
UCLA
UCLA Electronic Theses and Dissertations

Title
The Heteroscedastic Skew Graded Response Model: An Answer to the Non-Normality 
Predicament?

Permalink
https://escholarship.org/uc/item/8hz8724g

Author
Rodriguez, Anthony

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8hz8724g
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

 

 

The Heteroscedastic Skew Graded Response Model: 

An Answer to the Non-Normality Predicament? 

 

 

 

 

A dissertation submitted in partial satisfaction of the 

requirement for the degree Doctor of Philosophy 

in Psychology 

 

by 

 

Anthony Rodriguez 

 

 

 

2017 

 

 

 



	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Anthony Rodriguez 

2017 



	 ii 

ABSTRACT OF THE DISSERTATION 

 

The Heteroscedastic Skew Graded Response Model: 

An Answer to the Non-Normality Predicament? 

 

by 

 

Anthony Rodriguez 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2017 

Professor Steven Paul Reise, Chair 

 

 

As item response theory models are more frequently applied to psychological assessment, 

understanding the ramifications of failing to account for non-normality is of utmost importance, 

especially, considering the likelihood of encountering traits that are non-normally distributed in 

the population (e.g., anxiety, depression). Previous research has established concerns with 

regard to bias in item parameter and trait score estimates when non-normality is ignored, and, 

as such developed models to aid in minimizing bias. Once such model is the heteroscedastic 

GRM with a skewed latent trait (HSGRM). This research provides an in-depth examination of 

the viability and utility of the HSGRM. Under various degrees of skew and heteroscedasticity, 

including extreme on both, this research addresses the consequences of ignoring non-normality 

and how to address it. A simulation study was conducted to evaluate the ability of the HSGRM 

to provide improved item parameter estimates, and recover the shape of the distribution (i.e., 

skew). Results support the HSGRM as a major improvement over the traditional GRM when 

faced with non-normality in data due to skew in the trait and heteroscedastic errors.  
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INTRODUCTION 

Item response theory (IRT) has become an increasingly attractive approach for 

addressing measurement issues. Whereas, classical test theory has historically dominated the 

field of psychometrics, more and more applications of IRT are implemented in a variety of 

substantive domains including medical and health outcomes research (e.g., Cella, & Stone, 

2015; Garcia, Aryal, & Walters, 2015; Gorter & Fox, 2015; McCracken, Chilcot, & Norton, 2015), 

cognitive (e.g., Primi, Morsanyi, Chiesi, Donati, & Hamilton, 2015; Shono, Ames, & Stacy, 

2015), behavioral genetics (e.g., Murray, Molenaar, Johnson, & Krueger, 2016), 

psychopathology (e.g., Parent, McKee, Rough, & Forehand, 2016; Olino, 2016; Keeley, Webb, 

Peterson, 2016), and of course, for quite some time now, in educational assessment (e.g., SAT, 

GRE, state standardized testing). Moreover, IRT has been applied in the development of item 

pools to be administered through computer adaptive tests (CAT) as well as in the identification 

of differential item function. Through mathematical modeling, IRT offers statistical methods for 

evaluating items and scales, creating and administering psychological measures, and ultimately 

measuring individuals on psychological traits (Reise, Ainsworth, & Haviland, 2005).  

A great deal of work in IRT has been focused on dichotomous models, namely, the one-, 

two-, and three-parameter logistic models. However, in psychological research, many constructs 

of interest such as anxiety, attitudes, and personality traits fall along a continuum and thus 

benefit from response options that allow for improved measurement (i.e., Likert-type formats). 

For these types of response formats, polytomous IRT models are more appropriately suited. 

One commonly applied polytomous IRT model is the Graded Response Model (GRM; 

Samejima, 1969, 1996). For unidimensional models, the GRM estimates a single discrimination 

(slope) parameter and c-1 category-boundary thresholds. Each of these thresholds represents 

the point on the latent trait (𝜃) where there is a 50% probability of responding in and above a 

given category. These threshold parameters, in turn, are used to calculate the probability of 

responding in a specific category conditional on the latent trait. The threshold parameters 
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determine where the psychometric information (conditional precision of measurement) is located 

and the slope determines how much. The estimated item parameters, therefore, are critically 

important in terms of determining how well a measure is functioning; Inaccuracy or bias in item 

parameter estimation can lead to a faulty interpretation of a scale’s precision.  

Normality and IRT Parameter Estimation 

The basic process of fitting an IRT model is straightforward: That is, data are collected 

from a polytomously scored measure, an appropriate IRT model is selected (e.g., the GRM), the 

model parameters are estimated, and trait scores are produced.  However, in order for the 

estimated model parameters to be accurate several critical assumptions have to be met.  For 

example, most IRT models are estimated using marginal maximum likelihood (MML; Bock & 

Lieberman, 1970). MML, as originally presented, makes certain assumptions, for instance, that 

individuals are independent, item responses are independent conditional on the latent trait, item 

response curves are logistic, and that before estimating item parameters, the probability 

distribution of the population is specified (Bock & Lieberman, 1970). Bock and Aitkin (1981) 

relaxed the final assumption such that the form of the trait distribution need not be specified a 

priori.  

Despite this, though, a normal distribution is generally assumed for the population (by 

default in many IRT software packages) and models are fit accordingly. That said, for many 

constructs this might be entirely reasonable, but in psychology, in particular, the normality 

assumption  might be particularly unlikely for many constructs. In psychology, traits like 

depression or anxiety or other severe disorders would not be expected to be normally 

distributed in a general adult population. Similarly, in education research, the issue of non-

normality might also present concerns. For instance, proficiency may be expected to be non-

normally distributed in particular subgroups of interest (e.g., English learners) or perhaps the 

overall distribution can be characterized as a mixture of normals (Monroe & Cai, 2014). As 

cleverly noted by Micceri (1989) in an investigation of 440 large-sample achievement and 
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psychometric measures, the normal distribution, among other fantastical and mythical creatures, 

might not best characterize particular constructs or traits. Therefore, when the latent trait is not 

expected to be normally distributed, or even if there is uncertainty, to assume that the latent trait 

is normally distributed is likely a model misspecification. This can have definite ramifications, as 

will be seen shortly. 

Part of the disregard of normality violations, in the context of IRT, can be attributed to the 

widespread notion among substantive research that estimation of IRT models is robust to 

normality violations (e.g., Cooper, Balsis, & Zimmerman, 2010; Greco, Lambert, & Baer, 2008; 

Kim, Kim, & Kamphaus, 2010; Krueger & Finger, 2001; McGlinchey & Zimmerman, 2007; 

Meade, 2010; Purpura, Wilson, & Lonigan, 2010; Samuel, Simms, Clark, Livesley, & Wigider, 

2010; Thomas & Locke, 2010). On the other hand, a great deal of simulation work has 

demonstrated that non-normality in the latent trait can have deleterious effects on item 

discrimination, category parameters, and trait scores. When the latent trait is non-normal, bias 

has been found to emerge in parameter estimates (Abdel-fattah, 1994; Boulet, 1996; De Ayala 

& Sava-Bolesta, 1999; DeMars, 2003; Kirisci, Hsu, & Yu, 2001; Stone, 1992; Wollack, Bolt, 

Cohen, Lee, & Young-Sun, 2002) and specifically for item slopes (Azevedo, Bolfarine, & 

Andrade, 2011), trait score estimates (Seong, 1990; Ree, 1979; Swaminathan & Gifford, 1983; 

Woods & Lin, 2009) and in item category parameters (Preston & Reise, 2014) where it has been 

found that as the true shape of the latent trait deviates from a normal distribution, extreme item 

threshold parameters become more biased (van den Oord, 2005; Zwinderman & van der 

Wollenberg, 1990). The findings provide a concrete basis for investigating alternative methods 

designed to handle non-normality. The message is clear. Failing to account for non-normality 

can have negative effects and bias item parameter estimates.  

Deciding on how to address non-normality in the latent trait, given the negative 

ramifications, has proven to be a topic of great interest in the psychometric community. To this 

end, a variety of methods have been proposed and evaluated under extensive simulation work. 
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Some of the earliest work approached the issue of non-normality by using the empirical 

histogram method (EHM; Mislevy, 1984; Mislevy & Bock, 1990; Schmitt, Mehta, Aggen, 

Kubarych, & Neale, 2006). During the maximization step of the EM algorithm (MML/EM; Bock & 

Aitkin, 1981), the shape of the latent trait is estimated using quadrature points. This method, 

however, was problematic as the shape of the distribution could easily change depending on the 

number of quadratures being used. As the number of quadratures increase so do the number of 

parameters being estimated, and ultimately, the end results is often a jagged representation of 

the latent trait. To address this jaggedness, Ramsay-Curve IRT was developed (RC-IRT; 

Woods, 2006, 2007; Woods & Thissen, 2004, 2006), which estimates the latent trait density 

using a spline-based approach wherein the density estimate is smooth and also requires fewer 

estimated parameters. This method was further refined using Davidian Curve IRT (DC-IRT; 

Woods & Lin, 2009) wherein the attractive features of RC-IRT are retained, but require fewer 

tuning parameters.  

 More recently, consideration has been given to the notion of positive or unipolar traits 

where the trait is not on a continuum from −∞ 𝑡𝑜 ∞ but rather from 0 𝑡𝑜 ∞. To capture this, 

Lucke (2014) proposed a set of unipolar IRT (UIRM) models such as the Log-Logistic and 

Weibull UIRM, to properly capture these types of traits (e.g., gambling addiction). In this 

conceptualization, a trait score of 0 reflects “no disorder” while trait scores greater than 0 reflect 

the presence of the disorder to some degree. As another alternative, Wall, Park and Moustaki 

(2015) proposed a zero-inflated mixture IRT model. Rather than assume the trait is normally 

distributed in the overall population, the model assumes that the non-normality stems from a 

mixture of two populations, that is, a degenerate no-trait population and a traited population for 

whom the trait is relevant and normally distributed. Thus, the overall distribution is comprised of 

both a clinical and non-clinical class – a group for whom the trait is present and another for 

whom it is not. The majority of the non-clinical group is excluded from analyses such that the 

estimation of trait scores and item parameters are done in the strictly clinical group (for a 
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detailed discussion see Wall et al., 2015).  

 In an altogether separate vein, a novel approach, one that forms the basis of this 

investigation, is to conceptualize the sources of non-normality as stemming from not only a 

skewed latent trait but also in terms of heteroscedastic errors (Molenaar, Dolan, & De Boeck, 

2012; Molenaar, 2015). For the polytomous case, Sameijima’s (1969) GRM can be derived by 

assuming a linear relationship between the latent trait 𝜃 and a normally distributed variable 𝑈! 

that underlies ordinal item responses. This normality assumption on the underlying variable 𝑈! 

brings with it the assumption of homoscedastic errors. Moreover, the latent trait is also typically 

assumed to be normally distributed. When data are in fact normal and thus symmetric, the 

implication is that 𝑈!|! is also symmetric and thus category response functions are symmetric. 

When the conditional distribution of 𝑈!|!  is skewed, the result can be asymmetric category 

response functions. However, as noted by Molenaar et al. (2012) asymmetry in the category 

response functions may not be simply attributable to skewness in the conditional distribution of 

𝑈!|!. In fact, asymmetry in category response functions can occur even when 𝑈!|! has a 

symmetrical distribution. That is, when 𝑈!|!  has a symmetric distribution, asymmetry in the 

category response function can arise from heteroscedastic errors in the regression between 𝑈! 

and 𝜃. Therefore, to account for skew in the latent trait and/or heteroscedasticity, Molenaar et 

al. (2012) proposed the heteroscedastic GRM with a skewed latent trait distribution model 

wherein heteroscedastic errors are modeled and a skew-normal distribution is used rather than 

the traditional normal distribution (to be described in depth below). This model is flexible and 

can test for both skew and heteroscedasticity, or either individually, and more importantly, treats 

the traditional GRM as a special case with no skew in the trait and heteroscedasticity.  

 To date, there is only the single study that proposed and examined the heteroscedastic 

GRM with a skewed latent trait. In the original paper (Molenaar et al., 2012), the model 

performed well under very specific conditions, that is, depending on sample sizes (N = 400 and 
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800), skew and heteroscedasticity parameters were recovered well. As for item discrimination 

and threshold parameters, when compared to results obtained from the traditional GRM, the 

model was a significant improvement, especially as heteroscedasticity increased. When 

heteroscedasticity was small, though, there was little effect. However, the conditions under 

which simulations were conducted were far less extreme than those faced in psychological and 

educational data. Specifically, skew was fixed to either 0 or +/- 0.5 and heteroscedastic errors  

were fixed to 0 or 0.4. In practice, skew routinely exceeds +/-0.5, especially in the context of 

psychological disorders. Consider Figure 1a where skew is specified to 0.5 with no  

heteroscedasticity and Figure 1b where skew is set to 0.5 and heteroscedasticity to 0.4.  

Although clearly there are some violations of normality, consider Figure 2a which is based on 

simulated data with skew = .99 and 0.8 heteroscedasticity and 2b produced from real impulsivity 

data taken from the Barratt Impulsiveness Scale (Patton & Stanford, 1995).  

Although not identical, the real data is quite similar to the far more extreme simulated 

data. The question then becomes, how well does the heteroscedastic GRM with a skewed latent 

trait perform under these types of extreme non-normal conditions? The primary objective of this 

project is to perform an extensive investigation of the utility and viability of this model under 

extreme conditions, similar to those faced in psychological and, to a lesser degree, educational 

research. The objective can be broken into the following key components:  

 

1) What is the consequence of model misspecification, that is, failing to model skew 

and heteroscedastic errors?  

 

2) Establish the viability of the HSGRM such that the model can correctly recover item 

parameters when there is no skew or heteroscedasticity present (i.e., normal ogive 

GRM). 
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3) In the presence of heteroscedasticity and/or skew, investigate parameter recovery 

and bias when fitting the true model and HSGRM. 

 

4) Determine the frequency with which the correct model was properly identified and 

the prevalence of the HSGRM being overly selected as the best fitting model. 

 

In order to further understand the issues involved in the present research, some 

background information on polytomous IRT models, the GRM, MML estimation, and the 

heteroscedastic GRM with a skewed latent trait model is necessary and will be discussed in the 

following sections. 

Polytomous IRT models 

 Polytomous IRT models provide researchers a means to improve measurement by 

evaluating scales consisting of multi-point Likert-type response options. Whereas in the 

dichotomous case, parametric models are designed to mathematically model the relation 

between individual differences on a latent trait and the probability of endorsing an item, 

polytomous IRT models are interested in the relation between individual differences on the 

latent trait and the probability of responding in a particular category (Bock, 1972; Drasgow, 

Levine, Tsien, Williams & Mead, 1995; Thissen, 1976; Thissen & Steinberg, 1984). 

Describing this relationship can be accomplished by examining operating characteristic 

curves (OCCs) also known as threshold response curves (TRCs), category response curves 

(CRCs), and item response curves (IRCs). However, deciding which to use, in part, is a function 

of the chosen polytomous IRT model (e.g., Graded Response Model: Samejima, 1969; 

Generalized Partial Credit: Muraki, 1992; 1993; Nominal Response Model: Bock, 1972). As 

noted by Embretson and Reise (2000), a set of CRCs offer a particularly useful method for 

describing polytomous items and, depending on the IRT model, can be produced using different 

equations. CRCs convey information regarding the probability of responding in a particular 
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category conditional on the trait level.  

Consider an item with c=5 category response options (1 = Strongly Disagree, 2 = 

Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree). The CRCs for this hypothetical item are 

presented in Figure 3. For the lowest response option (x = 1), the probability of endorsing this 

category is a monotonically decreasing function such that as trait levels increase, the probability 

of endorsing this category decreases. On the other end, for the highest response option (x = 5), 

the probability of endorsing the highest category increases monotonically as a function of 

increases in the latent trait. Unimodal functions characterize the probability of category 

endorsement for the middle categories (x = 2, 3, or 4). Specifically, the probability of endorsing 

a particular category increases and then decreases as a function of increases in the trait level.   

 As previously mentioned, there are a variety of polytomous IRT models. In fact, these 

models can be categorized into three classes that have been investigated extensively: 

sequential models, adjacent-category models, and cumulative-boundary models (Andersen, 

1977, 1997; Andrich 1978a, 1978b, 1995; Hemker, van der Ark, & Sijtsma, 2001; Masters, 

1982; Masters & Wright, 1997; Mellenbergh, 1995; Muraki, 1990, 1992; Samejima, 1969, 1972; 

Tutz, 1990). Sequential models (Tutz, 1990), also known as continuation ratio models 

(Molenaar, 1983; Hemker et al., 2001; Mellenbergh, 1995), model the process of responding 

above a between-category boundary under the assumption that previous boundaries have been 

passed. Adjacent-category models (Molenaar, 1983) also referred to as divide-by-total models 

(Thissen & Steinberg, 1986), and Rasch Models (Andrich, 1995) are based on modeling the 

process of responding in category x versus x-1 (i.e., x = 2 vs. 1; x = 3 vs. 2; x = 4 vs. 3; x = 5 vs. 

4) and can be understood as constrained versions of the nominal response model. Cumulative-

boundary models, also referred to as cumulative probability models (Molenaar, 1983), difference 

models (Thissen & Steinberg, 1986), and Thurstone models (Andrich, 1995) extend the 

standard two parameter logistic IRT model (discussed below) by modeling the process of 

responding above a between-category boundary (i.e., x = 1 vs 2,3,4,5; x = 1, 2 vs 3,4,5; x = 1,2, 
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3 vs 4,5; x = 1,2,3,4 vs 5). This last class of models is of particular interest in the current paper 

and so we direct our attention to the Graded Response Model. 

Graded Response Model: Logistic and Normal Ogive 

When polytomous data are ordered categorical responses, a suitable option, even when 

items do not have the same number of response options, is to use the Graded Response Model 

(GRM; Samejima, 1969; 1996). The logistic GRM is an extension of Birnbaum’s (1968) two-

parameter logistic (2PL) model where the conditional probability of item endorsement is 

𝑃 𝑋 = 1 𝜃) = !! !!!

!!!! !!!                                                            (1) 

 

and is determined by a single slope (𝛼) and location (𝛽).  

This mathematical form is then generalized in the logistic GRM such that each item is 

still described by a single slope parameter (𝛼!), but the equation now includes c-1 = (𝑚!) 

between-category threshold parameters (𝛽!" ’s). Each of these thresholds, in turn, is associated 

with its respective operating characteristic curve (OCC), also referred to as threshold response 

curves (TRCs), similar to the item characteristic curve obtained from a 2PL model. As noted in 

Figure 4, these OCCs represent a series of dichotomies in which a 2PL is fit to each between-

category boundary with the added constraint that, within an item, the slope is equal. Therefore, 

threshold parameters are easily interpretable such that they represent the trait level required to 

have a 50% probability of responding in or above a given threshold. Estimating an OCC for 

each threshold is the first step in a two-step process toward computing the category response 

probabilities for an item. The OCC is estimated by 

 

𝑃!"∗ 𝜃 =
𝑒!! !!!!"

1 + 𝑒!! !!!!"
                                                                      (2) 
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reflecting the conditional probability of an individual’s item response (x) falling above a given 

threshold (𝑗 = 1…𝑚!). By taking the difference between OCCs, step two, the response 

probabilities for each category can be computed: 

 

𝑃!" 𝜃 = 𝑃!"∗ 𝜃 −  𝑃!(!!!)∗ 𝜃                                            (3) 

 

Given that the probability of responding at or above the lowest category is 1.0, and it is 

impossible to respond above the highest category, we can therefore compute the probabilities 

for responding in each category conditional on the latent trait. Using our example item with 5 

response options, we compute response category probabilities as: 

 

  𝑃!! 𝜃  =    1.0 −  𝑃!!∗ 𝜃  

       𝑃!! 𝜃  =  𝑃!!∗ 𝜃  −  𝑃!!∗ 𝜃  

       𝑃!! 𝜃  =   𝑃!!∗ 𝜃 − 𝑃!!∗ 𝜃  

         𝑃!! 𝜃  =   𝑃!!∗ 𝜃  −  𝑃!!∗ 𝜃  

𝑃!! 𝜃  =    𝑃!!∗ 𝜃 − 0 
  

 

The resulting CRCs inform on the probability of an individual responding in a particular 

response category conditional on their standing on the latent trait. Figure 3 demonstrates that 

responding in the first category (Strongly Disagree) is most likely for an individual who has trait 

levels at or below -1.5SD. Responding in the second category (Disagree) is more likely for an 

individual with traits estimates between -1.5 and -0.5SD. Individuals most likely to endorse the 

third category (Neutral) are those with trait levels that fall between -0.5 and 0.5SD. Individuals 

with trait scores between 0.5 and 1.5SD are more likely to make use of the fourth response 

option (Agree) while those with trait score estimates greater than 1.5SD are more likely to  



	 11 

endorse the fifth response option (Strongly Agree).   

Taken together, it is apparent that the shape and location of CRCs, and therefore also 

OCCs, is determined by item parameters (𝛼,𝛽!"). More specifically, steep OCCs and peaked 

narrow CRCs are a function of generally larger slopes and thus are indicative of greater item 

information. The location and spread of OCCs and CRCs along the latent trait continuum 

depend on the threshold parameters, points on the trait where item information is maximized.  

 An alternative is to use a normal distribution function instead of the logistic which can be 

derived from a factor analytic (regression) framework. The resulting model is referred to as the 

normal-ogive GRM. Under this framework, it is assumed that a normally distributed variable, 𝑈!, 

underlies each categorical response variable, 𝑦!, a relation expressed via threshold parameters. 

The underlying variable, 𝑈!, is therefore modeled as a linear function of the latent trait, 𝜃.  

 

𝑈! = 𝜈! + 𝜆!𝜃 + 𝜖!                                                    (4) 

 

where 𝜈! is the intercept, 𝜆! is the factor loading, and 𝜖! is the measurement error. The marginal 

distribution of 𝑈!, g(.) is found by 

𝑔 𝑈! =  𝑓(𝑈!|!)ℎ 𝜃 𝑑𝜃!
!!                                               (5) 

 

Here the density function of 𝜃 is ℎ .  and the conditional density function of 𝑈!|! is 𝑓(. ), which 

reflects scores on 𝑈! conditioned on the latent trait. Moreover, the conditional mean and 

variance are  

𝐸 𝑈!|! = 𝜈! + 𝜆!𝜃 

(6) 

𝑉𝑎𝑟 𝑈!|! =  𝜎!"!  
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Therefore, for an individual at a given trait level, 𝜃, the probability of endorsing a particular 

category c can be found by  

𝑃 𝑌!|! = 𝑐 =  𝑓(!! !!!
!!"

𝑈!|!)𝑑𝑈!|!     𝑓𝑜𝑟 𝑐 = 0,… ,𝐶! − 1                      (7) 

 

Here, an individual’s observed score on item i conditioned on the latent trait is denoted 𝑌!|! with 

𝐶! indicating the number of response options for a given item i and 𝜏!! =  −∞ and 𝜏! !!!! = ∞. 

Moreover, given the expected value and variance of 𝑈!|! we can compute the probability of an 

individual endorsing a given response category given their trait score by 

 

𝑃 𝑌!|! = 𝑐 =  𝐹 !!!!!!!!!"
!!"

− 𝐹 !!!!!!!!!(!!!)
!!"

                            (8) 

 

and when substituting 𝜈! = 0 , 𝛼! =
!!
!!"
,  and 𝛽!" = − !

!!"
 we arrive at the normal-ogive GRM  

 

𝑃 𝑌!|! = 𝑐 =  𝐹 𝛼!𝜃 + 𝛽!" −  𝐹 𝛼!𝜃 + 𝛽!(!!!)                             (9) 

 

with the traditional item discrimination (𝛼!: slope) parameter and category location parameter 

(𝛽!": threshold). 

 The model, as discussed above, brings with it distributional assumptions, specifically, 

that the latent trait (𝜃) and errors (𝜖!) are normally distributed and, through convolution, we know 

that 𝑈! must also be normally distributed. Moreover, we know that when 𝑈! is normally 

distributed, by means of Cramer’s theorem (Cramer, 1937), the latent trait (𝜃) and 𝑈!|!  are both 

normally distributed. Therefore, it logically follows that, if 𝑈! and 𝜃 are assumed to be linearly 

related, then asymmetry in the marginal distribution of 𝑈! is attributable to a variety of sources: 

1) heteroscedastic errors (𝜎!"! ) across the latent trait 𝜃; 2) skewness in the latent trait 
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distribution; and/or 3) skewness in the distribution of 𝑈!|!. Research devoted to examining 

sources of asymmetry in the marginal distribution of 𝑈! have primarily focused on skewness in 

the distribution of 𝑈!|! (Samejima, 1997; 2000; 2008; Bazán et al., 2006; Ramsay & 

Abrahamowicz, 1989). However, as noted by Molenaar, Dolan, and De Boeck (2012), very little 

attention has been given to heteroscedasticity despite its effect on category response functions. 

