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ABSTRACT OF THE DISSERTATION

Primal-Dual Methods for Nonlinear Optimization

by

Daniel P. Robinson

Doctor of Philosophy in Mathematics

University of California San Diego, 2007

Professor Philip E. Gill, Chair

Nonlinearly constrained optimization problems may be solved by minimizing a se-

quence of simpler subproblems based on the properties of a so-called merit function

that balances the (usually) conflicting aims of reducing the objective function and

satisfying the constraints. Sometimes this merit function is minimized directly as

an unconstrained function, in which case convergence is achieved by adjusting the

relative weighting of the objective and constraints between subproblems. Alter-

natively, some model of the merit function is minimized subject to simple bounds

and/or linearizations of the constraints. In this case, the merit function drives the

algorithm by assessing the “quality” of points generated by the subproblem.

A new primal-dual augmented Lagrangian merit function is proposed that

may be minimized with respect to both the primal and dual variables. A benefit

of this approach is that each subproblem may be regularized by imposing explicit

bounds on the dual variables. Two primal-dual variants of classical primal methods

are given: a primal-dual bound constrained Lagrangian (pdBCL) method and a

primal-dual ℓ1 linearly constrained Lagrangian (pdℓ1-LCL) method.
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1

Introduction

1.1 Overview

A constrained optimization problem involves a set of independent variables

and constraints that define acceptable values of the variables. The solution of this

problem is a set of allowed values of the variables for which some objective function

assumes its maximum or minimum value. Minimization will only be considered

since maximizing a function f(x) is equivalent to minimizing −f(x). Constrained

optimization problems may be categorized according to properties of the objective

and constraint functions. If the objective and constraint functions are linear, then

the optimization problem is called a linear program (LP). If the objective function

is quadratic and the constraint function is linear, then the problem is called a

quadratic program (QP). The most general problem (and perhaps the most difficult

to solve) is the nonlinearly constrained problem, which is given by

minimize
x∈Rn

f(x)

subject to cℓ ≤ c(x) ≤ cu,

xℓ ≤ x ≤ xu,

where f : R
n → R is the objective function, c : R

n → R
m is the vector of constraint

functions, cℓ and cu are vectors in R
m such that cℓ ≤ cu, and xℓ and xu are vectors

1
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in R
n such that xℓ ≤ xu. By introducing the vector s of slack variables, the problem

(1.1) may be written in the equivalent form:

minimize
x∈Rn, s∈Rm

f(x)

subject to c(x)− s = 0,

xℓ ≤ x ≤ xu, cℓ ≤ s ≤ cu.

Therefore, there is no loss of generality in assuming that the optimization problem

has the form

minimize
x∈Rn

f(x)

subject to c(x) = 0,

xℓ ≤ x ≤ xu.

To simplify the exposition, the bounds on the x-variables are often assumed to

take the form x ≥ 0. This simplified problem is given by

GNPs minimize
x∈Rn

f(x)

subject to c(x) = 0,

x ≥ 0.

(1.1)

The analysis of problems in this format easily carries over to the more general

setting with xℓ ≤ x ≤ xu.

Optimization problems may be categorized further by the degree of smooth-

ness of the objective and constraint functions. This thesis considers algorithms for

solving general nonlinear optimization problems for which the objective and con-

straint functions are assumed to be twice continuously differentiable.

Although the primary focus will be on problem GNPs, it is convenient to

begin with a simpler problem with all equality constraints. This problem is given

by

NEP minimize
x∈Rn

f(x)

subject to c(x) = 0.
(1.2)
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One of the most well-known methods for solving problem NEP (1.2) is based

on the properties of the quadratic penalty function:

P(x; ρ) = f(x) +
ρ

2
‖c(x)‖2, (1.3)

where ρ is a positive scalar known as the penalty parameter. Any approach for

solving problem (1.2) must provide a way of dealing with the (usually conflicting)

aims of decreasing the objective function and deceasing the constraint violation.

The penalty function (1.3) combines the objective function and constraint function

into one function that may be minimized using unconstrained optimization meth-

ods. A basic penalty function method computes a sequence of minimizers x(ρk)

for problem (1.3) for an increasing sequence of penalty parameters {ρk}. The idea

is that x(ρk) converges to a solution of problem (1.2) as {ρk} → ∞.

Applying the penalty function to a certain “shifted” problem gives rise to

the popular augmented Lagrangian function. This function is given by

LA(x; ye, ρ) = f(x)− c(x)Tye +
ρ

2
‖c(x)‖2, (1.4)

where ye is an estimate of the Lagrange multiplier vector. The augmented La-

grangian function was proposed independently by Hestenes [18] and Powell [24],

partly as a way to overcome the ill-conditioning in the Newton equations associated

with minimizing the penalty function (1.3). The use of the Lagrange multiplier

estimate allows convergence to solutions of problem NEP without the need to drive

the penalty parameter to infinity.

The augmented Lagrangian has been used very successfully within differ-

ent algorithmic frameworks. In the context of problem GNPs, the optimization

code LANCELOT [7] approximately minimizes a sequence of bound constrained

Lagrangian (BCL) problems. These problems take the form

minimize
x∈Rn

LA(x; ye, ρ) subject to x ≥ 0. (1.5)

After each approximate minimization, the Lagrange multiplier estimate ye may

be updated, while parameters and tolerances are adjusted. In [8], Conn, Gould,
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and Toint show that this BCL method is globally convergent, exhibits R-linear

convergence, and has a uniformly bounded penalty parameter ρ.

Linearly constrained Lagrangian (LCL) methods also make use of the aug-

mented Lagrangian. LCL methods are based on the properties of Robinson’s

method [25], which sequentially minimizes the Lagrangian function L(x; ye) =

f(x)− c(x)Tye, subject to the linearized constraints. Robinson proved that his al-

gorithm exhibits R-quadratic convergence if started sufficiently close to a solution

satisfying the second-order sufficient conditions. A positive penalty parameter was

introduced in the method used by the software package MINOS [23] in order to im-

prove convergence from poor starting points. In other words, MINOS uses the aug-

mented Lagrangian function instead of the Lagrangian function. This modification

improves the robustness of Robinson’s method, but the question of convergence

from arbitrary starting points is open. Further improvement was made by Fried-

lander and Saunders in [13]. Their stabilized LCL (sLCL) method remedies three

drawbacks associated with MINOS. First, the sLCL subproblems are always feasi-

ble. Second, if the distance from the linearization point to the subproblem solution

becomes large, it may be counteracted by decreasing the penalty parameter asso-

ciated with the linearized constraints. Third, the sLCL method was proved to be

globally convergent. These improvements to MINOS resulted from the definition of

an elastic subproblem, which is known to be equivalent to an ℓ1 penalization of the

linearized constraint violation. They show that their sLCL algorithm is actually

a continuum of algorithms with the BCL method as one extrema and Robinson’s

LCL method as the other. As a result, the sLCL algorithm inherits global conver-

gence from the BCL method and R-quadratic convergence from Robinson’s LCL

method.

The augmented Lagrangian function may also be used as a merit function

in sequential quadratic programming (SQP) methods. A merit function is a single

function that is used to assess the quality of a pre-determined search direction.

The search direction is typically given as the solution of a quadratic program
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that models the merit function. The most obvious choice for computing a search

direction for the augmented Lagrangian, is to minimize the second-order Taylor

approximation of LA(x; ye, ρ). It can be shown that minimizing the second-order

Taylor approximation of LA(x; ye, ρ) is equivalent to minimizing a certain quadratic

objective function subject to linear constraints. For more details see Section 15.3.1

of [9].

The SQP algorithm SNOPT [14] uses the augmented Lagrangian function

as a merit function in a different way. Given a current approximation (xk, yk) to

a solution of problem NEP (1.2), SNOPT generates a search direction by solving

the following QP:

minimize
p∈Rn

gT
kp + 1

2
pTHkp

subject to ck + Jkp = 0,
(1.6)

where gk is the gradient of the objective function f(x) evaluated at xk, Jk is

the Jacobian of c(x) evaluated at xk, and Hk is a symmetric positive-definite

approximation to the Hessian of the Lagrangian function evaluated at (xk, yk).

A search direction in both the x- and y-variables is then defined by using the

minimizer p and the Lagrange multiplier vector from the QP subproblem (1.6). In

this way, the augmented Lagrangian is considered a continuous function of both

the primal and dual variables.

1.2 Contributions of this thesis

Chapter 3 considers a new primal-dual augmented Lagrangian merit func-

tion, which is a generalization of the Forsgren-Gill merit function for equality

constraints (see [12]). First, it is shown that this function possesses properties

considered mandatory of a merit function. The rest of the chapter examines addi-

tional properties of the merit function and shows that it is a viable and attractive

option for use within an optimization method. In particular, since the new merit
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function is a function of both the primal and dual variables, explicit bounds may

be imposed on the dual variables in the subproblem. This is expected to be helpful

for highly nonlinear problems and in this way is a form of regularization of the

subproblem. In addition, the use of primal and dual variables are expected to

expedite optimization of the subproblem.

Chapter 4 examines a primal-dual bound constrained Lagrangian (pdBCL)

method similar to the BCL algorithm used by the optimization package LANCELOT

[7] (see Section 1.1). In the context of problem GNPs (1.1), the pdBCL subproblem

takes the form

minimize
x∈Rn, y∈Rm

M(x, y; ye, µ)

subject to x ≥ 0, −γe ≤ y ≤ γe,
(1.7)

whereM is the primal-dual augmented Lagrangian function, e is a vector of ones,

γ is a positive scalar, µ is a positive penalty parameter, and ye is an estimate of

the Lagrange multiplier vector. Note that explicit bounds on the dual variables

are enforced in the subproblem. The theoretical development follows that of Conn,

Gould, and Toint in [8]. In this way, the primal theory developed by Conn, Gould,

and Toint is extended to the primal-dual setting.

Chapter 5 examines a primal-dual ℓ1 linearly constrained Lagrangian (pdℓ1-

LCL) method similar to the sLCL algorithm given by Friedlander and Saunders

in [13] (see Section 1.1). In the context of problem GNPs (1.1), the pdℓ1-LCL

subproblem takes the form

minimize
x, y, u, v

M(x, y; ye, ρ) + σeT(u + v)

subject to c̄k(x) + u− v = 0,

x ≥ 0, −γe ≤ y ≤ γe, u ≥ 0, v ≥ 0,

(1.8)

whereM is the primal-dual augmented Lagrangian function, e is a vector of ones,

γ is a positive number, ye is an estimate of the Lagrange multiplier vector, ρ is a

penalty parameter associated with c(x), c̄k(x) is a linearization of the constraint

function, and σ is a penalty parameter associated with c̄k(x). Note that explicit
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bounds on the dual variables are enforced in the subproblem. The chapter follows

the development given by Friedlander and Saunders. In this way, the primal theory

developed by Friedlander and Saunders is extended to the primal-dual setting.

It is anticipated that future convergence proofs using the primal-dual aug-

mented Lagrangian function will be possible under less stringent conditions. This

thesis is the first step towards this goal.

1.3 Notation

• ei, the ith coordinate basis vector.

• e = (1, 1, . . . , 1)T, the column vector of all ones.

• E and I, both are used to represent the identity matrix.

• In(A), Given a real symmetric matrix A, the inertia of A, denoted In(A),

is the integer 3-tuple (i+, i−, i0) indicating the number of positive, negative,

and zero eigenvalues of the matrix A.

• A � α, Given a real symmetric matrix A, the notation A � α means that

the smallest eigenvalue of A is greater than or equal to α.

• A ≻ α, Given a real symmetric matrix A, the notation A ≻ α means that

the smallest eigenvalue of A is greater than α.

• x · y, if x and y are vectors in R
n, then x · y is defined to be the vector

such that [x · y]i = xi yi.

• f(x), the objective function evaluated at x.

• g(x), the gradient of f(x) evaluated at x.

• H(x), the Hessian of f(x) evaluated at x.



8

• c(x), the m-dimensional constraint vector evaluated at x.

• J(x) = c′(x), the m× n Jacobian of c(x) evaluated at x.

• Hi(x) = ∇2ci(x), the Hessian of ci(x) evaluated at x.

• fk, gk, ck, Jk, functions and gradients evaluated at xk.

• I, set of indices corresponding to inequality constraints.

• AI(x) = { i ∈ I : ci(x) = 0 }, the index set of all active inequalities.

• E , set of indices corresponding to equality constraints.

• A(x) = AI(x) ∪ E , the set of active constraints.

• xA, If A is any index set, then xA is the sub-vector of x corresponding to

the index set A.

• SA, If A is any index set and S is a matrix, then SA will be the sub-matrix

of S consisting of the rows corresponding to the index set A.

1.4 Terminology

Definition 1.4.1 (Feasible Set). The feasible set is denoted by F . Consider prob-

lem NEP, which is given by

minimize
x∈Rn

f(x)

subject to c(x) = 0 .

The feasible set for problem NEP is given by F = {x ∈ R
n : c(x) = 0 }.

Definition 1.4.2 (Constrained Local Minimizer). Let f be a function defined for

all x ∈ R
n. A point x∗ is a constrained local minimizer of f if there is an open

ball B(x∗; δ) such that

f(x∗) ≤ f(x) for all x ∈ B(x∗; δ) ∩ F .
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Definition 1.4.3 (Strict Constrained Local Minimizer). Let f be a function de-

fined for all x ∈ R
n. A point x∗ is a strict constrained local minimizer of f if there

is an open ball B(x∗; δ) such that

f(x∗) < f(x) for all x 6= x∗, x ∈ B(x∗; δ) ∩ F .

Definition 1.4.4 (Isolated Constrained Local Minimizer). A constrained local

minimizer x∗ is isolated if there is an open ball B(x∗; δ) such that x∗ is the only

constrained local minimizer in B(x∗; δ).

The next three definitions pertain to the following problem:

NIP minimize
x∈Rn

f(x)

subject to c(x) ≥ 0.
(1.9)

Definition 1.4.5 (Feasible Path). A feasible path for problem NIP (1.9) is a dif-

ferentiable, directed curve x(α) emanating from a feasible point x, parameterized

by a scalar α such that

x(0) = x and c
(
x(α)

)
≥ 0

for all α satisfying 0 ≤ α < σ for some σ > 0 and where dx(α)/dα|α=0 6= 0.

Definition 1.4.6 (Binding Feasible Path). A feasible path for problem NIP (1.9)

is called a binding feasible path with respect to ci(x) if there exists an α̂ > 0 such

that ci

(
x(α)

)
= 0 for all α satisfying 0 ≤ α < α̂.

Definition 1.4.7 (Non-Binding Feasible Path). A feasible path for problem NIP

(1.9) is called a non-binding feasible path with respect to ci(x) if there exists an

α̂ > 0 such that ci

(
x(α)

)
> 0 for all 0 < α < α̂.

Analogous definitions can be given for other problem formats.

The next definition concerns rates of convergence of sequences.

Definition 1.4.8 (Order Notation). Let φ be a scalar, vector, or matrix function

of a positive variable h, let p be fixed, and let ku and kl denote constants.
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1. If there exists ku > 0 such that ‖φ(h)‖ ≤ kuh
p for all sufficiently small h,

then we write φ = O(hp) and say “φ is of order hp” (or “φ is big oh of hp”).

2. If, for any ǫ > 0, ‖φ(h)‖/hp < ǫ for all sufficiently small h, then we write

φ = o(hp) and say, “φ is little oh of hp”.

3. If there exists kl > 0 such that ‖φ(h)‖ ≥ klh
p for all sufficiently small h,

then we write φ = Ω(hp) and say “φ is omega of hp”.

4. If there exist kl > 0 and ku > 0 such that klh
p ≤ ‖φ(h)‖ ≤ kuh

p for all

sufficiently small h, then we write φ = Θ(hp) and say, “φ is theta of hp”.

1.5 Useful Results

Lemma 1.5.1 (Debreu 1). Let H denote a symmetric n × n matrix, and let J

denote an m × n matrix. Then H is positive definite on the null space of J (i.e.,

pTHp > 0 for all p 6= 0 such that Jp = 0) if and only if there exists a positive µ̄

such that H + 1
µ
JTJ is positive definite for all µ satisfying 0 < µ ≤ µ̄.

Proof. (⇐) For a contrapositive proof, let there exist an x0 6= 0 such that Jx0 = 0

and xT
0Hx0 ≤ 0. Then

xT
0(H +

1

µ
JTJ)x0 = xT

0Hx0 +
1

µ
xT

0J
TJx0 = xT

0Hx0 ≤ 0 for all µ > 0.

This says that H + 1
µ
JT J is not positive definite for all positive µ.

(⇒) For another contrapositive proof, suppose that there does not exist a positive

µ̄ such that H + 1
µ
JTJ is positive definite for all 0 < µ ≤ µ̄. Define any sequence

{µk} such that {µk} → 0 and µk > 0 for all k. Then define a corresponding

sequence {xk} with the property that

xT
k(H +

1

µk

JTJ)xk ≤ 0. (1.10)
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Without loss of generality assume that ‖xk‖2 = 1. A sequence with this property

may always be found since if {yk} is any sequence satisfying yT
k(H + 1

µ
JTJ)yk ≤ 0,

then the sequence {zk} defined as zk = yk/‖yk‖2 satisfies

zT
k(H +

1

µk

JTJ)zk =
1

‖yk‖22
yT

k(H +
1

µk

JTJ)yk ≤ 0 and ‖zk‖2 = 1.

Since {xk} is contained in a compact set, there exists a convergent subsequence

{xk}K such that limk∈K xk = x̄. Since ‖xk‖2 = 1 for all k ∈ K, it follows that

‖x̄‖2 = 1, and in particular that x̄ 6= 0. Multiplying (1.10) by µk yields

xT
k(µkH + JTJ)xk ≤ 0. (1.11)

Taking limits on k ∈ K gives

‖Jx̄‖22 = x̄TJTJx̄ = lim
k∈K

xT
k(µkH + JTJ)xk ≤ 0.

This implies that Jx̄ = 0.

Next, equation (1.10) implies

µkx
T
kHxk + xT

kJ
TJxk = µkx

T
kHxk + ‖Jxk‖22 ≤ 0.

Since ‖Jxk‖2 ≥ 0, it must follow that

µkx
T
kHxk ≤ 0 for all k,

and since µk > 0 it then follows that

xT
kHxk ≤ 0 for all k.

Finally, taking limits on k ∈ K yields

x̄THx̄ = lim
k∈K

xT
kHxk ≤ 0.

Thus, it has been shown that x̄ satisfies the following properties:

(i) x̄ 6= 0, (ii) Jx̄ = 0, (iii) x̄THx̄ ≤ 0.

This completes the proof.
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The following theorem is a reformulation of Debreu’s Lemma in terms of

the null space matrix Z. The proof is different and has the advantage of implicitly

defining a value for µ̄.

Lemma 1.5.2 (Debreu 2). Let H denote a symmetric n × n matrix, and let J

denote an m× n matrix with null space spanned by the columns of Z. If ZTHZ is

positive definite, then there exists a finite µ̄ such that H + 1
µ
JTJ is positive definite

for all 0 < µ < µ̄.

Proof. Let r denote the rank of J , so that r ≤ min{m,n}. The singular-value

decomposition of J can be written as

J = U

(
Sr 0

0 0

)
V T ,

where U and V are orthogonal, and Sr is an r × r diagonal matrix with positive

diagonal entries. Suppose that U and V are partitioned conformally with Sr so

that U = ( Ur Um−r ) and V = ( Vr Vn−r ). It follows that

J = UrSrV
T
r .

The n × n matrix Q such that Q = ( Vn−r VrS
−1
r ) is nonsingular, and it can be

verified by direct multiplication that

JQ =
(

0 Ur

)
.

Define Z = Vn−r and Y = VrS
−1
r . Then Q = ( Z Y ), with the n − r columns of

Z forming a basis for the null-space of J . Since Q is nonsingular, H + 1
µ
JTJ must

have the same inertia as QT(H + 1
µ
JTJ)Q from Sylvester’s Law of Inertia. Pre-

and post-multiplying H + 1
µ
JTJ by QT and Q gives

QT(H +
1

µ
JTJ)Q = QTHQ +

1

µ
QTJTJQ =

(
ZTHZ ZTHY

Y THZ Y THY + 1
µ
I

)
.
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Note that this matrix is of the form
(

H11 HT
21

H21 H22 + 1
µ
I

)
, (1.12)

where H11 = ZTHZ, H21 = Y THZ and H22 = Y THY . Since ZTHZ is positive

definite by assumption, H11 is positive definite and (1.12) can be written as

(
I 0

H2,1H
−1
11 I

)(
H11 0

0 H22 −H21H
−1
11 HT

21+
1
µ
I

)(
I H−1

11 HT
21

0 I

)
.

Sylvester’s Law of Inertia then implies that the inertia of H + 1
µ
JTJ is the same

as the inertia of diag(H11, H22−H21H
−1
11 HT

21+
1
µ
I). This matrix is positive definite

for all 0 < µ < µ̄, where µ̄ = 1/ max{−λmin, 0}, with λmin the smallest eigenvalue

of H22 −H21H
−1
11 HT

21.

Theorem 1.5.1. Given an n × n symmetric matrix H and an m × n matrix J ,

let r denote the rank of J and let Z be a matrix whose columns form a basis for

the null space of J . If K is defined as

K =

(
H JT

J 0

)

then

In(K) = In(ZTHZ) + (r, r,m− r).

The following corollary is immediate.

Corollary 1.5.1. Given an n×n symmetric matrix H and an m×n matrix J of

rank m, let Z be a matrix whose columns form a basis for the null space of J . If

K is defined as

K =

(
H JT

J 0

)
(1.13)

then

In(K) = In(ZTHZ) + (m,m, 0).
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Proof. Let r = m in Theorem 1.5.1.

Note: If ZTHZ is nonsingular and J has full row rank, then the matrix

given by (1.13) is nonsingular.

Lemma 1.5.3. Define the matrix

K =

(
H JT

J −µI

)
. (1.14)

Then

In(K) = In(H +
1

µ
JTJ) + (0,m, 0).

Proof. Define the nonsingular matrix S as

S =

(
I 0

1
µ
J I

)
. (1.15)

Sylvester’s Law of Inertia implies

In(K) = In(STKS)

= In

(
H + 1

µ
JTJ 0

0 −µI

)

= In(H +
1

µ
JTJ) + (0,m, 0).

The following result concerns the exact ℓ1 penalty function given by

P1(x, ρ) = f(x) + ρ
m∑

i=1

|ci(x)| = f(x) + ρ‖c(x)‖1.

Lemma 1.5.4. If x∗ is an unconstrained local minimizer of P1(x, ρ), then x∗ is a

solution of the constrained problem

minimize
x,u,v

f(x) + ρeT(u + v)

subject to c(x)− u + v = 0,

u ≥ 0, v ≥ 0,
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where e denotes the m-vector (1, 1, . . . , 1)T, and a vector inequality of the form

u ≥ 0 is interpreted component-wise.



2

Background

This chapter contains background information pertinent to the remaining

chapters. Section 2.1 provides a relatively extensive coverage of optimality condi-

tions for three problem formats: a general equality constrained problem (problem

NEP), a general equality and inequality constrained problem (problem GNP), and

finally, a simplified version of GNP that will be referred to as problem GNPs. Many

well-known results will be given, but proofs will not be included. Section 2.2 gives

background on penalty functions and introduces a number of primal-dual penalty

functions. These functions are the focus of this thesis.

2.1 Optimality Conditions

2.1.1 Nonlinear equality constrained problems (NEP)

This section considers the optimality conditions for a nonlinear equality

constrained problem. This problem format will be referred to as problem NEP

and is given by

16
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NEP minimize
x∈Rn

f(x)

subject to c(x) = 0.
(2.1)

Definition 2.1.1. A point x∗ is a first-order KKT point (Karush-Kuhn-Tucker

point) for problem (2.1) if there exists a Lagrange multiplier vector y∗, such that

the following are true:

(i) c(x∗) = 0; (ii) g(x∗) = J(x∗)Ty∗.

It would be convenient if being a KKT point was a necessary condition for

being a local constrained minimizer for problem (2.1). However, this is only the

case if a certain regularity condition holds; this condition is known as a constraint

qualification.

Definition 2.1.2 (Constraint qualification for equality constraints). The con-

straint qualification with respect to the equality constraints c(x) =0 holds at x if x

is feasible and every nonzero vector p satisfying J(x)p = 0 is tangent to a differ-

entiable feasible path emanating from x.

It is now possible to state first-order necessary conditions for a local solution of

problem NEP.

Theorem 2.1.1. Let the constraint qualification hold at x∗. Then x∗ is a local

solution of problem NEP only if there exists a Lagrange multiplier vector y∗ such

that

g(x∗) = J(x∗)Ty∗ =
m∑

i=1

y∗
i∇ci(x

∗). (2.2)

Equivalently, if Z(x∗) denotes a matrix whose columns form a basis for the null

space of J(x∗), then

Z(x∗)Tg(x∗) = 0.
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The vector Z(x)Tg(x) is known as the reduced gradient of f at x. The first-

order condition Z(x∗)Tg(x∗) = 0 is analogous to the first-order condition g(x∗) = 0

in the unconstrained case.

To study second-order necessary conditions, it is convenient to define the

function

L(x, y) = f(x)− c(x)Ty, (2.3)

which is called the Lagrangian. The gradient and Hessian of the Lagrangian are

given by

∇L(x, y) =


 g(x)− J(x)Ty

−c(x)


 △

=


 g(x, y)

−c(x)


 , and

∇2L(x, y) =


 H(x)−∑m

i=1 yi∇2ci(x) −J(x)T

−J(x) 0


 △

=


 H(x, y) −J(x)T

−J(x) 0


 ,

where H(x) denotes the Hessian of the objective function f . To derive second-

order optimality conditions, one must examine the second-order behavior of f

along feasible paths emanating from x∗. This examination leads to the following

second-order necessary conditions.

Theorem 2.1.2 (Second-order necessary conditions for problem NEP). If the

constraint qualification holds at x∗, then x∗ is a local solution of problem NEP only

if:

(a) c(x∗) = 0;

(b) there exists a vector y∗ such that g(x∗) = J(x∗)Ty∗; and

(c) for the y∗ of part (b), it holds that pTH(x∗, y∗)p ≥ 0 for every vector p

satisfying J(x∗)p = 0.

A point satisfying the criteria of the above theorem is called a second-order

KKT point. Condition (c) is equivalent to the statement that Z(x∗)TH(x∗, y∗)Z(x∗)
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is positive semi-definite, where Z(x∗) is a matrix whose columns form a basis for

null
(
J(x∗)

)
. Given arbitrary vectors x and y, the matrix Z(x)TH(x, y)Z(x) is

known as the reduced Hessian of the Lagrangian. The condition that the reduced

Hessian is positive semi-definite at (x∗, y∗) is analogous to the condition that H(x∗)

be positive semi-definite in the unconstrained case.

It is now possible to state first- and second-order sufficient conditions for

a constrained minimizer of problem NEP. These conditions are stronger than the

second-order necessary conditions given in Theorem 2.1.2 because the curvature of

H(x∗, y∗) in the null space of J(x∗) is bounded away from zero.

Theorem 2.1.3 (Second-order sufficient conditions for a strict local solution of

problem NEP). A point x∗ is a strict local minimizer of problem NEP (2.1) if:

(a) c(x∗) = 0;

(b) there exists a Lagrange multiplier vector y∗ such that g(x∗) = J(x∗)Ty∗; and

(c) for the y∗ of part (b), the strict inequality pTH(x∗, y∗)p > 0 holds for all

nonzero p such that J(x∗)p = 0.

Theorem 2.1.4 (Second-order sufficient conditions for an isolated local solution

of problem NEP). A point x∗ is an isolated local minimizer of problem NEP (2.1)

if:

(a) c(x∗) = 0;

(b) there exists a Lagrange multiplier vector y∗ such that g(x∗) = J(x∗)Ty∗;

(c) for the y∗ of part (b), the strict inequality pTH(x∗, y∗)p > 0 holds for all

nonzero p such that J(x∗)p = 0; and

(d) the constraint gradients at x∗ are linearly independent.
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2.1.2 General nonlinear problem (GNP)

This section considers the optimality conditions for a general nonlinear

constrained problem. This problem will be referred to as problem GNP and is

given by

GNP minimize
x∈Rn

f(x)

subject to ci(x) = 0 for i ∈ E ,
ci(x) ≥ 0 for i ∈ I,

(2.4)

where E = {1, 2, . . . ,mE} is the set of indices corresponding to equality constraints

and I = {mE + 1, . . . ,mE + mI} is the set of indices corresponding to inequality

constraints (mE + mI = m).

Definition 2.1.3 (First-order KKT point for problem GNP). The point x∗ is a

first-order KKT point for problem GNP, if there exists an m-vector y∗, called a

Lagrange multiplier vector, such that

(i) cE(x
∗) = 0 and cI(x

∗) ≥ 0 (feasibility),

(ii) g(x∗) = J(x∗)Ty∗ (stationarity),

(iii) y∗
I ≥ 0 (non-negativity of multipliers associated with inequalities), and

(iv) c(x∗) · y∗ = 0 (complementarity).

The complementarity condition given above as (iv), implies that when an inequality

constraint is inactive, then its associated Lagrange multiplier must be zero.

Since the Lagrange multiplier vector above is not unique when J does not

have full row rank, notation to describe all of the possible Lagrange multiplier

vectors is introduced.

Definition 2.1.4 (Acceptable Lagrange multipliers). Given a KKT point x∗ for

problem GNP (2.4), the set of acceptable Lagrange multipliers is defined as

My(x
∗) = { y ∈ R

m : g(x∗) = J(x∗)Ty, yI ≥ 0, c(x∗) · y = 0 }. (2.5)
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The complementarity condition c(x∗) · y = 0 forces yi to be zero when constraint

ci is inactive. However, it is still possible that both ci and yi are zero at the same

time. The concept of strict complementarity rules out this possibility.

Definition 2.1.5 (Strict complementarity). Strict complementarity holds at the

KKT point x∗ if there exists a Lagrange multiplier vector y∗ ∈ My(x
∗) such that

y∗
i > 0 for all i ∈ AI.

It would be convenient if being a KKT point was a necessary condition for being

a local constrained minimizer for problem (2.4). However, this is only the case

if a certain regularity condition holds; this condition is known as a constraint

qualification. If the constraint qualification holds then it is true that being a KKT

point is a necessary condition for optimality.

Definition 2.1.6 (First-order constraint qualification (FOCQ) for problem GNP).

The first-order constraint qualification with respect to the set of constraints ci(x) =

0 for i ∈ E and ci(x) ≥ 0 for i ∈ I holds at a feasible point x if every nonzero

vector p such that JE(x)p = 0 and JAI
(x)p ≥ 0 is a tangent to a differentiable

feasible path emanating from x.

Each of the following conditions is sufficient to ensure that the constraint

qualification holds at a point x̄:

(i) The active constraints are linear at x̄.

(ii) The active constraint gradients, {∇ci(x̄) : i ∈ A(x̄)} are linearly independent.

This condition is referred to as the linear independence constraint qualification

(LICQ).

(iii) The gradients of the equality constraints at x̄ are linearly independent and

there exists a nonzero vector p such that JE(x̄)p = 0 and JAI
(x̄)p > 0, i.e.,

p is a “strictly interior” direction for the active inequality constraints. This

condition is known as the Mangasarian-Fromovitz Constraint Qualification

(MFCQ).
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A few facts should be mentioned:

Fact 1: If the LICQ holds at a KKT point x∗, then the Lagrange multiplier vector

is unique.

Fact 2: The MFCQ is a weaker condition than the LICQ.

Fact 3: If the MFCQ is satisfied at a KKT point x∗, then the set of acceptable

Lagrange multipliers defined in (2.5) is bounded.

Fact 4: The LICQ is more practical than the MFCQ in the sense that verification

of the LICQ is much easier.

Necessary conditions for problem GNP may now be discussed.

Lemma 2.1.1 (First-order necessary conditions for problem GNP). If x∗ is a local

minimizer of problem GNP and the MFCQ holds at x∗, then x∗ is a KKT point.

Similar to the nonlinear equality constrained problem (NEP), the use of

the Lagrangian function in developing second-order conditions for problem GNP

is paramount. Recall that the Lagrangian and its derivatives are given by

∇L(x, y) =

(
g(x)− J(x)Ty

−c(x)

)
△

=

(
g(x, y)

−c(x)

)
and

∇2L(x, y) =


 H(x)−∑m

i=1 yi∇2ci(x) −J(x)T

−J(x) 0


 △

=


H(x, y) −J(x)T

−J(x) 0


 .

In order to derive second-order conditions for optimality, the curvature of f must

be considered only in directions for which f is stationary. This set of suitable

directions at a feasible point x is defined as

SL(x) = { p : p 6= 0, g(x)Tp = 0, JE(x)p = 0 and JAI
(x)p ≥ 0 }. (2.6)

However, to ensure that these directions are tangents to an appropriate feasible

path starting at x, another regularity condition is needed; this condition is a second-

order constraint qualification.
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In order to formulate this constraint qualification, it is useful to write (2.6)

in a different but equivalent form. Given a KKT point x, choose any y ∈ My(x)

and then define A+(x) to be the set of indices of active inequality constraints with

positive Lagrange multipliers and define J+(x) to be the corresponding rows of the

Jacobian. Next, defineA0(x) to be the set of indices of active inequality constraints

with zero Lagrange multipliers and define J0(x) to be the corresponding rows of

the Jacobian. Note that A+(x) and A0(x) are functions of the specific y chosen.

It can be seen from the short calculation

g(x)Tp = yT
EJE(x)p + yT

+J+(x)p + yT
0J0(x)p = yT

EJE(x)p + yT
+J+(x)p

that the set of suitable second-order directions can be described as

SL(x) = { p : p 6= 0, J+(x)p = 0, JE(x)p = 0 and J0(x)p ≥ 0 }. (2.7)

Given this definition, it is possible to formulate the following second-order con-

straint qualification.

Definition 2.1.7 (Second-order constraint qualification (SOCQ)). The second-

order constraint qualification for problem GNP (2.4) holds at a KKT point x if,

for all y ∈ My(x), every nonzero p satisfying J+(x)p = 0, J0(x)p ≥ 0, and

JE(x)p = 0, is a tangent to a twice-differentiable path x(α) such that c+

(
x(α)

)
= 0,

c0

(
x(α)

)
≥ 0, and cE

(
x(α)

)
= 0 for all 0 < α ≤ α̂ for some α̂ > 0.

Fact1 : If the active constraints are linear, then both the first- and second-order

constraint qualifications hold.

Fact2 : The LICQ implies that both the first- and second-order constraint qualifi-

cations are satisfied.

Fact3 : The FOCQ does not imply the SOCQ nor does the SOCQ imply the FOCQ.

Second-order necessary conditions for problem GNP may now be stated.

They require satisfaction of both the first- and second-order constraint qualifica-

tion.



24

Theorem 2.1.5 (Second-order necessary conditions for problem GNP). Let the

first- and second-order constraint qualifications hold at a point x∗. If x∗ is a local

solution of GNP then

(1) x∗ is a KKT point; and

(2) for some y ∈My(x
∗), it is true that for all nonzero p satisfying J+(x)p = 0,

J0(x)p ≥ 0, and JE(x
∗)p = 0, it holds that pTH(x∗, y)p ≥ 0.

Two different second-order sufficient conditions are now given.

Definition 2.1.8 (First second-order sufficient condition for problem GNP (SSC1)).

Let x∗ be a KKT point as defined in Definition 2.1.3 with associated Lagrange mul-

tiplier vector y∗. Then condition SSC1 is said to hold at (x∗, y∗) if there exists

ω > 0 such that

pTH(x∗, y∗)p ≥ ω‖p‖2

for all p 6= 0 satisfying g(x∗)Tp = 0, JAI
(x∗)p ≥ 0, and JE(x

∗)p = 0.

A more demanding second-order condition places a requirement on all acceptable

Lagrange multiplier vectors.

Definition 2.1.9 (Second second-order sufficient condition for problem GNP

(SSC2)). Let x∗ be a KKT point as defined in Definition 2.1.3. Then the SSC2

holds at x∗, if for every Lagrange multiplier vector y ∈My(x
∗), there exists ω > 0

such that

pTH(x∗, y∗)p ≥ ω‖p‖2

for all p 6= 0 satisfying g(x∗)Tp = 0, JAI
(x∗)p ≥ 0, and JE(x

∗)p = 0.

Conditions for a strict local constrained minimizer may now be given.

Theorem 2.1.6 (Sufficient conditions for a strict minimizer). The point x∗ is a

strict local constrained minimizer for problem GNP if

(1) x∗ is a KKT point; and
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(2) condition SSC1 holds at (x∗, y) for some y ∈ My(x
∗) (see Definition 2.1.8).

Verifying part (2) for all p such that g(x∗)Tp = 0, JAI
(x∗)p ≥ 0 and

JE(x
∗)p = 0 requires finding the global minimizer of a possibly indefinite quadratic

form over a cone, which is an NP-hard problem. Computational friendly sufficient

conditions may be stated by making use of the fact that the set SL(x) is the intersec-

tion of the sets { p : J+(x)p = 0 }, { p : J0(x)p ≥ 0 } and { p : JE(x)p = 0 }. Work-

ing with only the intersection of the sets { p : J+(x)p = 0 } and { p : JE(x)p = 0 },
which is a larger set, imposes conditions that are more strict. This leads to com-

putationally friendly sufficient conditions for a strict local solution.

