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ABSTRACT OF THE THESIS

Modeling User Behavior Patterns in LBSNs: A Graph Embedding Approach

by

Weiqi Xu

Master of Science in Electrical and Computer Engineering (with a specialization in Intelligent
Systems, Robotics, and Control)

University of California San Diego, 2019

Professor Julian McAuley, Chair
Professor Truong Quang Nguyen, Co-Chair

With the emerging of various location-based social networks (LBSNs), the study on user

mobility patterns and many related tasks have become heated research topics, such as personalized

location recommendation and friend recommendation. Many factors affect users’ behavior patterns,

such as geographical influence, temporal effect and semantic effect. However, most of the previous

work on modeling user trajectories lacks consideration on treating these factors from a graph

perspective, therefore fails to capture the potential correlations among the rich context. In this

thesis, we demonstrate that using a heterogeneous graph-based model to jointly embed user

x



and POI attribute networks with a unified framework can well preserve the network properties.

Multiple factors are embedded into a shared low-dimensional latent space where their joint effect

and potential correlations can be well captured. We conduct extensive experiments on large

real-world datasets to evaluate our model performance on several major tasks in LBSNs. The

experimental results highlight the versatility of our method which shows higher recommendation

effectiveness compared with the state-of-the-art baselines. In addition, a online updating strategy

is proposed to incorporate new visiting records and dynamically track users’ latest preference

in linear time. We also show that this framework has the inherent ability to handle cold-start

recommendations, which is a non-trivial task considering the network sparsity of LBSNs. The

scalability and flexibility of our framework indicate that this method is promising to be put into

practical use.
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Chapter 1

Introduction

1.1 Motivation and Challenges

With the prevalence of mobile devices and the emerging of various location-based social

networks (LBSNs) such as Yelp and Foursquare, massive user visiting records are collected based

on users’ voluntary reports. More and more users are getting used to check-in at point-of-interests

(POIs), such as scenic spots, restaurants and museums, and share their experience. On the other

hand, users rely on these networks to help them discover new places and activities, as well as new

friends who share similar interests with them. In fact, the study on LBSNs has become a heated

research area in recent years, which brings large profits not only to personal recommendation, but

also to many high-level tasks, such as event prediction and regional traffic forecast.

The vast amount of check-in records makes it possible to study user mobility, and make

personalized recommendations base on the learnt user preference and mobility pattern. However,

the problem nature and the characteristics of LBSNs have posed many challenges:

∙ Context awareness: Different from traditional recommender systems such as e-commerce

websites, the recommendations in LBSNs usually need to take spatiotemporal context

into consideration when making predictions aside from users’ personal preference. In
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another word, users tend to make different choices in different time and places. In addition,

users’ mobility pattern exhibits sequential effect. For example, a user would first check-in

at a shopping mall, then go to a restaurant, and watch a movie at the cinema later on a

typical weekend; travelers might first check-in at the airport after landed, then check-in at a

hotel straight after. Taking all these context information into consideration when making

predictions is necessary.

∙ Dynamic Tracking: User preference changes over time. On the other hand, the sequential

effect of POI transitions has a large impact on user mobility. Therefore, in order to provide

satisfying predictions, the recommender system needs to respond to stimulus in real-time

according to users’ latest preference and spatiotemporal context. Besides, training the entire

model takes time and can be costly. Thus, an ideal model should have the ability of online

training, which can dynamically incorporate new records, and track users’ latest preference

without retraining the whole model.

∙ Mutual effects of social and POI networks: User relationships form the social network,

and the POI attributes in LBSNs form the heterogeneous POI network. Both social network

and POI network affect users’ visiting behaviors, and the two networks show mutual effects

towards each other. Friends tend to share similar preference and have co-visitation behaviors.

Thus, incorporating social relationships can facilitate POI prediction. On the other hand,

people who share similar mobility patterns are more likely to become friends, which

uncovers the possibility of making social link recommendations based on POI network.

Therefore, building a joint framework which captures the mutual effects between the two

networks is expected to facilitate related prediction tasks while can be challenging.

∙ Data Sparsity: Visiting a place is more costly than rating movies and items online, and

the check-in records in LBSNs is collected based on users’ voluntary report. As a result,

the data in LBSNs is much sparser than that of traditional recommender systems.
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∙ Cold Start: In LBSNs, new places and activities emerges everyday. An ideal model should

have the ability of incorporating newly emerged POIs and help users explore new places.

In fact, cold-start recommendation is a non-trivial task in LBSNs which needs careful

inspection.

Many work has been devoted to studying user mobility patterns in LBSNs while lim-

itations exist. First of all, previous work incorporates a variety of influential factors to learn

users’ behavioral patterns mostly by combining all the partial factors. For example, probabilistic

graphical models [1] generate different distributions for the considerable influential factors; collab-

orative filtering model simultaneously factorizes coupled tensors and matrices constructed from

heterogeneous data sources [2] to perform multi-dimensional collaborative recommendations

based-on user, activity, time and location. However, the objective functions of these models

are not designed for the network structure of LBSNs, and the diverse nature of multiple factors

makes it difficult to incorporate them with an integrated model. In fact, most of the work ends

up building a complicated hybrid model, which fails to generalize to various scenarios. Second,

among the many factors that affect user behaviors, sequential effect and geographical effect are

mostly studied, while social influence is frequently ignored. Last but not least, traditional methods

directly capture the interactions between user POI pairs, which fails to observe the global structure

of the entire information network [3]. For example, Factorization Machine only optimizes the

first-order proximity between user and POI by observing their direct interactions.

Methods which learn graph representations by embedding nodes into a lower-dimensional

latent vector space have been attracting increasing attention in the recent years [4]. The perfor-

mance has been proved to be promising in many tasks, such as text mining [5] and event detection

[6].
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1.2 Our Work and Contributions

In this work, we extend the state-of-the-art graph embedding method for next-POI predic-

tion and social link prediction in LBSNs. The proposed method models user social network and

POI attribute network with a joint framework where their mutual effect are captured. Users, POIs

and POI attributes are all treated as network nodes and embedded into a shared lower-dimensional

latent space. The observed links between network nodes include user-user, user-POI, POI-category,

POI-time, POI-region, POI-rating, and POI-POI, which capture users’ social connections, visiting

history, categorical effect, temporal effect, geographical effect, semantic effect, and sequential

effect in POI transitions respectively. By optimizing the first-order and second-order proximity

between network nodes, the obtained embeddings not only preserve the local and global structure

of the network, but can also leverage the sparsity problem in real-world datasets. In addition, the

proposed framework is flexible to incorporate multiple factors and network attributes, and can

scale to large real-world dataset. An online training strategy is introduced which can dynamically

track users’ latest preference in linear time without harming the prediction accuracy.

We conduct extensive experiments on two large real-world datasets, and compare our

model with representative algorithms based on Probabilistic theory, Factorization Machine and

Deep Learning. Experimental results demonstrate our model’s superiority over other state-of-the-

art comparison methods on several predictive tasks.

In context-aware next-POI recommendation, our method outperforms comparison models

in terms of both prediction accuracy and efficiency. By incorporating the content information

of the cold-start POIs, our model can directly learn the embeddings of cold-start POIs through

the same framework without additional feature engineering or model modifications. In addition,

experiments show that our model gives better performance in cold-start recommendations than

strong baselines.

We also demonstrate that the user embeddings learnt from our framework can be directly
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used to discover potential social links by measuring pairwise similarity. The intuition behind is

that users’ shared preference on POIs is captured through observing the second-order proximity

of user-POI links. In another word, users with shared neighboring POIs are embedded close to

each other in the embedding space. In fact, people who have similar visiting history are more

likely to share similar interest and become friends. Model evaluation proves that our prediction

framework achieves better results than heuristic methods, and the user embeddings obtained from

our model are more representative compared with those of baselines.

By embedding all the network nodes into a shared latent space, our method not only

optimizes on the observed links, but is also able to capture potential correlations among them. This

explains for the more promising results in cold-start recommendation and social link prediction

where side information is limited.

For each predictive task, we further investigate the impact of different influential factors.

Methods to better capture these effects in our embedding framework are also discussed.

To summarize, in this thesis, we:

1. extend the state-of-the-art graph embedding method to model user mobility patterns in

LBSNs. A joint framework is introduced which captures the mutual effect between user social

network and POI attribute network.

2. introduce an online learning strategy which can dynamically update user preference

without retraining the entire model, and can provide context-aware recommendations according

to users’ stimulus in real-time.

3. demonstrate the superiority of the proposed model in next-POI prediction, social link

prediction, and gives promising results in cold-start recommendation.

4. investigate the impact of influential factors on the modeling of user mobility, and discuss

the way to better capture these effects in our embedding framework.
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1.3 Thesis Organization

The rest of work is organized as follows. In Chapter 2, we introduce the problem back-

ground, and provide a detailed explanation on the motivation behind this work. In Chapter 3,

we explore the statistics and characteristics of the datasets we study on, and investigate the most

significant effects the datasets exhibit. In Chapter 4, we explain the predictive tasks we study in

this work, then introduce the model formulation, including embedding methodology, training

process and prediction strategy. In Chapter 5, we report the experimental results of our method

along with other representative comparison models on all predictive tasks. Thorough discussions

on the experimental results are also included. In Chapter 6, we conclude our work, discuss the

limits and shed light on some future directions.

6



Chapter 2

Background

2.1 Characteristics of Location-based Social Networks

The emerging of location-based social network is a natural product of the development of

location-based service. The location network contains massive amount of POIs along with their

multiple attributes, including location, opening hours, and content information such as categories

and user reviews. The social network is usually formed based on friendship, common interests,

and shared knowledge. The LBSN is not a simple combination of the location network and social

network where users can share POI-related information, it is partially observed and contains

potential interactions between network nodes. The implicit connections are derived from users’

location-tagged check-in history, which includes timestamp, photos and reviews [7]. Figure. 2.1

[8] illustrates an example of a typical LBSN. As is illustrated in the diagram, the user network and

location network are connected through visiting history to form the user-location graph, which

contains location-tagged and user-generated content. The shared activities and mobility patterns

among users indicate potential social closeness, while on the other hand, the mobility of similar

users reveals content similarity among those locations.

The rich content information provided in LBSNs can help us get a better understanding of

7



Figure 2.1: Example of a Typical LBSN

users, locations and their interactions, and bring profits to many related tasks, such as community

detection, event detection, preference- and context-aware location recommendation, and friend

recommendation.

The most popular and well studied LBSNs datasets are Foursquare [9] and Gowalla

[10] check-in data. Each check-in record contains user information, check-in time and POI side

information. Users’ friend list is also included. Gowalla dataset a has larger size compared with

Foursquare, but it lacks POI content information such as user reviews. These two datasets are

collected based on users’ voluntary report, therefore suffer from severe data sparsity. Various

types of tasks are studied, including location recommendation, social link prediction and user

mobility tracking. Tarasov et al. [11] combine Foursquare check-in history with Twitter friend list

to test their radiation model for location prediction task. In the work by Yao et al. [12], a recurrent

model for next location prediction is proposed and evaluated on Foursquare check-in data collected

from New York City and Los Angeles. Users with fewer than 50 records are removed, and only

semantic trajectories within a 10h time interval are kept to obtain a denser network.
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Aside from check-in data collected through users’ voluntary report, similar datasets that

based on automatic collecting are also studied. For example, Huang et al. [13] worked on Wi-Fi

access logs collected at Purdue University, which is much denser than Foursquare or Gowalla

check-in data, and exhibits more significant temporal cyclic patterns.