It is also true that when the latent trait is skewed, non-normality can manifest in 𝑈!. To this end, 

Molenaar et al. (2012) proposed an extension of the GRM to include both heteroscedastic 𝜎!"!  

and a skewed latent trait 𝜃. 

Heteroscedastic GRM with a Skewed Latent Trait (HSGRM) 

 Recall that under the marginal distribution of 𝑈! and given the expected value and 

variance of 𝑈!|!, the 𝜎!"!  are assumed to be homoscedastic. Therefore, to account for potential 

heteroscedasticity, Molenaar et al. (2012) propose modeling 𝜎!"!  as a function of the latent trait 𝜃  

 

𝜎!"|!! = 𝑘(𝜃; 𝛿!)                                                      (10) 

 

such that k(.) can take on any strictly positive function and includes a parameter vector 𝛿! with 

elements 𝛿!!,… , 𝛿!" where r reflects an rth degree polynomial function. Molenaar et al. (2012) 

considered an exponential function such as that proposed by Hessen and Dolan (2009)  

 

𝜎!"|!! = exp (𝛿!! +  𝛿!!𝜃 + 𝛿!!𝜃! +⋯+  𝛿!"𝜃!).                             (11) 

 

In its simplest form  

𝜎!"|!! = exp (𝛿!! +  𝛿!!𝜃)                                              (12) 

with r = 1, baseline parameter 𝛿!!  ∈ (−∞,∞) and heteroscedasticity parameter 𝛿!! ∈ (−∞,∞), it 

is clear that homoscedasticity is not violated when 𝛿!! = 0, whereas 𝛿!! > 0 suggests that as 
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traits levels increase across 𝜃 so do error variances, while 𝛿!! < 0 reflects decreases in error 

variances as trait levels increase. However, the exponential function is problematic for the 

extended GRM given that the presence of heteroscedasticity in the distribution of 𝑈! results in 

skewed CRCs and, more importantly, results in upper limits for the highest and lowest category 

response options. For an in depth discussion see Molenaar et al. (2012).  

To address this issue, an alternative function was proposed  

𝜎!"|!! = !!!!
!!!"# (!!!!

!!! !
!" ! )

                                                   (14) 

 

where now the baseline parameter has a lower limit, 𝛿!! ∈ [0,∞] while 𝛿!! ∈ [−∞,∞]. For the 

lowest and highest response categories, an upper bound has now been set to avoid 

approaching 0.5 such that when 𝛿!! >  0 and 𝜃 → ∞ ⇒ 𝜎!"|!!  → 𝛿!. A lower limit has been set to 0 

such that 𝜃 → −∞ ⇒ 𝜎!"|!!  → 0. We also see that when 𝛿!! <  0 and 𝜃 → −∞ ⇒ 𝜎!"|!!  → 𝛿!! and 

when 𝜃 → −∞ ⇒ 𝜎!"|!!  → 0. Finally, when 𝛿!! = 0 ⇒  𝜎!"|!!  → 𝛿!!. 

 The above approach identifies and models one of the sources of non-normality, namely, 

heteroscedastic error variance. However, skewness in the latent trait also presents an issue and 

must be modeled and distinguished from heteroscedastic errors. The skew normal distribution 

(Azzalini 1985, 1986; Azzalini & Capatanio, 1999) has much to offer and has been recently 

incorporated into the 2-parameter normal-ogive model (Bazán, Branco, & Bolfarine, 2005) as 

well as the 2PL and extended into a Bayesian framework (Azevedo, Bolfarine & Andrade, 2011; 

Azevedo, Bolfarine, & Andrade, 2012).  Moreover, the added attraction of the skew-normal 

distribution is that the normal distribution is a special case. The probability density function of 

the skew-normal for a random variable, 𝑥, is given by 

ℎ 𝑥 = !
!
𝜙 !!!

!
𝛷(𝜓 !!!

!
)                                           (15) 
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where 𝜙(. ) denotes the standard normal probability density function, 𝛷 .  is the cumulative 

density function, 𝜉 is a location parameter, 𝜉 ∈ −∞,∞ , 𝜔 is a scale parameter, 𝜔 ∈ [0,∞), and 

𝜓 is a shape parameter, 𝜓 ∈ (−∞,∞). Using these parameters we can easily obtain the 

expected value, variance, and skew of 𝑥 by 

𝐸 𝑥 = 𝜉 + 𝜔𝜌 !
!
                                                  (16) 

 

𝑉𝑎𝑟 𝑥 =  𝜔!(1 − !!!

!
)                                             (17) 

 

𝑆𝑘𝑒𝑤 𝑥 = !!!
!

! !
!

!

!!!!
!

!

!
!
                                             (18) 

where  

                  𝜌 = !
!!!!

            (19) 

 

 The probability density function of the skew normal model can be reduced to the normal density 

function when the shape (skew) parameter, 𝜓, is equal to 0.  

 In order for the model to be identified, we must first consider that in Eq. 8 both the latent 

trait and 𝑈! are unobserved variables and therefore require constraints for identification. By 

convention these would be 𝐸 𝜃 = 0, 𝐸 𝑈! = 0,𝑉𝑎𝑟 𝜃 = 1, and 𝑉𝑎𝑟 𝑈! = 1. However due to 

the estimation of the model (as shown shortly), these specifications result in 

 

𝜎!"|!! = 𝑉𝑎𝑟 𝑈! −  𝜆!! ∗ 𝑉𝑎𝑟 𝜃 =  1 − 𝜆!!                                    (20) 

 

𝜈! = 𝐸 𝑈! − 𝜆! ∗ 𝐸 𝜃 =  0                                            (21) 
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Thus, the model cannot include heteroscedastic errors given that 𝜎!"!  is not a free parameter 

such that error variances are a function of factor loadings. Moreover, intercepts (𝜈!) are not 

included in the model. In order to identify the scale and define the unit of measurement of 𝑈! 

while also being able to estimate 𝜎!"!  and 𝜈! for all items, a reasonable approach is adopted 

where constraints are imposed on the first two thresholds thus defining the unit of measurement 

(Lee, Poon, & Bentler, 1990; Mehta, Neale, & Flay, 2004; Shi & Lee, 2000). Therefore, now that 

𝜎!"!  is a free parameter and can be estimated by Eq. 14, and given that Eq. 15 specifies the 

density function for a skew normal distribution underlying 𝜃, the heteroscedastic GRM with a 

skewed latent trait (HSGRM) is formed (Molenaar et al., 2012). It is worth noting that an 

interesting feature of the HSGRM is that, unlike the graded response model, it does not impose 

symmetric category response curves. 

Marginal Maximum Likelihood 

 Traditional maximum likelihood estimation is problematic for IRT because it attempts to 

simultaneously estimate both item and person parameters and, as such, will always add 

additional parameters as subjects are added. In place of maximum likelihood, one of the most 

frequently applied full information estimation procedures for fitting parametric IRT models is 

Marginal Maximum Likelihood (MML; Bock & Lieberman, 1970; Bock & Aitkin, 1981). Instead of 

individual theta estimates, MML imposes a population distribution and then estimates item 

parameters given the assumed distribution. Moreover, given that trait levels are unknown, MML 

uses response pattern probabilities as expectations belonging to a population distribution (Bock 

& Lieberman, 1970). For this reason, observed data are viewed as randomly sampled from the 

population (Embretson & Reise, 2000). In part, the appeal of MML rest in the fact that data are 

integrated over the parameter distribution and parameters are estimated by maximum-likelihood 

in the marginal distribution. In its original form, Bock and Lieberman (1970) presented MML in 

the context of dichotomously scored items. For a given subject, their response pattern would 
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assign them to one of 2n mutually exclusive categories. In a sample with N individuals with j 

response patterns, the frequency of the response patterns are denoted rj , where j=1,2, …, k 

and k ≤ min(N, K) with N possible response patterns. Therefore, assuming N subjects represent 

a normal random sample (𝜇 = 0,𝜎 = 1) from a population, then category response frequencies 

(𝑟!) are equal to 𝑁𝑝! and will be multinomially distributed with parameters N and 𝑃!, where 

𝐸 𝑝! =  𝑃!. Thus, by means of the multinomial law, item parameters can be used to inform on 

the probability of the sample, resulting in the likelihood function 

                                                (22) 

 

Item parameter likelihood equations for the slope (𝑎!) and intercept (𝑘!) are  

!"#$%
!!!

= 𝑁 !!
!!

!!
!!!

!!!
!!!

= 0																																																								(23) 

and	

!"#$%
!!!

= 𝑁 !!
!!

!!
!!!

!!!
!!!

= 0																																																								(24)	

 

Although this procedure can be applied to any IRT model, issues arise due to the optimization 

procedure. The Newton-Raphson algorithm presents computational concerns as the number of 

items increases beyond 12 items (Bock & Aitkin, 1981). From a computational standpoint, this 

method is extremely demanding given that, for n items, a 2n x 2n information matrix must be 

generated and inverted between four to five times where each element in the information matrix 

is the sum of 2n terms. For obvious reasons this is problematic especially in longer tests. 

Another issue pertains to a priori knowledge of the distributional form of the trait. Given these 

concerns, Bock and Aitkin (1981) reformulated the Bock-Lieberman likelihood equations 

(Dempster, Laird, & Rubin, 1977) in order to relax the need to specify the distributional form by 
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allowing the distributional form to be approximated as a discrete distribution with a set number 

of points. Therefore, item parameters can be estimated by simply integrating over the marginal 

distribution. This was accomplished using the EM algorithm’s two-step process: expectation (E) 

and maximization (M).  

In the MML/EM estimation procedure, observed response pattern probabilities are 

estimated at each iteration where each of the probabilities involves an integral. Numerical 

integration is necessary because the integrals do not have a closed-form solution. This is 

usually accomplished via Gauss-Hermite quadratures (Davis & Rabinovitz, 1975).  The EM 

algorithm iteratively produces maximum likelihood model parameter estimates.  During the E 

step, a provisional set of item parameters is obtained and treated as the true item parameters. 

Using these item parameters and the response patterns, the expected proportion of individuals 

selecting a given category is estimated. During the M-step, item parameters are estimated 

under the assumption that the response proportions obtained in the E-step are true probabilities. 

This process is repeated iteratively until a specified convergence criteria is reached.  

To better understand this procedure, consider the parameterization presented by 

Samejima (1997) for a normal-ogive graded response model where the marginal likelihood 

function is expressed as: 

 

𝐿 𝛾 =  ℎ 𝜃! 𝑃!! 𝜃! 𝑑𝜃!      =      𝑃!!
!
!!!

!
!!

!
!!!     =     𝑃!

!!
!                   (26) 

 

where 𝜸 is the vector of item parameters, P number of examinees, ℎ(𝜃!) is the trait density 

function, 𝜐! is a response pattern corresponding to subject p, 𝑃!! 𝜃  is the conditional probability 

for a given response pattern for subject p, 𝑃!! is the marginal probability for response pattern 𝜐! 

for subject p, and  𝑟! is the frequency of a particular response pattern 𝜐. By discretizing the 
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continuous latent trait 𝜃 by q discrete latent classes such that 𝜃! is characterized by 𝑙 = 1,2,… , 𝑞, 

𝑃! can be approximated by 𝑃! such that  

 

𝑃! =  𝑃! 𝜃! 𝐻 𝜃!
!
!!!                                                    (27) 

 

where 𝐻 𝜃!  reflects the Gauss-Hermite quadrature weight. Then the expected frequency 𝑟!!!, 

for the graded response 𝑐! for item 𝑖 in latent class 𝑙 is obtained by 

 

𝑟!!! =
𝛴𝜐 !!!!!!!! !! ! !!

!!
                                                  (28) 

where 𝑥!!!  is an indicator variable that takes on a value of 1 if 𝑐! ∈ 𝜐, otherwise gets a value of 0. 

Subsequently the expected sample size, 𝑃! for class 𝑙 is obtained by 

 

𝑃! =  
𝛴𝜐 !!!!!!!! !! ! !!

!!
                                                  (29) 

 

Therefore, during the E-step, using temporary item parameters, 𝑃!(𝜃!) is computed, in order to 

subsequently obtain  𝑃!, 𝑟!!!, and 𝑃! . Then in the M-step, updated estimates for item parameters 

are computed by maximizing the approximated likelihood function by replacing 𝑃! with 𝑃!.  This 

process happens iteratively until a convergence criteria is met.  

 A MML/EM procedure, as discussed above, is adapted to estimate the heteroscedastic 

GRM with a skewed latent trait model. Given equation 8 and 𝜎!! as specified in Equation 14 

combined with the latent trait density function in Equation 15, the log-marginal likelihood 

function is maximized by  

𝐿 𝜸 𝑿 =  𝑙𝑜𝑔!
!!!   !

!! 𝑃 𝑌! ! = 𝑥(!") ℎ 𝜃 𝑑𝜃!
!!!                         (30) 
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where parameter vector 𝜸 contains 𝛿!!, 𝛿!!, 𝜆! , 𝜈! , 𝜏!𝑠, and 𝜓 for all 𝑖 = 1,… , 𝑞 and the N x q item 

response data matrix 𝑿 contains responses for N individuals on q items and where 𝑥(!") refers 

to a specific elements in the X matrix. Moreover, as established in Eq. 16 and 17, both 𝜉 and 𝜔 

are fixed parameters in order to identify the latent trait 𝜃 such that 𝐸 𝜃 = 0 and 𝑉𝑎𝑟 𝜃 =  1.  

Note that the density function h(.) included in the likelihood function is not a standard normal but 

rather has been modified to be consistent with Eq. 15 such that the skew-normal distribution is 

specified and its corresponding item parameters are contained in parameter vector 𝜸.   
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METHOD 

Design 

 This study examined the utility and viability of the HSGRM model under a broad range of 

conditions. To this end, heteroscedasticity, skew, sample size, and the number of response 

category options were manipulated. Heteroscedastic errors varied from the homoscedastic case 

to highly heteroscedastic, that is, four conditions were included: no heteroscedasticity (𝛿!! = 0), 

small (𝛿!! = 0.40), moderate (𝛿!! = 0.80), and large (𝛿!! = 1.0). Skew in the latent trait 

distribution was simulated under four likely scenarios: no skew (0), small (0.50), moderate 

(0.75), and large (1.0). Two sample sizes were included to reflect typical scenarios, that is, a 

small (N=500) and large sample (N=2,000). The number of response categories also varied to 

include both 3- and 5-category options. All other parameters were fixed to predetermined 

values. Factor loadings (unstandardized) were set to 1.0, threshold parameters fixed to -2.5, -

1.0, 1.0, and 2.5, and baseline residual (𝛿!!) to 1.0. All 64 conditions were simulated with 10 

items.   

Due to complexities in the estimation of the HSGRM, 200 datasets per condition were 

generated. To clarify, the program used to estimate the model (Mx; Neale, Boker, Xie, & Maes, 

2004) allows for a single analysis at a time (no looping) and currently takes approximately 1-2 

hours to estimate per dataset. For each condition, four models were estimated and compared 

via likelihood ratio test (LRT): 1) baseline normal-ogive GRM, 2) skew-normal GRM (no 

heteroscedastic parameter), 3) het-only GRM (no skew parameter), and 4) HSGRM with both 

heteroscedasticity and skew estimated. This time intensive procedure was critical in addressing 

the question of determining the frequency with which correct models are identified and the 

prevalence of over selecting the HSGRM when not merited. 

Likelihood Ratio Test 

As stated, LRTs were used to test the various models that contain skewness and/or  

heteroscedastic errors or neither. For some or all the items, under the 𝐻!, 𝜈 = 0 and/or 𝛿!! = 0,  
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therefore, under the 𝐻!, 𝜈 ≠ 0 and/or 𝛿!! ≠ 0. The LRT test statistic, T, is computed by 

 

𝑇 =  −2 𝑥 [𝐿 𝜸! 𝑿 − 𝐿 𝜸! 𝑿 ]                                      (25) 

 

In accordance with restrictions specified under the 𝐻!, 𝜸! is the estimated parameter vector 

from Eq. 24 whereas 𝜸! is the estimated parameter vector under the 𝐻!. The T test statistic is 

distributed as a central 𝜒! under the 𝐻!, with degrees of freedom equal to the number of 

constraints. The test statistic is distributed as a non-central 𝜒! under the 𝐻! with a non-centrality 

parameter contingent on sample and effect size. Additionally, because the 𝐻! is nested within 

the 𝐻! and restrictions under the 𝐻! are limited to constraining 𝜈 and/or 𝛿!! with parameter 

spaces (−∞,∞) to 0 conditions are met for the test statistic to approach the theoretical 

distributions specified under the 𝐻! and 𝐻!. 

Data Generation 

 All conditions were simulated in R 3.2.3 (R Development Core Team, 2016). Using the 

sn (Azzalini, 2015) and MASS (Venables & Ripley, 2002) libraries, 200 datasets, per condition, 

were generated under the normal-ogive GRM with the skew and heteroscedastic specifications 

discussed above.  

Model Fitting 

In order to identify the scale and define the unit of measurement of 𝑈! while also being 

able to estimate 𝜎!"!  and 𝜈! for all items, constraints were imposed on the first two thresholds 

thus defining the unit of measurement (Lee, Poon, & Bentler, 1990; Mehta, Neale, & Flay, 2004; 

Shi & Lee, 2000). Therefore, the first two thresholds were fixed to -2.5 and -1, respectively. 

Each of the simulated datasets were fit to the HSGRM by specifying skew and/or 

heteroscedasticity using Mx freeware (Neale, Boker, Xie, & Maes, 2004). Mx is a combination of 

a matrix algebra interpreter and a numerical optimizer that allows for the exploration of matrix 
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algebra through countless operations and function. To date, there is no software that includes 

this model, nor are there any R functions available to estimate this model. From each Mx run, all 

item parameters and model fit indices were compiled for all four models (baseline, skew-only, 

het-only, and HSGRM) in order to evaluate overall parameter recovery and model selection. 

Parameter recovery was evaluated by examining the average bias and root-mean square 

difference (RMSD) averaged across items and replications (Woods, 2006).  

The goal of this project was to perform an extensive investigation of the utility and 

viability of this model under extreme conditions. To that end, this research aimed to understand: 

a) The consequences of model misspecification, that is, failing to model skew and 

heteroscedastic errors; b) Establish the viability of the HSGRM such that the model can 

correctly recover item parameters when there is no skew or heteroscedasticity present (i.e., 

normal-ogive GRM); c) In the presence of heteroscedasticity and/or skew, investigate parameter 

recovery and bias when fitting the true model and HSGRM; and, d) Determine the frequency 

with which the correct model was properly identified and the prevalence of the HSGRM being 

overly selected as the best fitting model. 

To address the consequence of model misspecification, that is, failing to model skew 

and heteroscedastic errors, all data with varying degrees of skew and heteroscedasticity were fit 

to a normal-ogive GRM. Average absolute bias in parameters and RMSDs were computed 

across all conditions.  In order to establish the viability of the HSGRM, control conditions, that is, 

conditions with no skew or heteroscedastic errors, were fit to both a constrained version of the 

HSGRM (i.e., normal-ogive GRM or baseline model) and the full HSGRM with both skew and 

heteroscedastic errors estimated. Average bias and RMSDs were compared for all item 

parameters from both models. In the presence of heteroscedasticity and/or skew, parameter 

recovery was evaluated in terms of average bias and RMSDs for both the true model and 

HSGRM. Finally, all four models (baseline, skew-only, het-only, and HSGRM) were estimated 

for each dataset within each condition. Likelihood ratio tests were performed for each dataset in 
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every condition. These were compiled to evaluate the frequency with which the correct model 

was properly identified and the prevalence of the HSGRM being overly selected as the best 

fitting model. 
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RESULTS 

 Simulation results are presented in Tables 1 through 21.  As a reminder, the skew 

parameter value presented is not the actual skew of the distribution but rather the skew 

parameter used in the computation of the actual skew (see eqs.18-19): skew of 0 (skew 

parameter = 0), 0.5 (skew parameter = 2.17), 0.75 (skew parameter = 3.641), and 1.0 (skew 

parameter = 28)1. Tables 1 through 10 provide descriptive statistics and are described below. 

Tables 11 through 21 address questions pertaining to establishing parameter bias due to model 

misspecification, performance of HSGRM under control conditions, item parameter recovery 

and evaluation of bias and RMSD, and prevalence or correct model identification. For all tables, 

simulation conditions (i.e., degree of heteroscedastic errors and skew) are denoted by “h” and 

“s” for heteroscedastic errors and skew, respectively. Large sample (N=2000) results are 

presented first then small sample results (N=500). In all cases, results from the 5-category 

response option simulation are presented first, followed by the 3-category response option 

findings.  

Descriptive Statistics 

Tables 1 through 10 include descriptive statistics for all item parameters averaged 

across items and replications for all 64 conditions. Tables 1 through 6 are for items with 5-

category response options. Tables 7 through 10 are for items with 3-category response options. 

Each table includes means and standard deviations for the item parameter (e.g., factor loading) 

from each of the four possible models: Baseline GRM (no skew or het) denoted “B”, skew only 

denoted “S”, heteroscedastic errors only denoted “H”, and heteroscedastic skew model denoted 

“HS”.  Tables are divided such that large sample descriptives are included first followed by small 

sample descriptives. Table 1 and 7 combine skew and heteroscedasticity into a single table. 

Hyphens are used to indicate item parameters not relevant to the estimated model (i.e., skew 

																																																								
1 A special thanks to Dylan Molenaar for in depth conversations regarding HSGRM model 
specification and parameter interpretation. 
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parameter in a heteroscedastic error only model). 

Five category response conditions  

 Descriptives for skew and heteroscedasticity parameters are presented in Table 1. The 

baseline model is not included as neither of these parameters were estimated. Skew is 

considered for the skew-only model and HSGRM, as the het-only model does not estimate 

skew. Heteroscedastic errors are considered for the het-only model and HSGRM given that the 

skew-only model does not estimate heteroscedastic errors.  

Skew. Broadly speaking, for both the skew-only model and HSGRM, when data only 

included skew (i.e., h0s0, h0s5, h0s75, h0s1), mean skew parameters and thus actual skew 

closely reflected the true population skew. However, as heteroscedastic errors were included at 

increasing magnitudes (i.e., h4, h8, h1) and not modeled in the skew-only model, the mean 

skew parameters (and actual skew) were consistency underestimated for low and moderate 

skew (0.5 and 0.75). When heteroscedastic errors were modeled using the HSGRM, mean 

skew parameters tended to approximate the true population value. At the extremes, that is, 

skew of 0.00 or 1.00, both the skew-only model and HSGRM tended to have mean skew 

parameters near the true population values. Standard deviations between models were small-

to-moderate and generally very similar. These trends were consistent regardless of sample size. 

The key distinction between large and small samples sizes can be observed in the magnitude of 

the standard deviations such that, generally speaking, standard deviations were larger in the 

small sample yet consistent between the skew-only and HSGRM.  

Heteroscedastic Errors. For conditions including only heteroscedastic errors and no 

skew (i.e., h0s0, h4s0, h8s0, h1s0), both the het-only model and HSGRM produced mean 

heteroscedastic error values near or at the true population value. As skew increased and was 

left unmodeled, the het-only model consistently had smaller mean heteroscedastic errors with 

the most notable effect when skew was 1.0. Regardless of skew, the HSGRM had mean 

heteroscedastic errors close to or exactly the same as the true pop value. Standard deviations 
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between models were small and generally very similar. In the small sample the same trend is 

apparent. As mentioned in the case of skew, the key distinction between large and small 

samples is noted in the magnitude of the standard deviations such that, generally speaking, 

standard deviations were larger in the small sample yet consistent between the het-only and 

HSGRM. 

Baseline residual. Table 2 displays the descriptives for baseline residuals. In the 

absence of heteroscedastic errors, all four models (baseline, skew-only, het-only, and HSGRM) 

had similar mean baseline residual values (0.90 – 1.02) as well as standard deviations (0.09 – 

0.12). Once heteroscedastic errors were introduced, noticeable differences emerged. As 

heteroscedastic errors increased, mean baseline residuals gradually decreased in both the 

baseline and skew-only models, to 0.56 and 0.61, respectively. Note, data were simulated with 

a baseline residual of 1.0. Between the het-only model and HSGRM, there were no noticeable 

differences in mean baseline residual when there was no skew (e.g., h0s0, h4s0, h8s0, h1s0) 

and ranged from 1.0 to 1.01. When skew was introduced, the HSGRM consistently had mean 

baseline residual values approximating the true population value. The het-only model, on the 

other hand, saw a decrease in mean baseline residual as a function of increased skew. That 

said, under the most extreme het/skew combination (h1s1), the mean residual was 0.82 – still 

far better than that from the baseline GRM or skew-only model. Across all models, standard 

deviation tended to be small but gradually increased with model complexity (baseline to 

HSGRM). The same trend was found in the small sample with regard to mean baseline 

residuals and mean standard deviations. The only noticeable difference was in the magnitude of 

the standard deviations such that they were larger in the small sample. It is apparent that, 

regardless of sample size, failing to model heteroscedastic errors negatively impacted baseline 

residuals as is seen in the baseline and skew-only models. When accounted for, mean residual 

baseline residuals were exact or close to true population values and when modeling both 

heteroscedastic errors and skew, the HSGRM mean residuals where closely approximated.  
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 Factor loadings. As seen in Table 3, across all four models, when only skew was 

present, there were no real differences in mean factor loading with the exception of slightly 

lower values (0.91 – 1.00) for the het-only model. For the baseline and skew-only models, as 

heteroscedastic errors increased and went unmodeled, mean factor loadings gradually 

decreased to 0.71 and 0.78, respectively. For the het-only and HSGRM, mean factor loadings 

were consistently close to the population parameter with the HSGRM being closest. In the most 

extreme case of heteroscedasticity and skew, the het-only model, despite not modeling skew, 

still had a mean factor loading of 0.87. Standard deviations were generally small ranging from 

0.04 to 0.10 with the larger deviations found in the HSGRM. The same trend emerged in the 

small sample with the only noticeable difference pertaining to larger, but still small, standard 

deviations in the small sample. 

