5.1 reports estimated co-

efficients for distance and border dummies in column (4) and compares them to common
methods in the trade literature in columns (1)-(3). Column (1) is an atheoretical regression
specification that is not appealing when there are zeros in trade data and hence not com-
parable to other columns. Column (2) is still an atheoretical specification but is consistent
with handling zeros in the data. Column (3) is a model-based specification and accom-
modates zeros in the data. Column (4) is the specification that is implied by the model
here. Comparing (2) or (3) to (4) shows that using aggregate trade flows or shares under-
estimates trade frictions for estimation of the model here. With estimated trade frictions
in hand, estimates of sourcing probabilities, denoted by π∗od(•,−), and firms’ conditional
choice probabilities across destinations, denoted by π∗od(s,−), are obtained using equations
(4.7) and (4.6). I solve for wages that satisfy the trade equilibrium in the limiting economy
using equation (3.19) with the estimated sourcing probabilities. The expected value of firms’
destination-specific intensity of use and sales are respectively calculated, using wages and
estimated conditional choice probabilities, as:

intensity of useod(s) = π∗od(s,−)Md, (5.1)

input salesod(s) = π∗od(s,−)

(
αd

1− αd + 1/ζ

)
wdLd. (5.2)

1Estimates of elasticities contained in Θ are relegated to Appendix D.
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Table 5.1: Gravity Regressions

sinh−1 PPML MPML MPML

(salesod) (salesod)
(

salesod∑
o′ saleso′d

) (
c−ζo τ−ζod∑
o′ c
−ζ
o′ τ

−ζ
o′d

)∗
(1) (2) (3) (4)

log(distance) -2.947∗∗∗ -0.219∗∗∗ -0.712∗∗∗ -0.990∗∗∗

(0.039) (0.042) (0.045) (0.044)
1{inter-state} -5.032∗∗∗ -1.971∗∗∗ -2.125∗∗∗ -2.579∗∗∗

(0.069) (0.104) (0.090) (0.089)
1{inter-district} 0.086 -1.484∗∗∗ -1.852∗∗∗ -2.262∗∗∗

(0.215) (0.117) (0.078) (0.067)
1{neighbor} -1.121∗∗∗ 0.562∗∗∗ 0.251∗∗∗ 0.516∗∗∗

(0.113) (0.053) (0.052) (0.047)

Fixed Effects:
Origin × Year X X X X
Destination × Year X X X X

Adjusted R2 0.669 — — —
Pseudo R2 — 0.945 0.435 0.488
Squared Correlation 0.674 0.953 0.793 0.898
# observations 1412 × 5 1412 × 5 1412 × 5 1412 × 5

Note. Standard errors in parentheses, two-way clustered by origin–year and destination–year. ∗p <
0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Observations pertain to all bilateral pairs between 141 districts for 5 years.
The distance between district pairs is calculated as the distance between their centroids. A district’s distance
to itself is calculated as the radius of the circle with the same area as the district. Column (1) is estimated
using an OLS specification with the inverse hyperbolic sine of trade flows as dependent variable. Column
(2) is estimated using a Poisson PML specification with aggregate trade flows as the dependent variable as
in Santos Silva and Tenreyro (2006). Column (3) is estimated using a multinomial PML specification with
aggregate trade shares as the dependent variable as in Eaton et al. (2013). Column (4) is estimated using a
multinomial PML specification from equation (4.5). Two-way clustering is done as in Cameron et al. (2011).
Pseudo R2 is calculated as in McFadden (1974).

Intensity of use and sales of any given firm are then computed by summing over the above
values across all destinations. For aggregate trade flows between an origin-destination pair,
corresponding values are obtained by summing over all firms at the origin.

5.2 Model Fit
A key finding in Proposition 7 is that the fixed effect estimate for a firm s with the

multinomial likelihood specification is in fact its measured intensity of use,
∑

d πod(s, •).2

2Fixed effect for firm s is the product of the within location component c̃o(s)−ζ and the between location
component c−ζo . Equation (4.3) provides a estimator for the former. The latter is estimated in column (4)
in Table 5.1 using a multinomial likelihood specification. By properties of the multinomial likelihood, this
estimate is given by

∑
d πod (•, •). Together, they imply that the fixed effect estimate for firm s can be
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Table 5.2: Goodness of Fit: Firms’ Intensity of Use and Sales

Intensity of Use Overall

π∗od(•,−) πod(•,−) π∗od(•,−) πod(•,−)
(1) (2) (3) (4)

Sales 0.996 1.000 0.428 0.467
Destination-Specific Sales 0.324 0.381 0.176 0.186
Trade Flows 0.512 0.999 0.503 0.709

Note. This table reports R2 of log-log regressions when predicted values for intensity of use and sales are
projected on observed data at three levels of aggregation: firms’ destination-specific sales, firms’ sales, and
aggregate trade flows. Columns (1) and (3) use estimated average trade shares from equation (4.7) while (2)
and (4) use exact average trade share from equation (4.4) for the calculations.

According to the model (in equation (3.14)), this fixed effect is related marginal costs as
co(s)

−ζ . This directly features in equation (4.6) and plays a vital role in enabling the model
to reproduce the empirical regularities. Apart from this, goodness of fit is governed by four
factors. First, imperfect correlation between data and fitted values in Table 5.1, Column (4)
causes differences in πod(•,−) and π∗od(•,−). Second, estimating equation (4.1) is parsimo-
niously specified as it does not allow heterogeneity in trade frictions faced by firms. While
the data is at the firm-to-firm level, fixed effects are only at the firm and origin–destination
level. Third, equilibrium wages computed for the limiting economy differ from data. These
differences capture the granularity of data which are assumed away in the limiting economy.
Finally, estimates of material share of costs α and dispersion in match-specific productivities
ζ also affect predicted values calculated via equation (5.2).

Estimates of intensity of use are only affected by the first two factors whereas those of
sales are affected by all of them. Columns (1) and (3) in Table 5.2 report the coefficient of
determination of log-log regressions where observed values are projected on predicted values
of intensity of use and sales. Average customer size is omitted from this table because it is
obtained as the ratio of sales and intensity of use and so it is not meaningful to measure its
goodness of fit. Columns (2) and (4) in Table 5.2 report similar results but using average
trade shares observed in data πod(•,−) instead of the corresponding fitted values π∗od(•,−)
for sourcing probabilities. These columns help assess the loss of fit arising from gravity
regressions. These results suggest that (a) fits for sales are worse than intensity of use due
to the third and fourth factors, (b) fits for firms’ destination-specific sales are the worse than
firms’ overall sales due to the second factor, (c) fit of gravity regressions causes substantial
loss of fit only for aggregate trade flows due to the first factor.

Table 5.3 reports how the estimated model performs in comparison to the empirical reg-
ularities documented in Chapter 2. I focus only on the upstream (intensity of use) and
downstream (average customer size) margins and not the three-way decomposition in Chap-
ter 2. This is because the model does not meaningfully differentiate between the first and
second factors in expectation and further, it is the joint contribution of both these factors
that plays a role in endogenous network formation. Table 5.3 shows that the intensity of use

expressed as
(
co(s)

−ζ)∗ =
∑
b∈M πod(s, b).
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Table 5.3: Model Fit: Margins of Firms’ Sales

Sales Destination-Specific Sales Trade Flows

(1) (2) (3) (4) (5) (6)

Data:
Intensity of Use 81% 82% 94% 80% 87% 94%
Average Customer Size 19% 18% 6% 20% 13% 6%

Model:
Intensity of Use 73% 100% 61% 76% 71% 100%
Average Customer Size 27% 0% 39% 24% 29% 0%

Fixed Effects:
Seller×Year — — X — — —
Origin×Year — X — — — X
Destination×Year — — — — — X

Data Level:
Seller×Year • • — — — —
Seller×Destination×Year — — • • — —
Origin×Destination×Year — — — — • •

# observations 5.6×106 5.6×106 18.2×106 18.2×106 58,390 58,390

Note. Columns (1) and (2) report the contribution of factors: intensity of use and average customer size, to
the variance of firms’ sales (as per equation (2.1)) in the data (top panel) and in the model (bottom panel).
Columns (3) and (4) report the contribution of those factors to the variance of firms’ destination-specific
sales (as per equation (A.1)). Columns (5) and (6) report the same for trade flows between districts (as per
equation (A.2)).

margin explains a vast majority of the variation in firms’ sales in the estimated model as is
the case in the data. This is true across all columns in the data qualitatively. Quantitatively,
all columns except (3) provide a reasonably good fit. In column (3), the loss of fit can be
attributed to the second factor. With this, I proceed to counterfactual analysis where I
study the contribution of these margins in facilitating the change from the initial state to
the counterfactual state.

5.3 Counterfactual Analysis
The procedure for counterfactual analysis proposed in Section 4.3 allows evaluation of

welfare gains at the district level as well as the impact on firms’ sales and intensity of use
of these shocks. First, I discuss a counterfactual experiment that reduces trade frictions
across state borders. Second, I discuss how the production network of firms changes in
response to an aggregate shock that uniformly reduces external trade frictions. Finally, I
examine the implications of neutralizing firm-level distortions when they are either positively
or negatively correlated with firm size on aggregate and firm-level outcomes.
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Figure 5.1: Gains from Decline in Border Frictions
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Note. The left panel is a stacked histogram of welfare changes across districts. The right panel is a box
and whiskers plot of welfare gains across districts within each state. States are arranged by economic size in
descending order. The data used in this figure pertains to 2015-16.

