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Abstract

Thermal Behavior of Holographic Quantum Field Theories

by

Eric Mefford

This dissertation investigates thermal holographic quantum field theories dual

to gravitational systems with black holes. This study has relevance for experimental

physics in a lab or near an astrophysical black hole as well as for the structure of higher

dimensional quantum field theories. The dissertation begins with an introduction to

AdS/CFT, entanglement entropy, and numerical methods.

The next two chapters explore constraints on holographic quantum field theories

with a semi-classical dual. In chapter two, a scalar field is used to construct an

“extended wormhole” that connects two identical asymptotic regions and is globally

static. Mutual information of identical regions in the two boundary CFTs show that

the expanded throat corresponds to rapid thermalization in the field theory. In the

third chapter, a finite temperature phase transition in the gravitational path integral

is used to constrain the spectrum of charged, spinning operators in the dual thermal

CFT.

The fourth and fifth chapters are concerned with the study of thermal quantum

field theories around black holes. In chapter four, the holographic dual of a zero-

temperature quantum field theory on a finite temperature Reissner-Nordström black

hole background is constructed. The entanglement entropy of annular regions in the

field theory explains a phenomenon called “jamming,” in which heat flow is impeded

ix



due to strong interactions. In chapter five, the holographic dual to a quantum field

theory on the interior of a doubly-spinning Myers-Perry black hole is constructed.

The null energy along the Cauchy horizon diverges negatively, indicating singular

behavior and providing evidence for strong cosmic censorship.

The sixth chapter constructs the holographic dual to a strongly interacting metal

with charged bosonic excitations. Such a field theory is a candidate system to de-

scribe the pseudogap phase of the high temperature superconductors. Experiments

on these systems exhibit a metal-insulator transition at zero temperature and power-

law conductivities at low temperature. On the gravity side, a domain wall potential

for a scalar field interpolates between UV and IR conformally invariant spacetimes

with different length scales. The dimension of the scalar controls the temperature

and frequency dependence of the low temperature conductivity.
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Chapter 1

Introduction

This dissertation comprises some investigations into holographic quantum field theo-

ries that I have carried out over the last five years. These quantum field theories are

broadly characterized as infinitely strongly interacting gauge theories with an infinite

number of colors at finite temperature. Given that the perturbative methods of the

mid-twentieth century [3] have been unable to fully tackle the problem of quantum

chromodynamics (QCD), a theory where the dimensionless coupling is large but finite

and the number of colors is three [4], it may seem surprising that one can ask ques-

tions about a theory in which these quantities go to infinity. However, we find within

string theory a remarkable duality in which these limits lead to great simplifications

when questions are rephrased in the language of gravity [5].

This duality, which is often called AdS/CFT or gauge/gravity duality, initially

identified the four-dimensional U(N) gauge theory N = 4 super-Yang Mills with a

classical supergravity theory in five-dimensional anti-de Sitter space in the limit that

N and the field theory coupling are taken to infinity. Since this discovery, physicists
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Introduction Chapter 1

have identified supersymmetric gauge theories in other dimensions d, which in the

strong coupling and large N limit can be described by classical supergravity in d+ 1

dimensions [5]. Nature, it seems, views gravity and quantum field theory as two limits

of the same theory, hence the denotation duality. In fact, many physicists now believe

that gravity in asymptotically (d+ 1)-dimensional anti-de Sitter space is always dual

to a d-dimensional quantum field theory, at least in some limit.

For a given spacetime, the precise details of the dual quantum field theory, phrased

in the variables of fields and a Lagrangian, is not known and in some cases such a

description might not even exist [6]. Nevertheless, physicists believe that all observ-

ables of the theory, phrased in terms of the expectation values of local and non-local

operators, for instance correlation functions and entanglement entropies, can be cal-

culated on the gravitational side of the duality using a translational dictionary [7, 8].

This dictionary is frequently compared to a Rosetta Stone because it holds the key to

deciphering the mysteries of strongly coupled gauge theories and of quantum gravity

and, like the existing Rosetta Stone, it is incomplete.

In my graduate work, I have tried to both test and discover new entries in the

dictionary, as in chapters 2 and 3. These investigations explore the class of spacetimes

which may have holographic dual quantum field theories and the class of quantum

field theories which may have holographic dual Einstein gravity spacetimes. These

chapters emphasize the role that finite temperature plays in constraining the duality.

I have also applied the holographic duality to novel quantum systems, using known

entries in the dictionary to learn about thermal quantum field theories as in chapters

4, 5, and 6. This follows a long trend in high energy research, in which physicists have

used the duality to similarly study applications to condensed matter [9], the quark-
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gluon plasma at RHIC [10], turbulence and fluid dynamics [11], and confinement in

gauge theories [12].

The first aspect of the research presented here has been to explore the boundaries

of the AdS/CFT correspondence. Working with Donald Marolf and Zicao Fu, we

constructed static extended wormhole spacetimes, discussed in chapter 2. The exte-

riors to the wormhole are AdS-Schwarzschild black holes dual to an entangled pair of

thermal QFTs but are not dual to the known thermofield double state (TFD) [13].

One can only see this by looking at both boundaries simultaneously; any one-sided

observable must agree with the TFD. Hence, extra degrees of freedom must be hid-

den inside the wormhole. This work raises an interesting question as to whether such

spacetimes should be allowed by the gauge/gravity duality as such a state cannot be

constructed via a Euclidean path integral. In fact, mutual information, a measure

of correlations between the two conformal field theories, shows that the system has

already traced over degrees of freedom inside the wormhole.

In chapter 3, with Edgar Shaghoulian and Milind Shyani, we found criteria for

CFTs to have a classical gravity dual. Ubiquitous among AdS spacetimes with com-

pact boundaries is the presence of a thermal phase transition between competing

saddles of the Euclidean path integral [12] indicating a discontinuous jump in the

free energy of a large-N gauge theory from O(N0) to O(Nk). We were especially

interested in the fixed temperature, angular velocity, and electric potential ensemble.

Here, the competing phases are rotating, thermal, vacuum AdS, and a charged rotat-

ing large black hole. The gravitational phase transition bounds the number of allowed

CFT states at a given energy, spin, and charge, ρ(E,Q, J) . exp[βc(E−ΦcQ−ΩcJ)],

with universal but non-trivial values for βc,Φc,Ωc. At large central charge, our bound
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Introduction Chapter 1

agrees with the Cardy formula for d = 2 (previously obtained in [14]) and gives an

independent derivation of horizon entropy for black holes at the phase transition in

higher dimensions. Furthermore, our bound rules out weakly coupled holographic

theories which require a higher density of states.

In most applications, AdS/CFT gives a gravitational description for interacting

QFTs on a fixed background manifold, typically chosen to be Minkowski space or

a sphere. On these simple spaces, field theory calculations may be performed an-

alytically, as with topological quantities which can be calculated at weak coupling,

e.g. [15]. If one accepts the validity of the duality, one may explore the same QFTs

on more exotic backgrounds, most compelling of which are black holes. An impor-

tant step in this direction was the construction of a spacetime dual to a CFT on a

Schwarzschild black hole, nicknamed a “black droplet” [16]. Intriguingly, while the

black hole had an associated Hawking temperature, the CFT far from the black hole

was at zero temperature. The lack of thermal equilibrium in the boundary theory

resembles a phenomenon known from soft condensed matter known as “jamming.”

To understand the jamming of the CFT, I constructed new black droplet space-

times dual to CFTs on Reissner-Nordström (RN) black hole backgrounds, discussed

in chapter 4. Schwarzschild black droplets have only one parameter, the mass, which

controls the temperature; but, because of the scale invariance of the field theory,

all black holes are conformally equivalent. The charge of RN black holes allows for

variable black hole temperatures, including zero temperature extremal horizons. In

these spacetimes, entanglement entropy and radial dependence of the quantum stress

tensor provide complementary pictures of the jamming. Both are minimized at finite

distances from the horizon, indicating localized degrees of freedom near the event
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horizon uncorrelated with those far away. In the extremal limit, an effect called the

Gross-Ooguri phase transition indicates that the vacuum state of a CFT has finite

size excitations. Similar to monopole confinement, this transition effectively screens

thermal transport away from the localized excitation. At higher temperatures, the

size of excitations near the horizon increases due to thermal fluctuations; however,

far from the black hole, entanglement entropy remains independent of temperature.

In chapter 5, Akihiro Ishibashi, Kengo Maeda, and I explored the interiors of

black droplets to investigate the quantum instability of Cauchy horizons. There

was evidence that Cauchy horizons must be unstable both classically and quantum

mechanically [17, 18, 19] but these argument were classical or neglected interactions

in the QFT. In our work, we asked if non-perturbative effects and strong interactions

affect this picture. Using a derivative expansion (also called a blackfold expansion) we

constructed the bulk dual to a CFT inside an equally spinning five dimensional Myers-

Perry black hole. Within this context, the quantum stress tensor shows diverging

negative energy, which shows that interactions do not fix the instability, and upholds

strong cosmic censorship [20].

Particularly fascinating is the application of gauge/gravity to strongly coupled

condensed matter systems. In the thirty years since the discovery of high Tc su-

perconductivity (SC) by Bednorz and Müller [21], little progress has been made in

providing a field theoretic description. Spectroscopic studies of cuprate supercon-

ductors indicate that rather than the phonon-electron interactions responsible for

conventional SC, high Tc must involve strong electron-electron interactions and anti-

ferromagnetism. As electrons (or holes) are doped into these materials, a quantum

phase transition occurs between an antiferromagnetic insulator and a superconduc-
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tor. Near the critical point, a third phase called the pseudogap appears with small

but nonzero occupation of states near the Fermi surface. Contrary to conventional

SC, in this state, it’s believed that Cooper pair formation and SC condensation are

not simultaneous [22]. An understanding of this phase is believed to hold the key to

understanding high Tc, though a QFT description is still lacking.

Near the underlying quantum phase transition, the system is described by a con-

formal field theory and this problem lends itself well to the gauge/gravity duality.

My advisor, Gary Horowitz, and I found a simple model that shares some features

with the pseudogap, discussed in chapter 6. On the gravity side, preformed pairs

are modeled by a neutral scalar field propagating near a black hole. The scalar field

condenses due to a relevant deformation in the field theory and is coupled to a U(1)

gauge field. Introducing a Higgs-type potential gives rise to vanishing conductivity

at zero temperature, while above zero temperature, thermal fluctuations produce the

standard metallic Drude conductivity. Intriguingly, we were also able to recreate the

conductivity response of a “Bose metal” which is thought to be a toy model for the

pseudogap.

Each of the following chapters has been published elsewhere and was written for

an audience familiar with the holographic dictionary. To facilitate their reading to

the general physics audience and to make this thesis as self-contained as possible, the

remainder of this introduction will lay out the basics of Maldacena’s arguments for

the existence of a holographic duality. Then, there will be a small discussion of some

entries in the holographic dictionary, particularly expectation values for operators

and entanglement entropies. Finally, much of my work has used numerics to solve

the gravitational equations of motion. I will also give a short introduction to these

6



Introduction Chapter 1

methods.

1.1 AdS/CFT basics

Modern holography often uses the general features of AdS/CFT clearly delineated

by Maldacena in [5]. The practice of applying general features of holography is

frequently called “bottom up” holography since it assumes the existence of a quantum

field theory dual to a particular asymptotically anti-de Sitter spacetime. Whether

such a field theory exists is an open question, though most physicists in the field

believe it to be true since the field theory can be defined by correlation functions

calculable through the holographic dictionary. Two natural extensions of this question

are whether there exist field theories dual to every spacetime and similarly whether a

particular quantum field theory has a semi-classical holographic dual. Some of these

questions will be addressed in chapters 2 and 3.

Before we travel too far into the unknown, however, it will be useful to lay out

the canonical duality: N = 4 super Yang-Mills with gauge group U(N) on four-

dimensional Minkowski space and type IIB classical supergravity in AdS5× S5. This

duality is especially convenient because many quantities in N = 4 do not get renor-

malized as the coupling changes so that the duality can be subjected to non-trivial

checks. Furthermore, there are consistent truncations of the supergravity theory to

classical Einstein gravity in AdS5, a theory that we know much about. Finally, this

example is “top down,” which means that we begin with string theory and a config-

uration of branes and then take limits of certain parameters and use known string

theory dualities to argue in favor of the field theory and gravitational theory being

7
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dual. This means that presumably we can vary these parameters in other directions

and the field theory will remain dual to the gravitational theory, but in limits where

one is simpler than the other. This is a major goal of holography, as it may lead to

major insights into quantum gravity. Let’s see how it works.

We begin with type IIB superstring theory in ten-dimensional Minkowski space.

This theory is a theory of closed and open strings with both fermionic and bosonic

excitations. The excitations are along the two dimensional string worldsheet which

is embedded in the ambient ten-dimensional space. The specific notation type IIB

means that the fermions have different boundary conditions depending on whether

they propagate left or right along the open strings. Perhaps unsurprisingly, the repre-

sentation theory for how symmetries of the two dimensional string excitations mani-

fest in the ten dimensional space leads to a collection of fields with specific spacetime

symmetries. The closed string, bosonic excitations, lead to a scalar called the dilaton,

a two form, and a spin-2 particle called the graviton. The fermionic excitations lead

to a collection of p+1-form gauge fields. For the IIB theory, the gauge fields have odd

p, while for the IIA theory, the gauge fields have even p. These two are related by a

duality called T-duality which interchanges the boundary conditions of the fermions.

Like in normal quantum field theory, the gauge fields are associated with potentials

for particular charged operators in the theory and they have an underlying gauge

symmetry due to the antisymmetry of the p-form. However, unlike the photon, for

example, which is associated with the pointlike electron, (p+ 1)-form gauge fields are

associated with p-dimensional objects called Dp-branes whose charge is given by

Qp = µp

∫
S

dAp+1 (1.1)

8
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where S is a 8 − p dimensional surface surrounding the Dp-brane. In this way, a

ten-dimensional electron would be analogous to a D0-brane and it would satisfy a

Gauss’s law through an 8-dimensional sphere. The “D” in the name Dp-brane stands

for Dirichlet because the branes are the endpoints for open strings and their location

serves as a boundary condition. The string is free to move along the Dp-brane and

gives rise to (p+ 1)-dimensional quantum field theory that lives on the brane world-

volume. The field content for the field theory descends from the field content of the

ten-dimensional string theory whose symmetry is broken by the Dirichlet boundary

condition. In particular, there will be 9− p scalar fields describing the location of the

brane in the ambient spacetime and there will be a gauge field plus fermionic fields

on the brane. Branes also have finite energy due to their tension and will backreact

on the ambient spacetime. In the string picture, this is because closed strings are

emanated from the brane and their excitations include the graviton.

When multiple branes are present, things get very interesting. The scalars which

describe the location of the brane now must carry two extra indices that label the

branes to which each of the open string ends are attached. These indices are like the

color indices of adjoint valued scalars in a gauge theory. In fact, when N branes are

well separated, the scalars commute and the field theory on the branes is just a U(1)N

gauge theory. However, when the branes become coincident, this commutation breaks

down, the open strings become massless, and the field theory on the brane becomes

U(N). This is like “de-Higgsing” the theory. Furthermore, the N coincident branes

backreact more strongly on the surrounding geometry. A quantum field theory on

the branes and a gravitational theory away from the branes are indications that we

are getting close to the AdS/CFT correspondence! All that is left is taking limits.

9
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Here is the recipe:

Consider N parallel D3 branes separated by a distance r. Take the decoupling

limit

α′ → 0, U ≡ r

α′
fixed. (1.2)

Here α′ is the string scale, related to the string length α′ = l2s , and the tension in

the string T = 1/2πα′. In this limit, the branes become coincident so that the string

becomes infinitely heavy and excitations are supressed away from the branes. In this

limit the theory decouples to four dimensional N = 4 super-Yang Mills on the brane

and closed ten-dimensional IIB string theory away from the branes. The field theory

limit can be checked by comparing the field content as well as the symmetries after

Higgsing the theory.

Next, solving the string equations of motion for N parallel D3 branes gives the

backreacted metric [23],

ds2 = f−1/2dx2
|| + f 1/2(dr2 + r2dΩ2

5) (1.3)

where

f = 1 +
4πgNα′2

r4
(1.4)

and the string coupling constant is g, related to the expectation value of the dilaton.

10
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The branes source a self-dual five-form flux,

F5 = 2α′
√

4πgN (ε5 + ∗ε5) (1.5)

which is the exterior derivative of the four-form gauge field discussed earlier. In the

decoupling limit the metric (1.3) becomes

ds2 = α′
{

U2

√
4πgN

dx2
|| +

√
4πgN

dU2

U2
+
√

4πgNdΩ2
5

}
(1.6)

This metric is AdS5 × S5. In this limit the radius of the five-sphere is constant and

equal to

LAdS
ls

= (4πgN)1/4. (1.7)

The supergravity approximation is valid as long as LAdS � ls so that we can neglect

α′ corrections to the string action. This limit is equivalent to

gN � 1. (1.8)

Consistency under “S-duality,” which takes g → 1/g, requires that N � 1. A similar

way to see this is to note that the leading term in the string action

L =
1

g2l8s

∫
d10x
√
g(R + ... (1.9)

11
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is just the Einstein-Hilbert action so that the Planck length

lp ∼ (gl4s)
1/4 (1.10)

implies the separation of scales,

LAdS
lp
∼ N1/4 � 1 and

LAdS
ls
∼ (gN)1/4 � 1. (1.11)

Returning to the field theory, the Yang-Mills coupling is related to the string

coupling as

g2
YM = 2πg. (1.12)

The supergravity approximation corresponds to

Ng2
YM � 1, N � 1. (1.13)

This is the ‘t Hooft limit of the gauge theory on the brane, where planar diagrams

dominate the 1/N perturbative expansion. In this limit, the coupling in the gauge

field is large. The final step is to realize that the symmetries of AdS5, namely SO(4, 2)

correspond exactly to the conformal symmetry of four-dimensionalN = 4 super Yang-

Mills. The SO(6) rotational symmetries match onto the SO(6) R-symmetry of the

adjoint scalars of N = 4 super Yang-Mills. In the string theory description, it is

these six scalars that describe the locations of the D3-branes in the transverse six

dimensions. Gauge symmetries in the field theory translate to global symmetries in

12
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the gravitational theory and there is likewise a correspondence between fields in the

gravitational and gauge theories. In chapter 3, we will emphasize the impact of strong

coupling and large N on the spectrum of operators. These limits lead to a gap to

“stringy,” high spin states which become infinitely heavy as N →∞ and to a sparse

spectrum of primary operators with small anomalous dimensions.

That’s all there is to it! To summarize, in the decoupling limit where the string

length is taken very small and a large number of D3 branes are taken to coincide,

the same string theory has two descriptions. One is a strongly coupled, planar limit

of a superconformal four-dimensional quantum field theory with gauge group U(N).

Neglecting the five sphere, the other is a semi-classical five-dimensional gravitational

theory in anti-de Sitter space. The two descriptions are the same string theory and

are hence dual.

The dream of many physicists is to find a way to move away from the large N ,

large ‘t Hooft limit. Since quantum effects in the bulk are controlled by an expansion

in Newton’s constant, they are subleading in 1/N . However, as N becomes finite,

these effects become more important. If one could find an example in which this

limit is well controlled, then perturbative quantum field theory in d dimensions could

give great insights into (d + 1)-dimensional quantum gravity. Many theories have

quantities that do not scale with the coupling, and these quantities have provided

non-trivial checks of the duality and new insights into the nature of quantum gravity.

Some of those results will be discussed in the next section. There has been recent

success in an exactly solvable one-dimensional quantum field theory [24, 25] which

has given insights into quantum gravity near extremal black holes as one can move

away from the infinite coupling limit.