 Thresholds. Tables 4 and 5 display the descriptives for thresholds 3 and 4. As a 

reminder, to identify the scale and define the unit of measurement of 𝑈! while also being able to 

estimate 𝜎!"!  and 𝜈! for all items, the first two thresholds were fixed to -2.5 and -1, respectively. 

In conditions with only skew, across all models, mean threshold values are relatively close to 

the true population values with relatively small standard deviations. That said, mean thresholds 

for the skew-only model and HSGRM tended to be equal to or extremely close to the true 

population value. For the baseline and het-only models, there is a slight decrease in threshold 

means as a function of skew increasing but is negligible. For the baseline and skew-only 

models, mean threshold values dramatically decrease as a function of increased 

heteroscedasticity and dwindle down to 0.52 and 0.59 for threshold 3 and 1.4 and 1.56 for 

threshold 4, respectively. For conditions with only heteroscedastic errors, both the het-only and 

HSGRM have very similar mean thresholds close to the true population value. Instances where 

both skew and heteroscedastic errors were included, there was a slight decrease in mean 

threshold values in het-only models as a function of increased skew whereas the HSGRM 

maintained consistently close mean threshold values to those of the population. These same 
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results emerged for the small sample case, however, with slightly larger standard deviations. As 

seen previously, failing to model heteroscedastic errors seems to have the most deleterious 

effects, in this case, resulting in drastically smaller mean thresholds.  

 Intercepts. Table 6 presents descriptives for intercepts. Similar to previous results, mean 

intercepts for conditions with only skew tend to be relatively consistent with the true population 

value across models with the exception of the het-only model that had slightly larger mean 

intercept values. As heteroscedastic errors are introduced and gradually increase, mean 

intercepts for the baseline and skew-only model once again are most notably affected with 

substantial decreases in mean intercept values. When only heteroscedastic errors were 

present, the het-only model and HSGRM both performed similarly with mean intercept values 

generally close to the true population value. However, as skew is introduced, there is a slight 

decrease in mean intercept values for the het-only model. Once again, the HSGRM yielded 

mean intercept values closely approximating the true population value. As with previous 

parameters, the same results emerged in the small sample. 

Three-category response conditions 

Skew. Descriptives for skew parameters are presented in Table 7. For conditions only 

containing skew, both the skew-only model and HSGRM had extremely similar mean skew 

parameters closely resembling the true population value. As heteroscedastic errors were 

included and increased, the mean skew parameters for the skew-only model shifted to the left 

and were smaller, specifically for skew of 0.0, 0.5 and 0.75. When heteroscedastic errors were 

modeled, mean skew parameters from the HSGRM tended to approximate the true population 

value. In the extreme, skew of 1.00, both the skew only model and HSGRM had mean skew 

parameters near the true population values. Standard deviations between models were similar 

and tended to be moderate in magnitude with a few larger ones emerging when heteroscedastic 

errors were at a maximum. These trends were consistent regardless of sample size. The most 

notable difference was in the standard deviations which tended to be larger in the small sample.  
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Heteroscedastic Errors. Mean heteroscedastic errors for all conditions are also 

presented in Table 7. Conditions containing only heteroscedastic errors produced similar means 

for both the het-only and HSGRM and were close to or equal to the true population value. When 

both skew and heteroscedasticity were present, the HSGRM had mean values either close to or 

exactly that of the population. Failing to model skew negatively affected the het-only model such 

that across all conditions, mean heteroscedastic errors were consistently underestimated. 

Standard deviations were small-to-moderate for both models. Similarly, small sample results 

show that under conditions with no skew, both models performed similarly as indicated by mean 

heteroscedastic error values similar to the true population value. However, in the presence of 

any degree of skew, mean heteroscedastic errors were substantially smaller in the het-only 

model whereas they were closer to the true population value in the HSGRM. 

Baseline residuals and Factor Loadings. Baseline residuals are presented in Table 8. 

Interestingly, across all conditionals, all of the models had mean baseline residuals close to or 

equal to the true population value. This was true for both large and small sample sizes. The 

ranges for each model in both large and small samples were:  baseline model = 0.96 – 1.01, 

skew-only = 0.96 – 1.01, het-only = 0.96 – 1.00, and HSGRM = 0.98-1.00.  The only difference 

was that standard deviations were larger in the small sample (range 0.11-0.13) than in the large 

sample (range 0.05-0.06). Although there was an apparent smaller range in the HSGRM, it is 

clear that there was no real difference in mean baseline residual across conditions or sample 

size. A very similar trend emerged for factor loadings as displayed in Table 9. Mean factor 

loadings across conditions generally cluster around 1.0. For the baseline model in the large 

sample, mean loadings ranged from 0.94 – 1.01 and in the small sample from 0.94 – 1.04. For 

the skew-only model, the range in the large sample was 0.98-1.05 and in the small sample from 

0.98-1.05. In the het-only model, loadings in the large sample ranged from 0.93-1.0 and in the 

small sample from 0.94-1.0. Lastly, in the HSGRM, loadings in the large sample ranged from 

0.99-1.02 and from 0.98-102 in the small sample. Although there is some distinction, again it 
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appears that mean factor loadings were not dramatically impacted by the degree of skew or 

heteroscedasticity and whether they were modeled. As has been the case thus far, the key 

distinction between sample sizes is noticed in the magnitude of the standard deviations such 

that in the large sample standard deviations were smaller than those of the small sample. 

Intercept. Table 10 includes descriptives for the intercepts across models and 

conditions. In models containing only skew, mean intercepts were generally similar and close to 

the true population value. That said, mean intercepts for the het-only models were slightly larger 

and increased as a function of skew, however, the differences were negligible. Generally 

speaking, mean intercepts from the HSGRM were either equal to or close to the true population 

value and when only heteroscedastic errors were included, the het-only model also had mean 

intercepts equal to or close to the true population value. For the baseline model and skew-only 

model, failing to model for heteroscedasticity resulted in slightly more negative mean intercept 

values. Standard deviations were small and ranged from 0.03-0.04. Similar mean intercepts and 

trends emerged for the small sample, however, with slightly larger standard deviations ranging 

from 0.07-0.08). 

Consequence of Model Misspecification 

 The first inquiry focused on identifying the consequences of model misspecification, that 

is, failing to model skew and heteroscedastic errors. To that end, all data containing varying 

degrees of skew and/or heteroscedasticity were fit to a normal GRM (skew and heteroscedastic 

errors were not estimated and fixed to zero) when the true heteroscedastic errors and skew 

were non-zero. Consequences were evaluated in terms of average absolute bias and RMSD. 

As a note, the term “bias” throughout is used interchangeably with “absolute bias.”  

Average absolute bias: Parameter estimate bias is presented in Tables 11 and 12 for all 

conditions with a combination of skew and/or heteroscedastic errors, collapsed across items 

and replications. Table 11 pertains to 5-category response conditions and Table 12 to 3- 

category response conditions. The degree of model misspecification can be seen in the 
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magnitude of average bias such that values near zero reflect no bias. The 5-category response 

conditions are discussed first. For conditions where only skew was included (i.e., h0s5, h0s75, 

h0s1), average bias was small for baseline residuals (0.00 to -0.06), factor loadings (0.00 to -

0.04), intercepts (0.00 to -0.04), and the third thresholds (0.00 to -0.06) with minor gradual 

increases in average bias as skew increased from 0 to 1. In the case of the fourth threshold, 

mean bias was slightly larger (0.00 to -0.16) again with increases tied to greater skew. When 

sample size was small, similar results emerged such that average bias was small for baseline 

residuals (0.01 to -0.05), factor loadings (0.01 to -0.04), intercepts (0.01 to -0.05), and the third 

thresholds (0.01 to -0.03) with minor gradual increases in average bias as skew increased from 

0 to 1. Mean bias in the fourth threshold was slightly larger (0.03 to -0.14) and increased as a 

function of skew. Generally speaking, in the presence of only skew, regardless of sample size, 

there was minimal bias in item parameters, and more specifically, in slopes and thresholds.  

To graphically demonstrate the effect, consider Figure 5, which presents CRCs and 

TRCs for the condition with no heteroscedastic errors and skew of 1.0 (i.e., h0s1). The CRCs 

are practically identical with only a slight difference on the lower end of the trait pertaining to 

category options 1 and 2. Moreover, the TRCs show that with the exception of scores on the 

lower end of the trait tending to be upwardly biased under the Baseline GRM, expected scores 

are virtually identical. This would suggest that skew alone left unmolded might not present as 

great a concern.  

The inclusion of heteroscedasticity resulted in substantially more pronounced bias. For 

conditions with heteroscedastic errors of 0.4, mean bias for baseline residuals (-0.20 to -0.23), 

factor loadings (-0.10 to -0.15), third threshold (-0.21 to -0.23), fourth threshold (-0.48 to -0.57), 

and intercepts (-0.13 to -0.14) were noticeably larger across all parameters and increased as a 

function of combined skew. The same was true for the small sample such that mean bias for 

baseline residuals (-0.20 to -0.23), factor loadings (-0.10 to -0.15), third threshold (-0.22 to -

0.23), fourth threshold (-0.48 to -0.57), and intercepts (-0.13 to -0.15) were also larger for all 
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parameters and increased as a function of combined skew. Increasing heteroscedasticity to 0.8 

resulted in even greater mean bias in baseline residuals (-0.38 to -0.39), factor loadings (-0.20 

to -0.24), third threshold (-0.40 to -0.43), fourth threshold (-0.92 to -0.96), and intercepts (-0.24 

to -0.26) and once again increased with skew. In the small sample, mean bias was equally as 

substantial for baseline residuals (-0.39 to -0.40), factor loadings (-0.21 to -0.25), third threshold 

(-0.41 to -0.45), fourth threshold (-0.94 to -0.97), and intercepts (-0.25 to -0.26). When 

heteroscedasticity was at a maximum of 1.0, mean bias for baseline residuals (-0.44 to -0.47), 

factor loadings (-0.25 to -0.29), third threshold (-0.48 to -0.54), fourth threshold (-1.09 to -1.15), 

and intercepts (-0.29 to -0.32) were largest. Similarly, for small samples, mean bias peaked for 

baseline residuals (-0.45 to -0.47), factor loadings (-0.25 to -0.29), third threshold (-0.49 to -

0.55), fourth threshold (-1.10 to -1.15), and intercepts (-0.29 to -0.32). Taken together, it is quite 

apparent that simply fitting a normal GRM and failing to model heteroscedastic error and skew, 

even in moderate cases, will result in noticeable parameter bias. In more extreme cases, the 

bias is severely problematic.  

To illustrate the consequence of model misspecification, consider a large sample 5-

category item with heteroscedasticity of 0.8 and no skew. Figure 6 translates the observed bias 

in slopes and thresholds into a visual display, specifically, in terms of CRCs and TRCs for the 

misspecified baseline GRM and HSGRM. Note the how the curves for the lowest and highest 

response options have shifted toward the extremes. As seen in the TRCs for both models, at 

the lower and upper extremes of the latent trait, the baseline GRM tends to have larger 

expected scores compared to the HSGRM. That said, in the middle trait range, there does not 

appear to be any difference. 

Now compare this to an item with the same conditions however changing skew to 0.5 

(i.e., h8s5). As seen, noticeable downward bias emerged for both the slope and thresholds, 

among the other item parameters. To visually see the impact, consider Figure 7, which presents 

CRCs and TRCs for the misspecified baseline GRM and the correct full HSGRM. Given the 
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downward bias in thresholds, it is not surprising to see the CRCs also shift down on the latent 

trait such that the probability of an individual responding in a particular response category 

requires less of the trait. Moreover, examining the test response curve, it is also apparent that 

expected scores were upwardly biased such that under the baseline GRM expected scores are 

consistently higher across the latent trait than under the correctly specified full HSGRM. 

Comparing the models with and without skew (i.e., h8s0 versus h8s5), it is apparent that the 

inclusion of skew to high heteroscedasticity resulted in a more pronounced bias in expected 

scores such that when skew is added, expected scores tend to be consistently larger under the 

misspecified model. Figures 8  - 13 display CRCs and TRC for other key conditions.  

For the 3-category response conditions, when only skew was included, mean bias was 

negligible for baseline residuals (0.00 to 0.01), factor loadings (0.00 to -0.03), and intercepts 

(0.00 to -0.02). In small samples, the average bias for baseline residuals (0.00 to 0.00), factor 

loadings (0.00 to -0.03), and intercepts (0.00 to -0.02) were equally tiny. Mean bias for baseline 

residuals remained low (0.00 to -0.04) for both large and small samples despite increasing 

heteroscedastic errors, even to a maximum of 1.0. The same was true for factor loadings such 

that mean bias (0.00 to -0.06) changed minimally as heteroscedasticity increased. Mean bias for 

intercepts (0.00 to -0.07) in large samples and small samples (0.00 to -0.08) tended to remain 

on the “higher” end once heteroscedastic errors were 0.8 and larger. Regardless, mean bias for 

intercepts were generally low. Across all conditions, minimal bias was evident for baseline 

residuals, factor loadings and intercepts. 

 RMSD. Tables 11 and 12 also contain RMSD’s of the item parameters for each of the 

conditions, collapsing across items and replications with smaller values indicating greater 

accuracy. RMSDs in Table 11 pertain to 5-category response conditions and Table 12 to 3-

category response conditions. For conditions with only skew (i.e., h0s5, h0s75, h0s1), RMSDs 

for baseline residual (0.08 to 0.09), factor loadings (0.05 to 0.06), third threshold (0.10 to 0.11), 

fourth threshold (0.16 to 0.21), and intercepts (0.06 to 0.07) were relatively small and only 
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increases slightly as skew increased.  When heteroscedasticity was 0.4, RMSDs were larger for 

baseline residual (0.19 to 0.21), factor loadings (0.10 to 0.14), third threshold (0.21 to 0.22), 

fourth threshold (0.45 to 0.53), and intercepts (0.13 to 0.14). When heteroscedasticity was 0.8 

RMSDs increased for baseline residuals (0.34 to 0.36), factor loadings (0.18 to 0.22), third 

threshold (0.37 to 0.40), fourth threshold (0.83 to 0.87), and intercepts (0.22 to 0.24). Raising 

heteroscedastic errors to 1.0 produced the largest RMSDs for baseline residual (0.40 to 0.42), 

factor loadings (0.23 to 0.26), third threshold (0.44 to 0.49), fourth threshold (0.98 to 1.03), and 

intercepts (0.26 to 0.28). It is important to note that for each degree of heteroscedasticity (i.e., 

h4, h8, h1), there were only slight increases in RMSD as a function of skew increasing. In other 

words, for a condition with heteroscedasticity of 0.8 and no skew, the change in RMSD when 

adding skew of 0.5, 0.75, and 1.0 was negligible. This is an important point. It highlights that the 

greatest effect on RMSDs, as with mean bias, rests on heteroscedastic errors not being 

modeled. In small samples, with the exception of skew only conditions, which tended to have 

larger RMSDs overall compared to the larger sample, ranges of RMSDs were relatively similar 

to those from the large sample.  

Given the average bias results for the 3-category response conditions, it is not surprising 

that RMSDs tended to be rather small across all conditions and regardless of sample size. 

When only skew was included, RMSDs for baseline residuals (0.05), factor loadings (0.03 to 

0.04), and intercepts (0.03 to 0.04) were noticeably small. RMSDs for baseline residuals 

remained low (0.05 to 0.06) despite increasing heteroscedastic errors, even to a maximum of 

1.0. The same was true for factor loadings such that RMSDs (0.03 to 0.07) changed minimally 

as a function of increased heteroscedastic errors. RMSDs for intercepts (0.03 to 0.08) also 

changed marginally as a function of increased heteroscedasticity. The same general trend 

occurred in small samples albeit with slightly larger RMSDs. Across conditions, RMSDs for 

baseline residuals (0.10 to 0.11), factor loadings (0.07 to 0.08), and intercepts (0.06 to 0.09) 

were hardly affected by skew and/or heteroscedasticity.  
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 Collectively, bias and RMSDs were most pronounced in the 5-category response 

conditions and, more specifically, as skew and heteroscedasticity increased. In the most 

extreme combinations of skew and heteroscedastic errors, the greatest bias and RMSDs 

emerged. As noted, even in moderate cases of skew and/or heteroscedasticity, failing to 

account for these resulted in clear parameter bias. These effects surfaced regardless of sample 

size. In the case of the 3-category response conditions, average bias and RMSDs suggest very 

little impact on parameter estimates regardless of degree of skew and/or heteroscedasticity and 

sample size. 

Viability of HSGRM under Control Conditions 

 The viability of the HSGRM was evaluated in two ways by using data from control 

conditions, that is, conditions with no skew or heteroscedasticity for both 3- and 5-categories 

and in both large and small samples (i.e., h0s0) – clean, normal data. First, a constrained 

version of the HSGRM was estimated for data from each control condition with both skew and 

heteroscedasticity fixed to zero (Baseline GRM model). Second, the full HSGRM with both skew 

and heteroscedasticity estimated was fit to the same data. Parameter recovery was evaluated 

for both models using average absolute bias and RMSDs. Results for the constrained HSGRM 

are presented in Tables 13 and 14 and for the full HSGRM in Tables 15 and 16.  

Average absolute bias: For the constrained HSGRM, in the large sample case with 5-

category response options, parameter recovery was quite good, that is, they were recovered 

accurately. Across all items, the average absolute bias for the baseline residual, factor loadings, 

third and fourth thresholds, and intercept was less than 0.001. Similar parameter recovery 

accuracy was found in the small sample such that mean bias in baseline residuals, factor 

loadings, third threshold, and intercepts were all less than or equal to 0.01 and for the fourth 

threshold 0.026. Parameter recovery for the 3-category response condition was also particularly 

good. Mean bias in the baseline residuals, factor loadings, and intercepts were all ostensibly 

zero in both the large and small samples.  
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For the full HSGRM, parameter recovery was also quite good in the large sample with 5-

category response options. Mean bias across items for the baseline residual, factor loadings, 

third and fourth thresholds, and intercept ranged from -0.013 to 0.009, indistinguishable from 

zero. In the small sample however, mean bias tended to be slightly larger across item 

parameters. Mean bias for item parameters ranged from 0.01 to 0.07. Although not particularly 

concerning, there is an apparent effect of modeling skew and heteroscedasticity when none is 

present. Parameter recovery for the 3-category response condition was also quite good. In the 

large sample, across all item parameters, mean bias ranged from -0.007 to 0.002, clearly small 

and indistinguishable from zero. Similar parameter recovery accuracy was found in the small 

sample such that mean bias across all item parameters ranged from -0.022 to 0.005, again 

ostensibly zero.  Therefore, it appears that generally speaking, both the constrained and full 

HSGRM were able to recover item parameters well with the constrained HSGRM performing 

slightly better than the full HSGRM.  Based on the magnitude of mean bias, it is clear that under 

the full HSGRM, the mean bias was slightly larger, especially for the 5-category response option 

in small samples and most notably in the fourth threshold. 

Although some bias emerged under the full HSGRM, Figure 7 makes clear that the bias 

is ostensibly zero and resulted in no meaningful differences. Consider the CRCs and test 

response curves (TRC) for the 5-category condition in the large sample. The CRC from both the 

baseline GRM and full HSGRM are identical. Moreover, the TRCs for both models completely 

overlap. This suggests that fitting either model to this data made no noticeable difference and 

that the emergent bias did not matter. Moreover, this graphically demonstrates the viability of 

the HSGRM and its constrained baseline model.  

RMSD: Tables 13 and 14 contain RMSD’s for item parameters under the constrained 

HSGRM with smaller values indicating greater accuracy. As was the case with the average 

absolute bias, for the 5-category response condition, mean RMSD for baseline residuals (M = 

0.08), factor loadings (M = 0.05), thresholds 3 (M = 0.10) and 4 (M = 0.16), and the intercept (M 
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= 0.06) were generally small. In the small sample, mean RMSD for baseline residuals (M = 

0.178), factor loadings (M = 0.099), thresholds 3 (M = 0.208) and four (M = 0.339), and the 

intercept (M = 0.132) were noticeably larger but by no means an issue. Although this is not 

particularly concerning, it should be noted that with smaller sample sizes, the RMSD’s for the 

thresholds were most dramatically impacted. In the case of the 3-category response conditions, 

mean RMSD’s were particularly small for the baseline residuals (M = 0.054), factor loadings (M 

= 0.034), and intercepts (M = 0.031) in the large sample. Similarly, for the small sample, mean 

RMSD’s were all small for the baseline residuals (M = 0.105), factor loadings (M = 0.067), and 

intercepts (M = 0.062). As noted, with fewer categories, sample size effects on RMSD’s were 

less dramatic when compared to the more notable effect with 5-category response options. That 

said, for both sample sizes and varying category response options, RMSD’s were relatively 

small.  

The 5-category condition, under the full HSGRM, produced mean RMSDs that were 

consistently larger across all item parameters, albeit generally small. The most notable changes 

are in the RMSDs for the skew parameter and heteroscedastic errors. Whereas previously not 

estimated, under this model, mean RMSDs for the skew parameter was 0.36 and for 

heteroscedastic errors, 0.14. Moreover, in the small sample, these effects are more pronounced 

with mean RMSD of 0.53 for the skew parameter and 0.31 for heteroscedastic errors. Moreover, 

the fourth threshold also saw a sizeable increase such that the mean RMSD went from 0.34 

under the constrained model to 0.50 under the full. In the 3-category condition, the real only 

difference emerged in the mean RMSDs fro the skew parameter (0.44) and for heteroscedastic 

errors (0.18). RMSDs for the remaining item parameters remained unchanged. Similarly, in the 

small sample, the mean RMSDs for the skew parameter (0.84) and heteroscedastic errors 

(0.39) were the only noticeable changes. The remaining parameters remained unchanged when 

compared to the constrained HSGRM. That said, it is apparent that RMSDs for the skew 

parameter and heteroscedastic errors tend to increase as a function of fewer response 
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categories and smaller sample sizes.  

Collectively, it is apparent that when item response data does not include skew or 

heteroscedastic errors, both the constrained and full HSGRM are able to recover item 

parameters particularly well, regardless of sample size and number of categories. The key 

difference is apparent in the magnitude of RMSDs specifically, for non-existing skew and 

heteroscedastic errors.  

Item parameter recovery for 5-category response conditions 

The third question of interest focused on the performance of the HSGRM in the 

presence of heteroscedasticity and/or skew, specifically with regard to item parameter recovery 

via absolute bias and RMSD. This was accomplished in two ways. First, for each condition, the 

true model was estimated (e.g., skew-only model for data containing only skew) and the full 

HSGRM (e.g., HSGRM for data containing only skew). In each case, absolute bias and RMSD 

were computed and evaluated for all item parameters. This spoke to the performance of both a 

constrained version and full version of the HSGRM for conditions with varying degrees of skew 

and heteroscedasticity. 

 The results below are presented and discussed within the context of mean bias and 

RMSDs across items and replications. Item level results are not discussed throughout. 

However, Figures 13 through 44 provide box plots for each relevant item parameter for each 

item within a given condition. For instance, a condition with only skew present, the relevant item 

parameters would be skew, baseline residual, factor loadings, thresholds, and intercepts – 

heteroscedastic errors are not included as they are not estimated in the correct model (skew-

only).  

Absolute bias: Table 17 displays the average absolute bias in item parameter recovery 

for 5-category response conditions. For each condition, mean item parameter bias was first 

evaluated by comparing the true population values to those obtained from the correct model. 

That is, models containing both skew and heteroscedastic errors used HSGRM results, models 
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with only skew were evaluated in terms of the skew-only model, models with only 

heteroscedastic errors were evaluated in terms of the het-only model. Subsequently, for each of 

these conditions, item parameter estimates obtained from the HSGRM were also evaluated for 

mean bias as a point of comparison and is discussed below.  

