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A B S T R A C T

Spatial prediction problems often use Gaussian process models, which can be computationally
burdensome in high dimensions. Specification of an appropriate covariance function for the
model can be challenging when complex non-stationarities exist. Recent work has shown that
pre-computed spatial basis functions and a feed-forward neural network can capture complex
spatial dependence structures while remaining computationally efficient. This paper builds on
this literature by tailoring spatial basis functions for use in convolutional neural networks.
Through both simulated and real data, we demonstrate that this approach yields more accurate
spatial predictions than existing methods. Uncertainty quantification is also considered.

1. Introduction

Gaussian processes are staple models for spatially dependent data. Gaussian processes have been applied to wind speeds (Cellura
et al., 2008), groundwater quality (Hooshmand et al., 2011), climatology (Zhang et al., 2023), and air pollution concentrations (Araki
et al., 2015). A common assumption with Gaussian processes is stationarity and isotropy: the mean is constant and the covariance
between two observations only depends on the distance between the observations. However, stationarity and isotropy are often
violated in practice, especially with multi-scale processes (Kirsner and Sansó, 2020). In short, the development of spatial methods
that incorporate nonstationarity is needed.

Another issue with Gaussian processes involves the inversion of large-dimensional covariance matrices that arise in forecasting
and Gaussian likelihood estimation. Covariance matrix inversion has a complexity of 𝑂(𝑛3) for 𝑛 observations. Hence, for many
large spatial data sets, Gaussian process computations become infeasible. However, recent methods have been developed to reduce
computations with minimal loss of precision, including nearest neighbor Gaussian processes (NNGP) methods (Finley et al., 2020),
fixed-rank Kriging (Cressie and Johannesson, 2008), and INLA-SPDE methods (Rue et al., 2009; Lindgren et al., 2011).

A variety of models have been proposed to handle spatial nonstationarity. For example, Gramacy and Lee (2008) partition the
spatial domain via Bayesian CART methods where stationarity reasonably holds in each subspace. Kim et al. (2005) also employ this
tactic, but use Voronoi partitioning on the spatial domain. Another approach accommodates nonstationarity by warping or expanding
the spatial domain. For example, Bornn et al. (2012) use dimension expansion, constructing a stationary structure on an expanded
space; Schmidt and O’Hagan (2003) and Sampson and Guttorp (1992) warp the spatial domain, assuming stationarity in the warped
space. Furthering this line of work, Zammit-Mangion et al. (2022) use deep neural networks to estimate the warping function. Higdon
(1998) base their analysis on a discrete convolutional process having a spatially and temporally varying kernel; Lemos and Sansó
(2009, 2012) and Kirsner and Sansó (2020) further this line of research. Recently, Kirsner and Sansó (2020) used a multi-scale
spatial kernel convolution method that specifies local process properties at different resolutions.

As the popularity of neural networks grows, its ability to model complex nonlinear spatial functions has increased, especially
in nonstationarity settings. As a baseline example, Cracknell and Reading (2014) feed spatial coordinates into neural networks to
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predict nonstationary spatial processes. Building on this, Chen et al. (2024) introduce the so-called DeepKriging approach, which
feeds a set of spatial basis functions and coordinates into a neural network. DeepKriging typically outperforms neural networks
based on spatial coordinates alone (Chen et al., 2024). Nag et al. (2023b) extend DeepKriging applications to spatial–temporal

odels by adding temporal basis functions to the spatial basis functions. There, a quantile loss function is used on a long short-term
emory (LSTM) neural network to model time dependence. Nag et al. (2023a) develop bivariate DeepKriging for spatial processes

with bivariate responses. Zammit-Mangion et al. (2024) feed spatial radial basis functions (RBFs) into a Bayesian neural network
(BNN) (Neal, 2012), showing that spatial BNNs can adequately describe common spatial processes. Zhan and Datta (2024) use a
eneralized least squares loss with weights set via the nearest neighbor Gaussian processes’ precision matrix. This is accomplished by

adding graph convolution layers after a multi-layer perceptron. Finally, Daw and Wikle (2023) use random Fourier expansions and
apply extreme learning machine and ensembling operations to avoid training parameters and conduct uncertainty quantification.
ee Wikle and Zammit-Mangion (2023) for a recent summary of statistical deep learning approaches for spatial and spatio-temporal

data.
Motivated by Chen et al. (2024), this paper shows how to model spatial dependence with convolutional neural networks (CNNs).

imilar to Chen et al. (2024), basis functions are employed; however, we evaluate ours on a grid of knot locations. This essentially
reats the basis functions as images, allowing us to work with convolutional neural networks, a powerful tool for analyzing image

data (Krizhevsky et al., 2012). We use random dropout layers to quantify prediction uncertainty (Gal and Ghahramani, 2016). Our
spatial deep convolutional neural network — dubbed a SDCNN — is shown to achieve superior predictive performance in non-
tationarity settings. Furthermore, by using neural networks based on gradient approaches (in lieu of inverting a spatial covariance
atrix), our approach is extremely computationally efficient, capable of scaling to massive datasets. Our methods also make use of
PUs to further speed computations.

The remainder of this paper proceeds as follows. In Section 2, relevant background material is introduced, including feed-
orward and convolutional neural networks and their relation to the methods in Chen et al. (2024). Section 3 presents our proposed

SDCNN. Section 5 offers a simulation study,showing the efficacy of the methods on synthetic data. Section 6 demonstrates method
performance on temperature and soil carbon data sets. Section 7 provides concluding remarks along with some future research
irections.