13



Introduction Chapter 1

1.1.1 Some entries in the dictionary

To use the duality, we must develop the “dictionary” that translates between the

language of the gravitational theory and the quantum field theory. The dictionary

has many entries [8], some of which will be discussed thoroughly in the following

chapters. However, it will be useful to illustrate the example of a minimally coupled

bulk scalar field, dual to a scalar operator in the field theory, to better understand

what follows. Consider the following action for a scalar field in AdSd+1,

S =
1

16πGd+1

∫
dd+1x

√
−g
[
−1

2
(∇φ)2 − m2

2
φ2

]
. (1.14)

We will attempt to solve the equations of motion for this theory in the “probe limit,”

or when the scalar field does not backreact on the spacetime. For simplicity, we will

look at Poincaré-AdS, with metric

ds2 =
L2

z2

[
−dt2 + dz2 + dxidx

i
]

(1.15)

where z = 0 is the conformal boundary and the extremal horizon is at z → ∞. The

scalar equation of motion is

m2φ =
1√
−g

∂µ
(√
−g∂µφ

)
= (1− d)z∂zφ+ z2∂2

zφ+ z2(kik
i − ω2)φ. (1.16)

14
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One can convert this to a simple Schrödinger equation via the substitution

φ→
√
Ld−1

Vol
z(1−d)/2ψ. (1.17)

where Vol is the volume of the boundary spacelike hypersurface. Now the equation

of motion reads

(−∂2
z + V (z))ψ = ω2ψ (1.18)

with

V (z) = k2 +
1

z2

(
L2m2 − d2 − 1

4

)
. (1.19)

For k = 0 and ω2 > 0, the solution to this equation is

ψ(z) =
√
z (c1Ja(ωz) + c2Ya(ωz)) , a2 = L2m2 +

d2

4
(1.20)

where Ja and Ya are Bessel functions. Note that a is real for m2 > −d2/4L2. This

is called the Breitenlohner-Freedman bound and scalar fields below this bound are

unstable as we will see in chapter 6. Our solution must have a bounded Klein-Gordon

norm,

< φ, φ > = −i
∫

Σ

ddx
√
γni(φ∇iφ

† − φ†∇iφ)

= 2ω

∫
dz|ψ|2 <∞ (1.21)
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where Σ is a spacelike hypersurface with unit normal nµ and induced metric γij. In

the second line, we have chosen Σ to be a fixed time slice and used eq. (1.17). Note

that the energy of the scalar field is

E = −
∫

Σ

ddx
√
γnµξµTµν = ω2

∫
dz|ψ|2 (1.22)

where ξµ = ∂t is the timelike Killing vector and

Tµν = ∇µφ∇νφ−
gµν
2

[
(∇φ)2 +m2φ2

]
(1.23)

is the gravitational stress tensor. Hence the finite Klein-Gordon norm is equivalent to

finite energy. Finally, we also require that there is no energy flux across the conformal

boundary at z = 0, which is to say,

0 =

∫
dtdd−1x

√
−hlµξνTµν

∣∣∣∣∣
z=0

=

∫
dtdd−1x

( z
L

)1−d
∂tφ∂zφ. (1.24)

Again using eq. (1.17) and integrating by parts, we can show that our fields must

satisfy

ψω1∂zψ
†
ω2
− ψ†ω2

∂zψω1 = 0 (1.25)

where ψω1 = 1
2π

∫
dte−iω1tψ(t) is just a Fourier transform. Normalizeability and zero

flux pick out just one of the solutions from eq. (1.20. This is

ψ(z) ∼ cJa(ωz)→ c

Γ(1 + a)

(z
2

)a
as z → 0. (1.26)
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In other words, ψ(z) scales as a power of z as the conformal boundary is approached.

This scaling must be related to the dimension of the dual conformal operator.

To see this, we will demonstrate how the previous solution serves as the Green’s

function for the Klein-Gordon equation [26]. Consider a massless field with a = d/2.

Next, note that we can use the conformal symmetry of AdS to take all points xi on

the boundary to a single point P ,

xi →
xi

z2 + xixi
. (1.27)

The asymptotic form for φ is

φ→ c
zd

(z2 + xixi)d
(1.28)

For all points xi 6= 0, φ(z = 0) = 0 but φ diverges when z = 0. Choosing the constant

c appropriately, φ can be a delta function. Sourcing the Klein-Gordon equation on

the boundary then leads to a solution in the bulk

φ(z, xa) = c

∫
ddx

z

(z2 + |xa − xa′ |2)d
φ0(xa). (1.29)

As z → 0, φ → φ0. Furthermore, the action for the scalar field can be expressed

on-shell as

I(φ) =
cd

2

∫
z=0

ddxddx′
φ0(xa)φ0(xa

′
)

|xa − xa′ |2d
. (1.30)

This scales like the two-point function of a conformal primary O of dimension d. This
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is clear considering the following argument; if φ0 serves as a source in the field theory,

then it appears in the generating functional of the boundary theory as

Z(φ0) = 〈
∫
ddxφ0O〉 (1.31)

so that O must have dimension d/2. It is clear that this leads to the same two-point

function as eq. (1.30).

Frequently, however, we want the expectation value for an operator, for instance

the electric current in chapter 6. When there exists a bulk black hole whose horizon

is at a finite z0, then both modes of φ are normalizeable in the bulk, and

φ(z) ∼ φ0 +Ozd. (1.32)

Massive scalars and higher spin fields behave in very similar ways. For a massive spin

s particle, the exponents in the large z expansion are

∆± = −s+
d

2
±
√
m2L2 +

d2

4
. (1.33)

In chapter 6, we will see a specific example of this for the electric current and a com-

plex scalar and discuss how things change when we deform the boundary theory. In

chapters 4 and 5, we use the dictionary to calculate the stress tensor of the boundary

field theory. There, the boundary metric serves as a source for 〈Tµν〉. As a nice check

of the recipe, the dimension for the stress-tensor is d, as it should be in a conformal

field theory.

There is a beautiful structure to anti-de Sitter space, some of which we will ex-
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plore in the next section. Much has been learned by viewing AdS in the embedding

space formalism [27], where the spacetime is thought of as a hyperboloid in (d + 2)

dimensional Minkowski space satisfying

−T 2
1 − T 2

2 +
d∑
i=1

X2
i = L2. (1.34)

From this perspective, one can obtain the global extension of AdS as well as many

exciting submanifolds [28]. At the same time, the following chapters contain detailed

descriptions of these spacetimes as well as new solutions, and so in this section, we

will forego much of the detail. A nice review is in [7, 29]. Because it is useful, we

will mention the global properties of AdS. Global AdS is the maximally symmetric

spacetime of constant negative curvature,

Rµν =
2Λ

d− 1
gµν . (1.35)

It is the solution to the Einstein-Hilbert action with cosmological constant

Λ = −d(d− 1)

2L2
. (1.36)

The metric for this global AdSd+1

ds2 = −(
r2

L2
+ 1)dt2 +

dr2

r2

L2 + 1
+ r2dΩ2

d−1 (1.37)

and the conformal boundary is at r → ∞. Near the boundary, we can write the

19



Introduction Chapter 1

Figure 1.1: A graphical depiction of global AdS, where the boundary is R× Sd−1.
Regions of constant area are depicted within the interior of the cylinder. The
text is in French in honor of my upcoming postdoctoral position in Paris. Figure
created by Ariel Provost and accessed via Wikimedia Commons.

metric as

ds2 = L2dr
2

r2
+
r2

L2
(−dt2 + L2dΩ2

d−1) (1.38)

so that the boundary metric is conformally equivalent to a (d− 1) sphere cross time.

The typical picture of AdS is of a cylinder where constant time slices are the Poincaré

disc as in figure 1.1. These asymptotics will be important in chapter 3. From the
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embedding formalism, we obtain this metric as

T1 =
√
L2 + r2 cos(t/L) (1.39)

T2 =
√
L2 + r2 sin(t/L)

Xi = rφ̂i,
∑
i

φ̂2
i = 1. (1.40)

Radial light rays sent into the interior will reach the other side in

∆t = 2

∫ ∞
0

L2dr

r2 + L2
= Lπ (1.41)

while light rays sent along the equator of the sphere reach the opposite side in

∆t = L

∫ π

0

dφ = Lπ. (1.42)

These are the same! Thus, causality in AdS behaves similar to causality on the

boundary.

On the other hand, there exist so-called bulk point singularities [30], where points

on the boundary are all null separated from a single point in the bulk, but the bound-

ary points are not null separated. These singularities appear in n-point Lorentzian

correlation functions on the boundary and require n > d + 2. These singularities

capture how locality in the bulk theory is manifested in the field theory, and they

have been proposed as a tool to reconstruct the bulk metric [31]. Since the light cone

serves as the boundary of timelike trajectories in the bulk, it is clear that massive

particles can never reach the boundary, as discussed earlier. For completeness, we
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Figure 1.2: In the middle, the region of global AdS covered by Poincaré coordinates
is shown in blue. Asymptotic infinity on the boundary and the point z → ∞
coincide. On the left, a single time slice of global AdS is shown with surfaces of
constant z shown in dotted lines. As z → ∞ the size of the circle vanishes and
coincides with i0. On the right, the Penrose diagram for Minkowski space is shown.
This is the metric on the boundary of Poincaré AdS.

also include the embedding for the Poincaré metric discussed earlier,

T1 =
L2

2r
(1 +

r2

L4
(L2 + xix

i − t2)),

T2 =
r

L
t,

Xi =
r

L
xi, i ∈ {1, ..., d− 1}

Xd =
L2

2r
(1 +

r2

L4
(−L2 + xix

i − t2). (1.43)

From this perspective, the region of global AdS these coordinates cover is illustrated

in figure 1.1.

AdS/CFT has opened the door to an exciting new way to study quantum gravity
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and strongly coupled field theories. For the purposes of my graduate work, the duality

has proved especially useful in bottom-up applications to strongly coupled thermal

gauge theories. This included strongly coupled thermal field theories near black hole

horizons and in an analogue of the pseudogap phase of high temperature supercon-

ductors. In chapters 4, 5, 6, I used techniques of the duality to explore quantum field

theories where perturbative techniques had been lacking. One of the most intriguing

areas of study that is difficult with perturbative quantum field theory is entanglement

entropy. This is discussed in the next section.

1.2 Entanglement Entropy

Recently, there has been much excitement over the study of the entanglement

entropy of a subregion in the boundary quantum field theory. Much has been learned

about the nature of quantum field theories and quantum gravity by considering the

relationship of this quantity to the geometry of the bulk gravitational theory. In fact,

were it not for Maldacena’s observation of the limits of type IIB string theory, the

relation of entanglement entropy and geometry could still be considered convincing

evidence for the holographic nature of quantum gravity [32, 33]. The reason for this

is the striking relationship between the area of a black hole’s event horizon and its

thermodynamic entropy,

SBH =
A

4G~
. (1.44)

This result was arrived at from mathematical properties of black holes, such as the

requirement that classically, the area of an event horizon monotonically increases and
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from the semi-classical analysis of quantum fields near the event horizon [29, 34, 35].

Conventional statistical mechanics emphasizes that thermodynamic entropy is an

extensive quantity, yet if this SBH counts the number of microstates of the black hole,

then the states of the underlying fields in a sense live in one fewer dimension. The

relationship between entropy and area becomes strengthened when one thinks of the

black hole quantum mechanically. First, neglecting subtleties about topology and

exotic systems [36], the ground states of a quantum field theory exhibit an area law

entropy [37]. Second, while the original arguments for SBH used classical general rel-

ativity, quantum corrections including higher curvature terms do not modify the area

law, but instead renormalize G [38, 39, 40]. Furthermore, there is reason to believe

that associated with specific null surfaces called light sheets, there is a corresponding

entropy in spacetime that scales as the area [41].

Perhaps it is not surprising, then, that entanglement entropy of a holographic

quantum field theory should also be given by an area, though fitting with the duality,

the area is of a minimal surface in the AdS spacetime and the appropriate New-

ton’s constant is the higher dimensional one, because as we saw earlier, it counts the

number of flavors in the field theory. This is summarized in the celebrated Hubeny-

Rangamani-Ryu-Takayanagi formula for the entanglement entropy of a region A,

S(A) =
Area(ΣA)

4Gd+1~
(1.45)

where ΣA is the codimension-2 extremal surface in the bulk that is anchored to the

boundary at ∂A [42, 43]. This is shown for a black hole spacetime with global AdS

asymptotics in figure 1.2.
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Figure 1.3: The entanglement entropy for a subregion A (blue) is given by the area
of a codimension-2 minimal surface ΣA (green) through the formula eq. (1.45).
The entropy for the complementary region Ā (purple) is given by the area of ΣA

plus the area of the bulk black hole event horizon (red). This is because the
minimal surface must satisfy a homology constraint: the region plus the minimal
surfaces must completely bound a region of the bulk. For A, this is in light blue,
while for Ā this is in light purple.

Let’s discuss some properties of the entanglement entropy. First, the entanglement

entropy is typically defined as the von Neumann entropy associated with a reduced

density matrix for a region A,

SV N(ρA) = −TrρA ln ρA. (1.46)

Likewise, the reduced density matrix for a region A is obtained by tracing out all

degrees of freedom outside of the region A

ρA = TrĀρ. (1.47)
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There are many subtleties associated with this density matrix, the most important of

which is the fact that a true quantum field theory may not be factorizeable [44, 45].

Nevertheless, a fundamental principle of a relativistic field theory is locality, and so

spatial decomposition should be possible as in eq. (1.47).

The second subtlety is that correlations in a quantum field theory are UV diver-

gent. In a sense, this is why the entanglement entropy of a ground state satisfies an

area law; most of the correlations are across the boundary of the region ∂A. Thus,

for any finite quantity, we need a UV regulator ε. We can organize the divergences

in such a state by computing a local integral over ∂A,

S ∼
∫
dd−2σ

√
hF(h,K) (1.48)

where h is the induced metric on the surface ∂A and K is the extrinsic curvature.

The function F is a sum of all linearly independent scalars that can be constructed

out of these two functions and their derivatives. Importantly, derivatives come in

pairs, so the generic entropy of the subregion A will go as

S ∼ ad−2

(
L

ε

)d−2

+ ad−4

(
L

ε

)d−4

+ ...+ a∗ log

(
L

ε

)
+ s. (1.49)

In this expression, L is some length scale associated with A, s is the UV finite piece of

the entanglement entropy, and a∗ only appears for even d. We will later see that a∗ is

a universal constant associated with the field theory [46]. In this expression, it is clear

that the leading order term is proportional to the area of ∂A and for gravitational

fields, its divergence is evidence of a loop expansion which renormalizes G.

To show how eq. (1.46) captures the entanglement of a subsystem, consider the
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prototypical entangled state, a Bell pair,

|ψ〉 =
1√
2
{|↑〉 |↓〉 − |↓〉 |↑〉} . (1.50)

The density matrix for this state is ρ = |ψ〉 〈ψ|. Tracing out the second qubit gives

ρ1 = Tr2ρ =
∑
i∈↑,↓

〈i| ρ |i〉 =
1

2
{|↑〉 〈↑|+ |↓〉 〈↓|} (1.51)

so that the von Neumann entropy is

S1 = −2

(
1

2
ln(1/2)

)
= ln 2. (1.52)

Compare this to the von Neumann entropy of the original system

S12 = −
(

1

2
ln(1/2) +

1

2
ln(1/2)− 1

2
ln(1/2)− 1

2
ln(1/2)

)
= 0. (1.53)

Note that the original system can be thought of as part of a larger system in which

ρ> = ρ ⊗ Ienv. We see that the entanglement entropy of the entire Bell pair system

with the environment vanishes as expected since they are not entangled. On the other

hand, the entanglement entropy of each qubit with the other is non-vanishing and

equal, which is expected since the qubits are entangled. This leads to a nice property

of the von Neumann entropy,

S(ρ) ≥ 0 (1.54)
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and vanishes only for pure states: states which can be written

ρ = |ψ〉 〈ψ| . (1.55)

Furthermore, if we start with a pure state and trace out a subsystem, we have

S(ρA) = S(ρĀ). (1.56)

as we saw for the qubit subsystems. There are some subtleties with eq. (1.54) in

quantum field theories, as the regularized entropy, which comes from subtracting

the UV divergences, may be negative, but the area term always dominates the true

(divergent) entropy and is positive.

Now, let’s slightly modify our qubit system to be a “thermal system.” Consider

the two-site Ising model

H =
∑
i

Uσ2
i − hσi. (1.57)

The eigenstates are |↑↑〉 , |↓↓〉 , span(|↑↓〉 , |↓↑〉) with energies

E↑↑ = U − 2h, E↓↓ = U + 2h, E↓↑ = E↑↓ = U (1.58)

The thermal density matrix for this system is

ρβ =
1

Z

∑
e−βEi |i〉 〈i| (1.59)
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where Z is

Z =
∑
j

e−βEj . (1.60)

The entanglement entropy is

S(β) =
1

Z

[∑
i

e−βEiβEi + logZ

]

=
1

Z

(
4e−βU cosh(βh) [βU cosh(βh)− 2βh sinh(βh)] + logZ

)
(1.61)

In the first line, we see that the entanglement entropy for a thermal density matrix

agrees with the thermodynamic entropy, as expected. As opposed to a pure state,

the thermal system does not have vanishing entropy. Tracing out the second qubit

gives the reduced density matrix

ρ1 =
1

Z

{[
e−β(U−2h) + e−βU

]
|↑〉 〈↑|+

[
e−β(U+2h) + e−βU

]
|↓〉 〈↓|

}
. (1.62)

The entanglement entropy of this state is

S1 = S(β) +
4

Z
e−βU cosh(βh) {βh sinh(βh)− cosh(βh) ln(2 cosh[βh])} . (1.63)

From the symmetry of the problem, we have

S1 = S1̄ < S(β). (1.64)

For pure states the entropy of a subsystem was greater than for the whole system,
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but for the thermal state it is less. One might have expected that the entropy of a

subsystem should always be greater than the whole system, but it turns out that the

true inequality that must be satisfied is called subadditivity. For two subsystems A

and B the entropies must satisfy

S(A ∪B) ≤ S(A) + S(B). (1.65)

For a pure state, this just says S(A) = S(Ā) ≥ 0, which we already knew. For a mixed

state, like the thermal state we just investigated, where S1 < S(β), this says that

2S1 ≥ S(β) which is clearly satisfied above. Hence a decrease in entanglement entropy

for a subsystem is not necessarily unusual. If on the other hand, if subadditivity or

its generalizations were violated, that would be a sign of major problems in a theory.

This seems to be the case for our current understanding of black hole evaporation

[47]. The quantity

I(A : B) = S(A) + S(B)− S(A ∪B) (1.66)

is called the mutual information and is strictly positive. We study this in chapter 2.

Entanglement entropies of subsystems have been found to satisfy many such in-

equalities. For instance a generalization of subadditivity is strong subadditivity for

three subsystems,

S(A ∪B ∪ C) + S(B) ≤ S(A ∪B) + S(B ∪ C) (1.67)

and there are further generalizations to more systems. There is also the Araki-Lieb
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inequality

S(A ∪B) ≥ |S(A)− S(B)| (1.68)

which can be used to bound the entanglement of a system from above and below.

There is currently an active research program into finding all the inequalities satisfied

by a given number of subsystems [48].