Decline in Border Frictions

When India adopted the VAT in the early 2000s, its implementation was uneven. India
has a federal system of government — one that divides the powers of government between
the national and the state governments. Commercial taxation being overseen by the state
government, individual states implemented their own respective VAT systems. This resulted
in over 30 such systems coming into place across India. While this increased formality and
tax compliance, it had the unintended consequence of regional segregation in organization of
production, for three reasons. First, VAT increases formality because firms prefer to source
inputs from other firms within the system to be able to collect tax credits on input purchases.
Consequently, individual firms preferred to source inputs from firms within their own state’s
VAT system as opposed to one in a different state or VAT system. Second, the national
government levied a sales tax on firm-to-firm transactions across state borders which made
more efficient suppliers of intermediate inputs relatively more expensive if they were in a
different state. Third, there were cumbersome inspections, especially at state borders that
caused logistical delays. In July 2017, the federal government in India abolished all state
VAT systems and introduced the Goods and Services Tax to serve as a single national VAT
system. This eliminated sales taxes on inter-state movement of goods and harmonized the
VAT structure across states in an attempt to reduce such barriers to intra-national trade.

In this context, I consider the aggregate and firm-level impact of a 10% decline in trade
costs between district pairs crossing state borders to understand the potential impact of the
GST reform on production networks in intra-national trade. Figure 5.1 suggests that this
leads to sizable welfare gains of 1% in some districts to as large as 8% in others. Across
states, the median district in larger states Gujarat, Maharashtra, and Tamil Nadu gains less
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than those in smaller states West Bengal and Odisha. Changes in firms’ sales to other firms
can be decomposed into changes in its intensity of use and changes in its average customer
size as follows:

∆Sales
Sales

=

upstream margin︷ ︸︸ ︷
∆Intensity of Use
Intensity of Use

+
∆Average Customer Size
Average Customer Size︸ ︷︷ ︸

downstream margin

+
∆Intensity of Use
Intensity of Use

× ∆Average Customer Size
Average Customer Size︸ ︷︷ ︸

second order term

To determine the relative contribution of the upstream and downstream margins to the
dispersion in changes in firms’ sales, I apply a Shapley decomposition (see Shorrocks (2013)).
The Shapley decomposition determines the expected marginal contribution of each of these
margins and the interaction term to the total variation in changes in firms’ input sales; intu-
itively, it assigns the fraction of the R2 of a regression that is due to each set of explanatory
variables. Table 5.4 reports the results of this decomposition. It suggests that over half of the
variation in changes in firms’ sales can be attributed to endogenous changes in the network
or the upstream margin while the remaining third can be attributed to the downstream mar-
gin. When considering firms within each state, both the upstream and downstream margin
account for around a third of the variation.

A few points are in order. First, this decomposition is of sales to other firms and so
would not exist in models without input-output linkages. Second, in models with exogenous
production networks, i.e., with Cobb-Douglas technologies between firms, intensity of use
does not respond to shocks. The large variation in the upstream margin would therefore
be missing. Finally, in models with non-Cobb–Douglas technologies that endogenize the
intensity with which existing suppliers are used but where the extensive margin of firm-to-
firm trade does not respond to shocks, the explanatory power of the upstream margin would
be understated. This is because changes in intensity of use accrue not only from changes
in intensity of use by existing customers but also from changes in the number of customers.
By allowing for substitution across both existing suppliers and new potential suppliers, the
model is not only more general but also more tractable since it does not require calibrating
the extensive margin of firm-to-firm trade to observed data.

Market Integration

A large body of recent literature studies barriers that impede trade between regions
within a country and the gains that accrue from a reduction in those barriers (for a review,
see Donaldson (2015)). I study the firm-level implications of a decline in relative costs of
trading with firms in other districts. This experiment conceptually captures improvements in
transportation infrastructure as well as any other policy changes that affect trade outside an
agent’s own location relative to within its own location. I consider the counterfactual scenario
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Figure 5.2: Decline in Trade Frictions: Change in Firms’ Sales and its Margins
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Note. For each year, firms are grouped into 1000 bins according to their sales in the initial equilibrium.
Each bin consists of around 1000 firms. For firms in each of these bins, the top left panel plots the average
percent change in intensity of use when trade frictions decline, the top right panel does the same for average
customer size, and the bottom panel for sales to other firms.
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Table 5.4: Decline in Border Frictions: Margins of Changes in Firms’ Sales

State Maharashtra Tamil Nadu Gujarat West Bengal Odisha All
(1) (2) (3) (4) (5) (6)

∆Intensity of Use
Intensity of Use 40.76% 40.81% 36.49% 39.44% 38.06% 55.69%

∆Average Customer Size
Average Customer Size 29.37% 34.14% 45.74% 31.44% 43.02% 33.45%

∆Intensity of Use
Intensity of Use 29.86% 25.04% 17.76% 29.14% 18.91% 10.85%
×∆Average Customer Size

Average Customer Size

Note. This table reports the contribution of changes in firm’s margins to the variation in changes in firms’
sales calculated using a Shapley decomposition when firm-year observations are split by state.

where external trade frictions decline by 10%.3 With a decline in external trade costs, a large
majority of firms are subject to opposing forces along the upstream and downstream margins.

Figure 5.2 depicts the effect of these margins of firms’ sales to other firms. To understand
this, it is useful to look at firms in four groups: (a) those in the top 5% in terms of sales;
(b) those in the top 10% but not in the top 5%; (c) those in the top 25% but not in the
top 10%; and (d) those in the bottom 75%. First, consider firms in group (a). Starting with
the top left panel, these firms gain the most in intensity of use. At the same time, they
are more likely to have had customers who are large, i.e., in the top 5% and whose sales
declined. This implies that the average customer size of these firms declines as shown in the
top right panel. These firms are subject to opposing forces on the upstream and downstream
margins. While they gain in intensity of use, the lose sufficiently in average customer size
that their sales decline. Second, consider firms in group (b). These firms still gain above
4% in intensity of use but are also likely to have had customers in the top 5% (whose sales
declined). These firms are also subject to opposing forces on the upstream and downstream
margins such that their sales increase. Third, consider firms in group (c). These firms gain
less than 4% in intensity of use, are less likely to have had customers in the top 5% and so
their average customer size increases. These firms are also subject to reinforcing forces on
the upstream and downstream margins such that their sales increase. Finally, consider the
large majority of firms in group (d). These firms lose in intensity of use, but are also much
less likely to have had customers in the top 5%, so their average customer size increases.
These firms are subject to opposing forces on the upstream and downstream margins. While
they lose in intensity of use, the gain sufficiently in average customer size that their sales
increase.

Taking stock, as trade frictions decline, firms with low production costs become more
successful at farther or less remote destinations in getting selected for customers’ tasks.

3Counterfactual outcomes are evaluated using the procedure described in Appendix C.4 with aggregate
shocks given by:

δ̂od =

{
1

1.1−ζ
o 6= d

1 o = d

There is no heterogeneity in shocks at the firm-level in this counterfactual experiment.
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This comes at the expense of firms with higher production costs who are now less successful
in getting selected for tasks both locally and elsewhere. While intensity of use of firms in
the bottom three quartiles decreases by as much as 8%, intensity of use for firms in the top
quartile increases by as much as 4%. At the same time, firms in the top decile are more
likely to have customers in the top 5% those for whom sales has declined. Those customers
produce less and source fewer inputs from firms in the top decile. Average customer size for
firms in the top decile and quantity demanded from them declines. On the contrary, firms
in the bottom nine deciles are less likely to have customers in the top 5% for whom sales has
declined. For these firms, average customer size has increased. The net outcome of these
margins acting on firms at all quantiles is that large firms’ sales to other firms shrink where
as those of a large majority of firms in the lower quantiles expands.

Size-Dependent Distortions & Improvements in Allocative
Efficiency

A substantial literature has documented the presence of firm-level distortions in devel-
oping economies (for a review, see Atkin and Khandelwal (2020)). In this counterfactual ex-
periment, I study the implications of neutralizing positively versus negatively size-dependent
distortions affecting firms’ labor input choice. The notion for such gains is similar in spirit
to that in the closed economy model with labor wedges as in Hsieh and Klenow (2009),
multiplier effects from inter-sectoral linkages as in Jones (2013), and trade as in Swiecki
(2017). Unlike these papers, I consider the effect of removing firm-level distortions through
the lens of a model of trade where production networks between firms respond endogenously.
The experiment I consider homogenizes labor market distortions. That is, it eliminates dis-
persion in those firm-specific labor market “taxes” and hence consists of shocks at the firm
level. In conducting this analysis, I assume that all tax revenue is rebated equally to local
households both in the initial state and the counterfactual state and hence the level of the
homogeneous tax rate in the counterfactual scenario does not affect welfare calculations.4
Figure 5.3 shows that removing negatively size-dependent distortions leads to higher welfare

4Size-dependent distortions are generated as:

1 + to(s) =

{
(1− q)−

1
η if distortions are positively size-dependent

q−
1
η if distortions are negatively size-dependent

,

where q denotes the quantile of the firm for sales to other firms and η denotes the shape parameter of Pareto
distributed distortions drawn from the following cumulative distribution function:

P (1 + to(s) ≤ 1 + t) =
(

1− (1 + t)
−η
)
1 {t ≥ 0} .