For models only including skew, item parameter recovery was quite good. Across all 

item parameters, average bias was either zero or near zero. In fact, the largest mean bias of 

0.04 was in fourth threshold and when skew was at its maximum. Parameter recovery was also 

extremely good for het-only models such that regardless of the magnitude of heteroscedasticity, 

all item parameters were recovered with great precision. In fact, the range of mean bias across 

all het-only models and across all item parameters was from 0.00 to 0.02. With regard to models 

containing both skew and heteroscedastic errors, models generally recovered item parameters 

very well. There are a few exceptions where the skew parameter tended to suffer most, 

although perhaps not meaningfully. When heteroscedastic errors were 0.8 and skew at 0.75, the 

mean bias was -0.23. Recall this mean bias reflects bias in the skew parameter not the actual 

skew of the distribution (see Eqs. 18 and 19). Therefore, a mean bias of -0.23 translates into an 

average skew of 0.72 versus the true skew of 0.75. Similarly when heteroscedastic errors were 

1.0 and skew was 0.5 and 0.75, mean bias were -0.22 and -0.32, respectively. Again, putting 

this into perspective, this average bias translates into actual skew of 0.44 versus 0.50 and 0.71 

versus 0.75, respectively. It is important to note that in these conditions where bias emerged in 

the skew parameter, there were also slight increases in mean bias for heteroscedastic errors (-

0.02 to -0.06) and the fourth threshold (-0.02 to -0.08). However, despite these “larger” mean 

bias, overall the HSGRM recovered item parameters well.  

In the case of small samples, across all conditions, item parameters were also generally 

recovered quite well. For conditions with only skew, small mean bias was observed across all 

item parameters (0.00 to 0.07) with one exception. When skew was 0.75, mean skew bias was 

0.24.Transforming this value into actual skew yields a value of 0.77 as opposed to the true 
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population value of 0.75. Item parameter recovery for models including only heteroscedastic 

errors was excellent across all item parameters. Mean bias across all parameters ranged from -

0.01 to 0.03. For conditions containing both skew and heteroscedastic errors, item parameter 

recovery was also quite good. That said, similar to the large sample results, when 

heteroscedastic errors were 0.8 and skew 0.5 and 0.75, mean bias in the skew parameter was -

0.21 and -0.16 respectively. Reflecting a difference of 0.44 versus 0.50 and 0.73 versus 0.75. 

When heteroscedasticity was 1.0 and skew 0.5 and 0.75, mean bias in the skew parameter was 

-0.49 and -0.29, respectively. A distinction of 0.36 versus 0.50 and 0.72 versus 0.75. In this 

case the former mean bias perhaps merits some attention.  

HSGRM item parameter estimates were also obtained for conditions with only skew or 

heteroscedastic errors and evaluated for bias. Results are presented in Table 19. For conditions 

including only skew, item parameter recovery was quite good with mean bias ranging from -0.01 

to 0.04 across all item parameters. Recovery was also good when heteroscedasticity was 0.4 

with mean bias ranging from -0.01 to 0.02 across all item parameters. However, with larger 

heteroscedastic errors (0.8 and 1.0), some mean bias emerged in the skew parameters, 

specifically, -0.13 and -0.09, granted these transform into actual skew of ostensibly zero which 

make sense given that in the het-only models, there is no skew. However, in small samples, 

there is consistent mean bias across all skew parameters ranging from -0.36 to 0.31. In fact, 

across all item parameters, there are apparent increases in mean bias that were not present 

previously when running the proper model. Therefore, in larger samples, item parameter 

recovery under the HSGRM was very similar to results obtained from correct models. However, 

in small samples, there does appear to be some consequence to over-fitting.  

RMSD. Table 17 presents RMSDs for all conditions across items and replications. 

Generally speaking, across all conditions RMSDs were quite good and small. Conditions with 

only skew had small RMSDs for the skew parameters (0.00 to 0.39), baseline residuals (0.08), 

factor loadings (0.05 to 0.06), third threshold (0.10), fourth threshold (0.16 to 0.17), and 
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intercepts (0.06). Models with only heteroscedastic errors also performed well as indicated by 

small RMSDs for baseline residuals (0.11), heteroscedastic errors (0.13 to 0.14), factor loadings 

(0.05 to 0.06), third threshold (0.12), fourth threshold (0.22 to 0.23), and intercepts (0.07 to 

0.08). For conditions with both skew and heteroscedastic errors, RMSDs were also generally 

small for baselines residuals (0.11 to 0.14), heteroscedastic errors (0.15 to 0.22), factor loadings 

(0.06 to 0.09), third threshold (0.12 to 0.15), fourth threshold (0.23 to 0.29), and intercepts (0.06 

to 0.09). Skew parameters on the other hand tended to have larger RMSDs that corresponded 

with conditions previously addressed for having larger mean bias. Interestingly, regardless of 

het-skew combinations, RMSDs for skew of 0 and 1.0 were 0.00. Broadly speaking, RMSDs 

increased for all parameters as a function of increased heteroscedasticity with the exception of 

the skew parameter. Compared to the large sample, RMSDs from the small samples tended to 

be noticeably larger across all item parameters but followed the same trend such that increases 

in heteroscedastic errors were linked to increases in RMSDs. Thus, not surprising, there was 

greater precision in large samples.  

RMSDs were also computed from HSGRM item parameter estimates obtained for 

conditions with only skew or heteroscedastic errors. Generally speaking, RMSDs were similar or 

slightly larger than those from the correct models. Obviously, due to the fact that skew and 

heteroscedastic errors were now estimated for models not including them, the emergence of 

RMSDs is not surprising. For instance in conditions with only skew, RMSDs for heteroscedastic 

errors were 0.14. Similarly, for conditions with only heteroscedastic errors, RMSDs for skew 

parameters ranged from 0.27 to 0.41. In small samples, the same trends emerge such that 

RMSDs were similar or slightly larger to those obtained from the correct models. Again, given 

that skew and heteroscedastic errors were estimated for conditions containing neither, it is not 

surprising that RMSDs emerged. RMSDs for skew parameters were computed between 0.46 

and 0.49 for conditions without skew. In conditions with only skew, RMSDs for heteroscedastic 

errors ranged from 0.31 to 0.32. Therefore, for the skew parameter, RMSDs although larger in 
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small samples, were still relatively low. On the other hand, RMSDs for heteroscedastic errors 

tended to be consistently higher in smaller samples and particularly large for conditions 

containing no true heteroscedasticity.  

Item parameter recovery for 3-category response conditions 

Absolute bias: Tables 18 displays the average absolute bias in item parameter recovery 

for 3-category response conditions. For each condition, item parameter bias was first evaluated 

by comparing the true population values to those obtained from the correct model. That is, 

models containing both skew and heteroscedastic errors used HSGRM results, models with 

only skew were evaluated in terms of the skew-only model, models with only heteroscedastic 

errors were evaluated in terms of the het-only model. Subsequently, for each of these 

conditions, item parameter estimates obtained from the HSGRM were also evaluated for bias as 

a point of comparison and is discussed below.  

Item parameter recovery was quite good across all conditions, with a few exceptions. 

Generally, mean bias in the skew parameter was most noticeable when skew was 0.5 and 0.75 

combined with heteroscedasticity of 0.8 and 1.0. This same trend emerged previously in the 5-

category response conditions. When heteroscedasticity was 0.8, mean bias in the skew 

parameters was -0.28 and -0.23, respectively which translates into actual mean skew bias of 

0.42 versus 0.50 and 0.73 versus 0.75. When heteroscedastic errors were 1.0, mean bias in the 

skew parameters were -1.08 and -0.30 which when transformed reflect average skew of 0.16 

versus 0.5 and 0.72 versus 0.75. In this case, mean bias in the skew parameter for h1s5 is 

concerning and consistent with results from the 5-category response condition. Mean bias for 

baseline residuals (-0.02 to 0.00), factor loadings (-0.01 to 0.02), and intercepts (-0.05 to 0.00) 

were exceptionally small. For models including heteroscedastic errors, mean bias ranged from   

-0.11 to 0.09 and tended to be the largest when combined with greater skew.  That said, they 

presented no real concern.  
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Not surprisingly, the same mean bias results emerged in the small sample but tended to 

be slightly more dramatic. For the most part, item parameter recovery was quite good across all 

conditions, except in the case of the skew parameter. Again, mean bias in the skew parameter 

was greatest when skew was 0.5 and 0.75 and combined with heteroscedasticity of 0.8 and 1.0. 

However, slight increases even emerged when heteroscedastic errors were not present (e.g., 

h0s5 and h0s75) and when small (h4s5 and h4s75). At skew of 0.5 and 0.75, for conditions with 

no heteroscedastic errors, mean bias in the skew parameter was 0.18 and 0.09 (actual skew of 

.54 and .76) and when heteroscedastic errors were 0.4, mean bias in the skew parameters was 

0.11 and 0.17 (actual skew of .53 and .77). Therefore, although there was some bias, skew 

parameters were still recovered relatively well. Note that unlike the 5-category conditions, skew 

was positively biased for these conditions. When heteroscedasticity was 0.8, however, mean 

bias in the skew parameters was -0.76 and -0.18, respectively which translates into actual mean 

skew of 0.27 versus 0.50 and 0.73 versus 0.75. When heteroscedastic errors were 1.0, mean 

bias in the skew parameters were -1.26 and -0.30 which when transformed reflect average skew 

of 0.11 versus 0.5 and 0.72 versus 0.75. In this case, mean bias in the skew parameter for h8s5 

and h1s5 suggests skew is substantially underestimated and concerning. Mean bias for 

baseline residuals (-0.02 to 0.00), factor loadings (-0.02 to 0.02), and intercepts (-0.05 to 0.01) 

were exceptionally small. For models including heteroscedastic errors, mean bias generally 

ranged from -0.06 to 0.10, however, when heteroscedasticity was 0.8 and 1.0 and combined 

with maximum skew, mean bias was 0.22 and 0.33 respectively. It is apparent that in small 

samples with 3-category response items, greatest mean bias was found in skew and certain 

larger heteroscedastic conditions.  

For conditions with only skew or heteroscedastic errors only, HSGRM item parameter 

estimates were also obtained and evaluated for bias. Results are presented in Table 20. Across 

all conditions, mean bias for baseline residuals (0.00), factor loadings (0.00 to 0.02), 

heteroscedastic errors (-0.01 to 0.02), and intercepts (-0.03 to 0.00) were all small and near 
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zero. Mean bias in skew parameters for models containing only skew were small (-0.02 to 0.00), 

however, tended to increase as conditions contained greater heteroscedastic errors (-0.20 to -

0.25). That said, mean bias of this magnitude translates back to actual skew of essentially zero. 

In the smaller sample, mean bias was still small for baseline residuals (0.00), heteroscedastic 

errors (-0.1 to 0.05), factor loadings (0.00 to 0.01), and intercepts (-0.03 to 0.01). Comparatively 

larger bias emerged for skew parameters (-0.02 to -0.45), which again once converted 

translates into actual mean skew of 0.02 – nothing to really be concerned about. Generally 

speaking, bias was not improved by fitting the HSGRM to these conditions and if anything 

resulted in bias in the skew parameter, albeit negligible.  

RMSD. Table 18 presents RMSDs for all conditions across items and replications. 

Generally speaking, across all conditions RMSDs were quite good and small for baseline 

residuals (0.05 to 0.06), factor loadings (0.03 to 0.04), and intercepts (0.03 to 0.06). On the 

other hand, when skew was 0.5 and 0.75, RMSDs were generally larger for the skew parameter 

ranging from 0.25 to 1.35 increasing as a function of heteroscedastic errors. More specifically, 

with heteroscedasticity of 0.8 and 1.0, skew of 0.5 had the largest RMSDs of 0.72 and 1.35, 

respectively. For heteroscedastic errors, RMSDs ranged from 0.18 to 0.39 and were generally 

larger when combined with greater skew such that at maximum heteroscedastic errors and 

skew, the RMSD was 0.39. When sample size was small, RMSDs were larger across all item 

parameters and conditions. RMSDs for baseline residual (0.10 to 0.12), factor loadings (0.07 to 

0.08), and intercepts (0.06 to 0.08) were still relatively small. For the skew parameter, there was 

a noticeably increase in range (0.62 to 1.54) but affected the same conditions previously 

addressed in the large sample results. Regardless of het-skew combinations, RMSDs for skew 

of 0 and 1.0 were 0.00. For heteroscedastic errors, RMSDs ranged from 0.40 to 0.95, a rather 

drastic increase from the large sample results. Moreover, the largest RMSDs were found in 

conditions with greater heteroscedastic errors and, of course, large skew.  

In conditions with only skew or heteroscedastic errors, RMSDs computed from HSGRM 
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item parameter estimates were evaluated. Generally speaking, RMSDs were similar or 

equivalent for item parameters from the correct models discussed above. Given that skew and 

heteroscedastic errors were now estimated for models not including them, larger RMSDs were 

expected. For instance in conditions with only skew, RMSDs for heteroscedastic errors were 

0.18. Conditions with only heteroscedastic errors produced RMSDs for skew parameters 

ranging from 0.42 to 0.53. In small samples, RMSDs for baseline residuals, factor loadings, and 

intercepts were similar to or equivalent to those computed from the correct models discussed 

previously. However, the greatest shift, not surprisingly, pertains to RMSDs for skew parameters 

and heteroscedastic errors for conditions including one and not the other. For conditions with 

only skew, RMSDs for heteroscedastic errors were moderate (0.39 to 0.43), in fact, they were 

on par with RMSDs for models containing only heteroscedastic errors (0.40 to 0.44). In 

conditions with only heteroscedasticity, RMSDs for skew parameters (0.58 to 0.69) were 

comparable to those for conditions with only skew (0.00 to 1.19). Taken together, for models 

with only skew or only heteroscedastic errors, RMSDs for baseline residuals, factor loadings, 

and intercepts, seem to be relatively small and unchanged regardless of whether a correct 

model is estimated or if the HSGRM is used. Other than the obvious presence of RMSDs for 

parameters that should not be estimated, it does appear that in small samples and for 

conditions with only skew, there is a slight increase in the magnitude of RMSDs for the skew 

parameter when both heteroscedasticity and skew are estimated.  

Correct model identification and over selection of HSGRM 

The fourth question pertained to determining the frequency with which the correct model 

was properly identified and the prevalence of the HSGRM being overly selected as the best 

fitting model. For all conditions, likelihood ratio tests were performed comparing competing 

models with the correct model. Of particular interest is the percentage of times the full HSGRM 

was preferred over the correct model. For cases where the full HSGRM was the correct model, 

percentage of times that competing models were selected as the best fitting model is also of 
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interest. That is, for cases with both skew and heteroscedastic errors, how often was the skew-

only or het-only models chosen. Results from these compiled likelihood ratio tests are presented 

in Table 21. Aside from evaluating model selection via likelihood ratio tests, it was also 

investigated via information criteria, namely, AIC. All conditions can be grouped into 4 types: no 

skew or heteroscedasticity, skew-only, het-only, and both heteroscedasticity and skew. 

Therefore, knowing what the true model was (i.e., het-only), Table 22 provides the percentages 

of times each of the four models was selected given the true model. For example, when the true 

model generating the data was a het-only model, how many times was the baseline, skew-only, 

het-only (correct), and HSGRM models chosen as the best fitting model? Note, similar 

conditions were combined such that all skew-only conditions (i.e., h0s5, h0s75, h0s1) were 

evaluated together, all het-only conditions (i.e., h4s0, h8s0, h1s0) were evaluated together, and 

all full HSGRM conditions (i.e., h4s5, h8s75, h1s1) were evaluated together.  

First consider the control conditions with no skew and no heteroscedastic errors with 5-

category response options. When sample size was large, the full HSGRM was chosen over the 

baseline constrained GRM only 6% of the time whereas for small samples, this occurred 8% of 

the time. (Those would be Type 1 error rates when null is true) For conditions where only skew 

was included, 3-7% of the time the full HSGRM was the preferred model and in the small 

samples this occurred 4-7% of the time. When only heteroscedastic errors were present, the full 

HSGRM was preferred between 1-11% of the time and only 2-6% of the time in smaller 

samples. When both skew and heteroscedastic errors were present, the full HSGRM was 

chosen 99-100% of time over skew-only or het-only models. In smaller samples, the full 

HSGRM was chosen 86-100% of the time over het-only models, and 100% of the time over 

skew-only models with one exception. When heteroscedastic errors were 0.4 and combined 

with any degree of skew, full HSGRM was preferred only 70-72% of the time.  

The control conditions for the 3-category response items, when sample size was large, 

identified the full HSGRM as the best fitting model 4% of the time whereas when sample size 
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was small, this occurred 8% of the time. When only skew was present, the full HSGRM was 

chosen over the skew-only model 4-6% of the time and in the small sample 5-9% of the time. 

For conditions with only heteroscedastic errors, the full HSGRM was chosen between 1-3% of 

the time in both the large and small samples. When both skew and heteroscedastic errors were 

present, the full HSGRM was chosen over het-only models 89-100% of the time and 99-100% of 

the time over skew-only models. In small samples, this trend was not as clean. For most 

models, the full HSGRM was chosen over the het-only model 97-100% of the time. However, 

when skew of 0.5 was paired with heteroscedastic errors or 0.8 and 1.0, the full HSGRM was 

chosen over the het-model only 62% and 43% of the time, respectively. Note, these were 

conditions particularly problematic in terms of mean bias and large RMSDs. Moreover, in small 

samples the full HSGRM was generally preferred over the skew-only model such that 98-100% 

of the time it was the better fitting model. However, as was the case with 5-category response 

and small samples, when heteroscedastic errors were 0.4 and combined with skew, the full 

HSGRM was only preferred 49-56% of the time.  

Generally speaking, the skew-only models, het-only models, and full HSGRMs were 

correctly identified in both 3- and 5-category response data when sample size was large. When 

sample size was small, the 5-category response conditions still performed well overall with 

some issues arising with heteroscedastic errors of 0.4 combined with varying skew. The same 

conditions were problematic in the 3-category response data in addition to skew of 0.5 

combined with large heteroscedastic errors. That said, overall performance was promising.  

 Table 22 displays the results for model selection given the true model as determined by 

AIC. That is, given the true model, how frequently was each of the four possible models chosen 

as the best fitting model? For 5-category conditions with a large sample, when the true model 

was a baseline GRM with no skew or heteroscedasticity, it was correctly chosen as the best 

fitting model 92% of the time. When the true model was a skew-only model, 97% of the time it 

was identified correctly as the best fitting model. In the presence of only heteroscedastic errors, 
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83% of the time it was correctly chosen, with the other 17% choosing the HSGRM as the best 

fitting model. Finally when the true model was the full HSGRM, it was chosen as the best fitting 

model 99.99% of the time. In the small sample with 5 categories, when the baseline GRM was 

the true model, it was correctly chosen as the best fitting model 95.5% of the time. When the 

skew-only model was the true model, 96.8% of the time it was chosen as the best fitting model. 

In the case of the het-only model being the true model, it was chosen as the best fitting model 

81% of the time with the full HSGRM being chosen 11% of the time. Finally, when the true 

model was a full HSGRM, it was correctly chosen 86% of the time and 12% of the time. 

 For 3-category conditions with large samples, when the true model was a baseline GRM 

with no skew or heteroscedasticity, it was chosen as the best fitting model 93.5% of the time. 

When the skew-only model was the true model, it was chosen as the best fitting model 97% of 

the time. For models with heteroscedastic errors only, the het-only model was selected as the 

best fitting model 91% of the time with the HSGRM being the best fitting model 9% of the time. 

When the true model was the full HSGRM, it was correctly chosen as the best fitting model 94% 

of the time with the het-only model accounting for the other 6 percent. When sample size was 

small, when the true model was the baseline GRM, it was chosen as the best fitting model 87% 

of the time. When the skew-only model was the true model, it was identified as the best fitting 

model 95% of the time. In the case where the het-only model was the true model, 77% of the 

time is was chosen as the best fitting model. Finally when the true model was the HSGRM, it 

was chosen only 70% of the time.  

 Taken together, in both the 3- and 5-category conditions with large samples, it appears 

that the best fitting model overwhelmingly corresponded to the true model. In small samples, the 

baseline GRM and skew-only models still tended to do relatively well in terms of being selected 

as the best fitting model. However, the het-only and full HSGRM saw a decrease in terms of the 

frequency with which the best fitting model corresponded to the true model. More specifically, in 

the 3-category conditions we saw the greatest decrease in frequency for the het-only and full 
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HSGRM models. However, it should be restated that these results are based on combining all 

similar conditions. Within the full HSGRM conditions, there were some conditions that 

performed better than others. This corresponds to the same conditions discussed previously 

that tended to be problematic. Generally speaking, the HSGRM, and its constrained versions, 

perform reasonably well. 
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DISCUSSION 

With the rise in popularity of item response theory models across a plethora of academic 

domains, and specifically polytomous models, it is entirely likely that models are, unknowingly, 

being incorrectly applied to constructs that are generally non-normally distributed in the 

population. Especially, within the area of psychology, constructs such as depression, anxiety, 

stress, anger, and impulsivity are likely to take on non-normal distributions. The issue is that 

failing to account for non-normality can have deleterious effects on item parameter. This is by 

no means a novel concept. When the latent trait is non-normal, bias has been found to emerge 

in item parameter estimates (Boulet, 1996; De Ayala & Sava-Bolesta, 1999, DeMars, 2003; 

Stone, 1992; Wollack et al., 2002) and specifically in item category parameters (Preston & 

Reise, 2014; Zwinderman & van der Wollenberg, 1990), item slopes (Azevedo, Bolfarine, & 

Andrade, 2011, Drasgow, 1989), and trait score estimates (Seong, 1990, Ree, 1979, 

Swaminathan & Gifford, 1983, Woods & Lin, 2009). Results from this simulations study, as 

highlighted in Figures 5-13, confirm findings from these previous studies. Moreover, as the field 

of psychology continues trending toward greater implementation of modern measurement 

models, it is imperative that methods for handling non-normality be developed and scrutinized, 

and more importantly disseminated to substantive researchers. Such research can help combat 

some of the widespread beliefs regarding the robustness of IRT models to normality violations.  

To that end, this research provided an extensive investigation into the viability and utility 

of a recently proposed alternative graded response model (HSGRM) designed to handle not 

only skew in the latent trait but also heteroscedastic errors. This research pushed the 

performance of this model to the extreme by varying large and small samples, 3- and 5-category 

response options and a wide range of heteroscedastic errors and skew which were all combined 

to examine overall functioning. Although a computationally demanding task, a necessary one. 

Ultimately, this work endeavored to examine item parameter recovery for the key parameters 

(intercept, factor loadings, and thresholds) but also to examine how well skew and 
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heteroscedastic errors could be recovered. Moreover, this research focused on investigating the 

consequences of failing to model skew and heteroscedasticity as this relates directly to 

increased use of item response models without consideration given to distributional form.  

As highlighted in Figures 5 - 13, a need for a model that could handle both skew in the 

latent trait and heteroscedastic errors was made abundantly clear when fitting a standard 

normal GRM to data that contained varied degrees and combinations of skew and 

heteroscedastic errors. Interestingly, this would be a standard procedure for a researcher failing 

to consider potential non-normality in the data. In both large and small sample sizes with 5-

category items, the effect of model misspecification was quite alarming, with the exception of 

conditions with only skew present, which were still downwardly biased. Factor loadings, 

thresholds, intercepts and residuals were all drastically downwardly biased and bias increased 

as a function of greater heteroscedastic errors especially when combined with large skew. 

Similarly, RMSDs across all item parameters were quite large, again increasing as a function of 

heteroscedastic errors combined with large skew. It was quite apparent that failing to account 

for heteroscedastic errors and, to a lesser degree, skew in the latent trait was problematic – an 

issue not easily ignorable. Interestingly, for the 3-category conditions, model misspecification 

did not seem to significantly impact residuals, factor loadings, or intercepts. Mean bias did still 

tend to be downward, however, it was not particularly problematic. RMSDs also tended to be 

small and of no concern. The deleterious effects of model misspecification, that is, failing to 

account for heteroscedastic errors and skew, can be primarily observed in the bias associated 

with slopes and thresholds. Such effects are unpacked in the following.  

With regard to slopes, the most notable effects are apparent in the 5-category response 

conditions. When skew alone was present, even at a maximum (skew =1), there was very little 

impact on the slopes as seen in Figure 5. In this most extreme condition, although some 

downward bias emerged, it remained relatively negligible. When only heteroscedastic errors 

were present, there was a clear impact on the slopes such that they were downwardly biased 
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and bias increased as a function of heteroscedastic errors. That is, even when heteroscedastic 

errors were low, slopes were notably impacted. In cases where heteroscedastic errors were at a 

maximum, slopes were extremely affected, that is, slopes were downwardly biased by 0.25 from 

a slope value of 1.0.  The effect was visually depicted in Figures 8 – 10. Interestingly, combining 

skew to heteroscedastic errors did not dramatically change the effect of just heteroscedastic 

errors in terms of slope bias. Adding skew did increases the degree of bias, however, not by 

much. For instance, when heteroscedastic errors were at a maximum and resulted in a mean 

bias of -0.25 in slopes, the effect of gradually increasing skew to a maximum resulted in a -0.04 

change in mean bias. So although there was an effect of skew, the major issue was failing to 

account for the heteroscedastic errors. This trend was consistent for all degrees of 

heteroscedastic errors. Moreover, this effect emerged regardless of sample size.  In the 3-

category conditions, a similar trend emerged, however, nowhere near to the same degree. In all 

cases, the bias was still downward. That said, in the presence of only skew, very little bias 

emerged. As heteroscedastic errors increased, so did the bias in slopes. The added effect of 

skew did not really change the degree of bias – only an incremental contribution. Bias tended to 

remain relatively similar regardless of the degree of skew combined to heteroscedastic errors. 