In chapters 2 and 4, mutual information and relative entropies are used to investi-

gate two holographic systems. The relative entropy is a way to compare the entropies

between two states ρ and σ. It states that the relative entropy of ρ relative to σ is

S(ρ||σ) = −Trρ lnσ + Trρ ln ρ. (1.69)

In words, it is the failure in ln ρ and lnσ to overlap. Not surprisingly, this quantity

satisfies certain inequalities including positivity,

S(ρ||σ) ≥ 0 (1.70)

and monotonicity

S(N (ρ)||N (σ)) ≤ S(ρ||σ) (1.71)

where N is a completely positive trace preserving operation on a density matrix. A
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nice example is

S(ρAB||σAB) ≤ S(ρA||σA) (1.72)

for two subsystems A and B. This can be used to prove strong subadditivity as well

as the monotonicity of mutual information,

I(A : BC) ≥ I(A : B). (1.73)

It is important to state that thermal systems can be “purified” by coupling them

to an auxiliary system. An example of this is the thermofield double state, discussed

in chapter 2. This is a pure state obtained by coupling the Hilbert space of a system,

{|n〉1} to an identical Hilbert space {|n〉2} and forming the following linear combina-

tion,

|TFD〉 =
1

Z(β)

∑
n

e−βEn/2 |n〉1 |n〉2 . (1.74)

The density matrix is ρ = |TFD〉 〈TFD|. When one system is traced over, we get a

thermal density matrix,

ρ1 =
∑
m

〈m|2 |TFD〉 〈TFD| |m〉2 =
1

Z(β)

∑
n

e−βEn |n〉1 〈n|1 . (1.75)

This has a very interesting holographic dual, a maximally extended static black hole,

that is discussed in chapter 2.

Many of the properties of entanglement entropies are naturally encoded into holog-
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raphy. In the following we will use AdS3 as an example because its boundary is a

1 + 1 dimensional conformal field theory with many nice properties. Let’s consider

entanglement entropy for an interval on the boundary, x ∈ [− l
2
, l

2
]. As argued earlier,

from the field theory we expect

S(L) ∼ a∗ log(
l

ε
) + s. (1.76)

In fact, since we expect a∗ to be a universal constant and S(L) counts the states of

the system, a∗ should scale as the central charge c of the CFT. This is correct. For a

1 + 1 CFT, we know [49, 50],

S(L) =
c

3
log(

l

ε
) + s. (1.77)

Furthermore, s is typically associated with topological states, as in the case of a

one-dimensional spin chain [51].

In AdS3, minimal surfaces for the region x are geodesics which minimize the length

functional

L = 2LAdS

∫ zmax

ε

dz

z

√
x′(z)2 + 1 (1.78)

where we will see that ε � 1 serves as a UV cutoff and zmax is where the geodesic

intersects x = 0. The solution to the equations of motion is

x(z) =

√
l2

4
− z2. (1.79)
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so that zmax = l/2. Using the HRRT formula, the entanglement entropy is

S =
L

4G3

=
L

2G3

log(
l

ε
) (1.80)

as expected for a 1 + 1 dimensional CFT with no topological sector. Interestingly, in

this formula, we can identify the central charge of the CFT in gravitational language,

c =
3

2G3

(1.81)

which is known as the Brown-Henneaux central charge [52] due to realizations that

the symmetries of three-dimensional anti-de Sitter generate a conformal algebra with

the same central charge.

Holographic proofs of entanglement inequalities are fun because they have nice

geometric arguments. We used one in chapter 2 and they have proved especially useful

in the literature [53, 54, 55, 56, 57]. A nice example is the proof of strong subadditivity

as shown in 1.2. This figure can be modified slightliy for higher dimensions where

strong subadditivity is still upheld.

The Ryu-Takayanagi formula also gives a nice bulk description for the form of

divergences in the entanglement entropy. Choosing a bulk cutoff z = ε to evaluate

the area of the minimal surface, the entanglement entropy has a form

S ∼ Ld−1

4G

∫ zmax

ε

dz

zd−1
G(z2, h,K) (1.82)

where again h and K are the induced metric and extrinsic curvature of the boundary

of the field theory subregion. Importantly, G is a function only of z2. Near the
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Figure 1.4: In this figure, there are three boundary subregions, A,B,C as well as
their unions. For any boundary subregion that is continuous, we know the minimal
surface is a semicircle. These are drawn on the left for A ∪ B (red), B ∪ C(blue)
and in the middle and the right for A ∪ B ∪ C (green) and B purple. Strong
subadditivity says that S(A∪B)+S(B∪C) ≥ S(A∪B∪C)+S(B). This is easily
seen in the panel on the right, where the surfaces in the leftmost panel are redrawn
but with their colors changed. The yellow curve meets z = 0 at ∂(A ∪B ∪C) but
is not the minimal surface for that subregion. Likewise, the brown curve meets the
boundary at ∂B but is not the minimal surface for that region. Hence their areas
must be larger than the true minimal surfaces and strong subadditivity is proven.

boundary, we can expand this function and find

S ∼ Ld−1

4Gd+1

[
G(0)

zd−2
+
dG(0)/dz2

zd−4
+ ...+

dd/2−1G(0)

dzd/2−1
log(ε) + s

]
(1.83)

and we also see that the log term only exists for even d. Furthermore, with cer-

tain symmetries, one can find the generic form for these divergences in terms of the

boundary surface [58].

Thermal states are especially nice in the geometric picture as their bulk duals

correspond to regular black holes. In these states, the bulk has a horizon at z ∼ T , so

the minimal surface can extend only that deep (there are proofs that these horizons

serve as barriers [59]). In this picture, for small regions on the boundary, the entan-

glement entropy is very similar to that of the vacuum (dual to a zero temperature

bulk horizon). This means that the UV divergences are the same for thermal states
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and the vacuum on the same field theory manifold. However, for sufficiently large

regions, the minimal surface spends most of its time hugging the horizon. The en-

tanglement entropy then differs in its finite piece. We expect the vacuum subtracted

entanglement entropy—that is the entanglement entropy of the thermal state minus

the entanglement entropy of the vacuum state for the same boundary region—to have

a form

∆S ∼ 1

Gd+1

Vol(A)T d (1.84)

which is the correct volume law scaling for a thermal system. Furthermore the z ∼ T

relation shows that the thermal length scale serves as an IR cutoff to any non-extensive

behavior of the entanglement. This is expected as the required periodicity in the

Euclidean section of the field theory and bulk washes out correlations above the

thermal scale.

The behavior of entanglement in the black hole background also emphasizes the

manner in which the extra dimension manifests the renormalization group. Anti-de

Sitter space has an infinite redshift because of the divergent warp factor near the

conformal boundary. Particles in the bulk must have increasingly large energies, or

low masses, to probe closer and closer to the conformal boundary. In fact, as we

saw in the scalar field example, any massive scalar field has a solution near z → 0

of the form z∆+ which vanishes and so these fields never reach the boundary. In this

manner, 1/z is related to the mass-scale in the theory. That is the reason divergences

in the entanglement entropy, related to UV correlations in the field theory, come

from the z → 0 region. That is also why the bulk horizon washes out correlations for
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L & 1/T . This is the renormalization scale below which thermal fluctuations wash

out all correlations.

Finally, the bulk black holes make clear that the minimal surfaces must satisfy a

homology constraint. That is, the boundary of the interior of the minimal surface is

the subregion A and the minimal surface itself. It is clear that this is satisfied for the

AdS3 system we looked at previously. However, for compact boundaries, as in the

case of the BTZ black hole [60], for regions larger than roughly half the boundary,

the minimal surface will be disconnected. Part of the surface will look like minimal

surfaces for the complement Ā and another piece will be the horizon of the black hole

itself, which is a minimal surface because it has zero expansion, see figure 1.2.

The homology constraint is important because it upholds the fact that thermal

states are dual to black holes. From statistical mechanics and dimensional analysis, we

expect that the entropy of the whole boundary for a thermal state scales as the volume

of the boundary times the inverse temperature βd. In the bulk, this is proportional

to the area of the bulk black hole. This lends itself nicely to interpretations of the

black hole entropy formula since each microstate of the black hole should be dual to a

single pure state on the boundary. Their thermal ensemble should then reproduce the

entropy formula. This idea has been investigated [61] and in a sense has been used

to actually reproduce the black hole entropy from the field theory [62]. In chapter 3,

we use this idea to impose bounds on the number of states at a fixed energy, charge,

and spin in holographic conformal field theories.
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1.3 Numerics

In each of the following chapters, non-linear differential equations make analytic

methods prohibitive and numerical methods must be used. There are many numerical

methods for solving differential equations and each is particularly suited to a certain

task. This section will only cover the basics of numerics. More complete references

are in [63, 64].

1.3.1 Finite-differencing

Finite differencing or Runge-Kutta methods are well-suited to solving initial value

problems. In these methods, one starts at the initial boundary, for instance a t0 surface

in a dynamical process, with a boundary condition

y(t0) = y0 (1.85)

and approximates the solution to a differential equation

∑
m=1

an
dmy

dtm
= f(t, y) (1.86)

at a later time t. For instance, consider the first-order simple differential equation

dy

dt
= f(t, y) (1.87)
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With an approximation yn for the actual solution y(tn) at some time tn, we can

approximate the solution yn+1 at time tn+1 = tn + h by

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)

k1 = f(tn, yn),

k2 = f(tn +
h

2
, yn +

k1

2
)

k3 = f(tn +
h

2
, yn +

k2

2
)

k4 = f(tn + h, yn + k3). (1.88)

This method is called “RK-4” or the classical Runge-Kutta. If we had perfect knowl-

edge of the solution, then we could find the error in this method to be

en+1 = y(tn+1)− y(tn)− h

6
(k1 + 2k2 + 2k3 + k4) (1.89)

which can be shown to be of order O(h5) for each step and of order O(h4) for the

full computation. Runge-Kutta methods with more stages, or points between tn and

tn+1 used in the approximation, can achieve lower errors of O(hp) with s ≥ p+ 1.

Finite differencing methods have the advantage that they are easy to implement

and find a solution but can become computationally expensive for a given precision.

More advanced techniques involve adapting the step size and precision as the code

runs. Such techniques proved especially useful in the landmark simulation of the

Gregory-Laflamme instability [65, 66] as well as in generation of gravitational wave-

forms [67]. In boundary value problems, however, finite differencing can be difficult.

Typically, one must “shoot” for a solution by tuning the initial data until one ob-
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tains the correction condition at the other boundary, as was performed in the first

application of holography to superconductivity [68].

1.3.2 Pseudospectral

For boundary value problems, it is often more useful to use pseudospectral meth-

ods. We will explain these by using the following differential equation as an example,

E(y(x)) = D(x,
d(m)

dxm
)y(x) = 0 (1.90)

with boundary conditions

B(x,
d(m)

dxm
)y(x)

∣∣∣∣
x=x0

= 0

C(x, d
(m)

dxm
)y(x)

∣∣∣∣
x=xf

= 0 (1.91)

In these expressions B, C, and D are differential operators and y(x) is the function

we are trying to find. To solve this numerically, one first discretizes the numerical

domain, x ∈ [a, b] into a set of N points, x1 = a, ..., xN = b. Then, at each point, the

function y(x) is approximated as yi = y(xi). In this way, the function y(x) becomes

a rank-N vector,

y(x)→ ~y =



y1

y2

...

yN


(1.92)
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Next, the differential operator can be approximated by matrices over the grid. For

a given grid structure, there are expressions for d
dx
, d2

dx2 , ... but typically it suffices to

use just

d

dx
→ D(1) =



D11 D12 ... D1N

D21 D22 ... D2N

... ... ... ...

DN1 DN2 ... DNN


(1.93)

and then

d(m)

dxm
→ D(m) ≈ D(1) ·D(1) · ... ·D(1)︸ ︷︷ ︸

m times

. (1.94)

In this way, derivatives are discretized. For example

dy

dx
→ (y′)i =

∑
j

(D(1))ijyj. (1.95)

To illustrate how this may work for a simple differential equation, consider

d2y

dx2
+ x

dy

dx
+ 2x2 = 0. (1.96)

We want to construct the differential operator

D =
d2

dx2
+ x

d

dx
+ 2x2. (1.97)
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Writing everything in index form, the rows of the matrix representing this operator

are

Dij = D
(2)
ij + xiD

(1)
ij + 2x2

i Iij (1.98)

where D(2) = D(1) ·D(1) and the differential equation is

Dijyj = 0. (1.99)

In row form, it is clear how to implement the boundary conditions. Just replace the

first and last rows by the corresponding matrix equation of the boundary condition.

In this way, the full differential equation with boundary conditions imposed is



B11 B12 ... B1N

D21 D22 ... D2N

... ... ... ...

D(N−1)1 D(N−1)2 ... D(N−1)N

CN1 CN2 ... CNN





y1

y2

...

yN


= 0 (1.100)

Now, we are ready to solve our differential equations. In linear algebra form,

eq. (1.99) looks like a set of coupled polynomials whose roots are the solutions to the

differential equation. Thus, we should treat our differential equation like a polynomial

and find its roots using a numerical algorithm like the Newton-Raphson relaxation

method.

The method is as follows. Consider some guess for a solution y(0)(x) which differs
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from the true solution y(x) by an amount ∆(0)y(x). Then, we may write

0 = E[y(x)] = E[y(0)(x)] +
δE

δy(x)

∣∣∣∣
y=y(0)

∆(0)y(x) + ... (1.101)

If we are near a solution, we can neglect the higher order terms and solve for ∆(0)y(x),

δE

δy(x)

∣∣∣∣
y=y(0)

∆(0)y(x) = −E[y(0)(x)]. (1.102)

This gives us a new guess for the solution

y(1) = y(0)(x) + ∆(0)y(x) (1.103)

which differs from y(x) by ∆(1)y(x). We can solve for ∆(1)y(x) in terms of y(1)(x),

thereby obtaining a new approximation y(2)(x). We continue this process k-times

until we obtain a ∆(k) smaller than some chosen precision. Typically, this precision

is chosen to be the floating point precision of the computer and is less than 10−12.

One benefit of pseudospectral methods over finite differencing is that their precision

scales exponentially in the number of grid points [63] and is thus less computationally

expensive.

Finally, we implement eq. (1.102) on the computer by constructing the differential

operator

δE

δy(x)

∣∣∣∣
y=y(i)

→ F (i) (1.104)
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and solving the matrix equation

F (i)∆(i)~y = −D(i)~y(i) (1.105)

and solving for ∆(i)~y iteratively. For my computations, this process was easily imple-

mented by the built-in NSolve function in Mathematica.

In addition to exponential convergence, pseudospectral methods are easy to adapt

to coupled differential equations and partial differential equations. For coupled dif-

ferential equations, for instance

D(1)y(x) +D(2)z(x) = 0

D(3)y(x) +D(4)z(x) = 0 (1.106)

we can combine y(x) and z(x) into a vector function Y (x) = {y(x), z(x)} and the

differential operators are the elements of a 2× 2 matrix D(x). Clearly, the numerical

analog of this is to construct a rank-2N vector,

Y =



y1

y2

...

yN

z1

...

zN



(1.107)
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and an analogous matrix, D̄, representing D(x).

Partial differential equations can be constructed similarly. First construct an

M ×N -point grid with each point (x, y) labelled by (xi, yj). Then, a function z(x, y)

can be turned into a vector

z(x, y)→ z =



z11

...

z1N

z21

...

z2N

...

zM1

...

zMN



(1.108)

Partial derivatives are constructed in a similar way to total derivatives, but must

accommodate the new index structure,

∂

∂x
→ D(1)

x ⊗ Iy,
∂

∂y
→ Ix ⊗D(1)

y . (1.109)

One must also be careful to respect the index structure of Y to implement boundary

conditions in D̄, but it is straightforward.

Last but not least, the actual form of the differentiation matrices and grids must

be mentioned. There are two choices that are based on the symmetries of the problem.
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If the differential equation has some periodicity, then the appropriate grid is evenly

spaced,

xi = xmin + (xmax − xmin)
i− 1

N − 1
. (1.110)

The differentiation matrix for this grid is

D
(1)
ij = f ′N(xi − xj) (1.111)

where

fN(x) =
sin(N

2
x
L

)

N tan(πx/L)
. (1.112)

If the system is not periodic, then one chooses a Chebyshev grid,

xi =
xmin + xmax

2
+
xmin − xmax

2
cos

(
(i− 1)π

N − 1

)
. (1.113)

Define

ai =
∏
j 6=i

(xi − xj). (1.114)

Then

D
(1)
ii =

∑
j 6=i

1

xi − xj

D
(1)
ij =

ai
aj

1

xi − xj
(1.115)
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Pseudospectral methods are the most common technique that I use in my research

and they are gaining widespread traction in numerical relativity, having recently

overtaken finite differencing as the state of the art in generation of gravitational

waveforms especially with the “Simulating Extreme Spacetimes” group [69].

1.3.3 The Einstein-de Turck Equation

In holography, one is often trying to solve the equations of motion for classical

fields on a fixed gravitational background, or as we do in chapter 6, solve for the

backreacted gravitational solution which slightly modifies an existing metric. How-

ever, one can go further and ask about the existence of new solutions to the Einstein

equations which are asymptotically locally anti-de Sitter. Unfortunately, analytic

solutions are limited by the requirement of a large amount of symmetry and few solu-

tions are known. On the other hand, because the Einstein equations can be phrased

as a boundary value problems, the pseudospectral numerical methods just discussed

are well-suited to the task of finding solutions. But, there is a catch. While it is

known that the Einstein equations have a well-posed initial value formulation [20],

the evolution equations are hyperbolic. For boundary value problems, one requires

elliptic equations. Simple examples of hyperbolic and elliptic equations are the wave

equation and Poisson’s equation, respectively.

To put the Einstein equations into an elliptic form, we can use the gauge symmetry

of the Einstein equations. We fix the gauge by introducing an auxiliary field, a

“background metric,” ḡαβ, which serves as a Lagrange multiplier. The new (vacuum)
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Einstein equations, called the “Einstein-de Turck” equations, have the form

Rµν −
2Λ

d− 1
gµν −∇(µξν) = 0 (1.116)

where

ξµ = gαβ
(
Γµαβ − Γ̄µαβ

)
(1.117)

is the “de-Turck vector” constructed from the Christoffel symbols of ḡ. When the

Einstein-de Turck equation is satisfied and

ξ2 = 0, (1.118)

the Einstein equations are satisfied simultaneously. This equation can be modified to

include matter in a straightforward manner.

Solutions of the Einstein-de Turck equation with ξ2 6= 0 are termed “Ricci soli-

tons.” Given certain conditions on the metric, for instance imposing stationarity or

staticity, one can demonstrate that the norm of the de Turck satisfies a maximum

principle and sufficient boundary conditions will rule out Ricci solitons [63, 70]. Here

we reproduce the argument for a static spacetime.

The contracted Bianchi identity, applied to the Einstein-de Turck equation, says

that any solution must also satisfy

∇2ξµ +R ν
µ ξν = 0. (1.119)
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We define

φ = ξ2 (1.120)

which is non-negative in static spacetimes. Rewriting the Einstein-de Turck equation

in terms of this scalar, and using the Bianchi identity

∇2φ+ ξµ∂µφ = −2Λφ+ 2(∇µξν)(∇µξν) ≥ 0. (1.121)

The last inequality is true for asymptotically anti-de Sitter or asymptotically flat

spacetimes where Λ ≤ 0. The left hand side of this equation satisfies a maximum

principle for smooth, connected, Riemannian manifoldsM with boundary ∂M. Our

static spacetime is just the Lorentzian continuation of such a manifold, so this maxi-

mum principle continues to hold. The maximum principle states

i) φ may attain its maximum only on the boundary ∂M

ii) the outer normal gradient ∂nφ > 0 at such a maximum. (1.122)

Since φ ≥ 0 everywhere in the interior, if φ = 0 on M, then φ = 0 everywhere from

(i). One can also impose ∂nφ ≤ 0 on ∂M to ensure no Ricci soliton.