2. Background

Deep learning applications have exploded in recent years, partially due to their ability to make highly accurate predictions of
complex nonlinear processes. In this short section, widely used neural networks such as the feed-forward and convolutional neural
networks are sketched. Since the parameters of a neural network are generally estimated by optimizing a loss function, gradient
based approaches are considered. A description of the DeepKriging approach of Chen et al. (2024), one of our baseline models, is
included.

2.1. Feed-forward neural networks

Feed-forward neural networks (FNNs), which model non-linear structures in independent data, contain an input layer, one or
ore fully connected layers, and an output layer. Consider a single hidden layer FNN that models the univariate responses {𝑌𝑖}𝑁𝑖=1. A

ength-𝑟 covariate (input) vector 𝒙𝑖 exists to help explain 𝑌𝑖. The input layer first receives 𝒙𝑖. Then, a fully connected layer computes
n affine transformation of the 𝒙𝑖 and activates it via the non-linear activation function 𝑓ℎ(⋅):

𝒉𝑖 ∶= 𝑓ℎ(𝑾 ′𝒙𝑖 + 𝒄ℎ), 1 ≤ 𝑖 ≤ 𝑁 , (1)

where 𝑓ℎ(⋅) is the activation function and 𝑾 and 𝒄ℎ are affine transformation parameters. Clarifying dimensions, 𝑾 is an 𝑟 × 𝑛ℎ
atrix and 𝒄ℎ is an 𝑛ℎ-dimensional vector. In the deep learning literature, the components of 𝑾 are called hidden layer weights and
ℎ is called a bias; 𝑛ℎ denotes the number of hidden layer nodes. The length 𝑛ℎ vector 𝒉𝑖, called a hidden unit, is the output of the
idden layer. While (1) is written in vector form for brevity, 𝑓ℎ(⋅) is univariate and applied element-wise to the affinely transformed

covariates. This layer is fully-connected, and it can be combined with other layers depending on problem goals.
Activation functions are crucial components of neural networks as they inject non-linear features into the modeling proce-

dure. Sharma et al. (2017) summarize frequently used activation functions. Two of the most commonly used are the rectified linear
nit (ReLU) function 𝑓 (𝑥) = max(0, 𝑥) and the Sigmoid function 𝑓 (𝑥) = [1 + exp(−𝑥)]−1.

The hidden layer in a single hidden-layer FNN is followed by an output layer, which utilizes another activation function 𝑓𝑜(⋅) to
predict 𝑌𝑖 (hats denote predictions):

𝑌𝑖 ∶= 𝑓o(𝝃′𝒉𝑖 + 𝑐o), 1 ≤ 𝑖 ≤ 𝑁 .
The length 𝑛ℎ vector 𝝃 contains the output layer weights and 𝑐o is a scalar intercept parameter. Here, 𝑓o(⋅) is a univariate output
layer activation function, typically chosen based on the support set of the 𝑌𝑖s. For example, the identity activation function 𝑓o(𝑥) = 𝑥
is often used with a continuous numeric responses, while the Sigmoid function is often employed for binary 𝑌𝑖. The quantities
𝑾 , 𝒄ℎ, 𝝃, and 𝑐o above are often chosen to optimize some loss function. With continuous {𝑌𝑖}, the quadratic loss ∑𝑁

𝑖=1(𝑌𝑖 − 𝑌𝑖)
2 is

typically minimized. As 𝑌𝑖 is a non-linear function of 𝒙𝑖, optimal parameter estimates do not usually have a closed form. Nonetheless,
optimization algorithms often efficiently numerically minimize the loss via gradient descent methods. Even in complicated neural
networks, back-propagation techniques can efficiently calculate the gradients involved in the numerical minimization (Rumelhart
et al., 1986).
2
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2.2. Convolutional neural networks

Some geographical or image data have spatial structures that FNNs may not efficiently model. An alternative, a convolutional
neural network (CNN), is known to be a superior image analysis tool (Albawi et al., 2017). CNNs stem from LeCun et al. (1995) and
more capably explore localized spatial structures. In addition to having convolutional layers, a CNN may also have fully connected
and/or pooling layers, depending on needs. Convolutional layers apply a discrete convolution to the input image (regarded as matrix
data) with a set of trained filters. The output of each filter is a ‘‘convolved image’’ that contains the Hadamard product of the input
image and filter for each compatible submatrix.

Let  be the image’s kernel function and  the image to be convolved, both bivariate. The discrete convolution operation ∗
obeys

(𝑥, 𝑦) ∗ (𝑥, 𝑦) =
∞
∑

𝑖=1

∞
∑

𝑗=1
(𝑖, 𝑗)(𝑥 − 𝑖, 𝑦 − 𝑗).

The summation is usually truncated in practice: the indices 𝑥 − 𝑖 and 𝑦 − 𝑗 should be in the observation ranges.
There are many different convolutions that illuminate certain patterns or features in an image, including edges, corners, or

extures (O’Shea and Nash, 2015). In the context of neural networks, these convolutions can be learned or estimated as part of the
model fitting procedure, allowing the data to determine the important features for predicting a response. Outputs from convolutional
layers can be vectorized and combined with a fully-connected layer to increase model flexibility, often improving standard feed-
orward neural network predictions. The superior performance of convolutional neural networks for image data motivates our
ethods, where we generate basis functions on a regular grid, resembling an image.