Theorem 2.1.7 (Computational second-order sufficient conditions). The point x∗

is a strict minimizer of problem GNP (2.4) if the following conditions hold:

(i) x∗ is a KKT point as defined in Definition 2.1.3 on page 20 with Lagrange

multiplier vector y∗;

(ii) if y∗
+ is the vector of strictly positive elements of the y∗ corresponding to the

inequalities from part (i), and J+(x∗) is the associated matrix of constraint

gradients, then there exists an ω > 0 such that

pTH(x∗, y∗)p ≥ ω‖p‖2

for all p 6= 0 satisfying J+(x∗)p = 0 and JE(x
∗)p = 0.

This theorem gives conditions that guarantee that x∗ is a strict local min-

imizer. Constraint qualifications are needed to prove that x∗ is an isolated local

solution of problem GNP.

Theorem 2.1.8 (Sufficient conditions for an isolated local constrained minimizer

of problem GNP). The point x∗ is an isolated local constrained minimizer of prob-

lem GNP (2.4) if:
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(i) x∗ is a KKT point as defined in Definition 2.1.3 on page 20;

(ii) the MFCQ holds at x∗, i.e., JE(x
∗) has linearly independent rows and there

exists a vector p such that JE(x
∗)p = 0 and JAI

(x∗)p > 0; and

(iii) for all y ∈ My(x
∗) there exists an ω > 0 such that pTH(x∗, y)p ≥ ω‖p‖2

for and all nonzero vectors p satisfying g(x∗)Tp = 0, JAI
(x∗)p ≥ 0 and

JE(x
∗)p = 0.

Finally, computationally friendly sufficient conditions for an isolated solution of

problem GNP are given.

Theorem 2.1.9 (Strong sufficient conditions for an isolated solution of problem

GNP). The point x∗ is an isolated local constrained minimizer of problem GNP

(2.4) if:

(i) the LICQ holds at x∗, i.e., JA(x∗) has full row rank;

(ii) x∗ is a KKT point and strict complementarity holds, i.e., the necessarily

unique Lagrange multiplier vector y∗ has the property that y∗
i > 0 for all

i ∈ AI(x
∗); and

(iii) there exists an ω > 0 such that pTH(x∗, y∗)p ≥ ω‖p‖2 for all nonzero vectors

p satisfying JA(x∗)p = 0.

Part (iii) of this theorem only considers vectors p in the null space of the active

constraints. This is a consequence of strict complementarity holding at x∗.

2.1.3 A simplified general nonlinear problem (GNPs)

This section considers the optimality conditions for a simplified version of

problem GNP. This problem form will be referred to as problem GNPs and is given

by

GNPs minimize
x∈Rn

f(x)

subject to c(x) = 0, x ≥ 0.
(2.8)
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In a general setting, there may be both upper and lower bounds on the vector x.

Problem GNPs is a special case of problem GNP. However, since most of the

future analysis is done on problem GNPs, it is convenient to state the analogous

definitions and theorems. First, a KKT point for problem GNPs is defined.

Definition 2.1.10 (First-order KKT point for problem GNPs). The point x∗ is

a first order KKT point for problem GNPs, if there exists a Lagrange multiplier

vector (y∗, z∗) ∈ R
m+n, such that

(i) c(x∗) = 0;

(ii) x∗ ≥ 0;

(iii) g(x∗) = J(x∗)Ty∗ + z∗;

(iv) z∗ ≥ 0; and

(v) z∗ · x∗ = 0.

Since the Lagrange multiplier vector is not unique when the Jacobian of the active

constraints does not have full row rank, it is convenient to define a set of acceptable

Lagrange multiplier vectors for problem GNPs.

Definition 2.1.11 (Acceptable Lagrange multiplier vectors for problem GNPs).

Given a KKT point x∗ for problem GNPs (2.8), the set of acceptable Lagrange

multiplier vectors is defined as

My,z(x
∗) = { (y, z) ∈ R

m+n : g(x∗) = J(x∗)Ty + z, z ≥ 0, and x∗
· z = 0 }.

Complementarity forces zi to be zero when x∗
i > 0, i.e., when the ith bound

constraint is inactive. However, it is possible that x∗
i and zi are both zero. Strict

complementarity rules out this possibility.

Definition 2.1.12 (Strict complementarity for problem GNPs). Strict comple-

mentarity holds at the KKT point x∗ if there exists a Lagrange multiplier vector

(y∗, z∗) ∈My,z(x
∗) such that z∗i > 0 whenever x∗

i = 0.
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The constraint qualification for problem GNPs may now be stated.

Definition 2.1.13 (First-order constraint qualification (FOCQ) for problem GNPs).

The first-order constraint qualification with respect to the set of constraints c(x) = 0

and x ≥ 0 holds at a feasible point x if every nonzero vector p that satisfies

J(x)p = 0 and EA(x)p = pA ≥ 0 is a tangent vector to a differentiable feasi-

ble path emanating from x.

Lemma 2.1.2 (First-order necessary conditions for problem GNPs). If x∗ is a

local minimizer of problem GNPs and the FOCQ holds at x∗, then x∗ is a KKT

point as defined by Definition 2.1.10.

The Lagrangian function is used to develop second-order conditions. For

problem GNPs, the Lagrangian function and its derivatives are given by

L(x, y, z) = f(x)− c(x)Ty − xTz,

∇L(x, y, z) =




g(x)− J(x)Ty − z

−c(x)

−x




△

=




g(x, y, z)

−c(x)

−x


 ,

∇2L(x, y, z) =




H(x)−∑m
i=1 yi∇2ci(x) −J(x)T −I

−J(x) 0 0

−I 0 0




△

=




H(x, y) −J(x)T −I

−J(x) 0 0

−I 0 0


 .

Definition 2.1.14 (Second-order constraint qualification for problem GNPs (SOCQ)).

The second-order constraint qualification for problem GNPs (2.8) holds at a KKT

point x if, for all (y, z) ∈ My,z(x), every nonzero p satisfying E+(x)p = p+ = 0,

E0(x)p = p0 ≥ 0, and J(x)p = 0, is a tangent to a twice-differentiable path x(α)

such that x+(α) = 0, x0(α) ≥ 0 and c
(
x(α)

)
= 0 for all 0 < α ≤ α̂ for some
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α̂ > 0, where p+ are the components of p that correspond to the bound variables

with strictly positive Lagrange multipliers and p0 are the components of p that

correspond to the bound variables with zero Lagrange multipliers.

The following three facts pertain to the constraint qualifications.

Fact1 : If the active constraints are linear, then both the first- and second-order

constraint qualifications hold.

Fact2 : The LICQ implies that both the first- and second-order constraint qualifi-

cations are satisfied.

Fact3 : The FOCQ does not imply the SOCQ nor does the SOCQ imply the FOCQ.

Theorem 2.1.10 (Second-order necessary conditions for problem GNPs). Let the

first- and second-order constraint qualifications hold at a point x∗. If x∗ is a local

solution of problem GNPs then

(1) x∗ is a KKT point; and

(2) for some (y, z) ∈ My,z(x
∗), it is true that pTH(x∗, y)p ≥ 0 for all nonzero p

satisfying g(x∗)Tp = 0, pA ≥ 0, and J(x∗)p = 0.

Sufficient conditions for problem GNPs are now given.

Definition 2.1.15 (First second-order sufficient condition for GNPs (SSC1)). Let

x∗ be a KKT point as defined in Definition 2.1.10 with associated Lagrange mul-

tiplier vector (y∗, z∗). Then condition SSC1 is said to hold at (x∗, y∗, z∗) if there

exists ω > 0 such that

pTH(x∗, y∗)p ≥ ω‖p‖2

for all p 6= 0 satisfying g(x∗)Tp = 0, pA ≥ 0, and J(x∗)p = 0.

A more demanding second-order condition places a requirement on all possible

Lagrange multiplier vectors.
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Definition 2.1.16 (Second second-order sufficient condition for GNPs (SSC2)).

Let x∗ be a KKT point as defined in Definition 2.1.10. Condition SSC2 is said

to hold at x∗, if for every acceptable Lagrange multiplier vector (y, z) ∈ My,z(x
∗),

there exists ω > 0 such that

pTH(x∗, y)p ≥ ω‖p‖2

for all p 6= 0 satisfying g(x∗)Tp = 0, pA ≥ 0, and J(x∗)p = 0.

Sufficient conditions for a strict local constrained minimizer for problem

GNPs are now given.

Theorem 2.1.11 (Sufficient conditions for a strict minimizer for problem GNPs).

The point x∗ is a strict local constrained minimizer of problem GNPs if

(1) x∗ is a KKT point; and

(2) condition SSC1 holds at (x∗, y, z) for some (y, z) ∈My,z(x
∗).

Verifying part (2) for all p such that g(x∗)Tp = 0, pA ≥ 0 and J(x∗)p = 0

requires finding the global minimizer of a possibly indefinite quadratic form over a

cone, which is an NP-hard problem. Computationally friendly sufficient conditions

may be formulated by using a set of feasible directions analogous to that defined

by equation (2.7) on page 23 for problem GNP.

Theorem 2.1.12 (Computational second-order sufficient conditions for problem

GNPs). The point x∗ is a strict minimizer of problem GNPs if:

(i) x∗ is a KKT point with Lagrange multiplier vector (y∗, z∗) as defined in Def-

inition 2.1.10; and

(ii) if z∗+ is the vector of strictly positive elements of z∗ from part (i), then there

has to exist an ω > 0 such that

pTH(x∗, y∗)p ≥ ω‖p‖2

for all nonzero p satisfying p+ = 0, and J(x∗)p = 0.
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Constraint qualifications are needed to guarantee that a point x∗ is an

isolated local solution of problem GNPs.

Theorem 2.1.13 (Sufficient conditions for an isolated local constrained mini-

mizer of problem GNPs). The point x∗ is an isolated local constrained minimizer

of problem GNPs (2.8) if:

(i) x∗ is a KKT point as defined in Definition 2.1.10;

(ii) the MFCQ holds at x∗, i.e., J(x∗) has linearly independent rows and there

exists a nonzero vector p such that pA > 0 and J(x∗)p = 0; and

(iii) for all (y, z) ∈My,z(x
∗), there exists an ω > 0 such that pTH(x∗, y)p ≥ ω‖p‖2

for all nonzero vectors p satisfying g(x∗)Tp = 0, pA ≥ 0 and J(x∗)p = 0.

Stronger sufficient conditions for an isolated solution of problem GNPs are

now given.

Theorem 2.1.14 (Strong sufficient conditions for an isolated solution of problem

GNPs). The point x∗ is an isolated local constrained minimizer of problem GNPs

(2.8) if:

(i) the LICQ holds at x∗, i.e., 
 J(x∗)

EA(x∗)




has full row rank;

(ii) x∗ is a KKT point and strict complementarity holds, i.e., the necessarily

unique Lagrange multiplier vector (y∗, z∗) has the property that z∗i > 0 if

x∗
i = 0; and

(iii) there exists an ω > 0 such that pTH(x∗, y∗)p ≥ ω‖p‖2 for all nonzero vectors

p satisfying J(x∗)p = 0 and pA = 0.
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The following lemma gives a condition that is equivalent to item (i) above.

Lemma 2.1.3. The matrix 
 J(x)

EA(x)


 (2.9)

has linearly independent rows if and only if Ĵ(x) has linearly independent rows,

where the matrix Ĵ(x) contains the columns of J(x) corresponding to bounds that

are inactive at x and the matrix EA(x) contains the rows of the identity matrix

corresponding to bounds that are active at x.

Proof. Note that there exists a nonsingular permutation matrix P , such that
(

J(x)

EA(x)

)
P =

(
Ĵ(x) J̃(x)

0 I

)
△

= B, (2.10)

where Ĵ(x) is defined in the statement of the theorem and where J̃(x) contains

the columns of J(x) corresponding to active bounds at x. Since multiplication on

the right by a nonsingular matrix does not change row rank, it is sufficient to show

that B has full row rank if and only if Ĵ(x) has full row rank.

(⇒) For a contrapositive proof, assume Ĵ(x) has dependent rows. This means

that Ĵ(x)T has dependent columns and that there exists a vector z1 6= 0 that

satisfies Ĵ(x)Tz1 = 0. Define z2 = −J̃(x)Tz1. It follows that

BT

(
z1

z2

)
=

(
Ĵ(x)T 0

J̃(x)T I

)(
z1

z2

)
=

(
Ĵ(x)Tz1

J̃(x)Tz1 + z2

)
=

(
0

0

)
.

Since z1 6= 0, this implies that BT has dependent columns and that B has dependent

rows.

(⇐) For another contrapositive proof, assume B has dependent rows. This implies

that BT has dependent columns and that there exists a vector (z1, z2)
T 6= 0 such

that

BT

(
z1

z2

)
=

(
Ĵ(x)T 0

J̃(x)T I

)(
z1

z2

)
=

(
Ĵ(x)Tz1

J̃(x)Tz1 + z2

)
=

(
0

0

)
. (2.11)
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Suppose z1 = 0. Then the previous equation implies that z2 = 0. This is a

contradiction and implies that z1 6= 0. However, equation (2.11) gives Ĵ(x)Tz1 = 0.

Since z1 6= 0, this means Ĵ(x)T has dependent columns. Thus, Ĵ(x) has dependent

rows.

Finally, Lemma 2.1.3 may be used to give sufficient conditions for an isolated

constrained minimizer for problem GNPs that are equivalent to Theorem 2.1.14.

Theorem 2.1.15 (Strong sufficient conditions for an isolated solution of problem

GNPs). The point x∗ is an isolated local constrained minimizer of problem GNPs

(2.8) if:

(i) the LICQ holds at x∗, i.e., Ĵ(x∗) has full row rank;

(ii) x∗ is a KKT point and strict complementarity holds, i.e., the necessarily

unique Lagrange multiplier vector (y∗, z∗) has the property that z∗i > 0 if

x∗
i = 0; and

(iii) there exists an ω > 0 such that pTH(x∗, y∗)p ≥ ω‖p‖2 for all nonzero vectors

p satisfying J(x∗)p = 0 and pA = 0.

2.2 Primal-Dual Penalty Functions

This section serves as an introduction to a class of primal-dual penalty

functions. The first subsection considers penalty functions, while the second sub-

section considers shifted penalty functions. The augmented Lagrangian function is

derived by applying the penalty function to a shifted problem. The final subsection

considers the introduction of inequalities and is the ultimate focus of this thesis.
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2.2.1 Penalty functions

This subsection considers the following nonlinear equality constrained prob-

lem:

NEP minimize
x∈Rn

f(x)

subject to c(x) = 0.
(2.12)

The quadratic penalty function is the basis for handling problem NEP and

is given by

P(x; µ) = f(x) +
1

2µ
‖c(x)‖2. (2.13)

A primal-dual pair
(
x(µ), y(µ)

)
can be defined such that x(µ) minimizes P(x; µ)

and y(µ) is a vector of approximate Lagrange multipliers for problem NEP. The

point
(
x(µ), y(µ)

)
is a solution to the perturbed problem

minimize
x∈Rn

f(x)

subject to c(x) = c
(
x(µ)

)
,

(2.14)

and satisfies the equations

∇f(x)−
∑

i

yi∇ci(x) = 0 and yi = −ci(x)/µ.

These equations may be rewritten as

g(x)− J(x)Ty = 0, (2.15a)

c(x) + µy = 0. (2.15b)

Under standard assumptions on problem (2.12), Fiacco and McCormick in [10]

show the existence of continuously differentiable functions
(
x(µ), y(µ)

)
that satisfy

the above equations; these points trace out a trajectory of minimizers. Using the

notation (xµ, yµ)
△

=
(
x(µ), y(µ)

)
, these points satisfy

g(xµ)− J(xµ)Tyµ = 0, (2.16a)

c(xµ) + µyµ = 0. (2.16b)
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Furthermore, they show

‖
(
x(µ), y(µ)

)
− (x∗, y∗)‖ = Ω(µ). (2.17)

The primal-dual penalty function has
(
x(µ), y(µ)

)
as a local minimizer and

is defined as

P(x, y; µ)
△

= f(x) +
1

2µ
‖c(x)‖2 +

1

2µ
‖c(x) + µy‖2 (2.18)

for a positive penalty parameter µ. This function may be interpreted as penaliz-

ing the constraint violation c(x) and penalizing deviation from the trajectory of

minimizers, where c(x) + µy = 0. This can be seen from (2.15b).

It is known that the quadratic penalty function is not ideal for handling

equality constraints for the following reasons:

(i) Because of (2.17), it is necessary to drive µ towards zero to achieve a good

approximation to (x∗, y∗). Moreover, because (2.17) is an estimate of type

Ω(·), rather than O(·), the solution
(
x(µ), y(µ)

)
is guaranteed to be in error

by at least some multiple of µ.

(ii) While it is possible to use an approximation to
(
x(µ0), y(µ0)

)
associated

with penalty parameter µ0 as a starting point for computing
(
x(µ), y(µ)

)

for a reduced penalty parameter µ, there is no obvious way to use prior

knowledge about the solution to increase the accuracy of
(
x(µ), y(µ)

)
as an

approximation to (x∗, y∗).

(iii) An analysis like that leading to (2.17) shows that

‖
(
x(µ), y(µ)

)
−
(
x(µ0), y(µ0)

)
‖ = Ω

(
|µ− µ0|

)
.

Hence, if an approximation to
(
x(µ0), y(µ0)

)
is used as the initial guess for

computing
(
x(µ), y(µ)

)
, one would be starting a distance Ω

(
|µ − µ0|

)
from

the minimizer. Since ∇2P(x; µ) is increasingly ill conditioned as µ ↓ 0, this

systematic error could be significant. It would be nice if prior knowledge,
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etc., allowed us to find a starting point closer to the minimizer of the merit

function (for this value of µ).

The next subsection considers the augmented Lagrangian function, which is a

generalization of the quadratic penalty function (2.13) that allows prior information

of the multipliers y to be introduced into the function. Use of this additional

information allows for estimates (xµ, yµ) for a given µ that are much closer to

(x∗, y∗) than is possible with (2.13).

2.2.2 Shifted penalty functions

In Powell’s derivation of the “classical” augmented Lagrangian method, the

solution of problem NEP (2.12) is found by repeatedly minimizing the quadratic

penalty function for the “shifted” problem

minimize
x∈Rn

f(x)

subject to c(x)− µye = 0,
(2.19)

where ye is an estimate of the optimal Lagrange multipliers y∗. This method is

based on the observation that for sufficiently small µ, x∗ is a minimizer for the

quadratic penalty function applied to (2.19) with the choice ye = y∗.

The quadratic penalty function applied to (2.19) is given by

f(x) +
1

2µ
‖c(x)− µye‖2,

which after rearrangement is equivalent to

f(x)− c(x)Tye +
1

2µ
‖c(x)‖2 +

µ

2
‖ye‖2.

This function has the same minimizers as

LA(x; ye, µ)
△

= f(x)− c(x)Tye +
1

2µ
‖c(x)‖2 (2.20)

and is known as the augmented Lagrangian function.



37

A primal-dual pair
(
x(µ), y(µ)

)
can be defined such that x(µ) minimizes

LA(x; ye, µ) and y(µ) is the vector of associated Lagrange multipliers. This point

satisfies the equations

∇f(x)−
∑

i

yi∇ci(x) = 0 and yi = −
(

ci(x)

µ
− [ye]i

)
,

which may be rewritten as

g(x)− J(x)Ty = 0,

c(x) + µ(y − ye) = 0.

The primal-dual penalty function for (2.19) is obtained by substituting

c(x)− µye for c(x) in (2.18), which yields

f(x) +
1

2µ
‖c(x)− µye‖2 +

1

2µ
‖c(x) + µ(y − ye)‖2.

After rearrangement, this is equivalent to

f(x)− c(x)Tye +
1

2µ
‖c(x)‖2 +

1

2µ
‖c(x) + µ(y − ye)‖2 +

µ

2
‖ye‖2.

This function has the same minimizers as

M(x, y; ye, µ)
△

= f(x)− c(x)Tye +
1

2µ
‖c(x)‖2 +

1

2µ
‖c(x) + µ(y − ye)‖2, (2.22)

and will be called the primal-dual augmented Lagrangian function. The primal-

dual augmented Lagrangian function penalizes the constraint violation c(x) and

deviation from the trajectory for the perturbed problem; points on this perturbed

trajectory satisfy c(x) + µ(y − ye) = 0. Note that M(x, y; 0, µ) ≡ P(x, y; µ),

i.e., the primal-dual penalty function is obtained from the primal-dual augmented

Lagrangian function by setting ye ≡ 0.

2.2.3 Handling inequalities

The primal-dual penalty function and primal-dual augmented Lagrangian

function may be applied to problem NEP (2.12) in a relatively straightforward way.
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The introduction of general inequality constraints give rise to further challenges.

One technique for dealing with inequalities is to introduce them into the objective

function via a barrier term. This idea makes particular sense in the primal-dual

penalty context since both the penalty and barrier parameters must be driven to

zero in order to obtain convergence. This technique has already been studied by

Forsgren and Gill [12]. An alternative approach to handling general inequalities

is by converting them to equality constraints through the use of slack variables.

This converts the general inequality problem into a general equality problem with

bounds on the slack variables. The equality constraints may then be handled by

the primal-dual augmented Lagrangian function, while the bounds on the slacks

are kept explicit. Active-set strategies may then be employed to handle these

explicit bounds. This technique is the primary focus of this thesis and may be

particularly advantageous when bounds on the primal variables already exist.
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The Primal-Dual Augmented

Lagrangian

In this chapter two primal-dual functions are considered: a primal-dual

penalty function and a primal-dual augmented Lagrangian function. Most of the

results, however, will be stated in terms of the primal-dual augmented Lagrangian.

It will be shown that, in most cases, the results are trivially adapted to the primal-

dual penalty function. The chapter is organized as follows. Section 3.1 considers

the derivatives of the primal-dual penalty function and primal-dual augmented

Lagrangian function. Section 3.2 discusses the inertia of the Hessian matrix as-

sociated with the primal-dual functions and relates them to standard optimality

conditions. Section 3.3 gives properties of the primal-dual functions with a bias

towards displaying their usefulness as merit functions in optimization algorithms.

Section 3.4 discusses trajectories that are perturbations of the classical trajectory

of minimizers. Section 3.5 considers the consequences of imposing explicit bounds

on the dual variables. If any explicit bounds are active at a solution, it dictates

that a different problem is being solved than “intended”. Section 3.6 compares

the systems that are solved in a primal-dual framework to the systems solved

in “classical” SQP algorithms. Finally, Section 3.7 gives a generalized primal-dual

39
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function for which the primal-dual penalty, the primal-dual augmented Lagrangian,

the proximal-point Lagrangian (see, for example, [27] and [26]), and others, are

specific instances.

3.1 Derivatives

Section 2.2 defined the primal-dual penalty function and the primal-dual

augmented Lagrangian function as well as motivated their definitions. This section

gives their first and second derivatives since any algorithm using these functions

for continuous minimization must make use of them. By defining special auxiliary

vectors, relatively concise derivatives may be written.

The definition and derivatives of the primal-dual penalty function (2.18) on

page 35 are given by

P(x, y; µ) = f(x) +
1

2µ
‖c(x)‖2 +

1

2µ
‖c(x) + µy‖2, (3.1a)

∇P(x, y; µ) =

(
g(x)− J(x)T(2πp(x)− y)

c(x) + µy

)

=

(
g(x)− J(x)T(2πp(x)− y)

µ
(
y − πp(x)

)

)
,

(3.1b)

∇2P(x, y; µ) =

(
H
(
x, 2πp(x)− y

)
+ 2

µ
J(x)TJ(x) J(x)T

J(x) µI

)
, (3.1c)

where πp(x)
△

= −c(x)/µ. The equation

2πp(x)− y = y + 2
(
πp(x)− y

)

shows that 2πp(x)− y is equal to y plus a multiple of the difference between πp(x)

and y. For example, if x is on the classical trajectory given by (2.16b) on page 34,

then πp(x) = y and 2πp(x)− y = y.
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The primal-dual penalty function is used, for example, by Forsgren and

Gill in [12]. In this paper they study problems with both general equality and

inequality constraints. They “move” the general equality constraints and the gen-

eral inequality constraints into the objective function of the subproblem via the

primal-dual penalty function and primal-dual barrier term, respectively.

Next consider the primal-dual augmented Lagrangian function (2.22) on

page 37, whose definition and derivatives are given by

M(x, y; ye, µ) = f(x)− c(x)Tye +
1

2µ
‖c(x)‖2 +

1

2µ
‖c(x) + µ(y − ye)‖2, (3.2a)

∇M(x, y; ye, µ) =

(
g(x)− J(x)T(2πa(x)− y)

c(x) + µ(y − ye)

)

=

(
g(x)− J(x)T(2πa(x)− y)

µ
(
y − πa(x)

)

)
,

(3.2b)

∇2M(x, y; ye, µ) =

(
H
(
x, 2πa(x)− y

)
+ 2

µ
J(x)TJ(x) J(x)T

J(x) µI

)
, (3.2c)

where πa(x)
△

= ye − c(x)/µ. Note that if ye = 0, then πp(x) = πa(x). The only

difference between (3.1) and (3.2) is in the definition for π. Thus, one may often

analyze properties of the primal-dual functions at the same time by relying on two

facts:

• the primal-dual penalty function can be recovered from the primal-dual aug-

mented Lagrangian function by setting ye = 0.

• the “structure” of the derivatives are the same; the only difference arises in

the definition of the “π” term.

The following section discusses the inertia of the Hessian of the primal-

dual augmented Lagrangian function (3.2c). However, a similar result holds for

the primal-dual penalty function with an appropriate switch of πa to πp. In fact,

the primal-dual augmented Lagrangian function will henceforth be the focus of
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discussion since this is the primary concern of this thesis. However, as previously

stated, most of the properties to be discussed apply either directly, or with a small

change, to the primal-dual penalty function.

3.2 Inertia

As discussed in Section 2.1, optimality conditions may be partitioned into

first- and second-order conditions. A primary objective of all algorithms discussed

in this thesis is convergence to points satisfying certain second-order conditions.

For problem NEP, Theorem 2.1.3 in Section 2.1 shows that verification of second-

order conditions requires knowledge of the curvature of the Hessian of the La-

grangian restricted to the null space of J(x∗), i.e., the reduced Hessian. This

means that any potential algorithm must be able to deduce, either directly or

indirectly, the inertia of the reduced Hessian. With this in mind, the inertia of

the Hessian of the primal-dual augmented Lagrangian will now be discussed. For

the rest of this section the following notation is used: J = J(x), π = π(x), and

H = H(x, 2π(x)− y) where π(x) = ye − 1
µ
c(x).

Lemma 3.2.1. For a given µ > 0, the inertia of the primal-dual augmented La-

grangian is given by

In
(
∇2M(x, y; ye, µ)

)
= (m, 0, 0) + In

(
H +

1

µ
JTJ

)
.

Proof. The Hessian of the primal-dual augmented Lagrangian is given by

∇2M(x, y; ye, µ) =

(
H + 2

µ
JTJ JT

J µIm

)
.

Define the nonsingular matrix S as

S =

(
In 0

−J/µ Im

)
.
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Sylvester’s law of inertia implies

In
(
∇2M(x, y; ye, µ)

)
= In

(
H + 1

µ
JTJ 0

0 µIm

)
.

Since µ is positive and inertia is additive along diagonal blocks of a block-diagonal

matrix, it follows that

In
(
∇2M(x, y; ye, µ)

)
= (m, 0, 0) + In

(
H +

1

µ
JTJ

)
.

This lemma indicates that the usefulness ofM as a merit function capable

of finding points satisfying second-order conditions is contingent on knowing the

inertia of H + (1/µ)JTJ . Debreu’s Lemma 1.5.1 implies the existence a finite

µ̄ > 0 such that this matrix is positive definite at points satisfying the second-

order sufficient conditions to problem NEP for all 0 < µ < µ̄.

The optimization package SNOPT is an SQP algorithm that uses the aug-

mented Lagrangian as a merit function. Typically, the augmented Lagrangian is

considered a function of x for fixed ye. However, SNOPT performs a line-search

in both the x and y variables since it views the augmented Lagrangian as a func-

tion of both x and y. One could consider implementing an analogous idea for the

primal-dual augmented Lagrangian, i.e., consider it as a function of (x, y, ye). The

following lemma shows that this is not possible.

Lemma 3.2.2. Consider the following function

f(x, y, ye) = f(x)− c(x)Tye +
1

2µ
‖c(x)‖2 +

1

2µ
‖c(x) + µ(y − ye)‖2,

i.e., f(x, y, ye) is the primal-dual augmented Lagrangian considered as a function

of (x, y, ye). Then the following holds

In
(
∇2f(x, y, ye)

)
= In

(
ZTHZ

)
+
(
m + r, r,m− r

)

where r is the rank of the m× n matrix J and the columns of Z form a basis for

the null space of J .
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Proof. The Hessian of f(x, y, ye) is given by

∇2f(x, y, ye) =




H + 2
µ
JTJ JT −2JT

J µIm −µIm

−2J −µIm µIm


 .

Define the nonsingular matrix T as

T =




In − 1
µ
JT 1

µ
JT

0 Im Im

0 0 Im


 .

Then Sylvester’s law of inertia implies In
(
∇2f(x, y, ye)

)
= In(B), where B is given

by

B =




H −JT 0

−J 0 0

0 0 µIm


 .

Therefore, In
(
∇2f(x, y, ye)

)
= (m, 0, 0) + In(C), where C is given by

C =

(
H −JT

−J 0

)
.

Next, define the nonsingular matrix S as

S =

(
Im 0

0 −In

)
.

Sylvester’s law of inertia implies

In
(
C
)

= In
(
SCST

)
= In

(
H JT

J 0

)
.

Theorem 1.5.1 then implies In(C) = In(ZTHZ) + (r, r,m− r), where r is the rank

of J . Putting this all together means

In
(
∇2f(x, y, ye)

)
= In(ZTHZ) + (m + r, r,m− r).
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Note that this result shows that as a function of (x, y, ye), the Hessian of

the primal-dual augmented Lagrangian is always indefinite when J 6= 0.

3.3 Properties

The plan is to use the primal-dual augmented Lagrangian as the basis for

new active-set algorithms. In order to develop an effective algorithm, a sound un-

derstanding of the properties of the underlying functions is essential. This section

considers properties of the primal-dual augmented Lagrangian and shows that it

is well suited for optimization methods.

Before discussing the primal-dual augmented Lagrangian, a brief discussion

of the classical augmented Lagrangian is given. The first result displays the rational

behind using the augmented Lagrangian.

Theorem 3.3.1. If x∗ satisfies the second-order sufficient conditions for a solution

of problem NEP (2.12) on page 34, then there exists a µ̄ such that for all 0 < µ < µ̄,

the point x∗ satisfies the second-order sufficient conditions for a solution of the

unconstrained problem

minimize
x∈Rn

LA(x; y∗, µ) = f(x)− c(x)T y∗ +
1

2µ
‖c(x)‖2. (3.3)

Proof. The second-order sufficient conditions for x to be an unconstrained mini-

mizer of (3.3) are:

U1. g(x)− J(x)T (y∗ − 1
µ
c(x)) = 0; and

U2. H(x, y∗ − 1
µ
c(x)) + 1

µ
J(x)T J(x) is positive definite.

By assumption, x∗ satisfies the second-order sufficient conditions given by Theo-

rem 2.1.3 and thus

C1. c(x∗) = 0,

C2. g(x∗)− J(x∗)T y∗ = 0, and
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C3. there exists ω > 0 such that pTH(x∗, y∗)p ≥ ω‖p‖2 for all p satisfying

J(x∗)p = 0.

It must be shown that x∗ satisfies U1 and U2. It is easy to see that C1 and

C2 imply x∗ satisfies U1. Since c(x∗) = 0, it remains to show that H(x∗, y∗) +

(1/µ)J(x∗)TJ(x∗) is positive definite for all positive µ sufficiently small. However,

Debreu’s Lemma 1.5.1 and C3 imply the existence of a finite µ̄ > 0 such that

H(x∗, y∗) +
1

µ
J(x∗)TJ(x∗)

is positive definite for all 0 < µ < µ̄. Therefore, for all 0 < µ < µ̄, the point

x∗ satisfies U1–U2 and must be an unconstrained minimizer of the augmented

Lagrangian (3.3).

There are two important points to note about this lemma.

(i) It has not been shown that all local minimizers of the augmented Lagrangian

are local solutions of the constrained problem. The next example illustrates

this point.

Example 3.3.1. Consider the following problem

minimize
x∈R

x + 1 subject to
1

3
x3 − 3

2
x2 + 2x = 0, (3.4)

which has a unique solution (x∗, y∗) = (0, 1/2). For all µ < 1/6, the aug-

mented Lagrangian for this problem has a local minimizer x̄ = 2 − O(µ) at

which c(x̄) 6= 0 (see Figure 3.1).

(ii) Condition C3 cannot be relaxed to allow a semidefinite reduced Hessian.

Example 3.3.2. Consider the problem where

H =

(
1 0

0 −1

)
, J =

(
1 1

)
, and Z =

(
1

−1

)
.
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Fig. 3.1: This figure depicts the objective function and augmented Lagrangian for
the one-dimensional problem given by Example 3.3.1. The constrained problem
has a unique solution (x∗, y∗) = (0, 1/2). However, for all µ < 1/6, the augmented

Lagrangian has a local minimizer x̄ = 2−O(µ) such that c(x̄) 6= 0.

Note that Z forms a basis for the null space of J . Thus, C3 is equivalent

to ZTHZ being positive definite. In this case, ZTHZ is singular and H +

(1/µ)JTJ is indefinite for all positive µ.

Theorem 3.3.1 suggests an algorithm in which y∗ is approximated by ye and

the augmented Lagrangian

LA(x)
△

= LA(x; ye, µ) = f(x)− c(x)Tye +
1

2µ
‖c(x)‖2

is minimized. This problem may be solved using a sequence of subproblems of the

form

minimize
∆x∈Rn

∇LA(x)T∆x +
1

2
∆xT∇2LA(x)∆x.

If ∇2LA(x) is positive definite, then ∆x is the unique solution of the Newton

equations ∇2LA(x)∆x = −∇LA(x). In terms of the m-vector π(x) = ye − c(x)/µ,

the gradient and Hessian of LA(x) are given by

∇LA(x) = g(x)− J(x)T π(x) and ∇2LA(x) = H
(
x, π(x)

)
+

1

µ
J(x)T J(x),
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and the Newton equations are simply

(
H
(
x, π(x)

)
+

1

µ
J(x)TJ(x)

)
∆x = −

(
g(x)− J(x)Tπ(x)

)
. (3.5)

The elements of π(x) may be viewed as approximate Lagrange multipliers. They

are sometimes known as first-order primal multiplier estimates.

The next result shows that the Newton direction satisfies a “primal-dual”

system. This system will be used later.

Lemma 3.3.1. Assume that J(x) has full row rank. If y is an arbitrary m-vector,

then the augmented Lagrangian direction ∆x satisfies the system


 H(x, π(x)) J(x)T

J(x) −µIm




 ∆x

−∆y


 = −


 g(x)− J(x)Ty

c(x) + µ(y − ye)


 . (3.6)

Proof. Define J = J(x), g = g(x), c = c(x), H = H(x, π), and π = π(x). Then

the Newton equations may be written as

(
H +

1

µ
JTJ

)
∆x = −

(
g − JTπ

)
.

The vector −(1/µ)JTJ∆x− (1/µ)JTc− JT(y − ye) lies in the column space of JT,

and hence there exists a vector ∆y such that

JT∆y = − 1

µ
JTJ∆x− 1

µ
JTc− JT(y − ye). (3.7)

Using this expression in conjunction with (3.5) and simplifying yields

H∆x− JT ∆y = −(g − JTy). (3.8)

Equation (3.7) and full row rank of J implies

µ∆y = −J∆x−
(
c + µ(y − ye)

)
. (3.9)

Equations (3.8) and (3.9) give the required result.
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Note that although ∆x is independent of y, the vector ∆y depends on the

choice of y.

The primal-dual augmented Lagrangian is now considered. First, a theorem

analogous to Theorem 3.3.1 is given.

Theorem 3.3.2. If (x∗, y∗) satisfies the second-order sufficient conditions for a

solution of problem NEP (2.12) on page 34, then there exists a positive µ̄ such that

for all 0 < µ < µ̄, the point (x∗, y∗) is a solution of the unconstrained minimization

problem

minimize
x∈Rn, y∈Rm

M(x, y; y∗, µ), (3.10)

where M(x, y; y∗, µ) = f(x) − c(x)Ty∗ + 1
2µ
‖c(x)‖2 + 1

2µ
‖c(x) + µ(y − y∗)‖2 is the

primal-dual augmented Lagrangian.

Proof. Since x∗ satisfies the second-order sufficient conditions for problem NEP,

Theorem 2.1.3 implies that x∗ satisfies

C1. c(x∗) = 0,

C2. g(x∗)− J(x∗)T y∗ = 0, and

C3. there exists ω > 0 such that pTH(x∗, y∗)p ≥ ω‖p‖2 for all p satisfying

J(x∗)p = 0.