In asymptotically AdS spacetimes, it is clear that the conformal boundary and

spatial infinity correspond to true boundaries of the Riemannian manifold. For ap-

plications to finite temperature quantum field theory, it is useful to have a black hole

horizon in the bulk. In Euclidean signature, this is a point where the U(1) Euclidean
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time circle smoothly caps off. Any such metric can be cast in the form

g = −T 2r2dt2 + A2(dr + rβαdx
α)2 + γαβdx

αdxβ (1.123)

where the horizon is at r = 0. For a smooth manifold, the functions T,A, γ must be

functions only of ω2 and xα and we require that

T

A

∣∣∣∣
r=0

= κ (1.124)

where, upon t→ −iτ

τ = τ +
2π

κ
. (1.125)

If we choose the reference metric to be in the same class as equation (1.123) and have

the same smoothness conditions, a direct calculation shows that ∂rφ = φ = 0 at r = 0.

In this way, the non-extremal horizon serves as a “fictitious boundary” that satisfies

the maximum principle. Furthermore, the U(1) symmetry of the Euclidean section

can be easily modified to SO(n) and the same arguments can be made to show that

an axis of rotational symmetry can also serve as a fictitious boundary where φ = 0.

Of course, on this boundary, the analogous κ to eq. (1.124) must be unity. Finally,

extremal bulk horizons serve as true boundaries, but can also be shown to satisfy a

maximum principle.

After seeing the basic mechanism for AdS/CFT, including example observables of

scalar two-point functions and entanglement entropies, the following chapters should

be more clear. When a new observable or novel boundary conditions are intro-
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duced, a somewhat pedagogical discussion will follow. Nevertheless, the concepts

follow straightforwardly from those discussed in the introduction. Hopefully, the

remainder of this dissertation will convince the reader that simple applications of

the gauge/gravity duality have enormous power to teach us about the physical world,

whether it is the behavior of quantum fields near black holes, high temperature super-

conductors, or exotic new laboratories like wormholes or higher-dimensional quantum

field theories.

1.4 Permissions and Attributions

1. The content of chapter 2 is the result of a collaboration with Zicao Fu and

Donald Marolf, and has previously appeared in the Journal of High Energy

Physics [71]. It is reproduced here with the permission of the International

School of Advanced Studies (SISSA), Trieste, Italy. https://jhep.sissa.it/

jhep/help/JHEP/CR_OA.pdf

2. The content of chapter 3 is the result of a collaboration with Edgar Shaghoulian

and Milind Shyani, and has previously appeared online at the arXiv [72]. It will

appear in the Journal of High Energy Physics and is reproduced here with the

permission of the International School of Advanced Studies (SISSA), Trieste,

Italy. https://jhep.sissa.it/jhep/help/JHEP/CR_OA.pdf

3. The content of chapter 4 has previously appeared in the Journal of High Energy

Physics [2]. It is reproduced here with the permission of the International School

of Advanced Studies (SISSA), Trieste, Italy. https://jhep.sissa.it/jhep/

help/JHEP/CR_OA.pdf
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4. The content of chapter 5 is the result of a collaboration with Akihiro Ishibashi

and Kengo Maeda, and has previously appeared in the journal Physical Re-

view D [73]. It is reproduced here with permission from the publisher, the

American Physical Society: http://journals.aps.org/copyrightFAQ.html#

thesis See http://publish.aps.org/info/terms.html for the official copy-

right transfer agreement.

5. The content of chapter 6 is the result of a collaboration with Gary Horowitz,

and has previously appeared in the journal Physical Review D [1]. It is re-

produced here with permission from the publisher, the American Physical So-

ciety: http://journals.aps.org/copyrightFAQ.html#thesis See http://

publish.aps.org/info/terms.html for the official copyright transfer agree-

ment.
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Chapter 2

Time-independent wormholes

2.1 Introduction

The familiar Kruskal wormhole has an exact Killing symmetry often called a time-

translation. But as illustrated in figure 2.1 (left) for the asymptotically AdS case, this

symmetry displaces one asymptotic region forward in time while shifting the other

asymptotic region toward the past. As a result, non-local quantities that compare the

two boundaries do in fact change under the asymptotic symmetry that shifts both

boundaries toward the future. Such quantities are commonly studied in AdS/CFT

and include both boundary-to-boundary two-point functions and mutual informations

between the two boundaries. The resulting time-evolutions were described in e.g. [74]

and [75].

Below, we explore whether Einstein-Hilbert gravity coupled to familiar matter

sources might allow wormholes with a Killing symmetry that translates both ends in

the same direction. Since topological censorship [76, 77] requires wormholes to have
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Figure 2.1: Sketches of conformal diagrams for the familiar two-sided Kruskal-AdS
wormhole (left) and what we call time-independent wormholes (right). In the
Kruskal case the Killing symmetry moves one boundary forward in time while
shifting the other backward. But on the right the Killing symmetry acts as a
future-directed time-translation on both boundaries. On the left, the Killing hori-
zon has only a single bifurcation surface, while the Killing horizon of the right
figure has two (red dots). Both spacetimes have Z2 reflection symmetries about
the dotted vertical lines. On the left, this reflection changes the sign of the time
translation Killing field, while it leaves the Killing field invariant on the right.

horizons, and since the Killing symmetry must resemble a flat-space boost transfor-

mation near the horizon bifurcation surface, such spacetimes should have conformal

diagrams resembling figure 2.1 (right), or more generally should have Killing horizons

with an even number of bifurcation surfaces in the t = 0 hypersurface.

For simplicity, we study wormholes with spherical symmetry. Birkhoff’s theorem

then forbids vacuum solutions of this form in Einstein-Hilbert gravity. Physically, the

issue is that the interior of the wormhole tends to collapse, destroying the presumed-

static region shown in the middle of the wormhole at right in figure 2.1. We solve

this problem by coupling gravity to a scalar field. The repulsive gravity generated

by either positive-tension scalar domain walls or positive scalar potentials (which

effectively act as local positive cosmological constants) allow the desired static region
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to exist.

Section 2.2 constructs and studies asymptotically-AdS such solutions in the thin

wall approximation. The resulting spacetimes are similar in many ways to the single-

asymptotic region black holes with de Sitter interiors found in [74]. Interestingly, the

holographic mutual information between the two boundaries always vanishes when

considering regions smaller than half of either boundary.

We then consider spacetimes sourced by smooth scalar fields in section 2.3. We

show that time-independent wormhole solutions exist when the scalar potential V (φ)

is chosen to behave like φ2(log φ)3 near a local minimum; i.e., while the solutions are

smooth, the scalar potentials are only C1 as functions of φ. Examples are constructed

numerically. Again, the holographic mutual information between the two boundaries

always vanishes when considering regions smaller than half of either boundary. That

singular potentials are required is shown in section 2.6; scalar fields with smooth

potentials cannot support our time-independent wormholes. We close with some final

discussion in section 2.4. In particular, we comment on the status of such solutions

with respect to gauge/gravity duality and also with respect to recent discussions of

the possible role of complexity in gauge/gravity duality [78, 79, 80, 81].

2.2 Thin Wall Solutions

We begin in section 2.2.1 by constructing thin wall versions of the time-independent

wormholes shown at right in figure 2.1. We then briefly analyze the holographic mu-

tual information defined by these wormholes in section 2.2.2 and note that in a certain

sense they are already thermalized at any finite t.
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2.2.1 A cut and paste construction

It is straightforward to assemble the desired time-independent wormholes by cut-

ting two copies of Kruskal-AdS (fig. 2.1 left) along a timelike surface defined by orbit

of the symmetry group (a constant r surface) and then sewing the two larger pieces

together other along a thin positive-tension domain wall. This domain wall then be-

comes the dotted line in right diagram in figure 2.1 and is left invariant under the

reflection symmetry.

To proceed, recall the D dimensional AdS-Schwarzschild metric

ds2 = −
(

1− ωDM

rD−3
+
r2

`2

)
dt2 +

1

1− ωDM
rD−3 + r2

`2

dr2 + r2dΩ2, (2.1)

where ωD = 16πGD
(D−2)SD−2

and SD−2 = 2π
D−1

2

Γ(D−1
2 )

. A timelike constant r surface has unit

normal na =
√

1− ωDM
rD−3 + r2

`2

(
∂
∂r

)a
. Its extrinsic curvature Kab = 1

2
£nhab is thus

Kabdx
adxb =

1

2

√
1− ωDM

rD−3
+
r2

`2

[
−
(

(D − 3)
ωDM

rD−2
+

2r

`2

)
dt2 + 2rdΩ2

]
. (2.2)

We wish to consider relativistic domain walls with surface stress tensor T̂ab =

−σhab in terms of the (constant) tension σ and the induced metric hab. Here we

use the conventions of [20] in which hab is a degenerate tensor in the full spacetime

such that hab is the projector onto the vector space tangent to the wall. The full

stress-energy tensor Tab is proportional to T̂ab, but contains an extra delta-function

localizing the stress-energy on the wall. Given the Z2 symmetry of figure 2.1 (right),

the Israel junction conditions (see e.g. [82]) require T̂ab ∝ Kab, and thus gtt
gΩΩ

= Ktt
KΩΩ

.
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This relation is satisfied if and only if

rD−3
wall =

D − 1

2
ωDM. (2.3)

The junction condition then gives Kab = 4πGDσ
D−2

hab so that

σ =
D − 2

4πGDrwall

√
1− ωDM

rD−3
wall

+
r2

wall

`2
(2.4)

is positive as desired.

This completes our construction of thin-wall solutions corresponding to figure

2.1 (right). However, we note in passing that a similar analysis indicates that our

solutions are unstable. This is to be expected as the interior of our wormhole remains

static only due to a delicate balance between the gravitational attraction of the black

hole and the gravitational repulsion of the domain wall. Indeed, maintaining the Z2

reflection symmetry and spherical symmetry but allowing the wall to move with time

on a surface r = R(T ), the Israel junction conditions imply an equation of motion

2

√
f(R) + Ṙ2 =

8πGDσ

D − 2
R, (2.5)

for f(r) = 1− ωDM
rD−3 + r2

`2
and Ṙ the derivative of R with respect to proper time along

the shell. Here the first-order nature of the equation is a consequence of restricting

to solutions with Z2 symmetry. Squaring (2.5) and linearizing it around the static

solution (2.3), we obtain

(
d

dτ
δR

)2

= (D − 3) 4
1

D−3 ((D − 1)ωDM)
−2
D−3 δR2 +O(δR3), (2.6)

57



Time-independent wormholes Chapter 2

so the static solution is unstable on the timescale

τ =

√
1

D − 3
4
−1
D−3 ((D − 1)ωDM)

2
D−3 . (2.7)

2.2.2 Mutual Information and Thermalization

As noted in the introduction, physical quantities defined by the geometry of our

wormhole must be independent of time. This includes the (leading order) holographic

mutual information defined by the Ryu-Takayanagi (RT) [42, 83] or the covariant

Hubeny-Rangamani-Takayanagi (HRT) [43] prescriptions. While – as will be dis-

cussed in section 2.4 – the derivations of [84] and [85] need not apply to our spacetime,

it is nevertheless of interest to investigate what these prescriptions would predict. In

particular, we will see that – despite the instability noted above – in a sense these

mutual informations (and indeed the entropies of all boundary regions) appear to

already be thermalized at any finite t.

We note that such leading-order holographic mutual informations are of more

interest in our context than our boundary-to-boundary correlators, as the latter de-

pend on the choice of quantum state for light bulk fields as well as on the classical

background geometry. Since we have not constructed our spacetimes as stationary

points of a path integral, there is no preferred choice for this quantum state. And due

to the large causal shadow between the two event horizons of our time-independent

wormholes, we are free to choose the light bulk fields in the left asymptotic region to

be completely uncorrelated with those in the right asymptotic region so that all con-

nected correlators vanish when evaluated with one argument on the right boundary

and another on the left.
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Because the spacetime is not globally static, the RT prescription does not strictly

apply. Nevertheless, in a spacetime with time-reversal symmetry, the maximin con-

struction of [86] guarantees the HRT surface to be the minimal surface within the

t = 0 (i.e., within the hypersurface invariant under t→ −t) as one would expect from

the RT prescription1.

We wish to study surfaces anchored both to a region AR of the right boundary

and also to a corresponding region AL of the left boundary, such that AR, AL are

interchanged by the Z2 symmetry of reflection across the wall. In order to compute

the entropy SALAR of AL∪AR, we must correctly identify the minimal surface. We first

consider the case where AR and AL are each precisely half of the t = 0 sphere at the

AdS boundary (note that our solutions correspond to ‘global’ Schwarzschild-AdS).

Referring to AL, AR as the ‘northern’ hemispheres (whose boundaries are thus the

equator of the sphere), it is then clear that the smallest connected surface anchored

to both AL and AR is the surface defined by taking the equator of the sphere at each

r. As shown below, it suffices for our purposes to compute the area of the portion of

this surface inside our wormhole. Noting that the radius r0 of the event horizon is

defined by

1− ωDM

rD−3
0

+
r2

0

`2
= 0, (2.8)

1Since this surface is minimal on the t = 0 slice, its area can be no larger than that of the maximin
surface. But the time-reversal symmetry means that this minimal surface is also an extremal surface
in the full spacetime. It can therefore have area no smaller than the maximin surface, as the latter
agrees with the area of the smallest extremal surface. We thank Veronika Hubeny for pointing this
out to us.
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Figure 2.2: The functions (2.9) for D = 4 (red), D = 5 (orange), D = 6 (yellow),
D = 7 (green), D = 8 (cyan), D = 9 (blue), and D = 10 (purple).

and introducing r̃ = r/` and r̃0 = r0/`, this area satisfies

Aconnected, inside

AEH

=
2√
π

Γ
(
D−1

2

)
Γ
(
D−2

2

) ∫ [D−1
2 (1+r̃2

0)]
1

D−3

1

r̂D−3√
1− 1+r̃2

0

r̂D−3 + (r̃0r̂)
2
dr̂, (2.9)

where we have normalized the quantity by dividing by the area of either event horizon.

The area of the full minimal connected surface is then Aconnected = Aconnected, inside +

Aconnected, Kruskal where Aconnected, Kruskal is the area of the minimal connected surface

in the AdS-Kruskal geometry of figure 2.1 (left).

For general D the integral (2.9) can be performed numerically. But for D = 5 it
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can be performed exactly to obtain

Aconnected, inside, D=5

AEH

=
2r̃0

√
1 + r̃2

0 (1 + 2r̃2
0)− ln

(
1 + 2r̃0

(
r̃0 +

√
1 + r̃2

0

))
πr̃3

0

. (2.10)

As shown in figure 2.2, (2.9) and (2.10) are increasing functions of r̃0, which are larger

than 1.6 for all r̃0 (at least for 4 ≤ D ≤ 10). In particular, there is
Aconnected, inside

AEH
> 1.

However, as usual we must also consider the smallest disconnected surface an-

chored on AL, AR and compare its area to that of the connected surface. Let us first

study a single connected component, say the one anchored to AL. One example of

a surface satisfying these boundary conditions is the surface Σ0 shown in figure 2.3

which consists of the northern hemisphere of the bifurcation surface for the left event

horizon together with the equators of all t = 0 spheres in the left asymptotic region.

In other words, outside the horizon it coincides with the connected surface studied

above anchored to both AL and AR. So the area of the left component of the actual

minimal surface must be less than that of Σ0.

Adding together the two components, the area of the minimal disconnected surface

must satisfy

Adisconnected ≤ Aconnected, Kruskal + AEH. (2.11)

The observation that (2.9) and (2.10) are larger than 1 then implies Adisconnected <

Aconnected. The HRT surface is thus disconnected and, due to e.g. the barrier theorems

of [59], lies entirely outside the horizons. The mutual information I(AL : AR) is then

just what would be obtained from surfaces outside the horizon of AdS-Kruskal (fig.

2.1 left) and I(AL : AR) vanishes. Furthermore, the positivity and monotonicity of

HRT mutual information derived in [86] then imply vanishing mutual information
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Σ� Σ�

Figure 2.3: On the left, Σ1 is minimal surface for a hemisphere of the boundary
with a black hole (red, dotted) in the bulk. The surface Σ0 on the right necessarily
has larger area than Σ1. This surface contains a piece (straight segments along
the equator) that are part of the connected surface passing through the wormhole;
the other piece lies on the black hole horizon.

I(AL : AR) for any subsets AL, AR of the northern hemisphere, whether or not such

AL, AR are related by the Z2 symmetry.

In fact, since AL∪AR is homologous to its complement, the same argument shows

that the HRT surface for SALAR is again disconnected (and lies entirely outside the

horizon) whenever AL, AR both contain the entire southern hemisphere. So here too

I(AL : AR) is what would be obtained from surfaces outside the horizon of AdS-

Kruskal (fig. 2.1 left), though due to the homology constraint I(AL : AR) no longer

vanishes.

Equivalently [75], we may say in both cases that I(AL : AR) for the time-dependent

wormhole agrees with that for the t → +∞ limit of AdS-Kruskal. Though there re-

main certain cases that we have not checked, it is thus natural to conjecture the

same to be true of arbitrary AL, AR, and thus for the entropies of arbitrary boundary
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regions. But the t→ +∞ limit of AdS-Kruskal is naturally interpreted as a thermal-

ized state. So if our conjecture is true, then despite the instability found in section

2.2.1, as measured by such entropies we find that our time-independent wormhole is

already thermalized at any finite time t.

2.3 Smooth Solutions

Having constructed time-independent wormholes using thin shells, it is natural

to ask if similar solutions can be sourced by smooth scalar fields φ. We shall now

show that they can, but with an interesting twist. While the solutions are completely

smooth, the scalar potential V (φ) is not. Indeed, near the AdS minimum φ0, our V (φ)

will behave like (φ−φ0)2[ln(φ−φ0)]3. We demonstrate the existence of such solutions

analytically and construct a particular example numerically. Appendix 2.6 then gives

a general argument that spherically symmetric time-independent wormholes cannot

be sourced by scalar fields with smooth potentials.

Our smooth solution will bear a strong similarity to our domain wall solution, in

that it will be precisely D-dimensional AdS-Schwarzschild outside the horizon and

also in the region where the time-translation Killing field is spacelike. In those regions

our scalar field will be constant and will sit at a minimum of its potential. The scalar

will deviate from this minimum only in the central diamond of figure 2.1 (right) which

in section 2.2 contained the domain wall; we refer to this diamond as the wormhole

below. Smoothness then requires that all derivatives of φ vanish at boundaries of the

wormhole.

The wormhole should enjoy both spherical and time-translation symmetry. As a
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result, any smooth metric in this region may be written

ds2 = −f(r)dt2 +
dr2

f(r)
+ S(r)2dΩ2

D−2, (2.12)

where we require f to vanish linearly at the wormhole boundaries to give a smooth

bifurcate horizon. Imposing the Z2 reflection symmetry of figure 2.1 (right), we may

set r = 0 at the fixed points of this reflection. It then suffices to study the metric

only on the right half of the spacetime. We take this to be r > 0, with the wormhole

boundary at r = rh. Note that (2.12) and these choices still allow the freedom to

perform a constant rescaling (t, r, rh, f)→ (αt, r/α, rh/α, f/α
2) without changing the

geometry. For later reference, we note that AdS-Schwarzschild in these coordinates

has

SAS(r) = r, fAS(r) =
r2

`2
+ 1− (r2

h + `2)
(rh
r

)D−3

, (2.13)

with AdS boundary at r →∞. From now on, we set ` = 1 so that

V (φ(rh)) = ΛAdS = −(D − 1)(D − 2)

2
. (2.14)

In these coordinates, the equation of motion for a single minimally coupled scalar

field reads

fφ′′ +

[
(D − 2)

fS ′

S
+ f ′

]
φ′ =

dV

dφ
. (2.15)

and the nontrivial tt, rr, and sphere-sphere, components of the Einstein equation
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(with 8πG = 1) may be combined to write

(D − 2)S ′′ = −Sφ′2,(
S ′

S

)
f ′ − D − 3

S2

(
1− f(S ′)2

)
=

2

D − 2
T rr =

1

D − 2
(fφ′2 − 2V (φ)),

f ′′ + (D − 3)

((
S ′

S

)
f ′ +

1

S2
−
(
S ′2

S2

)
f

)
=

2

D − 2
TΘ

Θ = − 1

D − 2

(
2V (φ) + fφ′(r)2

)
.