For generating distortions, η was calibrated to 5. Counterfactual outcomes are evaluated using the proce-
dure described in Appendix C.4 with firm-level and aggregate shocks respectively given by:

δ̂od(s) = 1/(1+to(s))−ζ(1−αo),

δ̂od = 1/E{to}[(1+to)−ζ(1−αo)].
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Figure 5.3: Gains from Eliminating Size-Dependent Distortions
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Note. The left panel is a box and whiskers plot of welfare gains across districts within each state when
distortions are positively size-dependent and the right panel when distortions are negatively size-dependent.
States are arranged by economic size in descending order.

gains than removing positively size-dependent distortions in all states except West Bengal.
Figure 5.4 shows that terms of trade effects are negative in a large number of districts when
removing negatively size-dependent distortions while they are largely positive when removing
positively size-dependent distortions.

The result of removing distortions at the firm-level is that firms that faced higher tax
rates and were too small, now expand, with labor being reallocated to them as in models of
misallocation such as Restuccia and Rogerson (2008) and Hsieh and Klenow (2009). While
this captures direct effects, the analysis here also takes into account indirect effects through
input-output linkages between firms and the endogenous response of the network structure
to these shocks. To examine how this experiment affects the production network between
firms, I consider the decomposition of changes in firms’ sales to other firms into changes in
its intensity of use and changes in its average customer size. Table 5.5 reports the results of
a Shapley decomposition of margins of sales. I find that changes in intensity of use explain
majority of variation in changes in firms’ sales — around 80% with positively size-dependent
distortions and 75% with negatively size-dependent distortions. The downstream margin is
however less important in the case of negatively size-dependent distortions than in the case
of positively size-dependent distortions. This is because firms with lower sales and facing
larger distortions are likely to have had higher production costs. Since their customers
sourced inputs from relatively expensive suppliers, they likely had higher production costs
themselves and therefore change relatively less in size when such distortions are neutralized.
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Figure 5.4: Elimination of Size-Dependent Distortions: Direct & Indirect Effects
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Note. The left panel plots direct and terms of trade effects when distortions are positively size-dependent
and the right panel when distortions are negatively size-dependent. Points are shaded by state in both
panels, darker shades indicate richer states. For each district, direct effects are calculated as the increase the
total factor productivity if each district were a closed economy. Terms-of-trade effects are calculated as the
difference between the welfare change from the experiment and the direct effects.

Table 5.5: Elimination of Size-Dependent Distortions: Margins of Changes in
Firms’ Sales

State Maharashtra Tamil Nadu Gujarat West Bengal Odisha All
(1) (2) (3) (4) (5) (6)

Positively Size-Dependent Distortions
∆Intensity of Use
Intensity of Use 73.87% 82.02% 82.52% 80.47% 74.82% 81.16%

∆Average Customer Size
Average Customer Size 11.81% 8.23% 6.75% 9.89% 12.00% 8.34%

∆Intensity of Use
Intensity of Use 14.31% 9.74% 10.71% 9.63% 13.17% 10.48%
×∆Average Customer Size

Average Customer Size

Negatively Size-Dependent Distortions
∆Intensity of Use
Intensity of Use 66.57% 73.23% 80.73% 78.01% 71.25% 75.08%

∆Average Customer Size
Average Customer Size 1.34% 1.40% 1.57% 3.11% 1.11% 1.58%

∆Intensity of Use
Intensity of Use 32.07% 25.35% 17.69% 18.80% 27.57% 23.32%
×∆Average Customer Size

Average Customer Size

Note. This table reports the contribution of changes in firm’s margins to the variation in changes in firms’
sales calculated using a Shapley decomposition when firm-year observations are split by state.
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Chapter 6

Conclusion

This dissertation developed a new framework for analyzing aggregate and firm-level con-
sequences of shocks to the spatial economy when customer-supplier linkages between firms
evolve endogenously. I documented that Indian firms with higher sales to other firms tend
to have more customers, tend to be used more intensively by those customers, and tend to
have larger customers. Firms’ intensity of use explains a vast majority of variation in their
sales to other firms. The model explains this through a single dimension of firm heterogene-
ity: production costs. Firms with low production costs find more customers, are used more
intensively by them and since their customers use cheaper inputs intensively, they lower
production costs and become larger themselves. Furthermore, firms differ not only in their
relative position in the production network, but also across space thereby facing different
wages when hiring labor as well as different trade costs when sourcing inputs from potentially
multiple locations.

Interdependence of link formation between firms in general equilibrium models of network
formation typically restrains the use of simulation-based estimation to arbitrary scale, i.e.,
with very large numbers of firms. On the contrary, the procedure developed here makes
estimation and counterfactual analysis both scalable and tractable. Firms’ intensity of use
was shown to be a sufficient statistic for their production costs — a key endogenous object of
interest. As a result, estimation did not necessitate full solution of the model to obtain the
distribution of production costs. Besides, counterfactual analysis did not require large-scale
simulation either and was done under a large economy approximation to resolve aggregate
uncertainty. In an empirical application, I show that a 10% decline in inter-state border
frictions has sizable welfare gains ranging from 1% in some districts to as high as 8% in
others. Moreover, over half of the variation in changes in firms’ sales to other firms can be
explained by endogenous changes in the network structure.

The framework developed here can be directly applied to answer questions that could
be broadly classified as market integration, technology improvements, and improvement in
allocative efficiency. In pursuit of parsimonious parametrization, the model abstracts from
several realistic features of the network economy such as sectoral heterogeneity in techno-
logical requirements, supply chain dynamics, industry dynamics of entry and exit, hetero-
geneous search frictions, and richer bargaining environment between buyers and suppliers.
Nevertheless, it can serve as a fertile baseline model to answer a wider variety of questions
where changes in the production network across firms under these circumstances can lead to
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aggregate consequences, all of which are potential avenues for future research.
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Appendix A

Data & Empirical Regularities:
Appendix

A.1 Summary Statistics
Table A.1 reports count statistics of firms and relationships between them each year

accompanied by their breakdown into different categories. Figure A.1 plots the spatial
distribution of firm–year pairs across districts on their respective state maps. Figure A.2
plots the distribution of firm-to-firm relationships across district pairs. Table A.2 reports
distributions of firms’ sales to other firms, # customers, and sales per customer. Table A.3
reports distributions of firms’ purchases from other firms, # suppliers, and purchases per
supplier.

A.2 Margins of Firms’ Sales
The joint distribution of firms’ sales with intensity of use and average customer size is

depicted in Figure A.3. Figure A.4 provides the results of decomposition of firms’ sales by
district. Figure A.5 provides the results of decomposition of firms’ sales by percentile bins.
Similar to Equation 2.1, I construct a decomposition of firms’ destination-specific sales as:

input salesod(s) =

upstream margin︷ ︸︸ ︷
Nod(s)×

∑
b∈Md

πod(s, b)

Nod(s)
×
∑

b∈Md
πod(s, b)× input costsd(b)∑

b∈Md
πod(s, b)︸ ︷︷ ︸

downstream margin

, (A.1)

where input salesod(s) denotes input sales of firm s to customers at d and Nod(s) denotes
the number of customers of s who are located at d. Table A.4 provides results of this
decomposition under different specifications.
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A.3 Margins of Intranational Trade
Trade flows between Indian districts aggregated from firm-to-firm sales show that districts

within the same state are more likely to trade than those across states. The overall level
of trade integration between districts as measured by the Head and Ries (2001) index is
depicted in Figure A.6.1 Among all possible pairs of districts, around 40% do not trade at
all. For district pairs that trade with each other, I construct the following decomposition of
trade flows into four factors:

salesod =

upstream margin︷ ︸︸ ︷
Nod ×

∑
s∈Mo

Nod(s)

Nod

×
∑

s∈Mo

∑
b∈Md

πod(s, b)∑
s∈Mo

Nod(s)
(A.2)

×
∑

s∈Mo

∑
b∈Md

πod(s, b)× input costsd(b)∑
s∈Mo

∑
b∈Md

πod(s, b)︸ ︷︷ ︸
downstream margin

,

where salesod =
∑

s∈Mo

∑
b∈Md

salesod(s, b), Nod denotes the sellers from o that sell at d.
In this decomposition, the first three margins capture the role of the upstream margin
whereas the third margin captures the role of the downstream margin in driving differences in
aggregate trade flows. In considering this decomposition, I depart from the trade literature
where these margins are regrouped such that the first margin is called the extensive margin
of trade defined as the number of firms from o that sell at d and the remaining three margins
are together called the intensive margin of trade average sales across the firms from o that
enter d. 2 This is so as to emphasize the role of endogenous network formation and cross-
border supply chains in determining aggregate trade flows. Table A.5 reports the results
from this decomposition. Figure A.7 depicts the breakdown of trade flows across district
pairs into the upstream and downstream margins.

1For any pair of districts (o, d), the Head and Ries (2001) index is computed as the ratio
√

salesod×salesdo
salesoo×salesdd

.
2For example, see Eaton et al. (2011) and Fernandes et al. (2018) for such decomposition of the margins

of international trade between countries where it is documented that the extensive margin accounts for over
half the variation in trade flows between countries.
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Figure A.1: Distribution of Firms across Districts

Maharashtra

Gujarat
Tamil Nadu

Odisha
West Bengal

Note. Districts are shaded by # firm–year observations (from columns (1–5) in Table A.1, middle panel).
Darker shades reflect lower values. Relative areal extent of states is not up to scale.
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Figure A.2: Distribution of Firm-to-Firm Relationships across District Pairs
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Note. This figure depicts the 141× 141 matrix of # relationships between district pairs in 2015-2016 (from
column (5) in Table A.1, bottom panel). Darker cells reflect higher values. Districts are arranged first by
state and then alphabetically within states on both axes.