2.2 Influential Factors

Among the many tasks in LBSNs, social link prediction and location recommendation

have become popular research areas in the past few years. User mobility patterns is studied to

learn personal preference, and rich POI attributes are frequently incorporated to provide valuable

recommendation context. On the other hand, the side information helps to alleviate the sparsity

problem of check-in data. For example, the insufficient observations of check-in activities can be

compensated by tipping behaviors and rich text information such as reviews to infer user interests

[14].

In social link prediction tasks, factors people usually consider to measure trajectory

similarity [15] include location category [16], geographical distance [17], and co-occurrence with

time and distance constraints, where the diversity of co-occurrence and popularity of locations

were proved to show dominant effects and are most well studied. Pham et al. [18] introduce

the notion of commitment and compatibility to measure similarity of users’ mobile patterns.

The similarity quantifies social distances between users, which is used to infer real-world co-

occurrences. In another work by Pham et al. [19], they further propose an entropy-based model

which estimates the strength of social connections by analyzing people’s co-occurrences in space

and time.

In location recommendation tasks, information used for context- and time- aware rec-

ommendation includes social ties, geographical information, temporal information, and text

description such as categories and reviews. Temporal and geographical information are most

9



well studied to learn users’ spatiotemporal preference or change in interest over time. Early

work[20][21] argue that user preference is time-varying and has periodic patterns (e.g. day in a

week). A direct approach is to add a dimension for time into the user-item adjacency matrix, then

adopt Factorization-based methods [22], [2]. Yuan et al. linearly combine temporal cyclic patterns

and geographical influence into a user-based collaborative filtering framework for time-aware POI

recommendation. In another work done by Yuan et al. [23], preference propagation is applied on

a geographical-temporal graph to realize time-aware location recommendation. Topic models

are also widely adopted in time-aware recommendation. For example, [24] uses a topic model to

learn users’ temporal preference by creating unique time features for every topic.

In the next-POI prediction problem, the sequential transitions between locations is an

addition factor to consider, which shows significant effect. Markov chain is widely used to capture

the sequential effect in user mobility. Zhang et al.[25] introduce a probability-based additive

Markov-chain model based on the assumption that the latest activities have the greatest impact on

user’s current preference. Another popular method is FPMC proposed by Rendle et al. [26]. It

factorizes the tensor of transition cube consists of the transition probability matrices of all users.

FPME [27] extends FPMC by modeling user-location distance and location-location distance in

two different vector spaces. However, Markov chain methods are based on the assumption that

the choice of next location is only affected by the previous location, which does not hold in the

real-world scenarios. To track users’ entire check-in history, recurrent models are introduced, such

as RNN, LSTM and GRU. Liu et al. propose a Spatial Temporal Recurrent Neural Networks (ST-

RNN) [28], which can model continuous time intervals and geographical distance by constructing

time-specific and distance-specific transition matrices in each layer of the neural network.

Recently, a lot of research has been devoted to inferring next-POIs through analyzing

human mobility. Wang et al.v[29] indicate that the social proximity is strongly bound up with

one’s mobility. The work in [30] distinguishes users’ different periodic mobility between work

and home. [13] works on Wi-Fi access logs collected at Purdue University, and demonstrates

10



that students’ campus life exhibits more significant cyclic patterns. The work in [31] uses user

mobility in LBSNs to measure the connectivity of various cities. More relevant work studying

user mobility in LBSNs can be found in[32][33].

Some other work making use of other factors includes that of Liu et al. [34], which

incorporates venue tags into a Matrix Factorization-based model for POI prediction.

The diverse nature of these influential factors poses challenges to incorporating them

into a joint model. Many previous work comes up with hybrid models, where each individual

component only captures one specific effect. In the work by Yang et. al [15], they first derive

the network representation for each user with a probability-based generative model according to

social links, then employ a RNN model and a GRU model to capture short-term and long-term

effects of the sequential relatedness in users’ mobile trajectories respectively. The final model is a

linear combination of all the partial representations of user and sequential context. Wang et al.

[5] incorporates visual contents by first extracting image features using CNN, then add them into

a probabilistic Matrix Factorization model to learn user and POI latent features. Hybrid models

may show good prediction performance in the specific scenarios they’re designed for, while need

careful feature engineering and lack the ability to generalize.

Joint frameworks do exist, such as aggregate LDA, Matrix Factorization-based and collab-

orative filtering-based methods. Matrix or Tensor Factorization is a popular methodology that

has been proved to be efficient and effective in POI recommendation tasks. Zhang et al. propose a

multi-dimensional collaborative recommendation framework which uses Tensor Factorization

techniques to capture temporal, categorical and geographical effects. Gao et al. [14] build a

low-rank Matrix Factorization model which employs a sentiment-enhanced weighting framework

when consider user sentiment indications, user-interest content and POI-property content. Zhao

et al. [35] propose a unified LDA-based probabilistic model to learn user preference based on

reviews, categories and geolocations of POIs. The model can also capture the interaction of

sentiment, categorical and spatial information. Pasricha et al. [36] modify the traditional Factor-
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ization Machine by replacing the inner product with the squared Euclidean distance to measure

the interaction strength between features. The proposed model can operate on arbitrary feature

vectors and is flexible to incorporate additional content information. Although these methods

incorporate all the factors into a general framework, however, they neither cannot scale to large

networks, nor their objective functions are not designed for capturing network structures, therefore

not necessarily preserve the global network structure. [3]

In the next section, we will provide a detailed literature of some widely used graph

embedding approaches for network embedding tasks. Their characteristics and limitations will be

discussed. Finally, we will introduce the approach we use in this work, and provide some insights

of the intuition behind our choice.

2.3 Distributed Representation Learning and Graph Embed-

ding Methods

In the recent years, graph embedding methods which represent networks along with

their properties into a latent vector space have been attracting increasing attention. Specifically,

these methods aim at learning graph representations of the networks by embedding nodes into a

lower-dimensional vector space, where connected nodes are embedded close to each other in the

embedding space [4]. In general, there are three main groups of approaches: Factorization-based,

Random-Walk based and Deep Neural Network-based.

2.3.1 Factorization-based Approaches

The Factorization-based methods obtain the embeddings by factorizing the matrices

representing the connections between network nodes. The most widely used matrices include

adjacency matrix, transition probability matrix and Laplacian matrix. A representative work using
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adjacency matrix is Locally Linear Embedding (LLE) [37], which is under the assumption that

every node is a linear combination of its k-nearest neighbors in the embedding space. The weights

of neighbors nodes forms the weight matrixW , and the reconstruction error is defined as:

"(W ) =
∑

i
|X⃗i−

∑

j
WijX⃗j|

2 (2.1)

where:

Σjwj = 1

Mapping every point Xi into a lower-dimensional representation Yi, the objective turns into:

min
Y
Φ(Y ) =

∑

i
|Yi−

∑

j
WijYj|

2 (2.2)

where Φ(Y ) is further turned into:

Φ(Y ) =
∑

ij
Mij(Yi ⋅Yj) (2.3)

where:

M = (I −W )T (I −W )

After decentralization, the problem comes down to an eigenvalue decomposition problem, where

the embeddings are the eigenvectors corresponding to the last m non-zeros eigenvalues of the

positive semi-definite matrixM .

The Laplacian matrix [38] is formed with Laplacian of the graph, which is more computa-

tionally efficient, and can preserve local structure well. The basic idea is tomake the representations

of two similar nodes close to each other in the low-dimensional embedding space. The objective
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function is:

min
∑

ij
|yi−yj|2Wij = min trace(Y TLY ), s.t.Y TDY = I (2.4)

L =D−W is the Laplacian matrix of the graph, whereW is the adjacency matrix, and D is the

degree matrix (Dij =
∑n
j=1Wij).

Some related models include Graph Factorization (GF) [39], High-Order Proximity Pre-

served Embedding (HOPE) [40], and Structure Preserving Embedding (SPE) [41]. A further

extension based on Factorization methods is Marginal Fisher Analysis proposed by Yan et al. [42].

Two types of graphs are introduced in this work: the intrinsic graph characterizes the intraclass

compactness, while the penalty graph connects the marginal points between different classes and

characterizes the interclass separability.

In general, Matrix Factorization methods obtain the embeddings by solving the leading

eigenvectors of the affinity matrices, therefore suffer from high computational complexity and

cannot scale to large real-world networks. Factorization Machine shows better scalability, while

still, it only observe the direct interactions between network nodes, and fail to capture the global

structure of the entire network. What’s more, Factorization-based methods are not capable of

learning arbitrary functions [4]. Their objective functions are not designed for capturing network

structures, therefore cannot learn structural equivalence or preserve global structure.

2.3.2 RandomWalk-based Approaches

By comparison, Random Walk-based methods show the ability to capture higher order

proximities among nodes and can handle partially observed large-scale networks.

The random walk task is essentially a discrete Dirichlet problem applied on the graph. A

random walk path usually starts from a selected node in the network, then moves to the random

neighbors from the current node for a pre-defined number of steps. The relative probability
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distributions of the child nodes are computed by sampling a set of random walk paths from the

graph. To be specific, given a graph G(V ,E), if a random walk starts from node v0 and reaches

node vt after t steps, the probability distribution can be represented as:

Pt(i) = Pr(vt = i) (2.5)

The transition probability matrix isM = (pij)i,j∈V , where

pij =

⎧

⎪

⎨

⎪

⎩

1∕d(i), if ij ∈ E,

0, otherwise
(2.6)

Therefore, the walking rule from one node Pt to another node Pt+1 can be described as:

Pt+1 =MTPt (2.7)

DeepWalk was first proposed for language modeling based on word2vec and random walk,

but it has also shown good performance in other networks such as social networks. DeepWalk

preserves higher-order proximities between nodes by maximizing the probability of observing

the neighbors of a node within a certain window conditioned on its embedding using stochastic

gradient descent[6]. Under this scheme, nodes with similar neighbors are closely embedded in

the embedding space.

The objective function can be described as:

(s) = 1
s

|s|
∑

i=1

∑

i−t⩽j⩽i+t,j≠i
logPr(vj|vi) (2.8)

where

Pr(vj|vi) =
exp(v⃗j

T ⋅ v⃗i)
∑

vk∈V exp(v⃗k
T ⋅ v⃗i)

(2.9)
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where vj is the neighboring nodes of node vi within a t− steps window, equation 2.9 is the

conditional probability between node vi and vj , which captures their second-order proximity.

DeepWalk only relies on local information of the graph, therefore is suitable for sparse

graph and can be implemented on distributed systems. In addition, adopting Deep Learning

techniques accelerates the computation speed and improves scalability. However, since DeepWalk

performs random walks randomly, the obtained embeddings do not preserve the local structure of

each node very well.

Node2vec [43] fixes this problem by adopting biased-random walks, which provide a

trade-off between breadth-first (BFS) and depth-first (DFS) graph searches. BFS focuses on

exploring neighboring nodes, which captures the local structure; DFS on the other hand, captures

higher-order similarity therefore preserves global structure.