In order to show that (x∗, y∗) is an unconstrained minimizer of (3.10), it must be

shown that ∇M(x∗, y∗; y∗, µ) = 0 and that ∇2M(x∗, y∗; y∗, µ) is positive definite.

As given by equation (3.2) on page 41, the gradient and Hessian are given by

∇M(x, y; y∗, µ) =

(
g − JT

(
2π(x)− y

)

c + µ(y − y∗)

)

and

∇2M(x, y; y∗, µ) =


H

(
x, 2π(x)− y

)
+

2

µ
J(x)TJ(x) J(x)T

J(x) µI



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where π(x) = y∗− c(x)/µ. Evaluation at x∗ and the use of C1 shows that π(x∗) =

y∗. Using this fact, C1 and C2, it follows that

∇M(x∗, y∗; y∗, µ) =

(
0

0

)

and

∇2M(x∗, y∗; y∗, µ) =


H(x∗, y∗) +

2

µ
J(x∗)TJ(x∗) J(x∗)T

J(x∗) µI


 .

Lemma 3.2.1 shows that

In
(
∇2M(x∗, y∗; y∗, µ)

)
=
(
m, 0, 0

)
+ In

(
H(x∗, y∗) +

1

µ
J(x∗)TJ(x∗)

)

Finally, C3 and Debreu’s Lemma 1.5.1 imply that there exists a µ̄ > 0 such that

the matrix

H(x∗, y∗) +
1

µ
J(x∗)TJ(x∗)

is positive definite for all 0 < µ ≤ µ̄. Thus,

In(∇2M(x∗, y∗; y∗, µ)) = (m, 0, 0) + (n, 0, 0) = (m + n, 0, 0),

which implies that ∇2M(x∗, y∗; y∗, µ) is positive definite for all 0 < µ ≤ µ̄. Thus,

(x∗, y∗) is an unconstrained minimizer of problem (3.10) for all 0 < µ ≤ µ̄.

This result suggests that given an approximate multiplier, say ye, one may

define the primal-dual augmented Lagrangian

M(x, y; ye, µ) = f(x)− c(x)Tye +
1

2µ
‖c(x)‖2 +

1

2µ
‖c(x) + µ(y − ye)‖2,

and then solve the unconstrained minimization problem

minimize
x∈Rn, y∈Rm

M(x, y; ye, µ). (3.11)

This would be followed by an appropriate update to ye and another solve of the

form (3.11). This process can then be repeated. Note that this is an unconstrained

problem in both the primal and dual variables (x, y).
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If v denotes the (n + m) vector of primal-dual variables v = (x, y), then

problem (3.11) may be solved using a sequence of subproblems of the form

minimize
∆v∈Rn+m

∇M(v)T∆v +
1

2
∆vT∇2M(v)∆v (3.12)

where ∆v = (∆x,∆y). If ∇2M(v) is positive definite, then ∆v is the unique

solution of the Newton equations

∇2M(v)∆v = −∇M(v).

Substitution of the expressions for ∇M and ∇2M yields the Newton system


H +

2

µ
JTJ JT

J µIm



(

∆x

∆y

)
= −

(
g − JT

(
2π − y

)

c + µ(y − ye)

)
, (3.13)

where H = H
(
x, 2π(x)−y

)
, g = g(x), c = c(x), π = π(x), and J = J(x). It can be

shown that this system becomes ill-conditioned as µ → 0. In fact, m eigenvalues

approach zero, m eigenvalues approach infinity, and n−m eigenvalues are bounded

as µ→ 0. For methods such as classical penalty and primal-dual penalty methods

this is a potential problem. It was thought that this ill-conditioning was the

primary cause of failure for classical penalty methods. However, it has been shown

that these difficulties persist even when the Newton system is solved exactly. The

true cause of failure was due to the first generated Newton direction immediately

following a decrease in the penalty parameter. This issue was resolved by use of

the primal-dual penalty function. This will be discussed in more detail shortly.

Classical augmented Lagrangian methods do not require µ → 0. However,

augmented Lagrangian methods may still suffer from the two issues just discussed.

First, although Lagrangian methods do not typically require µ to go to zero, they

often require several reductions in µ. Thus, augmented Lagrangian methods be-

have the same way as classical penalty functions when the penalty parameter is

decreased (in particular when µ is quite small). It will soon be shown that as the

primal-dual penalty method solved this problem for the classical penalty method,
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so has the primal-dual augmented Lagrangian method solved this problem for the

classical Lagrangian method. Second, typical augmented Lagrangian algorithms

(see for example [8] and [13]) have a fall-back plan to ensure convergence. This

typically consists of driving µ towards zero and ultimately causing the algorithm to

behave like a penalty method. Thus, although a “typical” augmented Lagrangian

method run has µ fixed when approaching a solution, there still exist problems

for which µ is driven very small. This means that ill-conditioning is still a poten-

tial issue. The next lemma shows that the Newton equations given by (3.13) are

equivalent to another system whose conditioning is as good (or as bad) as problem

NEP.

Lemma 3.3.2. The following two systems are equivalent:


 H(x, 2π − y) + 2

µ
JTJ JT

J µIm




 ∆x

∆y


 = −


 g − JT(2π − y)

c + µ(y − ye)


 (3.14)

and

 H(x, 2π − y) JT

J −µIm




 ∆x

−∆y


 = −


 g − JTy

c + µ(y − ye)


 . (3.15)

In other words, (∆x,∆y) is a solution of the first system if and only if (∆x,∆y)

is a solution of the second system.

Proof. Multiplying both sides of (3.14) by the non-singular matrix

N =


 I − 2

µ
JT

0 Im


 ,

and scaling the last m columns by −1 gives


 H(x, 2π − y) JT

J −µIm




 ∆x

−∆y


 = −


 g − JTy

c + µ(y − ye)


 .
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This lemma shows that the better conditioned system (3.15) may be used

when solving for a search direction ∆v = (∆x,∆y) satisfying (3.13). System (3.15)

bears a striking resemblance to system (3.6) on page 48 associated with the classical

augmented Lagrangian method. The next lemma makes this precise.

Lemma 3.3.3. If J has full row rank and π is substituted for y in the Hessian as-

sociated with the primal-dual augmented Lagrangian system (3.15), then the vector

∆x associated with the solution of the resulting modified Newton system

(
H(x, π) JT

J −µIm

)(
∆x

−∆y

)
= −

(
g − JTy

c + µ(y − ye)

)
,

is the conventional augmented Lagrangian direction given by (3.5) on page 48.

Proof. This follows directly from Lemma 3.3.1.

The quality of the first Newton search direction following a decrease in the

penalty parameter µ is now considered. Fiacco and McCormick [10] show that

under certain standard assumptions and for µ sufficiently small, there exists a

continuously differentiable path of solutions parameterized by µ, say (xµ, yµ)
△

=
(
x(µ), y(µ)

)
, such that (xµ, yµ) is a minimizer to the primal-dual penalty function

minimize
x∈Rn,y∈Rm

P(x, y; µ) . (3.16)

One of the principal benefits of the primal-dual penalty and primal-dual augmented

Lagrangian occurs in the definition of the step immediately following a decrease in

the penalty parameter µ. When using the primal-dual augmented Lagrangian in

an optimization routine, one typically expects µ to stay bounded away from zero

and for the Lagrange multiplier vector estimate ye to converge to the Lagrange

multiplier vector. However, if ye is fixed, there exists a trajectory of minimizers

(xµ, yµ) for the following problem for µ sufficiently small:

minimize
x∈Rn,y∈Rm

M(x, y; ye, µ). (3.17)
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These minimizers have the property that (xµ, yµ)→ (x∗, y∗) as µ→ 0. Also, for a

given value of µ, the point (xµ, yµ) satisfies the following equations:

g(xµ)− J(xµ)Tyµ = 0 and c(xµ) + µ(yµ − ye) = 0. (3.18)

To clarify the goal of future analysis, consider the following situation. Suppose that

a minimizer (xµ, yµ) has been calculated during an implementation of a primal-

dual augmented Lagrangian method. However, the constraint violation, i.e., the

norm of c(xµ), has not decreased as much as desired. The current point is then

kept, the penalty parameter is decreased to say µ̄, and ye is kept fixed (in practice,

the Lagrange multiplier estimate ye may be updated, but this current scenario is

applicable for other reasons and is the situation of interest). The next step is to

find a point on the trajectory for the reduced penalty parameter µ̄. What is the

quality of the first Newton direction?

Of particular interest in answering this question is the tangent vector to the

trajectory of minimizers at (xµ, yµ). The following definitions are used: cµ = c(xµ),

Jµ = J(xµ), πµ = π(xµ), and gµ = g(xµ). Since (xµ, yµ) is a minimizer of the

primal-dual augmented Lagrangian it satisfies the following equations:

g(xµ)− J(xµ)T
(
2π(xµ)− yµ

)
= 0 and c(xµ) + µ(yµ − ye) = 0. (3.19)

Differentiation of these equations with respect to µ shows that the tangent vector

(x′
µ, y

′
µ) satisfies the following system


H

(
xµ, 2π(xµ)− yµ

)
+

2

µ
JT

µJµ JT
µ

Jµ µI



(

x′
µ

y′
µ

)
= −




2

µ2
JT

µcµ

yµ − ye


 .

Multiplication on the left by the nonsingular matrix

N
△

=


I − 2

µ
JT

µ

0 I



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followed by symmetrization and simplification of the right-hand side yields
(

H
(
xµ, 2π(xµ)− yµ

)
JT

µ

Jµ −µI

)(
x′

µ

−y′
µ

)
= −


−

2

µ
JT

µ(yµ − πµ)

yµ − ye


 .

Since yµ = πµ on the trajectory, the tangent vector (x′
µ, y

′
µ) satisfies the following

system: (
H(xµ, yµ) JT

µ

Jµ −µI

)(
x′

µ

−y′
µ

)
= −

(
0

yµ − ye

)
. (3.20)

Taylor expansion centered at µ gives

xµ̄ = xµ + (µ̄− µ)x′
µ + O

(
(µ̄− µ)2

)
,

yµ̄ = yµ + (µ̄− µ)y′
µ + O

(
(µ̄− µ)2

)
,

and thus

xµ̄ − xµ ≈ (µ̄− µ)x′
µ ,

yµ̄ − yµ ≈ (µ̄− µ)y′
µ .

This implies that

(µ̄− µ)


 x′

µ

y′
µ


 (3.21)

is a good search direction for computing (xµ̄, yµ̄), i.e., µ̄ − µ times the tangent to

the trajectory is a good search direction for computing (xµ̄, yµ̄).

The aim is to compare the direction given by (3.21) with the direction gen-

erated by the primal-dual augmented Lagrangian function. It will be shown that

the first Newton direction generated by the primal-dual augmented Lagrangian is

an excellent direction; it is known that the first direction generated by the classical

augmented Lagrangian is not a good direction.

The first Newton system for the primal-dual augmented Lagrangian func-

tion with parameter µ̄ is given by

H

(
xµ, 2π̄(xµ)− yµ

)
+

2

µ̄
JT

µJµ JT
µ

Jµ µ̄I



(

∆x

∆y

)
=

(
gµ − JT

µ

(
2π̄(xµ)− yµ

)

cµ + µ̄(yµ − ye)

)
,
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where π̄(x)
△

= ye − c(x)/µ̄. Multiplication by the nonsingular matrix

N2
△

=


I − 2

µ̄
JT

µ

0 I


 ,

followed by symmetrization and simplification leads to
(

H
(
xµ, 2π̄(xµ)− yµ

)
JT

µ

Jµ −µ̄I

)(
∆x

−∆y

)
= −

(
gµ − JT

µyµ

cµ + µ̄(yµ − ye)

)
.

Since (xµ, yµ) is on the trajectory, the previous system simplifies to

(
H
(
xµ, yµ + 2(µ̄−µ)

µ̄
(yµ − ye)

)
JT

µ

Jµ −µ̄I

)(
∆x

−∆y

)
= −

(
0

(µ̄− µ)(yµ − ye)

)
. (3.22)

Using (3.20) and (3.22), it can be shown that


 ∆x

∆y


 = (µ̄− µ)


 x′

µ

y′
µ


+ O

(
|µ̄− µ|2

)
. (3.23)

Thus for a fixed ye, (3.21) and (3.23) imply that the first primal-dual augmented

Lagrangian direction following a decrease in the penalty parameter is an excellent

direction.

The previous argument has shown that if

1. a point (xµ, yµ) on the trajectory of minimizers is found for a given value of

the penalty parameter µ,

2. the penalty parameter is then decreased, to say µ̄, and

3. ye is kept fixed,

then to first-order, the first Newton direction for the primal-dual augmented La-

grangian function (using µ̄) agrees with the tangent to the trajectory of minimizers

at µ. This result is very specific and begs the question: If we only have an ap-

proximation to (xµ, yµ), then does there exist a “perturbed trajectory” leading to

(xµ̄, yµ̄)? The next section answers this question.
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3.4 A Perturbed Trajectory

This section discusses the existence of a perturbed trajectory. It is known

that under certain assumptions, there exists a continuously differentiable path of

minimizers for the primal-dual augmented Lagrangian function for µ sufficiently

small and ye fixed. It was also shown in Section 3.3 that when an exact minimizer

of the primal-dual augmented Lagrangian function for a given value of µ is found,

then the first Newton direction following a decrease in µ is tangent to the curve

of minimizers parameterized by µ (assuming ye is kept fixed). In fact, it was

shown that the first Newton step is identical to the step predicted by a first-order

Taylor series approximation. However, due to numerical error an exact minimizer

is rarely found. More importantly, it is often advantageous to only approximately

solve subproblems and only require high accuracy near a solution to the given

problem. Is the first Newton direction for minimizing the primal-dual augmented

Lagrangian following a decrease in µ related to some nearby trajectory emanating

from the current approximation to (xµ, yµ)? The following theorem addresses this

question.

Theorem 3.4.1 (A Wedge of Perturbed Trajectories). Consider problem NEP. Let

(x∗, y∗) satisfy the second-order sufficient conditions given by Theorem 2.1.3 and

let (xµ, yµ) represent a point on the classical trajectory of minimizers associated

with the primal-dual augmented Lagrangian for ye fixed and µ > 0. Then there

exists an open ball B
(
(xµ, yµ), r1

)
centered at (xµ, yµ) of radius r1 such that for

each (x0, y0) ∈ B
(
(xµ, yµ), r1

)
there exists a positive number r2

△

= r2(x0, y0) and

an interval (r2, µ] such that if µ̄ ∈ (r2, µ] then there exists a positive number r3

and an open neighborhood Bα(0, r3) centered at zero of radius r3, and a unique

continuously differentiable function v(α)
△

=
(
x(α), y(α)

)
defined on Bα(0, r3) such

that

v(0) =

(
x(0)

y(0)

)
=

(
x0

y0

)
(3.24)
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and if 1 ∈ Bα(0, r3), then

v(1) =

(
x(1)

y(1)

)
=

(
xµ̄

yµ̄

)
. (3.25)

Moreover, if (∆x,∆y) is the solution to the first Newton system for minimizing the

primal-dual augmented Lagrangian with µ̄, then (∆x,∆y) ≡ v′(0) and (x0, y0) +

(∆x,∆y) is the first-order Taylor approximation to (xµ̄, yµ̄) (see Figure 3.2 on

page 61).

Proof. Since (xµ, yµ) is a strict minimizer of the primal-dual augmented Lagrangian,

the matrix (
H
(
xµ, 2π(xµ)− yµ

)
+ 2

µ
J(xµ)TJ(xµ) J(xµ)T

J(xµ) µIm

)

is positive definite. This means that there exists an open ball B
(
(xµ, yµ), r1

)

centered at (xµ, yµ) of radius r1 such that if (x, y) ∈ B
(
(xµ, yµ), r1

)
then the matrix

(
H
(
x, 2π(x)− y

)
+ 2

µ
J(x)TJ(x) J(x)T

J(x) µIm

)

is positive definite, where π(x) = ye− c(x)/µ. Let (x0, y0) ∈ B
(
(xµ, yµ), r1

)
. Then

the matrix (
H
(
x0, 2π(x0)− y0

)
+ 2

µ
J(x0)

TJ(x0) J(x0)
T

J(x0) µIm

)

is positive definite and there must exist a positive number r2 < µ and an interval

(r2, µ] such that if µ̂ ∈ (r2, µ] then

(
H
(
x0, 2π̂(x0)− y0

)
+ 2

bµ
J(x0)

TJ(x0) J(x0)
T

J(x0) µ̂Im

)

is positive definite, where π̂(x) = ye − c(x)/µ̂. Let µ̄ ∈ (r2, µ] and therefore

(
H
(
x0, 2π̄(x0)− y0

)
+ 2

µ̄
J(x0)

TJ(x0) J(x0)
T

J(x0) µ̄Im

)
(3.26)
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is positive definite, where π̄(x) = ye − c(x)/µ̄. Define the function

Fα(x, y) =


g(x)− J(x)T

(
2π̄(x)− y

)
− (1− α)

(
g(x0)− J(x0)

T
(
2π̄(x0)− y0

))

c(x) + µ̄(y − ye)− (1− α)
(
c(x0) + µ̄(y0 − ye)

)


 .

Differentiation with respect to (x, y) gives

∇xyFα(x, y) =

(
H
(
x, 2π̄(x)− y

)
+ 2

µ̄
J(x)TJ(x) J(x)T

J(x) µ̄Im

)
. (3.27)

Evaluation at (x0, y0) for α = 0 yields

F0(x0, y0) = 0 and (3.28a)

∇xyF0(x0, y0) =

(
H
(
x0, 2π̄(x0)− y0

)
+ 2

µ̄
J(x0)

TJ(x0) J(x0)
T

J(x0) µ̄Im

)
. (3.28b)

Equation (3.26) shows that ∇xyF0(x0, y0) is positive definite and therefore nonsin-

gular. Use of the Implicit Function Theorem implies the existence of an open neigh-

borhood Bα(0, r3) centered at zero of radius r3, and a unique continuously differen-

tiable function v(α) =
(
x(α), y(α)

)
defined on Bα(0, r3) such that v(0) = (x0, y0)

and Fα

(
x(α), y(α)

)
= 0 for all α ∈ Bα(0, r3).

If 1 ∈ Bα(0, r3), then definition of Fα implies

0 = F1

(
x(1), y(1)

)
=

(
g(x1)− J(x1)

T
(
2π̄(x1)− y1

)

c(x1) + µ̄(y1 − ye)

)
,

where (x1, y1)
△

=
(
x(1), y(1)

)
. Uniqueness of v(α) implies

v(1) =

(
x1

y1

)
=

(
xµ̄

yµ̄

)
. (3.29)

Use of the definition (xα, yα) =
(
x(α), y(α)

)
, the following holds for all

α ∈ Bα(0, r3):

g(xα)− J(xα)T
(
2π̄(xα)− yα

)
− (1− α)

(
g(x0)− J(x0)

T
(
2π̄(x0)− y0

))
= 0,

c(xα) + µ̄(yα − ye)− (1− α)
(
c(x0) + µ̄(y0 − ye)

)
= 0.
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Differentiation with respect to α shows that (x′
α, y′

α) satisfies

(
H
(
xα, 2π̄(xα)− yα

)
+ 2

µ̄
J(xα)TJ(xα) J(xα)T

J(xα) µ̄Im

)(
x′

α

y′
α

)

= −
(

g(x0)− J(x0)
T
(
2π̄(x0)− y0

)

c(x0) + µ̄(y0 − ye)

)
.

Evaluation at α = 0 gives

(
H
(
x0, 2π̄(x0)− y0

)
+ 2

µ̄
J(x0)

TJ(x0) J(x0)
T

J(x0) µ̄Im

)(
x′

0

y′
0

)

= −
(

g(x0)− J(x0)
T
(
2π̄(x0)− y0

)

c(x0) + µ̄(y0 − ye)

)
. (3.30)

The first Newton system for minimizing the primal-dual augmented Lagrangian

M(x, y; ye, µ̄) is given by

(
H
(
x0, 2π̄(x0)− y0

)
+ 2

µ̄
J(x0)

TJ(x0) J(x0)
T

J(x0) µ̄Im

)(
∆x

∆y

)

= −
(

g(x0)− J(x0)
T
(
2π̄(x0)− y0

)

c(x0) + µ̄(y0 − ye)

)
. (3.31)

Equation (3.26) and systems (3.30) and (3.31) imply

(
∆x

∆y

)
≡
(

x′
0

y′
0

)
= v′(0).

A first-order Taylor approximation of v(1) centered at α = 0 gives

v(1) ≈ v(0) + v′(0).

Since v(0) = (x0, y0) and v′(0) = (∆x,∆y), the final part of the proof is complete.
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(xµ̄, yµ̄)

(x∗, y∗)

(x0, y0)

(xµ, yµ)(x′
µ, y

′
µ)

(x′
0, y

′
0)

Fig. 3.2: The point (x∗, y∗) is a solution to problem NEP. The points (xµ, yµ) and
(xµ̄, yµ̄) are points on the “classical” trajectory of minimizers (black) corresponding
to µ and µ̄ respectively. The point (x0, y0) is an approximation to (xµ, yµ) and lies
on the blue trajectory which is the so called perturbed trajectory. The vector
(x′

µ, y
′
µ) is tangent to the classical trajectory at (xµ, yµ), while (x′

0, y
′
0) is tangent

to the perturbed trajectory at (x0, y0).

3.5 Imposing Explicit Bounds on the Dual Vari-

ables

The subproblem for solving problem NEP (2.12) on page 34, takes the form

minimize
x∈Rn,y∈Rm

M(x, y; ye, µ), (3.32)

which is an unconstrained problem in both the primal and dual variables. Although

problem NEP has been the focus of discussion to this point, an obvious modification

to the subproblem can be made when considering problem GNPs (2.8) on page 26.

The subproblem associated with problem GNPs takes the form

minimize
x∈Rn,y∈Rm

M(x, y; ye, µ)

subject to x ≥ 0,
(3.33)

where minimization occurs over the primal and dual variables, but the dual vari-

ables are always unconstrained. Every convergence proof must deal with multi-
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pliers that may become unbounded as µ → 0. Ultimately, it must be shown that

certain quantities are bounded or in some cases that these quantities converge to

zero if µ converges to zero. For example, in [8] and [13] it is not assumed that

the multipliers are bounded, but instead it is shown that if the penalty param-

eter µ converges to zero, then the quantity µ‖yk‖ → 0. One immediate feature

of subproblems (3.32) and (3.33) is that explicit “artificial” bounds may easily be

imposed on the dual variables. This ensures boundedness of the dual variables,

which is an attractive feature. Two examples will now be given, followed by two

theorems that concern the effects of imposing explicit “artificial” bounds on the

dual variables.

Example 3.5.1. Consider the simple example problem

minimize
x∈R

1
2
x2

subject to x− 1 = 0,

which has solution (x∗, y∗) = (1, 1). The primal-dual augmented Lagrangian func-

tion for this problem is given by

M(x, y; ye, µ) = 1
2
x2 − ye(x− 1) +

1

2µ
(x− 1)2 +

1

2µ

(
x− 1 + µ(y − ye)

)2
,

for which

∇M(x, y; ye, µ) =

(
x− ye + 1

µ
(x− 1) + 1

µ

(
x− 1 + µ(y − ye)

)

x− 1 + µ(y − ye)

)
.

Hence, minimizing M(x, y; ye, µ) gives

x(µ) =
1 + µye

1 + µ
, y(µ) =

1 + µye

1 + µ
.

Notice that
(
x(µ), y(µ)

)
→ (x∗, y∗) as µ → 0 as expected. Also, it is easy to see

that if the Lagrange multiplier y∗ is substituted for ye then x(µ) = x∗ and y(µ) = y∗

for all µ.
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Now consider what happens if bounds −b ≤ y ≤ b are added. The above

solution is optimal if |(1 + µye)/(1 + µ)| ≤ b because then y(µ) still satisfies its

bounds. However, if |(1 + µye)/(1 + µ)| > b, then y becomes active at the solution.

Case 1: (1 + µye)/(1 + µ) > b

The optimal solution is given by
(

x− ye + 1
µ
(x− 1) + 1

µ
(x− 1 + µ(y − ye))

x− 1 + µ(y − ye)

)
−
(

0

−1

)
η = 0, y − b = 0,

where the second equation highlights that the dual variable is active at its upper

bound, b, at a solution. The solution is then

x(µ) =
2− µb + 2µye

2 + µ
, y(µ) = b, η(µ) =

µ
(
1− (1 + µ)b + µye

)

2 + µ
> 0.

Notice that if µ→ 0 then

x(µ)→ 1, y(µ) = b, η(µ)→ 0.

Case 2: (1 + µye)/(1 + µ) < −b

The optimal solution is given by
(

x− ye + 1
µ
(x− 1) + 1

µ
(x− 1 + µ(y − ye))

x− 1 + µ(y − ye)

)
−
(

0

−1

)
η = 0, y + b = 0,

where the second equation highlights that the dual variable is active at its lower

bound, −b, at a solution. The solution is then

x(µ) =
2 + µb + 2µye

2 + µ
, y(µ) = −b, η(µ) =

µ
(
1 + (1 + µ)b + µye

)

2 + µ
.

Notice that if µ→ 0 then

x(µ)→ 1, y(µ) = −b, η(µ)→ 0. (3.34)

The linear independent constraint qualification (LICQ) was satisfied for the

previous problem. This fact guaranteed the existence and uniqueness of Lagrange

multipliers. In the next two-dimensional example the LICQ does not hold and

Lagrange multipliers do not exist.
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Example 3.5.2. Consider the example problem

minimize
x∈R2

1
2
(x1 + 1)2

subject to x2
1 − x2 = 0, x2 = 0,

which has solution x∗ = (0, 0). The primal-dual augmented Lagrangian function

for this problem is given by

M(x, y; ye, µ) = f(x)− c(x)Tye +
1

2µ
‖c(x)‖2 +

1

2µ
‖c(x) + µ(y − ye)‖2, (3.35)

where

f(x) = 1
2
(x1 + 1)2, g(x) =

(
x1 + 1

0

)
, (3.36)

c(x) =

(
x2

1 − x2

x2

)
, J(x) =

(
2x1 −1

0 1

)
. (3.37)

Thus, J(x∗) has linearly dependent rows and the following equation shows that

Lagrange multipliers do not exist:
(

1

0

)
= g(x∗) 6= J(x∗)Ty =

(
0

y2 − y1

)
.

Table 3.1 gives the minimizer
(
x(µ), y(µ)

)
to

minimize
x∈R2,y∈R2

M(x, y; ye, µ)

with ye = (0, 0) and for decreasing values of µ. Notice that x(µ) → (0, 0) and

y(µ) → (−∞,−∞). If artificial bounds are enforced, then the subproblem takes

the following form:

minimize
x∈R2,y∈R2

M(x, y; ye, µ)

subject to −γe ≤ y ≤ γe,
(3.38)

for some positive scalar γ. Table 3.2 gives the solution to problem (3.38) with γ =

1000, and for decreasing values of µ. Moreover, the choice ye = (−1000,−1000)

was made because the Lagrange multipliers diverge to negative infinity when no

artificial bounds are enforced.
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Table 3.1: Minimizers of the primal-dual augmented Lagrangian without artificial

bounds on y.

µ x1 x2 y1 y2

1 −0.6823278 0.2327856 −0.2327856 −0.2327856

10−1 −0.3990027 0.0772256 −0.7722558 −0.7722558

10−3 −0.0966679 0.0046724 −4.6723455 −4.6723455

10−5 −0.0213896 0.0002288 −22.875813 −22.875813

10−7 −0.0046344 0.0000107 −107.38866 −107.38866

10−9 −0.0009997 0.0000005 −499.66667 −499.66667

10−11 −0.0002154 0.0000000 −2320.6861 −2320.6861

10−13 −0.0000466 0.0000000 −10847.567 −10847.567

These examples show that when artificial bounds on the dual variables are

imposed, the quantities x(µ) still may converge to x∗ as µ→ 0. Example 3.2 shows

that this is reasonable even when the LICQ did not hold and Lagrange multipliers

did not exist.

Theorem 3.5.1. Let (x∗, y∗, z∗) be a solution to problem GNPs (2.8) on page 26.

Assume that Ĵ(x∗) has full row rank, where Ĵ(x∗) are the columns of J(x∗) cor-

responding to inactive bounds at x∗. If y∗ /∈ [−γe, γe], then there does not exist a

solution (x∗, ȳ, z̄, w̄) to any problem of the form

minimize
x∈Rn,y∈Rm

M(x, y; ye, µ)

subject to x ≥ 0, −γe ≤ y ≤ γe,
(3.39)

for any finite µ and any ye ∈ [−γe, γe], where z̄ are the multipliers for the con-

straints x ≥ 0 and w̄ are the multipliers for the constraints −γe ≤ y ≤ γe.

Proof. A solution of problem (3.39) satisfies


 g(x)− J(x)T(2ye − 2

µ
c(x)− y)

c(x) + µ(y − ye)


 =


 z

w


 . (3.40)
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Table 3.2: Minimizers of the primal-dual augmented Lagrangian with artificial

bounds on y.

µ x1 x2 y1 y2 w1 w2

1 −0.0004998 0.0000002 −1000.0 −1000.0 0.0000002 0.0000002

10−1 −0.0004998 0.0000002 −1000.0 −1000.0 0.0000002 0.0000002

10−3 −0.0004998 0.0000001 −1000.0 −1000.0 0.0000001 0.0000001

10−5 −0.0004997 0.0000001 −1000.0 −1000.0 0.0000001 0.0000001

10−7 −0.0004996 0.0000001 −1000.0 −1000.0 0.0000001 0.0000001

10−9 −0.0004881 0.0000001 −1000.0 −1000.0 0.0000001 0.0000001

10−11 −0.0002801 0.0000000 −1000.0 −1000.0 0.0000000 0.0000000

10−13 −0.0000752 0.0000000 −1000.0 −1000.0 0.0000000 0.0000000

For a contrapositive proof assume that (x∗, ȳ, z̄, w̄) is a solution to (3.39) as given

by (3.40). Thus, it satisfies

 g(x∗)

µ(ȳ − ye)


 =


 J(x∗)T (2ye − ȳ) + z̄

w̄


 (3.41)

since c(x∗) = 0. The full row rank assumption implies uniqueness of the Lagrange

multipliers and thus

y∗ = 2ye − ȳ and z∗ = z̄. (3.42)

First assume that y∗
i > γ. Then w̄i 6= 0 since if it was, then (3.41) would

imply that ȳi = [ye]i and (3.42) then implies ȳi = y∗
i > γ. This is a contradiction

since ȳ ∈ [−γe, γe]. Since w̄i 6= 0, it must hold that ȳi is equal to one of its bounds.

Suppose that ȳi = −γ. This would imply that w̄i > 0 (since w̄i = 0 has already

been ruled out). However, the following then holds:

w̄i = µ
(
ȳi − [ye]i

)
= −µ

(
γ + [ye]i

)
≤ 0.

This is a contradiction so ȳi = γ. However, this implies that w̄i < 0 (since w̄i = 0

has already been ruled out). But then it follows that

w̄i = µ
(
ȳi − [ye]i

)
= µ

(
γ − [ye]i

)
≥ 0,
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which is another contradiction. Thus no component of y∗ can be greater than γ.

A similar argument shows that no component of y∗ can be less than −γ.

Thus y∗ ∈ [−γe, γe] and the proof is complete.

This theorem shows how certain algorithms may proceed when artificial

bounds are imposed on y. For example, in the framework of a bound constrained

Lagrangian (BCL) method, a sequence of subproblems of the form (3.39) may be

solved with appropriate updates made to µk and ye
k. The previous theorem may

be used to show that if the artificial bounds placed on the subproblems restrict

their solutions, then µk will necessarily be forced to zero to obtain convergence.

Chapter 4 discusses a BCL method that makes use of artificial bounds in the

subproblem.

If the artificial bounds do not restrict the subproblem solution, then the

solution lies on the trajectory of minimizers. However, when components of y

become active it becomes unclear which problem is being solved. Intuitively, this

behavior seems related to exact penalty functions since for γ large enough the

exact solution to the intended subproblem is found. This turns out to be true, as

the next theorem shows.

Theorem 3.5.2. Let γ > 0. If (x̄, ȳ, w̄) is a solution of

minimize
x∈Rn,y∈Rm

M(x, y; ye, µ)

subject to −γe ≤ y ≤ γe,
(3.43)

where w̄ are the multipliers for the constraints −γe ≤ y ≤ γe, then there exists a

positive diagonal scaling matrix P such that x̄ is a solution to

minimize
x∈Rn

f(x) + ‖P
(
c(x) + µ(ȳ − ye)

)
‖1. (3.44)

Proof. Define π̄
△

= ȳ − 2
µ
w̄. The diagonal scaling matrix P

△

= diag(ρ1, . . . , ρm) is



68

then defined as

ρi =





π̄i if w̄i < 0,

−π̄i if w̄i > 0,

|π̄i|+ ǫ if w̄i = 0,

(3.45)

where ǫ is any positive real number. It will be shown that the diagonals of P are

strictly positive. Using Lemma 1.5.4, the non-smooth problem (3.44) is equivalent

to the following smooth problem

minimize
x∈Rn,u∈Rm,v∈Rm

f(x) +
m∑

i=1

ρi(ui + vi)

subject to c(x) + µ(ȳ − ye)− u + v = 0, u ≥ 0, v ≥ 0.

(3.46)

Define the following:

ūi =





0 if w̄i ≤ 0,

w̄i if w̄i > 0,
(3.47a)

v̄i =





0 if w̄i ≥ 0,

−w̄i if w̄i < 0,
(3.47b)

z̄u = Pe + π̄, (3.47c)

z̄v = Pe− π̄. (3.47d)

It will be shown that (x̄, ū, v̄, π̄, z̄u, z̄v) is a solution to (3.46), where π̄ is the La-

grange multiplier vector for the general equality constraint, z̄u is the Lagrange

multiplier vector for u ≥ 0, and z̄v is the Lagrange multiplier vector for v ≥ 0.
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The solution (x̄, ȳ, w̄) satisfies the following optimality condition:

J(x̄)T
(
2π(x̄)− ȳ

)
= g(x̄), (3.48a)

c(x̄) + µ(ȳ − ye) = w̄, (3.48b)

−γe ≤ ȳ ≤ γe, (3.48c)

min(γe− ȳ, ȳ + γe, |w̄|) = 0, (3.48d)

w̄ · (γe + ȳ) ≤ 0, (3.48e)

w̄ · (−γe + ȳ) ≤ 0, (3.48f)

where π(x)
△

= ye − c(x)/µ. The conditions that must be verified for the point

(x̄, ū, v̄, π̄, z̄u, z̄v) are:

C1. ū ≥ 0, v̄ ≥ 0, z̄u ≥ 0, z̄v ≥ 0, ū · z̄u = 0, v̄ · z̄v = 0;

C2. c(x̄) + µ(ȳ − ye)− ū + v̄ = 0;

C3. g(x̄) = J(x̄)Tπ̄;

C4. Pe = z̄u − π̄;

C5. Pe = z̄v + π̄.

(
proof of C2

)
: Note that w̄ = ū− v̄. Thus C2 follows directly from (3.48b).

(
proof of C3

)
: By definition of π̄ and π(x) and use of (3.48b), the following equality

holds:

π̄ = ȳ − 2

µ
w̄ = 2ye −

2

µ
c(x̄)− ȳ = 2π(x̄)− ȳ. (3.49)

C3 follows from this equality and (3.48a).
(
proof of C4

)
: Follows by definition (3.47c).

(
proof of C5

)
: Follows by definition (3.47d).

(
proof of C1

)
: ū ≥ 0 and v̄ ≥ 0 by definition.

Next it is shown that ū · z̄u = 0. The result is trivial if ūi = 0. So

suppose that ūi 6= 0. This implies that w̄i > 0 and thus ρi = −π̄i. It follows that

[z̄u]i
△

= ρi + π̄i = 0.
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Now it is shown that v̄·z̄v = 0. The result is trivial if v̄i = 0. So suppose that

v̄i > 0. This implies that w̄i < 0 and thus ρi = π̄i. It follows that [z̄v]i
△

= ρi−π̄i = 0.

Next consider the following three cases:

1. Suppose w̄i = 0. Then ρi = |π̄i| + ǫ > 0 and [z̄v]i = |π̄i| + ǫ − π̄i > 0.

Similarly, [z̄u]i = |π̄i|+ ǫ + π̄i > 0.

2. Suppose w̄i > 0. Then ȳi = −γ and π̄i = ȳi − 2
µ
w̄i = −γ − 2

µ
w̄i < 0. This

implies that ρi = −π̄i > 0 and that [z̄v]i = ρi − π̄i = −2π̄i > 0. Likewise,

[z̄u]i = ρi + π̄i = 0.

3. Suppose w̄i < 0. Then ȳi = γ and π̄i = ȳi− 2
µ
w̄i = γ− 2

µ
w̄i > 0. This implies

that ρi = π̄i > 0 and that [z̄v]i = ρi − π̄i = 0. Likewise, [z̄u]i = ρi + π̄i =

2π̄i > 0.

The proof is complete since in all cases z̄u ≥ 0, z̄v ≥ 0, and ρi > 0.