Figure A.3: Margins of Firms’ Sales: Joint Distribution with Sales
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Note. In this figure, firms are classified into 100 × 100 bins based on their total sales in input markets
and intensity of use (left panel) or average customer size (right panel). This is a two-dimensional histogram
where each cell in this 100 × 100 matrix is shaded as per the quantile of the count of firms in the bin such
that darker shades correspond to higher quantiles.
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Figure A.4: Margins of Firms’ Sales: Contribution to Variance, by District

Gujarat Maharashtra Odisha Tamil Nadu West Bengal
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Note. For firms grouped by district–year, the contribution of factors: # customers, intensity per customer,
and average customer size, to the variance of firms’ sales was calculated as per equation (2.1). This figure is
a box and whiskers plot of the contribution of these factors across districts arranged in a state×year grid.
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Figure A.5: Margins of Firms’ Sales: Contribution to Variance, by Sales Quantile
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Note. For firms grouped into 100 equal-sized bins, the contribution of factors: # customers, intensity per
customer, and average customer size, to the variance of firms’ sales was calculated as per equation (2.1).
This figure is a smoothed regression plot of the contribution of these factors across those bins.

Figure A.6: Margins of Intranational Trade: Trade Integration between Districts

Gujarat Maharashtra Odisha Tamil Nadu West Bengal

Note. This figure depicts the (symmetric) 141×141 matrix of Head and Ries (2001) indexes of district pairs
where cells with higher values are shaded darker. Districts are first ordered by state and then alphabetically
within each state. Blocks along the diagonal depict values for intra-state district pairs while other areas
depict inter-state district pairs.

52



Figure A.7: Margins of Intranational Trade: Upstream & Downstream Margins
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Trade Flows

Note. Across district pairs, the top left panel depicts the 141 × 141 matrix of intensity of use (i.e., the
upstream margin), the top right depicts average customer size (i.e., the downstream margin), and the bottom
depicts trade flows or sales from origin to destination. Darker cells reflect higher values. Districts are arranged
first by state and then alphabetically within states on both axes. All values pertain to 2015-2016.
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Table A.1: Summary Statistics: Firms and their Relationships

2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 All
(1) (2) (3) (4) (5) (6)

# Firms 1,616 1,743 1,899 2,040 2,107 2,572
Neither 23% 25% 24% 24% 24% 18%
Buy 16% 16% 16% 18% 18% 15%
Sell 19% 17% 17% 15% 14% 17%
Both 42% 42% 43% 43% 43% 50%

Gujarat 21% 21% 22% 24% 24% 25%
Maharashtra 42% 41% 40% 38% 36% 34%
Odisha 5% 5% 5% 6% 6% 6%
Tamil Nadu 24% 25% 25% 25% 25% 27%
West Bengal 8% 8% 8% 8% 9% 8%

# Relationships 17,681 18,547 21,031 22,600 23,786 103,646
Intra-District 58% 57% 57% 58% 57% 58%
Inter-District 37% 38% 38% 38% 39% 38%
Inter-State 5% 5% 5% 4% 4% 4%

Note. Figures for # firms and # relationships are in units of thousands. Columns (1–5) report values for
each year and column (6) the total across all years. The top panel breaks down # firms by their participation
in the network, i.e., whether they buy from and sell to other firms. The middle panel breaks down firms
by the state in which they are located. The bottom panel reports the breakdown of # relationships based
on whether the customer and supplier are located in the same district, different districts or different states
altogether. For the top and middle panels, column (6) reports statistics pertaining to unique firms across all
years. For the bottom panel, column (6) reports the sum of columns (1–5).
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Table A.2: Summary Statistics: Firms’ Customers and Sales

Percentile: 90 75 50 25 10
(1) (2) (3) (4) (5)

# Customers:
2011-2012 39 14 4 2 1
2012-2013 39 14 4 2 1
2013-2014 41 15 5 2 1
2014-2015 42 15 5 2 1
2015-2016 44 15 5 2 1

Sales per Customer:
2011-2012 1,850 536 153 44 13
2012-2013 1,993 570 162 47 14
2013-2014 2,027 577 165 49 14
2014-2015 2,160 609 171 50 14
2015-2016 2,121 610 174 51 14

Sales to other Firms:
2011-2012 18,620 4,606 987 158 25
2012-2013 19,702 4,882 1,037 167 26
2013-2014 21,225 5,199 1,095 175 27
2014-2015 22,531 5,517 1,143 177 27
2015-2016 22,936 5,690 1,184 183 27

Note. For each year and for firms that sell to other firms, the top panel reports the median, top and bottom
deciles, and upper and lower quartiles of # customers. The middle panel reports the same for sales per
customer and the bottom panel for sales to other firms. All sales figures are reported in units of 1000 INR.
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Table A.3: Summary Statistics: Firms’ Suppliers and Purchases

Percentile: 90 75 50 25 10
(1) (2) (3) (4) (5)

# Suppliers:
2011-2012 46 21 8 3 1
2012-2013 44 20 8 3 1
2013-2014 45 21 8 3 1
2014-2015 43 20 8 3 1
2015-2016 44 21 8 3 1

Purchases per Supplier:
2011-2012 2,628 752 228 77 30
2012-2013 2,871 811 243 81 32
2013-2014 2,978 841 251 84 33
2014-2015 2,983 845 249 83 33
2015-2016 2,941 835 249 84 33

Purchases from other Firms:
2011-2012 28,005 7,822 2,182 575 150
2012-2013 29,137 8,067 2,252 589 152
2013-2014 31,825 8,826 2,410 630 163
2014-2015 30,445 8,311 2,318 614 159
2015-2016 31,136 8,506 2,403 633 164

Note. For each year and for firms that purchase from other firms, the top panel reports the median, top
and bottom deciles, and upper and lower quartiles of # suppliers. The middle panel reports the same
for purchases per supplier and the bottom panel for purchases from other firms. All purchases figures are
reported in units of 1000 INR.

56



Table A.4: Margins of Firms’ Sales: Contribution to Total Variance

Sales Destination-Specific Sales

(1) (2) (3) (4) (5)

# Customers 35% 36% 37% 23% 22%
Intensity per Customer 46% 46% 57% 57% 59%
Average Customer Size 19% 18% 6% 20% 19%

Fixed Effects:
Seller×Year — — X — —
Origin×Year — X — — X
Destination×Year — — — — X

Data Level:
Seller×Year • • — — —
Seller×Destination×Year — — • • •

# observations 5.6×106 5.6×106 18.2×106 18.2×106 18.2×106

Note. Columns (1) and (2) report the contribution of factors: # customers, intensity per customer, and
average customer size, to the variance of firms’ sales as per equation (2.1). Column (3), (4), and (5) report
the contribution of those factors to the variance of firms’ destination-specific sales as per equation (A.1).

Table A.5: Margins of Intranational Trade: Contribution to Total Variance

(1) (2) (3) (4)

# Sellers 59% 57% 61% 58%
# Customers per Seller 8% 9% 8% 10%
Intensity per Customer 20% 20% 24% 26%
Average Customer Size 13% 13% 7% 6%

Fixed Effects:
Origin×Year — X — X
Destination×Year — — X X

Data Level:
Origin×Destination×Year • • • •

# observations 58,390 58,390 58,390 58,390
# dropped observations (zeros) 41,015 41,015 41,015 41,015
# district pairs 1412 × 5 1412 × 5 1412 × 5 1412 × 5

Note. This table reports the contribution of factors: # sellers, # customers per seller, intensity per customer,
and average customer size, to the variance of trade flows between districts, as per equation (A.2).
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Appendix B

Theoretical Framework: Appendix

B.1 Proof of Propositions 1 and 2

Joint Distribution of the Lowest and the Second Lowest Effective
Costs

We begin by characterizing the joint distribution of the lowest and second lowest effective
cost available to buyer b located at d, F̃pd

(
p(1), p(2)

)
= P

(
p∗d (b, k) ≤ p(1), pd (b, k) ≥ p(2)

)
. To

do so, we evaluate the probability with which b receives exactly one offer with an effective
cost no greater than p(1) and no other offers less than p(2)(> p(1)). The lowest cost offer p(1)

can be from any one of the locations in J . We evaluate the probability with which this offer
is from any given location o and sum it across all locations. The probability with which b
receives one offer with an effective cost no greater than p(1) from o and no other offers less
than p(2) across all locations is given by:



(
Mo

1

)
λ
M
P
(

co(s)τod
aod(s,b,k)

≤ p(1)
)

if o 6= d

×
(

1− λ
M
P
(

co(s)τod
aod(s,b,k)

≤ p(2)
))Mo−1

×
(

1− λ
M
P
(

cd(s)τdd
add(s,b,k)

≤ p(2)
))Md−1

×
∏

o′ /∈{o,d}

(
1− λ

M
P
(
co′ (s)τo′d
ao′d(s,b,k)

≤ p(2)
))Mo′

(
Mo−1

1

)
λ
M
P
(

co(s)τod
aod(s,b,k)

≤ p(1)
)

if o = d

×
(

1− λ
M
P
(

co(s)τod
aod(s,b,k)