Similar effects were found in small samples. Taken together, regardless of sample size and 

number of categories, the primary culprit contributing to bias in slopes was the heteroscedastic 

errors. Although skew contributed to some degree, it was the lesser of two factors.  

 With regard to the impact on thresholds, this was only relevant to the 5-category 

conditions given that for identification purposes, the first two thresholds were fixed and in the 

case of the 3-category conditions, these were the only two thresholds. Although both the third 

and fourth thresholds were clearly affected by model misspecification and exhibited downward 

bias, both were differentially impacted such that the fourth threshold was more negatively 

affected. With regard to similar trends between both thresholds, when only skew was present, 

as seen in Figure 5, some bias emerged but by no means presented any serious concerns. In 
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conditions were only heteroscedastic errors were present, bias in both thresholds increased as 

a function of heteroscedasticity, that is, the largest bias in thresholds was found in conditions 

with the largest heteroscedastic errors and the smallest for conditions with none. This effect is 

highlighted in Figures 8 – 10. As was found in the case of slopes, adding varying degrees of 

skew to heteroscedastic errors minimally impacted threshold bias. Once again, the primary 

concern revolves around failing to account for heteroscedasticity. These trends were true for 

both the third and fourth thresholds, however, the key distinction pertains to the magnitude of 

bias. The bias for the fourth threshold was generally twice the size of the bias found in the third 

threshold such that in the most extreme case, bias in the fourth threshold was as large as -1.15. 

All of these trends were true regardless of sample size.   

It is worth noting that in conditions with only heteroscedastic errors, when comparing 

expected scores between the misspecified baseline GRM and HSGRM, expected scores in the 

extremes of the latent trait tended to be upwardly biased for the baseline GRM. However, once 

introducing skew, expected scores tended to be consistently upwardly biased in the baseline 

GRM versus the HSGRM. Therefore, although the bias in threshold parameters did not change 

much numerically in terms of mean bias, the effects can be observed visually in terms of CRCs 

and TRCs as depicted in Figures 11-13. Clearly, although failing to model skew alone had some 

biasing effect on both slopes and thresholds, failing to account for heteroscedastic errors, in 

fact, had the most damaging impact and was even worse, when combined with greater skew.  

Under controlled conditions, the constrained version of the HSGRM (baseline or normal-

ogive GRM) performed exceptionally such that item parameter recovery was great, mean bias 

essentially zero, and small RMSDs. This was true across all conditions including large and small 

samples and for 3- and 5-category response formats. The HSGRM also performed well such 

that mean bias was generally small as were RMSDs. In small samples, we tended to see 

slightly larger mean bias and RMSDs, however, this presented no obvious concerns. Under 

controlled conditions, both models performed well, slightly favoring the constrained HSGRM. 
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Given the severe consequences of model misspecification, primarily for the 5-category 

conditions and tentative good performance of the HSGRM under controlled conditions, it was 

then applied to all conditions with varying degrees of skew and heteroscedasticity. For each 

condition, there was a correct model, for instance, conditions with only heteroscedastic errors 

should be appropriately modeled by a het-only model. However, to test the ability of the 

HSGRM to properly recover only what is was supposed to, both the correct model and full 

HSGRM were fit to each dataset within a condition and mean bias and RMSDs were inspected 

for both and compared. When fitting the appropriate model to each condition, the improvement 

in item parameter recovery, minimization of mean bias, and reduction in RMSDs was 

unquestionable. Across all conditions, item parameter estimates, and sample sizes, the 

performance of the model was outstanding. Even for cases with extreme skew and 

heteroscedastic errors, mean bias and RMSDs were small and, substantially smaller than those 

obtained from the model misspecification results. When the HSGRM was fit to conditions with 

only skew or only heteroscedastic errors, mean bias and RMSDs tended to be larger than those 

obtained from a correctly specified models but were by no means problematic. 

 In 3-category response conditions, mean bias was relatively unchanged compared to 

the original misspecified model. However, now with skew and heteroscedastic errors estimated, 

some larger mean bias emerged and was particularly problematic with larger heteroscedastic 

errors and moderate skew. This was true in both large and small samples. However, broadly 

speaking, parameter recovery was still quite good here. When fitting the HSGRM to conditions 

with only skew or heteroscedastic errors, the same previously seen issue emerged such that 

mean bias in skew parameters and heteroscedastic errors and RMSDs tended to be larger than 

in the correct model results. However, they did not present any real concern.  

Overall, the performance of the HSGRM and its constrained models (skew-only and het-

only) was undoubtedly a major improvement in item parameter recovery and thus mean bias 

and RMSDs. Admittedly, the results were most noticeable for 5-category response data. It was 
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also noted that although the HSGRM generally yielded similar results, the proper models tended 

to more accurately recover item parameters. This in mind, the overall sensitivity of the HSGRM 

was evaluated by examining the frequency with which the HSGRM was chosen over the 

correctly specified model. Moreover, given the true model, the percentage of times each of the 

four possible models was chosen as the best fitting model was also considered.  

With 5-category response conditions, when both heteroscedastic errors and skew were 

present, the HSGRM was appropriately preferred practically 100% of the time over the more 

constrained skew-only and het-only models. When only skew or heteroscedasticity was present, 

less than 10% of the time was the HSGRM chosen, usually as low as 3 percent. In smaller 

samples, the vast majority of the time the HSGRM was chosen as the best model when it was 

the correct model. Of course, there were instances where model selection favored a more 

reduced model but tended to hit very specific conditions, namely those with moderate 

heteroscedasticity and moderate skew. These were the same conditions generally affected in 

the 3-category conditions. Similarly, in the 3-category condition, when sample size was large, 

for the most part, the HSGRM was chosen as the best model when it was appropriately so. In 

cases where only skew was present or heteroscedastic errors, only a handful of times was the 

HSGRM incorrectly chosen. For small samples sizes, the HSGRM was generally chosen when 

appropriate. Interestingly, as heteroscedastic errors increased, specifically with skew of 0.5, the 

rate of choosing the HSGRM over more constrained models decreased notably. As a note, 

for those cases where the HSGRM was chosen despite not truly being the most appropriate 

model, as seen previously, the recovery of item parameters was not dramatically impacted. In 

fact, any added mean bias was generally negligible compared to the correct model. So although 

incorrectly chosen, this does not necessarily mean the parameters obtained are more biased.  

Despite the utility of the HSGRM, it should be noted that there are a few limitations to 

this research. Under the skew-normal distribution, skew is bound from -1 to 1. Therefore, 

conclusions from this research must be considered in light of the skew limits of the skew-normal 
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distribution. As such, future research should consider the performance of heteroscedastic item 

parameter recovery in the presence of skew outside this range. Also, given that currently the 

only program capable of estimating the HSGRM is Mx, this approach may necessitate acquiring 

requisite knowledge in a new software. Furthermore, estimating the HSGRM in Mx is rather time 

intensive and this process is drastically lengthened as the number of items increases. Finally, 

given that this model is specific to the skew-normal distribution, future research should consider 

incorporating alternative non-normal distributional forms that allow for greater skew.  

  These results nonetheless provide a functional solution for the non-normality 

predicament. In the presence of non-normality, this alternative graded response model offers 

clear benefits with regard to accurate estimation of item parameters. As demonstrated, the 

effects of model misspecification were undeniably atrocious as graphically emphasized in 

Figures 5 to 13 and most notably for small samples sizes with 5-category response option. 

Unfortunately, what is considered a small sample size in this study tends to be somewhat the 

norm, if lucky, in psychological research. For this reason it is even more imperative that sources 

of non-normality be identified and modeled. The added attractiveness of the HSGRM is that 

constraints can be imposed on skew and/or heteroscedastic errors. Thus, this model is flexible 

and can be implemented for data without any sort of non-normality, for data where it is 

suspected than non-normality is specific to the trait, data with possible heteroscedastic errors, 

and in other cases, both. Even more attractive is that all four models can be estimated with one 

command script and likelihood ratio tests can be conducted to identify the best fitting model. Of 

course, a variety of other methods currently exist (i.e., RC-IRT, log-logistic, etc.) or are being 

developed to handle non-normality. It is not the opinion of the author to recommend any 

particular method over the other but rather provide evidence supporting to utility of this model 

even under the most extreme non-normal conditions. 
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TABLES 

Table 1. Means and Standard Deviations for Skew and Heteroscedastic Errors from Each Model in 5-Category 
Conditions 

 
Skew 

 
Heteroscedastic Errors 

N=2000 B S H HS 
 

B S H HS 
h0s0 - - 0.01 (0.27) - - -0.01 (0.40) 

 
- - - - 0.00 (0.16) 0.00 (0.16) 

h0s5 - - 2.17 (0.26) - - 2.17 (0.28) 
 

- - - - -0.10 (0.16) 0.00 (0.16) 
h0s75 - - 3.62 (0.44) - - 3.63 (0.45) 

 
- - - - -0.15 (0.16) 0.00 (0.16) 

h0s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - -0.19 (0.15) -0.01 (0.16) 
h4s0 - - -0.29 (0.50) - - -0.01 (0.45) 

 
- - - - 0.40 (0.15) 0.41 (0.15) 

h4s5 - - 1.75 (0.22) - - 2.17 (0.25) 
 

- - - - 0.30 (0.16) 0.40 (0.17) 
h4s75 - - 3.16 (0.39) - - 3.60 (0.45) 

 
- - - - 0.23 (0.17) 0.38 (0.17) 

h4s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - 0.19 (0.18) 0.39 (0.19) 
h8s0 - - -0.25 (0.57) - - -0.13 (0.31) 

 
- - - - 0.81 (0.15) 0.81 (0.15) 

h8s5 - - 1.41 (0.23) - - 2.11 (0.29) 
 

- - - - 0.68 (0.16) 0.78 (0.16) 
h8s75 - - 2.65 (0.34) - - 3.41 (0.52) 

 
- - - - 0.62 (0.17) 0.76 (0.17) 

h8s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - 0.53 (0.18) 0.79 (0.22) 
h1s0 - - -0.20 (0.54) - - -0.09 (0.29) 

 
- - - - 1.00 (0.15) 1.00 (0.15) 

h1s5 - - 1.16 (0.27) - - 1.95 (0.36) 
 

- - - - 0.89 (0.17) 0.96 (0.17) 
h1s75 - - 2.49 (0.34) - - 3.32 (0.53) 

 
- - - - 0.82 (0.18) 0.94 (0.17) 

h1s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - 0.69 (0.19) 1.01 (0.24) 

                  N=500 
                 h0s0 - - 0.05 (0.46) - - 0.05 (0.59) 

 
- - - - 0.01 (0.35) 0.01 (0.35) 

h0s5 - - 2.22 (0.62) - - 2.25 (0.69) 
 

- - - - -0.10 (0.33) 0.01 (0.34) 
h0s75 - - 3.89 (0.99) - - 3.95 (1.12) 

 
- - - - -0.16 (0.33) 0.01 (0.35) 

h0s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - -0.20 (0.33) 0.00 (0.35) 
h4s0 - - -0.22 (0.50) - - -0.11 (0.51) 

 
- - - - 0.40 (0.34) 0.40 (0.34) 

h4s5 - - 1.75 (0.55) - - 2.14 (0.66) 
 

- - - - 0.29 (0.35) 0.40 (0.36) 
h4s75 - - 3.19 (0.79) - - 3.64 (0.97) 

 
- - - - 0.24 (0.35) 0.39 (0.37) 

h4s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - 0.17 (0.36) 0.41 (0.41) 
h8s0 - - -0.22 (0.54) - - -0.23 (0.48) 

 
- - - - 0.80 (0.33) 0.80 (0.33) 

h8s5 - - 1.34 (0.57) - - 1.96 (0.65) 
 

- - - - 0.68 (0.35) 0.78 (0.36) 
h8s75 - - 2.70 (0.70) - - 3.48 (0.97) 

 
- - - - 0.62 (0.36) 0.78 (0.37) 

h8s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - 0.52 (0.38) 0.82 (0.48) 
h1s0 - - -0.22 (0.57) - - -0.36 (0.41) 

 
- - - - 1.01 (0.31) 1.00 (0.32) 

h1s5 - - 1.10 (0.73) - - 1.68 (0.88) 
 

- - - - 0.89 (0.35) 0.98 (0.36) 
h1s75 - - 2.58 (0.67) - - 3.35 (0.96) 

 
- - - - 0.82 (0.38) 0.96 (0.39) 

h1s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - 0.68 (0.38) 1.06 (0.53) 
Note. Standard deviations are presented in parentheses. Heteroscedasticity denoted “h” and skew is 
denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, and 1.0 (noted as 0, 5, 75, 1). Tabled mean 
values correspond to skew parameter used to compute actual skew value (i.e., skew of 1.0 = 28) 
Heteroscedastic values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). The standard normal-ogive 
model or baseline model is denoted “B”, skew-only is denoted “S”, het-only model is denoted “H”, and full 
HSGRM is denoted “HS”. 
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Table 2. Means and Standard Deviations for Baseline Residual from Each Model in 5-Category 
Conditions 
N=2000 B S H HS 
h0s0 1.00 (0.09) 1.00 (0.09) 1.00 (0.12) 1.00 (0.12) 
h0s5 0.97 (0.09) 1.00 (0.09) 0.93 (0.11) 1.01 (0.12) 
h0s75 0.96 (0.09) 1.00 (0.09) 0.90 (0.10) 1.01 (0.11) 
h0s1 0.94 (0.09) 1.02 (0.09) 0.86 (0.10) 1.02 (0.11) 
h4s0 0.80 (0.08) 0.80 (0.08) 1.01 (0.13) 1.01 (0.13) 
h4s5 0.78 (0.07) 0.80 (0.08) 0.92 (0.12) 1.00 (0.13) 
h4s75 0.78 (0.07) 0.82 (0.08) 0.89 (0.11) 1.00 (0.13) 
h4s1 0.77 (0.07) 0.84 (0.08) 0.85 (0.11) 1.01 (0.13) 
h8s0 0.62 (0.06) 0.62 (0.06) 1.01 (0.13) 1.01 (0.13) 
h8s5 0.61 (0.06) 0.62 (0.06) 0.91 (0.12) 0.99 (0.13) 
h8s75 0.61 (0.06) 0.63 (0.06) 0.87 (0.12) 0.98 (0.14) 
h8s1 0.62 (0.06) 0.68 (0.07) 0.83 (0.12) 0.98 (0.14) 
h1s0 0.54 (0.06) 0.54 (0.06) 1.00 (0.13) 1.00 (0.13) 
h1s5 0.53 (0.06) 0.54 (0.06) 0.91 (0.13) 0.98 (0.13) 
h1s75 0.53 (0.06) 0.56 (0.06) 0.87 (0.13) 0.96 (0.13) 
h1s1 0.56 (0.06) 0.61 (0.06) 0.82 (0.13) 0.98 (0.15) 

         N=500 
        h0s0 1.01 (0.20) 1.01 (0.20) 1.04 (0.27) 1.04 (0.27) 

h0s5 0.97 (0.19) 1.00 (0.19) 0.95 (0.23) 1.03 (0.26) 
h0s75 0.96 (0.19) 1.01 (0.19) 0.91 (0.22) 1.03 (0.26) 
h0s1 0.95 (0.18) 1.03 (0.19) 0.88 (0.21) 1.05 (0.25) 
h4s0 0.80 (0.16) 0.80 (0.16) 1.02 (0.27) 1.02 (0.27) 
h4s5 0.78 (0.15) 0.80 (0.16) 0.94 (0.25) 1.02 (0.28) 
h4s75 0.78 (0.16) 0.82 (0.16) 0.90 (0.25) 1.02 (0.28) 
h4s1 0.77 (0.15) 0.84 (0.16) 0.86 (0.24) 1.03 (0.29) 
h8s0 0.61 (0.13) 0.61 (0.13) 1.01 (0.26) 1.01 (0.26) 
h8s5 0.60 (0.13) 0.61 (0.13) 0.91 (0.26) 0.99 (0.28) 
h8s75 0.61 (0.13) 0.64 (0.14) 0.90 (0.27) 1.01 (0.30) 
h8s1 0.61 (0.13) 0.67 (0.14) 0.83 (0.25) 1.01 (0.33) 
h1s0 0.54 (0.12) 0.54 (0.12) 1.01 (0.26) 1.00 (0.26) 
h1s5 0.53 (0.12) 0.54 (0.12) 0.92 (0.27) 0.99 (0.29) 
h1s75 0.53 (0.12) 0.55 (0.12) 0.87 (0.27) 0.98 (0.29) 
h1s1 0.55 (0.12) 0.61 (0.13) 0.82 (0.26) 1.01 (0.34) 
Note. Standard deviations are presented in parentheses. Heteroscedasticity denoted “h” and skew is 
denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic 
values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). The standard normal-ogive model or baseline 
model is denoted “B”, skew-only is denoted “S”, het-only model is denoted “H”, and full HSGRM is 
denoted “HS”. 
 
 
 



	 60 

Table 3. Means and Standard Deviations for Factor Loadings from Each Model in 5-Category 
Conditions 
N=2000 B S H HS 
h0s0 1.00 (0.05) 1.00 (0.05) 1.00 (0.06) 1.00 (0.06) 
h0s5 0.98 (0.05) 1.00 (0.06) 0.96 (0.06) 1.00 (0.07) 
h0s75 0.97 (0.05) 1.00 (0.06) 0.94 (0.06) 1.00 (0.07) 
h0s1 0.96 (0.05) 1.03 (0.06) 0.91 (0.05) 1.03 (0.07) 
h4s0 0.90 (0.05) 0.90 (0.05) 1.00 (0.06) 1.00 (0.06) 
h4s5 0.87 (0.05) 0.89 (0.05) 0.95 (0.06) 1.00 (0.07) 
h4s75 0.86 (0.05) 0.89 (0.05) 0.92 (0.06) 0.99 (0.07) 
h4s1 0.85 (0.05) 0.92 (0.05) 0.90 (0.06) 1.02 (0.08) 
h8s0 0.80 (0.04) 0.80 (0.04) 1.00 (0.06) 1.00 (0.06) 
h8s5 0.77 (0.04) 0.78 (0.04) 0.94 (0.06) 0.99 (0.07) 
h8s75 0.76 (0.04) 0.78 (0.04) 0.91 (0.06) 0.97 (0.07) 
h8s1 0.76 (0.04) 0.82 (0.05) 0.88 (0.06) 1.02 (0.09) 
h1s0 0.75 (0.04) 0.75 (0.04) 1.00 (0.06) 1.00 (0.06) 
h1s5 0.72 (0.04) 0.73 (0.04) 0.94 (0.06) 0.98 (0.07) 
h1s75 0.71 (0.04) 0.73 (0.04) 0.91 (0.06) 0.96 (0.07) 
h1s1 0.71 (0.04) 0.78 (0.05) 0.87 (0.07) 1.02 (0.10) 

         N=500 
        h0s0 1.01 (0.11) 1.01 (0.11) 1.02 (0.13) 1.02 (0.14) 

h0s5 0.98 (0.11) 1.00 (0.11) 0.96 (0.13) 1.01 (0.15) 
h0s75 0.97 (0.11) 1.00 (0.11) 0.94 (0.12) 1.01 (0.15) 
h0s1 0.96 (0.11) 1.04 (0.12) 0.92 (0.12) 1.05 (0.16) 
h4s0 0.90 (0.10) 0.90 (0.10) 1.00 (0.13) 1.00 (0.13) 
h4s5 0.87 (0.09) 0.88 (0.10) 0.95 (0.13) 1.00 (0.15) 
h4s75 0.86 (0.10) 0.89 (0.10) 0.92 (0.13) 1.00 (0.16) 
h4s1 0.85 (0.10) 0.92 (0.11) 0.89 (0.12) 1.03 (0.18) 
h8s0 0.79 (0.08) 0.79 (0.08) 1.00 (0.12) 1.00 (0.12) 
h8s5 0.77 (0.09) 0.77 (0.09) 0.94 (0.13) 0.98 (0.15) 
h8s75 0.76 (0.09) 0.78 (0.10) 0.92 (0.14) 0.99 (0.16) 
h8s1 0.75 (0.09) 0.81 (0.10) 0.87 (0.13) 1.03 (0.20) 
h1s0 0.75 (0.08) 0.74 (0.08) 1.00 (0.12) 0.99 (0.12) 
h1s5 0.72 (0.08) 0.73 (0.08) 0.94 (0.13) 0.98 (0.14) 
h1s75 0.71 (0.08) 0.73 (0.09) 0.91 (0.13) 0.97 (0.16) 
h1s1 0.71 (0.09) 0.77 (0.10) 0.86 (0.14) 1.03 (0.21) 
Note. Standard deviations are presented in parentheses. Heteroscedasticity denoted “h” and skew is 
denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic 
values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). The standard normal-ogive model or baseline 
model is denoted “B”, skew-only is denoted “S”, het-only model is denoted “H”, and full HSGRM is 
denoted “HS”. 
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Table 4. Means and Standard Deviations for Threshold 3 from Each Model in 5-Category 
Conditions 
N=2000 B S H HS 
h0s0 1.00 (0.11) 1.00 (0.11) 1.00 (0.13) 1.00 (0.13) 
h0s5 0.97 (0.11) 1.00 (0.11) 0.93 (0.12) 1.01 (0.13) 
h0s75 0.96 (0.11) 1.00 (0.11) 0.90 (0.12) 1.01 (0.13) 
h0s1 0.94 (0.11) 1.02 (0.11) 0.86 (0.12) 1.02 (0.12) 
h4s0 0.79 (0.10) 0.78 (0.10) 1.01 (0.14) 1.01 (0.14) 
h4s5 0.78 (0.10) 0.80 (0.10) 0.93 (0.13) 1.01 (0.14) 
h4s75 0.78 (0.10) 0.82 (0.10) 0.89 (0.13) 1.00 (0.14) 
h4s1 0.77 (0.10) 0.85 (0.10) 0.86 (0.13) 1.01 (0.14) 
h8s0 0.56 (0.09) 0.56 (0.09) 1.01 (0.14) 1.00 (0.14) 
h8s5 0.57 (0.09) 0.58 (0.09) 0.92 (0.14) 0.99 (0.14) 
h8s75 0.57 (0.09) 0.60 (0.09) 0.88 (0.14) 0.97 (0.14) 
h8s1 0.60 (0.09) 0.68 (0.09) 0.85 (0.14) 1.00 (0.16) 
h1s0 0.46 (0.08) 0.45 (0.08) 1.00 (0.13) 1.00 (0.13) 
h1s5 0.46 (0.08) 0.47 (0.08) 0.92 (0.14) 0.98 (0.14) 
h1s75 0.47 (0.09) 0.50 (0.09) 0.88 (0.14) 0.96 (0.14) 
h1s1 0.52 (0.09) 0.59 (0.09) 0.84 (0.14) 1.00 (0.17) 