2.3. DeepKriging

Spatial processes are often modeled by Gaussian dynamics. Let {𝑍(𝒔)} be a univariate Gaussian spatial process over 𝒔 ∈ 𝑑 and
et 𝒁 = {𝑍(𝒔1),… , 𝑍(𝒔𝑁 )}𝑇 denote the Gaussian field recorded over the 𝑁 locations 𝒔1,… , 𝒔𝑁 . The observation 𝑍(𝒔𝑖) is usually a
oisy measurement taken from some latent process {𝑌 (𝒔)}:

𝑍(𝒔𝑖) = 𝑌 (𝒔𝑖) + 𝜀(𝒔𝑖),
where {𝜀(𝒔)} is a Gaussian error process that is independent of {𝑌 (𝒔)} and independent from site to site. Here, {𝑌 (𝒔)} is the latent

aussian process of interest, which is often further decomposed into

𝑌 (𝒔𝑖) = 𝒙(𝒔𝑖)𝑇 𝜷 + 𝜈(𝒔𝑖),

where 𝒙(𝒔𝑖) is a length-𝑝 vector of explanatory covariates at location 𝒔𝑖 and 𝜷 is a vector of unknown regression coefficients.
Spatial dependence is incorporated by allowing {𝜈(𝒔)} to be a zero mean Gaussian process with the unknown spatial covariance
Cov(𝜈(𝒔𝑖), 𝜈(𝒔𝑗 )) ∶= 𝐶(𝒔𝑖, 𝒔𝑗 ).

Methods exist that model Gaussian processes through basis function expansions. The Karhunen–Loève expansion is a common
expansion that represents a random field {𝜈(𝒔)} with covariance function 𝐶(⋅, ⋅) as

𝜈(𝒔) =
∞
∑

𝑖=1
𝛼𝑖𝜙𝑖(𝒔),

where {𝜙𝑖(⋅)}∞𝑖=1 are orthogonal functions and {𝛼𝑖}∞𝑖=1 are uncorrelated random variables. From this, a number of basis functions, not
ecessarily orthogonal, can be defined. For example, one can express 𝜔(𝒔) = 𝒃(𝒔)′𝜼, where 𝒃(𝒔) is a vector of spatial basis functions

and 𝜼 is a multivariate Gaussian variable having a diagonal covariance matrix. An Eigen-decomposition of 𝒃(⋅) effectively rewrites
𝜔(𝒔) with a Karhunen–Loève expansion.

Two applications of basis function expansions are Gaussian predictive processes (Banerjee et al., 2008) and fixed-rank Krig-
ng (Cressie and Johannesson, 2008). Both have a discrete convolution representation (Higdon, 1998; Lemos and Sansó, 2009, 2012).

RBFs are used in Chen et al. (2024) to represent the spatial process, enabling them to make predictions at unobserved locations
with FNNs. There, grids of basis functions over several resolutions are generated, governed by three parameters: location, range,
nd kernel function. The multi-resolution model of Nychka et al. (2015), which explores different spatial structure scales, is used.
he basis functions are

𝜙(𝑟) =
{

(1 − 𝑟)6(35𝑟2 + 18𝑟 + 3)∕3, 𝑟 ∈ [0, 1]
0 otherwise,

(2)

where 𝑟 is the Euclidean distance between an observation and a basis function knot location, scaled by the range parameter 𝜃. As
uch, for each observation 𝑖, the 𝐽 basis functions defined by

𝜓𝑖,𝑗 ∶= 𝜙
(

‖𝒔𝑖 − 𝒄𝑗‖2
𝜃

)

, 1 ≤ 𝑗 ≤ 𝐽 ,

are introduced. Here, the Euclidean distance is used, 𝒔𝑖 is the location of 𝑖th observation, and 𝒄𝑗 is the location extracted from the
𝑗th basis function.
3
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Afterward, Chen et al. (2024) input the scaled spatial coordinates and RBFs into a deep neural network. Parameters in the neural
networks are estimated by minimizing a quadratic loss, and further predictions are subsequently made. This method has a smaller
prediction mean squared error (compared to classical Kriging and FNNs with spatial coordinate input) and avoids covariance matrix
nversion.

3. Methodology

This section introduces our spatial deep convolutional neural network (SDCNN). While RBFs are still used, they are employed in
on-classical ways. For each resolution, the RBFs are stored in an image format; in this way, each observation has multiple ‘‘image

covariates’’ (one image covariate for each resolution). For the RBFs at each resolution, convolutional layers are used to first explore
mage properties. Then, the image is reshaped into a long vector (flattened) and fed into fully connected layers.

Our SDCNN also employs a random dropout layer before each weight layer, avoiding overfitting and producing prediction
uncertainty estimates. Gal and Ghahramani (2016) interpret dropout layers probabilistically, enabling deep neural networks to
uantify prediction uncertainty. A fully connected layer is built alongside the other covariates. Finally, we concatenate the outputs
rom all previous layers and make predictions in the output layer. More details follow.

3.1. Basis function generation

To set up the neural network, spatial RBFs are first generated as input covariates. The R package FRK, created by Zammit-
Mangion and Cressie (2023), accomplishes this and is henceforth used. In this package, the function auto_basis allows users to
select resolution parameters and kernel function type (Gaussian, bisquare, etc.). Elaborating, each basis function has a location and
scale parameter that standardizes the distance between each observation and the location of the basis function knot. Also needed is
a kernel function, which is chosen as Gaussian here. The basis function evaluated at the 𝑖th observation and 𝑗th knot, denoted by
𝜙(𝒔𝑖, 𝒄𝑗 ), is

𝜙(𝒔𝑖, 𝒄𝑗 ) = exp
(

−
‖𝒔𝑖 − 𝒄𝑗‖2

2𝜃

)

,

where 𝒔𝑖 denotes the 𝑖th observation’s location, 𝒄𝑗 the 𝑗th basis function’s knot location, and 𝜎 is a scale parameter. In this way,
both spatial coordinates and RBFs inject information about the observation at 𝒔𝑖.