(2.16)

As usual, (2.15) follows from (2.16) due to the Bianchi identity, so it suffices to

consider (2.16).

Rather than choose a form for V (φ) and solve for the resulting φ(r), we find it

convenient to proceed in analogy with section 4 of [87] and to posit φ(r). We then

take the middle equation from (2.16) as the definition of V (φ). The requirement that

all derivatives of φ(r) vanish at rh motivates us to choose the form

φ(r) = b tanh

(
kr

r2
h − r2

)
. (2.17)

This leaves us with a pair of second order ODEs (the first and last of (2.16)) to

solve for f(r), S(r). The Z2 reflection symmetry requires the boundary conditions

S ′(0) = f ′(0) = 0. (2.18)

We also wish to impose two boundary conditions at rh. The first of these is simply

f(rh) = 0. Using (2.14) and our definition of V (φ) (the middle equation in (2.16))
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gives the second:

df

dr
|r=rh =

1

S ′(rh)S(rh)

(
(D − 1) S(rh)

2 + (D − 3)
)
. (2.19)

We note that (2.19) guarantees the surface gravity at the wormhole boundary to

match that of AdS-Schwarzschild with horizon radius S(rh) if we rescale (t, r, rh, k, f)→

(αt, r/α, rh/α, αk, f/α
2) to set S ′(rh) = 1. With this understanding, the redshift fac-

tor f , the sphere size S, and their first derivatives with respect to r are then contin-

uous at r = rh. So long as S(rh) 6= 0, the ODEs (2.16) then guarantee continuity of

all derivatives and the geometry matches smoothly to AdS-Schwarzschild as desired.

However, it will be convenient for our later numerics to first choose b, k, rh arbitrarily

and only later to rescale in this manner.

This suffices to prove that the desired solutions exist. So long as S > 0, it is clear

that our ODEs have no singular points. Furthermore, since we take φ(r) as given,

the first ODE is a homogeneous equation for S(r) alone. Using only S ′(0) = 0, it

is then clear that the resulting one-parameter family of solutions for S(r) will have

S > 0 on [0, rh] so long as we choose b sufficiently small for given k, rh. For each such

S(r), the second ODE defines a regular linear 2nd order ODE for f(r), so there a

unique solution f(r) satisfying f ′(0) = 0 and f(rh) = 0. Taking the remaining free

parameter to be S(0), and noting that scaling S(0) → βS(0) induces the scalings

S(r), f(r), V (r) → βS(r), β−2f(r), β−2V (r) we may then choose β so as to both

satisfy (2.19) and make S(0) positive. Thus smooth time-independent wormholes of

this form exist so long as b is sufficiently small. Figure 2.5 displays numerical solutions

66



Time-independent wormholes Chapter 2

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

r

ϕ

-1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

2

3

4

ϕ

V

Figure 2.4:

for f(r), S(r) and V (φ) in D = 4 with

b = 1, k = 2.05768, S(rh) = 1, (2.20)

where for numerical convenience we have chosen rh = 1.
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Figure 2.5: Here and in figure 2.4, we plot the numerical solutions to the Ein-
stein-scalar system for the scalar field profile (2.17) with b = 1, k=2.05768. Note
that, having set ` = 1, the potential goes to V = ΛAdS at the horizons (rh = ±1).
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It now remains to discuss V (φ). Since f, S are smooth, our definition of V via

(2.16) guarantees that V is a smooth function of r. The ansatz (2.17) then implies

that V (φ) is smooth for φ ∈ (−b, b). But the behavior at the minimum b must be

determined by expanding S, f, φ near r = rh. To simplify this calculation we now set

rh = 1 to find

φ ≈ b(1− 2e−k/(1−r)),

φ′ = b

(
kr

1− r2

)′
sech2

(
kr

1− r2

)
≈ 2bk

e−k/(1−r)

(1− r)2
,

φ′′ = b

[(
kr

1− r2

)′′
− 2

[(
kr

1− r2

)′]2

tanh

(
kr

1− r2

)]
sech2

(
kr

1− r2

)
≈ b

[
4k

(1− r)3
− 2k2

(1− r)4

]
e−k/(1−r).

(2.21)

and

S2f ≈ −f ′(1)S(1)2(1− r) + ...

(S2f)′ ≈ f ′(1)S(1)2 + ...

(2.22)

Using (2.15) then yields

dV

dφ
= f ′(1) log2

(
b− φ

2b

)(
log

(
b− φ

2b

)
− 1

)
b− φ
k

+O[(b− φ)2], (2.23)

or

V (φ) =ΛAdS +
f ′(1)b

4k

(
b− φ

2b

)2 [
−5 + 10 log

(
b− φ

2b

)
−10 log2

(
b− φ

2b

)
+ 4 log3

(
b− φ

2b

)]
+O[(b− φ)3].

(2.24)
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Figure 2.6: A comparison of the numerical results (y-axis) for dV
dφ to analytic results

(x-axis). We have plotted our result (blue) on a log-log plot against a line (red)
with slope 1 to show agreement over 4 orders of magnitude. The values of b,k, and
rh are the same as in fig. 2.5.

So our potential is not smooth at its minimum. Instead, d2V
dφ2 has a logarithmic

singularity, indicating that interactions remain important near the horizon. As shown

in figure 2.6, this result is consistent with our numerics.

We remark that the singularity in our potential is not just an artifact of our par-

ticular construction. Indeed, appendix 2.6 demonstrates – even when the requirement

of a pure AdS-Schwarzschild exterior is dropped – that time-independent spherically-

symmetric wormholes cannot be sourced by scalar fields with smooth potentials.
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2.3.1 HRT entropies

Finally, we investigate the holographic HRT mutual information between the two

boundaries of our smooth time-independent wormhole. Here we consider the particu-

lar numerical solution displayed in figure 2.5. As in section 2.2.2, we begin by choosing

AL, AR to each be the northern hemisphere of the respective boundary at t = 0. Re-

peating the steps describes there, and since the solution is just AdS4-Kruskal outside

the horizon, we focus on the area Aconnected, inside of the surface defined by taking the

equator of each sphere inside the horizon. Interestingly, as in the thin-wall case, we

find Aconnected, inside > AEH for all values of k, b that we have explored – and indeed

even for other functional forms of φ(r) such as φ(r) = b tanh
(

kr
(r2
h−r2)c2

)c1
with c1, c2

integer constants. So as in section 2.2.2 we conjecture that for general AL, AR the

HRT entropy SALAR agrees with the t→ +∞ limit of AdS-Kruskal and that, despite

a likely instability analagous to that found for the domain wall solutions, in this sense

our time-independent wormholes are already thermalized at any finite t.

Typical results for Aconnected, inside, AEH are shown in figure 2.7 for the profile

(2.17). One might expect that for large k our smooth solutions approximate the

thin-shell solutions of section 2.2. At least so far as these areas are concerned, the

plot indicates that the agreement is already quite good for any b at k ∼ 1. Indeed,

different scalar profiles in this regime that lead to the same AEH also have nearly

identical Aconnected, inside.
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Figure 2.7: A comparison of the areas Aconnected, inside of minimal surfaces inside
the wormhole to the area AEH of the corresponding black hole. Using the profile
in (2.17), each curve corresponds to a fixed value of b (b = .87 (green), b = 1
(red), b = 1.2 (blue)) while k is varied from .2 to 2.1. For each b there are two
branches of solutions which join around k ∼ .7. We have also plotted the D = 4
solution from fig. 2.2 in brown which is seen to coincide with the top branch of
our solutions for each b; in particular, while the brown curve is hidden by the
top branches of the colored curves across much of the figure, it remains visible at
both the lower left and upper right ends. All solutions lie above the dashed line
which plots Aconnected, inside = AEH , so the minimal surfaces are disconnected for
hemispheres on the boundary of AdS.

2.4 Discussion

We have constructed time-independent spherically symmetric AdS-wormholes sourced

by both thin-shell domain walls and smooth scalar fields with potentials V (φ) that

are C1 but not C2. The time-translation in such spacetimes translates both wormhole

mouths forward in time, instead of shifting them in opposite directions as in familiar

AdS-Kruskal black holes. Interestingly, the results of figure 2.7 indicates that, at
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least for some purposes, the thin-shell solutions become good approximations to the

smooth solutions when the parameter k in (2.17) satisfies k & 1.

As shown in appendix 2.6, the non-smooth potential V (φ) is critical to the con-

struction, as there there can be no precisely time-independent such solutions when

the scalar potential V is a smooth function of the scalar field φ. This feature may be

related to the expectation that – even when they exist – the interior of such wormholes

will be unstable. The instability was identified explicitly in the thin-shell case.

Nevertheless, as discussed in sections 2.2.2 and 2.3.1, at least for a large set of

boundary regions the HRT entropies of boundary regions are already thermalized at

any finite t without the above instability having been triggered. By this we mean that

the result agrees with that obtained from familiar AdS-Kruskal in the limit t → ∞.

This was shown in particular for many cases where the boundary region contains

pieces on both boundaries so that the same result holds for cross-boundary mutual

informations similar to those studied in [75]. Indeed, we conjecture that it holds for all

such entropies and mutual informations. Should one be able to find a stable version

of our time-independent wormholes, a feature of this sort would be an interesting

consistency check on whether dual gauge theory states thermalize in a universal way.

Such computations raise the question of whether our wormholes can have gauge

theory duals in some version of gauge/gravity duality. One question involves the dual

description of the logarithm at the minimum of the potentials used in section 2.3. But

leaving this aside for now, we might ask if our wormholes define stationary points of

Euclidean path integrals in analogy with [13]. At least in the thin-wall context, it is

clear that the answer is negative. Constructing a Euclidean thin-wall stationary point

amounts to solving an ODE for the Euclidean motion of the wall within Euclidean
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AdS-Schwarzschild. Since at t = 0 the wall sits at (2.3) with zero velocity, it must

do so for all Euclidean time. But since shifting Euclidean time by half a period

takes one to the opposite side of the Lorentzian horizon, this is incompatible with the

requirement that the wall exist only inside the wormhole and not outside. It would be

interesting to determine whether a similar argument applies to our smooth wormhole

solutions built from non-smooth potentials.

Finally, we briefly mention the recent discussions of the possible role of complexity

in gauge/gravity duality in [78, 79, 80, 81] and the conjectures that gauge-theory

complexity is related either to the volume of maximal slices or the action of certain

regions in the bulk geometry. In our case, even the renormalized volume of a maximal

slice that extends from one boundary to the other is strictly infinite. Although the

renormalized volume of the t = 0 slice will be finite, for maximal slices there is no

analogue of the argument in footnote 1. Indeed, in our case it is clear that a surface

of arbitarily large renormalized volume can be obtained by following an orbit of the

Killing field in the regions of figure 2.1 (right) in which the time-translation Killing

field is spacelike. In particular, the volume of such surfaces grows without bound as

the surface nears the topmost point of the dotted line in 2.1 (right). Similarly, the

action of the spacetime region inside the wormhole (say, defined as in [88]) should

diverge due to the required integral over time and the (non-compact) time-translation

symmetry. Interestingly, assuming the wormhole to be unstable as in section 2.2 and

choosing a perturbation that collapses the interior even at a very late time would

result in finite actions and volumes of maximal surfaces at any given time t, though

the resulting breaking of time-translation symmetry would also cause these quantities

to grow with time. Indeed, at late times the growth in such quantities should be
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dominated by the region near the outermost horizon and so will proceed precisely as

in AdS-Kruskal. In contrast, with an instability that causes the wormhole interior

to expand both the relevant actions and volumes of maximal slices will continue to

diverge. It would be interesting to understand better the meaning of such divergences

in the context of the conjectures of [78, 79, 80, 81].
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2.6 Appendix: No solutions with smooth scalar

potentials

This appendix shows that spherically symmetric time-independent wormholes

with a Z2 reflection cannot be sourced by scalar fields with smooth potentials, and

thus that the singular potential found in section 2.3 is not an artifact of our particular

construction. Our argument closely follows the work of Bekenstein [89] constraining

black holes with scalar hair, though we have rephrased much of the proof in terms

of manifestly covariant quantities like the expansion of radial geodesics. We allow a
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general scalar action of the form

L =

[
gab

2
MAB({φA}) ∂aφA ∂bφB + V ({φA})

]√
−g (2.25)

with positive definite MAB. Such fields in particular respects the null energy condition

(NEC), which states that the stress tensor Tab satisfies Tabk
akb ≥ 0 for all null ka.

We again describe the spacetime using the metric (2.12), taking r = 0 at the

surface invariant under the Z2 symmetry. We also assume the scalar fields to share

the symmetries of the spacetime so that they depend only on the coordinate r. As a

result, covariance and the definition Tab = − 2√
−g

δS
δgab

require

−T t
t = −T Θ

Θ = E =
f

2
MAB({φA}) ∂rφA ∂rφB + V (φ), (2.26)

T rr =
f

2
MAB({φA}) ∂rφA ∂rφB − V (φ) (2.27)

where E is the Lagrangian density for the scalars and T Θ
Θ is the same for all angular

coordinates. Furthermore, the scalar equation of motion takes the form

∂r
(
MABfS

d−1∂rφ
B
)

=
∂V

∂φA
. (2.28)

The Einstein equations remain as in (2.16) with the substitution of (2.26).

Our argument begins not in the wormhole itself, but in the region outside the

horizon. Here we recall that the null convergence condition (a consequence of the

Einstein equations and the null energy condition) requires the size of the (d − 1)

spheres to increase monotonically from the horizon to the conformal boundary. The

argument is simply that spherical symmetry prevents any outgoing sphere of light rays

76



Time-independent wormholes Chapter 2

from forming a caustic before reaching the conformal boundary, and that a standard

calculation shows that such null congruences have vanishing expansion (θ = 0) at the

AdS boundary. The Raychaudhuri equation thus forbids them from having θ < 0 at

any r outside the horizon and thus implies monotonicity of S(r). In the same way,

since S ′(r) = 0 at r = 0, the sphere size S must increase monotonically as one moves

from a horizon toward r = 0. So the horizon r = rh must be a local minimum of

S(r).

In contrast to section 2.3, we now wish to take V (φ) to be a fixed smooth function

of φ and to solve (2.28), (2.16) to generate the spacetime. We seek solutions with

S 6= 0, so the only singular points of this system of ODEs occur when f = 0; i.e.,

at the horizon. In order for this to be a smooth Killing horizon with finite surface

gravity, both f and must be a smooth function of r at rh. Thus as usual r − rh is

quadratic in the proper distance s − sh from the horizon, and in fact (r − rh) may

be expanded in even powers of (s− sh)2. Smoothness of the geometry then requires

that f also have an asymptotic series expansion about the horizon, and that this

expansion is even.

This suggests that the entire solution will be symmetric about the horizon. Given

that on one side we allow no further horizons between rh and the AdS boundary,

such a symmetry would forbid the desired wormhole from being present on the other.

Indeed, we will show below that smoothness of V (φ) prohibits any breaking of this

symmetry by S, φA, or by effects vanishing faster than any power of r − rh and thus

forbids smooth time-independent wormholes.

We begin with perturbative effects. Having shown above that rh is a minimum

of S, smoothness requires S = S(rh) + dS
dr
|rh(s − sh)2 + O((s − sh)3) with dS

dr
finite
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at rh. The scalar equation of motion (2.28) then also forces dφB

dr
to remain finite and

in fact constrains its value. Repeated differentiation of (2.28) and the first equation

of (2.16) then guarantee that all r-derivatives of S, φB are finite at rh as well so that

they also admit well-defined asymptotic series expansions involving only even powers

of s− sh.

We now consider possible non-perturbative effects. In particular, suppose that

two solutions (f1, S1, φ
A
1 ) and (f2, S2, φ

A
2 ) have identical asymptotic expansions about

the horizon. Near rh, we may then expand our ODEs in powers of ∆f = f1−f2,∆S =

S1−S2, and ∆φA = φA1 −φA2 . And close enough to rh, to good approximation we may

truncate this expansion to first order and neglect f∆∂rφ
A relative to ∂rφ

A. Doing so

results in a linear system of ODEs for ∆f,∆S, and ∆φA with smooth non-vanishing

coefficents; in particular, the ODE resulting from (2.28) is only of first order. The

boundary condition that ∆f,∆S, and ∆φA all vanish at rh thus requires them to

vanish everywhere. We have thus shown that solutions of our ODEs are uniquely

determined by their power series expansion near rh for smooth V (φ). As a result,

smooth V (φ) requires a Z2 symmetry about any smooth bifurcate Killing horizons an

forbids the desired time-independent wormholes.
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Chapter 3

Sparseness bounds on local

operators in holographic CFTd

3.1 Introduction

There has been a recent surge of interest in precisely characterizing conformal field

theories with a weakly coupled Einstein gravity dual, with equations now accompany-

ing folkore from the past. The most quantitative work has focused on conformal field

theories in two dimensions, though there has also been progress on higher-dimensional

theories. The difficulties brought on by higher dimensions are clear: the constrain-

ing infinite-dimensional Virasoro symmetry is absent and modular invariance of the

torus partition function does not immediately provide constraints on the space of

local operators.

In this paper we will use the familiar thermodynamics of gravity in asymptotically

anti-de Sitter spacetimes to provide quantitative sparseness bounds on the spectrum
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of local operators of holographic conformal field theories. This approach began with

[14], which showed that the thermodynamics of gravity in AdS3 is reproduced if and

only if the spectrum of operators with scaling dimension ∆ < c/6 and ∆ ∼ O(c)

obeys ρ(∆) . exp(2π∆). This methodology was subsequently generalized to super-

symmetric theories [90], correlation functions [91], and higher-dimensional theories on

tori [92]. The universality of the thermodynamics for holographic CFTs on tori can

also be derived from the special center symmetry structure of such theories through

the Eguchi-Kawai mechanism [93].

In two dimensions, the low-temperature and high-temperature thermodynamics

are related to one another by modular invariance. This is what allows one to cap-

ture the entire thermodynamic phase structure by constraining only the low-lying

(∆ < c/6) operators. Unfortunately, in higher-dimensional theories on Sd−1, there is

no obvious high-temperature/low-temperature duality. But there is still a universal

feature of the gravitational phase structure that we can aim to reproduce from the

CFT: the Hawking-Page phase structure [94], where, as a function of some external

chemical potentials, the vacuum-subtracted free energy (or the entropy) jumps from

O(1) to O(Nk) for k some positive number. (For notational simplicity we will ignore

the possibility of intermediate scalings O(Nm) for 0 < m < k.) More specifically, we

will reproduce the fact that the theory is confined (O(1) scaling in the entropy) below

the Hawking-Page transition temperature THP .

To illustrate the basic idea, consider the finite-temperature canonical ensemble
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with normalization Evac = 0 and a deconfining phase transition at βc ∼ O(1). Then,

logZ(β) ∼


O(1), β > βc

O(Nk), β < βc .

(3.1)

Since Z(β) =
∫
e−β∆ρ(∆)d∆, the O(1) behavior of logZ may be ruined if the density

of states ρ(∆) grows too quickly for states with ∆ & O(Nk). More precisely, we have

logZ(β > βc) ∼ O(1) if and only if ρ(∆) . eβc∆ for ∆ & O(Nk) . (3.2)

In the worst-case scenario where the bound is saturated for all states, we have

Z(β > βc) =

∫ ∞
0

d∆e−β∆eβc∆ =
1

β − βc
. (3.3)

Hence, logZ is O(1) for all β > βc + ε for ε � 1 as long as ε is not exponentially

small in N .