3.6 Relationship to Classical SQP

Much of the previous analysis has concerned the subproblem

minimize
x∈Rn,y∈Rm

M(x, y; ye, µ),

where M is the primal-dual augmented Lagrangian. In practice, this subproblem

is not always solved to a very high accuracy; high accuracy is required only as

a solution to the underlying problem is approached. An extreme case of this

situation is to restrict each subproblem to one iteration. This strategy is the

basis for sequential quadratic programming (SQP) methods. Two of the more well

known of these methods are SNOPT, [14] by Gill, Murray and Saunders, and the

Sℓ1-QP method by Fletcher [11].

This section discusses the relationship between the Newton equations for

the primal-dual augmented Lagrangian function and the equations associated with
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the “classical” SQP approach. The discussion takes place in the context of problem

NEP (2.12) on page 34. The classical SQP subproblem is given by

minimize
∆x∈Rn

gT
k∆x +

1

2
∆xTHk∆x subject to ck + Jk∆x = 0. (3.50)

where (xk, yk) is the current point, Hk = H(xk, yk) is the Hessian of the Lagrangian

(or an approximation of the Hessian of the Lagrangian), gk = g(xk), ck = c(xk),

and Jk = J(xk). The solution to this QP is then used in a line-search with an

appropriate merit function. The solution satisfies the following KKT system

(
H(xk, yk) JT

k

Jk 0

)(
∆x

−∆y

)
= −


 gk − JT

kyk

ck


 . (3.51)

The transformed Newton system for the primal-dual augmented Lagrangian is

given by (3.15) on page 52 as

(
H
(
xk, 2πk − yk

)
JT

k

Jk −µIm

)(
∆x

−∆y

)
= −

(
gk − JT

kyk

ck + µ(yk − ye)

)
, (3.52)

where π(x) = ye − c(x)/µ and πk = π(xk). The differences between the classi-

cal SQP system (3.51) and the transformed primal-dual system (3.52) have been

underlined.

Next we show that system (3.52) is closely related to another obtained by

“primal-dualizing” the SQP subproblem (3.50). The phrase “primal-dualizing”

refers to the process of moving the constraints into the objective via two quadratic

penalty functions; one penalizes the constraint violation while the other penalizes

deviation from the trajectory. Primal-dualizing (3.50) results in the function

f(∆x, y) = gT
k∆x +

1

2
∆xTHk∆x− (ck + Jk∆x)Tye

+
1

2µ
‖ck + Jk∆x‖22 +

1

2µ
‖ck + Jk∆x + µ(y − ye)‖22.
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The derivatives of f(∆x, y) are given by

∇f(∆x, y) =

(
gk + Hk∆x + 2

µ
JT

k(ck + Jk∆x + µ
2
y − µye)

ck + Jk∆x + µ(y − ye)

)
, and

∇2f(∆x, y) =


Hk +

2

µ
JT

kJk JT
k

Jk µIm


 .

By setting the gradient equal to zero and using the definition ∆y
△

= y − yk, it

follows that the solution to

minimize
∆x∈Rn,∆y∈Rm

f(∆x, yk + ∆y)

satisfies the following system

Hk +

2

µ
JT

kJk JT
k

Jk µIm



(

∆x

∆y

)
= −


gk + 2

µ
JT

k(ck +
µ

2
yk − µye)

ck + µ(yk − ye)


 .

Multiplying on the left by

N =


In −

2

µ
JT

k

0 Im




yields (
Hk −JT

k

Jk µIm

)(
∆x

∆y

)
= −

(
gk − JT

kyk

ck + µ(yk − ye)

)
.

Restoring symmetry gives
(

Hk JT
k

Jk −µIm

)(
∆x

−∆y

)
= −

(
gk − JT

kyk

ck + µ(yk − ye)

)
. (3.54)

Note that (3.52) and (3.54) are identical except for the underlined (1, 1) block.

Thus, finding a solution to the Newton equations for the primal-dual augmented

Lagrangian function applied to problem NEP, is equivalent to finding a stationary

point of the primal-dualized classical SQP subproblem with H(xk, yk) replaced by

H(xk, 2π(xk)− yk). A mnemonic phrase for remembering this idea is given by:

(Primal-Dualize + Linearize) ≡ (Linearize + Primal-Dualize)mod(2π−y).
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It should be emphasized that this phrase is not intended to be rigorous.

3.7 A Generalization

Section 2.2 motivated the definition of the primal-dual penalty and primal-

dual augmented Lagrangian functions. The rest of the previous sections have

focused on the primal-dual augmented Lagrangian function and its properties. As

discussed previously, the properties of the primal-dual augmented Lagrangian also

hold for the primal-dual penalty function either directly or with a small change in

argument. This observation was due to the following two facts, which are stated

again for convenience:

• the primal-dual penalty function can be recovered from the primal-dual aug-

mented Lagrangian function by setting ye = 0.

• the structure of the derivatives are the same; the only difference arises in the

definition of the “π” term.

Although these properties are listed separately, the first item implies the second

item since the “π” terms are identical upon setting ye = 0.

This does not mean, however, that the primal-dual penalty function and

the primal-dual augmented Lagrangian function possess all of the same properties.

In particular, a primal-dual penalty method requires the penalty parameter to be

driven to zero in order to obtain convergence, while a primal-dual augmented

Lagrangian method requires this only when things appear to be going “badly”.

Thus, although much of the analysis for one carries over to the other, they are still

different functions with different properties.

A generalized primal-dual function parameterized by ν is now given. It will

be shown that various primal-dual functions, including the ones already discussed,

may be obtained from this generalized primal-dual function by choosing particular

values for the parameter ν.
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Given an approximate Lagrange multiplier vector ye, consider the general-

ized primal-dual function

M(x, y; ye, µ, ν) = f(x)− c(x)Tye +
1

2µ
‖c(x)‖2 +

ν

2µ
‖c(x) + µ(y − ye)‖2, (3.55)

where ν and µ are constant scalars with µ > 0. This may be derived as a shifted-

constraint version of the Forsgren-Gill merit function. Using the the m-vector

π(x) = ye − c(x)/µ, the gradient and Hessian forM(x, y; ye, µ, ν) may be written

as

∇M(x, y; ye, µ, ν) =

(
g − JT

(
(1 + ν)π − νy

)

ν
(
c + µ(y − ye)

)

)
(3.56a)

=

(
g − JT

(
π(x) + ν(π − y)

)

νµ(y − π)

)
, (3.56b)

and

∇2M(x, y; ye, µ, ν) =


H

(
x, (1 + ν)π − νy

)
+

1 + ν

µ
JTJ νJT

νJ νµI


 , (3.56c)

where J , g, c, and π denote J(x), g(x), c(x), and π(x), respectively.

The primal-dual augmented Lagrangian function

M(x, y; ye, µ) = f(x)− c(x)Tye +
1

2µ
‖c(x)‖2 +

1

2µ
‖c(x) + µ(y − ye)‖2

is obtained from the generalized primal-dual function by setting ν = 1. The

classical augmented Lagrangian function

LA(x; ye, µ) = f(x)− c(x)Tye +
1

2µ
‖c(x)‖2

is obtained from the generalized primal-dual function by setting ν = 0. The

“proximal-point” Lagrangian function

LP(x, y)
△

= f(x)− c(x)Ty − µ

2
‖y − ye‖2
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is obtained from the generalized primal-dual function by setting ν = −1. This

makes the dual function quadratic in y instead of linear.

By making further choices for ye, more functions may be obtained. The

primal-dual penalty function

P(x, y; µ)
△

= f(x) +
1

2µ
‖c(x)‖2 +

1

2µ
‖c(x) + µy‖2

is obtained from the generalized primal-dual function by setting ν = 1 and ye = 0.

The classical penalty function

P(x; µ)
△

= f(x) +
1

2µ
‖c(x)‖2

is obtained from the generalized primal-dual function by setting ν = 0 and ye = 0.

Finally, the “proximal-point” penalty function

PP(x, y)
△

= f(x)− c(x)Ty − µ

2
‖y‖2

is obtained from the generalized primal-dual function by setting ν = −1 and ye = 0.

To summarize, Table 3.3 gives certain functions obtained from the general-

ized primal-dual function (3.55) by setting ν and ye to specific values.

Table 3.3: Special cases of the generalized primal-dual function.

Function ν ye

Primal-Dual Augmented Lagrangian Function 1 ye

Augmented Lagrangian Function 0 ye

Proximal-Point Lagrangian Function −1 ye

Primal-Dual Penalty Function 1 0

Classical Penalty Function 0 0

Proximal-Point Penalty Function −1 0

It is important to mention that Sections 3.1–3.3 could have been discussed

in terms of the generalized primal-dual function. Sections 3.4–3.6 could then have
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been discussed by specializing to the case ν = 1. One advantage of this approach

is that it may have shed some light on the “mysterious” appearance of the “2π” in

the derivatives of the primal-dual functions. A second advantage is that it would

have emphasized the generalized primal-dual function. A sufficient understanding

of the potential use and benefits of varying ν inside an optimization algorithm has

still not been realized and deserves more study.

There are advantages of immediately specializing to the primal-dual penalty

function and the primal-dual augmented Lagrangian function. First, there was the

hope that a more thorough derivation and justification could be made for these

special cases. Justification for the generalized primal-dual function could have

been made, but it may have been less clear to the “average” reader. Second, it

seemed more natural to specialize initially since very little is understood about the

potential benefits of varying ν.

The following theorem is given as an example of how the generalized primal-

dual function could have been discussed in Sections 3.1–3.3. In fact, Theorem 3.3.2

of Section 3.3 is a corollary to Theorem 3.7.1 below.

Theorem 3.7.1. If (x∗, y∗) satisfies the second-order sufficient conditions for a

solution of problem NEP (2.12), then there exists a µ̄ such that for all 0 < µ < µ̄

and all ν > 0, the point (x∗, y∗) is a solution of the unconstrained minimization

problem

minimize
x∈Rn, y∈Rm

M(x, y; y∗, µ, ν), (3.57)

whereM(x, y; y∗, µ, ν) = f(x)− c(x)Ty∗ + 1
2µ
‖c(x)‖2 + ν

2µ
‖c(x) +µ(y− y∗)‖2 is the

generalized primal-dual function.

Proof. By assumption, x∗ satisfies the second-order sufficient conditions for prob-

lem NEP. Therefore, Theorem 2.1.3 implies that x∗ satisfies

C1. c(x∗) = 0,

C2. g(x∗)− J(x∗)T y∗ = 0, and
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C3. there exists ω > 0 such that pTH(x∗, y∗)p ≥ ω‖p‖2 for all p satisfying

J(x∗)p = 0.

To show that (x∗, y∗) is an unconstrained minimizer of (3.57), the following must

be shown: ∇M(x∗, y∗; y∗, µ, ν) = 0 and ∇2M(x∗, y∗; y∗, µ, ν) is positive definite.

Condition C1 and the definition π(x) = y∗ − c(x)/µ shows that π(x∗) = y∗. This

fact, (3.56b), (3.56c) and C2, imply

∇M(x∗, y∗; y∗, µ, ν) =

(
0

0

)

and

∇2M(x∗, y∗; y∗, µ, ν) =


H(x∗, y∗) +

1 + ν

µ
J(x∗)TJ(x∗) νJ(x∗)T

νJ(x∗) νµIm


 .

An argument similar to that used in Lemma 3.2.1 shows that

In
(
∇2M(x∗, y∗; y∗, µ, ν)

)
=
(
m, 0, 0

)
+ In

(
H(x∗, y∗) +

1

µ
J(x∗)TJ(x∗)

)

for all ν > 0. Finally, C3 and Debreu’s Lemma 1.5.1 imply that there exists a

µ̄ > 0 such that the matrix

H(x∗, y∗) +
1

µ
J(x∗)TJ(x∗)

is positive definite for all 0 < µ ≤ µ̄. Thus,

In
(
∇2M(x∗, y∗; y∗, µ, ν)

)
=
(
m, 0, 0

)
+
(
n, 0, 0

)
=
(
m + n, 0, 0

)
,

which means that ∇2M(x∗, y∗; y∗, µ, ν) is positive definite for all 0 < µ ≤ µ̄ and

all ν > 0. Therefore, (x∗, y∗) is an unconstrained minimizer of problem (3.57).
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A Primal-Dual Bound

Constrained Lagrangian (BCL)

Method

This chapter considers an algorithm for finding local constrained minimizers

of the following problem:

GNPs minimize
x∈Rn

f(x)

subject to c(x) = 0, x ≥ 0,
(4.1)

where c : R
n → R

m and f : R
n → R. This choice of problem format assumes

that all general inequality constraints ci(x) ≥ 0 have been converted to general

equality constraints by the introduction of slack variables. One should note that

the analysis to be done for this problem format easily carries over to the more

general setting with l ≤ x ≤ u.

Problem GNPs will be solved by solving a sequence of bound constrained

problems of the form

minimize
x∈Rn,y∈Rm

M(x, y; ye
k, µk)

subject to −γke ≤ y ≤ γke, x ≥ 0,
(4.2)

78
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where M(x, y; ye
k, µk) is the primal-dual augmented Lagrangian function intro-

duced in Chapter 3, {γk} is a sequence of constants, {ye
k} is a sequence of esti-

mates of the Lagrange multiplier vector satisfying ye
k ∈ [−γke, γke], and {µk} is a

sequence of positive penalty parameters. An approximate solution to this problem

will be denoted by (x∗
k, y

∗
k, z

∗
k, w

∗
k) where z∗k is the reduced cost vector for x ≥ 0

and w∗
k is the reduced cost vector for −γke ≤ y ≤ γke. Note that the following

analysis carries over to the more realistic setting where each constraint is given its

own penalty parameter.

The rest of this chapter is organized as follows. Section 4.1 discusses some

basic concepts as well as introduces necessary notation and terminology. Sec-

tion 4.2 states the primal-dual BCL method. Section 4.3 shows that the algorithm

is globally convergent, while section Section 4.4 studies local convergence proper-

ties. Section 4.5 considers what occurs when the primal-dual BCL algorithm is

applied to an infeasible problem. Section 4.6 considers the existence of subprob-

lem solutions in the neighborhood of a solution to problem GNPs. Furthermore,

identification of the optimal active set by the subproblem is studied. Section 4.7

considers the implications of imposing certain second-order conditions on the sub-

problem solutions. Finally, Section 4.8 discusses higher-order updating schemes.

4.1 Notation

This section introduces notation and terminology. The following definition

of a first-order KKT for problem GNPs is an alternative but equivalent definition

to Definition 2.1.10 on page 27.

Definition 4.1.1. A point (x, y, z) is a first-order KKT point (Karush-Kuhn-
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Tucker point) for problem (4.1) if it satisfies the following conditions:

c(x) = 0, (4.3a)

g(x)− J(x)Ty = z, (4.3b)

min(x, z) = 0. (4.3c)

The vector y is the Lagrange multiplier vector for the constraint c(x) = 0 and

z is the Lagrange multiplier vector (reduced cost vector) for the constraint x ≥
0. Condition (4.3c) is a concise formulation of conditions (ii), (iv), and (v) in

Definition 2.1.10.

Given primal and dual convergence tolerances, η∗ and ω∗ respectively, the

point (x, y, z) will be considered an acceptable solution to problem GNPs if it

satisfies the following criteria:

‖c(x)‖ ≤ η∗, (4.4a)

g(x)− J(x)Ty = z, (4.4b)

‖min(x, z)‖∞ ≤ ω∗. (4.4c)

Given a point x, we define the index set I(x) = { j ∈ 1 : n | [x]j > 0 }
associated with the inactive bounds at x. With this definition in hand, further

notation is listed below. This list also summarizes notation introduced previously.

• (x∗, y∗, z∗) is an optimal solution for problem GNPs.

• (xk, yk, zk) is the kth estimate of (x∗, y∗, z∗).

• (x∗
k, y

∗
k, z

∗
k, w

∗
k) is an approximate solution of the kth subproblem.

• x∗ is a limit point of {x∗
k}.

• g(x) is the gradient of f(x) evaluated at x.

• J(x) is the m× n Jacobian of c(x) evaluated at x.
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• ĝ(x) is the vector of components of g(x) associated with the indices in I(x∗).

• Ĵ(x) are the columns of J(x) associated with the indices in I(x∗).

• M(x, y; ye
k, µk) is the kth primal-dual augmented Lagrangian evaluated at

(x, y).

• H(x) is the Hessian of f(x) evaluated at x.

• Hi(x) is the Hessian of ci(x) evaluated at x.

• L(x, y) = f(x)− c(x)Ty is the Lagrangian.

• H(x, y) is the Hessian of the Lagrangian with respect to x evaluated at (x, y).

• π(x; ye, µ) = ye − c(x)/µ is the vector of primal first-order multiplier esti-

mates.

• πk = π(x∗
k; y

e
k, µk) is the kth vector of primal first-order multiplier estimates.

• ỹ(x, y; ye, µ) = 2π(x; ye, µ)− y is the vector of primal-dual first-order multi-

plier estimates.

• ỹk = ỹ(x∗
k, y

∗
k; y

e
k, µk) is the kth vector of primal-dual first-order multiplier

estimates.

• ŷ(x) is the least-squares multiplier estimate as described in (4.5) below.

At all points x for which Ĵ(x) has full row rank, the least-squares multiplier

estimate is defined as:

ŷ(x)
△

= argmin
y
‖ĝ(x)− Ĵ(x)Ty‖22. (4.5)

It is not possible to calculate ŷ(x) since x∗ is not known in advance. The quantity

ŷ(x) is used only as a theoretical tool and is never required by the algorithm.

The following assumptions are used:
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(AS1a) The functions f(x) and {ci(x)} are twice continuously differentiable for all

x ≥ 0.

(AS1b) The second derivative of the functions f(x) and {ci(x)} are locally Lipschitz

continuous at all points within the compact set Bx ⊂ R
n given in assumption

AS2a.

(AS2a) The sequence {x∗
k} is contained in the compact set Bx ⊂ R

n.

(AS2b) If K is a subsequence of the integers such that limk∈K x∗
k = x∗, then {y∗

k}K
is contained in the compact set By ⊂ R

m.

(AS3) The matrix Ĵ(x∗) has full row rank at every limit point x∗ of the sequence

{x∗
k}
(
at least one limit point is guaranteed by assumption AS2a

)
.

Using notation and assumptions defined above, the following three lemmas

are now stated.

Lemma 4.1.1. If assumption AS1a holds and Ĵ(x) has full row rank, then ŷ(x)

is differentiable and its derivative is given by

d

dx
ŷ(x) =

(
Ĵ(x)†

)T
H
(
x, ŷ(x)

)
+
(
Ĵ(x)Ĵ(x)T

)−1
B(x),

where Ĵ(x)†
△

= Ĵ(x)T
(
Ĵ(x)Ĵ(x)T

)−1
and the ith row of B(x) is given by

(
ĝ(x) −

Ĵ(x)T ŷ(x)
)T

Hi(x).

Proof. The vector ŷ(x) is a solution to (4.5) if and only if ŷ(x) satisfies Ĵ(x)r(x) = 0

and r(x) = ĝ(x)−Ĵ(x)T ŷ(x). Differentiation of the first equation yields Ĵ(x)r′(x)+

B(x) = 0, while differentiation and rearrangement of the definition of r(x) yields

r′(x) = H
(
x, ŷ(x)

)
− Ĵ(x)T ŷ′(x). Elimination of r′(x) from these equations and

use of the non-singularity of Ĵ(x)Ĵ(x)T gives the desired result.

Lemma 4.1.2. If assumption AS1 holds and Ĵ(x) has full row rank, then the

least-squares estimate ŷ(x) is Lipschitz continuous in a neighborhood of x.
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Proof. From the integral Mean-Value Theorem it follows that

ŷ(z)− ŷ(x) =

∫ 1

0

ŷ′(z(ξ)
)
· (z − x) dξ,

where z(ξ) = x+ξ(z−x) and ŷ′ is defined as in Lemma 4.1.1. Since the right-hand

side is bounded in a neighborhood of x, the inequality

‖ŷ(z)− ŷ(x)‖ ≤ α‖z − x‖

holds for some α > 0 and for all z in some neighborhood of x.

Lemma 4.1.3. Assume that Ĵ(x) has full row rank. Then there exists a constant

α > 0 such that for all y

‖ŷ(x)− y‖ ≤ α‖ĝ(x)− Ĵ(x)Ty‖.

Proof. By assumption, Ĵ(x) has full row rank and the least-squares solution may

be written as

ŷ(x) = (Ĵ(x)Ĵ(x)T )−1Ĵ(x)ĝ(x).

The following now holds

‖ŷ(x)− y‖ = ‖
(
Ĵ(x)Ĵ(x)T

)−1
Ĵ(x)ĝ(x)− y‖

= ‖
(
Ĵ(x)Ĵ(x)T

)−1
Ĵ(x)ĝ(x)−

(
Ĵ(x)Ĵ(x)T

)−1(
Ĵ(x)Ĵ(x)T

)
y‖

≤ ‖
(
Ĵ(x)Ĵ(x)T

)−1
Ĵ(x)‖‖ĝ(x)− Ĵ(x)T y‖.

Let α
△

= ‖
(
Ĵ(x)Ĵ(x)T

)−1
Ĵ(x)‖. At this point it is only clear that α ≥ 0. Assume

α = 0. This implies that
(
Ĵ(x)Ĵ(x)T

)−1
Ĵ(x) = 0 and thus that

(
Ĵ(x)Ĵ(x)T

)−1
Ĵ(x)ej = 0 for all j.

Since
(
Ĵ(x)Ĵ(x)T

)−1
is nonsingular, this implies that

Ĵ(x)ej = Ĵj(x) = 0 for all j,

where Ĵj(x) is the jth column of Ĵ(x). Thus, Ĵ(x) is the zero matrix. This is a

contradiction since Ĵ(x) was assumed to have full row rank. It follows that α > 0

and the proof is complete.
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4.2 Statement of the Algorithm

Classical bound-constrained Lagrangian (BCL) methods are known to be

locally convergent if the penalty parameter is sufficiently small and if the sequence

of subproblems are solved exactly. Bertsekas [1] extends this result by showing

that the BCL subproblems need only be minimized approximately. In both cases

it may be necessary to drive the penalty parameter to zero to guarantee global

convergence. In this case, the BCL subproblems are close to those of the quadratic

penalty method. Algorithm 4.2.1 below is similar to the algorithm proposed by

Conn, Gould, and Toint [8], which is the basis for the well-known code LANCELOT

(see [7]).

Based on the primal infeasibility, each iterate is regarded as either “success-

ful” or “unsuccessful”. In the “successful” case, if y∗
k is “close” to the boundary,

then µk is decreased. This results in a larger “artificial” bound γk, which encour-

ages the dual variables to be inactive during the next iteration. In the “unsuccess-

ful” case, the parameter µk is decreased and the “artificial” bound γk is increased.

Again, large “artificial” bounds encourage the dual variables in the subproblem to

be inactive; when approaching a solution it is highly desirable for the dual vari-

ables to be inactive. Next, the penalty parameter µk is decreased in order to drive

convergence. As described in [1], convergence of the multiplier method depends

critically on the size of µk and ‖ye
k − y∗‖. The strategy of decreasing µk in order

to drive convergence is based on the assumption that if µk is decreased enough

then the iterates will eventually enter a “cone of convergence”. Once this “cone

of convergence” has been entered, the penalty parameter will no longer need to be

decreased and the algorithm will converge.
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Algorithm 4.2.1. Primal-Dual BCL Algorithm (pdBCL)

INPUT: (x0, y0)

Set constants µ0, η0, ω0, η∗, ω∗, τ∗, µc, τf , kτ , ν, αη, αω, βη, βω, αγ , and ατ .

Set ye
0 = y0; ν = (‖ye

0‖∞ + 1)µ
αγ

0 ; γ0 = νµ
−αγ

0 ; τ0 = min(µ0ω0, kτµ
ατ

0 );

converged ← false;

while not converged do

Find (x∗
k, y

∗
k, z

∗
k, w

∗
k), a solution to (4.2) as given by condition (4.6).

if (x∗
k, ỹk, z

∗
k) satisfies (4.4) then converged ← true end if

Compute (xs
k+1, y

s
k+1) to increase the convergence rate.

if ‖c(x∗
k)‖ ≤ max(η∗, ηk) [successful]

if ‖y∗
k‖∞ > γk − τf then [approaching boundary]

µk+1 ← µcµk; γk+1 ← νµ
−αγ

k+1 ;

end if

ηk+1 ← ηkµ
βη

k+1; ωk+1 ← ωkµ
βω

k+1; [decrease ηk and ωk]

τk+1 ← min(µk+1ωk+1, kτµ
ατ

k+1);

else [unsuccessful]

µk+1 ← µcµk; γk+1 ← νµ
−αγ

k+1 ;

ηk+1 ← η0µ
αη

k+1; ωk+1 ← ω0µ
αω

k+1; [increase or decrease ηk and ωk]

τk+1 ← min(µk+1ωk+1, kτµ
ατ

k+1);

end if

ye
k+1 =





ys
k+1 if ‖ys

k+1‖∞ ≤ γk+1; [higher-order]

ỹk if ‖ys
k+1‖∞ > γk+1 and ‖ỹk‖∞ ≤ γk+1 ; [first-order]

ye
k otherwise.

k ← k + 1;

end do

OUTPUT: (x∗, y∗, z∗)← (x∗
k, ỹk, z

∗
k)
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The parameters associated with Algorithm 4.2.1 are defined as follows:

• µ0 (0 < µ0 < 1) is the initial penalty parameter.

• η0 (η∗ ≤ η0 < 1
2
) is the initial primal infeasibility tolerance.

• ω0 (ω∗ ≤ ω0 < 1
2
) is the initial dual infeasibility tolerance for the x-variables.

• η∗ (0 < η∗ ≪ 1) is the primal convergence tolerance.

• ω∗ (0 < ω∗ ≪ 1) is the dual convergence tolerance for the x-variables.

• τ∗ (0 < τ∗ ≪ 1) is the dual convergence tolerance for the y-variables.

• µc (0 < µc < 1) is the contraction factor for µk.

• τf (1 ≥ τf > 0) is the boundary “fudge-factor” for the y-variables.

• kτ (kτ > 0) is a positive constant used in the update to τk. This parameter

is required for the proof of Lemma 4.3.4.

• ν (ν > 0) is a positive constant used in the definition of γk. Given µ0 and

ye
0, ν is set to ν = (‖ye

0‖∞ + 1)µ
αγ

0 , which implies that γ0 = ‖ye
0‖∞ + 1. This

update guarantees that ye
0 ∈ [−γ0e, γ0e]. Moreover, if (x0, y0) is optimal,

then the algorithm will exit on the first iteration.

• αη (0 < αη < min(1, αω)) is a constant used to update ηk in the “unsuccess-

ful” case. The condition αη > 0 ensures that ηk < η0 for all k > 0 in the

“unsuccessful” case. The condition αη < min(1, αω) is required for the proof

of Theorem 4.4.2.

• αω (αω > 0) is a constant used in the update to ωk in the “unsuccessful”

case. This parameter ensures that {ωk} converges to zero and that ωk < ω0

for all k > 0.
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• βη (0 < βη < min(1, βω)) is a constant used in the update to ηk in the

“successful” case. The condition βη > 0 ensures that ηk+1 < ηk in the

“successful” case. The condition βη < min(1, βω) is required for the proof of

Theorem 4.4.2.

• βω (βω > 0) is a constant used in the update to ωk in the “successful” case.

This parameter ensures that ωk+1 < ωk in the “successful” case.

• αγ (0 < αγ < 1) is a constant used in the update to γk. The condition αγ > 0

is required for the proof of Lemma 4.3.2. The condition αγ < 1 is required

for the proof of Lemma 4.3.3.

• ατ (ατ > 1) is a constant used in the update to τk. This value is required for

the proof of Lemma 4.3.4 to hold.

During each iteration the point (x∗
k, y

∗
k, z

∗
k, w

∗
k) is accepted as a solution to

problem (4.2) if it satisfies the following:

x∗
k ≥ 0, (4.6a)

‖min(x∗
k, z

∗
k)‖∞ ≤ ωk, (4.6b)

−γke ≤ y∗
k ≤ γke, (4.6c)

‖min(γke− y∗
k, y

∗
k + γke, |w∗

k|)‖∞ ≤ τk, (4.6d)

If [γke− y∗
k]j ≤ τk, then [w∗

k]j ≤ τk, (4.6e)

If [y∗
k + γke]j ≤ τk, then [w∗

k]j ≥ −τk, (4.6f)

∇M(x∗
k, y

∗
k; y

e
k, µk) =


 z∗k

w∗
k


 . (4.6g)

Condition (4.6b) is equivalent to [x∗
k]i ≥ −ωk and [z∗k]i ≥ −ωk holding in addition

to either [x∗
k]i ≤ ωk or [z∗k]i ≤ ωk holding for i = 1 : n. A similar statement holds

for condition (4.6d).
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4.3 Global Convergence

In this section the pdBCL algorithm is shown to be globally convergent.

The first result gives information about points that are produced by the algorithm.

With this result in hand, the global convergence proof is relatively straight forward.

Lemma 4.3.1. Suppose that assumptions AS1a, AS2a, and AS3 hold. Let {µk},
{γk}, {τk}, and {ωk} be given sequences of positive numbers such that {ωk} → 0,

and let {ye
k} be any sequence of vectors in R

m. Let (x∗
k, y

∗
k, z

∗
k, w

∗
k) be a sequence of

points satisfying conditions (4.6a), (4.6b), and (4.6g). Also let K be a subsequence

of the integers such that limk∈K x∗
k = x∗, a limit point of {x∗

k}. Define ỹk =

2πk − y∗
k = 2ye

k − 2
µk

c(x∗
k) − y∗

k, and set y∗ = ŷ(x∗) and z∗ = g(x∗) − J(x∗)Ty∗.
The following properties then hold:

1. There are positive constants α1 and α2 such that for k ∈ K sufficiently large,

a) ‖ỹk − y∗‖ ≤ β1
△

= α1ωk + α2‖x∗
k − x∗‖

b) 2‖c(x∗
k)‖ ≤ µk‖ỹk − y∗‖+ 2µk‖ye

k − y∗‖+ µk‖y∗
k − y∗‖

c) ‖c(x∗
k)‖ ≤ µk‖ỹk − y∗‖+ µk‖ye

k − y∗‖+ ‖w∗
k‖

d) ‖y∗
k − y∗‖ ≤ ‖ỹk − y∗‖+ (2/µk)‖w∗

k‖

e) ‖y∗
k − y∗‖ ≤ 2

µk
‖c(x∗

k)‖+ 2‖ye
k − y∗‖+ ‖ỹk − y∗‖

Moreover; parts b), c), d), and e) hold for all k.

2. limk∈K ỹk = y∗

3. limk∈K z∗k = g(x∗)− J(x∗)Ty∗ = z∗

4. For all k ∈ K sufficiently large,

a) 2‖w∗
k‖ ≤ µk‖ỹk − y∗‖+ 4µk‖ye

k − y∗‖+ 3µk‖y∗
k − y∗‖

b) 2‖w∗
k‖ ≤ µkβ1 + 4µk‖ye

k − y∗‖+ 3µk‖y∗
k − y∗‖
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Moreover; part a) holds for all k.

5. If c(x∗) = 0, then (x∗, y∗, z∗) is a first-order KKT point for problem GNPs.

Proof. Assumption AS3 and the fact that limk∈K x∗
k = x∗, implies that Ĵ(x∗

k) has

full row rank for k ∈ K sufficiently large. Thus, Lemma 4.1.3 implies that there

exists a number α1 > 0 such that

‖ŷ(x∗
k)− ỹk‖ ≤

α1√
n
‖ĝ(x∗

k)− Ĵ(x∗
k)

T ỹk‖ for k ∈ K sufficiently large. (4.7)

Now to proceed with bounding the right-hand side. First note that since limk∈K x∗
k =

x∗ and [x∗]I > 0, it must be the case that for k ∈ K sufficiently large [x∗
k]I > 0.

Condition (4.6b) and the fact that {ωk} → 0, gives

min
(
[x∗

k]I , [z
∗
k]I
)

= [z∗k]I for k ∈ K sufficiently large.

This implies the following

‖[z∗k]I‖ ≤ ‖min(x∗
k, z

∗
k)‖

=

( n∑

j=1

min([x∗
k]j, [z

∗
k]j)

2

)1/2

≤
( n∑

j=1

ω2
k

)1/2

=
√

nωk for k ∈ K sufficiently large.

Condition (4.6g) and the definition of ỹk, implies that the following holds for all

k ∈ K sufficiently large:

√
nωk ≥ ‖[z∗k]I‖ = ‖ĝ(x∗

k)− Ĵ(x∗
k)

T
(
2πk − y∗

k

)
‖ = ‖ĝ(x∗

k)− Ĵ(x∗
k)

T ỹk‖.

Thus,

‖ĝ(x∗
k)− Ĵ(x∗

k)
T ỹk‖ ≤

√
nωk for k ∈ K sufficiently large. (4.8)

This bound and (4.7) yields

‖ŷ(x∗
k)− ỹk‖ ≤ α1ωk for k ∈ K sufficiently large. (4.9)
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Use of (4.9), Lipschitz continuity of the least-squares multiplier estimate in a neigh-

borhood of x∗
(
recall that y∗ = ŷ(x∗)

)
, and the triangle inequality imply the

existence of a number α2 > 0 such that

‖ỹk − y∗‖ = ‖ỹk − ŷ(x∗
k) + ŷ(x∗

k)− y∗‖ (4.10)

≤ ‖ỹk − ŷ(x∗
k)‖+ ‖ŷ(x∗

k)− y∗‖

≤ α1ωk + α2‖x∗
k − x∗‖ = β1 for k ∈ K sufficiently large.

This proves 1a). Also, since {ωk} → 0 and limk∈K x∗
k = x∗, both terms on the

right-hand side of (4.10) go to zero implying

lim
k∈K

ỹk = y∗.

This proves 2.

Next, using (4.6g) and taking limits for k ∈ K leads to

lim
k∈K

z∗k = lim
k∈K

g(x∗
k)− J(x∗

k)
T ỹk

= g(x∗)− J(x∗)Ty∗ = z∗.

This proves 3.

By definition ỹk = 2ye
k − 2

µk
c(x∗

k)− y∗
k. Rearrangement and introduction of

y∗ leads to
2

µk

c(x∗
k) = 2ye

k − 2y∗ + y∗ − ỹk + y∗ − y∗
k.

Applying norms and the triangle inequality gives

2‖c(x∗
k)‖ ≤ µk‖ỹk − y∗‖+ 2µk‖ye

k − y∗‖+ µk‖y∗
k − y∗‖.

This proves 1b).

Substitution of c(x∗
k) from condition (4.6g) into the definition of ỹk shows

ỹk = 2ye
k −

2

µk

c(x∗
k)− y∗

k = y∗
k −

2

µk

w∗
k. (4.11)
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Rearrangement, introduction of y∗ and the triangle inequality gives

‖y∗
k − y∗‖ = ‖ỹk +

2

µk

w∗
k − y∗‖ ≤ ‖ỹk − y∗‖+

2

µk

‖w∗
k‖,

which proves 1d).

Application of the bound given in part 1d) to the third term of part 1b)

implies

‖c(x∗
k)‖ ≤ µk‖ỹk − y∗‖+ µk‖ye

k − y∗‖+ ‖w∗
k‖,

which proves part 1c).

Definition of ỹk, introduction of y∗, and the triangle inequality gives

‖y∗
k − y∗‖ ≤

2

µk

‖c(x∗
k)‖+ 2‖ye

k − y∗‖+ ‖ỹk − y∗‖,

which proves part 1e).

Now part 4 is proved. Condition (4.6g), the triangle inequality, and part

1b) gives

2‖w∗
k‖ = 2‖c(x∗

k) + µk(y
∗
k − ye

k)‖

≤ 2‖c(x∗
k)‖+ 2µk‖y∗

k − y∗‖+ 2µk‖y∗ − ye
k‖

≤ µ‖ỹk − y∗‖+ 4µk‖ye
k − y∗‖+ 3µk‖y∗

k − y∗‖.

This proves 4a). Applying the bound given in 1a) to 4a) gives 4b).

It remains to show part 5. To this end, assume that c(x∗) = 0. To show that

(x∗, y∗, z∗) is a first-order KKT point, it remains to show that min(x∗, z∗) = 0.

From (4.6b)

‖min(x∗
k, z

∗
k)‖∞ ≤ ωk.

Since {ωk} → 0, the following holds

lim
k∈K
‖min(x∗

k, z
∗
k)‖∞ ≤ lim

k∈K
ωk = 0,

which implies that limk∈K ‖min(x∗
k, z

∗
k)‖∞ = 0. Continuity of norms and the fact

that limk∈K(x∗
k, z

∗
k) = (x∗, z∗) implies

min(x∗, z∗) = 0.
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This proves part 5.

Note that these results were independent of the sequences {µk}, {γk}, {τk},
and {ye

k}.
This result motivates the definition of Algorithm 4.2.1. Convergence to

first-order points occurs provided the constraint violation is forced to zero. This

is an explanation for the “successful/unsuccessful” terminology.

The following lemma shows that Algorithm 4.2.1 generates sequences {γk}
and {ye

k} such that ye
k ∈ [−γke, γke].