         N=500 
        h0s0 1.01 (0.23) 1.01 (0.23) 1.03 (0.29) 1.03 (0.29) 

h0s5 0.98 (0.22) 1.01 (0.22) 0.95 (0.26) 1.03 (0.27) 
h0s75 0.96 (0.22) 1.01 (0.22) 0.91 (0.25) 1.03 (0.27) 
h0s1 0.95 (0.22) 1.03 (0.22) 0.88 (0.24) 1.05 (0.27) 
h4s0 0.78 (0.20) 0.78 (0.20) 1.01 (0.29) 1.01 (0.29) 
h4s5 0.78 (0.20) 0.80 (0.20) 0.94 (0.27) 1.02 (0.29) 
h4s75 0.78 (0.20) 0.82 (0.21) 0.90 (0.27) 1.02 (0.29) 
h4s1 0.77 (0.20) 0.85 (0.21) 0.86 (0.26) 1.03 (0.30) 
h8s0 0.55 (0.18) 0.55 (0.18) 0.99 (0.27) 0.99 (0.27) 
h8s5 0.55 (0.18) 0.57 (0.19) 0.91 (0.29) 0.98 (0.30) 
h8s75 0.57 (0.19) 0.61 (0.20) 0.89 (0.29) 1.00 (0.31) 
h8s1 0.59 (0.19) 0.67 (0.20) 0.83 (0.28) 1.02 (0.35) 
h1s0 0.45 (0.17) 0.45 (0.17) 1.00 (0.27) 0.99 (0.27) 
h1s5 0.46 (0.17) 0.47 (0.18) 0.92 (0.29) 0.98 (0.30) 
h1s75 0.47 (0.18) 0.50 (0.19) 0.87 (0.30) 0.97 (0.31) 
h1s1 0.51 (0.19) 0.59 (0.20) 0.83 (0.29) 1.03 (0.37) 
Note. Standard deviations are presented in parentheses. Heteroscedasticity denoted “h” and skew is 
denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic 
values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). The standard normal-ogive model or baseline 
model is denoted “B”, skew-only is denoted “S”, het-only model is denoted “H”, and full HSGRM is 
denoted “HS”. 
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Table 5. Means and Standard Deviations for Threshold 4 from Each Model in 5-Category 
Conditions 
N=2000 B S H HS 
h0s0 2.50 (0.18) 2.50 (0.18) 2.51 (0.25) 2.51 (0.25) 
h0s5 2.43 (0.18) 2.50 (0.18) 2.32 (0.24) 2.51 (0.25) 
h0s75 2.38 (0.18) 2.51 (0.18) 2.23 (0.22) 2.51 (0.25) 
h0s1 2.34 (0.17) 2.54 (0.18) 2.14 (0.21) 2.54 (0.25) 
h4s0 2.02 (0.16) 2.01 (0.16) 2.52 (0.26) 2.52 (0.26) 
h4s5 1.97 (0.15) 2.02 (0.16) 2.31 (0.25) 2.51 (0.27) 
h4s75 1.95 (0.15) 2.05 (0.16) 2.22 (0.24) 2.49 (0.27) 
h4s1 1.93 (0.15) 2.11 (0.16) 2.13 (0.24) 2.51 (0.27) 
h8s0 1.58 (0.14) 1.57 (0.14) 2.51 (0.25) 2.51 (0.25) 
h8s5 1.55 (0.14) 1.59 (0.14) 2.31 (0.25) 2.48 (0.27) 
h8s75 1.54 (0.14) 1.62 (0.14) 2.20 (0.26) 2.44 (0.28) 
h8s1 1.57 (0.14) 1.73 (0.15) 2.11 (0.25) 2.49 (0.31) 
h1s0 1.38 (0.13) 1.37 (0.13) 2.50 (0.24) 2.51 (0.24) 
h1s5 1.35 (0.13) 1.38 (0.13) 2.30 (0.25) 2.45 (0.26) 
h1s75 1.36 (0.13) 1.43 (0.14) 2.20 (0.26) 2.42 (0.27) 
h1s1 1.41 (0.14) 1.56 (0.14) 2.09 (0.26) 2.49 (0.33) 

         N=500 
        h0s0 2.53 (0.38) 2.53 (0.38) 2.57 (0.55) 2.57 (0.55) 

h0s5 2.44 (0.37) 2.52 (0.38) 2.36 (0.50) 2.57 (0.55) 
h0s75 2.39 (0.37) 2.52 (0.38) 2.25 (0.48) 2.56 (0.56) 
h0s1 2.36 (0.36) 2.57 (0.38) 2.18 (0.46) 2.60 (0.55) 
h4s0 2.02 (0.32) 2.01 (0.32) 2.53 (0.54) 2.52 (0.54) 
h4s5 1.98 (0.32) 2.03 (0.33) 2.34 (0.52) 2.54 (0.57) 
h4s75 1.96 (0.32) 2.05 (0.33) 2.24 (0.51) 2.53 (0.58) 
h4s1 1.93 (0.32) 2.11 (0.34) 2.14 (0.48) 2.56 (0.60) 
h8s0 1.56 (0.28) 1.56 (0.28) 2.49 (0.50) 2.49 (0.50) 
h8s5 1.53 (0.29) 1.57 (0.30) 2.29 (0.53) 2.46 (0.57) 
h8s75 1.55 (0.30) 1.63 (0.31) 2.24 (0.54) 2.50 (0.60) 
h8s1 1.55 (0.30) 1.71 (0.32) 2.08 (0.52) 2.52 (0.68) 
h1s0 1.38 (0.26) 1.37 (0.26) 2.51 (0.49) 2.49 (0.49) 
h1s5 1.35 (0.27) 1.38 (0.28) 2.30 (0.53) 2.46 (0.56) 
h1s75 1.36 (0.28) 1.43 (0.29) 2.20 (0.54) 2.45 (0.59) 
h1s1 1.40 (0.29) 1.56 (0.31) 2.07 (0.53) 2.55 (0.71) 
Note. Standard deviations are presented in parentheses. Heteroscedasticity denoted “h” and skew is 
denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic 
values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). The standard normal-ogive model or baseline 
model is denoted “B”, skew-only is denoted “S”, het-only model is denoted “H”, and full HSGRM is 
denoted “HS”. 
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Table 6. Means and Standard Deviations for Intercept from Each Model in 5-Category Conditions 
N=2000 B S H HS 
h0s0 0.00 (0.07) 0.00 (0.07) 0.00 (0.08) 0.00 (0.08) 
h0s5 -0.02 (0.07) 0.00 (0.07) -0.05 (0.08) 0.00 (0.08) 
h0s75 -0.03 (0.07) 0.00 (0.07) -0.07 (0.07) 0.00 (0.08) 
h0s1 -.04 (0.07) -0.02 (0.07) -0.09 (0.07) -0.02 (0.08) 
h4s0 -0.13 (0.06) -0.14 (0.06) 0.00 (0.09) 0.00 (0.09) 
h4s5 -0.14 (0.06) -0.13 (0.06) -0.05 (0.08) 0.00 (0.09) 
h4s75 -0.14 (0.06) -0.12 (0.06) -0.07 (0.08) -0.01 (0.09) 
h4s1 -0.14 (0.06) -0.13 (0.06) -0.09 (0.08) -0.03 (0.08) 
h8s0 -0.26 (0.05) -0.26 (0.05) 0.00 (0.08) 0.00 (0.08) 
h8s5 -0.26 (0.05) -0.25 (0.05) -0.05 (0.08) -0.01 (0.08) 
h8s75 -0.26 (0.05) -0.24 (0.05) -0.07 (0.08) -0.02 (0.09) 
h8s1 -0.24 (0.05) -0.23 (0.06) -0.10 (0.08) -0.05 (0.09) 
h1s0 -0.32 (0.05) -0.32 (0.05) 0.00 (0.08) 0.00 (0.08) 
h1s5 -0.32 (0.05) -0.31 (0.05) -0.05 (0.08) -0.01 (0.08) 
h1s75 -0.31 (0.05) -0.29 (0.05) -0.07 (0.08) -0.03 (0.08) 
h1s1 -0.29 (0.05) -0.27 (0.05) -0.10 (0.08) -0.05 (0.09) 

         N=500 
        h0s0 0.01 (0.15) 0.01 (0.15) 0.03 (0.18) 0.03 (0.18) 

h0s5 -0.01 (0.14) 0.01 (0.14) -0.03 (0.16) 0.02 (0.17) 
h0s75 -0.03 (0.14) 0.00 (0.14) -0.06 (0.16) 0.01 (0.17) 
h0s1 -0.03 (0.13) -0.01 (0.13) -0.07 (0.15) 0.00 (0.16) 
h4s0 -0.13 (0.13) -0.13 (0.13) 0.01 (0.18) 0.01 (0.18) 
h4s5 -0.13 (0.13) -0.12 (0.13) -0.04 (0.17) 0.02 (0.18) 
h4s75 -0.14 (0.12) -0.11 (0.12) -0.06 (0.17) 0.01 (0.18) 
h4s1 -0.15 (0.12) -0.13 (0.12) -0.09 (0.16) -0.02 (0.18) 
h8s0 -0.26 (0.11) -0.26 (0.11) 0.00 (0.16) 0.00 (0.17) 
h8s5 -0.26 (0.11) -0.25 (0.11) -0.05 (0.17) 0.00 (0.18) 
h8s75 -0.25 (0.12) -0.23 (0.12) -0.06 (0.17) 0.01 (0.19) 
h8s1 -0.25 (0.11) -0.23 (0.12) -0.10 (0.16) -0.04 (0.19) 
h1s0 -0.32 (0.10) -0.32 (0.10) 0.00 (0.16) 0.00 (0.16) 
h1s5 -0.32 (0.10) -0.32 (0.10) -0.06 (0.17) -0.01 (0.17) 
h1s75 -0.31 (0.11) -0.29 (0.11) -0.08 (0.17) -0.01 (0.18) 
h1s1 -0.29 (0.11) -0.28 (0.11) -0.11 (0.17) -0.04 (0.20) 
Note. Standard deviations are presented in parentheses. Heteroscedasticity denoted “h” and skew is 
denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic 
values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). The standard normal-ogive model or baseline 
model is denoted “B”, skew-only is denoted “S”, het-only model is denoted “H”, and full HSGRM is 
denoted “HS”. 
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Table 7. Means and Standard Deviations for Skew and Heteroscedastic Errors for Each model in 3-Category 
Conditions 

 
Skew 

 
Heteroscedastic Error 

N=2000 B S H HS 
 

B S H HS 

h0s0 - - -0.02 (0.31) - - -0.01 (0.49) 
 

- - - - 0.00 (0.20) 0.00 (0.20) 

h0s5 - - 2.17 (0.28) - - 2.16 (0.31) 
 

- - - - -0.19 (0.20) -0.01 (0.20) 

h0s75 - - 3.63 (0.47) - - 3.63 (0.51) 
 

- - - - -0.27 (0.19) -0.01 (0.20) 

h0s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - -0.35 (0.18) -0.01 (0.20) 

h4s0 - - -0.48 (0.71) - - -0.20 (0.56) 
 

- - - - 0.41 (0.20) 0.40 (0.20) 

h4s5 - - 1.44 (0.25) - - 2.15 (0.28) 
 

- - - - 0.21 (0.20) 0.40 (0.21) 

h4s75 - - 2.68 (0.41) - - 3.54 (0.51) 
 

- - - - 0.11 (0.20) 0.39 (0.21) 

h4s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - 0.01 (0.19) 0.40 (0.23) 

h8s0 - - -0.98 (1.00) - - -0.23 (0.41) 
 

- - - - 0.81 (0.21) 0.80 (0.21) 

h8s5 - - 0.56 (0.53) - - 1.89 (0.76) 
 

- - - - 0.60 (0.21) 0.78 (0.22) 

h8s75 - - 1.91 (0.29) - - 3.41 (0.51) 
 

- - - - 0.47 (0.21) 0.75 (0.22) 

h8s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - 0.32 (0.19) 0.83 (0.32) 

h1s0 - - -1.05 (1.14) - - -0.25 (0.40) 
 

- - - - 1.02 (0.22) 1.02 (0.23) 

h1s5 - - -0.15 (0.68) - - 1.09 (1.05) 
 

- - - - 0.79 (0.23) 0.89 (0.24) 

h1s75 - - 1.63 (0.28) - - 3.34 (0.59) 
 

- - - - 0.63 (0.21) 0.91 (0.22) 

h1s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - 0.46 (0.20) 1.09 (0.43) 

                  N=500 
                 h0s0 - - 0.00 (0.61) - - -0.02 (0.94) 

 
- - - - 0.01 (0.43) 0.01 (0.43) 

h0s5 - - 2.35 (0.66) - - 2.45 (0.79) 
 

- - - - -0.18 (0.43) 0.02 (0.46) 

h0s75 - - 3.73 (1.05) - - 3.88 (1.31) 
 

- - - - -0.29 (0.41) -0.01 (0.47) 

h0s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - -0.36 (0.38) 0.01 (0.48) 

h4s0 - - -0.59 (0.78) - - -0.31 (0.71) 
 

- - - - 0.43 (0.44) 0.41 (0.45) 

h4s5 - - 1.47 (0.58) - - 2.28 (0.85) 
 

- - - - 0.23 (0.44) 0.43 (0.47) 

h4s75 - - 2.76 (0.83) - - 3.81 (1.31) 
 

- - - - 0.11 (0.44) 0.41 (0.51) 

h4s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - 0.01 (0.40) 0.50 (0.67) 

h8s0 - - -1.08 (1.09) - - -0.45 (0.57) 
 

- - - - 0.86 (0.47) 0.85 (0.48) 

h8s5 - - 0.44 (0.82) - - 1.41 (1.18) 
 

- - - - 0.64 (0.49) 0.78 (0.51) 

h8s75 - - 1.92 (0.58) - - 3.46 (1.16) 
 

- - - - 0.50 (0.51) 0.82 (0.60) 

h8s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - 0.33 (0.42) 1.02 (0.88) 

h1s0 - - -1.08 (1.19) - - -0.39 (0.52) 
 

- - - - 1.06 (0.47) 1.05 (0.48) 

h1s5 - - -0.05 (0.88) - - 0.91 (1.17) 
 

- - - - 0.84 (0.51) 0.94 (0.52) 

h1s75 - - 1.65 (0.71) - - 3.34 (1.31) 
 

- - - - 0.67 (0.48) 0.97 (0.55) 

h1s1 - - 28.00 (0.00) - - 28.00 (0.00) 
 

- - - - 0.48 (0.47) 1.33 (1.02) 
Note. Standard deviations are presented in parentheses. Heteroscedasticity denoted “h” and skew is 
denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, and 1.0 (noted as 0, 5, 75, 1). Tabled mean 
values correspond to skew parameter used to compute actual skew value (i.e., skew of 1.0 = 28) 
Heteroscedastic values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). The standard normal-ogive 
model or baseline model is denoted “B”, skew-only is denoted “S”, het-only model is denoted “H”, and full 
HSGRM is denoted “HS”. 
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Table 8. Means and Standard Deviations for Baseline Residual for Each Model in 3-Category 
Conditions 
N=2000 B S H HS 
h0s0 1.00 (0.06) 1.00 (0.06) 1.00 (0.06) 1.00 (0.06) 
h0s5 1.00 (0.06) 1.00 (0.06) 1.00 (0.06) 1.00 (0.06) 
h0s75 1.00 (0.06) 1.00 (0.06) 1.00 (0.06) 1.00 (0.06) 
h0s1 1.01 (0.06) 1.00 (0.06) 1.00 (0.06) 1.00 (0.06) 
h4s0 1.00 (0.06) 1.00 (0.06) 1.00 (0.06) 1.00 (0.06) 
h4s5 0.99 (0.06) 0.99 (0.06) 0.99 (0.06) 1.00 (0.06) 
h4s75 0.99 (0.06) 0.99 (0.06) 0.99 (0.06) 1.00 (0.06) 
h4s1 0.98 (0.06) 0.98 (0.06) 0.98 (0.06) 0.99 (0.06) 
h8s0 1.01 (0.06) 1.01 (0.06) 1.00 (0.06) 1.00 (0.06) 
h8s5 0.99 (0.06) 0.99 (0.06) 0.98 (0.06) 1.00 (0.06) 
h8s75 0.98 (0.06) 0.97 (0.06) 0.97 (0.06) 1.00 (0.06) 
h8s1 0.97 (0.05) 0.97 (0.06) 0.97 (0.06) 0.98 (0.06) 
h1s0 1.01 (0.06) 1.01 (0.06) 1.00 (0.06) 1.00 (0.06) 
h1s5 0.98 (0.06) 0.98 (0.06) 0.98 (0.06) 0.99 (0.06) 
h1s75 0.97 (0.06) 0.97 (0.06) 0.97 (0.06) 1.00 (0.06) 
h1s1 0.96 (0.06) 0.96 (0.06) 0.96 (0.06) 0.98 (0.06) 

         N=500 
        h0s0 1.00 (0.12) 1.00 (0.12) 1.00 (0.12) 1.00 (0.12) 

h0s5 1.00 (0.12) 1.00 (0.12) 1.00 (0.12) 1.00 (0.12) 
h0s75 1.00 (0.11) 1.00 (0.12) 1.00 (0.12) 1.00 (0.12) 
h0s1 1.00 (0.12) 1.00 (0.12) 1.00 (0.12) 1.00 (0.12) 
h4s0 1.00 (0.12) 1.00 (0.12) 1.00 (0.12) 1.00 (0.12) 
h4s5 0.99 (0.12) 0.99 (0.12) 0.99 (0.12) 1.00 (0.12) 
h4s75 0.99 (0.11) 0.99 (0.11) 0.99 (0.11) 1.00 (0.12) 
h4s1 0.98 (0.12) 0.97 (0.12) 0.98 (0.12) 0.99 (0.13) 
h8s0 1.01 (0.12) 1.01 (0.12) 1.00 (0.12) 1.00 (0.12) 
h8s5 0.98 (0.11) 0.98 (0.11) 0.98 (0.12) 0.99 (0.12) 
h8s75 0.97 (0.11) 0.97 (0.11) 0.98 (0.12) 1.00 (0.13) 
h8s1 0.97 (0.11) 0.96 (0.11) 0.97 (0.11) 0.99 (0.13) 
h1s0 1.01 (0.12) 1.01 (0.12) 1.00 (0.13) 1.00 (0.13) 
h1s5 0.98 (0.12) 0.98 (0.12) 0.98 (0.12) 0.99 (0.13) 
h1s75 0.97 (0.12) 0.97 (0.12) 0.97 (0.12) 1.00 (0.13) 
h1s1 0.96 (0.11) 0.96 (0.12) 0.96 (0.12) 0.98 (0.13) 
Note. Standard deviations are presented in parentheses. Heteroscedasticity denoted “h” and skew is 
denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic 
values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). 
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Table 9. Means and Standard Deviations for Factor Loadings from each Model in 3-Category 
Conditions 
N=2000 B S H HS 
h0s0 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 
h0s5 0.99 (0.04) 1.00 (0.04) 0.98 (0.04) 1.00 (0.04) 
h0s75 0.98 (0.04) 1.00 (0.04) 0.98 (0.04) 1.00 (0.04) 
h0s1 0.97 (0.04) 1.02 (0.04) 0.96 (0.04) 1.02 (0.04) 
h4s0 1.01 (0.04) 1.01 (0.04) 1.00 (0.04) 1.00 (0.04) 
h4s5 0.99 (0.04) 0.99 (0.04) 0.98 (0.04) 1.00 (0.04) 
h4s75 0.97 (0.04) 0.98 (0.04) 0.97 (0.04) 1.00 (0.04) 
h4s1 0.95 (0.04) 1.00 (0.04) 0.95 (0.04) 1.02 (0.04) 
h8s0 1.03 (0.04) 1.04 (0.04) 1.00 (0.04) 1.00 (0.04) 
h8s5 1.00 (0.04) 1.00 (0.04) 0.98 (0.04) 1.00 (0.04) 
h8s75 0.97 (0.04) 0.98 (0.04) 0.97 (0.04) 0.99 (0.04) 
h8s1 0.94 (0.04) 0.99 (0.04) 0.94 (0.04) 1.02 (0.04) 
h1s0 1.05 (0.04) 1.05 (0.04) 1.00 (0.04) 1.00 (0.04) 
h1s5 1.01 (0.04) 1.01 (0.04) 0.98 (0.04) 0.99 (0.04) 
h1s75 0.98 (0.04) 0.98 (0.04) 0.97 (0.04) 0.99 (0.04) 
h1s1 0.94 (0.04) 0.98 (0.04) 0.93 (0.04) 1.02 (0.04) 

         N=500 
        h0s0 1.00 (0.07) 1.00 (0.08) 1.00 (0.07) 1.00 (0.08) 

h0s5 0.99 (0.08) 1.00 (0.08) 0.98 (0.08) 1.00 (0.08) 
h0s75 0.98 (0.07) 1.00 (0.08) 0.97 (0.07) 1.00 (0.08) 
h0s1 0.97 (0.07) 1.02 (0.08) 0.96 (0.07) 1.01 (0.08) 
h4s0 1.01 (0.08) 1.01 (0.08) 1.00 (0.08) 1.00 (0.08) 
h4s5 0.99 (0.07) 0.99 (0.07) 0.98 (0.07) 1.00 (0.08) 
h4s75 0.97 (0.07) 0.98 (0.08) 0.97 (0.07) 1.00 (0.08) 
h4s1 0.95 (0.07) 1.00 (0.08) 0.95 (0.07) 1.02 (0.08) 
h8s0 1.04 (0.08) 1.05 (0.08) 1.00 (0.08) 1.01 (0.08) 
h8s5 1.00 (0.08) 1.00 (0.08) 0.99 (0.08) 0.99 (0.08) 
h8s75 0.97 (0.08) 0.98 (0.08) 0.96 (0.08) 0.99 (0.08) 
h8s1 0.94 (0.07) 0.99 (0.08) 0.94 (0.07) 1.02 (0.08) 
h1s0 1.04 (0.08) 1.05 (0.08) 1.00 (0.08) 1.00 (0.08) 
h1s5 1.01 (0.07) 1.01 (0.07) 0.98 (0.08) 0.99 (0.07) 
h1s75 0.98 (0.07) 0.98 (0.07) 0.96 (0.08) 0.98 (0.08) 
h1s1 0.94 (0.07) 0.99 (0.08) 0.94 (0.07) 1.02 (0.08) 
Note. Standard deviations are presented in parentheses. Heteroscedasticity denoted “h” and skew is 
denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic 
values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). The standard normal-ogive model or baseline 
model is denoted “B”, skew-only is denoted “S”, het-only model is denoted “H”, and full HSGRM is 
denoted “HS”. 
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Table 10. Means and Standard Deviations for Intercepts for Each Model in 3-Category Conditions 
N=2000 B S H HS 
h0s0 0.00 (0.04) 0.00 (0.04) 0.00 (0.04) 0.00 (0.04) 
h0s5 -0.01 (0.04) 0.00 (0.04) -0.02 (0.04) 0.00 (0.04) 
h0s75 -0.02 (0.03) 0.00 (0.04) -0.04 (0.04) 0.00 (0.04) 
h0s1 -0.02 (0.03) -0.02 (0.03) -0.05 (0.04) -0.03 (0.04) 
h4s0 -0.03 (0.04) -0.03 (0.04) 0.00 (0.04) 0.00 (0.04) 
h4s5 -0.04 (0.03) -0.03 (0.03) -0.02 (0.04) 0.00 (0.04) 
h4s75 -0.04 (0.03) -0.03 (0.03) -0.03 (0.04) 0.00 (0.04) 
h4s1 -0.04 (0.03) -0.06 (0.03) -0.04 (0.04) -0.03 (0.04) 
h8s0 -0.06 (0.04) -0.07 (0.04) 0.00 (0.04) 0.00 (0.04) 
h8s5 -0.06 (0.03) -0.06 (0.03) -0.02 (0.04) 0.00 (0.04) 
h8s75 -0.07 (0.03) -0.06 (0.03) -0.03 (0.03) -0.01 (0.04) 
h8s1 -0.06 (0.03) -0.09 (0.03) -0.04 (0.04) -0.04 (0.04) 
h1s0 -0.07 (0.04) -0.08 (0.04) 0.00 (0.04) 0.00 (0.04) 
h1s5 -0.08 (0.04) -0.08 (0.04) -0.02 (0.04) -0.01 (0.04) 
h1s75 -0.07 (0.03) -0.07 (0.03) -0.03 (0.04) -0.01 (0.04) 
h1s1 -0.07 (0.03) -0.10 (0.03) -0.04 (0.04) -0.05 (0.04) 

         N=500 
        h0s0 0.00 (0.07) 0.00 (0.07) 0.00 (0.07) 0.00 (0.07) 

h0s5 0.00 (0.07) 0.01 (0.07) -0.02 (0.07) 0.01 (0.08) 
h0s75 -0.02 (0.07) 0.00 (0.07) -0.04 (0.08) -0.01 (0.08) 
h0s1 -0.02 (0.07) -0.03 (0.07) -0.05 (0.07) -0.03 (0.07) 
h4s0 -0.03 (0.07) -0.04 (0.07) 0.00 (0.07) -0.01 (0.07) 
h4s5 -0.03 (0.07) -0.02 (0.07) -0.02 (0.07) 0.01 (0.07) 
h4s75 -0.04 (0.07) -0.03 (0.07) -0.04 (0.07) -0.01 (0.07) 
h4s1 -0.04 (0.07) -0.06 (0.07) -0.04 (0.07) -0.03 (0.07) 
h8s0 -0.06 (0.07) -0.07 (0.07) 0.00 (0.07) -0.01 (0.07) 
h8s5 -0.06 (0.07) -0.06 (0.07) -0.02 (0.08) 0.00 (0.08) 
h8s75 -0.06 (0.07) -0.05 (0.07) -0.03 (0.07) 0.00 (0.08) 
h8s1 -0.06 (0.07) -0.08 (0.07) -0.04 (0.07) -0.04 (0.07) 
h1s0 -0.07 (0.07) -0.08 (0.07) 0.00 (0.07) 0.00 (0.07) 
h1s5 -0.08 (0.07) -0.08 (0.07) -0.02 (0.08) -0.01 (0.08) 
h1s75 -0.07 (0.07) -0.07 (0.07) -0.03 (0.08) -0.01 (0.08) 
h1s1 -0.07 (0.07) -0.09 (0.07) -0.04 (0.07) -0.05 (0.07) 
Note. Standard deviations are presented in parentheses. Heteroscedasticity  denoted “h” and skew is 
denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic 
values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). The standard normal-ogive model or baseline 
model is denoted “B”, skew-only is denoted “S”, het-only model is denoted “H”, and full HSGRM is 
denoted “HS”. 
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Table 11. Average Bias and RMSD Due to Model Misspecification in 5-Category Response Conditions 