While a deconfinement transition is generically expected for large-N adjoint CFTs

on compact spaces [12, 95], it is the precise temperature at which the transition occurs

which gives us mileage. In particular, applying the above argument to the well known

Hawking-Page transition at inverse temperature βHP = 2π
d−1

gives us a bound on the

spectrum of local operators of holographic CFTs:

ρ(∆) . exp

(
2π∆

d− 1

)
for ∆ & O(Nk) if and only if logZ(β > βHP ) ∼ O(1) .(3.4)

This bound applies to the entire spectrum, but above the transition temperature, bulk
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thermodynamics tells us that the large-N density of states is given by the degeneracy

of the black hole dominating the ensemble, which is generically smaller than our

bound (see figure 3.1). Interestingly, our bound must be saturated at the transition

point, since at leading order in N we can write

Fc = Ec − Sc/βc = 0 =⇒ Sc = βcEc =⇒ ρ(Ec) = eβcEc , (3.5)

where we are assuming that immediately above the transition we have equivalence of

canonical and microcanonical ensembles, i.e. Ec ≡ 〈E〉βc is a well-defined energy level

stable to fluctuations. Applied to AdS/CFT, this argument means that our bound

will be saturated by the black hole at the Hawking-Page transition. In appendix

3.7, we invert the logic behind this fact to provide a field-theoretic density of states

interpretation for the Bekenstein-Hawking entropy.

For the remainder of this paper, we generalize eq. (3.4) using known classical black

hole solutions to bound the density of operators of the dual CFT with given scaling

dimension ∆, spins Ji and U(1) charge Q. For d = 2 the bounds will reduce to those of

[14]. Importantly, these bounds are more constraining in d > 2 than in d = 2, because

for d = 2 modular invariance implies that, if a single deconfining phase transition

occurs, it must occur at β = 2π independent of coupling. Indeed, free symmetric

orbifolds (which are not dual to weakly coupled Einstein gravity theories) have a

transition at β = 2π just like AdS3 gravity, and α′ perturbation theory around AdS3

gravity leaves the Hawking-Page temperature unchanged [96]. On the other hand,

in higher dimensions the deconfining temperature tends to increase as interactions

are turned on. For example, in both ABJM theory and N = 4 super Yang-Mills,
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it can be checked that βHP (λ = 0) > βHP (λ = ∞) for ’t Hooft coupling λ [97,

95, 98], with further calculations suggesting monotonic behavior between the free

and strongly coupled theories [99, 100, 101]. This means that logZ ∼ O(1) for

a smaller range of temperatures as the interaction strength is decreased. By the

argument above, this means that weakly coupled CFTs must be less sparse—they

must have ρ(∆) & e2π∆/(d−1) somewhere in their spectrum. The fact that strong

interactions are necessary to reproduce the precise low-temperature phase structure

of AdS gravity in higher dimensions has been translated into a simple bound on the

density of local operators. The violation of our bound is a sharp diagnostic of “how

much” interactions have to sparsify a spectrum. There is another interesting aspect to

these bounds that we will discuss in section 3.4: they imply an O(1) density of states

beyond corresponding BPS/unitarity bounds. For example, taking ∆ < 0 implies

log ρ(∆) ∼ O(1), which looks like a coarse unitarity bound.

The layout of the rest of the paper is as follows. In section 3.2, we provide the

methodology behind obtaining our bounds more carefully. In section 3.3, we provide

calculational details for deriving our various bounds. Analytic bounds are possible

for three parameters, either mass and two spins or mass, one spin and one U(1)

charge, but for four or more parameters, we must resort to numerics. Two-parameter

analytic results are summarized in table 3.1. In section 3.4, we discuss the connection

of our bounds to BPS/cosmic censorship bounds. In section 3.5, we speculate on the

connection between the high-lying spectrum or high-temperature thermodynamics

and our bounds on the low-lying spectrum. We will begin with an analysis of the

Cardy-Verlinde formula, which correctly gives the entropy above the Hawking-Page

temperature THP for holographic CFTd on Sd−1 [102]. After discussing the many
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limitations of this formula, we instead focus on a more robust feature of the high-

temperature thermodynamics: the extended range of validity of a high-temperature

effective field theory. In appendix 3.7, we provide a field-theoretic density of states

interpretation for the Bekenstein-Hawking entropy of black holes at Hawking-Page

phase transitions. In appendix B, we provide details for calculations in 4 ≤ d ≤ 6.

3.2 Method for obtaining bounds

In this section, we explain more carefully our method for obtaining bounds on

the allowed density of states of operators with U(1) charge and spin for holographic

theories with a confining phase transition. We consider a grand canonical ensemble

at finite temperature β, with m angular velocities Ωi and a single chemical potential

for U(1) charge Φ for CFTd:

logZ(β,Ωi,Φ) =

∫
dE dJi dQ exp [−β(E − ΩiJi − ΦQ)] ρ(E, Ji, Q) , (3.6)

where the integral goes over the spectrum of the theory and we sum over repeated

indices in the exponential. Except when otherwise noted, we will always normalize

the ground state energy (even for d = 2) to zero. The extension to additional chemical

potentials is trivial.

A confining phase transition means that logZ[β > βc(Ωi,Φ)] ∼ O(1), i.e. the

free energy does not scale with N for temperatures below some critical temperature

β−1
c (Ωi,Φ). The chemical potentials Ωi, Φ and β span an (m+ 2)-dimensional space,

and the confinement-deconfinement phase transition happens on a co-dimension one

critical surface β = βc(Ωi,Φ). The O(1) scaling of the free energy requires that the
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density of states be bounded from above,

ρ(E, Ji, Q) . exp [β (E − ΩiJi − ΦQ)] , ∀ β,Ωi,Φ in the confined phase.

(3.7)

It is simple to minimize the right-hand-side with respect to the potentials β, Ωi, and Φ

to provide the tightest bound. In the case of Ωi = Φ = 0 the minimization gives β = βc

for E > 0 and the bound becomes ρ(E) . eβcE, while for E < 0 gives β →∞ and our

bound vanishes. This behavior is generic: the minimum of eq. (3.7) always lies either

on the critical surface or at β → ∞ which gives vanishing degeneracy. The set of

values for charges which separates the two behaviors corresponds to a unitarity/BPS

bound. To see the two behaviors in general, we first impose parity symmetry under

Ωi → −Ωi such that the critical surface is an even function of the chemical potentials

Ωi and Φ. Since eq. (3.7) is invariant under {Ji, Qi,Ωi,Φ} → {−Ji,−Qi,−Ωi,−Φ},

it is then sufficient to consider only operators with {Ji, Q} > 0 and potentials with

{Ωi,Φ} > 0. For the theories we consider, these potentials Ωi,Φ have finite range,

being bounded below by Ωi = 0 and Φ = 0 and above by some constants which

depend on the theory and dimension. Since β is an overall multiplicative factor, we

can minimize it independently, landing on βc(Ωi,Φ) if E − ΩiJi − ΦQ > 0 for all

{Ωi,Φ} and β →∞ otherwise. In the former case we then minimize along the critical

surface, while in the latter case the bound simply vanishes. The minimization along

the critical surface is

∇ [βc (E − ΩiJi − ΦQ)] = 0 (3.8)
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for a given set of charges {E, Ji, Q}, and ∇ = (∂/∂Ω1, . . . , ∂/∂Ωm, ∂/∂Φ).

Until this point, the discussion applies to states with general U(1) charge Q and

momenta Ji in large-N gauge theories with a confining phase transition. Focusing on

local operators in holographic CFTs with a semiclassical Einstein gravitational dual,

we restrict to dimensions 2 ≤ d ≤ 6 and the spatial manifold Sd−1. The Hawking-Page

temperature in the bulk will serve as the deconfinement temperature in the CFT. To

find the Hawking-Page transition, we compare the on-shell action of the relevant black

hole solution to that of vacuum AdS. The vacuum AdS solution will have topological

identifications and constant gauge field to match the inverse temperature, angular

velocities, and chemical potential for U(1) charge of the black hole. When the black

hole has charge and spin, the deconfinement temperature will depend on the chemical

potential Φ and angular velocities Ωj. Below this temperature, the dual CFT is in a

confined phase (dual to the AdS vacuum) and above this temperature the dual CFT

is deconfined (dual to a black hole).

We consider the most general black holes in d+ 1 dimensions for the cases d = 2

through d = 6 with a single U(1) charge and
⌊
d
2

⌋
spins. These black holes are asymp-

totic to a (spinning) Einstein static universe (ESU) which, in the Lorentzian case,

has topology R× Sd−1. Classical solutions for the generically spinning charged black

hole in dimensions d = 5 and d = 6 depend on choice of supergravity truncation

and so our results in those cases should be considered in that context. Nevertheless,

bounds obtained from these solutions are similar to their lower dimensional coun-

terparts. Analytic results are possible in all dimensions for up to three parameters,

while numerics are necessary for four and five parameters. Two-parameter bounds

are shown in table 3.1. Analytic expressions are only applicable when they are real
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d log ρ(∆) log ρ(∆, Q) log ρ(∆, J)

2 2π∆ N/A 2π∆
√

1− J2/∆2

3 π∆ π∆
√

1−Q2/∆2 π∆(1− J2/∆2)

4 2π∆
3

2π∆
3

√
1− 3

4
Q2/∆2 2π∆

3

(
2−

√
1 + 3J2/∆2

)
5 π∆

2
π∆
2

√
1− 2

3
Q2/∆2 π∆

4

(
3−

√
1 + 8J2/∆2

)
6 2π∆

5
2π∆

5

√
1− 5

8
Q2/∆2 2π∆

15

(
4−

√
1 + 15J2/∆2

)
Table 3.1: Bounds on the density of states for charged spinless operators (second
column) and uncharged spinning operators (third column). When these expres-
sions become complex or negative, the bound instead is log ρ = 0.

and positive; when they become complex or negative it means the charges admit a set

of chemical potentials for which E −ΩiJi −ΦQ < 0 and the minimization procedure

lands at β →∞ instead of the Hawking-Page surface. This leads to an O(1) density

of states.

Notable in this table is the absence of a bound for operators with U(1) charge in

2d CFTs. Electrically charged static black holes in three dimensions have interest-

ing but somewhat peculiar thermodynamic properties—see [103, 104]. Among these

properties is the fact that if one wants to include a bulk Maxwell field, the black hole

mass is not bounded from below [105]. If one wants to consider only a Chern-Simons

term – which is necessary to describe a U(1) current on the boundary – there are new

difficulties in finding the dominant saddle. It is unclear how to match asymptotics
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as any non-zero holonomy of the gauge field remains constant along the radial direc-

tion. A holonomy in the spatial direction would lead to a singularity at the origin

for the vacuum AdS phase, while a holonomy in the thermal direction would lead to

a singularity at the horizon for the black hole phase. If one includes both Maxwell

and Chern-Simons terms for the same U(1) gauge field, the spacetimes include closed

timelike curves in the asymptotic region [106]. Thus we cannot consistently ana-

lyze this situation in Einstein gravity coupled to U(1) Chern-Simons and/or Maxwell

gauge fields.

3.3 Bounds on operators

In this section, we derive our bounds for electrically charged operators with spin

in CFT dimension d = 2 through d = 6. We begin with d = 3 in section 3.3.1,

giving all details of the derivation of the bound. For general d we state our analytic

results, without derivation, for single-charge spinless operators in section 3.3.2, single-

spin uncharged operators in section 3.3.3, double-spin uncharged operators in section

3.3.4, and single-spin single-charged operators in section 3.3.5.

In the case with four or more parameters, we do not have an analytic bound but

present numerical results in 3.3.6. Figures for our numerical results will be presented

together at the end of this section to emphasize the similarities between dimensions.

The bound on the density of states decreases when charge or spin is added, to the

point that no states are allowed beyond a curve that exactly coincides with the BPS

bound. As we will see, when the parameters satisfy the BPS condition and admit a
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BPS black hole, our bound is saturated by the entropy of the BPS black hole,

SBH = max [log ρ(∆BPS, QBPS, JBPS,i)] . (3.9)

This is a special case of the fact that generic black holes at the Hawking-Page tran-

sition have an entropy which saturates our bound.

3.3.1 Example: ρ(∆, Q, J) in d = 3.

In d = 3, the AdS-Kerr-Newman black hole is the generic electrically charged,

spinning black hole with AdS4 asymptotics. Its thermodynamics were first studied in

[107]. In the limit of zero spin, the thermodynamics reproduces [108, 109], and in the

limit of zero charge reproduces [110, 111, 112]. The metric may be written

ds2 = −∆r

ρ2

[
dt− a sin2 θ

Ξ
dφ

]2

+
ρ2

∆r

dr2 +
ρ2

∆θ

dθ2 +
∆θ sin2 θ

ρ2

[
adt− r2 + a2

Ξ
dφ

]2

,

(3.10)

where the metric functions and Maxwell field, A, are

∆r = (r2 + a2)(1 + r2)− 2mr + q2, ∆θ = 1− a2 cos2 θ

ρ2 = r2 + a2 cos2 θ, Ξ = 1− a2, A = −qr
ρ2

(
dt− a sin2 θ

Ξ
dφ

)
.

(3.11)
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The mass M , angular momentum J , and electric charge Q—calculated via boundary

integrals—are

M =
m

GΞ2
, J =

am

GΞ2
, Q =

1

8πG

∫
Sd−1
∞

?F =
q

GΞ
. (3.12)

Note that we follow the convention of [113] for the normalization of Killing vectors as

the associated conserved charges generate the SO(d, 2) algebra. To find the on-shell

Euclidean action, we evaluate

IE =
1

16πG

∫
d4x
√
g(6 + F 2)− 1

8πG

∫
r=Λ

d3x
√
γK +

1

8πG

∫
r=Λ

d3x
√
γ

(
2 +

1

2
R[γ]

)
.

(3.13)

The second term is the Gibbons-Hawking-York boundary term and the last term is

a local boundary counterterm that regularizes the action [114]. The horizon angular

velocity and inverse Hawking temperature of these black holes are

Ωh =
Ξa

r2
+ + a2

, β =
4πr+(r2

+ + a2)

r2
+(1 + a2) + 3r4

+ − (a2 + q2)
. (3.14)

The appropriate thermodynamic potential for spin, however, is the difference between

Ωh and Ω∞, the angular velocity of the boundary ESU. One way to find this Ω∞ is to

boost the boundary metric to a static frame through a coordinate change T = t−Ω∞φ,

giving Ω∞ = −a. We then obtain,

Ω = Ωh − Ω∞ =
a(1 + r2

+)

r2
+ + a2

. (3.15)

The parameter Φ is chosen so that the gauge potential vanishes on the outer horizon,
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defined by ∆r(r+) = 0. Notably, this is the potential difference between the horizon

and the conformal boundary, and serves as a chemical potential for U(1) charged

operators in the CFT.

Φ ≡ Aak
a

∣∣∣∣
r→∞

− Aaka
∣∣∣∣
r=r+

=
qr+

r2
+ + a2

, (3.16)

where k = ∂t + ΩH∂φ is the null generator of the horizon. Subtracting the vacuum

AdS result from the AdS-Kerr-Newman result gives

∆IE =
β

4GΞr+

[
(a2 + r2

+)(1− r2
+) + q2a

2 − r2
+

r2
+ + a2

]
. (3.17)

We can replace {r+, a, q} with {β,Ω,Φ} using eq. (3.14) and (3.16). At fixed

{β,Ω,Φ}, there are two competing stable phases–a large AdS-Kerr-Newman black

hole and vacuum AdS. The bulk undergoes a Hawking-Page phase transition when

the two saddle point solutions exchange dominance, in other words when ∆IE = 0. In

the limit of zero charge, the Hawking-Page transition occurs at r+ = 1. In the limit

of zero angular momentum, the Hawking-Page transition occurs at r+ =
√

1− Φ2.

For non-zero charge and angular momentum, it is simplest to extremize

βHP (Ω, r+)(∆− ΩJ − ΦHP (Ω, r+)Q) (3.18)

91



Sparseness bounds on local operators in holographic CFTd Chapter 3

with respect to Ω and r+. Obtaining the critical values for Ω and r+, we find that

log ρ(∆, J,Q) .

π∆√
2

√(
1 + Ĵ2

)(
1 + Ĵ2 − Q̂2

)
+
(

1− Ĵ2
)√(

1 + Ĵ2 − Q̂2
)2

− 4Ĵ2 − 4Ĵ2,

(3.19)

where Ĵ = J/∆, Q̂ = Q/∆. Note that if Ĵ + Q̂ > 1, eq. (3.19) breaks down and

the correct minimization gives an O(1) density of states. This limit corresponds to

the BPS bound ∆ = |J | + |Q| for the lightest charged, spinning state. Notably,

at ∆ = |J | + |Q|, the upper bound on our density of states exactly matches the

degeneracy of the corresponding BPS black hole with those charges,

SBH = max [log ρ(∆,±(∆− |Q|), Q)] = πQ
√

1−Q/∆. (3.20)

Again we see that the upper bound on the density of states is saturated by the

degeneracy of the bulk black hole at the Hawking-Page transition and is greater for

all other black holes (see figure 3.1). For ∆ = |J | + |Q|, in d = 3, the black hole at

the phase transition is a BPS black hole.

3.3.2 Charged, spinless operators

To bound the density of states of charged, spinless operators, we examine the

thermodynamics of (d + 1)-dimensional AdS-Reissner-Nordström black holes. Using

the conventions of [109], the mass, global U(1) charge, U(1) potential, and inverse
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0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

2

4

6

8

10

12

r+

lo
g
ρ

Figure 3.1: As an example, we plot our bound log ρ(∆, J,Q) (thick) and the
entropy of the corresponding black hole (dashed) in d = 3 for fixed black hole
parameters, a = .3, q = .4. The two coincide at rHP and our bound is otherwise
larger.

temperature for this black hole are

M =
(d− 1)ωd−1

16πG
m, Q =

(d− 1)ωd−1

8πG
cq, Φ =

1

c

q

rd−2
+

,

β =
4πr2d−3

+

dr
2(d−1)
+ + (d− 2)[r

2(d−2)
+ − q2]

, (3.21)

where ωd−1 is the area of the unit (d − 1) sphere, and c =
√

2(d− 2)/(d− 1). The

vacuum subtracted Euclidean action is

∆IE =
ωd−1β

16πG

[
(1− c2Φ2)− r2

+

]
rd−2

+ . (3.22)
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As before, there are two competing stable phases at fixed Φ, β. The first is the AdS

vacuum with m = q = 0 and constant gauge potential and the second is a large

black hole, both at inverse temperature β. Solving for ∆IE = 0, it is clear that

for r+ >
√

1− c2Φ2, black holes dominate the grand canonical ensemble while the

vacuum dominates below. The corresponding Hawking-Page temperature is

βHP (Φ)

∣∣∣∣
r+=
√

1−c2Φ2

=
2π

(d− 1)
√

1− c2Φ2
. (3.23)

Interestingly, for Φ = 1/c, the Hawking-Page temperature 1/βHP vanishes and an

extremal black hole dominates the grand canonical ensemble. To find our density of

states, we extremize βHP (Φ)(∆− ΦQ) and find the bound for charged operators is

log ρ(∆, Q) .
2π∆

d− 1

√
1− Q̂2/c2 (3.24)

for ∆ ≥ |Q|/c. The lower limit on the energies is the BPS bound for these black

holes. Supersymmetry appears through considering Einstein-Maxwell as a consistent

truncation of some supergravity theory. The fact that there cannot exist states lighter

than the BPS bound ∆ > Q/c, can be seen from our bound eq. (3.24), which vanishes

(more precisely, is O(1)) in the BPS limit ∆ = Q/c. Unlike the previous subsection,

the bound on the density of states at the BPS limit vanishes. This is consistent with

the nakedly singular nature of these BPS states.