For each step of a random walk c, the transition probability from a current node v to the

next node x is defined as:

P (ci = x|ci−1 = v) =
�vx
Z

(2.10)

where Z is used for normalization. The algorithm sets the bias between BFS and DFS by

introducing two parameters p and q. Denote the previous node as t, the transition probability �vx

is defined as:

�vx = �pq(t,x) ⋅wvx (2.11)

where

�pq(t,x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1∕p, if dtx = 0

1, if dtx = 1

1∕q, if dtx = 2

(2.12)
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wvx is the weight of edge Evx, dtx is the shortest distance between t and x. It is set as 0 if

the next node is the same as the previous one, 1 if the distance to the next node and the previous

node are the same, otherwise it is set as 2. p is called "Return parameter", which stands for the

probability of visiting a node again; q is called "In-out parameter", which controls the level of

depth-first search.

Walklets [44] extends DeepWalk and node2vec by skipping over some nodes in the

graph, and can explicitly captures multiple scales of relations in the network. Besides, the latent

representations generated are more human-interpretable.

Despite the scalability and the ability to capture higher order proximities, one major

drawback of RandomWalk-based approaches is that they only apply to undirected networks, while

in LBSNs, both directed and undirected edges exist.

2.3.3 Deep Neural Networks-based Approaches

Deep Neural Networks have been widely used for dimensionality reduction in representa-

tion learning, which show the advantage of capturing non-linearity of the network structure. Wang

et al. [45] present a hybrid deep autoencoder called SDNE which can capture both first-order and

second-order proximities. Specifically, they use a Laplacian Eigenmap-based model to measure

the first-order proximity, and use another autoencoder to obtain the embedding of each node based

on its observed neighborhoods. GCN [46] adopts an iterative approach, which aggregates the

embeddings of the neighboring nodes and combine them with the those obtained from the previous

iteration using a convolution operator to obtain the new embeddings. This model captures the

global structure, and shows better scalability compared with the aforementioned methods. Recent

work by Hamilton et al. propose a general inductive framework called GraphSAGE [47], which

leverages node attributes to efficiently generate node embeddings for previously unseen data using

forward propagation. The embedding of each node is generated by sampling and aggregating

features from its local neighborhood. As this process iterates, nodes incrementally gain more and
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more information from further reaches of the graph.

Deep Neural Network-based approaches can learn arbitrary functions due to their general

optimization strategy. However, neural network is a black box and not human-interpretable, which

poses challenge on model tuning and modifications. In addition, they rely on large amount of data

for training, and will give poor performance when the amount of training data is not sufficient.

2.3.4 LINE-based Approaches

LINE captures both first-order and second-order proximities between nodes. To capture

the first-order proximity, the joint probability between two nodes (equation 2.13) is optimized to

approximate the empirical probability.

p1(vi,vj) =
1

1+ exp(−v⃗j
T ⋅ v⃗i)

(2.13)

The empirical probability is defined as the relative weight among all edges:

p̃1(i, j) =
wij
W

(2.14)

where

W =
∑

(i,j)∈E
wij (2.15)

Measuring the second-order proximity aims at observing the shared neighborhoods. The

probability of observing a context vj generated by vi is defined as:

p2(vj|vi) =
exp(u⃗j

′T ⋅ u⃗i)
∑

k=1∈|V |

exp(u⃗k
′T ⋅ u⃗i)

(2.16)

where |V | is the number of context vertices. u is the representation of v when it is treated as a

vertex, a node v is represented with u′ when it is treated as a context vertex.
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The empirical distribution of the context probability among all neighboring nodes is

defined as:

p̃2(vj|vi) =
wij
di

(2.17)

where di =
∑

k∈N(i)wik is the out-degree of vertex i, andN(i) is the set of out-neighbors of vi.

KL-divergence is used to measure the proximity between the two distributions. Note that

the first-order proximity is only applicable for undirected graph, while second-order proximity

is applicable for both directed and undirected edges. The intuition is that an undirected edge

can be taken as a combination of two directed edges with opposite directions and equal weights.

Therefore, LINE is a more general method which can handle different types of network structures

and capture arbitrary level of proximity.

In light of its universal nature, LINE-based approach is suitable for embedding various

types of information networks, including language network, social network and citation network.

It also shows good performance in many network based tasks, such as link prediction and node

clustering. Experimental results on various real-world networks have proved the superiority of

LINE over heuristic methods in terms of efficiency and effectiveness.

Previous work provides valuable insight into choosing suitable embedding techniques

to better preserve network structure and properties, as well as adjusting to specific network

characteristics.

2.4 Cold Start Problem

Cold-start is a non-trivial problem in LBSNs, where new places and events emerge

everyday, and users rely on the recommender system to explore new places and activities, which

makes cold-start recommendation a non-trivial task that needs careful inspection.

Massive previous work has focused on addressing location-side cold-start problem in
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location recommendation tasks. For example, researchers [48] investigate the mutual influence

between geographical distance and social networks, and show that leveraging the cold-start

locations from a geo-social perspective might be promising. In the work by Gao et al. [49], they

address the cold-start location recommendation problem by capturing the correlations between

social networks and geographical distance with a geo-social correlation model. The intuition

behind this implementation is that users in different geo-social circles tend to have various

correlation strength. Four types of geo-social circles are considered that form a probability-based

prediction model.

In conclusion, incorporating side information of the cold-start POIs is essential for allevi-

ating the cold-start impact.
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Chapter 3

Data Exploration

In this work, we evaluate our method on two standard LBSN datasets: Foursquare [9] and

Google Local [50]. In this chapter, we report detailed dataset statistics and investigate the charac-

teristics of these two datasets. We will also explain how we choose the feature representations for

the information provided in these datasets to facilitate our modeling.

3.1 Dataset Statistics

3.1.1 Foursquare

The Foursquare dataset is consists of check-in data collected based on users’ voluntary

report while using this app. The subset we use is from the time period Dec. 2009 to Dec.

2011. Every record contains six attributes: user ID, check-in time, venue ID, venue name, venue

location and venue category. To be specific, check-in time is represented with GMT time. Venue

location contains the geographical information, including coordinates (longitude and latitude)

and administrative division such as city and state. Note that a venue may belong to more than one

category. Foursquare also contains users’ social links, which are organized in a pairwise manner.

More data statistics and examples are shown in Table. 3.1.
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Table 3.1: Foursquare Data Description and Examples

Statistics Description or Example

User 4,019 –
Social Link 16,256 pairwise, undirected

Check-in Time 2009.12 - 2011.12 EST. Mon Jul 25
02:03:30 +0000 2011

Venue Location 82,238 [32.7075, -117.1570],
San Diego, CA

Venue Category 34 Shop & Service,
Nightlife Spot etc.

3.1.2 Google Local

This dataset [36][?] contains a large collection of reviews about businesses from Google

Local (Google Maps). Rich side information of the corresponding users and businesses is also

included, such as user demographics, review time, geographic information, business opening hours

and category. To be specific, geographical information contains coordinates and administrative

division. Temporal information is provided in the form of both unix timestamp and GMT time.

Note that this is the reviewing time rather than check-in time. The data statistics and examples are

shown in Table. 3.2.

Table 3.2: Google Local Data Description and Examples

Statistics Description or Example

User 4,567,431 –
Rating Integer ranges from 0 to 5 4, 5

Business Location 3,116,785 [29.517006, -98.436528],
San Antonio, TX

Review Time 2005.02 - 2014.03 UTC. Mar 14, 2014
1394842359

Review 11,453,845 "Food is ok at best and the
prices are out of this world."

Business Category 2700 Chinese Restaurant,
Fireplace Store, etc.
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Table 3.3: Data Statistics Before and After Filtering

Dataset #users #venues #records #usersFilter #venueFilter #recordFilter

Foursquare 4144 113473 483814 3244 111355 435289
California 123976 177783 214600 13462 26899 91086
Texas 96163 118306 147575 8155 16512 49343
Florida 85619 103322 116580 5754 12504 28482
Colorado 32519 37344 46977 2496 13705 4875
Washington 27129 43305 42823 2482 16512 15467
North Carolina 33337 42396 46748 2381 5381 12655

LBSNs are usually very sparse. In this work, we only use records collected from California

in Foursquare dataset, and eliminate users with less than 10 check-in records in order to obtain a

denser network. On Google Local dataset, we conduct experiments on data collected from six U.S.

states of varying sizes and populations. Google Local dataset is even sparser than Foursquare

dataset, with fewer records for each user and venue. To alleviate the effect of data sparsity, only

users with more than 5 review records are kept.

The detailed dataset statistics before and after filtering are shown in Table. 3.3.

3.2 Data Characteristics and Properties

∙ Geographical Distribution

In order to get a more intuitive understanding, we visualize the geographical distribution of

all venues on the state map based on venue coordinates. Figure. 3.1 and Figure. 3.2 provide

the example of the geographical distribution of California venues in Foursquare and Google

Local.

The visualization shows that the geographical distribution of venues from these two datasets

are similar: venues are not evenly distributed across the state. The venue density of large

cities such as LA county and the bay area is much higher compared with rural areas. This

indicates that venue distribution is highly correlated with population distribution, and
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Figure 3.1: Geographical Distribution
of Foursquare Venues

Figure 3.2: Geographical Distribution
of Google Local Venues

geographical information can serve as a informative indicator of the place a user may visit.

∙ Temporal Dynamics of User Mobility

Research [51][52] has shown that user mobility exhibits strong temporal cyclic patterns.

Therefore, we investigate the temporal dynamics of user mobility shown in the datasets we

use. Time-of-day effect and day-of-week effect are studied.

Google Local dataset only contains the time a user wrote the reviews, which is usually

different from the time of visit, therefore is not suitable for studying the time-of-day effect.

As a result, we only investigate this effect on Foursquare dataset, and draw the heat maps

showing the types of activities users do during 12 time slots in a day, where each time slot

is a 2-hour interval. Since human mobility patterns might be different during workdays and

weekends, we draw two separate heat maps for workdays and weekends respectively, which

are illustrated in Figure. 3.3a and Figure. 3.3b.

To study the day-of-week effect, we draw the heat map of different types of activities users

do in each day of the week. We investigate this effect on both Foursquare and Google Local
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dataset, which are shown in Figure. 3.4 and Figure. 3.5. For Google Local dataset, we

assume that users tend to rate the business on the day of visit when memory is still fresh,

and we only provide an illustration of 30 most popular business categories in California as

an example.

There are several observations we can get from the illustrations:

(i). User mobility exhibits significant time-of-day effect on both workdays and weekends.

For example, ’Food’ related venues are the most visited (denoted with index 11) during

breakfast and dinner time, while there are only a few visits during other time of a day.

(ii). Time-of-day effect is more significant than day-of-week effect. User mobility does show

day-of-week effect, for example, on Foursquare, people tend to have fun at "nighttime spots"

(with index 3) and go for ’Shop & Service’ (with index 26) more often during weekends,

while during workdays, ’Professional & Other Places’ are more frequently visited. Google

Local shows similar effect: ’American Restaurant’ (with index 26) and ’Seafood Restaurant’

(with index 10) have the largest amount of visits on Sunday. However, day-of-week effect

is not as obvious compared with time-of-day effect. In fact, user mobility generally shows

similar daily patterns during workdays and weekends, for example, people grab food during

breakfast and dinner time, and go shopping during the night.