Lemma 4.3.2. Algorithm 4.2.1 generates sequences {γk} and {ye
k} such that ye

k ∈
[−γke, γke] for all k ≥ 0.

Proof. Inspection of Algorithm 4.2.1 reveals that γk = νµ
−αγ

k for all k, and that

γ0 is chosen to satisfy ye
0 ∈ [γ0e, γ0e]. The result is now established by induction.

Suppose that the following holds for k:

‖ye
k‖∞ ≤ γk = νµ

−αγ

k .

If either ‖ys
k+1‖∞ ≤ γk+1 or ‖ỹk‖∞ ≤ γk+1, then the result holds for k + 1 by

definition of ye
k+1. Therefore assume that these cases do not hold, i.e., assume that

ye
k+1 = ye

k. The following two cases must be considered:

1. µk+1 ← µk,

2. µk+1 ← µcµk.

For case 1, the following inequality suffices:

‖ye
k+1‖∞ = ‖ye

k‖∞ ≤ γk = γk+1. (4.12)

For the second case, the following holds:

‖ye
k+1‖∞ = ‖ye

k‖∞ ≤ γk = νµ
−αγ

k =
νµ

−αγ

k+1 µ
−αγ

k

µ
−αγ

k+1

.
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Since µk+1 = µcµk, γk+1 = νµ
−αγ

k+1 , 0 < µc < 1, and 0 < αγ, it follows that

‖ye
k+1‖∞ ≤ γk+1

µ
−αγ

k

(µcµk)−αγ
= µαγ

c γk+1 < γk+1. (4.13)

Equations (4.12) and (4.13) give the desired result for each case.

The following lemma provides information about a certain quantity associ-

ated with Algorithm 4.2.1 in the case that {µk} → 0.

Lemma 4.3.3. Suppose that {µk} → 0 as Algorithm 4.2.1 is executed. Then the

quantity {µkγk} → 0.

Proof. Note that at every step γk = νµ
−αγ

k . Since αγ < 1 and {µk} → 0, the

following holds:

{µkγk} = {µkνµ
−αγ

k } = {νµ
1−αγ

k } → 0.

Corollary 4.3.1. Suppose that {µk} → 0 as Algorithm 4.2.1 is executed. Then

the quantity {µk‖y∗
k‖} → 0.

Proof. Since y∗
k ∈ [−γke, γke] the following holds:

µk‖y∗
k‖ ≤

√
mµk‖y∗

k‖∞ ≤
√

mµkγk.

The result is proved since Lemma 4.3.3 implies that the right-hand side goes to

zero.

The following is another immediate corollary to Lemma 4.3.3.

Corollary 4.3.2. Suppose that {µk} → 0 as Algorithm 4.2.1 is executed. Then

the quantity {µk‖ye
k‖} → 0.

Proof. Use of Lemma 4.3.2 gives

µk‖ye
k‖ ≤

√
mµk‖ye

k‖∞ ≤
√

mµkγk. (4.14)

The result is proved since Lemma 4.3.3 implies that the right-hand side goes to

zero.
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The first convergence result for Algorithm 4.2.1 may now be stated. The

following theorem shows that the subproblem solutions converge to a first-order

KKT point.

Theorem 4.3.1 (Global Convergence of Subproblem Solutions). Suppose assump-

tions AS1a, AS2a and AS3 hold. Let (x∗
k, y

∗
k, z

∗
k, w

∗
k) be the sequence of vectors

produced by Algorithm 4.2.1 with tolerances ω∗ = η∗ = 0. Then all parts of

Lemma 4.3.1 hold, thus (x∗, y∗, z∗) as defined in Lemma 4.3.1 is a first-order

KKT point.

Proof. Algorithm 4.2.1 generates sequences {µk}, {τk}, and {ωk} such that {ωk} →
0. It also generates a sequence of positive numbers {γk}, vectors {ye

k} such that

ye
k ∈ [−γke, γke] (see Lemma 4.3.2), and points (x∗

k, y
∗
k, z

∗
k, w

∗
k) satisfying (4.6) on

page 87. Thus, properties 1–4 of Lemma 4.3.1 on page 88 hold.

It remains to show c(x∗) = 0. There are two cases to consider:

1. {µk} is bounded away from zero;

2. {µk} → 0.

Consider case 1. Since {µk} stays bounded away from zero, there exists an

integer k1 such that all iterations are successful from iteration k1 onward. This

implies that ‖c(x∗
k)‖ ≤ max(ηk, η∗) = ηk for all k ≥ k1. Since {ηk} → 0, this

implies that limk∈K ‖c(x∗
k)‖ = 0. Continuity of c(x) and of norms gives c(x∗) = 0

as desired.

Next consider case 2. Note that part 2 of Lemma 4.3.1 shows that limk∈K ỹk =

y∗. Part 1b) of Lemma 4.3.1 gives

2‖c(x∗
k)‖ ≤ µk‖ỹk − y∗‖+ 2µk‖ye

k − y∗‖+ µk‖y∗
k − y∗‖

for all k. Use of Corollary 4.3.1, Corollary 4.3.2, and limk∈K ỹk = y∗, implies that

the ride-hand side goes to zero on K. Thus, {‖c(x∗
k)‖}K → 0. Continuity of c(x)

and ‖ · ‖ implies that c(x∗) = 0 as desired.
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The previous result is independent of tolerance τ∗ and the choice of {τk}.
The choice of {τk} becomes important when considering convergence of the se-

quence {y∗
k}. The following lemma makes this precise.

Lemma 4.3.4. Let the assumptions and tolerances from Theorem 4.3.1 hold. Addi-

tionally, assume that AS2b holds. Let τ∗ = 0 and let (x∗
k, y

∗
k, z

∗
k, w

∗
k) be the sequence

of vectors produced by Algorithm 4.2.1. Then all parts of Lemma 4.3.1 hold, thus

(x∗, y∗, z∗) as defined in Lemma 4.3.1 is a first-order KKT point. Moreover

lim
k∈K

y∗
k = y∗.

Proof. Theorem 4.3.1 gives that (x∗, y∗, z∗) as defined in Lemma 4.3.1 is a first-

order KKT point. It remains to show that limk∈K y∗
k = y∗. First note that {τk} →

0 since {ωk} → 0. Part 1d) of Lemma 4.3.1 says

‖y∗
k − y∗‖ ≤ ‖ỹk − y∗‖+ (2/µk)‖w∗

k‖ (4.15)

for all k ∈ K. Since limk∈K ỹk = y∗ by Theorem 4.3.1, it is sufficient to show

limk∈K(1/µk)‖w∗
k‖ = 0. Consider the two cases:

1. {µk} bounded away from zero,

2. {µk} → 0.

First consider case 1. Since {µk} is bounded away from zero, there exists

an integer k1 such that ‖y∗
k‖∞ ≤ γk − τf for all k ≥ k1. Since {τk} → 0, condition

(4.6d) implies that there exists a k2 ≥ k1 such that ‖w∗
k‖∞ ≤ τk for all k ≥ k2.

Thus,

‖w∗
k‖ ≤

√
m‖w∗

k‖∞ ≤
√

m τk.

Since {τk} → 0 this implies

lim
k
‖w∗

k‖ = 0,

and since {µk} is bounded away from zero, it follows that

lim
k

1

µk

‖w∗
k‖ = 0.
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This completes case 1. In addition, since { c(x∗
k) }K → 0, {µk} is bounded away

from zero, and { y∗
k }K → y∗, condition (4.6g) implies that { ye

k }K → y∗.
Now consider case 2. First note that {γk} → ∞ since {µk} → 0. Condition

(4.6d) then implies that there exists an integer k3 such that ‖w∗
k‖∞ ≤ τk for all

k ∈ K and k ≥ k3. This can be seen as follows. Define the set

S = { k ∈ K : ‖y∗
k‖∞ ≥ γk − τf }.

If S were infinite then there would exist a subsequence KS ⊂ K such that

‖y∗
k‖∞ ≥ γk − τf for all k ∈ KS.

This implies that {‖y∗
k‖∞} → ∞ on KS since {γk} → ∞ on KS. This contradicts

the assumed boundedness of {y∗
k}K and therefore S is finite. Thus, for all k ∈ K

sufficiently large, ‖y∗
k‖∞ < γk − τf , i.e., the vector y∗

k is “τf free” from its bounds.

Then condition (4.6d) implies that for k ∈ K sufficiently large, ‖w∗
k‖∞ ≤ τk.

Hence,

1

µk

‖w∗
k‖ ≤

1

µk

√
m ‖w∗

k‖∞ ≤
1

µk

√
m τk ≤ kτ

√
m µατ−1

k for k ∈ K sufficiently large.

Since {µk} → 0 and ατ > 1, it follows that

lim
k∈K

1

µk

‖w∗
k‖ = 0,

and case 2 is proved.

Note that in case 1, convergence of ‖w∗
k‖ to zero was over all k not just

k ∈ K.

4.4 Local Convergence

Since (x, y, z, w) = (x∗, y∗, z∗, 0) is a minimizer for the primal-dual BCL

subproblem (4.2) on page 78 for µk sufficiently small, γk > ‖y∗‖∞, and with the
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choice ye
k = y∗, it seems possible to bound the error in the subproblem solutions

in terms of the error in ye
k. The next result makes this precise. First, additional

assumptions are stated.

(AS4a) Strict complementarity holds at the solution (x∗, y∗, z∗) under consideration,

i.e., max(x∗, z∗) > 0.

(AS4b) If (x∗, y∗, z∗) is a KKT point for problem GNPs, then the following matrix

is nonsingular: (
H∗

FR,FR
(J∗

FR
)T

J∗
FR

0

)
,

where H∗
FR,FR

represents the rows and columns of H(x∗, y∗) corresponding

to components of x∗ that are free, and J∗
FR

represents the columns of J(x∗)

corresponding to components of x∗ that are free.

If the LICQ holds at x∗ and the point (x∗, y∗) satisfied the standard second-

order sufficient conditions of being a minimizer, then AS4b holds. This can be

shown by using Corollary 1.5.1.

The following theorem is similar to Lemma 5.1 in [8].

Theorem 4.4.1. Let the following assumptions hold: AS1a, AS1b, AS2a, AS2b,

AS3, AS4a, and AS4b. Let K be a subsequence of integers such that {x∗
k}K → x∗,

a KKT point for problem GNPs with associated Lagrange multiplier vector (y∗, z∗).

Assume {ye
k}K is any sequence of vectors and that {µk} is a sequence of positive

scalars such that limk∈K µk‖ye
k−y∗‖ = 0 and limk∈K µk‖y∗

k−y∗‖ = 0. Furthermore,

assume that the sequence of vectors (x∗
k, y

∗
k, z

∗
k, w

∗
k) are solutions to the pdBCL

subproblem (4.6) on page 87 with tolerances {ωk} → 0 and {τk} → 0 such that

τk ≤ max(µkωk, kτµ
ατ

k ) for constants ατ > 1 and kτ > 0. Then there exist positive

constants c11, c12, c13, c14, c15, c16, c17, µ̄, ω̄ and a positive integer k̄, such that

1. ‖y∗
k − y∗‖ ≤ c16ωk + c14µk‖ye

k − y∗‖,

2. ‖x∗
k − x∗‖ ≤ c15ωk + c14µk‖ye

k − y∗‖,
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3. ‖ỹk − y∗‖ ≤ c13ωk + c14µk‖ye
k − y∗‖,

4. ‖c(x∗
k)‖ ≤ c17µkωk + (µk + c14µ

2
k)‖ye

k − y∗‖,

for all k ≥ k̄, k ∈ K, ωk ≤ ω̄, and µk ≤ µ̄.

Proof. The assumptions are sufficient for the results of Lemma 4.3.1 to hold. Parts

2 and 3 of that theorem imply that {ỹk}K → y∗ and {z∗k}K → z∗ for some y∗ and

z∗. Furthermore, under the given assumptions above, part 1b) of Lemma 4.3.1

shows that {‖c(x∗
k)‖}K → 0. Thus, c(x∗) = 0 and part 5 then implies that

(x∗, y∗, z∗) is a KKT point. Therefore, (x∗, y∗, z∗) = (x∗, y∗, z∗) since assump-

tion AS3 guarantees a unique Lagrange multiplier vector. Since they are equal,

reference will now only be made to (x∗, y∗, z∗). Let the integer k0 ∈ K be defined

such that for all k ∈ K, k ≥ k0, the estimates in Lemma 4.3.1 hold.

A Taylor series expansion at x∗ gives

c(x∗
k) = J(x∗)(x∗

k − x∗) + r3, (4.16)

where

‖r3‖ ≤ c3‖x∗
k − x∗‖2 for some constant c3. (4.17)

Next, condition (4.6g) on page 87 and the Taylor-series expansion of g and

J at x∗ give

z∗k = g(x∗)+H(x∗)(x∗
k−x∗)−J(x∗)T ỹk−

(∑
Hi(x

∗)[ỹk]i

)
(x∗

k−x∗)+ r1, (4.18)

where

r1 = r1(x
∗
k, x

∗, ỹk) =

∫ 1

0

(
H
(
x∗ + s(x∗

k− x∗), ỹk

)
−H(x∗, ỹk)

)
(x∗

k− x∗) ds. (4.19)

Boundedness and Lipschitz continuity of the Hessians of f and {ci(x)} in a neigh-

borhood of x∗ imply

‖r1‖ ≤ c1‖x∗
k − x∗‖2 for some positive constant c1. (4.20)



99

By adding and subtracting the terms J(x∗)Ty∗ and
∑

Hi(x
∗)y∗

i (x
∗
k − x∗), equation

(4.18) is equivalent to

z∗k = g(x∗, y∗) + H(x∗, y∗)(x∗
k − x∗) + J(x∗)T(y∗ − ỹk) + r1 + r2, (4.21)

where

r2 = r2(x
∗
k, x

∗, ỹk, y
∗) =

∑

i

Hi(x
∗)
(
[y∗ − ỹk]i

)
(x∗

k − x∗). (4.22)

Norm inequalities imply

‖r2‖ ≤ c2‖x∗
k − x∗‖‖y∗ − ỹk‖ for some positive constant c2. (4.23)

Equations (4.16) and (4.21) may be expressed in terms of one system:

(
H(x∗, y∗) J(x∗)T

J(x∗) 0

)(
x∗

k − x∗

y∗ − ỹk

)
=

(
z∗k − g(x∗, y∗)

c(x∗
k)

)
−
(

r1 + r2

r3

)
.

Partitioning the previous system according to the free and fixed components of x∗

yields




H∗
FR,FR

H∗
FR,FX

(J∗
FR

)T

H∗
FX ,FR

H∗
FX ,FX

(J∗
FX

)T

J∗
FR

J∗
FX

0







[x∗
k − x∗]FR

[x∗
k − x∗]FX

y∗ − ỹk




=




[z∗k − g(x∗, y∗)]FR

[z∗k − g(x∗, y∗)]FX

c(x∗
k)


−




[r1 + r2]FR

[r1 + r2]FX

r3


 ,

where H∗ = H(x∗, y∗) and J∗ = J(x∗). Elimination of the second row, second

column, and use of [g(x∗, y∗)]FR = 0 leads to

(
H∗

FR,FR
(J∗

FR
)T

J∗
FR

0

)(
[x∗

k − x∗]FR

y∗ − ỹk

)

=

(
[z∗k]FR −H∗

FR,FX
[x∗

k]FX

c(x∗
k)− J∗

FX
[x∗

k]FX

)
−
(

[r1 + r2]FR

r3

)
. (4.24)
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Define the matrix on the left-hand side of the previous equation as S, i.e.,

S =

(
H∗

FR,FR
(J∗

FR
)T

J∗
FR

0

)
.

Assumption AS4b implies that S is nonsingular and therefore the following defini-

tion is made:

M = ‖S−1‖. (4.25)

Since [x∗]FR > 0, condition (4.6b) on page 87 shows that there exists an

integer k1 such that

‖[z∗k]FR‖∞ ≤ ωk for all k ∈ K, k ≥ k1. (4.26)

Also, since [x∗]FX = 0, assumption AS4a and condition (4.6b) imply that there

exists an integer k2 such that

‖[x∗
k]FX‖∞ ≤ ωk for all k ∈ K, k ≥ k2. (4.27)

This further implies

‖x∗
k − x∗‖ ≤ ‖[x∗

k − x∗]FR‖+ ‖[x∗
k − x∗]FX‖ ≤ ‖[x∗

k − x∗]FR‖+
√

n ωk, (4.28)

for all k ∈ K, k ≥ k2. For convenience, the following notation is introduced:

∆xFR

△

= ‖[x∗
k − x∗]FR‖, ∆y

△

= ‖y∗ − ỹk‖, ∆v
△

=

∥∥∥∥∥

(
[x∗

k − x∗]FR

y∗ − ỹk

)∥∥∥∥∥ . (4.29)

Using this notation, (4.17), (4.20), (4.23), and (4.28) imply

∥∥∥∥∥

(
[r1 + r2]FR

r3

)∥∥∥∥∥ ≤ c5∆x2
FR

+ c6ω
2
k + c2∆xFR∆y + c7∆xFRωk + c8ωk∆y (4.30)

for all k ∈ K, k ≥ max(k0, k2), where c5 = c1 + c3, c6 = 2n, c7 = 4
√

n, and

c8 = c2

√
n.
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Similarly, part 1c) of Lemma 4.3.1, equation (4.26) and equation (4.27)

yield
∥∥∥∥∥

(
[z∗k]FR −H∗

FR,FX
[x∗

k]FX

c(x∗
k)− J∗

FX
[x∗

k]FX

)∥∥∥∥∥ ≤ c9ωk + µk‖ỹk − y∗‖+ µk‖ye
k − y∗‖+ ‖w∗

k‖ (4.31)

for all k ∈ K, k ≥ max(k0, k1, k2), where

c9 =
√

n +
√

n

∥∥∥∥∥

(
H∗

FR,FX

J∗
FX

)∥∥∥∥∥ . (4.32)

Note that {µk} → 0 implies {γk} → ∞. Therefore, assumption AS2b and condition

(4.6d) imply the existence of µ̄1 > 0 such that if µk < µ̄1 then ‖w∗
k‖∞ ≤ τk. Since

τk ≤ ωk by construction, this implies that ‖w∗
k‖∞ ≤ ωk. Use of this bound in

equation (4.31) gives

∥∥∥∥∥

(
[z∗k]FR −H∗

FR,FX
[x∗

k]FX

c(x∗
k)− J∗

FX
[x∗

k]FX

)∥∥∥∥∥ ≤ c10ωk + µk‖ỹk − y∗‖+ µk‖ye
k − y∗‖ (4.33)

for all k ∈ K, k ≥ max(k0, k1, k2), and µk ≤ µ̄1, where c10 = c9 +
√

m.

Since ∆xFR ≤ ∆v and ∆y ≤ ∆v, it follows from equations (4.24), (4.30),

(4.33), definition of M , and norm inequalities that

∆v ≤M
(
c11∆v2 + c6ω

2
k + c12ωk∆v + c10ωk + µk∆v + µk‖ye

k − y∗‖
)

(4.34)

for all k ∈ K, k ≥ max(k0, k1, k2) and µk ≤ µ̄1, where c11 = c2+c5 and c12 = c7+c8.

Define the following quantities:

µ̄ = min(1
4
, µ̄1) and ω̄ = min

(
1,

1

4Mc12

)
. (4.35)

Since {(x∗
k, ỹk}K → (x∗, y∗), there exists an integer k3 such that

∆v ≤ 1

4Mc11

for all k ∈ K, k ≥ k3. (4.36)

Define k̄ = max(k0, k1, k2, k3) and then define

K∗ = { k ∈ K : k ≥ k̄, µk ≤ µ̄, and ωk ≤ ω̄ }. (4.37)
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Using (4.34), (4.35), (4.36), and (4.37), it follows that

∆v ≤ 1
4
∆v + 1

4
∆v + 1

4
∆v + Mc6ωk + Mc10ωk + Mµk‖ye

k − y∗‖ for all k ∈ K∗.

Grouping terms and simplifying gives

∆v ≤ c13ωk + c14µk‖ye
k − y∗‖ for all k ∈ K∗, (4.38)

where c13 = 4Mc6 + 4Mc10 and c14 = 4M . This trivially implies

‖ỹk − y∗‖ ≤ c13ωk + c14µk‖ye
k − y∗‖ for all k ∈ K∗, (4.39)

which proves part 3. Use of (4.28) and (4.38) gives

‖x∗
k − x∗‖ ≤ c15ωk + c14µk‖ye

k − y∗‖ for all k ∈ K∗, (4.40)

where c15 =
√

n + c13. This proves part 2. Part 1 is now proved. First note that

the update to τk ensures the following:

1

µk

‖w∗
k‖ ≤

√
m

µk

‖w∗
k‖∞ ≤

√
m

µk

τk ≤
√

m ωk if µk ≤ µ̄1.

This inequality, part 1d) of Lemma 4.3.1 and part 3 of this theorem imply

‖y∗
k − y∗‖ ≤ c16ωk + c14µk‖ye

k − y∗‖ for all k ∈ K∗, (4.41)

where c16 = c13 + 2
√

m. This proves part 1. Finally, part 1b) of Lemma 4.3.1 and

parts 1 and 3 of this theorem imply

‖c(x∗
k)‖ ≤ c17µkωk + (µk + c14µ

2
k)‖ye

k − y∗‖ for all k ∈ K∗, (4.42)

where c17 = 1
2
(c13 + c16). This proves part 4.

The next corollary gives a condition for an “arbitrary” Lagrange multi-

plier vector estimate that guarantees convergence of the estimate. It is similar to

Corollary 5.2 in [8].



103

Corollary 4.4.1. Suppose that the same conditions as those in Theorem 4.4.1 hold

and that ys
k+1 is any Lagrange multiplier estimate for which

‖ys
k+1 − y∗‖ ≤ c18ωk + c19‖x∗

k − x∗‖ (4.43)

for positive constants c18 and c19 and for all k ∈ K sufficiently large. Then there

exist positive constants c13, c14, c15, c16, c17, c18, c20, c21, µ̂, ω̂, and k̂ such that the

following hold

‖y∗
k − y∗‖ ≤ c16ωk + c14µk‖ye

k − y∗‖, (4.44a)

‖x∗
k − x∗‖ ≤ c15ωk + c14µk‖ye

k − y∗‖, (4.44b)

‖ỹk − y∗‖ ≤ c13ωk + c14µk‖ye
k − y∗‖, (4.44c)

2‖c(x∗
k)‖ ≤ c17µkωk + (2µk + c14µ

2
k)‖ye

k − y∗‖, (4.44d)

‖ys
k+1 − y∗‖ ≤ c20ωk + c21µk‖ye

k − y∗‖, (4.44e)

for all k ∈ K, k ≥ k̂, ωk ≤ ω̂, and µk ≤ µ̂, and where c20 = c18 + c15c19 and

c21 = c14c19.

Proof. Equations (4.44a), (4.44b), (4.44c), (4.44d) and definitions of µ̄, ω̄, and k̄

follow from Theorem 4.4.1. By assumption, there must exist k̂ ≥ k̄ such that (4.43)

holds for all k ∈ K and k ≥ k̂. Define ω̂ = ω̄ and µ̂ = µ̄. Then equation (4.44e)

follows by applying the bound given by (4.44b) to inequality (4.43).

It is now shown that under certain assumptions, the penalty parameter µk

is bounded away from zero. This is an important result because the subproblems

become more difficult to solve as µk decreases to zero. Ideally, µk should be as

large as possible to ensure well-conditioned subproblems, but small enough to

ensure convergence and the correct inertia of ∇2M. The next theorem is similar

to Theorem 5.3 in [8] with a nearly identical proof.

Theorem 4.4.2. Suppose that the iterates {x∗
k} of Algorithm 4.2.1 converge to the

single limit point x∗. Let assumptions AS1a, AS1b, AS2a, AS2b, AS3, AS4a, and
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AS4b hold. Let αη and βη satisfy

αη < min(1, αω), (4.45)

βη < min(1, βω), (4.46)

and suppose (4.43) holds for all k sufficiently large. Then there is a positive con-

stant µ such that µk ≥ µ for all k.

Proof. The proof given by Conn, Gould, and Toint for Theorem 5.3 in [8] is by

contradiction. They assume that {µk} → 0 and this implies that infinitely many

“unsuccessful” steps were performed. This does not follow immediately in Algo-

rithm 4.2.1 since {µk} may decrease during “successful” and “unsuccessful” iter-

ations. However, assume that infinitely many “successful” iterations decrease µk.

This implies ‖y∗
k‖∞ > γk − τf on a subsequence of the natural numbers. Since

{γk} → ∞, this implies that {‖y∗
k‖∞} → ∞ on the same subsequence. This con-

tradicts assumption AS2b and hence, only finitely many “successful” iterations

decrease µk. Since {µk} → 0 by assumption, it must be the case that infinitely

many “unsuccessful” iterations occurred (the same statement as in [8]).

The remainder of the proof is identical.

The final result of this section shows that Algorithm 4.2.1 is at least R-

linearly convergent. The result is analogous to Theorem 5.5 in [8].

Theorem 4.4.3. Under the assumptions given in Theorem 4.4.2, the iterates x∗
k,

y∗
k, ỹk and any ys

k satisfying inequality (4.43) are at least R-linearly convergent with

R-factor at most µ̂min(βω , βη), where µ̂ is the smallest value of the penalty parameter

generated by Algorithm 4.2.1.

Proof. Theorem 4.4.2 shows that {µk} is bounded away from zero and therefore

there exists a number µ̂ such that for k sufficiently large µk ≡ µ̂. Consider only

these values of k for the rest of the proof. Examination of Algorithm 4.2.1 implies

ωk+1 = ωkµ̂
βω , ηk+1 = ηkµ̂

βη , ‖c(x∗
k)‖ ≤ ηk. (4.47)
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This allows the following bound to be used in equation (4.31) on page 101:
∥∥∥∥∥

(
[z∗k]FR −H∗

FR,FX
[x∗

k]FX

c(x∗
k)− J∗

FX
[x∗

k]FX

)∥∥∥∥∥ ≤ c9ωk + ηk. (4.48)

This leads to the following bound on ∆v:

∆v ≤M
(
c9ωk + c6ω

2
k + ηk + (c2 + c5)∆v2 + (c7 + c8)ωk∆v

)
. (4.49)

Pick k sufficiently large that

∆v ≤ 1

3M(c2 + c5)
and ωk ≤ min

(
1,

1

3M(c7 + c8)

)
. (4.50)

It follows that

∆v ≤ c22ωk + 3ηk (4.51)

where c22 = 3c6 + 3c9. It immediately follows that

‖ỹk − y∗‖ ≤ c22ωk + 3ηk and ‖[x∗
k − x∗]FR‖ ≤ c22ωk + 3ηk. (4.52)

Next, equation (4.28) on page 100 and equation (4.52) imply

‖x∗
k − x∗‖ ≤ c23ωk + 3ηk (4.53)

where c23 =
√

n + c22.

As in Theorem 4.4.1, it may be shown that

1

µk

‖w∗
k‖ ≤

√
m ωk.

This fact, equation (4.52) and part 1d) of Lemma 4.3.1, imply

‖y∗
k − y∗‖ ≤ c24ωk + 3ηk (4.54)

where c24 = c22 + 2
√

m.

Finally, equation (4.43) and (4.53) imply

‖ys
k+1 − y∗‖ ≤ c25ωk + c26ηk (4.55)

where c25 = c18 + c22 +
√

n and c26 = 3c19.

Inequality (4.47) and equations (4.52), (4.53), (4.54), and (4.55) complete

the proof.
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4.5 Infeasible Problems

Not every optimization problem is well-defined. It is possible that the user

of an optimization routine may formulate a set of nonlinear constraints c(x) = 0

for which no non-negative solution to c(x) = 0 exists. Detecting this situation is

difficult and is equivalent to showing that the global minimum of

minimize
x∈Rn

1
2
‖c(x‖2

subject to x ≥ 0
(4.56)

is strictly positive. This is a very difficult problem. It is of interest to study the

behavior of the primal-dual BCL algorithm in this situation. The next theorem

shows that when Algorithm 4.2.1 is applied to an infeasible problem, the subprob-

lem solutions converge to a first-order KKT point of problem (4.56). A point (x, z)

is a first-order KKT point for problem (4.56) if it satisfies

J(x)Tc(x) = z, (4.57a)

min(x, z) = 0. (4.57b)

Theorem 4.5.1. Assume AS1a and AS2a hold. Suppose GNPs is infeasible and

that Algorithm 4.2.1 is applied with tolerances ω∗ = η∗ = 0. Let limk∈K x∗
k =

x∗. Then (x∗, z∗) is a first-order KKT point for problem (4.56), where z∗
△

=

J(x∗)T c(x∗).

Proof. Condition (4.6a) on page 87 implies x∗
k ≥ 0 for all k, and since limk∈K x∗

k =

x∗ it follows that

x∗ ≥ 0. (4.58)

Since problem GNPs is infeasible, there exists an η > 0 such that if x ≥ 0

then ‖c(x)‖ > η. Since {ηk} → 0 as k → ∞, there exists an integer k2 such that

‖c(x∗
k)‖ > ηk for all k ≥ k2. In other words, from iteration k2 onward, all iterates

are “unsuccessful” and that {µk} → 0.
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Condition (4.6g) implies

g(x∗
k)− J(x∗

k)
T(2ye

k −
2

µk

c(x∗
k)− y∗

k) = z∗k.

Multiplication by µk and use of condition (4.6b) shows

2J(x∗
k)

T c(x∗
k) ≥ −µkωke︸ ︷︷ ︸

(a)

−µkg(x∗
k)︸ ︷︷ ︸

(b)

+ µkJ(x∗
k)

T(2ye
k − y∗

k)︸ ︷︷ ︸
(c)

. (4.59)

Term (a) goes to zero since {µk} → 0 and {ωk} → 0. Term (b) goes to zero on

K because {µk} → 0 and { g(x∗
k) }K → g(x∗). Term (c) goes to zero on K by

Corollary 4.3.1 and Corollary 4.3.2. Therefore, assumption AS1a and convergence

of {x∗
k}K → x∗ imply

z∗ = J(x∗)T c(x∗) = lim
k∈K

J(x∗
k)

T c(x∗
k) ≥ 0. (4.60)

It remains to show that [z∗]I = 0. Since limk∈K x∗
k = x∗ and [x∗]I > 0, it

is the case that [x∗
k]I > 0 for k ∈ K sufficiently large. Condition (4.6b) and the

fact that {ωk} → 0 implies

min([x∗
k]I , [z

∗
k]I) = [z∗k]I for all k ∈ K sufficiently large.

This implies

‖[z∗k]I‖ ≤ ‖min(x∗
k, z

∗
k)‖ =

( n∑

j=1

min([x∗
k]j, [z

∗
k]j)

2
)1

2

≤
( n∑

j=1

ω2
k

)1
2

=
√

nωk for all k ∈ K sufficiently large.

Condition (4.6f) and the definition of ỹk imply

√
nωk ≥ ‖[z∗k]I‖

= ‖ĝ(x∗
k)− Ĵ(x∗

k)
T (2πk(x

∗
k)− y∗

k)‖

= ‖ĝ(x∗
k)− Ĵ(x∗

k)
T ỹk‖ for all k ∈ K sufficiently large.
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Definition of ỹk and rearrangement gives

‖ĝ(x∗
k)− Ĵ(x∗

k)
T (2ye

k −
2

µk

c(x∗
k)− y∗

k)‖ ≤
√

n ωk for all k ∈ K sufficiently large.

Use of the “reverse” triangle inequality followed by the classical triangle inequality

gives

‖2Ĵ(x∗
k)

T c(x∗
k)‖ ≤

√
nµkωk + µk‖ĝ(x∗

k)− Ĵ(x∗
k)

T (2ye
k − y∗

k)‖

≤
√

nµkωk︸ ︷︷ ︸
(a)

+ µk‖ĝ(x∗
k)‖︸ ︷︷ ︸

(b)

+ µk‖Ĵ(x∗
k)

T (2ye
k − y∗

k)‖︸ ︷︷ ︸
(c)

.

Terms (a) and (b) go to zero on K since {µk} → 0, {ωk} → 0 and {ĝ(x∗
k)}K →

ĝ(x∗). Since {Ĵ(x∗
k)}K → Ĵ(x∗), Corollaries 4.3.1 and 4.3.2 imply that term (c)

goes to zero on K. Combining this with assumption AS1a yields

[z∗]I = Ĵ(x∗)Tc(x∗) = lim
k∈K

Ĵ(x∗
k)

T c(x∗
k) = 0. (4.61)

Equations (4.58), (4.60), and (4.61) complete the proof.

Note that this theorem made no mention of the tolerance τ∗ or the sequence

{τk}.

4.6 Existence of Subproblem Solutions

This section shows the existence and uniqueness of subproblem solutions in

a neighborhood of a solution to GNPs under certain assumptions. Furthermore, it

is shown that the subproblem solutions eventually identify the optimal active set.

The following additional assumption is used.

(AS5.) The following second-order sufficient condition holds at a solution (x∗, y∗, z∗)

to problem GNPs: there exists a positive ω such that

pTH(x∗, y∗)p ≥ ω‖p‖2 (4.62)

for all p 6= 0 such that pFX = 0 and J(x∗)p = 0.
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The next lemma is required for the proof of the main result of this section.

Lemma 4.6.1. Assume AS4a and AS5 hold at a solution (x∗, y∗, z∗) of problem

GNPs. Then there exists a positive µ̄ such that for all 0 < µ ≤ µ̄ the following

matrix is nonsingular

S
△

=




H(x∗, y∗) + 2
µ
J(x∗)TJ(x∗) J(x∗)T −I

J(x∗) µI 0

Z∗ 0 X∗


 . (4.63)

Note that assumption AS3 is not needed.

Proof. By using the nonsingular transformation

N =




I − 2
µ
J(x∗)T 0

0 I 0

0 0 I


 ,

it is sufficient to prove that S1
△

= NS is nonsingular. Multiplication of S by N

gives

S1 =




H(x∗, y∗) −J(x∗)T −I

J(x∗) µI 0

Z∗ 0 X∗


 .

Define H∗ = H(x∗, y∗) and J∗ = J(x∗). Let p = (p1, p2, p3) be a vector in the null

space of S1. Partitioning S1 according to free and fixed variables leads to




H∗
FR,FR

H∗
FR,FX

−J∗
FR

T −IFR,FR 0

H∗
FX ,FR

H∗
FX ,FX

−J∗
FX

T
0 −IFX ,FX

J∗
FR

J∗
FX

µI 0 0

Z∗
FR

0 0 X∗
FR

0

0 Z∗
FX

0 0 X∗
FX







[p1]FR

[p1]FX

p2

[p3]FR

[p3]FX




=




0

0

0

0

0




.
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The fixed components of x satisfy x∗
FX

= 0 and assumption AS4a implies z∗
FR

= 0.

Thus,



H∗
FR,FR

H∗
FR,FX

−J∗
FR

T −IFR,FR 0

H∗
FX ,FR

H∗
FX ,FX

−J∗
FX

T
0 −IFX ,FX

J∗
FR

J∗
FX

µI 0 0

0 0 0 X∗
FR

0

0 Z∗
FX

0 0 0







[p1]FR

[p1]FX

p2

[p3]FR

[p3]FX




=




0

0

0

0

0




. (4.64)

Since x∗
FR

> 0, the fourth row of equations implies [p3]FR = 0. Since assumption

AS4a implies z∗
FX

> 0, the fifth row of equations implies [p1]FX = 0. System (4.64)

simplifies to 


H∗
FR,FR

−J∗
FR

T
0

H∗
FX ,FR

−J∗
FX

T −IFX ,FX

J∗
FR

µI 0







[p1]FR

p2

[p3]FX


 =




0

0

0


 . (4.65)

Therefore, [p1]FR and p2 satisfy

(
H∗

FR,FR
J∗

FR

T

J∗
FR

−µI

)(
[p1]FR

−p2

)
=

(
0

0

)
.

Assumption AS5, Debreu’s Lemma 1.5.1, and Lemma 1.5.3 guarantee the existence

of µ̄ > 0 such that this matrix is nonsingular for 0 < µ ≤ µ̄. For these values of

µ, [p1]FR = 0 and p2 = 0. Finally, (4.65) implies [p3]FX = 0 and the proof is

complete.

The following theorem shows the existence and uniqueness of subproblem

solutions. It also shows that the subproblem solutions will eventually identify the

optimal active set. This is important since identification of the optimal active set,

in essence, converts the inequality constrained problem into an equality constrained

problem.

Theorem 4.6.1. Suppose that assumptions AS4a and AS5 hold at a solution

(x∗, y∗, z∗) of problem GNPs. Then there exists µ̄ > 0 such that for any µ fixed
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satisfying 0 < µ < µ̄, there exists an open neighborhood T of y∗ and continuously

differentiable functions
(
x(ye), y(ye), z(ye)

)
defined on T such that

x(ye)→ x∗, y(ye)→ y∗, z(ye)→ z∗. (4.66)

Moreover, if γ > ‖y∗‖∞ then
(
x(ye), y(ye), z(ye), 0

)
is a minimizer to

minimize
x,y

M(x, y; ye, µ)

subject to −γe ≤ y ≤ γe, x ≥ 0.
(4.67)

The vector z(ye) is the Lagrange multiplier vector for x ≥ 0 and the m-vector 0

is the Lagrange multiplier vector for −γe ≤ y ≤ γe. Also, the active set of x(ye)

agrees with the active set at x∗.