 
Bias 

 
RMSD 

N=2000 Res Load Thresh3 Thresh4 Int 
 

Res Load Thresh3 Thresh4 Int 
h0s0 0.00 0.00 0.00 0.00 0.00 

 
0.08 0.05 0.10 0.16 0.06 

h0s5 -0.03 -0.02 -0.03 -0.07 -0.02 
 

0.09 0.05 0.10 0.17 0.06 
h0s75 -0.04 -0.03 -0.04 -0.12 -0.03 

 
0.09 0.05 0.10 0.19 0.07 

h0s1 -0.06 -0.04 -0.06 -0.16 -0.04 
 

0.09 0.06 0.11 0.21 0.07 
h4s0 -0.20 -0.10 -0.21 -0.48 -0.13 

 
0.19 0.10 0.21 0.45 0.13 

h4s5 -0.22 -0.13 -0.22 -0.53 -0.14 
 

0.21 0.12 0.22 0.50 0.14 
h4s75 -0.22 -0.14 -0.22 -0.55 -0.14 

 
0.21 0.13 0.22 0.51 0.14 

h4s1 -0.23 -0.15 -0.23 -0.57 -0.14 
 

0.21 0.14 0.22 0.53 0.14 
h8s0 -0.38 -0.20 -0.44 -0.92 -0.26 

 
0.35 0.18 0.40 0.83 0.24 

h8s5 -0.39 -0.23 -0.43 -0.95 -0.26 
 

0.35 0.21 0.40 0.86 0.24 
h8s75 -0.39 -0.24 -0.43 -0.96 -0.26 

 
0.36 0.22 0.39 0.87 0.23 

h8s1 -0.38 -0.24 -0.40 -0.93 -0.24 
 

0.34 0.22 0.37 0.84 0.22 
h1s0 -0.46 -0.25 -0.54 -1.12 -0.32 

 
0.41 0.23 0.49 1.01 0.29 

h1s5 -0.47 -0.28 -0.54 -1.15 -0.32 
 

0.42 0.25 0.49 1.03 0.29 
h1s75 -0.47 -0.29 -0.53 -1.14 -0.31 

 
0.42 0.26 0.48 1.03 0.28 

h1s1 -0.44 -0.29 -0.48 -1.09 -0.29 
 

0.40 0.26 0.44 0.98 0.26 

            N=500 
           h0s0 0.01 0.01 0.01 0.03 0.01 

 
0.18 0.10 0.21 0.34 0.13 

h0s5 -0.03 -0.02 -0.02 -0.06 -0.01 
 

0.17 0.10 0.20 0.33 0.13 
h0s75 -0.04 -0.03 -0.04 -0.11 -0.03 

 
0.17 0.10 0.20 0.34 0.13 

h0s1 -0.05 -0.04 -0.05 -0.14 -0.03 
 

0.17 0.10 0.20 0.34 0.12 
h4s0 -0.20 -0.10 -0.22 -0.48 -0.13 

 
0.23 0.13 0.27 0.52 0.16 

h4s5 -0.22 -0.13 -0.22 -0.52 -0.13 
 

0.24 0.14 0.27 0.55 0.16 
h4s75 -0.22 -0.14 -0.22 -0.54 -0.14 

 
0.24 0.15 0.27 0.57 0.16 

h4s1 -0.23 -0.15 -0.23 -0.57 -0.15 
 

0.25 0.16 0.27 0.58 0.17 
h8s0 -0.39 -0.21 -0.45 -0.94 -0.26 

 
0.36 0.20 0.43 0.87 0.25 

h8s5 -0.40 -0.23 -0.45 -0.97 -0.26 
 

0.38 0.22 0.43 0.90 0.25 
h8s75 -0.39 -0.24 -0.43 -0.95 -0.25 

 
0.37 0.23 0.42 0.89 0.24 

h8s1 -0.39 -0.25 -0.41 -0.95 -0.25 
 

0.37 0.24 0.41 0.89 0.24 
h1s0 -0.46 -0.25 -0.55 -1.12 -0.32 

 
0.43 0.24 0.51 1.03 0.30 

h1s5 -0.47 -0.28 -0.54 -1.15 -0.32 
 

0.44 0.26 0.51 1.06 0.30 
h1s75 -0.47 -0.29 -0.53 -1.14 -0.31 

 
0.43 0.27 0.50 1.05 0.29 

h1s1 -0.45 -0.29 -0.49 -1.10 -0.29 
 

0.42 0.27 0.47 1.02 0.28 
Note. Heteroscedasticity denoted “h” and skew is denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, 
and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). 
Baseline residuals denoted = Res, factor loadings = Load, threshold 3 = Thresh3, threshold 4 = Thresh4, 
intercept = Int. 
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Table 12. Average bias and RMSD due to model misspecification in 3-Category Response Conditions 

 
Bias 

 
RMSD 

N=2000 Res Load Int 
 

Res Load Int 
h0s0 0.00 0.00 0.00 

 
0.05 0.03 0.03 

h0s5 0.00 -0.01 -0.01 
 

0.05 0.03 0.03 
h0s75 0.00 -0.02 -0.02 

 
0.05 0.04 0.03 

h0s1 0.01 -0.03 -0.02 
 

0.05 0.04 0.04 
h4s0 0.00 0.01 -0.03 

 
0.05 0.03 0.04 

h4s5 -0.01 -0.01 -0.04 
 

0.05 0.04 0.05 
h4s75 -0.01 -0.03 -0.04 

 
0.05 0.04 0.05 

h4s1 -0.02 -0.05 -0.04 
 

0.05 0.05 0.05 
h8s0 0.01 0.03 -0.06 

 
0.05 0.04 0.06 

h8s5 -0.01 0.00 -0.06 
 

0.05 0.03 0.07 
h8s75 -0.02 -0.03 -0.07 

 
0.06 0.04 0.07 

h8s1 -0.03 -0.06 -0.06 
 

0.06 0.06 0.06 
h1s0 0.01 0.05 -0.07 

 
0.06 0.05 0.07 

h1s5 -0.02 0.01 -0.08 
 

0.05 0.03 0.08 
h1s75 -0.03 -0.02 -0.07 

 
0.06 0.04 0.07 

h1s1 -0.04 -0.06 -0.07 
 

0.06 0.07 0.07 

        N=500 
       h0s0 0.00 0.00 0.00 

 
0.11 0.07 0.06 

h0s5 0.00 -0.01 0.00 
 

0.10 0.07 0.06 
h0s75 0.00 -0.02 -0.02 

 
0.10 0.07 0.07 

h0s1 0.00 -0.03 -0.02 
 

0.10 0.07 0.06 
h4s0 0.00 0.01 -0.03 

 
0.10 0.07 0.07 

h4s5 -0.01 -0.01 -0.03 
 

0.10 0.07 0.07 
h4s75 -0.01 -0.03 -0.04 

 
0.10 0.07 0.07 

h4s1 -0.02 -0.05 -0.04 
 

0.11 0.08 0.07 
h8s0 0.01 0.04 -0.06 

 
0.11 0.08 0.09 

h8s5 -0.02 0.00 -0.06 
 

0.10 0.07 0.08 
h8s75 -0.03 -0.03 -0.06 

 
0.10 0.07 0.08 

h8s1 -0.03 -0.06 -0.06 
 

0.10 0.08 0.08 
h1s0 0.01 0.04 -0.07 

 
0.11 0.08 0.09 

h1s5 -0.02 0.01 -0.08 
 

0.11 0.07 0.09 
h1s75 -0.03 -0.02 -0.07 

 
0.11 0.07 0.09 

h1s1 -0.04 -0.06 -0.07 
 

0.11 0.08 0.09 
Note. Heteroscedasticity denoted “h” and skew is denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, 
and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). 
Baseline residuals denoted = Res, factor loadings = Load, intercept = Int. 
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Table 13. Bias and RMSD for Item Parameter Estimate from Constrained HSGRM for 5-Category Response Conditions 
N=2,000 Bias  RMSD 
Item Skew Res Het Load t3 t4 Int  Skew Res Het Load t3 t4 Int 
1 0.00 0.00 0.00 0.00 0.00 0.01 0.00  0.00 0.08 0.00 0.05 0.09 0.15 0.06 
2 0.00 0.00 0.00 0.00 0.00 0.01 0.00  0.00 0.08 0.00 0.05 0.10 0.17 0.06 
3 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00  0.00 0.08 0.00 0.05 0.10 0.16 0.06 
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.09 0.00 0.05 0.09 0.16 0.06 
5 0.00 0.00 0.00 0.00 0.00 0.01 0.01  0.00 0.08 0.00 0.05 0.09 0.16 0.06 
6 0.00 0.00 0.00 0.00 0.01 0.01 0.00  0.00 0.08 0.00 0.05 0.10 0.16 0.06 
7 0.00 -0.01 0.00 -0.01 -0.02 -0.01 -0.01  0.00 0.08 0.00 0.05 0.10 0.16 0.06 
8 0.00 -0.01 0.00 0.00 -0.01 -0.02 -0.01  0.00 0.08 0.00 0.05 0.10 0.16 0.06 
9 0.00 0.00 0.00 0.00 0.00 0.01 0.00  0.00 0.08 0.00 0.05 0.09 0.16 0.06 
10 0.00 0.01 0.00 0.00 0.00 0.00 0.00  0.00 0.09 0.00 0.05 0.10 0.16 0.06 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.08 0.00 0.05 0.10 0.16 0.06 
SD 0.00 0.00 0.00 0.00 0.01 0.01 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 

        
 

       N=500 
       

 
       1 0.00 -0.01 0.00 -0.01 -0.03 -0.03 -0.01  0.00 0.18 0.00 0.09 0.20 0.37 0.13 

2 0.00 0.01 0.00 0.01 0.02 0.02 0.02  0.00 0.16 0.00 0.08 0.18 0.30 0.12 
3 0.00 0.02 0.00 0.02 0.04 0.07 0.02  0.00 0.18 0.00 0.11 0.21 0.32 0.13 
4 0.00 0.00 0.00 0.01 0.01 0.05 0.01  0.00 0.17 0.00 0.10 0.19 0.34 0.13 
5 0.00 0.00 0.00 0.00 0.00 -0.01 0.01  0.00 0.17 0.00 0.10 0.21 0.34 0.13 
6 0.00 -0.01 0.00 -0.01 -0.04 -0.06 -0.02  0.00 0.18 0.00 0.10 0.21 0.35 0.14 
7 0.00 0.03 0.00 0.01 0.03 0.06 0.02  0.00 0.17 0.00 0.09 0.21 0.34 0.13 
8 0.00 -0.01 0.00 0.01 0.00 0.02 0.00  0.00 0.17 0.00 0.10 0.21 0.33 0.13 
9 0.00 0.03 0.00 0.01 0.02 0.04 0.01  0.00 0.18 0.00 0.11 0.20 0.32 0.12 
10 0.00 0.03 0.00 0.02 0.05 0.09 0.04  0.00 0.20 0.00 0.12 0.25 0.40 0.16 
Mean 0.00 0.01 0.00 0.01 0.01 0.03 0.01  0.00 0.18 0.00 0.10 0.21 0.34 0.13 
SD 0.00 0.02 0.00 0.01 0.02 0.04 0.01  0.00 0.01 0.00 0.01 0.02 0.03 0.01 
Note. Res = Baseline residual, Het = heteroscedastic errors, Load = factor loadings, t3= threshold 3, t4 = threshold 4, Int = 
intercept 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 71 

Table 14. Bias and RMSD for Item Parameter Estimates from Constrained HSGRM for 3-Category Response Conditions 
N=2000 

  
Bias 

  
 

  
RMSD 

  Item Skew  Res Het Load Int  Skew Res Het Load Int 
1 0.00 0.00 0.00 0.00 0.00  0.00 0.05 0.00 0.03 0.03 
2 0.00 0.01 0.00 0.00 0.00  0.00 0.06 0.00 0.03 0.03 
3 0.00 0.00 0.00 0.00 0.00  0.00 0.06 0.00 0.04 0.03 
4 0.00 0.00 0.00 0.01 0.00  0.00 0.06 0.00 0.04 0.03 
5 0.00 0.00 0.00 0.00 0.00  0.00 0.05 0.00 0.03 0.03 
6 0.00 0.00 0.00 0.00 0.00  0.00 0.05 0.00 0.03 0.03 
7 0.00 0.00 0.00 0.00 -0.01  0.00 0.05 0.00 0.03 0.03 
8 0.00 0.01 0.00 0.00 0.00  0.00 0.05 0.00 0.03 0.03 
9 0.00 0.01 0.00 0.01 0.00  0.00 0.05 0.00 0.04 0.03 
10 0.00 0.00 0.00 0.00 0.00  0.00 0.05 0.00 0.03 0.03 
Mean 0.00 0.00 0.00 0.00 0.00  0.00 0.05 0.00 0.03 0.03 
SD 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 

      
 

     N=500 
     

 
     1 0.00 0.00 0.00 0.01 0.00  0.00 0.11 0.00 0.07 0.06 

2 0.00 0.00 0.00 0.00 0.00  0.00 0.11 0.00 0.07 0.06 
3 0.00 -0.01 0.00 -0.01 0.00  0.00 0.10 0.00 0.07 0.06 
4 0.00 0.01 0.00 0.00 0.00  0.00 0.11 0.00 0.07 0.06 
5 0.00 0.00 0.00 0.00 0.01  0.00 0.11 0.00 0.06 0.06 
6 0.00 0.01 0.00 0.01 0.00  0.00 0.11 0.00 0.07 0.06 
7 0.00 -0.02 0.00 0.00 0.00  0.00 0.10 0.00 0.06 0.06 
8 0.00 0.00 0.00 0.00 0.00  0.00 0.11 0.00 0.07 0.06 
9 0.00 0 

 
01 

0.00 0.00 0.00  0.00 0.11 0.00 0.07 0.06 
10 0.00 -0.01 0.00 0.00 0.00  0.00 0.10 0.00 0.07 0.06 
Mean 0.00 0.00 0.00 0.00 0.00  0.00 0.11 0.00 0.07 0.06 
SD 0.00 0.01 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 
Note. Res = Baseline residual, Het = heteroscedastic errors, Load = factor loadings, Int = intercept 
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Table 15. Bias and RMSD for Item Parameter Estimates from Full HSGRM for 5-Category Response Conditions 

 
Bias 

 
RMSD 

N=2000 Skew Res Het Load T3 T4 Int 
 

Skew Res Het Load T3 T4 Int 
1 -0.01 0.00 0.01 0.00 0.01 0.02 0.00 

 
0.36 0.10 0.14 0.06 0.11 0.22 0.07 

2 -0.01 0.01 0.01 0.00 0.01 0.03 0.01 
 

0.36 0.11 0.13 0.06 0.12 0.23 0.08 
3 -0.01 0.00 -0.02 -0.01 -0.01 -0.02 -0.01 

 
0.36 0.10 0.12 0.06 0.12 0.22 0.07 

4 -0.01 0.00 0.00 0.00 0.00 0.01 0.00 
 

0.36 0.11 0.15 0.05 0.11 0.22 0.07 
5 -0.01 0.02 0.02 0.00 0.02 0.04 0.01 

 
0.36 0.10 0.14 0.05 0.11 0.22 0.08 

6 -0.01 0.00 -0.01 0.00 0.01 0.01 0.00 
 

0.36 0.11 0.15 0.06 0.12 0.24 0.08 
7 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01 -0.01 

 
0.36 0.10 0.15 0.06 0.11 0.23 0.07 

8 -0.01 0.00 0.01 0.00 0.00 0.00 0.00 
 

0.36 0.10 0.14 0.06 0.12 0.22 0.07 
9 -0.01 0.01 0.01 0.00 0.01 0.02 0.01 

 
0.36 0.10 0.13 0.06 0.12 0.23 0.07 

10 -0.01 0.00 -0.02 0.00 0.00 -0.01 0.00 
 

0.36 0.11 0.15 0.06 0.12 0.23 0.08 
Mean -0.01 0.00 0.00 0.00 0.00 0.01 0.00 

 
0.36 0.10 0.14 0.06 0.12 0.23 0.07 

SD 0.00 0.01 0.01 0.00 0.01 0.02 0.01 
 

0.00 0.00 0.01 0.00 0.00 0.01 0.00 

                N=500 
               1 0.05 0.00 -0.01 -0.01 -0.01 -0.01 0.00 

 
0.53 0.22 0.29 0.11 0.24 0.49 0.15 

2 0.05 0.04 0.01 0.02 0.05 0.08 0.04 
 

0.53 0.21 0.33 0.10 0.22 0.44 0.15 
3 0.05 0.06 0.02 0.04 0.07 0.14 0.04 

 
0.53 0.24 0.35 0.12 0.26 0.48 0.17 

4 0.05 0.02 -0.04 0.02 0.02 0.05 0.02 
 

0.53 0.23 0.32 0.12 0.25 0.51 0.17 
5 0.05 0.02 -0.02 0.00 0.02 0.01 0.01 

 
0.53 0.24 0.29 0.13 0.27 0.50 0.17 

6 0.05 0.02 0.02 0.01 -0.01 -0.01 0.00 
 

0.53 0.24 0.32 0.12 0.24 0.46 0.16 
7 0.05 0.05 -0.01 0.02 0.05 0.09 0.03 

 
0.53 0.23 0.31 0.11 0.25 0.49 0.16 

8 0.05 0.04 0.04 0.03 0.04 0.11 0.03 
 

0.53 0.25 0.28 0.12 0.26 0.51 0.17 
9 0.05 0.08 0.05 0.03 0.06 0.13 0.03 

 
0.53 0.27 0.30 0.13 0.27 0.51 0.17 

10 0.05 0.07 0.01 0.03 0.08 0.15 0.05 
 

0.53 0.28 0.33 0.15 0.31 0.59 0.19 
Mean 0.05 0.04 0.01 0.02 0.03 0.07 0.03 

 
0.53 0.24 0.31 0.12 0.26 0.50 0.17 

SD 0.00 0.02 0.03 0.01 0.03 0.06 0.02 
 

0.00 0.02 0.02 0.01 0.02 0.04 0.01 
Note. Res = Baseline residual, Het = heteroscedastic errors, Load = factor loadings, T3= threshold 3, T4 = threshold 4, Int = 
intercept 
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Table 16. Bias and RMSD for Item Parameter Estimates from Full HSGRM for 3-Category Response Conditions 

 
Bias 

 
RMSD 

N=2000 Skew Res Het Load Int 
 

Skew Res Het Load Int 
1 -0.01 0.00 0.01 0.00 0.00 

 
0.44 0.05 0.19 0.03 0.03 

2 -0.01 0.01 0.00 0.00 0.00 
 

0.44 0.06 0.17 0.03 0.03 
3 -0.01 0.00 0.00 0.00 0.00 

 
0.44 0.06 0.17 0.04 0.03 

4 -0.01 0.00 0.00 0.00 0.00 
 

0.44 0.06 0.18 0.04 0.04 
5 -0.01 0.00 0.01 0.00 0.00 

 
0.44 0.05 0.18 0.03 0.03 

6 -0.01 0.00 0.00 0.00 0.00 
 

0.44 0.05 0.18 0.03 0.04 
7 -0.01 0.00 -0.02 0.00 -0.01 

 
0.44 0.05 0.18 0.03 0.03 

8 -0.01 0.01 0.02 0.00 0.00 
 

0.44 0.05 0.17 0.03 0.03 
9 -0.01 0.01 -0.01 0.00 0.00 

 
0.44 0.05 0.17 0.04 0.03 

10 -0.01 0.00 0.01 0.00 0.00 
 

0.44 0.05 0.17 0.03 0.03 
Mean -0.01 0.00 0.00 0.00 0.00 

 
0.44 0.05 0.18 0.03 0.03 

SD 0.00 0.00 0.01 0.00 0.00 
 

0.00 0.00 0.01 0.00 0.00 

            N=500 
           1 -0.02 0.00 0.03 0.00 0.00 

 
0.84 0.11 0.40 0.07 0.06 

2 -0.02 0.00 -0.06 0.00 0.00 
 

0.84 0.11 0.37 0.07 0.07 
3 -0.02 -0.01 0.00 -0.01 0.00 

 
0.84 0.10 0.41 0.07 0.07 

4 -0.02 0.01 0.01 0.00 0.00 
 

0.84 0.11 0.38 0.07 0.07 
5 -0.02 0.00 -0.03 0.00 0.00 

 
0.84 0.11 0.39 0.07 0.07 

6 -0.02 0.00 0.01 0.01 0.00 
 

0.84 0.11 0.37 0.07 0.07 
7 -0.02 -0.02 0.01 0.00 0.00 

 
0.84 0.10 0.37 0.06 0.06 

8 -0.02 0.00 0.03 0.00 0.00 
 

0.84 0.11 0.42 0.07 0.07 
9 -0.02 0.01 0.00 0.00 0.00 

 
0.84 0.11 0.40 0.07 0.07 

10 -0.02 -0.01 0.05 0.00 0.01 
 

0.84 0.10 0.36 0.07 0.07 
Mean -0.02 0.00 0.01 0.00 0.00 

 
0.84 0.11 0.39 0.07 0.07 

SD 0.00 0.01 0.03 0.00 0.00 
 

0.00 0.00 0.02 0.00 0.00 
Note. Res = Baseline residual, Het = heteroscedastic errors, Load = factor loadings, T3= threshold 3, T4 = threshold 4, Int = 
intercept 
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Table 17. Bias and RMSD Between True Population Value and Correct Model in 5-Category Conditions 

    
Bias 

      
RMSE 

   
 

Skew Res Het Load T3 T4 Int Skew Res Het Load T3 T4 Int 
h0s0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.05 0.10 0.16 0.06 
h0s5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.08 0.00 0.05 0.10 0.16 0.06 
h0s75 -0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.39 0.08 0.00 0.05 0.10 0.17 0.06 
h0s1 0.00 0.02 0.00 0.03 0.02 0.04 -0.02 0.00 0.08 0.00 0.06 0.10 0.17 0.06 
h4s0 0.00 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.11 0.14 0.06 0.12 0.23 0.08 
h4s5 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.22 0.11 0.15 0.06 0.12 0.24 0.08 
h4s75 -0.04 0.00 -0.02 -0.01 0.00 -0.01 -0.01 0.40 0.11 0.16 0.07 0.12 0.24 0.08 
h4s1 0.00 0.01 -0.01 0.02 0.01 0.01 -0.03 0.00 0.11 0.17 0.08 0.12 0.25 0.08 
h8s0 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.11 0.13 0.05 0.12 0.23 0.07 
h8s5 -0.06 -0.01 -0.02 -0.01 -0.01 -0.02 -0.01 0.26 0.12 0.15 0.06 0.13 0.24 0.08 
h8s75 -0.23 -0.02 -0.04 -0.03 -0.03 -0.06 -0.02 0.51 0.12 0.16 0.07 0.13 0.25 0.08 
h8s1 0.00 -0.02 -0.01 0.02 0.00 -0.01 -0.05 0.00 0.13 0.20 0.08 0.14 0.27 0.09 
h1s0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.13 0.05 0.12 0.22 0.07 
h1s5 -0.22 -0.02 -0.04 -0.02 -0.02 -0.05 -0.01 0.38 0.12 0.15 0.06 0.13 0.24 0.07 
h1s75 -0.32 -0.04 -0.06 -0.04 -0.04 -0.08 -0.03 0.55 0.13 0.16 0.07 0.13 0.25 0.08 
h1s1 0.00 -0.02 0.01 0.02 0.00 -0.01 -0.05 0.00 0.14 0.22 0.09 0.15 0.29 0.09 
               