Our RBFs are generated under several different resolutions, which enables them to capture spatial effects occurring on different
scales (this is a multi-resolution model (Nychka et al., 2015)). For the first resolution, the number of RBFs is relatively small, but
he scale parameter is large, serving to explore coarse spatial structure over larger scales. For smaller scale behavior, subsequent
BF resolutions employ an increasing number of RBFs and a decreasing scale parameter, effectively allowing more localized spatial

structures to be explored.
An example with three RBF resolutions for United States soil carbon data, which is analyzed later, is depicted in Fig. 1. Here,

each RBF resolution has a natural grid structure. For the 𝑘th resolution in a two-dimensional spatial domain, 𝑛𝑘 × 𝑚𝑘 RBF factors
or each observation arise; here, 𝑛𝑘 and 𝑚𝑘 denote the number of rows and columns, respectively, of the RBF’s 𝑘th resolution. Given

this structure, the RBF values are treated as an image (matrix) to fully take advantage of the power of CNNs.

3.2. Uncertainty quantification

While neural networks are powerful tools capable of accurately predicting complex processes, the gradient-based optimization
ethods used to fit them only provide point estimates of parameters and their corresponding predictions. To explore estimation

ariability, we now delve into uncertainty quantification.
Dropout layers, introduced in Srivastava et al. (2014), are layers that act to prevent overfitting while combining many potential

odels together. The term dropout refers to temporarily dropping a neural network unit and its subsequent influence. Our dropout
layers specify a dropout probability 𝑝, and every column of the weights 𝑾 in (1) have probability 𝑝 of being set to zero,
ndependently across components. This is quantified by setting

�̃� ∶= diag(𝝍)𝑾 ,

where 𝝍 = (𝜓1, 𝜓2,… , 𝜓𝑛ℎ )′ is a length-𝑛ℎ vector whose entries can only be zero or one: 𝜓𝑖
𝑖𝑖𝑑∼ Bernoulli(𝑝) (iid means independent

and identically distributed). The dropout probability 𝑝 is usually chosen via cross-validation. In our work, 𝝍 is resampled at every
iteration. Dropouts are typically made during training (ie, gradient descent) but not during prediction. More recently, Gal and
Ghahramani (2016) mathematically show that a dropout layer used before each hidden layer probabilistically approximates the
scenario with deep Gaussian processes. These authors further demonstrate that incorporating dropout layers during prediction
can effectively approximate model uncertainty, while preserving computational efficiency and accuracy. Specifically, prediction
ncertainty is introduced by randomly deactivating nodes in the network during the prediction phase. This allows multiple prediction

samples to be generated, which can be subsequently analyzed to assess model uncertainty; see Gal and Ghahramani (2016) for
additional details.
4
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Fig. 1. Illustration of three RBF resolutions. The first resolution (red circles) has the largest scale and explores large-scale spatial effects. The second resolution
(blue circles) offers a smaller more localized scale, while the third resolution (yellow circles) explores the finest localized spatial structure.

3.3. SDCNNs

After generating the RBFs, we feed each resolution’s image into a convolutional layer. In our work, three different RBF resolutions
are fed into three separate convolutional layers. The output from these convolutional layers are subsequently vectorized and
concatenated with the output from the convolutional layer. These are then treated as input to a feed-forward layer. It is also possible
to include additional input covariates within the feed-forward layer for spatial coordinates.

Taking the first resolution as an example, suppose that for each 𝒔𝑖, the 𝑛1 × 𝑚1 RBF matrix 𝑩𝑖,1 is calculated, where (𝑩𝑖,1)𝑛,𝑚 is
the RBF value associated with location 𝒔𝑖 for the first resolution in the 𝑛th row and 𝑚th column. Each element in 𝑩𝑖,1 represents a
knot, implying that 𝐽1 = 𝑚1𝑛1, where 𝐽1 denotes the total knots (basis functions) for the first resolution. We then feed 𝑩𝑖,1 into a
convolutional layer containing 𝑛𝐹 filters, denoted by {𝓁}

𝑛𝐹
𝓁=1, where {𝓁}

𝑛𝐹
𝓁=1 is a 2 × 2 matrix for all 𝓁. Our work takes 𝑛𝐹 = 128

as is classic in the literature, but other settings can be tried. Since the terms ‘‘filter’’ and ‘‘kernel’’ describe the same things in neural
networks, we use the term filter henceforth to avoid confusion with the kernel terminology common in spatial statistics. The output
from the convolutional layer for the 𝓁th filter, denoted by 𝑪 𝑖,𝓁 , is an (𝑛1 − 1) × (𝑚1 − 1) matrix with entries

(𝑪 𝑖,𝓁)𝑝,𝑞 =
2
∑

𝑚=1

2
∑

𝑛=1
(𝑩𝑖,1)𝑝+𝑚−1,𝑞+𝑛−1(𝓁)𝑚,𝑛.