Proof. An argument similar to that used in Theorem 3.3.2 gives the existence

of a positive µ̄ such that (x∗, y∗, z∗, w∗) = (x∗, y∗, z∗, 0) satisfies the second-order

sufficient conditions for problem (4.67) for all 0 < µ < µ̄, with the choice ye = y∗

and assuming that ‖y∗‖∞ < γ. Choose any µ satisfying this inequality. With this

choice, the following holds

∇2M(x∗, y∗; y∗, µ)FR,FR > 0, (4.68)

i.e., the reduced Hessian of the primal-dual merit function is positive definite at

(x∗, y∗) and with the choice ye = y∗. The vector z∗ is the multiplier vector for

x ≥ 0 and w∗ is the multiplier vector for −γe ≤ y ≤ γe.

Define the function

F (x, y, z; ye) =




g(x)− J(x)T
(
2ye − 2

µ
c(x)− y

)
− z

c(x) + µ(y − ye)

ZXe


 (4.69)

with derivative

F ′(x, y, z; ye) =




H(x, 2π(x)− y) + 2
µ
J(x)TJ(x) J(x)T −I

J(x) µI 0

Z 0 X


 . (4.70)
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Evaluation at (x∗, y∗, z∗) for ye = y∗ gives F (x∗, y∗, z∗; y∗) = 0 and

F ′(x∗, y∗, z∗; y∗) =




H(x∗, y∗) + 2
µ
J(x∗)TJ(x∗) J(x∗)T −I

J(x∗) µI 0

Z∗ 0 X∗


 , (4.71)

which is nonsingular by Lemma 4.6.1. The Implicit Function Theorem implies the

existence of an open neighborhood T1 of y∗, and unique continuously differentiable

functions
(
x(ye), y(ye), z(ye)

)
satisfying

1.
(
x(y∗), y(y∗), z(y∗)

)
= (x∗, y∗, z∗),

2. F
(
x(ye), y(ye), z(ye)

)
= 0,

for all ye in T1. This means that
(
x(ye), y(ye), z(ye)

)
satisfies the equality optimality

conditions for problem (4.67) (ignoring the bounds on the y-variables). Next, by

possibly shrinking T1, there exists an open neighborhood T2 of y∗ such that the

following hold for all ye ∈ T2:

a. if [x∗]i > 0, then [x(ye)]i > 0,

b. if [z∗]i > 0, then [z(ye)]i > 0,

c. ‖y(ye)‖∞ < γ.

Use of 2 above shows that if [x(ye)]i > 0 then [z(ye)]i = 0. Also, if x∗
i = 0, then

assumption AS4a implies z∗i > 0. Part b above then implies that [z(ye)]i > 0,

which part 2 above then implies [x(ye)]i = 0. Thus, the following hold for all

ye ∈ T2:

•
(
x(ye), y(ye), z(ye), 0

)
satisfies the first-order optimality conditions for prob-

lem (4.67),

• Strict complementarity holds at
(
x(ye), y(ye), z(ye), 0

)
,

• The active set at x(ye) is identical to the active set at x∗,
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• The vector y(ye) is free from its bounds.

It is only left to show that
(
x(ye), y(ye), z(ye), 0

)
satisfies the second-order sufficient

conditions. Since
(
x(ye), y(ye), z(ye), 0

)
→ (x∗, y∗, z∗, 0) as ye → y∗, statement

(4.68) implies that there exists an open neighborhood T of ye (possibly smaller

than T2) such that

∇2M
(
x(ye), y(ye); ye, µ

)
FR,FR

> 0

for all ye ∈ T . Therefore,
(
x(ye), y(ye), z(ye), 0

)
is a minimizer for problem (4.67).

This completes the proof.

4.7 Second-Order Points

The proposed primal-dual BCL method requires solving subproblem (4.2)

on page 78 at every iteration. Solutions to these subproblems satisfy the conditions

given by (4.6) on page 87. These are first-order conditions and, therefore, only

convergence to first-order points can be proved. It is reasonable to believe that

if certain second-order conditions are enforced at each subproblem solution, then

convergence to points satisfying certain second-order conditions may follow. To

this end, the following definition and additional assumption are used.

Definition 4.7.1 (Second-order sufficiency). The first-order KKT point (x∗, y∗, z∗)

satisfies the second-order sufficiency conditions for problem GNPs if it satisfies

strict complementarity (see AS4a) and if

pTH(x∗, y∗)p > 0

for all p 6= 0 such that pFX = 0 and J(x∗)p = 0.

(AS6). Let (x∗
k, y

∗
k, z

∗
k, w

∗
k) be a sequence of solutions to subproblem (4.2), and let

{x∗
k}K → x∗. For all k ∈ K large enough let the following conditions hold

for some positive constants δ1 and δ2 independent of k:
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a. (Strict Complementarity)

max(x∗
k, z

∗
k) > δ1e, (4.72)

max(γke− y∗
k, |w∗

k|) ≥ δ2e, (4.73)

max(γke + y∗
k, |w∗

k|) ≥ δ2e (4.74)

b. (Second-order condition)

∆vT∇2M(x∗
k, y

∗
k; y

e
k, µk)∆v ≥ δ1‖∆v‖2,

for all ∆v 6= 0 such that ∆xFX = 0 and where ∆v = (∆x, ∆y)T.

Certain methods that use second-derivatives may be able to guarantee that

∆vT∇2M(x∗
k, y

∗
k; y

e
k, µk)∆v ≥ 0 (4.75)

for all ∆v 6= 0 such that ∆vFX = 0 (see e.g., [6]). Thus, part b of AS6 is a

stronger condition than (4.75). Part b implies that for k ∈ K sufficiently large,

the sequence of minimum eigenvalues of the reduced Hessian of the primal-dual

augmented Lagrangian is positive and bounded away from zero.

Theorem 4.7.1. Assume AS3 holds. Let (x∗
k, y

∗
k, z

∗
k, w

∗
k) be a sequence satisfying

AS6. Let limk∈K x∗
k = x∗, and let

(x∗, y∗, z∗) = lim
k∈K

(x∗
k, ỹk, z

∗
k)

be a first-order KKT point of problem GNPs. Then (x∗, y∗, z∗) satisfies the second-

order sufficient conditions given by Definition 4.7.1.

Proof. Assumption AS6 gives max(x∗
k, z

∗
k) > δ1e. Taking limits shows max(x∗, z∗) ≥

δ1e > 0 so that (x∗, z∗) satisfies strict complementarity. Conditions (4.73) and

(4.74) imply that y∗
k is “uniformly free” from its bound for all k ∈ K sufficiently

large. This implies that the y-variables also satisfy strict complementarity and

that the optimal active-set is identified for k ∈ K sufficiently large.
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Let ∆x̄ 6= 0 such that ∆x̄FX = 0 and J(x∗)∆x̄ = 0. Assumption AS3 implies

that for k ∈ K sufficiently large, J(x∗
k) has full row rank. Continuity of null space

basis’ for a full row rank matrix (see [16]) implies that for k ∈ K sufficiently

large there exist vectors ∆vk = (∆xk, ∆yk)
T such that ∆yk = 0, [∆xk]FX = 0,

JFR(x∗
k)[∆xk]FR = 0, and {∆vk}k∈K → (∆x̄, 0)T. With this choice, part b of AS6

implies

δ1‖[∆xk]FR‖2 = δ1‖∆vk‖2 (4.76)

≤ ∆vk∇2M(x∗
k, y

∗
k; y

e
k, µk)∆vk (4.77)

= [∆xk]
T
FR

(
HFR,FR(x∗

k, ỹk) +
2

µk

JFR(x∗
k)

TJFR(x∗
k)
)
[∆xk]FR (4.78)

= [∆xk]
T
FR

HFR,FR(x∗
k, ỹk)[∆xk]FR. (4.79)

Taking limits on k ∈ K implies

∆x̄T
FR

HFR,FR(x∗, y∗)∆x̄FR ≥ δ1‖∆x̄FR‖2, (4.80)

which implies

∆x̄T H(x∗, y∗)∆x̄ ≥ δ1‖∆x̄‖2 > 0. (4.81)

Thus, (x∗, y∗, z∗) satisfies the second-order sufficient conditions given by Defini-

tion 4.7.1.

4.8 Higher-Order Updates

Algorithm 4.2.1 contains a step for computing the vector (xs
k+1, y

s
k+1). This

vector is intended to increase the rate of convergence of {ye
k} → y∗. This section

discusses options available for updating ye
k that may lead to faster convergence

than both the first-order primal-dual multiplier estimate ỹk, and the least-squares

multiplier estimate ŷ(x∗
k).
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4.8.1 A second-order update

This subsection considers three derivations of the same second-order update

to ye
k. Although, the update to ye

k is the same, the different derivations supply dif-

ferent auxiliary vectors that may be used to update the x and/or y-variables. These

derivations will be described in the context of problem NEP. Obvious modifications

may be used for problem GNPs.

Problem NEP

The first derivation is analogous to that of Bertsekas’ in [1]. Key to this

analysis is the following dual functional

dµ(ye) =M
(
x(ye), y(ye); ye, µ

)
, (4.82)

where
(
x(ye), y(ye)

)
is the minimizer of the primal-dual augmented Lagrangian

function for a given value of ye. Tacitly, it is assumed that these minimizers exist

and that everything is local to a solution of problem NEP. It will be shown that

(x∗, y∗) is a maximizer of dµ(y∗) for µ sufficiently small. Consider the gradient of

dµ(ye), which is given by

∇dµ(ye) = x′(ye)
T
((

x(ye)
)
− J

(
x(ye)

)T(
2π
(
x(ye)

)
− y(ye)

))

+ y′(ye)
T
(
c
(
x(ye)

)
+ µ
(
y(ye)− ye

))

− c
(
x(ye)

)
−
(
c
(
x(ye)

)
+ µ
(
y(ye)− ye

))
.

Since
(
x(ye), y(ye)

)
is a minimizer of the primal-dual augmented Lagrangian, it

satisfies

g
(
x(ye)

)
− J

(
x(ye)

)T(
2π
(
x(ye)

)
− y
(
ye)
)

= 0 and (4.83)

c
(
x(ye)

)
+ µ
(
y(ye)− ye

)
= 0. (4.84)

This implies that

∇dµ(ye) = −c
(
x(ye)

)
.
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Evaluation at ye = y∗ gives

∇dµ(y∗) = −c(x∗) = 0,

which implies that ye = y∗ is a stationary point of dµ.

Now it is shown that y∗ is a maximizer of dµ. Differentiation of ∇dµ gives

∇2dµ(ye) = −J
(
x(ye)

)
x′(ye). (4.85)

Differentiation of (4.83) and (4.84) shows that x′(ye) satisfies the following system

(
H
(
x(ye), y(ye)

)
+ 2

µ
J
(
x(ye)

)T
J
(
x(ye)

)
J
(
x(ye)

)T

J
(
x(ye)

)
µI

)(
x′(ye)

y′(ye)

)
=

(
2J
(
x(ye)

)T

µI

)

Block elimination of this system gives

x′(ye) =
(
H
(
x(ye), y(ye)

)
+

1

µ
J
(
x(ye)

)T
J
(
x(ye)

))−1

J
(
x(ye)

)T
.

Equation (4.85) may then be written as

∇2dµ(ye) = −J
(
x(ye)

)(
H
(
x(ye), y(ye)

)
+

1

µ
J
(
x(ye)

)T
J
(
x(ye)

))−1

J
(
x(ye)

)T
.

Evaluation at ye = y∗ gives

∇2dµ(y∗) = −J(x∗)
(
H(x∗, y∗) +

1

µ
J(x∗)TJ(x∗)

)−1

J(x∗)T.

Under the second-order sufficiency assumption AS5, Debreu’s Lemma 1.5.1 guar-

antees the existence of µ̄ > 0 such that H(x∗, y∗)+ 1
µ
J(x∗)TJ(x∗) is positive definite

for all 0 < µ ≤ µ̄. Thus, for these values of µ the matrix dµ(y∗) is negative definite.

Thus, dµ(ye) is maximized at ye = y∗.

An obvious choice for updating ye is to performing one step of Newton’s

method for maximizing dµ(ye). The relevant Newton system is given by

(
J
(
x(ye)

)(
H
(
x(ye), y(ye)

)
+

1

µ
J
(
x(ye)

)T
J
(
x(ye)

))−1

J
(
x(ye)

)T
)

∆ye

= −c
(
x(ye)

)
. (4.86)
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Thus, the update to ye is given by

ye ← ye + ∆ye, (4.87)

where ∆ye is the solution of (4.86).

This previous description offers a plausible update to ye, but suffers from

two drawbacks. First, although an update to ye is made, no improvement (up-

date) in the x-variables and y-variables is achieved. Secondly, the update is clear

when exact minimization is used, i.e., when points on the trajectory are calculated

exactly, however, it becomes less clear what system should be solved when only

approximate solutions are found. The following derivation of the same update to

ye partly remedies both deficiencies.

Consider applying Newton’s method to

F1(x, y) =

(
g(x)− J(x)T

(
y − 1

µ
c(x)

)

c(x)

)
.

The second component of F1 is a feasibility requirement, while the first component

is a stationarity requirement of the classical augmented Lagrangian function. The

derivative of F1 is given by

F ′
1(x, y) =

(
H
(
x, y − 1

µ
c(x)

)
+ 1

µ
J(x)TJ(x) −J(x)T

J(x) 0

)
,

Newton’s equations are

(
H
(
x, y − 1

µ
c(x)

)
+ 1

µ
J(x)TJ(x) −J(x)T

J(x) 0

)(
∆x

∆ye

)

= −
(

g(x)− J(x)T
(
y − 1

µ
c(x)

)

c(x)

)
. (4.88)

Evaluation at the point (x, y) =
(
x(ye), ye

)
, where x(ye) is the point on the classical

trajectory associated with a fixed µ, gives
(

H + 1
µ
JTJ −JT

J 0

)(
∆x

∆ye

)
= −

(
g − JT(ye − 1

µ
c)

c

)
,
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where J = J
(
x(ye)

)
, c = c

(
x(ye)

)
, g = g

(
x(ye)

)
, and H = H

(
x(ye), ye − 1

µ
c
(
x(ye)

))
.

Block elimination gives the solution as

∆ye =
(
J(H +

1

µ
JTJ)−1JT

)−1
(
− c + J

(
H +

1

µ
JTJ

)−1(
g − JT(ye −

1

µ
c)
))

,

∆x = (H +
1

µ
JTJ)−1

(
JT∆y −

(
g − JT(ye −

1

µ
c)
))

.

Since g − JT(ye − 1
µ
c) = 0 on the trajectory, the above equations simplify to

∆ye = −
(
J(H +

1

µ
JTJ)−1JT

)−1

c and (4.89)

∆x = (H +
1

µ
JTJ)−1JT∆y. (4.90)

Comparison of (4.86) and (4.89) shows that the updates to ye are identical. Equa-

tion (4.90) gives the additional vector ∆x which is a sensible update in the x-

variables. Also note that system (4.88) can be solved for any (x, y) ≈
(
x(ye), ye

)
.

The previous discussion partly remedies the deficiencies of the first deriva-

tion. However, it may be considered unnatural since the primal-dual augmented

Lagrangian function is minimized to generate points near the trajectory, but yet

stationary conditions of the classical augmented Lagrangian function is used in

the definition of F1. Also, the primal-dual augmented Lagrangian function is min-

imized over x and y, but no update to y is made. The following derivation may

be considered more natural and does offer an update to the y-variables. Consider

applying Newton’s method for zero-finding to

F2(x, y, ye) =




g(x)− J(x)T
(
2π(x)− y

)

c(x) + µ(y − ye)

c(x)


 . (4.91)

The derivative of F2 with respect to (x, y, ye) is

F ′
2(x, y, ye) =




H̄ + 2
µ
J(x)TJ(x) J(x)T −2J(x)T

J(x) µI −µI

J(x) 0 0


 ,
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where H̄ = H
(
x, 2π(x)− y

)
. The Newton equations are




H̄ + 2
µ
J(x)TJ(x) J(x)T −2J(x)T

J(x) µI −µI

J(x) 0 0







∆x

∆y

∆ye


 = −




g(x)− J(x)T
(
2π(x)− y

)

c(x) + µ(y − ye)

c(x)


 .

For convenience, define ∆v = (∆x,∆y,∆ye). Also define the following nonsingular

matrix

N =




I − 1
µ
J(x)T 0

0 I 0

0 0 I




and consider the following equivalent system:

NF ′
2(x, y, ye)N

T∆v̄ = −NF2(x, y, ye),

where

∆v̄ = N−T ∆v =




∆x

∆y + 1
µ
J(x)∆x

∆ye




△

=




∆x̄

∆ȳ

∆ȳe


 . (4.92)

Multiplication yields the following system




H̄ + 1
µ
J(x)TJ(x) 0 −J(x)T

0 µI −µI

J 0 0







∆x̄

∆ȳ

∆ȳe




= −




g(x)− J(x)T
(
ye − 1

µ
c(x)

)

c(x) + µ(y − ye)

c(x)


 . (4.93)

Block elimination gives the solution as

∆ȳe =
(
J(H̄ +

1

µ
JTJ)−1JT

)−1(
− c + J

(
H̄ +

1

µ
JTJ

)−1(
g − JT(ye −

1

µ
c)
))

,

∆x̄ = (H̄ +
1

µ
JTJ)−1

(
JT∆ȳe −

(
g − JT(y − 1

µ
c)
))

,

∆ȳ = ∆ȳe −
1

µ

(
c + µ(y − ye)

)
,



121

where J = J(x), c = c(x), and g = g(x). The solution ∆v now follows from

equation (4.92):

∆ye =
(
J(H̄ +

1

µ
JTJ)−1JT

)−1(
− c + J

(
H̄ +

1

µ
JTJ

)−1(
g − JT(ye −

1

µ
c)
))

,

(4.94)

∆x = (H̄ +
1

µ
JTJ)−1

(
JT∆ye −

(
g − JT(ye −

1

µ
c)
))

, (4.95)

∆y = ∆ye + ye − y. (4.96)

Note that on the trajectory, equations (4.89), (4.90), (4.94), and (4.95) show that

∆ye and ∆x are identical for both derivations. Also, equation (4.96) implies that

y + ∆y = ye + ∆ye. Therefore, ye + ∆ye is a good update for both ye and y.

Three additional points should be made:

1. When not on the trajectory, system (4.93) is the appropriate system to be

solved. Therefore, this updating method is appropriate when approximate

subproblem minimizers are found.

2. System (4.93) is (n + 2m) by (n + 2m). However, it may be solved by first

solving an (n + m) by (n + m) system for (∆x,∆ye) followed by the use of

(4.96) to define ∆y.

3. This derivation seems more natural since it is based on applying Newton’s

method to a function containing quantities pertinent to the primal-dual aug-

mented Lagrangian; this is in contrast to the previous discussion which made

use of stationarity conditions associated with the classical augmented La-

grangian.

4.8.2 A trajectory-following update

The following updating scheme focuses on the properties of the trajectory

of minimizers. It is based on the fact that the first Newton direction generated by
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the primal-dual augmented Lagrangian function following a decrease in the penalty

parameter is a good direction. For more details see Chapter 3.

Problem NEP

Consider problem NEP For simplicity assume that an exact subproblem so-

lution
(
x(µ), y(µ), ỹ(µ)

)
has been found for a given value of the penalty parameter

µ. The point
(
x(µ), y(µ), ỹ(µ)

)
satisfies the following set of equations:

g
(
x(µ)

)
− J

(
x(µ)

)T
ỹ(µ) = 0, (4.97a)

c
(
x(µ)

)
+ µ
(
y(µ)− ye

)
= 0, (4.97b)

c
(
x(µ)

)
+ 1

2
µ
(
ỹ(µ)− ye

)
+ 1

2
µ
(
y(µ)− ye

)
= 0. (4.97c)

Consider minimization of the primal-dual augmented Lagrangian for a smaller

value of the penalty parameter, say µ̄. A solution
(
x(µ̄), y(µ̄), ỹ(µ̄)

)
to this problem

satisfies the following equations

g(x)− J(x)T ỹ = 0,

c(x) + µ̄(y − ye) = 0,

c(x) + 1
2
µ̄(ỹ − ye) + 1

2
µ̄(y − ye) = 0.

Defining (xµ, yµ, ỹµ) =
(
x(µ), y(µ), ỹ(µ)

)
and writing Newton’s equations linearized

at (x, y, ỹ) = (xµ, yµ, ỹµ) yields




H(xµ, ỹµ) −JT
µ 0

Jµ 0 µ̄I

Jµ
µ̄
2
I µ̄

2
I







∆x

∆ỹ

∆y




= −




gµ − JT
µ ỹµ

cµ + µ̄(yµ − ye)

cµ + 1
2
µ̄(ỹµ − ye) + 1

2
µ̄(yµ − ye)


 , (4.98)

where cµ = c
(
x(µ)

)
, gµ = g

(
x(µ)

)
, and Jµ = J

(
x(µ)

)
. This shows that the choice

of µ̄ is important. If µ̄ is chosen to small, the right-hand side may not be close to
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zero and one step of classical Newton’s Method will most likely not be productive.

In fact, equation (4.97b) shows that the right-hand side is equivalent to

= −




0

(µ̄− µ)(yµ − ye)

(µ̄− µ)(yµ − ye)


 . (4.99)

To expect progress, µ̄ should be chosen to ensure that (µ̄− µ)(yµ− ye) is “small”.

One choice is the following:

µ̄ =

( ‖yµ − ye‖
1 + ‖yµ − ye‖

)α

µ, for α > 0. (4.100)

Note that if ‖yµ − ye‖ is large then µ̄ ≈ µ, and if ‖yµ − ye‖ ≈ 0, then µ̄ ≈ 0.

Once µ̄ has been chosen, system (4.98) must be solved. Multiplying the

second block of equations by −1, adding it to the third block of equations, and

then replacing the third block, followed by symmetrization yields




H(xµ, ỹµ) JT
µ 0

Jµ 0 µ̄I

0 − µ̄
2
I − µ̄

2
I







∆x

−∆ỹ

∆y


 = −




gµ − JT
µ ỹµ

cµ + µ̄(yµ − ye)
µ̄
2
(ỹµ − yµ)


 . (4.101)

Block elimination gives

(
H(xµ, ỹµ) JT

µ

Jµ −µ̄I

)(
∆x

−∆ỹ

)
= −

(
gµ − JT

µ ỹµ

cµ + µ̄(ỹµ − ye)

)
, and (4.102)

∆y = ỹµ + ∆ỹ − yµ. (4.103)

Two points should be noted. First, ∆y may be defined by equation (4.103) once

∆ỹ is computed from equation (4.102). Second, the updated value of the y-vector

is equivalent to the updated value of the ỹ-vector, i.e., yµ + ∆y = ỹµ + ∆ỹ.
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A Primal-Dual ℓ1- Linearly

Constrained Lagrangian (LCL)

Method

5.1 Background

In this chapter we consider algorithms based on solving a sequence of lin-

early constrained subproblems. As in previous chapters, the underlying constrained

problem will be written in the form:

GNPs minimize
x∈Rn

f(x)

subject to c(x) = 0, x ≥ 0,
(5.1)

where c : R
n → R

m and f : R
n → R. Let LA(x; ye, µ) denote the function

LA(x; ye, ρ) = f(x)− c(x)Tye + 1
2
ρ‖c(x)‖2,

which is the standard augmented Lagrangian function with µ = 1/ρ. If c̄k(x) =

c(xk) + J(xk)(x − xk) denotes the linearization of the general constraint vector

c(x) at the point xk, then problem GNPs may be solved as a sequence of linearly

124
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constrained Lagrangian (LCL) subproblems of the form

minimize
x∈Rn,y∈Rm

LA(x; ye
k, ρk)

subject to c̄k(x) = 0, x ≥ 0,
(5.2)

where ye
k is an estimate of the Lagrange multiplier vector. This LCL method is the

basis for the nonlinear optimization package MINOS of Murtagh and Saunders [21,

22].

Algorithm 5.1.1. Basic LCL Algorithm

INPUT: (x0, y
e
0, z0)

Set ρ0 = ρ̄ ≥ 0;

k ← 0;

converged ← false;

while not converged do

Find a solution (x∗
k, ∆y∗

k, z
∗
k) of the subproblem:

minimize
x∈Rn

LA(x; ye
k, ρk) subject to c̄k(x) = 0, x ≥ 0.

xk+1 ← x∗
k; ye

k+1 ← ye
k + ∆y∗

k; zk+1 ← z∗k;

Set converged ; ρk+1 ← ρ̄;

k ← k + 1;

end do

OUTPUT: (x∗, y∗, z∗)← (xk, y
e
k, zk)

For details of the convergence criteria, see the MINOS User’s Guide [23].

The basic LCL method of Algorithm 5.1.1 has two major deficiencies. First,

the constraints c̄k(x) = 0 and x ≥ 0 may be infeasible, in which case the subprob-

lem has no solution. Second, the distance from the point of linearization to the

subproblem solution may be arbitrarily large, i.e., the quantity ‖x∗
k − xk‖ may be

arbitrarily large. These problems are addressed by Friedlander and Saunders [13],
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who regularize the standard LCL subproblem by introducing an ℓ1 penalty term of

the linearized constraint violations. The analogous approach for the primal-dual

augmented Lagrangian function gives the so-called elastic subproblem:

minimize
x,u,v

LA(x; ye
k, ρk) + σke

T(u + v)

subject to c̄k(x) + u− v = 0, x, u, v ≥ 0.
(5.3)

It is well known that the objective term σke
T(u+v) and elastic constraints c̄k(x)+

u − v = 0, u ≥ 0, and v ≥ 0 of problem (5.3) define an alternative formulation

of the ℓ1 penalization of the linearized constraints. In particular, problem (5.6) is

equivalent to

minimize
x,u,v

LA(x; ye
k, ρk) + σk‖c̄k(x)‖1

subject to x ≥ 0.
(5.4)

In [13], Friedlander and Saunders observe that this subproblem unifies the BCL

and the LCL approaches. If σk ≡ 0, then subproblem (5.4) is equivalent to the

primal BCL subproblem. BCL methods are known to be globally convergent, but

the rate of convergence is only R-linear unless a higher-order updating scheme is

used for the multipliers ye
k. Therefore, it is desirable to solve the LCL subproblem

(5.2) near a solution since it will be shown that this recovers the R-quadratic

convergence established by Robinson [25] for the basic LCL Algorithm 5.1.1 with

ρ̄ = 0. The ℓ1 penalty function is exact, which implies that if the linearization

c̄k(x) = 0 is feasible and σk is sufficiently large, then u∗
k and v∗

k are likely to be

zero and the minimizers of subproblem (5.4) will coincide with the minimizers of

subproblem (5.2).

The discussion of this chapter loosely follows that of Friedlander and Saun-

ders in [13]. The main difference is that here we consider the use of the primal-dual

augmented Lagrangian rather than the standard primal augmented Lagrangian. In

addition, since the objective function of the primal-dual variant of the subproblem

(5.3) is a function of both the primal and dual variables, explicit bounds may be

imposed on the dual variables.
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5.2 A Primal-Dual Approach

The analogous LCL approach for the primal-dual augmented Lagrangian

function involves the function

M(x, y; ye, ρ) = f(x)− c(x)Tye + 1
2
ρ‖c(x)‖2 + 1

2
ρ‖c(x) + (y − ye)/ρ‖2,

which is identical to the primal-dual augmented Lagrangian function (3.2a) of

page 41, with µ = 1/ρ. As in the primal LCL method, Problem GNPs may be

solved as a sequence of linearly constrained subproblems. In the primal-dual case

we define the subproblem

minimize
x∈Rn,y∈Rm

M(x, y; ye
k, ρk)

subject to c̄k(x) = 0,

x ≥ 0, −γke ≤ y ≤ γke,

(5.5)

where γk is a positive constant and ye
k is an estimate of the Lagrange multiplier

vector. The associated elastic subproblem is

minimize
x,y,u,v

M(x, y; ye
k, ρk) + σke

T(u + v)

subject to c̄k(x) + u− v = 0,

x, u, v ≥ 0, −γke ≤ y ≤ γke.

(5.6)

Let zk denote the reduced-cost vector for x ≥ 0, and wk the reduced-cost vector for

−γke ≤ y ≤ γke. Similarly, let ∆yk denote the Lagrange multiplier vector for the

elastic linearized constraint c̄k(x) + u− v = 0. The point (x∗
k, y∗

k, u∗
k, v∗

k, ∆y∗
k, z∗k,
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w∗
k) is regarded as an approximate solution of the subproblem (5.6) if it satisfies

x∗
k ≥ 0, (5.7a)

‖min(x∗
k, z

∗
k)‖∞ ≤ ωk, (5.7b)

−γke ≤ y∗
k ≤ γke, (5.7c)

‖min(γke− y∗
k, y

∗
k + γke, |w∗

k|)‖∞ ≤ τk, (5.7d)

If [γke− y∗
k]j ≤ τk, then [w∗

k]j ≤ τk, (5.7e)

If [y∗
k + γke]j ≤ τk, then [w∗

k]j ≥ −τk, (5.7f)

(
∇Mx(x

∗
k, y

∗
k; y

e
k, ρk)− J(xk)

T∆y∗
k

∇My(x
∗
k, y

∗
k; y

e
k, ρk)

)
=


 z∗k

w∗
k


 , (5.7g)

c̄k(x
∗
k) + u∗

k − v∗
k = 0, (5.7h)

‖min(u∗
k, σke−∆y∗

k)‖∞ ≤ ωk, (5.7i)

‖min(v∗
k, σke + ∆y∗

k)‖∞ ≤ ωk. (5.7j)

Note that the inequalities (5.7i) and (5.7j) imply that

‖∆y∗
k‖∞ ≤ σk + ωk. (5.8)

Note that the following analysis carries over to the more realistic setting where

each constraint is given its own penalty parameter.

The chapter is organized as follows. Section 5.3 introduces necessary nota-

tion, terminology and assumptions. Section 5.4 supplies the statement of a primal-

dual ℓ1-LCL algorithm. Section 5.5 shows that the algorithm is globally convergent,

while Sections 5.6–5.8 discuss finite termination and asymptotic equivalence to the

classical LCL algorithm given by Robinson in [25]. Section 5.9 concerns the second-

order properties of solutions when certain second-order properties are satisfied by

the subproblem solutions. Section 5.10 considers local convergence properties. In

particular, it is shown that the primal-dual ℓ1-LCL algorithm inherits the fast con-

vergence properties of Robinson’s method (see [25]). Finally, Section 5.11 considers
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the properties of limit points generated by the the primal-dual ℓ1 algorithm when

applied to an infeasible problem.

5.3 Notation

The following definition of a first-order KKT for problem GNPs is an alter-

nate, but equivalent, version of Definition 2.1.10 on page 27.

Definition 5.3.1. A point (x, y, z) is a first-order Karush-Kuhn-Tucker (KKT)

point for problem GNPs (5.1) if it satisfies the following conditions:

c(x) = 0, (5.9a)

g(x)− J(x)Ty = z, (5.9b)

min(x, z) = 0. (5.9c)

The vector y is the Lagrange multiplier vector for the nonlinear constraint c(x) = 0.

The nonnegative vector z is the reduced-cost (i.e., Lagrange multiplier) vector for

the nonnegativity constraint x ≥ 0. Condition (5.9c) is a concise statement of

conditions (ii), (iv), and (v) in Definition 2.1.10.

Given primal and dual convergence tolerances η∗ and ω∗, the point (x, y, z)

will be regarded as an acceptable solution to problem GNPs if it satisfies the

following criteria:

‖c(x)‖ ≤ η∗, (5.10a)

g(x)− J(x)Ty = z, (5.10b)

‖min(x, z)‖∞ ≤ ω∗. (5.10c)

Given a point x ≥ 0, the index set I(x) = { j ∈ 1 : n | [x]j > 0 } associated

with the inactive bounds at x will occur frequently in the analysis. Given this

definition, additional notation is listed below. (The list also summarizes notation

introduced in previous sections).
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• (x∗, y∗, z∗) is an optimal solution of problem GNPs.

• (xk, yk, zk), is the kth estimate of (x∗, y∗, z∗).

• (x∗
k, y∗

k, u∗
k, v∗

k, ∆y∗
k, z∗k, w∗

k) denotes an approximate solution of the kth

subproblem.

• x∗ is a limit point of {x∗
k}.

• g(x) is the gradient of f(x) evaluated at x.

• J(x) is the m× n Jacobian of c(x) evaluated at x.

• ĝ(x) = [g(x)]I is the vector of components of g(x) corresponding to indices

in I(x∗).

• Ĵ(x) is the matrix of columns of J(x) with indices in I(x∗).

• Mk(x, y) = M(x, y; ye
k, ρk) is the kth primal-dual augmented Lagrangian

evaluated at (x, y).

• L(x, y) = f(x)− c(x)Ty is the Lagrangian evaluated at (x, y).

• H(x, y) is the Hessian of the Lagrangian with respect to x evaluated at (x, y).

• π(x; ye, ρ) = ye − ρc(x) is the primal first-order estimate of y∗.

• πk = π(x∗
k; y

e
k, ρk) is the kth primal first-order estimate of y∗.

• ỹ(x, y,∆y; ye, ρ) = 2π(x; ye, ρ)− y + ∆y is the primal-dual second-order esti-

mate of y∗.

• ỹk = ỹ(x∗
k, y

∗
k, ∆y∗

k; y
e
k, ρk) is the kth primal-dual second-order estimate of y∗.

• ŷ(x) is the least-squares multiplier estimate as described in (5.11) below.
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At all points x for which Ĵ(x) has full row rank, the least-squares multiplier

estimate is defined as

ŷ(x) = argmin
y
‖ĝ(x)− Ĵ(x)Ty‖22. (5.11)

It is not possible to calculate ŷ(x) since x∗ is not known in advance. The quantity

ŷ(x) is used only as a theoretical tool and is never required by the algorithm.

The following assumptions are also made about the problem:

(AS1a) The functions f(x) and {ci(x)} are twice continuously differentiable for all

x ≥ 0.

(AS2a) The sequence {x∗
k} is contained in the compact set Bx ⊂ R

n.

(AS2b) If K is a subsequence of the integers such that limk∈K x∗
k = x∗, then {y∗

k}K
is contained in the compact set By ⊂ R

m.

(AS3) The matrix Ĵ(x∗) has full row rank at every limit point x∗ of the sequence

{x∗
k}
(
at least one limit point is guaranteed by assumption AS2a

)
.

5.4 Statement of the Algorithm

Algorithm 5.4.1 given below is very similar to the stabilized LCL algorithm

proposed by Friedlander and Saunders [13]. The principal differences are as follows:

(i) Algorithm 5.4.1 uses the primal-dual augmented Lagrangian instead of the

classical augmented Lagrangian; (ii) explicit “artificial” bounds are imposed on

the dual variables of the subproblem; and (iii) an alternative update for σk may

be used in the situation where an iterate is labeled as “successful” (see below).

Based on the current degree of infeasibility, each pdℓ1-LCL iterate is re-

garded as either “successful” or “unsuccessful”. In the successful case, the solution

estimates are updated by using information from the current subproblem solution.
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Next an optimality check is performed, followed by a decrease in the primal infea-

sibility parameter ηk. The penalty parameter σk may also be decreased if ∆y∗
k is

“too large”. Finally, the index j, which represents the number of consecutive suc-

cessful iterations, is incremented by one. In the case of an unsuccessful iteration,

first, the subproblem solutions are discarded. The penalty parameter ρk is then

increased in an attempt to decrease the primal infeasibility at the next iteration.

Next, the “artificial” bound γk on the dual variables is increased; the ηk is reset,

and σk is decreased. Decreasing σk is appropriate because small values of σk en-

courage deviation from the linearized constraints, which may necessary in order to

decrease primal infeasibility.

Algorithm 5.4.1. Primal-Dual ℓ1-LCL Algorithm (pdℓ1-LCL)

INPUT: (x0, y0)

Set ρ0, σ0, η∗, η0, ω∗, τ∗, αη, βη, τρ, τσ, αγ, ατ , kτ , and δ;

Set ye
0 = y0; z0 = g(x0)− J(x0)

Ty0; w0 = 0; ν = (‖ye
0‖∞ + 1)ρ

−αγ

0 ; γ0 = νρ
αγ

0 ;

Set converged ← false, k ← 0, j ← 0.

while not converged do

Choose τk, ωk > 0 so that limk→∞ τk ≤ τ∗, τk ≤ kτρ
ατ

k , and limk→∞ ωk ≤ ω∗;
Find (x∗

k, y
∗
k, u

∗
k, v

∗
k, ∆y∗

k, z
∗
k, w

∗
k), a solution to (5.6) as given by conditions (5.7).