(iii). Among all venue categories, only a few of them are popular, which receive most of

the visits. For example, on Foursquare dataset, ’Food’ and ’Shop & Service’ have 153,238

and 83,976 visits respectively, which together takes up 59% of the total check-in records.

On Google Local dataset, ’American Restaurant’ takes up over 10% of the total visiting

records. This effect is also clearly shown in the heat maps, as only a few activities carry

bright color patch.

These observations prove that user trajectories exhibit strong temporal cyclic patterns, and

suggest that (i). incorporating day-of-week effect can facilitate POI prediction task on both
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(a) On Workdays (b) On Weekends

Figure 3.3: Users’ Temporal Preference for Various Activities

Figure 3.4: User Preference vs. Day-of-week on Foursquare

Figure 3.5: User Preference vs. Day-of-week on Google Local
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Figure 3.6: Sequential Patterns of User Behaviors in Foursquare

Figure 3.7: Sequential Patterns of User Behaviors in Google Local

datasets. (ii). time-of-day effect need to be considered in Foursquare dataset, while there is

no need to incorporate it when studying Google Local dataset. (iii). Categorical tags are

informative and can be used as a influential factor when predicting the next POI.

∙ Sequential Transition Patterns in User Trajectories

As discussed in Chapter 2, user mobility may exhibit sequential pattern. For example, users

usually sequentially check-in at a restaurant, then at a cinema at weekend nights. Such

sequential pattern is even more noticeable at airport and hotels. This suggests that the time

interval and distance between two sequentially visited places might be highly correlated. In

another word, people would only go to nearby places during a short period of time. Figure.

3.6 and Figure. 3.7 show the spatiotemporal dynamics of thee randomly picked users from

Foursquare and Google Local respectively. The x-axis denotes the time interval between

two sequential check-ins measured with hour, and y-axis is the distance between the two

check-in venues.

According to the diagrams, Foursquare exhibits more significant sequential effect than
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Google Local. In Foursquare dataset, large time interval generally corresponds to large

distance from the previous check-in spot to the current location. However, in Google Local,

such pattern is not as obvious. Further inspection reveals that, the time interval between

two sequential reviews in Google Local dataset is usually very large. This may due to the

larger data sparsity, and users tend to give ratings and write reviews afterwards. Therefore,

the sequential transitions between venues are not well reflected in Google Local dataset.

The above investigation suggests that taking sequential effect into consideration can facilitate

next-POI prediction on Foursquare, while might not has significant impact on Google Local.

∙ Friendship Influence

Foursquare dataset contains users’ friendship information. Friends tend to have similar

preference and co-visitation behaviors. Previous work [18][19] has shown that social

network can serve as auxiliary information to enhance user trajectory modeling, therefore

facilitate location prediction and recommendation.

To explore the friendship influence upon user behaviors, we randomly pick 50 users in

Foursquare who has social links with other users, and compare their average trajectory

similarity with their friends, and all other unconnected users. Jaccard similarity is used

to measure the similarity between users, which is defined as below:

J (ui, uj) =
|ui∩uj|
|ui∪uj|

(3.1)

where ui stands for the set of venues user i has visited before.

As is shown in Figure 3.8, friends visit significantly more common places. This makes

sense since friends usually share similar interest, and would recommend places they have

visited to each other. Co-visiting behavior is also very common. In fact, the average Jaccard

Similarity among friends (0.00825) is about 5 times higher than the overall similarity
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Figure 3.8: Average Jaccard Similarity Between Friends and All Users

(0.00176).

The statistical analysis further proves that friendship influence has a large impact on user

behaviors, therefore can be used to facilitate location prediction and recommendation. On

the other hand, similar mobility may indicate potential social links.

∙ Semantic Effect

Google Local dataset contains ratings and reviews about POIs. The semantic feedback

provides valuable information which helps us make inference of the POI popularity and

user preference. For example, a user gave a ’5-star’ rating to a ’Chinese restaurant’ wrote

the review "Best Hot Sour soup anywhere." indicates that he has preference towards the

food and is likely to visit again.

We also observe that make inference solely based on ’rating’ or ’review’ can be biased.

Some users would habitually give high ratings even though they are not satisfied with the

place, and vice versa. For example, a user gave a restaurant a ’3-star’ rating wrote the

comment ’Sad place. Won’t be back.’, while another user gave the same rating because

’OK BUT NOT GREAT!’. This phenomena indicates that evaluating rating and review

sentiment jointly will lead to a more reliable and unbiased assessment.

∙ Cold Start
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Table 3.4: Data Statistics of Cold-Start POIs

Dataset Foursquare CA TX FL CO WA NC

# Total POIs 2887 9479 6003 4709 1860 1899 1929
# Cold-Start POIs 625 3948 2775 2314 814 813 968
Proportion 21.65% 41.65% 46.23% 43.76% 42.81% 49.14% 50.18%

As new places and events emerge everyday, LBSNs exhibit significant cold-start effect.

In this work, since we focused on studying user mobility for user side recommendations, we

only care about the influence of cold-start POIs. As will be further explained in Chapter 4,

during model evaluation, we use the latest visiting record of each user as the test example.

If the first appearance of a POI is in the test set, then it is considered as a cold-start POI. We

count the occurrence of cold-start POIs of both datasets, the result is reported in Table. 3.4.

Data statistics show that both datasets exhibit significant cold-start effect, and Google

Local suffers from more severe cold-start problem compared with Foursquare dataset. In

Foursquare, 21.648% of the POIs in the test set are cold-start POIs, while in Google Local,

cold-start POIs take up about 45.62% of the total POIs on average.

This observation further proves that making cold-start recommendation is a non-trivial task

which needs careful inspection.
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Chapter 4

Methodology

4.1 Predictive Tasks

According to the analysis in Chapter 3, generally, user mobility in LBSNs exhibit six

evident factors: geographical influence, temporal cyclic effect, sequential effect, semantic effect,

categorical effect and friendship influence. These factors affect the spatiotemporal dynamics of

user preference, therefore can be used for personalized location-based prediction. By measuring

the similarity of user trajectories, we can discover users with shared behavior patterns and similar

interest, thus have the potential to become friends. In addition, we have shown that enabling

cold-start recommendation is a non-trivial task which needs careful inspection. In light of these

observations, in this section, we define three predictive tasks we’re going to study in the following

chapters.

∙ Context-aware Next-POI Prediction.

Next-POI prediction and recommendation is a most widely studied problem in LBSNs.

User mobility patterns are learnt through investigating visiting history, and the rich side

information about users and venues can help us understand users’ personal preference.

On the other hand, unlike traditional recommendation tasks such as movie and product
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recommendation, next-POI recommendation involves a more structured and context-rich

environment. To be specific, besides from personal preference and mobility patterns, a rich

set of context information will jointly influence a user’s choice, such as current time and

location.

In this work, we study the context-aware next-POI prediction problem which takes both

user preference and context information into consideration. To be specific, given a user and

his or her visiting history, we make prediction on the next POI that user is likely to visit

based on time and location context. We will also investigate the impact of each influential

factor for a comprehensive understanding of this predictive task.

∙ Social Link Prediction and Friend Recommendation

The social network is an important part of LBSNs. Friends share their visiting experience

and help us explore new places and activities. On the other hand, users can discover new

friends that have shared interests with them. By comparing the personal preference and

mobility patterns, we are able to measure the social distances between users and discover

users with the potential to become friends.

In this work, we make effort to discover potential social links in LBSNs based on users’

shared interest and similar visiting history. A personalized friend recommendation frame-

work is therefore proposed.

∙ Cold-start Recommendation

In Chapter 3, we have shown that LBSNs exhibit significant cold-start effect. In this work,

we investigate the way to incorporate cold-start POIs into the recommendation framework.

POI side information such as category and location can serve as auxiliary information

that helps to find the potential correlation between cold-start POIs and observed POIs. In

addition, the consideration of contextual features such as time and location also helps to

build a robust recommender that has the ability to deal with the cold-start scenario.
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4.2 Graph-based Embedding Model

Multiple factors jointly affect the predictive tasks in LBSNs. To model the interactions

between these multiple factors, a graph structure turns out to be a natural choice since it is more

amenable to representing and reasoning rich context compared to heuristic Factorization-based

and RNN-based methods [13]. An expressive vector representation for each node in the graph

needs to be found while this task is inherently difficult. A ’good’ vector representation should

preserve both global structure of the graph and the local connections between nodes. In addition,

the network properties and characteristics also need to be well captured.

In this work, to investigate user mobility in LBSNs, we use a bipartite graph model to

depict the relations between different types of network nodes, where each type of graph links

captures a certain influential factor exhibits in the network. By optimizing the first-order and

second-order proximity between graph nodes, local correlations and global structure of the entire

graph can be preserved. A joint training framework is proposed which embeds all the relational

graphs into a shared lower-dimensional latent space.

4.2.1 Bipartite Graph Construction

We form seven bipartite graphs to represent the relations between six types of graph nodes

(POI, user, region, rating, time and category) based on the content information provided in the

network. All nodes in the graphs need to be represented in a structured form. In this section, we

explain how content information in the original dataset is depicted.

∙ User-POI Graph. . User-POI graph captures the interactions between users and POIs in

the dataset. An edge is formed when a user visit a certain POI. It’s worth mentioning that

each edge corresponds to a specific visitation, meaning there can be multiple edges between

a user and a POI if the user has visited a place for multiple times. The reason we do not use

a weighted edge is because the high variance of edge weights may cause gradient explosion

33



during optimization. More details will be covered in Section 4.2.3.

∙ POI-POI Graph. POI-POI graph captures the sequential transitions between two POIs in

a user’s mobile trajectory. Note that a edge is formed only if the visiting time between two

sequentially visited POIs is within a certain time interval. Like in the User-POI graph, one

edge only corresponds to one transition record between two POIs.

∙ POI-Time Graph. POI-Time graph embeds the time of visit for each POI. The ’Time’

attribute is originally represented in a detailed form, which cannot be directly used as

node representation. According to dataset exploration, users’ periodic mobility exhibits

time-of-day and day-of-week effects. In order to encode the temporal cyclic patterns, we

introduce a time-indexing strategy, which replaces the detailed temporal information with a

timestamp representation. The details of the this indexing method is described as follows:

(i). In Foursquare dataset, since both time-of-day and day-of-week effects exist, we denote

every timestamp as a two-digit number: the first digit stands for weekdays. Monday through

Sunday is represented with number 1 to 7. The second digit stands for 6 time-slots in a day,

and each time-slot is a 4-hour time interval. For example, 12 am to 4 am is encoded as 0.

Under this framework, a week is divided into 42 equal length time-slots.

(ii). For Google Local dataset, only day-of-week effect shows significant influence. There-

fore, the timestamp is simply represented using day of week, for example, ’Monday’ and

’Friday’.

Note that each edge only corresponds to one specific visitation.