After computing the output from the convolutional layer, 𝑪 𝑖,𝓁 is vectorized into a length-(𝑛1 − 1)(𝑚1 − 1) vector. As there are 𝑛𝐹
similar filters, 𝑛𝐹 vectors with the same length are obtained after convolution and vectorization. These vectors are next stacked into
one long vector, denoted by 𝑖,1, of length-𝑛𝐹 (𝑛1 − 1)(𝑚1 − 1).

Our next step feeds 𝑖,1 into three feed-forward layers, with each layer having 𝑁ℎ = 100 hidden nodes (this setting can also be
changed) and using the same ReLU activation function 𝑓 :

(𝑖)1,1 = 𝑓 (𝑾 ′
1,1𝑖,1 + 𝒄1,1),

(𝑖)1,2 = 𝑓 (𝑾 ′
1,2(𝑖)1,1 + 𝒄1,2),

(𝑖)1,3 = 𝑓 (𝑾 ′
1,3(𝑖)1,2 + 𝒄1,3),

(3)

where 𝑾 1,1, 𝑾 1,2, and 𝑾 1,3 are weight matrices of dimension 𝑛𝐹 (𝑛1 − 1)(𝑚1 − 1) ×𝑁ℎ for 𝑾 1,1 and 𝑁ℎ ×𝑁ℎ for the other two 𝑾 s.
Here, 𝒄1,1, 𝒄1,2, and 𝒄1,3 are length 𝑁ℎ bias/intercept parameters. The vectors (𝑖)1,1, (𝑖)1,2, and (𝑖)1,3 each have length 𝑁ℎ.

Following similar steps, transformed RBFs for the other two resolutions, denoted by (𝑖)2,3 and (𝑖)3,3, are computed. The effects
of any covariates 𝒙𝑖 at location 𝒔𝑖 can be quantified by feeding these into another feed-forward layer, again with 𝑁ℎ nodes; this
results in (𝑖)𝒙. At this point, the quantities (𝑖)1,3, (𝑖)2,3, (𝑖)3,3, and (𝑖)𝒙 are stacked into a length 4𝑁ℎ vector denoted by 𝑯 𝑖.

In our final step, 𝑯 𝑖 is fed into an output layer:
′

5

𝑂𝑖 = 𝑾 out𝑯 𝑖 + 𝑐out ,
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where 𝑾 out is a 4𝑁ℎ × 1 weight matrix and 𝑐out is a constant (the identity activation function is used here). Here, 𝑂𝑖 serves as
a prediction of 𝑌𝑖 given a set of neural network parameters. With gradient-based optimization approaches, one can numerically
estimate all weight matrices and bias parameters by optimizing an appropriate loss function. In our case, a quadratic sum of squares
oss is used with continuous responses. Random dropout layers are added before each hidden layer to quantify prediction uncertainty
nd avoid overfitting.

4. Model comparisons and performance evaluation methods

This section discusses how to compare our SDCNN to three other techniques. Our first comparative technique uses a Gaussian
rocess fitted by integrated nested Laplace approximations (INLA). The second and third comparative techniques are neural networks

with various inputs. Several scoring rules and performance metrics are introduced below to judge the model fits.

4.1. Competing models

We compare our SDCNN with the DeepKriging approach of Chen et al. (2024), a baseline DNN with only spatial coordinates
inputted, and a Gaussian process fitted via INLA. Comparisons are done via five-folded cross-validation (out of sample prediction)
or one simulated and two real data sets. Specifically, for each case, the full dataset is split first into training and test portions for
ross validation. The model is only trained on the training data. For each neural network based approach, early stopping is applied:
 subset of training data, called a validation set, is further split to determine when to stop model training to avoid overfitting. The
odel is called trained for one epoch when all training data has been used in the optimizer once. At the end of each epoch, if

he model fit becomes better (a smaller loss on the validation data), the model is saved and replaces the previous optimal model.
n short, only the parameters that lead to the smallest mean squared error on validation sets is saved, and further used to make
ut-of-sample prediction on the test portion. The optimizer Adam (Kingma and Ba, 2014) is used with a squared error loss and

learning rate of 0.001 in all neural network models. Our SDCNN is trained with 1000 epochs, batch size 1000, and drop rate of 0.1.
A more detailed structure of each neural network is shown in Appendix.

All code used in this paper has been uploaded to https://github.com/qwang-77/Convolutional-Kriging and the models are fitted
n R. The R-INLA package in Martino and Rue (2009) is used along with the neural network package Keras (Arnold, 2017). Choices

of hyperparameters, the number of hidden nodes, etc., are now discussed.

• R-INLA :
The R-INLA package of Martino and Rue (2009) implements a two-dimensional stochastic partial differential equation (SPDE)
approach to model spatial processes. Righetto et al. (2020) discuss hyperparameter choices in this method, such as mesh-
building parameters. Two crucial parameters, which quantify the triangular densities of the mesh and are generated by
inla.mesh.2d, are max.edge, which controls the largest triangle edge length, and cutoff, which controls the minimum
distance between two points. Care is needed to define a proper value of max.edge as this parameter depends on cutoff;
other parameters are set to default package values. The max.edge parameters are set by first choosing the smaller of the range
of the longitudes and latitudes. This is then divided by the square root of the total number of observations, then multiplied
by an adapting parameter 𝜃 > 0, chosen by cross validation, for each data set. This procedure is quantified by a parameter 𝜙∗

obeying

𝜙∗ =
min (𝑟(Longit ude), 𝑟(Lat it ude))

√

𝑁
× 𝜃 ,

where 𝑟(⋅) calculates the range of a vector of observations. Smaller 𝜃 induce denser triangles in the mesh; however,
computations increase rapidly with smaller 𝜃 due to the increase in the number of knots.