3.3.3 Single spin, uncharged operators

For uncharged operators with a single spin, the dual bulk black hole is the (d+1)-

dimensional Kerr black hole, analyzed first in [110] for d > 2. For d = 2, we work with
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the spinning BTZ black hole [60]. The relevant thermodynamic parameters for these

black holes are the uncharged single spin limit of sections 3.3.1, 3.8.1, 3.8.2, 3.8.3 for

d = 3, 4, 5, and 6, respectively, where the relevant thermodynamical quantities are

listed. The difference of regularized on-shell Euclidean actions becomes

∆IE =
βd+1ωd−3

4G(d− 2)Ξ

[
rd−4

+ (r2
+ + a2)(1− r2

+)
]
, (3.25)

so black holes dominate for r+ > 1. The inverse temperature for the Hawking-Page

transition is

βHP (Ω) =
2π

d− 2 +
√

1− Ω2
. (3.26)

To find the density of states, we extremize βHP (Ω)(∆−ΩJ) with respect to βHP and

find

log ρ(∆, J) .
2π∆

(d− 3)(d− 1)

(
d− 2−

√
(d− 3)(d− 1)Ĵ2 + 1

)
, (3.27)

where again Ĵ = J/∆. The d = 3 case is obtained by taking the limit. The unitarity

bound is ∆ ≥ |J |, which can also be understood as a BPS bound by taking the limit

of zero U(1) charge.

The result for d = 2 agrees with the HKS bound [14]. It is notable that in this

case, the bound from cosmic censorship agrees with the BPS bound, ∆− c/12 ≥ |J |

[110], where we have normalized Evac = −c/12. However, the HKS bound allows

states down to ∆ = |J |, which is the saturation point of the unitarity bound ∆ ≥ |J |.

This only occurs in d = 2: all higher-dimensional bounds obtained by our method
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will coincide with BPS bounds. Because of similarities with multiple spin operators

derived in the next sections, we also note that the single spin bound may be written

as

log ρ(∆, J) . π∆s (3.28)

where s is the smallest non-negative solution to

(d− 2)s+

√
s2 + 4Ĵ2 = 2. (3.29)

3.3.4 Multiple spin and zero charge operators

Analytic expressions are possible for two spins and zero U(1) charge. Here, the

bulk black holes are spinning AdS-Myers-Perry black holes in dimension d > 3,

whose metrics can be obtained from the zero charge limit of the gauged supergravity

solutions[115, 116] in d = 4, 5 respectively and from the zero charge, two spin limit of

[117] in d = 6. The relevant thermodynamics as well as vacuum subtracted Euclidean

actions are obtained in these limits from sections 3.8.1, 3.8.2, 3.8.3. Myers-Perry

black holes dominate the grand canonical ensemble for r+ > 1. The Hawking-Page

temperature is

βHP (Ωa,Ωb) =
2π

(d− 3) +
√

1− Ω2
a +

√
1− Ω2

b

. (3.30)
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Figure 3.2: The bound for operators with spins Ja and Jb in d = 4 (top),
d = 5 (middle), d = 6 (bottom). Curves correspond to Jb/∆ = 0 (rightmost)
to Jb/∆ = .9 (leftmost) in increments of .1
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We find that extremizing βHP (Ωa,Ωb)(∆− ΩaJa − ΩbJb) is equivalent to finding the

smallest non-negative solution to

(d− 3)s+

√
s2 + 4Ĵ2

a +

√
s2 + 4Ĵ2

b = 2 (3.31)

where Ĵi = Ji/∆ and our bound is

log ρ(∆, Ja, Jb) . π∆s. (3.32)

For completeness, we will solve eq. (3.31) explicitly. First, define

x = 1 +
(d− 3)2

2
(Ĵ2
a + Ĵ2

b ), y =
3

2
(Ĵ2
a − Ĵ2

b ). (3.33)

In d = 4, the bound is

log ρ(∆, Ja, Jb) .
2π∆

3

1−B4 +

√
(B4 + 2)((2−B4)B4 − 6x+ 8)

B4

 (3.34)

where

A4 =
(√

3x3(3x− 4)y2 + 6((x− 6)x+ 6)y4 + y6 + x3 + 3xy2 − 6y2
)1/3

, (3.35)

B4 =

√
−2A4x+ A4(A4 + 4) + x2 − 1

A4

.
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In d = 5, the bound is

log ρ(∆, Ja, Jb) .
π∆

6

(
6− x−

(
x3 − 4

(√
36y4 − 3x3y2 + 6y2

))1/3

− x2(
x3 − 4

(√
36y4 − 3x3y2 + 6y2

))1/3

)
.

In d = 6, the bound is

log ρ(∆, Ja, Jb) .
2π∆

15

7−B6 −

√
(2−B6) (B2

6 + 2B6 − 2(5x+ 4))

B6

 , (3.36)

where

A6 =

(
9(5x+ 6)y2 − x3 + 3

√
−3x3(5x+ 4)y2 + 6(5x(5x+ 18) + 54)y4 − 375y6

)1/3

,

(3.37)

B6 =

√
5A2 + 5x2 + 2A(6 + 5x) + 75y2

3A
.

One must be careful with these expressions to always take the principal root, which is

generally complex, though the bound is always real for |Ja|+ |Jb| ≤ ∆. For instance,

in the no spin limit, A6 → exp(iπ/3) and B6 → 3. Like in the previous section,

there is a unitarity bound |Ja|+ |Jb| = ∆ which can be understood as a BPS bound

by taking the limit of zero U(1) charge. It can be shown |Ja| + |Jb| → ∆, only

when |Ji|,∆ → 0 or they both diverge. In the first case, our bound vanishes and is

consistent with the bulk, while in the latter case the bound diverges and is saturated

by the divergent entropy of the corresponding black hole. We close this section with a
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remark on the triply spinning case. Though it must be solved numerically, the bound

on triply spinning operators can be obtained from the simple expression

(d− 4)s+

√
s2 + 4Ĵ2

a +

√
s2 + 4Ĵ2

b +

√
s2 + 4Ĵc = 2. (3.38)

The smallest non-negative solution to this expression gives our bound,

ρ(∆, Ja, Jb, Jc) . π∆s. (3.39)

3.3.5 Single spin and single charge operators

Bounds for single spin and single charge operators exist in d > 2. We already derived

the bound for d = 3 in section 3.3.1. In d = 4, we take the single spin limit of

the black hole in [115]. In d = 5 and d = 6, we choose the single spin and single

charge black hole from [116] and [117], respectively. It is worth noting that the

generically spinning, charged black holes with AdS6 and AdS7 asymptotics are not

pure Einstein-Maxwell, whose generically spinning solutions are not known in these

dimensions, but are rather truncations of minimally gauged supergravity. Their zero-

spin limit is not AdS-Reissner-Nordström and so this limit will not agree with section

3.3.2. Relevant thermodynamic quantities and vacuum subtracted Euclidean actions

are listed in appendix B, in the single spin and single charge limit. As in d = 3, it

is easiest to find Φ(r+,Ω) at the Hawking-Page transition and then minimize over

β(r+,Ω)(∆−ΩJ −Φ(r+,Ω)Q). In d = 4, we have the odd feature (see section 3.8.1)

that b = 0 does not imply Ωb = 0 or Jb = 0. However, this choice gives a nice analytic
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Figure 3.3: The bound for operators with spin Ja and charge Q in d = 3 (top) and
d = 4 (bottom). From right to left, thick curves range from Q/∆ = 0 to Q/∆ = 1
(in d = 3) or Q/∆ = 1/

√
3 (in d = 4) in increments of .1. In both plots, the

dashed line is the horizon entropy per mass of the BPS black hole SBH/π∆.
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Figure 3.4: The bound for operators with spin Ja and charge Q in d = 5 (top) and
d = 6 (bottom). From right to left, thick curves range from Q/∆ = 0 to Q/∆ = 1.
The bound vanishes at the BPS limit |J |+Q = ∆.
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bound which can be written purely in terms of ∆, Ja, Q. Defining

Jb = ∆

(
J̃ − 1

)
Q̂

√
3Ĵa

and J̃ =

√
1 + 3Ĵ2

a . (3.40)

we have

ρ(∆, Ja, Jb, Q) .
π∆

3
(

1 + J̃
)2 (3.41)

×

(
J̃
(

1− J̃
)

+

√(
J̃(1− J̃) + 2 + 6Q̂2

)2

− 12Q̂2
(

1 + J̃
)2

+ 2 + 6Q̂2

)

×

√
J̃
(

2J̃ + 1
)
− 6Q̂2 − 1 +

√(
J̃
(

1− J̃
)

+ 6Q̂2 + 2
)2

− 12Q̂2
(

1 + J̃
)2

Notable in this bound is the BPS limit, Ja + Jb +
√

3Q = ∆, which does not vanish

but, as in d = 3, reproduces the entropy of the corresponding BPS black hole,

max
[
ρ
(
Jb + Ja +

√
3Q = ∆

)]
=

2π∆
(

1− Ĵa
)√

Ĵa

(
J̃ − 1

)
J̃ + 3Ĵa − 1

. (3.42)

In d = 5, we get the bound

log ρ(∆, J,Q) .
π∆

4

(
9−

√
72Ĵ2 − 8Q̂2 + 9

)
9− 9Ĵ2 + Q̂2

(3.43)

×

√
9(1− Ĵ2)2 + Q̂2

(
Q̂2 − 10Ĵ2 − 8− 2

√
9 + 72Ĵ2 − 8Q̂2

)
.

Here, the density vanishes in the BPS limit |J |+Q = ∆. Finally, in d = 6, our bound
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is

log ρ(∆, J,Q) .
2π∆

15

(
16−

√
240Ĵ2 − 15Q̂2 + 16

)
16− 16Ĵ2 + Q̂2

(3.44)

×

√
16
(

1− Ĵ2
)2

+ Q̂2

(
Q̂2 − 17Ĵ2 − 15− 2

√
16 + 240Ĵ2 − 15Q̂2

)
.

Here too, the density vanishes in the BPS limit |J | + Q = ∆. The vanishing at

|J | + Q = ∆ in d = 5, 6 is a consequence of the fact that BPS black holes only exist

for Ja, Jb, Q non-vanishing [117, 116].

3.3.6 Numerical Results

In the previous sections, we calculated analytic bounds for operators with up to

three parameters. To obtain bounds for operators with four or more parameters, we

must resort to numerics. With bd/2c angular potentials and one chemical potential,

the Hawking-Page temperature is a bd/2c+ 1 dimensional hypersurface. For a given

set of charges, {J1, J2, ..., Jbd/2c, Q}, we then numerically find the minimum value of

βHP (Ω1,Ω2, ...,Ωbd/2c,Φ)

1−
bd/2c∑
i=1

ĴiΩi − Q̂Φ

 (3.45)

where for simplicity we have scaled out an overall factor of ∆ so that all charges fall

in a finite range. In the full ensemble, the BPS bound is ∆ = 1
c
|Q|+

∑bd/2c
i=1 |Ji|.1 For

energies below this bound, the density of states vanishes at leading order in N .

1For the d = 5, 6 supergravity solutions, the normalization of the charge is such that c = 1 rather
than the c defined for the Reissner-Nordström black holes
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Figure 3.5: d = 4: Q/∆ = .4, .3, .2, .1 (blue, red, green, yellow). The BPS condition
is ∆ = Ja + Jb +

√
3Q.
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Figure 3.6: d = 5: Q/∆ = .6, .4, .2, .1 (blue, red, green, yellow). The BPS condition
is ∆ = Ja + Jb +Q.
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Figure 3.7: d = 6 : Q = 0 and Jc/∆ = .7, .5, .3, .1 (blue, red, green, yelow). There
are no BPS black holes with vanishing U(1) charge, so the gray surface is SBH = 0,
where our bound implies O(1) degeneracy of states.
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Figure 3.8: d = 6: Jc = 0 and Qc/∆ = .7, .5, .3, .1 (blue, red, green, yelow).
The BPS condition is ∆ = Ja + Jb + Q. Figures 3.5, 3.6, 3.7, 3.8: Plots of
(π∆)−1 log ρ[∆, Ja, Jb, (Jc), Q]. Gray surfaces are SBH/(π∆) for corresponding
BPS black holes which coincide with our bound at the BPS condition. Beyond
this surface, the bound vanishes and no states are allowed (color online).
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Because the equations we need to solve are algebraic, no sophisticated numerical

techniques are necessary. We discretize the thermodynamic potentials and (hatted)

parameters which have finite range. Angular potentials are bounded from above

by the speed of light of the boundary ESU, Ωi = 1 and the electric potential is

bounded from above by cosmic censorship. The spins and electric charges, scaled by

the energy, also have finite range, typically {Ĵi, Q̂} ∈ [0, 1] but this depends on the

normalization of Aµ. The exact limits can be found in the appendix using the BPS

bounds. We divide these intervals into equally spaced grids of N = 100 points. For

each grid point labeled by the potentials’ (bd/2c+1) coordinates, we used the built-in

“NSolve” function in Mathematica to obtain the black hole radius at the Hawking-

Page transition giving us the critical surface defined in section 3.2. Once obtained,

we calculate eq. (3.45) for each grid point in the spins’ and charge’s (bd/2c + 1)

coordinates. Then, for each point {Ĵi, Q̂} we searched for the minimum value of eq.

(3.45) over the potentials, imposing the lower bound of zero. Because eq. (3.45) is

exponentiated for the density of states, the lower bound determines where a single

state is allowed–this is the BPS/unitarity bound of the CFT. Beyond this point (or

curve), our procedure allows no states.

As checks on the numerics, we verified that our curves did not vary appreciably

as a function of the grid sizes and that they agreed with the analytic results in the

previous subsections. In figures 3.5 through 3.8, we plot the bound on the density of

states in each dimension. Notable in these plots is the entropy of BPS black holes,

plotted as a gray surface. Our bounds end on this surface, giving the entropy of these

black holes, and then vanish, marking the BPS bound of the CFT. Furthermore, as

we pointed out in section 3.3.5, with only one spin and charge, there are no BPS
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black holes and hence the gray entropy surface vanishes.

3.4 BPS, cosmic censorship, and sparseness bounds

In previous sections, we saw that our bound on the density of states vanishes at

leading order in N for states that violate the BPS bound in d > 2. This is intrigu-

ing since we generically considered non-supersymmetric (Einstein-Maxwell) theories,

without using any embedding into supergravity. The appearance of a coarse BPS con-

dition suggests that bulk thermodynamics knows about the consistent supergravity

extension. Its appearance is due to the upper bounds on the chemical potentials in

the confined phase of strongly coupled holographic theories. To see this, consider the

case of finite temperature and a single angular potential. The confined phase always

satisfies Ω ≤ 1, which means minimizing exp (β(E − ΩJ)) in the confined phase will

give zero for J > E, since then we can pick Ω = 1 and β → ∞. Had the confined

phase admitted Ω > 1, then our bound would rule out states with J > Jc where

Jc < E.

The bulk gravitational theory also has an additional bound – the cosmic censorship

(CC) bound, that arises by demanding that there are no naked singularities. In

general these two bounds are different: for ∆BPS the lower bound implied by the BPS

bound and ∆CC the lower bound implied by cosmic censorship, we have ∆BPS < ∆CC

for fixed U(1) charge or fixed spins, i.e. BPS states violate cosmic censorship. In the

case with both U(1) charge and spin, there is a line J(Q) along which ∆BPS = ∆CC

if there is at least one spin in d = 3, 4 and at least two spins in d = 5, 6 (see figure

3.9). We find that in the cases where ∆BPS is strictly smaller than ∆CC , our bound
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Figure 3.9: (Top) The difference between the BPS and cosmic censorship
bound for four-dimensional Einstein-Maxwell-AdS. Curves correspond to fixed
Q = .3, .9, 1.5, 2.1, 2.7 (left to right, darker to lighter). Circles indicate locations
where extremal black holes satisfy the BPS condition M = |J |+Q and BPS states
are otherwise superextremal. (Bottom) The Q = 1.5 curve. Shaded region corre-
sponds to CFT states with superextremal bulk duals that are not excluded by our
bound. The feature JBPS > JCC except at isolated points where JBPS = JCC is
characteristic of charged, spinning solutions in d = 3, 4 with at least one spin and
d = 5, 6 with at least two spins. Without both charge and spin the inequality is
never saturated.
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vanishes at the BPS bound, while in the case where the BPS bound coincides with the

CC bound, the maximum of our bound reduces to the entropy of the extremal black

hole. Masses between cosmic censorship and BPS must have superextremal bulks

but our bound allows for an O(Nk) number of states in this range. In this section,

we quickly review the BPS and CC bounds to compare to the sparseness bounds we

obtain from the Hawking-Page transition.

For singly spinning black holes, as mentioned in previous sections, there is a

unitarity bound that can also be understood as a Q→ 0 limit of a BPS bound,

∆ ≥ J . (3.46)

Thus ∆BPS = J becomes the lower bound on the allowed energy levels. This energy

is also found to be strictly less than the cosmic censorship bound. In the limit

∆ → ∆BPS, we find that our bound gives vanishing degeneracy of states at leading

order in N . This is consistent with the fact that the only uncharged spinning BPS

states are superextremal, and hence have O(1) entropy. There are no extremal black

holes with only one spin in d ≥ 5, which is easily seen from the emblackening factor

of the Kerr metric in Boyer-Lindquist coordinates [110]

∆r = (r2 + a2)(1 + r2)− 2mr4−d. (3.47)

However, there is still a “speed limit,” a→ 1, required for stable bulk black holes.
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For singly charged black holes, the BPS bound is given by

∆ ≥

√
d− 1

2(d− 2)
Q. (3.48)

At fixed charge, this energy is strictly less than the CC bound. Again we find that

as ∆ → ∆BPS our bound gives vanishing degeneracy of states at leading order in

N . For non-spinning black holes in Einstein-Maxwell theory, the BPS bound is only

rigorously known in d = 3, 4 where embeddings into supergravity theories have been

found.

The same qualitative results are true for charged spinning black holes – at fixed

charges the BPS energy is less than or equal to the cosmic censorship bound on

energy. In the case of single charge in AdSd+1, single spin single charge or double

spin in AdS6 and AdS7, BPS states are always superextremal, and we find that our

bound vanishes in the BPS limit. However superextremal states that lie between the

BPS bound and the cosmic censorship bound, are nakedly singular and have O(1)

entropy, but our bound allows for O(Nk) states.

In the case of single spin single charge in AdS4, single or double spin single charge

in AdS5, double spin single charge in AdS6, and double spin or triple spin single

charge AdS7, an extremal black hole that saturates the BPS bound exists for specific

values of {∆, Ji, Q}. In such cases, the maxima of our bound reduces to the entropy

of the extremal black hole. For generic values of {∆, Ji, Q} between the BPS bound

and the CC bound, the black hole is superextremal and has O(1) entropy, but our

bound still allows for O(Nk) states. These features are shown for the four-dimensional

Einstein-Maxwell-AdS theory in figure 3.9. For fixed Q and ∆, it is clear that there
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exist states with JCC < J < JBPS which are allowed by our bound but must be

superextremal. That such states can be allowed is not surprising considering the

stability of AdS black holes. Charged rotating black holes can often be obtained

via dimensional reduction of spinning supergravity black holes in higher dimensions

(see sections 3.8.2 and 3.8.3). Spinning black holes have superradiant instabilities by

which the black hole should decay to the most stable spinning charged states (i.e.

BPS). This instability is reflected in the lower dimension because the extremal black

hole is not supersymmetric and hence unstable. Our bound allows for a finite number

of superextremal states to which the extremal black hole can decay. Recent work

relating BPS and cosmic censorship bounds can be found in [118, 119].