∙ POI-Region Graph. The geographical information provided in the original dataset is a

combination of coordinates and administrative division, which cannot be directly used for

node representations. Location coordinates are too detailed and will add enormous nodes

to the network. Use city as the region unit would work fine for small counties, while is not
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discriminative for large cities. Therefore, we use postcode as the region unit which has

suitable scale.

∙ POI-Category Graph POI-Category graph captures the categorical information of POIs.

One POI may belong to multiple categories and there is only one edge formed between a

POI and a certain category node.

∙ POI-Rating Graph Google Local dataset contains user ratings and reviews, which can

help to make inference about POI properties and a user’s preference towards certain POIs.

In addition, evaluating rating and review sentiment jointly leads to a more reliable and

unbiased assessment. Therefore, we construct the POI-Rating graph to capture the semantic

effect of user ratings and reviews jointly. To be specific, we compute the sentiment score

for each review through sentiment analysis, then scale it to 0 5. The average of rating and

the scaled sentiment score is used as the final ’rating’ value.

∙ User-User Graph User-User graph is constructed to capture the social ties between users.

Note that each social link is undirected and unweighted, for example, if user ui and uj are

’friends’, then the edge ui-uj is the same as uj-ui, and will be counted only once.

To provide a more intuitive illustration of this construction strategy, Figure. 4.1 gives an

example of the set of bipartite graphs built from 9 sample records, which is shown in Table 4.1.

4.2.2 Heterogeneous Graph Embedding

A graph is considered as a heterogeneous graph if two end nodes of each edge is of different

types. In another word, every edge in the graph is directed.

The location network is inherently a heterogeneous graph, since each POI has different

types of attributes. Therefore, we introduce a heterogeneous graph embedding strategy to embed

six bipartite graphs in the location network: User-POI graph, POI-Time graph, POI-Region graph,
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Table 4.1: Sample Check-in Records

Record User ID Friends Timestamp Venue ID Region ID Category ID

1 u1 u2,u3,u5 t1 v1 r1 c1
2 u1 u2,u3,u5 t2 v3 r3 c1
3 u1 u2,u3,u5 t3 v4 r1 c2
4 u2 u3,u4,u5 t1 v4 r2 c1
5 u3 u1,u2,u4,u5 t1 v2 r3 c1
6 u3 u1,u2,u4,u5 t2 v3 r2 c2
7 u4 u2,u3 t3 v2 r3 c1
8 u5 u1,u2,u3 t1 v4 r2 c1
9 u5 u1,u2,u3 t2 v5 r2 c2

Figure 4.1: Bipartite Graphs Constructed From Sample Records
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POI-Rating graph, POI-Category graph and POI-POI graph. Note that the POI-POI graph is

heterogeneous, since each edge is directed, pointing from one POI to the sequentially visited POI.

For heterogeneous graph embedding, we only investigate the second-order proximity

between nodes. The reason is that there is no point in observing the similarity between two

directly connected nodes since they’re of different types. Instead, we aim at embedding similar

nodes of the same type close to each other in the embedding space, and the closeness is measured

by observing the shared neighborhoods. Here, we explain the detailed embedding method:

Given a bipartite graph GAB = (VA ∪VB, "), where VA and VB are two disjoint sets of

vertices. Vertex vi is in VA and vertex vj is in VB. Then the conditional probability of ’context’

vj been generated by vi is defined as:

pℎetero(vj|vi) =
exp(v⃗j

T ⋅ v⃗i)
∑

vk∈VB exp(v⃗k
T ⋅ v⃗i)

(4.1)

The empirical distribution is computed as:

p̃ℎetero(vj|vi) =
wij
degi

(4.2)

where degi is the degree of vertex vi, and degi =
∑

k∈N(i)wikwhereN(i) is the set of out-neighbors

of vi .

To preserve the second-order proximity, the conditional distribution needs to be closely ap-

proximated to the empirical distribution by minimizing the distance between the two distributions,

which is represented by the following objective function:

Oℎetero =
∑

vi∈VA

�id(p̃ℎetero(⋅|vi), pℎetero(⋅|vi)) (4.3)

where d(⋅, ⋅) is computed using KL-divergence. �i is the ’importance’ of vertex vi, which can be

represented as the degree degi.
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Omitting some constants, Equation. 4.3 can be calculated as:

Oℎetero = −
∑

eij∈"
wijlogpℎetero(vj|vi) (4.4)

We can obtain the embedding vectors of v⃗i and v⃗j by minimizing Equation. 4.4

4.2.3 Homogeneous Graph Embedding

A graph is considered as a homogeneous graph if two end nodes of each edge are of the

same type, and every edge in the graph is undirected.

The social network is a homogeneous graph, since User-User edge is undirected and

unweighted. For homogeneous graph embedding, we only capture the first-order proximity

between nodes. This makes sense for social graph embedding since users with the same neighbors

make up only a small fraction of the population. The detailed embedding method is described as

follows:

Given a bipartite graph GAB = (VA ∪VB, "), where VA and VB are two disjoint sets of

vertices, " is the set of edges between them. Given a vertex vi in VA and a vertex vj in VB, the

joint distribution between vi and vj is defined as:

pℎomo(vi,vj) =
1

1+ exp(−v⃗j
T ⋅ v⃗i)

(4.5)

where v⃗i, v⃗j are the vector representations of vertices vi, vj .

The empirical probability of vi and vj is:

p̃ℎomo(vi,vj) =
wij
W

(4.6)

where wij is the weight between vi and vj , andW =
∑

eij∈"wij .
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To preserve the first-order proximity, the joint distribution needs to be closely approximated

to the empirical distribution by minimize the distance between the two distributions, which is

represented by the following objective function:

Oℎomo = d(p̃ℎomo(⋅, ⋅), pℎomo(⋅, ⋅)) (4.7)

where d(⋅, ⋅) is computed using KL-divergence. Omitting some constants, we have:

Oℎomo = −
∑

eij∈"
wij logpℎomo(vj ,vi) (4.8)

We can get the embeddings of all vertices in a homogeneous graph by minimizing Equation.

4.8.

4.2.4 Model Training and Optimization

∙ Negative Sampling Approach

Optimizing objective function Equation. 4.3 is computationally expensive, as calculating

the conditional probability pℎetero(⋅|vi)) requires to sum over the entire set of vertices in
∑

vk∈VB exp(v⃗k
T ⋅ v⃗i). Facing this problem, negative sampling method is adopted. Given

a positive edge (vi,vj), several negative edges are sampled according to a specific noise

distribution. For each edge (vi,vj), the optimization objective is defined as:

log�(v⃗j
T ⋅ v⃗i)+

K
∑

i=1
Evn∼pn(v)[log�(−v⃗n

T ⋅ v⃗i)] (4.9)

where �(x) is the sigmoid function, and K represents the number of negative samples for

each edge. The first term is for the observed edge been optimized, and the second term is

the set of negative edges sampled from a specific noise distribution. In this work, we set

K = 5 according to empirical evidence, and choose the noise distribution to be pn(v) ∝ d
3∕4
v

39



according to literature [53].

Table method [54] is adopted to draw a sample, which reduces the sampling complexity to

O(1). Since the number of negative samples for each edge is a constant, for a graph withN

edges, the overall time complexity of the sampling procedure is O(N). This ensures that

our model shows good scalability.

During training, we adopt the Adaptive Gradient Descent (AdaGrad) for optimization. The

gradient with respect to the embedded vector v⃗i in edge (vi,vj) can be calculated as:

)O
)v⃗i

=wij ⋅
)logpℎetero(vj|vi)

)v⃗i
(4.10)

As mentioned in the previous section, we give all edges equal weight in order to avoid the

gradient explosion problem. The probability of an edge been sampled is proportional to the

number of occurrence of that edges in the graph.

∙ Joint Training Framework

The heterogeneous bipartite graphs use the same embedding strategy, therefore can be

trained with a joint framework. A simple approach is to embed all the bipartite graphs

collectively by minimizing the sum of their objective functions. Here, we use Foursquare

dataset as an example. Given five heterogeneous bipartite graphs Guv,Gvc ,Gvt,Gvr,Gvv,

the joint objective is defined as:

O = Ouv+Ovv+Ovc +Ovt+Ovr (4.11)

where:

Ouv = −
∑

eij∈"uv

wij logpℎetero(vj|vi) (4.12)
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Ovv = −
∑

eij∈"vv

wij logpℎetero(vj|vi) (4.13)

Ovc = −
∑

eij∈"vc

wij logpℎetero(vj|vi) (4.14)

Ovt = −
∑

eij∈"vt

wij logpℎetero(vj|vi) (4.15)

Ovr = −
∑

eij∈"vr

wij logpℎetero(vj|vi) (4.16)

The objective function Equation. 4.11 is optimized by merging five types of edges ("uv, "vv,

"vc , "vt, "vg) then train them together. During updating, a positive edge is sampled according

to its ’weight’ in its group, which is proportional to the number of occurrence. Note that the

negative edge needs to be sampled from the same group where the positive sample belongs.

In light of the constraints, we adopt alternative updating to train each graph alternatively.

Before we jointly train the heterogeneous location network, we first train the homogeneous

social network (User-User graph), then use the obtained user embeddings as the initialization

of user vectors u⃗ for the joint training of the other bipartite graphs. A detailed description

of the training algorithm is illustrated in Algorithm. 1.

4.3 Context-aware Prediction FrameworkwithDynamicTrack-

ing of User Preference

When predicting the next POI a user would visit, the context information need to be

considered to facilitate the prediction, which includes time and user’s current location.

Concretely, denote user, timestamp and region as u, t, r, given a query q = (u, t, r), for each

candidate POI v, its ranking score can be computed as:

S(q,v) = u⃗�
T ⋅ v⃗+ r⃗T ⋅ v⃗+ t⃗T ⋅ v⃗ (4.17)
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Algorithm 1 Training Algorithm
Input: Bipartite graphs Guu,Guv,Gvv,Gvc ,Gvt,Gvr, vector dimension d, number of samples N,
number of negative samples K
Output: user embeddings u⃗, POI embeddings v⃗, category embeddings c⃗, timestamp embeddings
t⃗, region embeddings r⃗.
1: procedure HOMOGENEOUS GRAPH EMBEDDING
2: Initialize u⃗
3: while iter ≤N do
4: sample an edge from "uu, and update user embeddings.
5: return u⃗ ⊳ embeddings of user
6: procedure HETEROGENEOUS GRAPH EMBEDDING
7: Initialize u⃗ with outputs of the previous procedure, initialize v⃗, c⃗, t⃗, r⃗
8: while iter ≤N do
9: sample an edge from "uv, update user and POI embeddings with K negative edges.
10: sample an edge from "vv, update POI embeddings with K negative edges.
11: sample an edge from "vc , update POI and category embeddings with K negative edges.
12: sample an edge from "vt, update POI and time-slot embeddings with K negative edges.
13: sample an edge from "vr, update POI and region embeddings with K negative edges.
14: return u⃗, v⃗, c⃗, t⃗, r⃗ ⊳ embeddings of user, POI, category, timestamp, and region

Instead of directly use the user embeddings obtained from joint training, we introduce

a special ’embedding’ strategy to get user representation u⃗� that can dynamically model user’s

latest preference without retrain the whole model when new history is added. Specifically, we

consider each user as a collection of POIs from his/her mobile trajectory before time �. Each

POI in the visiting history is multiplied with a time-decaying factor in the exponential form. The

intuition behind this method is that the latest activity is supposed to have the largest impact on

user’s current preference, while visitations from long time ago won’t have too much influence.