• Baseline Deep Neural Network :
This deep neural network trains the model using only longitude and latitude. The longitude and latitude are first scaled with
min–max methods: 𝑓𝑚𝑖𝑛−−𝑚𝑎𝑥(𝒛) = 𝒛∕(max𝒙 − min𝒙) before being fed into the neural network. There are three hidden layers,
all using the ReLU activation function, 100 hidden units in each layer, and one output layer with a linear activation function.
A dropout layer with dropout rate 𝑝 = 0.1 is applied before each weight layer. Finally, a batch normalization layer is used
after each hidden layer. In this manner, the best model among all epochs is retained. The batch size and maximum number
of epochs are flexibly set for each data set after considering computational issues.

• DeepKriging with RBFs :
In addition to longitude and latitude, the basis functions calculated in the FRK package (Zammit-Mangion and Cressie, 2023)
are included. There may be multiple RBF resolutions; these basis functions are not scaled. Three basis function resolutions
are used in our work, corresponding to the first three resolutions in the FRK package. Multiple hidden layers are used, each
having 100 hidden nodes, followed by one dropout layer with a dropout rate of 0.1 and a batch normalization layer. The ReLU
activation function is used. The other settings are identical to the Baseline DNN settings, but the epoch count is set to 500.
Early stopping is used again.
6
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a

4.2. Model performance scoring rules

Following Gal and Ghahramani (2016), after training the model in each cross-validation fold, predictive samples can be obtained
t each observed location. Based on these samples, the four models are judged/scored on the following criteria:

• Prediction MSEs :
For each fold, the prediction mean squared error (MSE) for the testing sample is calculated based on an out-of-sample prediction
computed from 80% of the data. Thereafter, the MSE is calculated for these predictions via

MSE(𝒚, �̂�) =
∑𝑁
𝑖=1(𝒚 − �̂�)

2

𝑁
.

MSE measures balance bias and variance in assessing point prediction accuracy.
• CRPS :

The continuous ranked probability score (CRPS) is defined as

CRPS(𝐹 , 𝑥) = −∫

∞

−∞
(𝐹 (𝑦) − 𝐼{𝑦 ≥ 𝑥})2𝑑 𝑦.

Here, 𝐹 is the cumulative distribution function (CDF) of the probabilistic forecast. By Lemma 2.2 of Baringhaus and Franz
(2004) (or identity (17) of Székely and Rizzo (2005)), the CRPS score has the closed form

CRPS(𝐹 , 𝑥) = 1
2
𝐸𝐹 [|𝑋 −𝑋′

|] − 𝐸𝐹 [|𝑋 − 𝑥|],

where 𝑋 and 𝑋′ are independent copies of a random variable with cumulative distribution function 𝐹 and finite first
moment (Gneiting and Raftery, 2007). The CRPS evaluates probabilistic forecasts by assessing its entire predictive distribution;
it is particularly useful for comparing models in contexts where uncertainty quantification is important. The model with the
bigger CRPS is preferred. CRPS scores can be negative.

• ICRs :
Level 𝛼 credible intervals of the posterior predictive distribution at each location can be obtained via Monte Carlo methods.
The interval coverage rate (ICR) measures the percent of observations that fall within the credible interval:

ICR =
∑𝑁
𝑖=1 𝐼(𝑥𝑖 ∈ (𝐿𝑖(𝛼), 𝑈𝑖(𝛼)))

𝑁
.

Here, 𝑥𝑖 denotes the 𝑖th observation, 𝛼 the credible interval level, 𝐿𝑖(𝛼) is the lower 𝛼
2 quantile of the prediction samples, and

𝑈𝑖(𝛼) is the upper 1 − 𝛼
2 quantile of the prediction samples. The model with the closest ICR to 1 − 𝛼 is preferred. Although the

coverage rate only compares the accuracy of an interval estimate and not its precision, it is a natural and common approach
to evaluating uncertainty quantification.

• ISs :
The interval score (IS) is another prediction interval measure, with smaller ISs being preferred. Two quantiles that control the
upper and lower tails govern the width of the interval:

𝑈 = 𝑄
(

𝑥, 1 − 𝛼
2

)

, 𝐿 = 𝑄
(

𝑥, 𝛼
2

)

,

where 𝑄 is the quantile function. The IS is
𝑆 int
𝛼 (𝐿, 𝑈 ; 𝑥) = (𝑈 − 𝐿) + 𝛼

2
(𝐿 − 𝑥)𝐼{𝑥 < 𝐿} + 𝛼

2
(𝑥 − 𝑈 )𝐼{𝑥 > 𝑈}

This scoring rule, evolving from Dunsmore (1968) and Murphy and Winkler (1979), has intuitive appeal. The predictor is
rewarded for an accurate and short interval, but is penalized if the observation misses the posterior interval. IS balances
accuracy and precision for interval estimates (similar to the bias and variance balance of the MSE for point estimates).

5. Simulation study

This section studies the ability of our SDCNNs to predict a complex target function — the two dimensional Eggholder function

𝑓 (𝑥1, 𝑥2) = −(𝑥2 + 47) sin
(

√

|

|

|

|

𝑥2 +
𝑥1
2

+ 47||
|

|

)

− 𝑥1 sin

(

√

|

|

|

|

𝑥1 − (𝑥2 + 47)||
|

|

)

,

where 𝑥1 and 𝑥2 represent longitude and latitude. This function has multiple local maximums and minimums, as depicted in Fig. 2,
making prediction difficult.