If multiple solutions exists, choose (x∗
k, y

∗
k, ∆y∗

k, z
∗
k, w

∗
k) closest to (xk, yk, zk, wk);

if ‖c(x∗
k)‖ ≤ max(η∗, ηk) then [successful]

xk+1 ← x∗
k; yk+1 ← y∗

k; zk+1 ← z∗k; ye
k+1 ← ỹk;

if (xk+1, y
e
k+1, zk+1) satisfies (5.10) then converged ← true end if

ρk+1 ← ρk, γk+1 ← γk

ηk+1 ← ηk/(1 + ρ
βη

k+1); [decrease ηk]

if ‖∆y∗
k‖∞ ≥ δ(1

2
)j then σk+1 ← σk/τσ end if [decrease σk]

j ← j + 1;

else [unsuccessful]

xk+1 ← xk; yk+1 ← yk; zk+1 ← zk; ye
k+1 ← ye

k;
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ρk+1 ← τρρk; γk+1 ← νρ
αγ

k+1; [increase ρk, increase γk]

ηk+1 ← η0/(1 + ρ
αη

k+1); [increase or decrease ηk]

σk+1 ← σk/τσ; [decrease σk]

j ← 0;

end if

k ← k + 1;

end do

OUTPUT: (x∗, y∗, z∗)← (xk, y
e
k, zk);

The parameters associated with Algorithm 5.4.1 are defined as follows:

• ρ0 (ρ0 ≥ 0) is the initial penalty parameter;

• σ0 (σ0 ≥ 0) is the initial ℓ1 penalty parameter for the linearized constraints;

• η∗ (0 < η∗ ≪ 1) is the limiting primal convergence tolerance;

• η0 (η∗ ≤ η0) is the initial primal infeasibility tolerance;

• ω∗ (0 < η∗ ≪ 1) is the limiting dual convergence tolerance for the x-

variables;

• ω0 (ω∗ ≤ ω0 < 1) is the initial dual infeasibility tolerance for the x-variables;

• τ∗ (0 < η∗ ≪ 1) is the dual convergence tolerance for the y-variables;

• αη (0 < αη < 1) is the constant used in the update to ηk in the unsuccessful

case. The condition αη > 0 ensures that {ηk} → 0 as k → ∞ in the event

that infinitely many unsuccessful iterations occur;

• βη (0 < βη) is the constant used in the update to ηk in the successful case;

• τρ (τρ > 1) is the expansion factor for ρk;

• τσ (τσ > 1) is the scale-factor for σk;
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• αγ (0 < αγ < 1) is the constant used in the definition of γk. The condition

αγ > 0 is needed to ensure that {γk} → ∞ if {ρk} → ∞. The condition

αγ < 1 is needed for Lemma 5.5.2 to hold;

• ατ (ατ < −1) is the constant used in the definition of τk;

• kτ (kτ > 0) is used in the definition of τk;

• δ (δ > 0) is another positive constant;

• ν (ν > 0) is used in definition of γk. Given ρ0 and ye
0, the parameter ν is

set to ν = (‖ye
0‖∞ + 1)ρ

−αγ

0 . As γ0 = να
αγ

0 , it follows that γ0 = ‖ye
0‖∞ + 1.

Therefore, ye
0 will be in the interior of [−γ0e, γ0e]. This is not good if the

user inputs a large inaccurate value of y0. In practice, an a priori limit on

the size of γ0 should be enforced.

5.5 Global Convergence

In this section we establish the global convergence of Algorithm 5.4.1. The

method of proof is similar to that of Friedlander and Saunders [13]. The first result

gives properties of any limit point generated by Algorithm 5.4.1. It is similar to

Lemma 5.2 of [13] and Lemma 4.4 of [5].

Lemma 5.5.1. Suppose that assumptions AS1a, AS2a, and AS3 hold. Let {ωk},
{τk}, {γk}, and {ρk} be positive sequences such that {ωk} → 0. Let {xk} be a

sequence of vectors in Bx, {ye
k} be any sequence of vectors, and {(x∗

k, y
∗
k, ∆y∗

k, z
∗
k)}

be a sequence of vectors satisfying conditions (5.7a), (5.7b), and (5.7g). Let K be

a subsequence of integers such that limk∈K x∗
k = x∗. Let ỹk = ỹ(x∗

k, y
∗
k, ∆y∗

k; y
e
k, ρk),

y∗ = ŷ(x∗), and z∗ = g(x∗)− J(x∗)Ty∗. Then the following properties hold:

1. There are positive constants α1, α2, and M such that, for k ∈ K sufficiently

large,
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a) ‖ỹk − y∗‖ ≤ β1
△

= α1ωk + M‖x∗
k − xk‖‖∆y∗

k‖+ α2‖x∗
k − x∗‖

b) ρk‖c(x∗
k)‖ ≤ 1

2
‖ỹk − y∗‖+ ‖ye

k − y∗‖+ 1
2
‖y∗

k − y∗‖+ 1
2
‖∆y∗

k‖

c) ρk‖c(x∗
k)‖ ≤ ‖ỹk − y∗‖+ ‖∆y∗

k‖+ ‖ye
k − y∗‖+ ρk‖w∗

k‖

d) ‖y∗
k − y∗‖ ≤ ‖ỹk − y∗‖+ ‖∆y∗

k‖+ 2ρk‖w∗
k‖

e) ‖y∗
k − y∗‖ ≤ 2ρk‖c(x∗

k)‖+ ‖∆y∗
k‖+ 2‖ye

k − y∗‖+ ‖ỹk − y∗‖.

Moreover; parts b), c), d), and e) hold for all k.

2. If limk∈K ‖∆y∗
k‖ = 0, or {‖∆y∗

k‖}k∈K is bounded above with limk∈K ‖x∗
k −

xk‖ = 0, then limk∈K ỹk = y∗ and limk∈K z∗k = z∗

3. For all k ∈ K sufficiently large,

a) ρk‖w∗
k‖ ≤ 1

2
‖ỹk − y∗‖+ 2‖ye

k − y∗‖+ 3
2
‖y∗

k − y∗‖+ 1
2
‖∆y∗

k‖

b) ρk‖w∗
k‖ ≤ 1

2
β1 + 2‖ye

k − y∗‖+ 3
2
‖y∗

k − y∗‖+ 1
2
‖∆y∗

k‖

Moreover; part a) holds for all k.

4. If c(x∗) = 0, then (x∗, y∗, z∗) is a first-order KKT point for problem GNPs.

Proof. Assumption AS3 and the fact that limk∈K x∗
k = x∗, implies that Ĵ(x∗

k) has

full row rank for k ∈ K sufficiently large. Thus, Lemma 4.1.3 and the fact that

‖
(
J(x)J(x)T

)−1
J(x)‖ is bounded in a neighborhood of x∗ implies that there exists

an α1 > 0 such that

‖ŷ(x∗
k)− ỹk‖ ≤

α1√
n
‖ĝ(x∗

k)− Ĵ(x∗
k)

T ỹk‖ for k ∈ K sufficiently large. (5.12)

Now we bound the right-hand side. First note that since limk∈K x∗
k = x∗ and

[x∗]I > 0, it must be the case that for k ∈ K sufficiently large [x∗
k]I > 0. Using

(5.7b) and the fact that {ωk} → 0, gives

min
(
[x∗

k]I , [z
∗
k]I
)

= [z∗k]I for k ∈ K sufficiently large.
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This implies the following

‖[z∗k]I‖ ≤ ‖min(x∗
k, z

∗
k)‖

=

( ∑

j=1 : n

(
min([x∗

k]j, [z
∗
k]j)
)2
)1/2

≤
( ∑

j=1 : n

ω2
k

)1/2

=
√

n ωk for k ∈ K sufficiently large.

Thus,

‖[z∗k]I‖ ≤
√

n ωk, for k ∈ K sufficiently large. (5.13)

The condition (5.7g) and the definitions of ỹk and πk, allow us to derive the fol-

lowing expression for all k ∈ K sufficiently large:

z∗k = g(x∗
k)− J(x∗

k)
T (2πk − y∗

k)− J(xk)
T∆y∗

k

= g(x∗
k)− J(x∗

k)
T (2πk − y∗

k + ∆y∗
k) +

(
J(x∗

k)− J(xk)
)T

∆y∗
k

= g(x∗
k)− J(x∗

k)
T ỹk +

(
J(x∗

k)− J(xk)
)T

∆y∗
k.

(5.14)

Under the assumption that c(x) is twice continuously differentiable on Bx, it holds

that J(x) is Lipschitz continuous on Bx and there must exist a positive M such

that ‖J(x∗
k)− J(xk)‖ ≤M

√
n

α1
‖x∗

k − xk‖. Using this result in conjunction with the

triangle-inequality and equations (5.13) and (5.14), yields

‖ĝ(x∗
k)− Ĵ(x∗

k)
T ỹk‖ = ‖[z∗k]I −

(
Ĵ(x∗

k)− Ĵ(xk)
)T

∆y∗
k‖

≤ ‖[z∗k]I‖+ ‖
(
Ĵ(x∗

k)− Ĵ(xk)
)T

∆y∗
k‖

≤
√

nωk + M

√
n

α1

‖x∗
k − xk‖‖∆y∗

k‖.

This last inequality and equation (5.12) imply the bound

‖ŷ(x∗
k)− ỹk‖ ≤ α1ωk + M‖x∗

k − xk‖‖∆y∗
k‖, for k ∈ K sufficiently large. (5.15)

Using (5.15), the Lipschitz continuity of the least-squares multiplier estimate in a

neighborhood of x∗
(
recall that y∗ = ŷ(x∗)

)
, and the triangle inequality, we may
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infer the existence of a positive α2 such that

‖ỹk − y∗‖ = ‖ỹk − ŷ(x∗
k) + ŷ(x∗

k)− y∗‖

≤ ‖ỹk − ŷ(x∗
k)‖+ ‖ŷ(x∗

k)− y∗‖

≤ α1ωk︸︷︷︸
(a)

+ M‖x∗
k − xk‖‖∆y∗

k‖︸ ︷︷ ︸
(b)

+ α2‖x∗
k − x∗‖︸ ︷︷ ︸
(c)

= β1,

(5.16)

for k ∈ K sufficiently large. This proves part 1a).

To prove part 2, consider (5.16). First, suppose that {‖∆y∗
k‖}k∈K → 0. The

term (a) goes to zero since {ωk} → 0. Similarly, the term (b) goes to zero on K

because ‖x∗
k−xk‖ is bounded from AS2a and because {‖∆y∗

k‖}k∈K → 0. The term

(c) goes to zero since limk∈K x∗
k = x∗. This implies that limk∈K ỹk = y∗. As J is

continuous on the compact set Bx, the set {‖J(x∗
k)− J(xk)‖} is bounded, giving

lim
k∈K
‖
(
J(x∗

k)− J(xk)
)T

∆y∗
k‖ = 0. (5.17)

On the other hand, suppose that {‖∆y∗
k‖}k∈K is bounded and limk∈K ‖x∗

k−xk‖ = 0.

The term (a) goes to zero since {ωk} → 0. The term (b) goes to zero because

{‖∆y∗
k‖}k∈K is bounded and limk∈K ‖x∗

k−xk‖ = 0. Moreover, the term (c) goes to

zero since limk∈K x∗
k = x∗. This implies that limk∈K ỹk = y∗. Also, as {‖∆y∗

k‖}k∈K

is bounded and limk∈K ‖x∗
k − xk‖ = 0, it must hold that

lim
k∈K
‖
(
J(x∗

k)− J(xk)
)T

∆y∗
k‖ = 0. (5.18)

Taking the limit of equation (5.14) for k ∈ K and using equations (5.17) and (5.18)

yields

lim
k∈k

z∗k = lim
k∈k

(
g(x∗

k)− J(x∗
k)

T ỹk +
(
J(x∗

k)− J(xk)
)T

∆y∗
k

)

= g(x∗)− J(x∗)Ty∗ = z∗,

which proves part 2.

By definition, ỹk = 2ye
k−2ρkc(x

∗
k)−y∗

k+∆y∗
k. Introducing y∗ and performing

some rearrangement leads to

2ρkc(x
∗
k) = 2ye

k − 2y∗ + y∗ − ỹk + y∗ − y∗
k + ∆y∗

k.
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Taking norms and using the triangle inequality gives

2ρk‖c(x∗
k)‖ ≤ ‖ỹk − y∗‖+ 2‖ye

k − y∗‖+ ‖y∗
k − y∗‖+ ‖∆y∗

k‖.

Dividing this equation through by 2 proves part 1b).

Substituting c(x∗
k) from condition (5.7g) into the definition of ỹk gives

ỹk = 2ye
k − 2ρkc(x

∗
k)− y∗

k + ∆y∗
k = y∗

k + ∆y∗
k − 2ρkw

∗
k. (5.19)

Introducing y∗, rearranging, taking norms and using the triangle inequality yields

‖y∗
k − y∗‖ = ‖ỹk − y∗ −∆y∗

k + 2ρkw
∗
k‖

≤ ‖ỹk − y∗‖+ ‖∆y∗
k‖+ 2ρk‖w∗

k‖,

which proves part 1d). Applying the bound given by part 1d) to part 1b) gives

1c).

Introducing y∗ in the definition of ỹk and using the triangle inequality gives

‖y∗
k − y∗‖ ≤ 2ρk‖c(x∗

k)‖+ ‖∆y∗
k‖+ 2‖ye

k − y∗‖+ ‖ỹk − y∗‖,

which proves part 1e).

For part 3, we note that condition (5.7g), the triangle inequality, and the

introduction of y∗, and the result of part 1b) lead to

ρk‖w∗
k‖ = ‖ρkc(x

∗
k) + (y∗

k − ye
k)‖

≤ ρk‖c(x∗
k)‖+ ‖y∗

k − y∗‖+ ‖y∗ − ye
k‖

≤ 1
2
‖ỹk − y∗‖+ 2‖ye

k − y∗‖+
3

2
‖y∗

k − y∗‖+ 1
2
‖∆y∗

k‖,

which proves part 3a). Applying the bound from part 1a) to part 3a) gives part

3b).

It remains to verify part 4. To this end, assume that c(x∗) = 0. To show

that (x∗, y∗, z∗) is a first-order KKT point, it must be shown that min(x∗, z∗) = 0.

From condition (5.7b) we have

‖min(x∗
k, z

∗
k)‖∞ ≤ ωk.
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As {ωk} → 0, it must holds that

lim
k∈k
‖min(x∗

k, z
∗
k)‖∞ ≤ lim

k∈k
ωk = 0,

which implies that limk∈k ‖min(x∗
k, z

∗
k)‖∞ = 0. The continuity of norms and the

fact that limk∈k(x
∗
k, z

∗
k) = (x∗, z∗) gives min(x∗, z∗) = 0, which proves part 4.

Note that these results are independent of the choice of sequences {ρk},
{γk}, {τk}, and {ye

k}.
As in Chapter 4, the quantity ‖ye

k‖/ρk plays an important role in the proof of

global convergence. This quantity must converge to zero if the penalty parameter

ρk converges to infinity. This implies that {ye
k} need not remain bounded, but must

not grow too fast compared to ρk. First, we show that the sequence {‖y∗
k‖} does

not grow too fast relative to the penalty parameter. The following result makes

this idea precise.

Lemma 5.5.2. Suppose that Algorithm 5.4.1 gives {ρk} → ∞ as k → ∞. Then

{‖y∗
k‖/ρk} → 0.

Proof. Since y∗
k ∈ [−γke, γke] and γk = νρ

αγ

k for all k, it follows that

‖y∗
k‖

ρk

≤
√

m ‖y∗
k‖∞

ρk

≤
√

m γk

ρk

=

√
m νρ

αγ

k

ρk

=
√

m νρ
αγ−1
k (5.20)

Since αγ < 1 and {ρk} → ∞, the right-hand side goes to zero. This implies that

if {ρk} → ∞ as k →∞, then {‖y∗
k‖/ρk} → 0.

The next lemma is adapted from Lemma 5.3 in [13].

Lemma 5.5.3. Suppose that Algorithm 5.4.1 gives {ρk} → ∞ as k → ∞. Then

{‖ye
k‖/ρk} → 0.

Proof. Let {k1, k2, . . . } denote the indices of iterates that are labeled as unsuc-

cessful by Algorithm 5.4.1. Similarly, let {l1, l2, . . . } denote the associated indices

for which the last successful iteration was performed. With these definitions,

ye
ki+1 = ỹli and ρki+1 = τ ki−li

ρ ρli . (5.21)
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The parameter ρk increases if and only if an unsuccessful iteration is executed.

As ye
k is not updated during unsuccessful iterations, it is sufficient to show that

{‖ye
ki+1‖/ρki+1} → 0 as i→∞.

If there are only finitely many (possibly zero) successful iterations, then

from some point on, the multiplier estimate ye
k is kept fixed. As {ρk} → ∞, it

must hold that {‖ye
ki+1‖/ρki+1} → 0.

Therefore, assume that there are infinitely many successful iterations. Using

the definition of ỹk, the triangle inequality, the equation (5.21), and the bound

τ ki−li
ρ ≥ 1, it holds that

‖ye
ki+1‖

ρki+1

=
‖ỹli‖

τ
(ki−li)
ρ ρli

≤ ‖ỹli‖
ρli

=
‖2ye

li
− 2ρlic(x

∗
li
)− y∗

li
+ ∆y∗

li
‖

ρli

≤
‖∆y∗

li
‖

ρli︸ ︷︷ ︸
(a)

+ 2
‖ye

li
− ρlic(x

∗
li
)‖

ρli︸ ︷︷ ︸
(b)

+
‖y∗

li
‖

ρli︸ ︷︷ ︸
(c)

.
(5.22)

Equation (5.8) on page 128 shows that ‖∆y∗
li
‖ is bounded, and therefore the term

(a) goes to zero as {ρk} → ∞. The definition of the forcing sequence {ηk} is

analogous to that in [8] and therefore Lemma 4.1 from [8] implies that (b) goes to

zero as {ρk} → ∞. Finally, Lemma 5.5.2 implies that the term (c) goes to zero as

{ρk} → ∞. Thus, equation (5.22) implies that {‖ye
ki+1‖/ρki+1} → 0.

The previous two lemmas may now be used to prove global convergence of

the subproblem solutions. Algorithm 5.5.1 gives the update used by Friedlander

and Saunders for ηk in the successful case.

Algorithm 5.5.1. Update to ηk in the successful case (single limit point).

σk+1 ← 1
1+ρk

min(1 + ‖∆y∗
k‖∞, σ̄)

Using this update, Friedlander and Saunders prove global convergence of the sub-

problem solutions under the assumption that there is a single limit point. In
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addition, they suggest the following alternative update to handle the case where

there are multiple limit points.

Algorithm 5.5.2. Update to ηk in the successful case (multiple limit points).

if ‖∆y∗
k‖∞ ≤ δ(1

2
)j

σk+1 ← 1
1+ρk

min(1 + ‖∆y∗
k‖∞, σ̄); [reset σk]

else

σk+1 = σk/τσ; [decrease σk]

end if

The primal-dual ℓ1-LCL Algorithm 5.4.1 uses neither of the updates given

above. The reason for this is made clear after the next result. Theorem 5.5.1 says

that the subproblem solutions generated by Algorithm 5.4.1 are globally conver-

gent.

Theorem 5.5.1 (Global convergence of subproblem solutions). Suppose assump-

tions AS1a, AS2a and AS3 hold. Let {(x∗
k, y

∗
k, ∆y∗

k, z
∗
k)} be the sequence of vectors

generated by Algorithm 5.4.1 with tolerances ω∗ = 0 and η∗ = 0. Let K be a sub-

sequence of the integers such that limk∈K x∗
k = x∗. Then all parts of Lemma 5.5.1

hold. Therefore, (x∗, y∗, z∗) as defined in Lemma 5.5.1 is a first-order KKT point.

Proof. Algorithm 5.4.1 generates scalar sequences {ωk}, {τk}, {γk}, and {ρk} such

that {ωk} → 0. It also generates a sequence (x∗
k, y

∗
k, ∆y∗

k, z
∗
k) that satisfies (5.7) for

each k. Therefore, the hypotheses of Lemma 5.5.1 hold, and parts 1 and 3 of that

lemma follow immediately.

Since each x∗
k ≥ 0 by condition (5.7b), it follows that x∗ = limk∈K x∗

k ≥ 0.

Examination of Algorithm 5.4.1 shows that one of the following four cases must

occur:

1. {ρk} is uniformly bounded, and {σk} → 0;
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2. {ρk} is uniformly bounded, and {σk}9 0;

3. {ρk} → ∞, and {σk} → 0;

4. {ρk} → ∞, and {σk}9 0.

Case 4 can not occur, since if ρk →∞ then σk → 0.

Consider case 1. Since {σk} → 0 and {ωk} → 0, equation (5.8) implies the

{∆y∗
k} → 0. This shows that part 2 of Lemma 5.5.1 holds. As {ρk} is uniformly

bounded, it must be true that for k sufficiently large every iteration is successful

and that ‖c(x∗
k)‖ ≤ ηk. Since {ηk} → 0, c is continuous, norms are continuous,

and {x∗
k}k∈K → x∗, it follows that c(x∗) = 0. Thus, part 4 of Lemma 5.5.1 holds.

Consider case 2. Since {ρk} is uniformly bounded, every iteration is success-

ful for k sufficiently large. It also follows that j → ∞ as k → ∞. The argument

used in case 1 shows that c(x∗) = 0. Thus, part 4 of Lemma 5.5.1 holds. Further-

more, since {σk}9 0 it follows that ‖∆y∗
k‖∞ < δ(1

2
)j for k sufficiently large. Since

j → ∞ as k → ∞, it follows that limk→∞ ∆y∗
k = 0. Thus, part 2 of Lemma 5.5.1

holds.

Finally, consider case 3. Since {σk} → 0, equation (5.8) on page 128 implies

the {∆y∗
k} → 0. This shows that part 2 of Lemma 5.5.1 holds, and therefore

limk∈K ỹk = y∗. Part 1b) of Lemma 5.5.1 implies

2‖c(x∗
k)‖ ≤

‖ỹk − y∗‖
ρk︸ ︷︷ ︸
(a)

+ 2
‖ye

k − y∗‖
ρk︸ ︷︷ ︸
(b)

+
‖y∗

k − y∗‖
ρk︸ ︷︷ ︸
(c)

+
‖∆y∗

k‖
ρk︸ ︷︷ ︸
(d)

(5.23)

Terms (a) and (d) go to zero on K since {ρk} → ∞, {ỹk}k∈K → y∗, and

{∆y∗
k} → 0. Lemma 5.5.2 and Lemma 5.5.3 imply that terms (b) and (c) go

to zero. Therefore, equation (5.23) implies limk∈K c(x∗
k) = 0. As limk∈K x∗

k = x∗,
the continuity of c and the continuity of norms imply that c(x∗) = 0. Thus, part

4 of Lemma 5.5.1 holds.

Friedlander and Saunders use Algorithm 5.5.2 to update ηk in the successful

case in order to account for multiple limit points. The integer j represents the
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number of consecutive successful major iterations and δ is a positive parameter.

With this update, the authors claim global convergence without the single limit

point assumption. They also note that any forcing sequence converging to zero

may be used in the “if” part, but that requiring only a mild decrease in ‖∆y∗
k‖∞

at each iteration should interfere less with the fast local convergence of the method

since ‖∆y∗
k‖ may be expected to decrease at a linear rate. However, Friedlander-

Saunders proof of case 2 does not treat all the possible situations that may arise.

If case 2 applies, {ρk} is uniformly bounded and every iterate is successful for k

sufficiently large. Clearly, in this case, j → ∞. Friedlander and Saunders argue

that if ∆y∗
k does not satisfy the “if” part of Algorithm 5.5.2 infinitely often, then

{σk} → 0. However, this does not appear to be guaranteed since it is possible

that both the “if” and “else” statements occur infinitely often—implying that σk

alternates between being decreased and being reset.

However, it is true that if {x∗
k} contains finitely many limit points, then

there exists some subsequence, call it K̄, say, such that limk∈K̄(x∗
k, ỹk, z

∗
k, ∆y∗

k) =

(x∗, y∗, z∗, 0) and that (x∗, y∗, z∗) is a KKT point. This can be seen as follows. Let

K1, K2, . . . , Kl be disjoint subsequences of the integers such that limk∈Ki
x∗

k = xi∗,
a limit point of {x∗

k}, for i = 1 : l. Therefore, {xi∗} for i = 1 : l is the finite set of

limit points of {x∗
k}. Since {ρk} is assumed uniformly bounded, then all iterates

are successful for k sufficiently large. If the “if” part happens finitely often, then

{σk} → 0 and part 2 of Lemma 5.2 by Friedlander and Saunders holds. If the

“if” part occurs infinitely often, then it must be true that the “if” part occurs

infinitely often on Km for some 1 ≤ m ≤ l. It could occur infinitely often on

more than one subsequence, but one will suffice. This implies that there exists

a sub-subsequence Km̄ ⊆ Km such that {∆y∗
k}Km̄

→ 0 since j → ∞. Since

{x∗
k}Km̄

→ xm∗ , {∆y∗
k}Km̄

→ 0, and c(xm∗ ) = 0, Lemma 5.2 by Friedlander and

Saunders implies that (xm∗ , ym∗ , zm∗ ) is a KKT point where limk∈Km̄
ỹk = ym∗ and

zm∗
△

= g(xm∗ ) − J(xm∗ )Tym∗ . Note that this is on the sub-subsequence Km̄, and not,

as Lemma 5.2 of Friedlander and Saunders claim, on Km.
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So it appears that the update used by the sLCL algorithm to handle multiple

limit points may not work as predicted. However, in practice it is unlikely to be a

problem. First, the algorithm usually converges, which implies that a unique limit

point exists. Even when multiple limit points exist, it seems unlikely that the case

described above would occur. It seems more likely that σk would be driven to zero

and begin to resemble the BCL method, which is know to be globally convergent.

The possible ramifications of this observation on the sLCL algorithm is unclear at

this point.

Corollary 5.5.1 (Convergence of ∆y∗
k to zero). Let {(x∗

k, y
∗
k, ∆y∗

k, z
∗
k)} be the se-

quence of vectors generated by Algorithm 5.4.1. Then

lim
k→∞

∆y∗
k = 0.

Proof. See proof of Theorem 5.5.1.

5.6 Termination in the Limit

This section follows the outline of Section 5.4 of [13]. Friedlander and Saun-

ders note that the convergence test takes place during successful iterations only,

i.e., since η∗ = 0, when ‖c(x∗
k)‖ ≤ ηk. To guarantee that the algorithm eventu-

ally terminates as the iterates converge, successful iterates must be guaranteed to

occur infinitely often. Friedlander and Saunders show that their definition of the

forcing sequence ηk ensures this property. As a counter example, if ηk ≡ 0 for all k,

then the algorithm tests for convergence only in the rare case that c(x∗
k) = 0. The

forcing sequence used in Algorithm 5.4.1 is the same as that used by Friedlander

and Saunders in [13]. This sequence was suggested originally by Conn et al. [5]

and Conn, Gould, and Toint [8]. The following result is identical to Corollary 5.5

of [13].

Corollary 5.6.1 (Global convergence with a single limit point). Let {(xk, y
e
k, zk)}

be the sequence of vectors generated by Algorithm 5.4.1. Let x∗ be the single limit
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point of {x∗
k}. Suppose that assumptions AS1a, AS2a and AS3 hold. Then

lim
k→∞

(xk, y
e
k, zk) = (x∗, y∗, z∗),

and (x∗, y∗, z∗) is a first-order KKT point for problem GNPs.

Proof. See Corollary 5.5 in [13].

The following theorem shows that {y∗
k} converges to y∗ under assumption

AS2b.

Theorem 5.6.1. Suppose assumptions AS1a, AS2a, AS2b, and AS3 hold. Let

{(x∗
k, y

∗
k, ∆y∗

k, z
∗
k)} be the sequence of vectors generated by Algorithm 5.4.1 with

tolerances ω∗ = 0 and η∗ = 0. Let x∗ be the single limit point of {x∗
k}. Then

lim
k→∞

(x∗
k, y

∗
k, ỹk, z

∗
k) = (x∗, y∗, y∗, z∗)

and (x∗, y∗, z∗) is a first-order KKT point as defined in Lemma 5.5.1.

Proof. Theorem 5.5.1 shows that

lim
k→∞

(x∗
k, ỹk, z

∗
k) = (x∗, y∗, z∗)

and that (x∗, y∗, z∗) is a first-order KKT point. It remains to establish that

limk→∞ y∗
k = y∗. Two cases are considered:

1. {ρk} → ∞,

2. {ρk} is uniformly bounded.

First consider case 1. Part 1d) of Lemma 5.5.1 gives

‖y∗
k − y∗‖ ≤ ‖ỹk − y∗‖︸ ︷︷ ︸

(a)

+ ‖∆y∗
k‖︸ ︷︷ ︸

(b)

+ 2ρk‖w∗
k‖︸ ︷︷ ︸

(c)

for all k sufficiently large. (5.24)

Note that {σk} → 0 and {γk} → ∞ since {ρk} → ∞. Term (a) goes to zero

because limk→∞ ỹk = y∗. Since {ωk} → 0 and {σk} → 0, equation (5.8) implies
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that term (b) goes to zero. Since {γk} → ∞, assumption AS2b and condition

(5.7d) imply that

‖w∗
k‖∞ ≤ τk for all k sufficiently large. (5.25)

By construction, τk satisfies τk ≤ kτρ
ατ

k for some positive constant kτ and some

number ατ < −1. It follows that

ρk‖w∗
k‖ ≤

√
mρk‖w∗

k‖∞ ≤
√

mρkkτρ
ατ

k =
√

mkτρ
ατ+1
k for all k sufficiently large.

The right-hand side goes to zero since {ρk} → ∞ and ατ < −1, which implies

{ρk‖w∗
k‖} → 0. Thus, term (c) goes to zero. Since terms (a), (b), and (c) go to

zero, equation (5.24) shows that limk→∞ y∗
k = y∗.

Next, consider case 2. Since {ρk} remains uniformly bounded it follows

that all iterates are successful for k sufficiently large. Moreover, the condition

c(x∗
k) ≤ ηk is satisfied for all k sufficiently large. Since {ηk} → 0, this implies

lim
k→∞

c(x∗
k) = 0. (5.26)

Part 1e) of Lemma 5.5.1 gives

‖y∗
k − y∗‖ ≤ 2ρk‖c(x∗

k)‖︸ ︷︷ ︸
(a)

+ ‖∆y∗
k‖︸ ︷︷ ︸

(b)

+ 2‖ye
k − y∗‖︸ ︷︷ ︸
(c)

+ ‖ỹk − y∗‖︸ ︷︷ ︸
(d)

. (5.27)

Since {ρk} is uniformly bounded, equation (5.26) implies that the term (a) goes

to zero. Corollary 5.5.1 and Corollary 5.6.1 imply that the terms (b) and (c) go

to zero. The term (d) goes to zero because {ỹk} → y∗. Therefore, equation (5.27)

implies that limk→∞ y∗
k → y∗.

The proof of Corollary 5.6.1 requires showing that infinitely many success-

ful iterations occur. Therefore, the following corollary is immediate and simply

extends the result of Corollary 5.6.1 to include convergence of the sequence {yk}.
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Corollary 5.6.2 (Global convergence with a single limit point). Let {(xk, yk, y
e
k, zk)}

be the sequence of vectors generated by Algorithm 5.4.1. Let x∗ be the single limit

point of {x∗
k}. Suppose that assumptions AS1a, AS2a, AS2b and AS3 hold. Then

lim
k→∞

(xk, yk, y
e
k, zk) = (x∗, y∗, y∗, z∗),

and (x∗, y∗, z∗) is a first-order KKT point for problem GNPs.

5.7 Asymptotic Equivalence to LCL

The efficiency of an LCL method relies on the following facts: 1) the sub-

problem eventually identifies the optimal active-set; and 2) the subproblem re-

stricts its search to the linearized constraints, which can be very accurate near a

solution. Friedlander and Saunders note that during early iterations, the ℓ1 penalty

term may allow great deviation from the linearized constraints. However, satis-

faction of the linearized constraints must be enforced near a solution in order to

recover the fast convergence properties of Robinson’s original LCL method. The

following result shows that, under certain assumptions, the linearized constraints

will eventually be satisfied to within a multiple of the termination parameter ωk.

Theorem 5.7.1 (Convergence to non-elastic subproblem solutions). Let (xk, yk, y
e
k, zk)

and (∆y∗
k, u

∗
k, v

∗
k) be the sequences generated by Algorithm 5.4.1. Let x∗ be the sin-

gle limit point of {x∗
k}. Suppose that assumptions AS1a, AS2a, AS2b and AS3

hold and that {ρk} remains bounded. Then, if σk ≥ σL > 0 for all k, and for some

number σL, then

‖u∗
k‖∞ ≤ ωk and ‖v∗

k‖∞ ≤ ωk (5.28)

for all k sufficiently large.

Proof. The assumptions are sufficient for Corollary 5.6.2 to hold. Therefore

lim
k→∞

(xk, yk, y
e
k, zk) = (x∗, y∗, y∗, z∗),



148

and in particular limk→∞ c(x∗
k) = c(x∗) = 0. Also, since {ρk} is bounded, there

exists a positive integer k1 such that ρk ≡ ρ̄ for all k ≥ k1. Since c(x∗) = 0, {ye
k}

is a Cauchy sequence, {y∗
k} → y∗, and {ωk} → 0, there exists a positive integer

k2 ≥ k1 such that

‖ye
k+1 − ye

k‖∞ < σL/3, (5.29)

2ρ̄‖c(x∗
k)‖∞ < σL/3− ωk, (5.30)

‖y∗
k − ye

k‖∞ < σL/3, (5.31)

for all k ≥ k2. The following equality holds since every iteration is successful for

k ≥ k2:

ye
k+1 = 2ye

k − 2ρ̄c(x∗
k)− y∗

k + ∆y∗
k for all k ≥ k2.

Rearrangement leads to

∆y∗
k = ye

k+1 − ye
k︸ ︷︷ ︸

(a)

+ 2ρ̄c(x∗
k)︸ ︷︷ ︸

(b)

+ y∗
k − ye

k︸ ︷︷ ︸
(c)

for all k ≥ k2.

Applying the bound given by (5.29) to term (a), the bound given by (5.30) to term

(b), and the bound given by (5.31) to term (c) yields

−σLe + ωke < ∆y∗
k < σLe− ωke for all k ≥ k2.

Since σL ≤ σk for all k, it follows that

−σke + ωke < ∆y∗
k < σke− ωke for all k ≥ k2 .

Therefore,

σke−∆y∗
k > ωk

σke + ∆y∗
k > ωk

Comparison of these equations with conditions (5.7i) and (5.7j) on page 128 implies

‖u∗
k‖∞ ≤ ωk and ‖v∗

k‖∞ ≤ ωk.
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This theorem shows that the linearized constraints are asymptotically sat-

isfied provided {σk} is bounded away from zero. The update used by Friedlander

and Saunders for σk in the successful case guarantees that σk ≥ 1/(1 + ρ̄) and

hence that σk stays bounded away from zero. The updated used by the pdℓ1-LCL

Algorithm 5.4.1 is likely to generate smaller values of σk than those generated by

the sLCL algorithm. As a result, the update proposed for σk for the successful case

may be more stabile since convergence is guaranteed when multiple limit points

exist, but at the expense of rate of convergence. In practice, it might be wise to

allow σk to increase in the successful case a finite number of times. This will not

affect the global convergence proof, but may help recover the fast local convergence

rate of LCL methods. However, Friedlander and Saunders point out that ‖∆y∗
k‖ is

expected to decrease at a linear rate. If the forcing sequence used in the “if” part

for the update to ηk in the successful case converges sublinearly, then σk would be

expected to stay bounded away from zero. In this way, the fast local convergence

of Robinson’s LCL method is recovered.

5.8 Finite Termination

The following result follows from Corollary 5.6 in [13]. It says that Algo-

rithm 5.4.1 will eventually terminate when ω∗ and η∗ are strictly positive, as they

are in practice.

Corollary 5.8.1 (Finite Termination). Suppose the convergence tolerances ω∗
and η∗ are strictly positive. Then, under the conditions of Corollary 5.6.1, Algo-

rithm 5.4.1 terminates after a finite number of iterations.

5.9 Second-Order Points

The proposed primal-dual ℓ1 LCL algorithm requires a solution to subprob-

lem (5.5) on page 127 at every iteration. Solutions to these subproblems satisfy the
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first-order conditions (5.7) on page 128. Since these are first-order conditions, only

convergence to first-order points may be proved. It is reasonable to believe that

if certain second-order conditions are enforced at each subproblem solution, then

convergence to points satisfying certain second-order conditions may be obtained.

To this end, the following definition and assumption are used.

Definition 5.9.1 (Second-order sufficiency). The first-order KKT point (x∗, y∗, z∗)

satisfies the second-order sufficiency conditions for problem GNPs if it satisfies

strict complementarity and if

∆xTH(x∗, y∗)∆x > 0

for all ∆x 6= 0 such that ∆xFX = 0 and J(x∗)∆x = 0, where ∆xFX represents the

components of ∆x corresponding to those x-variables that are fixed at their bound.