N=500               
h0s0 0.00 0.01 0.00 0.01 0.01 0.03 0.01 0.00 0.18 0.00 0.10 0.21 0.34 0.13 
h0s5 0.05 0.00 0.00 0.00 0.01 0.02 0.01 0.55 0.17 0.00 0.10 0.20 0.34 0.13 
h0s75 0.24 0.01 0.00 0.00 0.01 0.02 0.00 0.91 0.17 0.00 0.10 0.20 0.34 0.13 
h0s1 0.00 0.03 0.00 0.04 0.03 0.07 -0.01 0.00 0.17 0.00 0.11 0.20 0.35 0.12 
h4s0 0.00 0.02 0.00 0.00 0.01 0.03 0.01 0.00 0.25 0.30 0.12 0.26 0.49 0.16 
h4s5 -0.03 0.02 0.00 0.00 0.02 0.04 0.02 0.59 0.25 0.32 0.13 0.26 0.51 0.16 
h4s75 0.00 0.02 -0.01 0.00 0.02 0.03 0.01 0.86 0.25 0.33 0.14 0.26 0.52 0.16 
h4s1 0.00 0.03 0.01 0.03 0.03 0.06 -0.02 0.00 0.26 0.37 0.16 0.27 0.54 0.16 
h8s0 0.00 0.01 0.00 0.00 -0.01 -0.01 0.00 0.00 0.23 0.29 0.11 0.24 0.45 0.15 
h8s5 -0.21 -0.01 -0.02 -0.02 -0.02 -0.04 0.00 0.61 0.25 0.32 0.13 0.27 0.51 0.16 
h8s75 -0.16 0.01 -0.02 -0.01 0.00 0.00 0.01 0.87 0.27 0.33 0.15 0.28 0.53 0.17 
h8s1 0.00 0.01 0.02 0.03 0.02 0.02 -0.04 0.00 0.30 0.43 0.18 0.32 0.61 0.18 
h1s0 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.23 0.28 0.11 0.24 0.44 0.14 
h1s5 -0.49 -0.01 -0.02 -0.02 -0.02 -0.04 -0.01 0.90 0.26 0.32 0.13 0.27 0.50 0.16 
h1s75 -0.29 -0.02 -0.04 -0.03 -0.03 -0.05 -0.01 0.89 0.26 0.35 0.14 0.28 0.53 0.16 
h1s1 0.00 0.01 0.06 0.03 0.03 0.05 -0.04 0.00 0.31 0.48 0.19 0.34 0.63 0.18 
Note. Heteroscedasticity denoted “h” and skew is denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, 
and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). 
Baseline residuals denoted = Res, Heteroscedastic error = het, factor loadings = Load, threshold 3 = T3, 
threshold 4 = T4, intercept = Int. 
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Table 18. Bias and RMSD for True Population Values against Correct Model Parameters in 3-Category 
Conditions 
  Bias  RMSD 

N=2000 Skew Res Het Load Int   Skew Res Het Load Int 

h0s0 0.00 0.00 0.00 0.00 0.00  0.00 0.05 0.00 0.03 0.03 
h0s5 0.00 0.00 0.00 0.00 0.00  0.25 0.05 0.00 0.03 0.03 
h0s75 -0.02 0.00 0.00 0.00 0.00  0.42 0.05 0.00 0.04 0.03 
h0s1 0.00 0.00 0.00 0.02 -0.02  0.00 0.05 0.00 0.04 0.04 
h4s0 0.00 0.00 0.01 0.00 0.00  0.00 0.05 0.18 0.03 0.03 
h4s5 -0.02 0.00 0.00 0.00 0.00  0.25 0.05 0.19 0.03 0.03 
h4s75 -0.10 0.00 -0.01 0.00 0.00  0.47 0.05 0.19 0.03 0.03 
h4s1 0.00 -0.01 0.00 0.02 -0.03  0.00 0.06 0.21 0.04 0.04 
h8s0 0.00 0.00 0.01 0.00 0.00  0.00 0.05 0.19 0.03 0.03 
h8s5 -0.28 0.00 -0.02 0.00 0.00  0.72 0.06 0.20 0.03 0.03 
h8s75 -0.23 0.00 -0.05 -0.01 -0.01  0.50 0.05 0.20 0.04 0.03 
h8s1 0.00 -0.02 0.03 0.02 -0.04  0.00 0.06 0.29 0.04 0.05 
h1s0 0.00 0.00 0.02 0.00 0.00  0.00 0.06 0.20 0.03 0.03 
h1s5 -1.08 -0.01 -0.11 -0.01 -0.01  1.35 0.06 0.23 0.04 0.04 
h1s75 -0.30 0.00 -0.09 -0.01 -0.01  0.59 0.06 0.21 0.04 0.03 
h1s1 0.00 -0.02 0.09 0.02 -0.05  0.00 0.06 0.39 0.04 0.06 

	 	 	 	 	 	
 

	 	 	 	 	N=500 		 		 		 		 		   		 		 		 		 		
h0s0 0.00 0.00 0.00 0.00 0.00  0.00 0.11 0.00 0.07 0.06 
h0s5 0.18 0.00 0.00 0.00 0.01  0.62 0.10 0.00 0.07 0.06 
h0s75 0.09 0.00 0.00 0.00 0.00  0.94 0.10 0.00 0.07 0.06 
h0s1 0.00 0.00 0.00 0.02 -0.03  0.00 0.11 0.00 0.07 0.07 
h4s0 0.00 0.00 0.03 0.00 0.00  0.00 0.11 0.40 0.07 0.07 
h4s5 0.11 0.00 0.03 0.00 0.01  0.76 0.11 0.42 0.07 0.07 
h4s75 0.17 0.00 0.01 0.00 -0.01  1.18 0.11 0.45 0.07 0.07 
h4s1 0.00 -0.01 0.10 0.02 -0.03  0.00 0.11 0.60 0.08 0.07 
h8s0 0.00 0.00 0.06 0.00 0.00  0.00 0.11 0.42 0.07 0.07 
h8s5 -0.76 -0.01 -0.02 -0.01 0.00  1.25 0.11 0.46 0.07 0.07 
h8s75 -0.18 0.00 0.02 -0.01 0.00  1.05 0.11 0.53 0.07 0.07 
h8s1 0.00 -0.01 0.22 0.02 -0.04  0.00 0.11 0.81 0.07 0.07 
h1s0 0.00 0.00 0.06 0.00 0.00  0.00 0.11 0.43 0.07 0.07 
h1s5 -1.26 -0.01 -0.06 -0.01 -0.01  1.54 0.11 0.47 0.07 0.07 
h1s75 -0.30 0.00 -0.03 -0.02 -0.01  1.20 0.12 0.49 0.07 0.07 
h1s1 0.00 -0.02 0.33 0.02 -0.05   0.00 0.12 0.95 0.07 0.08 
Note. Heteroscedasticity denoted “h” and skew is denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, 
and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). 
Baseline residuals denoted = Res, Heteroscedastic error = het, factor loadings = Load, intercept = Int. 
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Table 19. Bias and RMSD When Fitting HSGRM to Models with Only Skew, Heteroscedastic Errors, or Neither in  
5-Category Conditions 

 
Bias 

 
RMSD 

N=2000 Skew Res Het Load T3 T4 Int 
 

Skew Res Het Load T3 T4 Int 
h0s0 -0.01 0.00 0.00 0.00 0.00 0.01 0.00 

 
0.36 0.10 0.14 0.06 0.12 0.23 0.07 

h0s5 0.00 0.01 0.00 0.00 0.01 0.01 0.00 
 

0.25 0.11 0.14 0.06 0.12 0.23 0.07 
h0s75 -0.01 0.01 0.00 0.00 0.01 0.01 0.00 

 
0.40 0.10 0.14 0.06 0.11 0.23 0.07 

h0s1 0.00 0.02 -0.01 0.03 0.02 0.04 -0.02 
 

0.00 0.10 0.14 0.07 0.11 0.22 0.07 
h4s0 -0.01 0.01 0.01 0.00 0.01 0.02 0.00 

 
0.41 0.11 0.14 0.06 0.12 0.23 0.08 

h8s0 -0.13 0.01 0.01 0.00 0.00 0.01 0.00 
 

0.30 0.11 0.13 0.05 0.12 0.23 0.08 
h1s0 -0.09 0.00 0.00 0.00 0.00 0.01 0.00 

 
0.27 0.11 0.13 0.05 0.12 0.22 0.07 

                N=500 
               h0s0 0.05 0.04 0.01 0.02 0.03 0.07 0.03 

 
0.53 0.24 0.31 0.12 0.26 0.50 0.17 

h0s5 0.08 0.03 0.01 0.01 0.03 0.07 0.02 
 

0.62 0.23 0.31 0.13 0.25 0.49 0.16 
h0s75 0.31 0.03 0.01 0.01 0.03 0.06 0.01 

 
1.04 0.24 0.32 0.14 0.25 0.50 0.15 

h0s1 0.00 0.05 0.00 0.05 0.05 0.10 0.00 
 

0.00 0.23 0.31 0.15 0.24 0.50 0.15 
h4s0 -0.11 0.02 0.00 0.00 0.01 0.02 0.01 

 
0.46 0.25 0.30 0.12 0.26 0.49 0.16 

h8s0 -0.23 0.01 0.00 0.00 -0.01 -0.01 0.00 
 

0.48 0.24 0.30 0.11 0.24 0.45 0.15 
h1s0 -0.36 0.00 0.00 -0.01 -0.01 -0.01 0.00 

 
0.49 0.23 0.28 0.11 0.24 0.44 0.14 

Note. Heteroscedasticity denoted “h” and skew is denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, 
and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). 
Baseline residuals denoted = Res, Heteroscedastic error = het, factor loadings = Load, threshold 3 = T3, 
threshold 4 = T4, intercept = Int. 
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Table 20. Bias and RMSD When Fitting HSGRM to Models with Only Skew, Het, or Neither in 3-Category 
Conditions  

 
Bias 

 
RMSD 

N=2000 Skew Res Het Load Int 
 

Skew Res Het Load Int 
h0s0 -0.01 0.00 0.00 0.00 0.00 

 
0.44 0.05 0.18 0.03 0.03 

h0s5 -0.01 0.00 -0.01 0.00 0.00 
 

0.28 0.05 0.18 0.03 0.03 
h0s75 -0.02 0.00 -0.01 0.00 0.00 

 
0.45 0.05 0.18 0.04 0.03 

h0s1 0.00 0.00 -0.01 0.02 -0.03 
 

0.00 0.05 0.18 0.04 0.04 
h4s0 -0.20 0.00 0.00 0.00 0.00 

 
0.53 0.05 0.18 0.03 0.03 

h8s0 -0.23 0.00 0.00 0.00 0.00 
 

0.42 0.05 0.19 0.03 0.03 
h1s0 -0.25 0.00 0.02 0.00 0.00 

 
0.42 0.06 0.20 0.03 0.03 

            N=500 
           h0s0 -0.02 0.00 0.01 0.00 0.00 

 
0.84 0.11 0.39 0.07 0.07 

h0s5 0.28 0.00 0.02 0.00 0.01 
 

0.75 0.11 0.41 0.07 0.07 
h0s75 0.24 0.00 -0.01 0.00 -0.01 

 
1.19 0.10 0.42 0.07 0.07 

h0s1 0.00 0.00 0.01 0.01 -0.03 
 

0.00 0.11 0.43 0.08 0.07 
h4s0 -0.31 0.00 0.01 0.00 -0.01 

 
0.69 0.11 0.40 0.07 0.07 

h8s0 -0.45 0.00 0.05 0.01 -0.01 
 

0.65 0.11 0.44 0.07 0.07 
h1s0 -0.39 0.00 0.05 0.00 0.00 

 
0.58 0.11 0.43 0.07 0.06 

Note. Heteroscedasticity denoted “h” and skew is denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, 
and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). 
Baseline residuals denoted = Res, Heteroscedastic error = het, factor loadings = Load, intercept = Int. 
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Table 21. Percentage of Time More Parameterized Model Chosen 

 
5 Categories 

  
5 cat 
  
  
  

 
3 Categories 

 3 Categories 
3 cat 
  
  
  

N=2,000 BvS BvH BvHS SvH SvHS HvHS   BvS BvH BvHS SvH SvHS HvHS 
h0s0 0.02 0.07 0.06 0.08 0.07 0.01  0.03 0.04 0.04 0.08 0.05 0.02 
h0s5 1.00 0.21 1.00 0.00 0.07 1.00  1.00 0.53 1.00 0.01 0.06 1.00 
h0s75 1.00 0.51 1.00 0.00 0.07 1.00  1.00 0.91 1.00 0.00 0.04 1.00 
h0s1 1.00 0.78 1.00 0.00 0.03 1.00  1.00 0.99 1.00 0.00 0.05 1.00 
h4s0 0.19 1.00 1.00 1.00 1.00 0.03  0.32 1.00 1.00 1.00 1.00 0.03 
h8s0 0.18 1.00 1.00 1.00 1.00 0.01  0.50 1.00 1.00 1.00 1.00 0.01 
h1s0 0.14 1.00 1.00 1.00 1.00 0.11  0.47 1.00 1.00 1.00 1.00 0.03 
h4s5 1.00 0.98 1.00 0.45 1.00 1.00  0.94 0.59 1.00 0.25 0.99 1.00 
h4s75 1.00 0.91 1.00 0.00 1.00 1.00  1.00 0.19 1.00 0.00 1.00 1.00 
h4s1 1.00 0.70 1.00 0.00 1.00 1.00  1.00 0.04 1.00 0.00 1.00 1.00 
h8s5 0.96 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 0.89 
h8s75 1.00 1.00 1.00 0.99 1.00 1.00  1.00 1.00 1.00 0.83 1.00 1.00 
h8s1 1.00 1.00 1.00 0.00 1.00 1.00  1.00 0.97 1.00 0.00 1.00 1.00 
h1s5 0.75 1.00 1.00 1.00 1.00 0.99  0.10 1.00 1.00 1.00 1.00 0.95 
h1s75 1.00 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 1.00 
h1s1 1.00 1.00 1.00 0.23 1.00 1.00  1.00 1.00 1.00 0.11 1.00 1.00 

              
N=500                           
h0s0 0.00 0.13 0.08 0.16 0.12 0.00  0.04 0.08 0.08 0.09 0.09 0.05 
h0s5 0.93 0.09 0.65 0.01 0.05 0.91  0.91 0.13 0.61 0.01 0.09 0.88 
h0s75 1.00 0.14 1.00 0.00 0.07 1.00  1.00 0.34 0.95 0.01 0.07 0.99 
h0s1 1.00 0.22 1.00 0.00 0.04 1.00  1.00 0.44 1.00 0.00 0.05 1.00 
h4s0 0.02 0.80 0.76 0.82 0.80 0.02  0.21 0.65 0.60 0.60 0.58 0.03 
h8s0 0.07 1.00 1.00 1.00 1.00 0.05  0.49 1.00 1.00 1.00 0.99 0.01 
h1s0 0.10 1.00 1.00 1.00 1.00 0.06  0.46 1.00 1.00 1.00 1.00 0.01 
h4s5 0.77 0.41 0.90 0.25 0.71 0.92  0.43 0.18 0.66 0.15 0.52 0.83 
h4s75 1.00 0.31 1.00 0.02 0.72 1.00  0.94 0.08 0.94 0.02 0.49 1.00 
h4s1 1.00 0.23 1.00 0.00 0.70 1.00  0.99 0.04 1.00 0.01 0.56 1.00 
h8s5 0.41 1.00 1.00 0.99 1.00 0.94  0.06 0.90 0.98 0.91 0.98 0.62 
h8s75 0.99 0.99 1.00 0.76 1.00 1.00  0.71 0.76 0.99 0.52 0.98 1.00 
h8s1 1.00 0.94 1.00 0.09 1.00 1.00  0.93 0.38 0.99 0.08 0.99 1.00 
h1s5 0.30 1.00 1.00 1.00 1.00 0.86  0.07 1.00 1.00 1.00 1.00 0.43 
h1s75 0.98 1.00 1.00 0.97 1.00 1.00  0.58 0.94 1.00 0.79 1.00 0.97 
h1s1 1.00 0.99 1.00 0.22 1.00 1.00   0.92 0.67 1.00 0.17 1.00 1.00 

Note. Heteroscedasticity denoted “h” and skew is denoted “s” (i.e., h0s0), Skew values are 0.0, 0.5, 0.75, 
and 1.0 (noted as 0, 5, 75, 1). Heteroscedastic values include 0, 0.4, 0.8, and 1.0 (noted as 0, 4, 8, 1). 
Model comparisons are Baseline versus Skew-only (BvS), Baseline versus Het-only (BvH), Baseline 
versus HSGRM (BvHS), Skew-only versus Het-only (SvH), Skew-only versus HSGRM (SvHS), and Het-
only versus HSGRM (HvHS). 
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Table 22. Best fitting model as determined by AIC for 5- and 3-category conditions 
5 Categories Best Fitting 
N=2000 B S H HS 
B 0.920 0.030 0.045 0.005 
S 0.000 0.970 0.000 0.030 
H 0.000 0.000 0.830 0.170 
HS 0.000 0.000 0.001 0.999 

     N=500 B S H HS 
B 0.955 0.000 0.045 0.000 
S 0.005 0.968 0.000 0.027 
H 0.077 0.005 0.805 0.105 
HS 0.005 0.122 0.017 0.856 

     3 Categories 
   N=2000 B S H HS 

B 0.935 0.035 0.025 0.005 
S 0.000 0.970 0.000 0.030 
H 0.000 0.002 0.907 0.092 
HS 0.000 0.003 0.063 0.934 

     N=500 B S H HS 
B 0.870 0.080 0.035 0.015 
S 0.013 0.950 0.002 0.035 
H 0.123 0.052 0.765 0.060 
HS 0.035 0.170 0.105 0.690 
Note. True models are in the far-left column. Baseline GRM is denoted (B), Skew-only denoted (S), het-
only denoted (H), and HSGRM denoted (HS) 
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FIGURES 

 

 

Figure 1a and b. Skew-normal data generated with skew=0 or 0.5 and/or heteroscedasticity of 0 

or 0.4.  
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Figure 2a and 2b. Simulated data with skew of ~1.0 and heteroscedasticity of 0.80 and real 

impulsivity data.  
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Figure 3. Category Response Curves (CRCs) for a polytomous item with five response category 

options. 
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Figure 4. Operating Characteristic Curves (OCCs) for a 5-category item. 
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Figure 5. CRCs and TRCs for Baseline GRM and HSGRM for large sample 5-category condition 

with no heteroscedastic errors and only skew of 1.0  
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Figure 6. CRCs and TRC for Baseline GRM and HSGRM for large sample with 5 categories 

with heteroscedasticity of 0.8 and skew of 0 
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Figure 7. CRCs and TRC for both baseline GRM and HSGRM for large sample with 5 

categories with heteroscedastic errors of 0.8 and skew of 0.5  
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Figure 8. CRCs and TRC for Baseline GRM and full HSGRM for control condition with no skew 

or heteroscedastic errors in large sample with 5 categories 
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Figure 9. CRCs and TRC for Baseline GRM and HSGRM for large sample with 5 categories 

with heteroscedasticity of 0.4 and skew of 0. 
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Figure 10. CRCs and TRC for Baseline GRM and HSGRM for large sample with 5 categories 

with heteroscedasticity of 1 and skew of 0 

 

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

GRM Category Response Curves

Latent Trait

P
ro
ba
bi
lit
y

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

HSM Category Response Curves

Latent Trait

P
ro
ba
bi
lit
y

-3 -2 -1 0 1 2 3

1
2

3
4

5

Test Response Curves-GRM (black) & HS (red)

Latent Trait

E
xp

ec
te

d 
S

co
re



	 90 

 

Figure 11. CRCs and TRC for Baseline GRM and HSGRM for large sample with 5 categories 

with heteroscedasticity of 0.4 and skew of 5 
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Figure 12. CRCs and TRC for Baseline GRM and HSGRM for large sample with 5 categories 

with heteroscedasticity of 1 and skew of 5 
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Figure 13. Baseline model boxplots for item parameters in large sample with 5-category 

response options with no heteroscedasticity or skew. Each plot contains boxplots for each item. 



	 93 

 

Figure 14. Baseline model boxplots for item parameters in large sample with 5-category 

response options with no heteroscedasticity and skew of 0.5. Each plot contains boxplots for 

each item. 
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Figure 15. Baseline model boxplots for item parameters in large sample with 5-category 

response options with no heteroscedasticity and skew of 0.75. Each plot contains boxplots for 

each item. 
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Figure 16. Baseline model boxplots for item parameters in large sample with 5-category 

response options with no heteroscedasticity and skew of 1.0. Each plot contains boxplots for 

each item. 
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Figure 17. Baseline model boxplots for item parameters in large sample with 5-category 

response options with heteroscedastic errors of 0.4 and skew of 0. Each plot contains boxplots 

for each item. 
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Figure 18. Baseline model boxplots for item parameters in large sample with 5-category 

response options with heteroscedastic errors of 0.4 and skew of 0.5. Each plot contains 

boxplots for each item. 
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Figure 19. Baseline model boxplots for item parameters in large sample with 5-category 

response options with heteroscedastic errors of 0.4 and skew of 0.75. Each plot contains 

boxplots for each item. 
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Figure 20. Baseline model boxplots for item parameters in large sample with 5-category 

response options with heteroscedastic errors of 0.4 and skew of 1.0. Each plot contains 

boxplots for each item. 
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Figure 21. Baseline model boxplots for item parameters in large sample with 5-category 

response options with heteroscedastic errors of 0.8 and skew of 0. Each plot contains boxplots 

for each item. 
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Figure 22. Baseline model boxplots for item parameters in large sample with 5-category 

response options with heteroscedastic errors of 0.8 and skew of 0.5. Each plot contains 

boxplots for each item. 
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Figure 23. Baseline model boxplots for item parameters in large sample with 5-category 

response options with heteroscedastic errors of 0.8 and skew of 0.75. Each plot contains 

boxplots for each item. 
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Figure 24. Baseline model boxplots for item parameters in large sample with 5-category 

response options with heteroscedastic errors of 0.8 and skew of 1.0. Each plot contains 

boxplots for each item. 
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Figure 25. Baseline model boxplots for item parameters in large sample with 5-category 

response options with heteroscedastic errors of 1.0 and skew of 0. Each plot contains boxplots 

for each item. 
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Figure 26. Baseline model boxplots for item parameters in large sample with 5-category 

response options with heteroscedastic errors of 1.0 and skew of 0.5. Each plot contains 

boxplots for each item. 
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Figure 27. Baseline model boxplots for item parameters in large sample with 5-category 

response options with heteroscedastic errors of 1.0 and skew of 0.75. Each plot contains 

boxplots for each item. 
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Figure 28. Baseline model boxplots for item parameters in large sample with 5-category 

response options with heteroscedastic errors of 1.0 and skew of 1.0. Each plot contains 

boxplots for each item. 
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Figure 29. Baseline model boxplots for item parameters in small sample with 5-category 

response options with heteroscedastic errors of 0 and skew of 0. Each plot contains boxplots for 

each item. 
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Figure 30. Baseline model boxplots for item parameters in small sample with 5-category 

response options with heteroscedastic errors of 0 and skew of 0.5. Each plot contains boxplots 

for each item. 
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Figure 31. Baseline model boxplots for item parameters in small sample with 5-category  

response options with heteroscedastic errors of 0 and skew of 0.75. Each plot contains  

boxplots for each item. 
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Figure 32. Baseline model boxplots for item parameters in small sample with 5-category  

response options with heteroscedastic errors of 0 and skew of 1.0. Each plot contains  

boxplots for each item. 
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Figure 33. Baseline model boxplots for item parameters in small sample with 5-category  

response options with heteroscedastic errors of 0.4 and skew of 0. Each plot contains  

boxplots for each item. 
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Figure 34. Baseline model boxplots for item parameters in small sample with 5-category  

response options with heteroscedastic errors of 0.4 and skew of 0.5. Each plot contains  

boxplots for each item. 
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Figure 35. Baseline model boxplots for item parameters in small sample with 5-category  

response options with heteroscedastic errors of 0.4 and skew of 0.75. Each plot contains  

boxplots for each item. 

 



	 115 

 

Figure 36. Baseline model boxplots for item parameters in small sample with 5-category  

response options with heteroscedastic errors of 0.4 and skew of 1.0. Each plot contains  

boxplots for each item. 
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Figure 37. Baseline model boxplots for item parameters in small sample with 5-category  

response options with heteroscedastic errors of 0.8 and skew of 0. Each plot contains  

boxplots for each item. 
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Figure 38. Baseline model boxplots for item parameters in small sample with 5-category  

response options with heteroscedastic errors of 0.8 and skew of 0.5. Each plot contains  

boxplots for each item. 
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Figure 39. Baseline model boxplots for item parameters in small sample with 5-category  

response options with heteroscedastic errors of 0.8 and skew of 0.75. Each plot contains  

boxplots for each item. 
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Figure 40. Baseline model boxplots for item parameters in small sample with 5-category  

response options with heteroscedastic errors of 0.8 and skew of 1.0. Each plot contains  

boxplots for each item. 
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Figure 41. Baseline model boxplots for item parameters in small sample with 5-category  

response options with heteroscedastic errors of 1.0 and skew of 0. Each plot contains  

boxplots for each item. 
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Figure 42. Baseline model boxplots for item parameters in small sample with 5-category  

response options with heteroscedastic errors of 1.0 and skew of 0.5. Each plot contains  

boxplots for each item. 
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Figure 43. Baseline model boxplots for item parameters in small sample with 5-category  

response options with heteroscedastic errors of 1.0 and skew of 0.75. Each plot contains  

boxplots for each item. 
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Figure 44. Baseline model boxplots for item parameters in small sample with 5-category  

response options with heteroscedastic errors of 1.0 and skew of 1.0. Each plot contains  

boxplots for each item. 
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