≤ p(2)
))Mo−2

×
∏

o′ 6=o

(
1− λ

M
P
(
co′ (s)τo′d
ao′d(s,b,k)

≤ p(2)
))Mo′

Under Assumption 6, the probability with which b encounters exactly one supplier who
can deliver at a cost no greater than p(1) and encounters no other suppliers with offers less
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than p(2) across all locations is given by:

F̃pd
(
p(1), p(2)

)
=
∑
o

λµoP
(

co(s)τod
aod(s, b, k)

≤ p(1)

)
exp

(
−
∑
o′

λµo′P
(

co′(s)τo′d
ao′d(s, b, k)

≤ p(2)

))
Using the limit limt→∞ λta

ζ
0,t → 1, this can be further simplified as

Ad
(
p(1)
)ζ

exp
(
−Ad

(
p(2)
)ζ) where Ad =

∑
o µoτ

−ζ
od E

[
co(·)−ζ

]
is obtained as follows:

Adp
ζ =

∑
o

λµoP
(

co(s)τod
aod(s, b, k)

≤ p

)
=
∑
o

λµoP
(
aod(s, b, k) ≥ co(s)τod

p

)
=
∑
o

λµoE{co}
[
1− Fa

(
co(s)τod

p

)]

=
∑
o

λµoE{co}

[
aζ0

(
co(s)τod

p

)−ζ
1

{
co(s)τod

p
≥ a0

}
+ 1

{
co(s)τod

p
< a0

}]

=

(∑
o

µoτ
−ζ
od E

[
co(·)−ζ

])
pζ

=⇒ Ad =
∑
o

µoτ
−ζ
od E

[
co(·)−ζ

]
The density function is then obtained by the negative cross-derivative of F̃pd

(
p(1), p(2)

)
as follows:

F̃ ′pd
(
p(1), p(2)

)
= −

∂2Fpd
(
p(1), p(2)

)
∂p(1)∂p(2)

= −
∂
(
Ad
(
p(1)
)ζ)

∂p(1)

∂
(

exp
(
−Ad

(
p(2)
)ζ))

∂p(2)

= ζ2A2
d

(
p(1)p(2)

)ζ−1
e−Ad(p

(2))
ζ

Distribution of Effective Prices

We derive an expression for Fpd(p), that is, the probability with which any firm b located
in d faces an effective price no greater than p for one of its tasks k. Firm b faces an effective
price no greater than p if the second-lowest cost available to it is no less than p. This is
obtained as:

Fpd(p) =

∫ p

0

(∫ p(2)

0

F ′pd
(
p(1), p(2)

)
dp(1)

)
dp(2)

= 1− Adpζ exp
(
−Adpζ

)
− exp

(
−Adpζ

)
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Derivation of Market Access

From equation 3.7, we have:

E
[
co(·)−ζ

]
= E


w1−α

o

(∏Ko(·)
k=1 po(·, k)1/Ko

)α
zo(·)

−ζ
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Ko(·)∏
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E
[
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E
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E
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E
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E
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−αoζ/Ko(·) | Ko

]E
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E

Ko(·)∏
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Γ

(
2− αo

Ko(·)

)
A

αo
Ko(·)
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Γ

(
1− ζ

θo

)
T

ζ
θo
o

= E

[
Γ

(
2− αo

Ko(·)

)Ko(·)]
Γ

(
1− ζ

θo

)
T

ζ
θo
o w−ζ(1−αo)o Aαoo

This implies that {Ad}d∈J solves the following fixed point problem:

Ad =
∑
o

µoτ
−ζ
od Γ

(
1− ζ

θo

)
E

[
Γ

(
2− αo

Ko (·)

)Ko(·)]
T

ζ
θo
o w−ζ(1−αo)o Aαoo

It can be similarly shown that effective prices for needs faced by households is also given
by Fpd (·) The following lemma states that the above fixed point problem that solves for
market access is well-defined in the sense that it admits a unique positive solution. The
proof strategy follows from Allen et al. (2020).

Lemma. The following system of equations

Ad =
∑
o

RodA
αo
o ,

Rod = µoτ
−ζ
od Γ

(
1− ζ

θo

)
E{Ko}

[
Γ

(
2− α

Ko

)Ko]
T

ζ
θo
o w−ζ(1−αo)o .

1. has at least one positive solution

2. has at most one positive solution (up to scale)

3. the unique solution can be computed as the limit of a simple iterative procedure.
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Proof. First, I establish existence of positive solution to the system of equations. Define
operator T : RJ

++ → RJ
++ where T (A) = (

∑
oRo1A

αo
o , · · · ,

∑
oRoJA

αo
o )′. Note that all

components of Rod are positive and finite. Then, by construction, for any d, not all Rods are
zero. Therefore, for any A � 0,

∑
oRo1A

αo
o ≥ A > 0. Further, there exists Ā < ∞ such

that
∑

oRodA
αo
o ≤ Ā. Now consider the operator T : A → A defined by T (A1, · · · , AJ) =

(
∑

oRo1A
αo
o , · · · ,

∑
oRoJA

αo
o )′. Suppose A =

{
A ∈ RJ

++ | A ≤ Ad ≤ Ā∀d
}
.Then, if A� 0,

it follows that T (A) � 0. Note that A is closed and bounded. Since A ⊂ RJ
++, this

implies that A is compact. Further, A is non-empty and convex, and T is continuous. Then,
by Brouwer’s fixed point theorem, T (•) has a fixed point. This establishes existence of a
solution the system of equations.

To establish uniqueness, let’s suppose by way of contradiction that the system of equa-
tions has two different solutions A(0),A(1) that are not linear transformations of each other.
Denote ā = maxd

A
(1)
d

A
(0)
d

and a = mind
A

(1)
d

A
(0)
d

. Notice that ā
a
≥ 1. Thus the system of equations

can be expressed as:

A
(1)
d

A
(0)
d

=

∑
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(
A

(1)
d

A
(0)
d

)1−αo (
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(0)
d
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A
(0)
d

Suppose d̄ = arg maxd

(
A

(1)
d

A
(0)
d

)
and α = minαo, then we have:

A
(1)

d̄

A
(0)

d̄

= ā

=⇒

∑
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(
A

(1)
o

A
(0)
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)1−αo (
A

(0)
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A
(0)
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∑
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1−α
(
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(0)
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A
(0)
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≥M

=⇒

∑
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(
A

(0)
o

)1−αo

A
(0)

d̄

ā1−α ≥ ā

=⇒ āα ≤ 1

=⇒ ā ≤ 1

Similarly, we can show that a ≥ 1. This implies that ā
a
≤ 1. But by construction ā

a
≥ 1.

Therefore, it must be the case that a
a

= 1 or A(0) = A(1). This establishes uniqueness.
Next, I show that the solution to the system of equations can be obtained via a simple

iterative procedure. Starting from any strictly positive A(0), we construct a sequence A(t)

successively in the following way,

A
(t)
d =

∑
o

Rod

(
A(t−1)
o

)αo
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Denote ā(t) = maxd
A

(t)
d

A
(t−1)
d

and a(t) = mind
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(t)
d

A
(t−1)
d

. Notice that ā(t)
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Suppose d̄ = arg maxd
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d
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)
and α = minαo, then we have:
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A
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(
ā(t−1)

)1−α ≥ ā(t)

=⇒ ā(t)

(ā(t−1))
1−α ≤ 1

Similarly, we can show that a(t)

(a(t−1))
1−ᾱ ≥ 1. This implies the following

ā(t)

(ā(t−1))
1−α ≤

a(t)

(a(t−1))
1−ᾱ

=⇒ ā(t)

a(t)
≤
(
ā(t−1)

)1−α
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(
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)1−α
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1−α

=⇒ ā(t)
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Since ā(t)

a(t) ≥ 1∀t, this implies that limt→∞
ā(t)

a(t) = 1. That is, the solution can be computed
as the limit of a simple iterative procedure.

B.2 Proof of Proposition 2

P
(
pd(b, k)

p∗d(b, k)
≤ m̄ | pd(b, k) = p(2)

)
= P

(
p∗d(b, k) ≥ pd(b, k)

m̄
| pd(b, k) = p(2)

)
= 1− P

(
p∗d(b, k) ≤ pd(b, k)

m̄
| pd(b, k) = p(2)

)
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= 1−
∫ pd(b,k)

m̄

0

F̃ ′pd

(
p(1), pd(b,k)

m̄

)
F ′pd

(
pd(b,k)
m̄

) dp(1)

= 1− m̄−ζ

B.3 Proof of Proposition 3
Note. Some relevant values of polygamma functions can be calculated as follows:

ψ(0)(1) = −γ,

ψ(1)(1) =
π2

6
,

ψ(2)(1) = 2ζ(3),

ψ(3)(1) =
π4

15
,

ψ(n)(2) = ψ(n)(1) + (−1)n n!,

where γ is the Euler-Mascheroni constant, π is Archimedes’ constant, and ζ(3) is the
Apéry constant.

Lemma 1. If a random variable X with support over R>0 is such that P (X ≤ x) = e−(xs )
−α

,
then the following moment conditions hold:

E
[
Xj
]

= Γ

(
1− j

α

)
sj ∀j < α,

E [logX] = −ψ
(0)(1)

α
+ log s,

E
[
(logX − E [logX])2] =

ψ(1)(1)

α2
.

Proof. Omitted.