(AS4). Let (x∗
k, y

∗
k, ∆y∗

k, z
∗
k, w

∗
k) be a sequence of solutions to subproblem (5.5) on

page 127, and let {x∗
k}K → x∗. For all k ∈ K large enough let the following

conditions hold for some δ1, δ2 > 0 independent of k:

a) (Strict complementarity)

max(x∗
k, z

∗
k) ≥ δ1e, (5.32)

max(γke− y∗
k, |w∗

k|) ≥ δ2e, (5.33)

max(γke + y∗
k, |w∗

k|) ≥ δ2e. (5.34)

b) (Second-order condition)

∆wTDk∆w ≥ δ1‖∆w‖2, (5.35)

where

∆w =

(
∆x

∆y

)
,

Dk =

(
H
(
x∗

k, 2y
e
k − 2ρkc(x

∗
k)− y∗

k

)
+ 2ρkJ(x∗

k)
TJ(x∗

k) J(x∗
k)

T

J(x∗
k)

1
ρk

I

)
,

for all ∆w 6= 0 such that ∆xFX = 0 and J(xk)∆x = 0.



151

Condition (5.32) is the normal complementarity condition on the x-variables. Con-

ditions (5.33) and (5.34) imply that the vector y∗
k is “free” from its bound for k

sufficiently large. Condition (5.35) implies that the sequence of minimum eigenval-

ues of the reduced Hessian of the primal-dual augmented Lagrangian is eventually

positive and bounded away from zero. These are reasonable conditions for the fol-

lowing reasons. First, Theorem 5.7.1 says that if {ρk} remains uniformly bounded

then for k sufficiently large u∗
k and v∗

k will be considered fixed by the subproblem

solver. Second, it will be pointed out in Section 5.10 that {ρk} usually will remain

bounded.

Theorem 5.9.1 (Convergence to an isolated local minimizer). Let {(xk, yk, y
e
k, zk)}

be the sequence of vectors generated by Algorithm 5.4.1. Let x∗ be the single limit

point of {x∗
k}. Suppose that assumptions AS1a, AS2a, AS2b, AS3, and AS4 hold,

that {ρk} remains uniformly bounded, and that σk ≥ σL > 0 for all k. Then

(x∗, y∗, z∗) is an isolated local minimizer.

Proof. First note that ρk ≡ ρ̄ for all k sufficiently large. This follows since {ρk} is

uniformly bounded and by examination of Algorithm 5.4.1.

Theorem 5.5.1 and Corollary 5.6.2 show that

lim
k→∞

(x∗
k, y

∗
k, z

∗
k) = (x∗, y∗, z∗)

and

lim
k→∞

(xk, yk, y
e
k, zk) = (x∗, y∗, y∗, z∗)

and that (x∗, y∗, z∗) is a first-order KKT point. Assumption AS4 implies that

max(x∗
k, z

∗
k) ≥ δ1e. Taking limits yields max(x∗, z∗) ≥ δ1e > 0. Thus, (x∗, z∗)

satisfies strict complementarity.

Part a) of AS4 ensures strict complementarity in the x- and y-variables. The

reduced costs for u∗
k and v∗

k are given by σke − ∆y∗
k and σke + ∆y∗

k, respectively.

Strict complementarity holds in the u- and v-variables since σk ≥ σL > 0 and since

Corollary 5.5.1 implies that limk→∞ ∆y∗
k = 0. Since strict complementarity holds
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in all variables, it follows that the optimal active set is identified by the subproblem

in a neighborhood of a solution. Also note that

lim
k→∞

(
2ye

k − 2ρkc(x
∗
k)− y∗

k

)
= y∗ (5.36)

since limk→∞(ye
k, y

∗
k) = (y∗, y∗), {ρk} is uniformly bounded, and limk→∞ c(x∗

k) = 0.

Define the matrix

Ak =

(
J(xk) 0

EFX 0

)
,

where EFX are the rows of the n× n identity matrix corresponding to components

of x∗
k that are fixed. Taking limits leads to

A∗ =

(
J(x∗) 0

EFX 0

)
.

The claim is that A∗ has full row rank. This is proved by showing that AT∗ has full

column rank. Let (ζ1, ζ2) 6= 0 be in the null-space of AT∗ so that

(
J(x∗)T ET

FX

0 0

)(
ζ1

ζ2

)
=

(
0

0

)
,

where ET
FX

are the columns of the n× n identity matrix corresponding to compo-

nents of x∗
k that are fixed. The first set of equations gives J(x∗)Tζ1 + ET

FX
ζ2 = 0.

Since [ET
FX

ζ2]FR = 0, this implies [J(x∗)T ζ1]FR = JFR(x∗)T ζ1 = 0. The full row rank

assumption AS3 implies ζ1 = 0, and therefore ET
FX

ζ2 = 0. Examining the fixed

components shows [ET
FX

ζ2]FX = ζ2 = 0. Thus, (ζ1, ζ2) = 0 implying that AT∗ has

full column rank.

Since Ak converges to the full row-rank matrix A∗, and since the optimal

active set is identified for k sufficiently large, Gill et al. [16] give the existence

of matrices Zk and Z∗ such that the columns of Zk and Z∗ form a basis for the

null-space of Ak and A∗, respectively. Furthermore, limk→∞ Zk = Z∗.
With this notation, part b) of AS4 is equivalent to ZT

kDkZk � δ1. Taking

limits, using equation (5.36), and continuity of the spectrum of a matrix, yields
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ZT∗D∗Z∗ � δ1, where

D∗ =

(
H(x∗, y∗) + 2ρ̄J(x∗)TJ(x∗) J(x∗)T

J(x∗
k)

1
ρ̄
I

)
.

Now let ∆x̄ be any nonzero vector such that J(x∗)∆x̄ = 0 and ∆x̄FX = 0. Then

(∆x̄, 0)T ∈ null(A∗) and thus there exists a nonzero vector q such that

(
∆x̄

0

)
= Z∗q.

The following then holds

∆x̄TH(x∗, y∗)∆x̄ = ∆x̄T
(
H(x∗, y∗) + 2ρ̄J(x∗)TJ(x∗)

)
∆x̄

=

(
∆x̄

0

)T(
H(x∗, y∗) + 2ρ̄J(x∗)TJ(x∗) J(x∗)T

J(x∗) 1
ρ̄
I

)(
∆x̄

0

)

= qTZT
∗D∗Z∗q

≥ δ1‖q‖2 > 0.

The first equality follows since ∆x̄ ∈ null
(
J(x∗)

)
. The second equality can be seen

by multiplying the given matrices. The third equality follows from the definitions

of q, Z∗, and D∗. The rest follows since q 6= 0 and ZT∗D∗Z∗ � δ1.

This shows that (x∗, y∗, z∗) satisfies the second-order sufficiency conditions

for problem GNPs and is therefore an isolated local minimizer.

5.10 Local Convergence

This section considers the convergence properties of the pdℓ1-LCL Algo-

rithm 5.4.1. It is shown that the local convergence properties of Robinson’s original

LCL algorithm is maintained when exact subproblem solutions are found.

Bertsekas [2], Conn et al. [5], and Conn, Gould, and Toint in [8] show how

to construct forcing sequences {ηk} such that ‖c(x∗
k)‖ will eventually always be
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true. This means that eventually the iterates are always updated and that ρk is no

longer increased. This result follows since {ηk} is decreased sublinearly and ‖c(x∗
k)‖

decreases superlinearly as {ρk} → ∞. Therefore, for the remainder of this section

it is assumed that {ρk} is uniformly bounded so that ρk ≡ ρ̄ for all k greater than

some positive integer k̄.

The following assumption is used.

(AS5) The point (x∗, y∗, z∗) satisfies the second-order sufficiency conditions for

problem GNPs as given by Definition 5.9.1.

Robinson in [25] shows that under assumptions AS1a, AS3, and AS5 that

his algorithm exhibits R-quadratic convergence. Friedlander and Saunders show

that Robinson’s convergence analysis applies to their sLCL algorithm by noticing

that the sLCL subproblem with ρk ≡ ρ̄ is equivalent to Robinson’s subproblem

of a related problem with the same minimizers. Therefore, in a neighborhood

of a solution, the only difference between Robinson’s Algorithm and the sLCL

Algorithm is the update to ye
k. The different updates are given by:

ye
k+1 ← ye

k + ∆y∗
k, [Robinson] (5.37)

ye
k+1 ← ye

k + ∆y∗
k − ρ̄c(x∗

k). [sLCL] (5.38)

Friedlander and Saunders viewed the term ρ̄c(x∗
k) as a perturbation of Robinson’s

update. They also noticed that this perturbation does not interfere with the rate

of convergence since Robinson proved that {c(x∗
k)} converges to zero at the same

rate as {x∗
k} converges to x∗.

The pdℓ1-LCL Algorithm 5.4.1 inherits the convergence properties of the

sLCL algorithm when exact subproblem solutions are computed and y∗ ∈ (−γ̄e, γ̄e),

where γ̄ = ν(ρ̄)αγ . This can be seen as follows. Suppose that ye
k is given. If the

solution to subproblem (5.5) on page 127 satisfies y∗
k ∈ (−γke, γke), then w∗

k = 0.

Furthermore, the following may be shown

(
x∗

k, y∗
k, z∗k, ∆y∗

k

)
pdℓ1LCL

=
(
x∗

k, ye
k − ρ̄c(x∗

k), z∗k, ∆y∗
k

)
sLCL

. (5.39)
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This equation is not meant to be rigorous. The quantities on the left-hand side are

quantities related to the solution of subproblem (5.5), while the quantities on the

right-hand side are quantities related to the sLCL algorithm. What this means

is that the sLCL subproblem solution (x∗
k, z

∗
k, ∆y∗

k) is identical to the solution

(x∗
k, z

∗
k, ∆y∗

k) for subproblem (5.5). In addition, the first-order multiplier update

ye
k − ρ̄c(x∗

k) for the sLCL algorithm is precisely the vector y∗
k computed as part of

the solution of subproblem (5.5). Since the steps executed by the two algorithms

are the same, the only difference can occur in the update to ye
k. The updates are

given by:

ye
k+1 ← 2ye

k − 2ρ̄c(x∗
k)− y∗

k + ∆y∗
k, [pdℓ1-LCL] (5.40)

ye
k+1 ← ye

k − ρ̄c(x∗
k) + ∆y∗

k. [sLCL] (5.41)

However, these are equivalent since

[x∗
k]sLCL = [x∗

k]pdℓ1LCL, (5.42)

[∆y∗
k]sLCL = [∆y∗

k]pdℓ1LCL, (5.43)

[ye
k − ρ̄c(x∗

k)]sLCL = [y∗
k]pdℓ1LCL. (5.44)

Therefore, with exact subproblem solves, the algorithms are identical and the

pdℓ1-LCL algorithm inherits the convergence properties of the sLCL algorithm.

The convergence result is summarized in Theorem 5.10.1 below. For this theorem

the following notation is used

rk =




xk

ye
k

zk


 and r∗ =




x∗
y∗
z∗


 .

Theorem 5.10.1 (Robinson [25]). Suppose assumptions AS1a, AS3, and AS5 hold

at r∗. Further assume that y∗ ∈ (−γ0e, γ0e) when Algorithm 5.4.1 executes. Then

there exists a positive constant δ such that if ‖r0− r∗‖ < δ, then the sequence {rk}
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generated by Algorithm 5.4.1 converges to r∗. Moreover, the sequence converges

R-quadratically, so that for all k ≥ 0,

‖rk − r∗‖ ≤ L(1
2
)2k

(5.45)

for some positive constant L. Also, the difference between consecutive iterates

converges at an R-linear rate:

‖rk+1 − rk‖ ≤ δ(1
2
)k.

Robinson does not state the R-linear rate of convergence of consecutive

iterates as part of a result, but it is found in the proof of (5.45). Friedlander and

Saunders noticed this and included it as part of Theorem 6.2 in [13].

Bräuninger later showed in [4] that the R-quadratic rate of convergence

of Robinson’s algorithm could be preserved with only approximate solutions of

the subproblems. This is done by solving the subproblems to a tolerance that is

tightened at a rate similar to the decrease in the square of the primal and dual

infeasibilities. Since the sLCL is asymptotically equivalent to Robinson’s method

applied to a “similar” problem with identical solutions, it follows that Bräuninger’s

result holds for the sLCL algorithm. Therefore, the sLCL algorithm can maintain

R-quadratic convergence under approximate solves. However, since the proof of R-

quadratic convergence of the pdℓ1-LCL algorithm is not tied directly to Robinson’s

method, it can not immediately be stated that Algorithm 5.4.1 is R-quadratically

convergent under approximate solves. Another way of thinking about it is as fol-

lows: 1) the sLCL Algorithm is R-quadratically convergent; 2) Bräuninger showed

how to maintain R-quadratic convergence with approximate solves; and 3) the

pdℓ1-LCL Algorithm finds solutions that approximate the approximate solutions

of the sLCL algorithm. Therefore, it seems likely that the pdℓ1-LCL Algorithm is

R-quadratically convergent under approximate solves as well.
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5.11 Infeasible Problems

Not every optimization problem is well-defined. It is possible that the user

of an optimization routine may formulate a set of nonlinear constraints c(x) = 0

for which no non-negative solution to c(x) = 0 exists. Detecting this situation is

difficult and is equivalent to showing that the global minimum of

minimize
x∈Rn

1
2
‖c(x‖2

subject to x ≥ 0
(5.46)

is strictly positive. This is a very difficult problem. It is of interest to study

the behavior of the primal-dual ℓ1 LCL algorithm in this situation. The next

theorem shows that when Algorithm 5.4.1 is applied to an infeasible problem, the

subproblem solutions converge to a first-order KKT point of problem (5.46). A

point (x, z) is a first-order KKT point for problem (5.46) if it satisfies

J(x)Tc(x) = z, (5.47a)

min(x, z) = 0. (5.47b)

Theorem 5.11.1. Assume AS1a and AS2a hold. Suppose GNPs is infeasible and

that Algorithm 5.4.1 is applied with tolerances ω∗ = η∗ = 0. Let limk∈K x∗
k =

x∗. Then (x∗, z∗) is a first-order KKT point for problem (5.46) where z∗
△

=

J(x∗)T c(x∗). (Note: Nothing has been said about the sequence {τk} or the tol-

erance τ∗.)

Proof. Condition (5.7a) on p. 128 shows x∗
k ≥ 0 for all k. Since limk∈K x∗

k = x∗,
this implies

x∗ ≥ 0. (5.48)

Since problem GNPs is infeasible, there exists a positive η such that if x ≥ 0

then ‖c(x)‖ > η. Since {ηk} → 0 as k → ∞, there exists an integer k1 ≥ 0 such

that ‖c(x∗
k)‖ > ηk for all k ≥ k1. In other words, from k1 on, all iterates are

“unsuccessful”, which implies that {ρk} → ∞ and {σk} → 0. Furthermore, xk and
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ye
k are no longer updated which means that there exists a vector x̄ and a vector ȳ

such that

xk ≡ x̄ and ye
k ≡ ȳ for all k ≥ K1. (5.49)

Conditions (5.7b) and (5.7g) on page 128 imply

g(x∗
k)− J(x∗

k)
T
(
2ȳ − 2ρkc(x

∗
k)− y∗

k

)
− J(x̄)T ∆y∗

k ≥ −ωke.

Rearranging and dividing both sides by ρk leads to

2J(x∗
k)

T c(x∗
k) ≥ −

ωk

ρk

e

︸ ︷︷ ︸
(a)

− g(x∗
k)

ρk︸ ︷︷ ︸
(b)

+
J(x∗

k)
T(2ȳ − y∗

k)

ρk︸ ︷︷ ︸
(c)

+
J(x̄)T ∆y∗

k

ρk︸ ︷︷ ︸
(d)

. (5.50)

Note that assumption AS1a and convergence of {x∗
k}K → x∗ imply

lim
k∈K

J(x∗
k)

T c(x∗
k) = J(x∗)T c(x∗) = z∗. (5.51)

Term (a) of equation (5.50) goes to zero since {ρk} → ∞ and {ωk} → 0. Term (b)

goes to zero on K since {ρk} → ∞ and since {g(x∗
k)}K → g(x∗). Term (c) goes to

zero on K by Lemma 5.5.2 and since {J(x∗
k)}k∈K → J(x∗) and ρk →∞. Finally,

term (d) goes to zero since x̄ is constant and since equation (5.8) on page 128

shows that ‖∆y∗
k‖ → 0. Equations (5.50) and (5.51) imply

z∗ = J(x∗)Tc(x∗) ≥ 0. (5.52)

It is left to show [z∗]I = 0. Since limk∈K x∗
k = x∗ and [x∗]I > 0, it is the

case that [x∗
k]I > 0 for k ∈ K sufficiently large. Condition (5.7b) and the fact that

{ωk} → 0, gives

min([x∗
k]I , [z

∗
k]I) = [z∗k]I for all k ∈ K sufficiently large.

This implies

‖[z∗k]I‖ ≤ ‖min(x∗
k, z

∗
k)‖ =

( n∑

j=1

min([x∗
k]j, [z

∗
k]j)

2
)1

2

≤
( n∑

j=1

ω2
k

)1
2

=
√

nωk for all k ∈ K sufficiently large.
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Using condition (5.7f) and the definition of ỹk, the following holds

√
n ωk ≥ ‖[z∗k]I‖

= ‖ĝ(x∗
k)− Ĵ(x∗

k)
T
(
2ȳ − 2ρkc(x

∗
k)− y∗

k

)
− Ĵ(x̄)T ∆y∗

k‖

= ‖ĝ(x∗
k)− Ĵ(x∗

k)
T
(
2ȳ − 2ρkc(x

∗
k)− y∗

k + ∆y∗
k

)
+
(
Ĵ(x∗

k)− Ĵ(x̄)
)T

∆y∗
k‖

for all k ∈ K sufficiently large. Use of the “reverse” triangle inequality, followed by

the classical triangle inequality and Lipshitz continuity of J on Bx gives a constant

M such that

2‖Ĵ(x∗
k)

T c(x∗
k)‖

≤
√

nωk

ρk

+
‖ĝ(x∗

k)− Ĵ(x∗
k)

T (2ȳ − y∗
k + ∆y∗

k) +
(
Ĵ(x∗

k)− Ĵ(x̄)
)T

∆y∗
k‖

ρk

≤
√

nωk

ρk

+
‖ĝ(x∗

k)‖
ρk

+
‖Ĵ(x∗

k)
T (2ȳ − y∗

k + ∆y∗
k)‖

ρk

+
‖
(
Ĵ(x∗

k)− Ĵ(x̄)
)T

∆y∗
k‖

ρk

≤
√

nωk

ρk︸ ︷︷ ︸
(a)

+
‖ĝ(x∗

k)‖
ρk︸ ︷︷ ︸
(b)

+
‖Ĵ(x∗

k)
T (2ȳ − y∗

k + ∆y∗
k)‖

ρk︸ ︷︷ ︸
(c)

+ M
‖x∗

k − x̄‖‖∆y∗
k‖

ρk︸ ︷︷ ︸
(d)

(5.53)

Terms (a) and (b) go to zero on K since {ρk} → ∞, {ωk} → 0 and {ĝ(x∗
k)}K →

ĝ(x∗). Lemma 5.5.2, Corollary 5.5.1, and the fact that { Ĵ(x∗
k) }K → Ĵ(x∗) shows

that term (c) goes to zero on K. Term (d) goes to zero since {x∗
k} and x̄ are in

the compact set Bx and since {∆y∗
k} → 0 by Corollary 5.5.1. This means that the

right-hand side of (5.53) goes to zero implying

lim
k∈K

Ĵ(x∗
k)

T c(x∗
k) = 0.

Combining this with assumption AS1a shows

[z∗]I = Ĵ(x∗)Tc(x∗) = lim
k∈K

Ĵ(x∗
k)

T c(x∗
k) = 0. (5.54)

Equations (5.48), (5.52), and (5.54) complete the proof.
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Numerical Results

In this chapter we describe numerical experiments that are intended to illus-

trate the properties of the algorithms formulated and analyzed in Chapters 4 and

5. In particular, we consider a Matlab [20] implementation of the primal-dual

augmented Lagrangian algorithms pdBCL and pdℓ1-LCL. Since the focus of this

thesis has been on the theoretical properties of these methods, only a preliminary

implementation is described here. Numerous modifications would be necessary be-

fore the software would be suitable for general distribution. The numerical results

are intended only to show that the primal-dual approach is a reasonable approach;

we expect the efficiency and robustness of the algorithms to be substantially im-

proved in subsequent work.

Numerical results are given for nonlinearly constrained problems from the

CUTEr test collection (see Bongartz et al. [3] and Gould, Orban and Toint [17]).

The CUTEr problems are defined with the format

minimize
x

f(x)

subject to cℓ ≤ c(x) ≤ cu, aℓ ≤ Ax ≤ au, xℓ ≤ x ≤ xu.
(6.1)

160
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The addition of slack variables gives the equivalent problem:

minimize
x,sc,sa

f(x)

subject to

(
c(x)− sc

Ax− sa

)
=

(
0

0

)
,

(
cℓ

aℓ

)
≤
(

sc

sa

)
≤
(

cu

au

)
, xℓ ≤ x ≤ xu,

which, for suitable definitions of x, f and c, is equivalent to the problem

minimize
x∈Rn

f(x)

subject to c(x) = 0, xℓ ≤ x ≤ xu,
(6.2)

considered earlier in this thesis.

6.1 Test Problem Selection

The test set was constructed by using the CUTEr interactive select tool,

which allows the identification of groups of problems with certain features. The

input for the select tool was as follows:

Objective function type : O

Constraints type : O

Regularity : R

Degree of available derivatives : 2

Problem interest : *

Explicit internal variables : *

Number of variables : in [ 1, 50]

Number of constraints : in [ 1, 50]

These options are defined as follows:

• Objective function type (O): There is a general objective function (i.e.,

the objective is not constant, linear, quadratic, or a sum of squares).
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• Constraints type (O): There are general nonlinear constraints (i.e., the

constraints do not consist of only bound-, linear-, quadratic-, fixed-variable,

or linear network constraints).

• Regularity (R): The objective and constraint functions are twice-continuously

differentiable.

• Degree of available derivatives (2): Analytic second derivatives are

available.

• Number of variables (in [ 1, 50]): The number of variables is be-

tween 1 and 50.

• Number of constraints (in [ 1, 50]): The number of constraints is

between 1 and 50.

The select tool gives 44 problems with these attributes, 32 of which are problems

from the Hock and Schittkowski test collection [19].

Four of the 44 problems were then eliminated from the test set. hs103 and

launch were omitted because SNOPT was unable to solve them in the slack-variable

form (6.2). Problem hs99exp is sufficiently badly scaled that the use of any opti-

mization method is problematic. Finally, mesh was removed because of the exis-

tence of feasible points at which the objective values is unbounded below. The final

test set was composed of the following 40 problems: allinitc, alsotame, bt11 , bt6 ,

cresc4 , dipigri , hs100 , hs100lnp, hs100mod , hs101 , hs102 , hs104 , hs107 , hs109 ,

hs111 , hs111lnp, hs26 , hs40 , hs46 , hs47 , hs56 , hs60 , hs64 , hs68 , hs69 , hs7 ,

hs71 , hs74 , hs75 , hs77 , hs78 , hs79 , hs80 , hs81 , hs93 , hs99 , synthes1 , synthes2 ,

synthes3 , and twobars .
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6.2 Solving the subproblem

Both pdBCL and pdℓ1-LCL define “outer” and “inner” iterations. The

“outer” iterations are responsible for updating parameters and solution estimates,

testing optimality, and forming the subproblems. The “inner” iterations are those

of the subproblem solver, and the efficiency of this solver has a crucial effect on

the overall efficiency of the method.

The software package SNOPT was used as the solver for both the pdBCL

and pdℓ1-LCL subproblem. SNOPT is a sequential quadratic programming (SQP)

method that maintains a quasi-Newton approximation of the Hessian of the La-

grangian. An SQP method also generates inner and outer iterations, which we call

major and minor iterations to distinguish them from the iterates of the primal-dual

methods. In the context of pdBCL and pdℓ1-LCL, the major iterations generate a

sequence of points that converge to the solution of the subproblem. At each major

iterate a QP subproblem is used to generate a search direction towards the next

major iterate. Solving such a subproblem is itself an iterative procedure, with the

minor iterations of an SQP method being the iterations of the QP method. As

the outer iterates of the pdBCL and pdℓ1-LCL methods converge, SNOPT solves

a sequence of similar subproblems. This allows the use of the option warm start

to increase efficiency. In the case of a warm start, the final working set of active

constraints from the previous subproblem is used as the first working set of the

next problem. SNOPT is available as a library of Fortran and C routines [15]. The

package includes a MEX interface that allows SNOPT to be called directly from

Matlab.

It must be emphasized that SNOPT may not always be the best solver

for the subproblem. SNOPT is a first derivative method that is unable to exploit

second derivatives when they are known. It is likely that a second-derivative solver

would improve the efficiency of the methods significantly. However, the efficiency

of second-derivative solvers is critically dependent on the method used to treat the



164

occurrence of negative curvature in the Hessian of the subproblem. The choice of

an appropriate second-derivative solver is an ongoing research issue that is beyond

the scope of this thesis. The advantage of SNOPT is that it may be used easily as

a “black-box” solver and provides a stable and consistent platform for comparing

the pdBCL and pdℓ1-LCL approaches.

Other issues, unrelated to the choice of solver, also affect the performance

of the overall method. In particular, robustness and efficiency may depend on the

choice of problem format. For example, if the SNOPT package is applied directly

to the Hock-Schittkowski test problems defined in the CUTEr format (6.1) then

all the problems are solved successfully. However, SNOPT failed on several of the

problems given in the generic form (6.2) that does not distinguish between linear

and nonlinear constraints. This observation leads us to the conclusion that the

pdBCL and pdℓ1-LCL approaches may also benefit from exploiting the properties

of the constraint gradients. We expand on this topic below.

The purpose of the numerical results is to illustrate the properties of the

algorithms formulated and analyzed in Chapters 4 and 5. In some cases, it is nec-

essary to simplify the algorithms in order to simplify the corresponding analysis.

Future implementations of the methods proposed here should necessarily incorpo-

rate specific improvements that will provide a more efficient and robust algorithm.

Some possible improvements are proposed below.

Choice of penalty parameter. Instead of a single penalty parameter µ (or ρ),

each constraint should have its own penalty parameter. This generalization would

improve robustness on poorly scaled problems. Moreover, the penalty parameter µ

should be allowed to increase as well as decrease. This property would not violate

the theoretical analysis, provided that µ eventually goes to zero when infinitely

many “unsuccessful” iterations occur. The BCL or LCL subproblems tend to be

more difficult to solve for small values of µ. However, practical experience has also

shown that a slow decrease in µ early on, may be quite expensive. In practice it
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is necessary to strike a balance between decreasing µ when things go wrong and

increasing µ for later iterates in the neighborhood of the solution.

Exploiting linear constraints and bounds. As each subproblem is expressed

in the generic form (6.2), the problem structure induced by the presence of linear

constraints and simply-bounded slack variables is not communicated to the solver

SNOPT. If the linear constraints are known, an initial point may be found that

satisfies the linear constraints and bounds. For example, in the LCL subproblem,

the linearly constrained subproblem has the form

minimize
x,y,sc,sa,u,v

M(x, y; ye
k, ρk) + σeT (u + v)

subject to

(
c̄k(x)− sc + u− v

Ax− sa

)
=

(
0

0

)
,

(
cℓ

aℓ

)
≤
(

sc

sa

)
≤
(

cu

au

)
, u, v ≥ 0,

xℓ ≤ x ≤ xu, −γke ≤ y ≤ γke.

(6.3)

Thus, it is beneficial to define an initial point as the solution of one of the following

proximal-point problems:

PP1 minimize
x∈Rn

‖x− x̂‖1

subject to

(
xℓ

aℓ

)
≤
(

x

Ax

)
≤
(

xu

au

)
(6.4)

or

PP2 minimize
x∈Rn

1
2
‖x− x̂‖2

subject to

(
xℓ

aℓ

)
≤
(

x

Ax

)
≤
(

xu

au

)
,

(6.5)

where x̂ is the initial value input by the user. Problems PP1 and PP2 compute a

vector x “close” to x̂ that satisfies the linear constraints. If the solver returns that

either PP1 or PP2 is infeasible, then the problem should be assumed infeasible.
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There are additional benefits for LCL methods if the initial point is feasible

with respect to the linear constraints. If x0 is feasible for the linear constraints,

then so are all subsequent iterates, which implies that the linear constraints need

not be included in the augmented Lagrangian term of the objective function. This

approach is used by Friedlander and Saunders in [13].

6.3 The pdBCL Method

The pdBCL subproblems for the problem format (6.2) take the form

minimize
x∈Rn,y∈Rm

M(x, y; ye
k, µk)

subject to −γke ≤ y ≤ γke, xℓ ≤ x ≤ xu.
(6.6)

Table 6.1 lists the default parameter values used for the pdBCL method.

Table 6.1: Default parameter values used by pdBCL method.

Parameter Value Parameter Value

µ0 8.0e-1 η0 8.0e-1

ω0 1.0e+0 τ∗ 1.0e-6

η∗ 1.0e-6 ω∗ 1.0e-6

µc 5.0e-1 τf 1.0e+0

αγ 5.0e-1 kτ 1.0e+0

αη 1.0e-1 αω 1.0e+0

βη 9.0e-1 βω 1.0e+0

ατ 1.5e+0

As discussed in Chapter 4, the primal-dual BCL Algorithm 4.2.1 provides a

step for generating a higher-order update for ye. Table 6.3 and Table 6.4 compare

the following three alternatives: (i) a first-order update; (ii) a trajectory-following

update; and (iii) the second-order Newton update. The first-order update modifies

ye by the primal-dual first-order update (see Section 4.1). The trajectory-following
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update was discussed in subsection 4.8.2; after an approximate point on the tra-

jectory is found, one step of Newton’s Method is performed for minimizing the

primal-dual augmented Lagrangian function for a smaller value of the penalty pa-

rameter. This approach depends critically on how the smaller value of the penalty

parameter is chosen. The second-order Newton update was discussed in subsec-

tion 4.8.1; it is one step of Newton’s method for finding a zero of the function F2

(see p. 119). Ideally, the second-order update to ye should be “damped”. It is

well known that Newton’s method is not globally convergent and additional safe-

guards are necessary to guarantee global convergence. A simple option is to use

the Newton step in a line-search that guarantees sufficient decrease in ‖F2‖. Near

a solution of the original problem, the Newton step would be accepted and the

usual rapid convergence of Newton’s method is expected. Far from a solution, the

line search should greatly stabilize the algorithm. Preliminary testing indicates

that the update to ye leads to significant unwanted oscillation between first and

second-order estimates, particularly when far from a solution.

In Tables 6.3 and 6.4 three statistics are reported: Major, Minor, and QPits.

Column Major refers to the number of “outer” iterations. Therefore, the number

reported is the number of bound constrained subproblems that were solved. Col-

umn Minor refers to the number of “inner” iterations, i.e., the number of quadratic

programs solved by SNOPT. Thus, this column represents the number of function

evaluations. Evaluation of f , g, c, J , and H is counted as a single function evalu-

ation. Finally, column QPits refers to the number of QP iterations performed by

SNOPT. Note that this is not the number of quadratic programs, but rather the

number of total iterations used to solve every QP for that problem.

The first-order updating scheme requires the most iterates and function

evaluations, while the Newton second-order method requires the fewest. It is also

clear that the trajectory following update shows improvement over the first-order

updating strategy, but is still inferior to the Newton second-order update.
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6.4 The pdℓ1-LCL Method

The pdℓ1-LCL subproblems associated with the problem format (6.2) take

the form
minimize

x,y,u,v
M(x, y; ye

k, ρk) + σeT (u + v)

subject to c̄k(x) + u− v = 0,

xℓ ≤ x ≤ xu, −γke ≤ y ≤ γke, u, v ≥ 0.

(6.7)

Table 6.2 lists the default parameter values used for the pdℓ1-LCL method.

Table 6.2: Default parameter values used by pdℓ1-LCL method.

Parameter Value Parameter Value

ρ0 1.0e+0 σ0 100

ω0 1.0e+0 τ∗ 1.0e-6

η∗ 1.0e-6 ω∗ 1.0e-6

τρ 8.0e+0 τσ 5.0e+0

kτ 1.0e+0 αγ 5.0e-1

αη 1.0e-1 ατ -1.2e+0

βη 9.0e-1 δ 1.0e+0

In Table 6.5 and 6.6 three statistics are reported: Major, Minor, and QPits.

Column Major refers to the number of “outer” iterations. Therefore, the number

reported is the number of linearly constrained subproblems that were solved. Col-

umn Minor refers to the number of “inner” iterations, i.e., the number of quadratic

programs solved by SNOPT. Thus, this column represents the number of function

evaluations. Evaluation of f , g, c, J , and H is counted as a single function evalu-

ation. Finally, column QPits refers to the number of QP iterations performed by

SNOPT. Note that this is not the number of quadratic programs, but rather the

number of total iterations used to solve every QP for that problem.

As in the case of BCL, some simple changes to the algorithm will provide

better performance. The LCL optimization package MINOS [23] is relatively reli-

able and exhibits good rates of convergence. Thus, a better algorithm would be
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obtained by simulating the use of MINOS by starting with the elastic variables u

and v fixed at zero and not allow them to move. The Lagrange multipliers ∆y of

the linearized constraints may then be monitored and if the quantity ‖∆y‖∞ ever

exceeds the bound guaranteed if u and v were allowed to deviate, then “elastic”

mode is entered. In other words, a primal-dual version of MINOS would be used,

and only if things start going poorly would elastic mode be entered. This should

give great improvement in the numerical results.

Table 6.3: Comparison of different pdBCL updates. (Problems 1–20)

First-order Trajectory Second-order

Problem Major Minor QPits Major Minor QPits Major Minor QPits

allinitc 97 6463 7469 96 13294 14189 18 165 171

alsotame 58 90 112 24 47 59 4 10 10

bt11 55 107 121 30 380 395 6 20 28

bt6 59 286 376 29 228 255 8 38 54

cresc4 13 632 1017 19 1763 3341 10 538 972

dipigri 17 1091 1372 13 614 873 5 236 468

hs100 16 983 1277 12 539 811 4 230 474

hs100lnp 59 371 505 14 255 361 4 97 188

hs100mod 32 1390 2386 100 1413 2434 6 409 874

hs101 100 41347 86712 27 37501 78077 7 2410 5304

hs102 100 20624 43964 100 63604 139411 15 9034 19434

hs104 55 6115 11594 57 8196 15102 20 1918 3011

hs107 100 1228 2226 100 2468 3506 27 2086 3715

hs109 100 1304 3344 100 8654 20852 22 2427 5459

hs111 24 478 529 22 355 383 10 38 66

hs111lnp 24 478 529 22 355 383 10 38 66

hs26 62 97 168 25 86 96 18 39 49

hs40 28 72 112 21 401 698 5 5 18

hs46 61 180 253 22 171 187 18 21 34

hs47 63 199 276 16 161 177 13 17 32
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Table 6.4: Comparison of different pdBCL updates. (Problems 21–40)

First-order Trajectory Second-order

Problem Major Minor QPits Major Minor QPits Major Minor QPits

hs56 18 69 99 21 181 196 27 29 42

hs60 63 128 201 31 119 135 6 22 30

hs64 34 472 546 34 506 547 6 42 83

hs68 61 579 771 48 821 913 64 591 908

hs69 17 680 947 21 658 814 43 1419 2582

hs7 62 102 107 33 75 81 5 7 13

hs71 56 105 216 34 190 301 10 159 276

hs74 53 728 1244 100 1317 2326 4 171 384

hs75 100 2333 4995 100 4145 9047 5 110 245

hs77 57 305 389 24 247 274 6 37 54

hs78 56 87 158 15 131 151 5 12 29

hs79 62 181 257 18 218 237 6 12 27

hs80 57 85 214 25 128 231 5 10 28

hs81 53 91 249 27 195 306 5 7 25

hs93 21 1010 2009 21 1049 2038 22 683 1209

hs99 100 1199 4168 100 1411 5184 5 329 810

synthes1 17 231 292 23 473 531 9 291 639

synthes2 20 1133 1436 23 1489 1818 19 1146 1428

synthes3 11 1221 1849 13 1362 2011 14 2119 5686

twobars 59 91 117 27 186 228 7 11 29
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Table 6.5: Primal-Dual ℓ1-LCL Method. (Problems 1–20)

pdℓ1-LCL

Problem Major Minor QPits

allinitc 60 2505 2933

alsotame 6 6 26

bt11 23 126 460

bt6 9 76 140

cresc4 20 1605 3593

dipigri 19 315 643

hs100 18 331 648

hs100lnp 19 48 162

hs100mod 19 451 745

hs101 48 33159 65470

hs102 34 19359 37048

hs104 20 775 1756

hs107 14 1014 2207

hs109 20 7757 12634

hs111 21 348 784

hs111lnp 21 346 764

hs26 11 63 106

hs40 12 9 68

hs46 9 56 118

hs47 19 371 794
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Table 6.6: Primal-Dual ℓ1-LCL Method. (Problems 21–40)

pdℓ1-LCL

Problem Major Minor QPits

hs56 18 102 327

hs60 8 39 70

hs64 17 460 646

hs68 19 478 757

hs69 18 453 701

hs7 16 60 117

hs71 15 21 108

hs74 19 60 193

hs75 39 2159 3561

hs77 13 1454 2230

hs78 18 13 129

hs79 7 16 68

hs80 15 12 116

hs81 15 12 116

hs93 15 557 838

hs99 28 4817 9680

synthes1 23 12 221

synthes2 9 643 2434

synthes3 60 8247 60468

twobars 18 13 108
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