Two configurations of training data are considered. The first uses all points in a square within a five-folded cross-validation; the
second eliminates a rectangular subregion of these locations. This eliminated region is graphically depicted in Figs. 5 and 6. In the
latter case, the observations within the rectangular region are predicted to evaluate procedure stability and robustness. Our (𝑥1, 𝑥2)
locations are generated by a 300 × 300 grid, uniformly spaced over (𝑥1, 𝑥2) ∈ [−500, 500] × [−500, 500]. We linearly scale 𝑥1 and 𝑥2
so that they all lie in [0, 1]2. Response variables are the 𝑓 (𝑥 , 𝑥 ) values (without noise).
7
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Fig. 2. True Eggholder function values.

Table 1
Scores for Full Eggholder simulation dataset.

MSE CRPS ICR(0.95) IS(0.05)

INLA-SPDE 297.57 −5.27 0.91 125.77
Baseline FNN 5584.53 −38.23 0.83 568.99
DeepKriging 171.64 −5.55 0.96 61.51
SDCNN 52.68 −3.24 0.99 41.63

5.1. Predictive eggholder function performance

5.1.1. The full data set
First, we train a model using all observations. The predicted surface for this data is shown in Fig. 3. The Baseline DNN model

makes the worst predictions, ambiguously describing local Eggholder properties. Visual differences between the INLA, DeepKriging,
and SDCNN methods from the plot are minor; performance scores will reveal more structure later. The uncertainty surface in Fig. 4
shows that the INLA method has the smallest prediction standard deviation of all models. The Baseline DNN has the largest standard
deviation (with obvious biases), and the SDCNN model has a smaller standard deviation than the DeepKriging model.

Using dropout layers to assess prediction uncertainty, 100 prediction samples for the Baseline DNN, DeepKring, and SDCNN
models were made for each point. For INLA, posterior predictive samples are accessibly obtained through the R INLA package,
allowing us to calculate mean squared prediction errors, 0.95 ICRs, CRPSs, and ISs for each spatial location. The scores for these
four models are shown in Table 1 and reveal that the SDCNN method has the smallest MSE, CRPSs, and ISs. This said, the interval
coverage rate of 0.99 for the SDCNN seems too high (not as close to 0.95 as DeepKriging).

5.1.2. The reduced data set
This case repeats the last subsection’s exercise with the reduced data set. The predictive mean surface and standard deviation plots

are shown in Figs. 5 and 6. For the predictive mean surface, INLA did not reproduce the ‘‘diagonal lines’’ structure in the Eggholder
function values. The best predictive model is again the SDCNN, whose predictions did not overly degrade with the omitted rectangle.
In contrast, the standard deviation of INLA predictions increased greatly when the rectangle was omitted. The DeepKriging method
also did not significantly degrade with the omitted rectangle. Here, SDCNNs are more stable than INLA techniques when local
observations are rare; moreover, SDCNNs have the best performance scores when the rectangle is not omitted.
8
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Fig. 3. Predicted mean surface of the Eggholder function from all data.

Fig. 4. Prediction standard deviation of the Eggholder function from all data.

6. Applications

6.1. Satellite temperatures

Now we apply our SDCNN method to a data set used in Heaton et al. (2019), which contains observations on the 500 × 300
equally spaced grid spanning longitudes from −95.91153 degrees W to −91.28381 degrees W and latitudes from 34.29519 degrees N
to 37.06811 degrees N. About 1.1% of the data are missing because of clouds. The 𝑌 variable is the daytime land surface temperature
9
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Fig. 5. Predicted Eggholder surface with a missing rectangle.

Fig. 6. Standard deviation of Eggholder surface with a missing rectangle.

in degrees Celsius recorded by the Terra instrument onboard the MODIS satellite on August 4, 2016 (Level-3 data). The data are
available at https://github.com/finnlindgren/heatoncomparison, contain 148,309 observations, and are plotted in Fig. 7.

We generated a 200 × 200 grid of longitudes and latitudes over the study region and predicted the surface temperatures at all
locations on the 200 × 200 grid. The predicted surface of the four models above is shown in Fig. 8 over the grid. The SDCNN
10
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Table 2
Scores for the satellite temperatures.

MSE CRPS ICR(0.95) IS(0.05)

INLA-SPDE 1.04 −0.65 0.37 17.64
Baseline FNN 2.02 −0.89 0.44 21.48
DeepKriging 0.78 −0.54 0.59 9.99
SDCNN 0.31 −0.30 0.70 4.77

Fig. 7. Observation surface of the satellite data.

method best matches the true data, efficiently capturing local variations in the surface. INLA methods also capture some of the local
structure, but the image is blurrier than the SDCNN predicted surface. The DeepKriging and Baseline DNN methods did not work
well at all.

The INLA predictions in Fig. 9 have a large standard deviation in the bottom right corner locations where data are missing. This
said, the INLA predictions have the smallest standard deviation when observations exist nearby.

The prediction MSEs, CRPSs, ICRs, and ISs for each fold are shown in Table 2. The SDCNN method performs best.
In the above table, the SDCNN method performs better than the other three methods, uniformly over the considered scoring

metrics.
A boxplot of the CRPSs of these four models is shown in Fig. 10 and reveals further structure. The SDCNN method has the

smallest quartile of all four models, indicating its superiority. Perhaps more importantly, the larger outliers of the other methods
are avoided with the SDCNN approach.