Lemma 2. If a random variable X with support over R>0 is such that P (X ≤ x) = 1 −(
x
s

)α
e−(xs )

α

− e−(xs )
α

, then the following moment conditions hold:

E
[
Xj
]

= Γ

(
2 +

j

α

)
sj ∀j > −2α,

E [logX] =
ψ(0)(2)

α
+ log s,

E
[
(logX − E [logX])2] =

ψ(1)(2)

α2
.

Proof. Omitted.
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Corollary 1. The distribution of idiosyncratic productivities of firms at location o satisfies
the following moment conditions:

E
[
(zo (·))j

]
= Γ

(
1− j

θ

)
T

j
θ
o ,

E [log zo (·)] = −ψ
(0)(1)

θ
+

1

θ
log To,

E
[
(log zo (·)− E [log zo (·)])2] =

ψ(1)(1)

θ2
.

Proof. From Assumption 1, notice that:

P (zo ≤ z) = e−Toz
−θ

1 {z > 0}

= exp

(
−
(

z

T
1/θ
o

)−θ)
1 {z > 0}

The results then follow from Lemma 1.

Corollary 2. The distribution of effective price faced by firms at location d satisfies the
following moment conditions:

E
[
(pd (·, ·))j | Ad

]
= Γ

(
2 +

j

ζ

)
A
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d ,
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ζ
− 1

ζ
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E
[
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Proof. From Proposition 1, notice that:

P (pd(·, ·) ≤ p) =
(

1− e−Adpζ − Adpζe−Adp
ζ
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1 {p ≥ 0}
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1− exp

−( p

A
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d

)ζ
−( p

A
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d
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A
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d
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The results then follow from Lemma 2.

Proof of Equation (3.10)

Starting with equation (3.7), note that

log co(s) = (1− αo) logwo +
αo

Ko(s)

Ko(s)∑
k=1

log po(s, k)− log zo(s)

64



=⇒ E [log co (·)] = (1− αo) logwo + E

 αo
Ko (·)

Ko(·)∑
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Proof of Equation (3.12)

V ar [log co (·)] = E
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Proof of Equations (3.11) and (3.13)

The jth moment of marginal costs is given by:
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Equation (3.11) follows from the case where j = 1. Equation (3.13) also follows from

noting that CV [co (·)]2 =
E[(co(·))2]
E[(co(·))]2

− 1 and using cases with j ∈ {1, 2}.

B.4 Proof of Proposition 4

Proof of Equation (3.14)

Consider a pair of firms s located in o and b located in d. Now, suppose the marginal
cost of firm s from o and it’s cost of shipping goods to d are co(s) and τod respectively. For
any task k and match-specific productivity aod(s, b, k) = a, the effective cost incurred by s
of delivering its goods for task k by b is co(s)τod

a
. Supplier s is selected by b for task k if b

encounters s with match-specific productivity a and b does not encounter any other supplier
for whom it is effectively less costly to deliver the good (including the event that b meets s
and the match-specific productivity realized is higher than a). The probability with which b
selects s for any of its tasks with match-specific productivity a is given by:

π0
od(s, b, k | a) =

λ

M
×
∏
s′∈M

(
1− λ

M
P
(
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a
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( ∑
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Since λ = o(M), considering λ
M
� 1 and using the approximation ln (1 + x) ≈ x for

|x| � 1, the above expression simplifies as:
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Taking expectation over all possible realizations of aod(s, b, k), we obtain:
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1

M

∫ ∞
0

exp

(
− 1

M

∑
s′∈M

(
co′(s

′)τo′d
co(s)τod

)−ζ
a−ζ

)
d
(
−a−ζ

)
=

1

M

∫ ∞
0

exp

(
−

1
M

∑
s′∈M co′(s

′)−ζτ−ζo′d

co(s)−ζτ
−ζ
od

a−ζ

)
d
(
−a−ζ

)
=

co(s)
−ζτ−ζod∑

s′∈M co′(s′)−ζτ
−ζ
o′d

Γ(1)

=
co(s)

−ζτ−ζod∑
s′∈M co′(s′)−ζτ

−ζ
o′d

Here, in the fifth line we utilize Assumption 6 which implies that in sufficiently large
economies limt→∞ λta

ζ
0,t → 1 and limt→∞ a0,t → 0 such that λ

M

∑
s′∈M 1

(
co′ (s

′)τo′d
co(s)τod

a ≤ a0

)
→

0 for all firms s′. Since πod(s, b, k) is independent of the identity of the task k, we write
π0
od(s, b) = π0

od(s, b, k). Further, since π0
od(s, b) is independent of the identity of the buyer at

any location d, we write π0
od(s,−) = π0

od(s, b).
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Proof of Equation (3.15)

The probability with which a firm s located in o is selected by any given firm at d for at
least one of its tasks is given by:

P (s gets selected for at least one task at d) =
∞∑
K=1

P (Kd(b) = K)
(

1−
(
1− π0

od(s,−)
)K)

=

(
1−

∞∑
K=1

P (Kd(b) = K)
(
1− π0

od(s,−)
)K)

=

(
1− e−κd

(1− e−κd)

∞∑
K=1

(κd (1− π0
od(s,−)))

K

K!

)

=

(
1− e−κd

(1− e−κd)

(
eκd(1−π0

od(s,−)) − 1
))

=
1− e−κdπ0

od(s,−)

1− e−κd

B.5 Proof of Proposition 5

Proof of Equation (3.16)

The probability with which any firm at d sources from firms at o for any of its tasks is
given by

π0
od (•,−) =

(
lim
t→∞

Mo

M

)(
lim
t→∞

1

Mo

∑
s∈Mo

π0
od(s,−)

)

=

(
lim
t→∞

Mo

M

)(
lim
t→∞

1

Mo

∑
s∈Mo

co(s)
−ζτ−ζod
Ad

)

=
µoE

[
co(·)−ζ

]
τ−ζod

Ad

=

µoΓ
(

1− ζ
θo

)
T

ζ
θo
o w

−ζ(1−αo)
o E

[
Γ
(

2− αo
Ko(·)

)Ko(·)]
Aαoo τ

−ζ
od

Ad

Proof of Equation (3.17)

The probability with which any firm at d sources at least one task from o is given by:

P (d firm sources at least one task from o) =
∞∑
K=1

P (Kd(·) = K)
(

1−
(
1− π0

od(•,−)
)K)

=

(
1−

∞∑
K=1

P (Kd(·) = K)
(
1− π0

od(•,−)
)K)
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=

(
1− e−κd

(1− e−κd)

∞∑
K=1

(κd (1− π0
od(•,−)))

K

K!

)

=

(
1− e−κd

(1− e−κd)

(
eκd(1−π0

od(•,−)) − 1
))

=
1− e−κdπ0

od(•,−))

1− e−κd

B.6 Proof of Proposition 6
For any realization of σ, labor demand by firm b at d can be expressed as:

ld(b, σ) =
1

wd (σ)
(1− αd) cd(b, σ)yd(b, σ)

Substituting the above expression in the labor market clearing for location d, we obtain:

Ld =
∑
b∈Md

ld(b, σ)

=
∑
b∈Md

1

wd (σ)
(1− αd) cd(b, σ)yd(b, σ)

=⇒
∑
b∈Md

cd(b, σ)yd(b, σ) =
wd (σ)Ld

1− αd

Goods market clearing condition for firm s located at o can be simplified as:

yo(s, σ) =
∑
d

∑
b∈Md

∑
k∈Kd(b)

τod(s, σ)mod(s, b, k, σ)

aod(s, b, k, σ)

+
∑
d

∑
i∈Ld

∑
n∈Nd(i)

τod(s, σ)qod(s, i, n, σ)

god(s, i, n, σ)

=⇒ co(s, σ)yo(s, σ) =
∑
d

αd
∑
b∈Md

 1

Kd(b)

∑
k∈Kd(b)

1 {s = s∗d(b, k, σ)}
m̄d(b, k, σ)

 cd(b, σ)yd(b, σ)

+
∑
d

∑
i∈Ld

 1

Nd(i)

∑
n∈Nd(i)

1 {s = s∗d(i, n, σ)}
m̄d(i, n, σ)

 (wd(σ) + Πd(σ))

=⇒
∑
s∈Mo

co(s, σ)yo(s, σ)︸ ︷︷ ︸
(1) Supply

=
∑
d

αd
∑
b∈Md

 1

Kd(b)

∑
k∈Kd(b)

1 {s∗d(b, k, σ) ∈Mo}
m̄d(b, k, σ)

 cd(b, σ)yd(b, σ)

︸ ︷︷ ︸
(2) Intermediate Input Demand
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+
∑
d

∑
i∈Ld

 1

Nd(i)

∑
n∈Nd(i)

1 {s∗d(i, n, σ) ∈Mo}
m̄d(i, n, σ)

 (wd(σ) + Πd(σ))

︸ ︷︷ ︸
(3) Final Consumption Demand

We can simplify term (1) by making use of the labor market clearing condition as:

Supply =
∑
s∈Mo

co(s, σ)yo(s, σ)

=
wo(σ)Lo
1− αo

We can simplify term (2) as follows:

Intermediate Input Demand

=
∑
d

αd
∑
b∈Md

 1

Kd(b)

∑
k∈Kd(b)

1 {s∗d(b, k, σ) ∈Mo}
m̄d(b, k, σ)

 cd(b, σ)yd(b, σ)

=
∑
d

αd

(A)︷ ︸︸ ︷
1

Md

∑
b∈Md

 1

Kd(b)