Under this setting, u⃗� is computed as:

u⃗�
T =

∑

(u,vi,ti)∈Du∩(ti<�)
exp−(�−ti) ⋅ v⃗i (4.18)

where Du is the collection of visiting records associated with user u, where each record contains

POI vi and visit time ti. Note that ti and � are both represented with unix timestamp.
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This user embeddingmethod resembles the dynamics of user preference. More importantly,

it allows us to update user preference online in linear time complexity without retraining the entire

model.
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Chapter 5

Experiments and Results

In this chapter, we first introduce the comparison models and basic experiment settings,

then report the experimental results of three predictive tasks: next-POI prediction, cold-start

recommendation and social link prediction. We conduct model comparisons and explore the

impact of influential factors.

5.1 Datasets

We conduct extensive experiments on two real-world large-scale LBSN datasets, including

Foursquare and Google Local. A detailed exploration on the dataset statistics and characteristics

is presented in Chapter 3.

5.2 Comparison Models

We conduct experiments to compare our method with four baselines, which are represen-

tative models of Probability-based, Factorization-based and Deep Learning-based methods.

∙ Naive Bayes Classifier. NBC is a probability-based predictor, which makes predictions

based on the assumption that all the features are independent. In next-POI prediction task,
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given a query q = (u, t, r), the probability that user u will visit v at given time t and region r

is computed as:

p(v|u, t, r) ∝ p(u, t, r|v) ⋅p(v) (5.1)

NBC is a strong baseline in many problems. In addition, in next-POI prediction task, NBC

can realize cold-start recommendation by incorporating content attributes of the cold-start

POIs as auxiliary information, and using contextual features to facilitate prediction.

∙ SVDFeature. SVDFeature [55] is a machine learning toolkit designed to solve feature-

based Matrix Factorization. SVD is a classic Factorization-based method which represents

the interactions between nodes with a matrix. The node embeddings are obtained through

Matrix Factorization. SVDFeature is an improved version of traditional SVD in that nodes

can have both local features and global features. The model objective is defined as:

y = �+(
∑

j
b(g)j j +

∑

j
b(u)j �j +

∑

j
b(i)j �j)+ (

∑

j
pj�j)T (

∑

j
qj�j) (5.2)

where �,�, are user feature, item feature and global feature respectively.

The final model function is:

r̂ = f (y) (5.3)

Loss = L(r̂, r)+ regularization (5.4)

where f is the activation function and L is the loss function.

In next-POI prediction task, temporal factor is considered as global feature, user social links

are user local feature, POI category, POI region and POI rating are considered as POI local

features.
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In addition to POI prediction task, SVDFeature can also be used for friendship recommen-

dation.

∙ GRU. GRU [56] is an improved version of standard Recurrent Neural Network which

uses update gate and reset gate to address the vanishing gradient problem, and can capture

long-term sequential context. Since it has a long-term dependency for locations such as

periodical visiting behaviors, GRU is suitable for modeling user mobility in LBSNs and

solving time-aware POI prediction problem based on visiting history.

Given a visiting trajectory v1,v2, ...,vm, denote a state after visiting the t-th location as

Ct ∈ℝd , denote the corresponding long-term representation as ℎt = tanℎ(Ct), the update

rule is defined as:

C̃t = tanℎ(Wc1Uvt +Wc2ℎt−1+bc) (5.5)

whereWc1 ,Wc2 ∈ ℝd×d are model parameters, Uvt is the embedding of vt, bc is the bias

term. Ct is obtained through input and forget gates:

Ct = it ∗ C̃t+ft ∗ C̃t−1 (5.6)

where it,ft ∈ℝd stand for the input and forget gate, and are computed by:

it = �(Wi1Uvt +Wi2ℎt−1+bi) (5.7)

ft = �(Wf1Uvt +Wf2ℎt−1+bf ) (5.8)

∙ TransFM. TransFM [36] adapts ideas from Factorization Machine into translation-based

sequential recommenders. Specifically, it replace the inner product in the FM interaction

terms with squared Euclidean distance to measure the interaction strength between features.
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An embedding vector and a translation vector are learned for each feature dimension.

The modification allows it to incorporate arbitrary real-valued features for the purpose of

sequential recommendation. The model equation is given by:

ŷ(x⃗) =w0+
n
∑

i=1
wixi+

n
∑

i=1

n
∑

j=i+1
d2(v⃗i+ v⃗′i, v⃗j)xixj (5.9)

where v⃗i, v⃗′i are the embedding vector and translation vector for feature xi respectively. w0

is the global bias term, and wi is the linear term for feature xi. d2(⋅, ⋅) stands for squared

Euclidean distance.

TransFM has been proved to outperform many FM-based models therefore can serve as a

strong baseline.

∙ JGEL. Joint Graph Embedding for LBSNs. The model proposed in this work. Relational

graphs are constructed to capture multiple effects in the user and POI attribute networks, then

embedded into a shared latent vector space using a joint framework. An online embedding

strategy is introduced to dynamically model user’s latest preference without retrain the

whole model when new history is added.

5.3 Evaluation Methodology

We sort the collection of visiting records associated with each user according to time.

The latest record are used for testing, the second latest record contributes to the validation set for

hyper-parameter tuning, and the rest of the records are used for model training.

To evaluate the prediction performance during model comparisons, we report the Area

Under the ROC Curve (AUC) of each model, which is defined as the probability that a randomly

sampled positive observation has a predicted probability greater than a randomly sampled negative

observation. Under our problem settings, the AUC can be computed as:
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AUC = 1
|U |

∑

u∈U

1
|V ⧵Su|

∑

v′∈V ⧵Su
1(Ru,gu < Ru,v′) (5.10)

where U is the entire user set, V is the entire POI set. gu is the ground truth POI of user u in the

test set, and Su = {gu}. Ru,v stands for the rank of POI v in the prediction output list of user u. 1(⋅)

is the indicator function which returns 1 if the ground truth POI is ranked ahead of a unobserved

POI v′.

However, a high AUC value only means that positive items are ranked relatively high.

When the number of items is sufficiently large, an item doesn’t necessarily need to be ranked

among the very top to achieve a high AUC value. For example, suppose we have 100,000 items, a

positive item ranked at the 100th place still achieve an AUC as high as 99.9%. This metric works

fine for overall model evaluation, however, for real-world recommenders, only items ranked at

the very top can be seen by users. In addition, the results of different models can be very close

therefore hard to be used to differentiate model performance.

In light of these problems, we also adopt Accuracy@k [57][52] when investigating

Foursquare dataset since the number of POIs it contains is rather large. This metric is defined as:

Accuracy@k = #ℎit@k
|D|

(5.11)

where D is the set for testing, and |D| denotes the number of total test cases. For each test

case, we compute the prediction probability of all candidate POIs and rank them in a descending

order. If the ground truth POI appears in the top k ranked POIs, then it is considered as a ℎit@k.

Accuracy@k is defined as the number of ℎit@k throughout the entire test set.
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5.4 Sensitivity of Model Parameters

Hyper-parameter tuning is important in order for a model to achieve the optimal perfor-

mance. The hyper-parameters in the proposed model include embedding dimensions, number of

samples and granularity of temporal pattern. In this section, we implement sensitivity analysis on

these model parameters to find the optimal parameter settings.

5.4.1 Embedding Dimension & Number of Samples

Table. 5.1 shows the model performance in terms of Accuracy@15 with different embed-

ding dimensions and number of samples drawn during joint training. A more intuitive illustration

is shown in Figure. 5.1a.

Table 5.1: Embedding Dimension VS. Number of Samples

Embedding Dimensions d
Number of Samples N (millions) 70 90 100 110 120

10M 0.2414 0.2517 0.2547 0.2611 0.2611
50M 0.3722 0.3824 0.3848 0.3852 0.3852
100M 0.4024 0.4124 0.4138 0.4138 0.4139
150M 0.4152 0.4248 0.4261 0.4262 0.4262
200M 0.4162 0.4254 0.4263 0.4263 0.4263

According to the results, the model is not very sensitive to embedding dimensions. The

accuracy curves slightly go up as the number of dimensions increases and plateau at around 100

dimensions. As for the number of samples, the prediction accuracy increases dramatically as the

amount of total samples goes from 10 millions to 100 millions, then converges at 150 millions.

In order to achieve the optimal performance and being computationally effective at the

same time, we used dimensions d = 100 and the number of total samples N = 150M for the

following experiments.

On Google Local Dataset, we go through the same process, and find that setting dimensions
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(a) Embedding Dimensions
vs. Number of Samples

(b) Performance of Different
Granularity of Sequential Pattern

Figure 5.1: Sensitivity Analysis of Model Parameters

d = 100 and the number of total samplesN = 100M gives the best performance.

5.4.2 Granularity of Sequential Pattern

On Foursquare Dataset, in order to find the suitable time interval that captures the sequential

transition patterns between two sequentially visited POIs, we conduct experiments with different

time intervals ΔT . A POI-POI edge is formed if only the transition time t between the two POIs

satisfies t < ΔT . The results are shown in Table. 5.2 and further illustrated in Figure. 5.1b.

Table 5.2: Prediction Accuracy with Different Time Intervals

Time Interval (hour) Acc@1 Acc@5 Acc@10 Acc@15 Acc@20

2 0.2091 0.2963 0.3282 0.3529 0.3715
3 0.2334 0.3343 0.3629 0.3896 0.4214
4 0.2412 0.3423 0.3850 0.3901 0.4505
6 0.2582 0.3571 0.3945 0.4261 0.4634
8 0.2491 0.3456 0.3827 0.4185 0.4549

According to the result, as the time interval gets larger, the prediction accuracy first goes
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up, then drops after surpassing the 6-hour time-slot. This makes sense since the time people stay

at one place can be long, when the time interval is set to be very short, many valuable records

will be dropped out therefore the model is unable to capture user’s behavior patterns well. On

the other hand, a large time interval will add noise since the two sequentially visited venues

aren’t essentially related. In conclusion, the 6-hour time-slot turns out to be an optimal temporal

granularity to capture sequential effect in user mobility.

5.5 Performance of Context-aware Next-POI Prediction

In this section, we explore our model performance on context-aware next-POI prediction

task. We first study the impact of influential factors, then conduct experiments to compare the

performance of our method and four representative recommenders. Finally, we investigate the

effectiveness of our prediction method with dynamic tracking of user preference.

5.5.1 Impact of Influential Factors

As mentioned in the previous chapter, we adopt bipartite graph modeling and construct

six relational graphs Guu,Gvv,Gvc ,Gvt,Gvr,Gvs to capture the friendship influence, sequential

effect, categorical effect, temporal cyclic effect, geographical influence and semantic effect exhibit

in user mobility. To examine their individual impact on our model performance of next-POI

prediction, we design two experimental settings when studying one specific effect:

i. Remove the corresponding relational graph and investigate the prediction accuracy

without considering this specific effect.

ii. Only keep the corresponding relational graph for evaluation to eliminate the joint effect

resulting from the other graphs.