Figs. 11 show boxplots of ISs. The SDCNN model again performs best.

6.2. United States soil carbon

In our previous data sets, all observations roughly lied on a lattice. Our next example involves soil carbon measurements from
the conterminous United States and is more ‘‘non-lattice’’. The data were extracted from the in-built R package soilDB created
by Beaudette et al. (2023). This package extracts soil properties from the databases of the US Department of Agriculture’s Natural
Resources Conservation Service (USDA-NRCS) and the National Cooperative Soil Survey (USDA-NCSS). Longitude and latitude are
used as covariates; soil organic carbon (SOC) content is our response variable as measured in Mg/ha (megagrams per hectare). The
code to extract the data is on our GitHub page for this paper. The dataset contains 31,491 irregularly spaced observations as shown
in Fig. 12. For our prediction and uncertainty surfaces, we again generate a 200 × 200 grid encompassing the spatial domain.
11
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Fig. 8. Predicted surface of the satellite temperatures.

Fig. 9. Uncertainty surface of the satellite temperatures.

Our predicted surface is shown in Fig. 13. The INLA and SDCNN surfaces better predict the observations than the other two
methods, presumedly because they more accurately explore local data features. Although the DeepKriging and Baseline DNN methods
both suggest that the Eastern United States has larger SOCs, they perform poorly in the Central United States.
12
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Fig. 10. Boxplot of CRPS by method for the satellite temperatures.

Fig. 11. Boxplot of interval scores by method for the satellite temperatures.
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Fig. 12. Observed logarithm of the SOC data.

Table 3
Evaluation scores for the United States SOC Data.

MSE CRPS ICR(0.95) IS(0.05)

INLA-SPDE 53.32 −3.56 0.76 82.08
Baseline FNN 109.08 −5.95 0.32 166.64
DeepKriging 56.09 −3.49 0.56 79.97
SDCNN 43.89 −2.90 0.60 77.81

Fig. 14 illuminates the drawbacks of INLA, which performs more poorly here than with the satellite temperatures, presumedly
because the data are more non-lattice. The DeepKriging, Baseline DNN, and SDCNN methods perform similarly, but the SDCNN
predictions show a more detailed local structure.

The evaluation scores of these four models are shown in Table 3. The SDCNN model has the best scores for all criteria except
the ICRs, where INLA performs better. However, the ISs for the SDCNN are better than those from INLA. CRPSs for the four models
are shown in Fig. 15. The SDCNN method again has the smallest quartiles.

7. Discussion

This research proposed a new spatial prediction model and compared it to several standard models, including INLA, Baseline
DNN, and DeepKriging. We first generated RBFs by using the FRK package in R and used this information as image covariates in
our model. The SDCNN method was implemented in Keras in R, using image covariates. Model uncertainty was addressed via
dropout layers, which generate prediction samples that provide a predictive error surface and enable model evaluation scores to be
calculated.

Our SDCNN was compared to other techniques in a simulation study where the response variable was the Eggholder function
surface. Two real data sets were also considered, one where locations lie primarily on a lattice and one where the observations were
more irregularly spaced. The SDCNN outperformed the other techniques in most evaluation scores, although not uniformly so.

Some additional research avenues are evident. Future work includes developing convolutional recurrent neural networks (CRNNs)
to analyze spatio-temporal models, where RBF generation is handled as here. Temporal aspects of the problem could also employ
a CRNN, producing a spatio-temporal model that capably handles geographical time series data. Discrete data, particularly count
structures, also merit study. This could be as straightforward as changing the activation and loss functions, or may demand a more
detailed procedure involving the count’s marginal distribution(s). How to tailor the RBF generation to the problem at hand is also
worth considering.
14
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Fig. 13. Predictions of the SOC data on a fine-scale grid.

Fig. 14. Uncertainty surface for the predicted SOC data of the last figure.
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Fig. 15. CRPS for the United States SOC data.
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Appendix. Model visualization

This Appendix shows how our neural networks in this paper were structured, including the Baseline DNN, DeepKriging, and
SDCNN models.

A.1. Baseline DNN

This model only uses longitude and latitude as covariates. The model is depicted in the following graphic Fig. A.16.

A.2. DeepKriging

This model, depicted by the graphic below, adds three resolutions of RBFs generated by the package FRK. Bases 1–3 refer to the
three RBF resolutions in the figure. No uniform basis function size exists since the number and dimension of RBFs depends on the
spatial range of the data examined. Details about the neural network setting are shown in Fig. A.17.

A.3. SDCNN

This model first convolves each of the three RBF resolutions, as shown in Fig. A.18. These are subsequently concatenated
via longitude and latitude. Each resolution uses a similar structure; hence, only one resolution is displayed in the figure. Here,
the resolution 𝑖 RBFs have 𝑚𝑖 rows and 𝑛𝑖 columns. The three resolutions and coordinates are calculated individually before
concatenation.

After the three RBF resolutions, a model similar in structure to a baseline DNN is used for the longitudes and latitudes,
concatenating these together. This procedure is graphically depicted in Fig. A.19. With all three RBF resolutions and coordinates
dealt with, our next step concatenates these and feeds the result through an output layer. Fig. A.20 depicts the procedure.
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Fig. A.16. Baseline DNN model visualization.
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Fig. A.17. DeepKriging model visualization.
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Fig. A.18. SDCNN model visualization of convolutional part.
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Fig. A.19. SDCNN model visualization of covariates part.
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Fig. A.20. SDCNN model visualization of concatenating and output layers.
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