∑
k∈Kd(b)

1 {s∗d(b, k, σ) ∈Mo}
m̄d(b, k, σ)

 cd(b, σ)yd(b, σ)

1

Md

∑
b∈Md

cd(b, σ)yd(b, σ)︸ ︷︷ ︸
(B)

×
∑
b∈Md

cd(b, σ)yd(b, σ)︸ ︷︷ ︸
=
wd(σ)Ld

1−αd

Term (A) can be simplified as follows:

(A) =
1

Md

∑
b∈Md

 1

Kd(b)

∑
k∈Kd(b)

1 {s∗d(b, k, σ) ∈Mo}
m̄d(b, k, σ)

 cd(b, σ)yd(b, σ)

t→∞−−−→ E

 1

Kd(·)
∑

k∈Kd(·)

1 {s∗d(·, k, σ) ∈Mo}
m̄d(·, k, σ)

 cd(·, σ)yd(·, σ)


= E

 1

Kd(·)
∑

k∈Kd(·)

1 {s∗d(·, k, σ) ∈Mo}
m̄d(·, k, σ)

E [cd(·, σ)yd(·, σ)]
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= E

E
 1

Kd(·)
∑

k∈Kd(·)

1 {s∗d(·, k, σ) ∈Mo}
m̄d(·, k, σ)

 | Kd

E [cd(·, σ)yd(·, σ)]

= E

 1

Kd(·)
∑

k∈Kd(·)

E
[

1 {s∗d(·, k, σ) ∈Mo}
m̄d(·, k, σ)

| Kd

]E [cd(·, σ)yd(·, σ)]

= E

 1

Kd(·)
∑

k∈Kd(·)

E
[

1 {s∗d(·, ·, σ) ∈Mo}
m̄d(·, ·, σ)

]E [cd(·, σ)yd(·, σ)]

= E
[

1 {s∗d(·, ·, σ) ∈Mo}
m̄d(·, ·, σ)

]
E [cd(·, σ)yd(·, σ)]

= E
[

1

m̄d(·, ·, σ)

]
E [1 {s∗d(·, ·, σ) ∈Mo}]E [cd(·, σ)yd(·, σ)]

=
ζ

ζ + 1
πod (•,−, σ0)E [cd(·, σ)yd(·, σ)]

Term (B) can be simplified as follows:

(B) =
1

Md

∑
b∈Md

cd(b, σ)yd(b, σ)

t→∞−−−→ E [cd(·, σ)yd(·, σ)]

Substituting (A) and (B) back in the Intermediate Input Demand,we obtain:

Intermediate Input Demand =
∑
d

αd
ζ

ζ + 1
πod (•,−, σ0)

wd(σ)Ld
1− αd

We can simplify term (3) as follows:

Final Consumption Demand

=
∑
d

∑
i∈Ld

 1

Nd(i)

∑
n∈Nd(i)

1 {s∗d(i, n, σ) ∈Mo}
m̄d(i, n, σ1)

 (wd(σ) + Πd(σ))

=
∑
d

 1

Ld

∑
i∈Ld

 1

Nd(i)

∑
n∈Nd(i)

1 {s∗d(i, n, σ) ∈Mo}
m̄d(i, n, σ1)

 (wd(σ) + Πd(σ))Ld

t→∞−−−→
∑
d

E

 1

Nd(·)
∑

n∈Nd(·)

1 {s∗d(·, n, σ) ∈Mo}
m̄d(·, n, σ)

 (wd(σ) + Πd(σ))Ld

=
∑
d

E

E
 1

Nd(·)
∑

n∈Nd(·)

1 {s∗d(·, n, σ) ∈Mo}
m̄d(·, n, σ)

| Nd

 (wd(σ) + Πd(σ))Ld
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=
∑
d

E

 1

Nd(·)
∑

n∈Nd(·)

E
[

1 {s∗d(·, n, σ) ∈Mo}
m̄d(·, n, σ)

| Nd

] (wd(σ) + Πd(σ))Ld

=
∑
d

E

 1

Nd(·)
∑

n∈Nd(·)

E
[

1 {s∗d(·, ·, σ) ∈Mo}
m̄d(·, ·, σ)

] (wd(σ) + Πd(σ))Ld

=
∑
d

E
[

1 {s∗d(·, ·, σ) ∈Mo}
m̄d(·, ·, σ)

]
(wd(σ) + Πd(σ))Ld

=
∑
d

E
[

1

m̄d(·, ·, σ)

]
E [1 {s∗d(·, ·, σ) ∈Mo}] (wd(σ) + Πd(σ))Ld

=
∑
d

ζ

ζ + 1
πod (•,−, σ0) (wd(σ) + Πd(σ))Ld

Also, note that Πd(σ)Ld =
(
ζ+1
ζ
− 1
)∑

b∈Md
cd(b, σ)yd(b, σ) = 1

ζ
wd(σ)Ld

1−αd
. Putting these

together we can further simplify the goods market clearing condition to obtain the desired
result as follows:

wo(σ)Lo
1− αo

=
ζ

ζ + 1

∑
d

πod(•,−, σ0)

(
αd

1− αd
+ 1 +

1

ζ(1− αd)

)
wd(σ)Ld

=
∑
d

πod(•,−, σ0)
wd(σ)Ld
1− αd

=⇒ wo(σ)Lo
1− αo

=
∑
d

πod(•,−, σ0)
wd(σ)Ld
1− αd

Since {wd(σ)}d solves the above system of equations for a given realization of σ0, irre-
spective of the realization of σ1, we conclude that wd(σ) = wd (σ0). That is, {wd : d ∈ J }
solves the following system of equations for given realization of σ0, irrespective to realization
of σ1.

woLo
1− αo

=
∑
d

πod(•,−)
wdLd

1− αd
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Appendix C

Empirical Framework: Appendix

C.1 Proof of Proposition 7
In our context, the multinomial random variable counts the number of successes in

each of the M categories (one for each other supplier s), after Kd(b) independent tri-
als (one for each task associated with b). Let π0

od(s, b) denote the probability of success
and Kod(s, b) denote the number of successes in category s, the probability of observing
{Kod(s, b) : s ∈Mo, o ∈ J } conditional on the number of tasks Kd(b) is:

P ({Kod(s, b) : s ∈Mo, o ∈ J } | Kd(b)) = Kd(b)!
∏
o∈J

∏
s∈Mo

(π0
od(s, b))

Kod(s,b)

Kod(s, b)!

where
∑

o∈J
∑

s∈Mo
π0
od(s, b) = 1 and

∑
o∈J

∑
s∈Mo

Kod(s, b) = Kd(b). From assumption 2,
the unconditional probability is given by:

P ({Kod(s, b) : s ∈Mo, o ∈ J }) =

(
Kd(b)!

∏
o∈J

∏
s∈Mo

(π0
od(s, b))

Kod(s,b)

Kod(s, b)!

)
× e−κdκ

Kd(b)
d

(1− e−κd)Kd(b)!

=
e−κd

1− e−κd

(∏
o∈J

∏
s∈Mo

(κdπ
0
od(s, b))

Kod(s,b)

Kod(s, b)!

)

The likelihood for the complete sample, K ≡ {Kod(s, b) : (s, b) ∈Mo ×Md, (o, d) ∈ J × J }
with probabilities Π0 ≡ {π0

od(s, b) : (s, b) ∈Mo ×Md, (o, d) ∈ J × J }is:

`
(
K | Π0

)
=
∏
d∈J

∏
b∈Md

(
1

1− e−κd

(∏
o∈J

∏
s∈Mo

e−κdπ
0
od(s,b) (κdπ

0
od(s, b))

Kod(s,b)

Kod(s, b)!

)) 1
Kd(b)

Therefore, the log-likelihood is proportional to:1

1Note that:

Kod(s, b)

Kd(b)
=

∑
k∈Kd(b) 1 {s = s∗d(b, k)}

Kd(b)
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L
(
K | Π0

)
∝
∑
o∈J

∑
s∈Mo

(∑
d∈J

∑
b∈Md

πod(s, b)

)
ln
(
co(s)

−ζτ−ζod

)
−
∑
d∈J

Md ln

(∑
s′∈M

co′(s
′)−ζτ−ζo′d

)

+
∑
d

(∑
b∈Md

1

Kd(b)

)
ln

(
e−κd

1− e−κd

)
+
∑
d

Md lnκd

Under Assumption 7, note that co(s) = c̃o(s)co and
∑

s′∈M co′(s
′)−ζτ−ζo′d =

∑
o′ c
−ζ
o′ τ

−ζ
o′d ,

therefore the likelihood equations for c̃o(s) are given by:

∑
d

∑
b∈Md

πod(s, b)

c̃o(s)−ζc
−ζ
o

=
∑
d

Md∑
o′ c
−ζ
o′ τ

−ζ
o′d

τ−ζod

The likelihood equations for τ−ζod are given by:(∑
b∈Md

∑
s∈Mo

πod(s, b)
)

τ−ζod
=

Md∑
o′ c
−ζ
o′ τ

−ζ
o′d

(∑
s∈o

co(s)
−ζ

)

=
Md∑

o′ c
−ζ
o′ τ

−ζ
o′d

c−ζo

=⇒ τ−ζod =

(∑
b∈Md

∑
s∈Mo

πod(s, b)
)

Md∑
o′ c
−ζ
o′ τ

−ζ
o′d
c−ζo

=

(∑
b∈Md

πod(•, b)
)