On Foursquare dataset, we study five influential factors which affect usermobilitymodeling:

friendship influence (User-User graph), sequential effect (POI-POI graph), categorical effect
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Table 5.3: Impact of Individual Graph on Next-POI Prediction in Foursquare

Type Graph Acc@1 Acc@5 Acc@10 Acc@15 Acc@20

Remove
One Graph

User-User 0.2312 0.3271 0.3723 0.4092 0.4529
POI-POI 0.1963 0.2501 0.3015 0.3403 0.3801
POI-Category 0.2402 0.3150 0.3604 0.4034 0.4432
POI-Time 0.2321 0.2871 0.3353 0.3802 0.4275
POI-Region 0.2506 0.3277 0.3791 0.4184 0.4628
All 0.2584 0.3356 0.3835 0.4345 0.4663

Keep
One Graph

User-User 0.0091 0.0124 0.0131 0.0359 0.0391
POI-POI 0.0471 0.0935 0.1129 0.1485 0.1637
POI-Category 0.0082 0.0114 0.0115 0.0253 0.0293
POI-Time 0.0194 0.0324 0.0471 0.0515 0.0598
POI-Region 0.0273 0.0598 0.0799 0.1067 0.1211

(POI-category graph), temporal cyclic effect (POI-Time graph), and geographical influence

(POI-Region graph). All models are trained with embedding dimensions d = 100, number of

samplesN = 150M and number of negative samples for each sampled edge K = 5. The temporal

granularity is set as ΔT = 6ℎ. The experimental results are shown in Table. 5.3.

For better illustration, we present the experimental results using a bar chart, which is shown

in Figure. 5.2. The bars built from the bottom represent the prediction accuracy with only one

effect considered (models trained with one individual graph). The bars built from the top represent

the prediction accuracy trained with one relational graph eliminated, except for the first bar which

is trained with all graphs as a reference. The results in Accuracy@k,k ∈ {1,5,10,15,20} are

represented with different shades of color. We also label the results in Accuracy@20 and fit the

lines for easier comparison.

According to the diagram, the observations made from the results of two experimental

settings are generally consistent.

i. First of all, all influential factors can facilitate next-POI prediction to some extent.

Eliminating any relational graph will cause performance degradation.

ii. Sequential effect (POI-POI graph) has the greatest impact on the model performance.
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Figure 5.2: Analysis on the Impact of Individual Factors

It gives the best result when training with only one graph, and it causes the largest performance

degradation if eliminated from the framework. Temporal cyclic effect is the second important

factor, followed by categorical effect (POI-Category graph) and friendship influence (User-User

graph).

iii. Finally, the results about geographical influence (POI-Region graph) are contradic-

tory. Possible reason for the inconsistency is that geographical information can largely facilitate

prediction with its individual impact, while the influence can be compensated by other factors.

On Google Local dataset, we conduct the same sets of experiments to investigate four

influential factors exhibit in the dataset: categorical effect (POI-category graph), temporal cyclic

effect (POI-Time graph), geographical influence (POI-Region graph) and semantic effect (POI-

Rating graph). All models are trained with embedding dimensions d = 100, number of samples

N = 100M and number of negative samples for each sampled edge K = 5. The results are shown

in Table. 5.4.

According to the results:

i. semantic effect turns out to have the most significant impact, temporal cyclic patterns
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Table 5.4: Impact of Individual Graph on Next-POI Prediction in Google Local

Type Graph CA TX FL CO WA NC

Remove
One Graph

POI-Category 0.8521 0.8362 0.8360 0.8930 0.9065 0.8663
POI-Time 0.6505 0.8253 0.6621 0.6578 0.8288 0.7988
POI-Region 0.6589 0.8714 0.7829 0.8460 0.8430 0.8787
POI-Rating 0.5882 0.7453 0.6014 0.6238 0.7736 0.7534
All 0.7032 0.9091 0.8220 0.8771 0.8993 0.9088

Keep
One Graph

POI-Category 0.5134 0.6553 0.5625 0.5358 0.5299 0.6526
POI-Time 0.5603 0.8584 0.7898 0.6265 0.6158 0.7328
POI-Region 0.5774 0.8111 0.8050 0.6295 0.6321 0.7364
POI-Rating 0.6059 0.8718 0.8132 0.6624 0.6480 0.7591

and geographical influence have similar levels of impact.

ii. Categorical information exhibits an opposite effect on next-POI prediction. This

might due to the large number of different categories and their sparse distributions. A further

investigation on data statistics shows that, nearly 50% of categories have no more than three POIs.

Through model evaluations on two datasets, we draw several conclusions about the impact

of influential factors:

i. Sequential effect is a distinctive yet dominant factor in next-POI prediction problem in

LBSNs. People’s choice on the next place to visit is highly correlated with the latest check-in spot.

ii. Semantic effect from user feedback is an important factor in inferring the next-POI a

user will visit. User feedback such as ratings and reviews directly reveal user preference and their

potential of visiting a venue again. In addition, it reflects POI popularity as well.

iii. The model performance may degenerate due to the sparsity of network nodes. Con-

structing feature hierarchy to obtain suitable representations with the right scale is a non-trivial

task.

54



5.5.2 Comparative Results

Wecompare ourmethodwith four representativemodels fromProbability-based, Factorization-

based and Deep Learning-based methods. Our model parameters when studying Foursquare

dataset are set as: embedding dimensions d = 100, number of samplesN = 150M and number

of negative samples for each sampled edge K = 5. The temporal granularity is set as ΔT = 6ℎ.

The model parameters for Google Local Dataset are set as: embedding dimensions d = 100,

number of samplesN = 100M and number of negative samples for each sampled edge K = 5.

The comparison of results are shown in Table. 5.5

Table 5.5: Prediction Accuracy of Comparison Models

Model Foursquare CA TX FL CO WA NC

NBC 0.9906 0.7269 0.7145 0.6747 0.6733 0.7068 0.6715
SVDFeature 0.8673 0.6371 0.6764 0.6668 0.6456 0.6771 0.6661
GRU 0.8320 0.6115 0.5691 0.5236 0.5921 0.5486 0.5446
TransFM 0.9172 0.7808 0.7673 0.6814 0.7131 0.6750 0.6086
JGEL-Dynamic 0.9989 0.7032 0.8931 0.8193 0.8589 0.8834 0.9017
JGEL-Heuristic 0.9947 0.7751 0.8832 0.7893 0.8127 0.8548 0.8425

According to the results, our method (JGEL-Dynamic) generally outperforms the other

comparison models in terms of prediction AUC. Since the AUC of NBC and our method on

Foursquare are pretty close, we further investigate their performance using Accuracy@K as the

evaluation metric. The comparative results are illustrated with bar plots, which are shown in Figure.

5.3a and Figure. 5.3b for Foursquare and Google Local respectively. A detailed comparison of

the models is as follows:

∙ JGEL v.s. TransFM. TransFM shows comparative results with our method on Foursquare,

and even surpasses our method on Google Local California. The result proves the advantage

of metric learning and incorporating multiple factors to facilitate recommendation. However,

our method outperforms TransFM for most cases, which indicates that our embedding
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(a) Prediction Accuracy of
Comparison Models on Foursquare (b) Prediction Accuracy of

Comparison Models on Google Local

Figure 5.3: Prediction Accuracy of Comparison Models

method is better at exploiting the side information with a network structure. Possible reason

is that our method embeds all factors (relational graphs) into a shared latent space, which is

able to capture the mutual effects between them, while TransFM uses two spaces to embed

features and sequential transitions between visitations separately. In our method, not only

the potential correlations among all the factors can be captured, the global structure is also

preserved. However, our method may be more sensitive to network sparsity, which explains

for the degradation of performance on Google Local.

∙ JGEL v.s. GRU. Our method significantly outperforms GRU on both datasets. The reason

might be that GRU is good at capturing users’ long-term periodic mobility, while fails

to observe the potential correlations among other useful side information. In addition, in

next-POI prediction problem, besides from visiting history, the prediction context also plays

an important role, which GRU fails to consider.

∙ JGEL v.s. SVDFeature. Our method surpasses SVDFeature by a large amount on both

datasets. The results prove the superiority of: (1). using a graph structure over the adjacency

matrix to capture user-POI interactions and the correlations among different factors (2).
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Figure 5.4: Learning curves of NBC v.s. JGEL on Foursquare

embedding users and POIs into a shared latent space with a unified model.

∙ JGEL v.s. NBC. NBC achieves comparable performance with our method on Foursquare,

but our method outperforms NBC significantly on Google Local. Further investigation

on Foursquare dataset using Accuracy@k as the evaluation metric proves the superiority

of our model. Although NBC receives comparable result at Accuracy@20, our model

outperforms NBC by a significant amount in terms of top-ranking accuracy.

In addition to prediction accuracy, our model shows better prediction effectiveness in that it

takes fewer training samples to converge. According to the learning curve shown in Figure.

5.4, although NBC achieves comparable results eventually, the classifier relies on a large

amount of observed samples in order to approximate the real-world feature distribution.

This indicates that NBC is more sensitive to data sparsity, and also explains for its poor

performance on Google Local dataset, which is much sparser compared with Foursquare.
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5.5.3 Performance Analysis on Dynamic Preference Tracking

In Chapter 4, we introduce a context-aware prediction framework which can dynamically

track user preference. Aside from its superiority in dynamic preference tracking, we also want to

test its prediction accuracy compared with heuristic prediction framework.

We define the heuristic prediction method of computing the ranking score as:

S(q,v) = u⃗T ⋅ v⃗+ r⃗T ⋅ v⃗+ t⃗T ⋅ v⃗ (5.12)

where u⃗ is directly obtained from the outputs of joint training (Algorithm. 1). We compare the

prediction accuracy using the two frameworks, which is reported in Table. 5.5. Results of further

investigation on Foursquare using Accuracy@k are illustrated in Figure. 5.3a.

According to the result, computing the prediction ranking score using user embeddings

constructed with dynamic tracking strategy achieves higher accuracy, compared with using embed-

dings obtained from joint training. This observation indicates that user embeddings constructed

with mobile trajectories is more representative for prediction purpose. Possible reason is that

since each user embedding is a time-aware combination of history visits, the first term in the

prediction Equation. 4.17 is actually measuring the similarity between visited POIs and the

predicted candidates. Therefore the dynamic representation can better assess the compatibility

between user and the candidate POI.

In conclusion, using the dynamic trackingmethod for user vector embedding not only shows

superiority in online training, but also gives better accuracy in next-POI prediction task. Moreover,

since user embedding is computed with linear time complexity, the prediction framework has

the nice property of making fast updates when new visiting records are added, which makes it

scalable to large datasets.
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Table 5.6: Prediction Performance on Cold-Start POIs

Model Foursquare CA TX FL CO WA NC

NBC 0.6632 0.6062 0.6846 0.6208 0.6198 0.6267 0.6996
SVDFeature-r 0.6603 0.5091 0.5236 0.6013 0.5166 0.5129 0.4993
SVDFeature-c 0.6485 0.5328 0.5605 0.6094 0.5689 0.5165 0.6041
SVDFeature-both 0.6787 0.6544 0.7518 0.6233 0.6324 0.7267 0.7892
JGEL-r 0.6412 0.5332 0.5624 0.6152 0.5253 0.5281 0.5145
JGEL-c 0.5527 0.6031 0.6625 0.6157 0.5875 0.5353 0.6327
JGEL-both 0.6884 0.6836 0.8481 0.6253 0.6574 0.7838 0.8491

5.6 Performance of Cold-Start Recommendation

In this section, we evaluate our model effectiveness in recommending cold-start POIs. By

incorporating content information of the cold-start POIs in joint training, our model can learn the

embeddings of cold-start POIs without additional feature engineering or model modifications.

To be specific, we add the categorical and geographical information of the cold-start POIs to

POI-category and POI-region relational graphs. In this way, the cold-start POIs are embedded into

the same latent vector space along with other network nodes, therefore can capture the potential

correlations with other network nodes.

TransFM and GRU won’t work for cold-start scenario in next-POI recommendation since

Factorization-based and Neural Network-based models rely on observing user-POI interactions,

while cold-start POIs do not have records of history interactions. NBC handles the cold-start prob-

lem by incorporating geographical information about the cold-start POIs. Categorical information

has no impact since it is not provided in the prediction context while NBCmakes predictions based

on the posterior probability of observed features. SVDFeature can make use of both geographical

and categorical auxiliary information of the cold-start POIs by taking them as ’item features’.

Therefore, we compare our model performance on cold-start recommendations with NBC

and SVDFeature. For SVDFeature and our model, we further investigate the impact of two

auxiliary information: category and region. ’−c’ represents models incorporating categorical
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Figure 5.5: Performance on Cold-Start POIs Figure 5.6: Performance of Social Link Prediction

information of cold-start POIs, and ’−r’ represents models incorporating geographical information.

The experimental results are shown in Table. 5.6 and illustrated in Figure. 5.5.

There are several observations obtained from the results:

i. All models achieve better than random results, which proves their ability of handling

cold-start situations.

ii. Our method outperforms other comparison models in cold-start recommendations on

both datasets.

iii. Both geographical and categorical information can facilitate cold-start recommen-

dations. Geographical information plays a more important role in cold-start recommendations

on Foursquare. Incorporating only category information doesn’t improve the performance too

much from a random recommender. However, categorical information turns out to have a much

larger impact on Google Local dataset for most of the states. Possible reason is that the category

distribution in Google Local is more dispersed, so that more specific correlations can be captured

which leads to more accurate predictions.

iv. NBC makes better use of geographical information and achieves the best predictions

performance when it is the only side information being used.
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Table 5.7: Performance of Social Link Prediction

Model All features w/o category w/o sequential w/o region w/o time

JGEL POI-Time 0.6244 0.6192 0.6262 0.6218 0.6225
JGEL User-Time 0.6252 0.6241 0.6280 0.6213 0.6225
SVDFeature 0.5862 0.5739 0.5794 0.5813 0.5825
Jaccard Similarity 0.6143

5.7 Performance of Social Link Prediction and Friend Recom-

mendation

In this section, we test our model performance in discovering potential friends in the social

network on Foursquare dataset. For each user, we rank his or her social closeness with the other

users, the top-ranking users are considered to have higher probability of becoming friends.

Specifically, we train our model without incorporating User-User relational graph, then

compute users’ pairwise similarity using embeddings obtained from joint training. Prediction

AUC is reported, where the similarity measurement works as the ranking score over all users in

the dataset.

In the original settings, we build POI-Time graph which captures the temporal cyclic

patterns of user mobility on the POI side. However, when evaluating the proximity between user

embeddings, observing the temporal correlations on the user side may lead to better performance.

Therefore, we propose a modified version of JGEL, which uses User-Time graph instead of

POI-Time graph to capture temporal effect.

We compare our models with SVDFeature and a heuristic method based on Jaccard

similarity (defined in Equation. 3.1). The results are reported in Table. 5.7. A illustration of the

comparison results is shown in Figure. 5.6.

Results show that:

i. Use embeddings obtained from our method for social link prediction gives better
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performance compared with SVDFeature and the heuristic method based on Jaccard Similarity.

ii. Use User-Time graph instead of POI-Time graph to capture temporal cyclic effect

facilitates social link prediction. This further proves that using a user-focused representation

instead of the POI-focused representation to capture temporal preference is more effective when

inferring social closeness based on mobility similarity.

iii. All factors facilitate friends recommendation except for the POI sequential effect

(POI-POI graph), which exhibits an opposite impact. The reason might due to that this graph

captures POI transition patterns, which has no impact on user preference modeling but only adds

noise to the user-focused social link prediction task. Among the other factors, categorical and

geographical influence turn out to have relatively significant impact, while temporal cyclic effect

shows the least influence. The result makes sense since friends tend to enjoy similar types of

activities, and people who live close to each other are more likely to become friends. What’s

more, these two factors are discriminating in terms of forming social circles, while users’ mobility

generally exhibit similar temporal cyclic patterns therefore has less contribution to personal

preference modeling.

5.8 Visualization of Embeddings

In this section, we present the visualization of POI embeddings learned on Foursquare.

We especially want to examine whether POIs belong to the same group are embedded close to

each other in the embedding space.

Specifically, we examine how categorical and temporal factors are captured in the embed-

dings. We use t-SNE [58] to project the 100-dimensional vector representations into 2D. Different

colors are assigned to the POI embeddings according to their attributes. For temporal factor, we

examine the ’day and night’ effect, the visualization is shown in Figure. 5.7. For categorical effect,

we illustrate seven most popular activity categories which takes up above 70% of the records. The
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Figure 5.7: Visualization of POI Embeddings
of Different Time Slots

Figure 5.8: Visualization of POI Embeddings
of Different Categories

visualization is shown in Figure. 5.8.

According to the illustrations, we can clearly recognize the ’day’ and ’night’ groups and

different category groups, which proves the model’s effectiveness. In addition, we can see that

the POI embeddings are better clustered according to ’day’ and ’night’ time slots, compared with

categories. This observation is consistent with the experimental results that temporal effect shows

a larger influence than categorical effect.
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Chapter 6

Conclusion

6.1 Discussion

In this work, we investigate the effectiveness of a graph embedding-based recommender

used in LBSNs.

Through studying the impact of each individual factor, we get some interesting observations

of how different contextual information facilitates the modeling of user mobility. The results also

provide us with some insights on how to build an effective recommender system.

In dense LBSNs where sequential effect of POI transitions is evident, considering the

sequential visiting patterns turns out to be the key to inferring user’s next visiting place. The

sequential effect directly captures transitions between POIs which forms the mobile trajectory.

In addition, it also encodes the spatiotemporal context. Intuitively, user’s previous location and

check-in time put geographical and temporal constraints on the next place to visit. Analytically,

geographical and temporal information are all POI attributes in the location network, and are

encoded into the POI embeddings through our unified framework. This also explains why geo-

graphical influence shows the most significant individual impact, while eliminating it from the

whole graph won’t cause evident performance degradation. Another observation is that user
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feedback is informative and deserves careful inspection. It not only works as a semantic indicator

of user’s personal preference, but also affects other users’ choice by presenting the visiting experi-

ence. This effect is also very evident in traditional recommenders about products and movies,

and is where POI recommendation connects with the traditional recommendation tasks. The

ill performance when incorporating categorical information in Google Local dataset reminds

us of the opposite effect may caused by feature sparsity. This finding stress the importance of

constructing feature hierarchy to obtain suitable representations with the right scale.

We further show that in POI recommendations, incorporating auxiliary information helps

to capture connections between unobserved POIs and the observed ones, therefore can alleviate

the cold-start influence. By embedding all the factors into the shared latent space, our method is

also able to capture the potential correlations between users, POIs and attributes, therefore leads

to a better performance. This also explains for our model superiority over other baselines in social

link prediction task.

Besides, our method highlight on its flexibility to incorporate multiple effects into the

unified framework. The generic characteristic makes it adjustable to various information networks

with diverse properties and attributes. However, in order to for the model to achieve the optimal

performance, careful feature engineering on feature hierarchy and representation is necessary.

Our graph embedding-based recommender shows advantages in capturing and reasoning

rich context and side information in the heterogeneous information network. However, comparing

with the naive recommenders, it has a much higher model complexity. The online updating

strategy we introduced to dynamically add new records and capture users’ latest preference sheds

light on realizing incremental updates in the recommender systems. Considering the massive

scale of LBSNs, this investigation is quite meaningful, which makes the model more feasible to

be put into practice use.

In fact, the generality-pertinency and accuracy-scalability trade-offs have always been

dilemmas in the research of recommender system. Our work is an exploration of finding a
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well-balanced solution.

6.2 Summary

In this thesis, we present a joint framework to combine user and POI attribute networks

using a heterogeneous graph embedding-based model. We demonstrate that this method achieves

good performance in several major tasks in local-based social networks, including next-POI

prediction, and social link prediction. By capturing the first-order proximity between homogeneous

graph nodes, local correlations are observed. Using second-order proximity to observe the shared

neighborhood of heterogeneous graph nodes helps to preserve the global structure and alleviate

network sparsity.

We conduct extensive experiments to evaluate our model and compare it with four repre-

sentative baseline models on two real-world large-scale datasets. Experimental results show the

versatility of our method in both context-aware next-POI prediction task and social link prediction

task. The study on cold-start recommendations further proves the superiority of our method in

embedding all network attributes into a shared latent space in a unified way. Potential correlations

between the network nodes can be well captured which compensates for information loss. Another

highlight of our work is an online update strategy which tracks users’ latest preference without

retraining the entire model.

Besides from model evaluations, multiple influential factors in LBSNs are investigated,

which sheds light on future directions in incorporating valuable side information and constructing

expressive representations that well reflect the primary effect.

We are able to demonstrate that the main goal of this thesis is to show that a unified graph

embedding method works well in depicting heterogeneous information graph, and is suitable for

building a reliable recommender which models user behavior patterns in LBSNs.
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6.3 Future Work

Current work on modeling user behavior patterns is mainly focused on user’s next check-in

POI and observing potential social link. Although location and users’ social links are the most

important information encoded in users mobile trajectories that interests us, other predictive tasks

concerning side information such as user emotions or content feedback deserve further study and

more exploration.

In addition, the method presented in this work shows good performance on constructing the

static portrait of users, but in the real world, users’ personal preference as well as the surrounding

environment is updating constantly. An immediate area of interest for future work is to build a

more comprehensive incremental updating strategy to obtain more accurate prediction result and

make the model more suitable for practical use.

Another area for improvement is that, our method proposed in this thesis uses a graph

embedding-based algorithm to embed the influence of different factors on users’ behavior patterns.

Although extensive dataset exploration is conducted seeking for representative expressions of

relevant network attributes, more expressive representations for these attributes may still exist.

Future work focusing on designing personalized characterization methods for representing each

network attribute is suggested.

It’s also worth mentioning that, on Google Local dataset, the categorical information about

POIs shows a negative impact on next-POI prediction task. Possible reason is the ill design of

attribute representations. A closer look into this phenomenon is necessary in order to make this

side information useful.
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Appendix A

JGEL Source Code

Reference source code for the model JGEL proposed in this work can be found at:

https://github.com/WeiqiXu.
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