Md∑
o′ c
−ζ
o′ τ

−ζ
o′d
c−ζo

Substituting the expression for τ−ζod , we obtain an estimator for c̃o(s)−ζ as:

=
∑

k∈Kd(b)

1 {s = s∗d(b, k)}
(

1

Kd(b)

)

=
∑

k∈Kd(b)

1 {s = s∗d(b, k)}
(
Xd(b, k)

Xd(b)

)

=

(∑
k∈Kd(b) 1 {s = s∗d(b, k)}Xd(b, k)

Xd(b)

)

=
Xod(s, b)

Xd(b)

= πod(s, b)
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c̃o(s)
−ζ =

∑
b∈M πod(s, b)∑
b∈M πod(•, b)

=

∑
d πod(s, •)∑

s′∈Mo

∑
d πod(s

′, •)

This then provides us with an estimator for c−ζo τ−ζod∑
o′ c
−ζ
o′ τ

−ζ
o′d

as follows:

τ−ζod =

(∑
b∈Md

∑
s∈Mo

πod(s, b)
)

Md∑
o′ c
−ζ
o′ τ

−ζ
o′d
c−ζo

=⇒ c−ζo τ−ζod∑
o′ c
−ζ
o′ τ

−ζ
o′d

=

∑
b∈Md

∑
s∈Mo

πod(s, b)

Md

=
1

Md

∑
b∈Md

πod(•, b)

C.2 Construction of district-level {(V A/GO)o : o ∈ J }
I obtain district-level sectoral GDP {V Ajo} from Nielsen Analytics, a private data firm

and industry-level data on value-added share of gross output at the national level,{
(V A/GO)j : j ∈ I

}
from the World Input-Output Database. Using these, I construct a

measure of value-added share of gross output at the district level as

(V A/GO)o =

∑
j∈I V A

j
o∑

j∈I
V Ajo

(V A/GO)j

. (C.1)

I use data pertaining to six industry groups for this calculation. They are (a) Mining and
Quarrying; (b) Construction; (c) Manufacturing; (d) Electricity, Gas and Water Supply; (e)
Transport, Storage and Communication; and (f) Trade, Hotels and Restaurants.

C.3 Expected Utility & Welfare Changes
Households residing at location d are heterogeneous both in their numbers of needs and

match-specific taste shocks of using different suppliers’ goods to fulfill their needs. Welfare at
any location is then calculated in expectation. That is, Vd = E [Vd (·)]. With Cobb-Douglas
utilities across needs from Assumption 5, indirect utility of household i residing at d is given
by:

Vd(i) =
wd (1 + 1/ζ(1−αo))∏Nd(i)
n=1 pd(i, n)1/Nd(i)

Expected indirect utility of households at location d can then be derived as:
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Vd = E [Vd (·)]

= E

wd (1 + 1/ζ(1−αo))

Nd(·)∏
n=1

pd(·, n)−
1/Nd(·)


= wd (1 + 1/ζ(1−αo))E

E
Nd(·)∏
n=1

pd(·, n)−
1/Nd(·) | Nd


= wd (1 + 1/ζ(1−αo))E

Nd(·)∏
n=1

E
[
pd(·, ·)−1/Nd(·) | Nd

]
= wd (1 + 1/ζ(1−αo))E

Nd(·)∏
n=1

Γ

(
2− 1

ζNd (·)

)
A

1
ζNd(·)
d


= (1 + 1/ζ(1−αo))E{Nd}

[
Γ

(
2− 1

ζNd

)Nd]
wdA

1
ζ

d

Welfare changes, i.e., changes in expected indirect utility at location d in response to
shocks can be calculated as:

V̂d = ŵdÂ
1/ζ
d ,

where ŵd denotes the change in wage and Âd denotes change in market access at d.

C.4 Procedure for Computing Counterfactual Outcomes
Counterfactual analysis is conducted in three steps. First, I evaluate the expected value of

aggregate and firm-level outcomes in the initial state. Second, I compute changes in aggregate
outcomes that result from the counterfactual shock. Finally, I evaluate the expected value
of aggregate and firm-level outcomes in the counterfactual state

Step 1: Compute expected value of aggregate and firm-level
outcomes in initial state

In the initial state, wL ≡ {wdLd : d ∈ J } is obtained as the solution to the following
system of equations:

wdLd
1− αd

=
∑
d

π∗od(•,−)
woLo

1− αo
,

where π∗od (•,−) is calculated as in equation (4.7). Using the solution to these equations,
value-added and gross output for each district are respectively calculated as:

V Ad = wdLd

(
(V A/GO)d

(V A/GO)d − 1/ζ+1

)
,
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GOd = wdLd

(
1

(V A/GO)d − 1/ζ+1

)
,

where (V A/GO)d for district d is calculated in equation (C.1). Total value-added across all
districts is chosen as the numeraire, i.e.,

∑
d V Ad = 1. At the firm-level, input sales, total

sales, intensity of use, and average customer size are respectively calculated as:

input saleso(s) =
∑
d

π∗od(s,−) (GOd − V Ad) ,

total saleso(s) =
∑
d

π∗od(s,−)GOd,

intensity of useo(s) =
∑
d

π∗od(s,−)Md,

average customer sizeo(s) =
input saleso(s)

intensity of useo(s)
,

where π∗od(s,−) is calculated as in equation (4.6).

Step 2: Evaluate change in aggregate outcomes from initial to
counterfactual state

For any change in σ0, δ̂ ≡
{
δ̂od : (o, d) ∈ J × J

}
, one can solve for change in wages

ŵ ≡ {ŵd : d ∈ J } with the following tâtonnement algorithm for some positive constant µ
and tolerance value tol:

1. Start with a guess for the vector of change in wages, ŵ(0)

2. For the vector of wage changes, in the tth iteration ŵ(t), compute change in market
access as the solution to the following system of equations:

Â
(t)
d =

∑
o

πod(•,−)δ̂od
(
ŵ(t)
o

)−ζ(1−αo) (
Â(t)
o

)αo
3. Compute counterfactual sourcing probabilities as:

(
π

(t)
od (•,−)

)′
= πod(•,−)

δ̂od

(
ŵ

(t)
o

)−ζ(1−αo) (
Â

(t)
o

)αo
Â

(t)
d

4. Compute excess demand for labor Z
(
ŵ(t)

)
≡
{
Zo

(
ŵ(t)

)
: o ∈ J

}
as:

Zo

(
ŵ(t)

)
=

1− αo
woLo

∑
d

(
π

(t)
od (•,−)

)′
ŵ

(t)
d

wdLd
1− αd

− ŵo

5. Update the vector of change in wages as ŵ(t+1) ← ŵ(t) + µZ
(
ŵ(t)

)
.

6. If ‖ŵ(t+1) − ŵ(t)‖ > tol, go back to (2), else end.

Welfare changes can then be computed as V̂d = ŵ
(∞)
d

(
Â

(∞)
d

) 1
ζ .

77



Step 3: Compute expected value of aggregate and firm-level
outcomes in counterfactual state

As in the initial state, here again V A′d and GO′d are computed for each district using
(wL)′ instead of wL.

V A′d = ŵ
(∞)
d wdLd

(
(V A/GO)d

(V A/GO)d − 1/ζ+1

)
,

GO′d = ŵ
(∞)
d wdLd

(
1

(V A/GO)d − 1/ζ+1

)
.

Firm-level outcomes are then calculated by using π(∞)
od (•,−) instead of π∗od (•,−) as fol-

lows:

(input saleso(s))
′ =
∑
d

π
(∞)
od (s,−) (GO′d − V A′d) ,

(total saleso(s))
′ =
∑
d

π
(∞)
od (s,−)GO′d,

(intensity of useo(s))
′ =

(∑
d

π
(∞)
od (s,−)Md

)
,

(average customer sizeo(s))
′ =

(input saleso(s))
′

(intensity of useo(s))
′ ,

where π(∞)
od (s,−) =

(c̃o(s)−ζ)
∗
δ̂od(s)∑

s′∈Mo(c̃o(s′)−ζ)
∗
δ̂od(s′)

π
(∞)
od (•,−) and δ̂od(s) is the firm-level shock from

the change in σ0.
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Appendix D

Estimation Results: Appendix

For each district, Figure D.1 presents estimates of material share of costs across districts.
For each district–year pair, Figure D.2 presents estimates of shape parameters of Fréchet
distribution of productivities and Figure D.3 presents estimates of task intensities of zero-
truncated Poisson distribution of numbers of tasks.

Figure D.1: Estimates of Material Shares α
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Note. The left panel is a histogram of estimated material share of costs across districts. The right panel
is a box and whiskers plot of estimated material share of costs across districts within each state. States are
arranged by economic size in descending order.
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Figure D.2: Estimates of Productivity Dispersion θ
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Note. The left panel is a stacked histogram of estimated shape parameter of Fréchet distributions of firms’
productivities, across districts (from Assumption (1)). The right panel is a box and whiskers plot of the
estimated shape parameters across district–year pairs within each state. States are arranged by economic
size in descending order.

Figure D.3: Estimates of Task Intensities κ
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Note. The left panel is a stacked histogram of estimated task intensities of zero-truncated Poisson distribu-
tions of firms’ numbers of tasks, across districts (from Assumption (2)). The right panel is a box and whiskers
plot of the estimated task intensities across district–year pairs within each state. States are arranged by
economic size in descending order.
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