3.5 Comments on the high-lying spectrum

Our bounds imply a range of vacuum dominance (β > βHP ) that matches the

phase structure of Einstein gravity in the bulk. It is interesting to ask if the high-

temperature phase structure (β < βHP ) can be reproduced without additional as-

sumptions. This is what was done in [14, 92] by using modular invariance of the

torus partition function. Since we are considering theories on Sd−1, where ordinary

modular invariance is absent, we need other tools.

We begin with an analysis of the Cardy-Verlinde formula [102], which was pro-

posed as a higher-dimensional analog to the Cardy formula on Sd−1:

S =
2πR

d− 1

√
Ecas(2E − Ecas) =

4πR

d− 1

√
EsubextEext. (3.49)

R is the radius of Sd−1 of the CFT, E = Eext + Esubext, and Ecas ≡ 2Esubext. Eext
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and Esubext are the extensive and subextensive pieces of the thermodynamic energy.

This formula reproduces the entropy of AdS-Schwarzschild black holes above the

Hawking-Page transition but is known to fail for generic theories [120].

A very important aspect of this formula is that, unlike the ordinary Cardy formula,

it is canonical in nature. Ecas is in no sense the ground state energy of the theory—as

stated above, it is calculated by extracting the subextensive piece from E ≡ 〈E〉.

That Ecas cannot be a single energy level is clear by matching to the high-energy

scaling S ∼ E(d−1)/d, which shows that Ecas ∼ E(d−2)/d at leading order; in particular

it has to scale with E. Furthermore, to compute Ecas, one has to have knowledge

of logZ since 〈E〉 = −∂β logZ. But this means one already has knowledge of S =

(1−β∂β) logZ. So, the Cardy-Verlinde formula should be understood as a repackaging

of thermodynamic quantities into a suggestive form. If not for the similarity to

the ordinary Cardy formula it would be essentially meaningless. The parameters

appearing in the Cardy formula, on the other hand, do not require knowledge of the

thermodynamics. To have the Cardy-Verlinde formula reduce to the Cardy formula

for d = 2, as is often stated, one has to shift the definition of Ecas by the vacuum

energy −c/12.

Nevertheless, the fact that the thermodynamic quantities can be repackaged in

this way for holographic theories is nontrivial. It is then natural to ask how general it

is—does it depend on the field theory manifold? Can one add potentials for electric

charge and angular momentum? It turns out the formula fails for a holographic theory

on flat slices, like a torus. This is because Ecas = 0 for such theories, making the

formula meaningless. A constant shift only works for d = 2, since for d > 2 it would

give incorrect asymptotic scaling S ∼
√
E. For this case, one has to instead use the
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higher-dimensional Cardy formula, which can be derived from modular invariance

and is true for generic conformal theories [121, 122]. On hyperbolic slices, it was

shown that the formula fails but can be fixed by defining Esub = Ecas
2k

[123], where

spherical slices have k = +1 and hyperbolic have k = −1. With this definition, Esub

is strictly positive. While no explanation was given for this substitution, we will use a

high-temperature effective field theory to explain this result at the end of this section.

The formula fails generally when chemical potentials are added, although it can

be fixed by making appropriate modifications in some cases. It has been shown that

the entropy of Reissner-Nordström is reproduced by the Cardy-Verlinde formula on

substituting Eext for Eext− ΦQ
2

, where Φ and Q are the U(1) potential and the electric

charge respectively[124]. While for Kerr-Newman black holes, thermodynamic quan-

tities defined with respect to an asymptotically rotating frame can be shown to satisfy

the Cardy-Verlinde formula[125]. However in these modified definitions, Eext loses its

meaning as being the extensive part of the energy. For more complicated solutions

like multi-charged or multiply-spinning black holes in gauged supergravity models,

one can still fix the Cardy-Verlinde formula by making changes to Ecas and Eext[123],

however these changes are quite complicated in terms of the CFT thermodynamic

quantities [126]. Thus, there does not seem to exist a universal modification that

works for every case. While it is tempting to think the form of the Cardy-Verlinde

formula implies a connection between high-lying and low-lying states, the difficulties

outlined above, coupled with the fact that Ecas is not a fixed low-lying energy, suggest

otherwise.

Two approaches, which we will point out but not pursue, are to investigate the

notions of “emergent circles” [127] and “detachable circles” [128]. In this context, the
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notion of emergent circles says:

Z
[
S1

2π/k→ 0 × S2n+1/Zp→∞
]

= Z
[
S1

2π/p→ 0 × S2n+1/Zk→∞
]
, p/k fixed (3.50)

The quotient is performed on the Hopf fiber for the odd-dimensional sphere repre-

sented as a circle fibered over CP n. In this highly lensed limit, there is an emergent

modular invariance that appears, since a highly lensed sphere behaves like S1×CP n

for the purpose of leading-order thermodynamics. Coupling this with the special

pattern of center symmetry breaking of strongly coupled holographic CFTs [93] may

give an avenue to relating the theory on S2n−1/Zp→∞ back to the theory on S2n−1.

For n = 3 there is even a nontrivial Hawking-Page phase structure in the bulk with

calculable β(p)HP that can be used to provide a bound on the density of states

ρ(E) . eβ(p)HPE on S3/Zp, connecting the round sphere p = 1 to the case with an

emergent modular invariance p→∞.

The notion of “detachable circles” in this context relates a finite-temperature con-

formal theory on Sd−1 to the theory on Hd−1/Z at some inversely related temperature:

ds2 = dχ2 + dθ2 + sin2 θdΩ2
d−3 + cos2 θdφ2 →

dχ2 + dθ2 + sin2 θdΩ2
d−3

cos2 θ
+ dφ2 .(3.51)

By restricting our theory to be gapped at finite temperature (which is the generic

situation), we can use the effective theory approach introduced in [129]. This approach

allows us to write down the following effective action for the theory dimensionally

reduced over the thermal circle:

logZ(β) =

∫
dd−1
√
h

(
c0

1

βd−1
+ c1

R(1)

βd−3
+ c2

R(2)

βd−5
+ . . .

)
(3.52)
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This is to be understood as a perturbative expansion around β → 0. Powers R(n)

are to be understood as all possible combinations of contractions of the Riemann

tensor, with e.g. different coefficients between RµνR
µν and R2 which are suppressed

for simplicity.

This effective theory makes clear that the high-temperature theory on a hyper-

boloid is related to the high-temperature theory on the sphere by sign flips in the

terms of the effective theory with odd powers of curvatures. Certain large-N theories

may have a sufficiently extended range of validity for this effective theory such that

we can relate the theory on Hd−1/Z back to the theory on Sd−1. This effective theory

also explains why the Cardy-Verlinde formula works for hyperbolic slices with the

definition Esub = Ecas
2k

: this is a simple way to achieve the sign flips implied by the

effective theory.

3.6 Conclusion

In this paper, we derived quantitative sparseness conditions on holographic CFTs

with a semiclassical Einstein dual. To arrive at these conditions, we used the fact that

there generically exists a Hawking-Page transition between vacuum AdS and a large

asymptotically AdS black hole at a particular temperature and set of thermodynamic

potentials. Such a phase transition implies a discontinuous jump in the free energy

from O(1) to O(Nk) and hence the CFT can only support a finite number of states

before it deconfines. The difficulty in satisfying such bounds comes from the fact that

interactions tend to sparsify a spectrum, so generic weakly interacting theories have

dense spectra which violate our bounds.
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An interesting aspect of these bounds is that that log ρ = O(1) for masses below

the BPS bound. In situations where a bulk BPS black hole exists at the bound, its

entropy saturates our bound, which then discontinuously drops to O(1) consistent

with the bulk. It is interesting to see the appearance of the BPS bound in the cases

with U(1) charge without inputting supersymmetry.

Sparseness assumptions figure prominently into simplifying limits of conformal

bootstrap techniques. The usual style of argument is that a sufficiently sparse spec-

trum allows you to pick up only the contribution of the vacuum in a particular OPE

expansion. This was most recently utilized in the bootstrap approach [130] to the

“large charge” expansion [131, 132]. It would be interesting to explore the connection

of our quantitative sparseness bounds to these bootstrap techniques.

A sparse low-lying density of local operators is often invoked as a requirement for

a CFT to have a semiclassical Einstein dual, but for d > 2, a precise definition of

“sparseness” was lacking. In this work we have provided a quantitative sparseness

bound on the allowed density of local operators in the CFT. This bound enforces

vacuum dominance of the gravitational path integral at low temperatures. It is a

sharp diagnostic for how much interactions have to “sparsify” a spectrum, since it is

violated by weakly coupled holographic theories. It would be interesting to connect

this sparseness condition to a different sparseness condition, the gap to the higher-

spin operators [133], both of which need to be satisfied for a weakly coupled Einstein

gravity dual, and both of which are violated for weakly interacting holographic CFTs

in d > 2.
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3.7 Appendix A: Black hole entropy from decon-

fining phase transitions

As we saw throughout this paper, our bounds on the density of states are saturated

by the black hole at the deconfining phase transition. We can invert this logic to

produce a derivation of black hole entropy from field-theoretic considerations. Since

we would have to input a deconfinement temperature (and more assumptions) in the

general case, let us focus on d = 2 where we can get by with minimal assumptions.

Assume a large-c CFT in d = 2 has a single first-order deconfining phase transition.

By modular invariance it must occur at β = 2π. We use a normalization consistent

with modular invariance, Evac = −c/12. We also know from the modular bootstrap

that 〈E〉β=2π = 0 [134]. By the generic description of first-order phase transitions as

an exchange of saddles, we can use the vacuum energy and 〈E〉β=2π = 0 to deduce

that 〈E〉β=2π−ε = c/12 up to corrections in ε. Since ∆c − Sc/βc = O(1) =⇒ Sc =

βc∆c = βc(Ec + c/12) at leading order in c, this gives us a prediction for the thermal

entropy, where we have deduced Ec = c/12 and βc = 2π purely from field-theoretic

considerations. Notice that “c” is doing double duty here. For β = 2π − ε we are in

the deconfined phase of a large-c theory, so we can coarse grain to translate into a

density of states as in [14]. Altogether we have the formula

log ρ(E = c/12) = πc/3 . (3.53)

This agrees precisely with the bulk, where the ensemble is dominated by a BTZ black

hole below β = 2π, and so by continuity the density of states at β = 2π is given by the
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Bekenstein-Hawking entropy of the BTZ black hole at the Hawking-Page transition.

One could also dispense of the assumption that the transition is first order and so

described by an exchange of saddles to obtain a formula of the sort log ρ(E) = 2πE

where E ≡ 〈E〉2π−ε.

Notice that the Cardy formula log ρ(E) = 2π
√
cE/3, which is true for E → ∞,

matches onto the formula given above. This is completely expected, since in the case

of d = 2 the bound ρ(∆) . e2π∆ implied by the phase transition assumed here can be

used to prove the validity of the Cardy formula down to ∆ ∼ c/6 [14]. So this result

is weaker, but the different route taken is illuminating and can potentially be applied

in other cases where arguments like that of [14] are absent.

3.8 Appendix B: AdS5, AdS6, and AdS7 details

For interested readers, here is an expanded appendix in which we explicitly write

the metric and all thermodynamic quantities.

3.8.1 AdS5

Here we follow [115]. The metric may be written as

ds2 = −∆θ [(1 + r2)ρ2dt+ 2qν] dt

ΞaΞbρ2
+

2qνω

ρ2
+
f

ρ4

(
∆θdt

ΞaΞb

− ω
)2

(3.54)

+
ρ2dr2

∆r

+
ρ2dθ2

∆θ

+
r2 + a2

Ξa

sin2 θdφ2 +
r2 + b2

Ξb

cos2 θdψ2 (3.55)

121



Sparseness bounds on local operators in holographic CFTd Chapter 3

with the Maxwell field

A =

√
3q

ρ2

(
∆θdt

ΞaΞb

− ω
)
. (3.56)

The metric functions and one-forms are

ν = b sin2 θdφ+ a cos2 θdψ, ω = a sin2 θ
dφ

Ξa

+ b cos2 θ
dψ

Ξb

,

∆θ = 1− a2 cos2 θ − b2 sin2 θ, f = 2mρ2 − q2 + 2abqρ2, (3.57)

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, Ξa = 1− a2, Ξb = 1− b2,

∆r =
(r2 + a2)(r2 + b2)(1 + r2) + q2 + 2abq

r2
− 2m.

This metric and Maxwell field solve the equations of motion of minimal gauged five-

dimensional supergravity, following from

L = (R + 12) ? 1− 1

2
? F ∧ F +

1

3
√

3
F ∧ F ∧ A (3.58)

where ?1 is the volume form. The vector k = ∂
∂t

+ Ωa
∂
∂φ

+ Ωb
∂
∂ψ

goes null at the outer

horizon ∆r(r+) = 0. Here,

Ωa =
a(r2

+ + b2)(1 + r2
+) + bq

(r2
+ + a2)(r2

+ + b2) + abq

Ωb =
b(r2

+ + a2)(1 + r2
+) + aq

(r2
+ + a2)(r2

+ + b2) + abq
. (3.59)

These are the correct angular potentials for the thermodynamics (note that q → 0

agrees with the lower dimensional cases). The inverse temperatures of these black
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holes are

β =
2πr+[(r2

+ + a2)(r2
+ + b2) + abq]

r4
+[1 + 2r2

+ + a2 + b2]− (ab+ q)2
. (3.60)

The chemical potential is

Φ = Aak
a

∣∣∣∣
r→∞

− Aaka
∣∣∣∣
r=r+

=

√
3qr2

+

(r2
+ + a2)(r2

+ + b2) + abq
. (3.61)

The on shell action, with the m→ 0, q → 0 limit of eq. (3.55) background subtracted,

is, (note that one must make a gauge transformation on A as in [135] to obtain this

result),

IRE =
πβ

8GΞaΞbr2
+

×
[
(r2

+ + a2)(r2
+ + b2)(1− r2

+) + 2abq + q2

(
1−

2r4
+

(r2
+ + a2)(r2

+ + b2) + abq

)]
.

(3.62)

Again, the Hawking-Page transition must generically be found numerically. However,

when there is just one angular momentum or just one charge, we can perform a similar

analysis as in three and four dimensions. With just one spin, the transition occurs

at r+ = 1. With just one charge, the transition happens at r+ =
√

1− Φ2/3. The

critical density of states in these cases is,

b = q = 0 : log(ρ(E, J)) =

J2

(
3− 2

√
3J2

E2 + 1

)
+ E2

2E2 +
√
E4 + 3E2J2 − 4EJ2

√
E2 + 3J2 + 4J4 + 8J2

a = b = 0 : log(ρ(E,Q)) =
2π

3

√
E2 − 3Q2 (3.63)

123



Sparseness bounds on local operators in holographic CFTd Chapter 3

Again, the BPS limit is E = |J1| + |J2| +
√

3|Q| beyond which there are no states.

Note, this bound differs slightly from the Chamblin et al. case (see 3.24), because of

a factor of 2 in the definition of Aµ.

3.8.2 AdS6

The bounds on the density of states are meant to serve all holographic CFTs in

their respective dimensions. However, there are no bottom-up solutions for Einstein-

Maxwell gravity in d = 5 and d = 6. This may not be surprising as higher form fields

and Chern-Simons terms seem natural in higher dimensions, especially in consistent

supergravity trunctations. Instead, one must search for the most generic supergravity

solution with AdS asymptotics and fewest bulk fields. The most generic choice we

could find in the literature is the black hole in [116]. This comes from a dimensional

reduction of massive type IIA supergravity on a hemisphere of S4 [136]. This super-

gravity theory should arise as the near horizon limit of a D4-D8 brane configuration

and is dual to a d = 5, N = 2 superconformal field theory. The bosonic field content

of six dimensional N = 4, SU(2) gauged supergravity is a graviton, a two-form po-

tential, a one-form potential, the gauge potentials of SU(2) Yang-Mills and a scalar.

We can truncate to the sector where only one U(1) of the SU(2) is excited. Then,

the bosonic Lagrangian is

L = R ? 1− 1

2
? dφ ∧ dφ−X−2

(
?F(2) ∧ F(2) + ?A(2) ∧ A(2)

)
− 1

2
X4 ? F(3) ∧ F(3)

+
(
9X2 + 12X−2 −X−6

)
? 1− F(2) ∧ F(2) ∧ A(2) −

1

3
A(2) ∧ A(2) ∧ A(2),

(3.64)
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with F(2) = dA(1). The black hole solution to the equations of motion derived from

this action is, written conveniently in terms of sixbeins,

ds2 = H1/2

[
(r2 + y2)(r2 + z2)

R
dr2 +

(r2 + y2)(y2 − z2)

Y
dy2 +

(r2 + z2)(z2 − y2)

Z
dz2

− R

H2(r2 + y2)(r2 + z2)
A2

+
Y

(r2 + y2)(y2 − z2)

(
dt′ + (z2 − r2)dψ1 − r2z2dψ2 −

qrA
H(r2 + y2)(r2 + z2)

)2

+
Z

(r2 + z2)(z2 − y2)

(
dt′ + (y2 − r2)dψ1 − r2y2dψ2 −

qrA
H(r2 + y2)(r2 + z2)

)2
]
.

(3.65)

The fields are

X = H−1/4, A(1) =
2msδcδr

H(r2 + y2)(r2 + z2)
A

A(2) =
q

H(r2 + y2)2(r2 + z2)2

[
−yz[2r(2r2 + y2 + z2) + 2]

H
dr ∧ A

+z[(r2 + z2)(r2 − y2) + qr]dy

∧
(
dt′ + (z2 − r2)dψ1 − r2z2dψ2 −

qrA
H(r2 + y2)(r2 + z2)

)
+y[(r2 + y2)(r2 − z2) + qr]dz

∧
(
dt′ + (y2 − r2)dψ1 − r2y2dψ2 −

qrA
H(r2 + y2)(r2 + z2)

)]
, (3.66)
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and the metric functions and one-forms are

R = (r2 + a2)(r2 + b2) + [r(r2 + a2) + q][r(r2 + b2) + q]− 2mr,

Y = −(1− y2)(a2 − y2)(b2 − y2), Z = −(1− z2)(a2 − z2)(b2 − z2),

H = 1 +
qr

(r2 + y2)(r2 + z2)
, q = 2ms2

δ , A = dt′ + (y2 + z2)dψ1 + y2z2dψ2.

(3.67)

and sδ = sinh δ, cδ = cosh δ are defined in terms of a boost parameter δ which for our

purposes serves effectively as a choice of charge.2 The metric is defined in terms of

so-called Jacobi-Carter coordinates. One can move to Boyer-Lindquist coordinates,

t′ = t̃− a4φ̃1 − b4φ̃2, ψ1 = −t̃+ a2φ̃1 + b2φ̃2, ψ2 = t̃− φ̃1 − φ̃2 (3.68)

and

t̃ =
t

ΞaΞb

, φ̃1 =
φ1

Ξaa(a2 − b2)
, φ̃2 =

φ2

Ξbb(b2 − a2)
. (3.69)

As before Ξa = 1 − a2,Ξb = 1 − b2. Finally, y and z are parametrized in terms of

direction cosines [137],

µ2
1 =

(a2 − y2)(a2 − z2)

(a2 − b2)
, µ2

2 =
(b2 − y2)(b2 − z2)

(b2 − a2)
. (3.70)

2There is an art to finding charged spinning black holes in higher dimensional supergravity which
is covered in many of the references we follow. One particularly effective methods is through repeated
dimensional reduction, uplifting, and boosting, which through the typical Kaluza-Klein mechanism
leads to U(1) charges in the lower dimensional theory.
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It is easily checked that µ2
1+µ2

2+µ2
3 = 1. These direction cosines efficiently parametrize

the (d− 1) spheres as

dΩ2 =

b(d+1)/2c∑
i=1

dµ2
i +

bd/2c∑
i=1

µ2
i dφ

2
i (3.71)

where, as before, bnc means the nearest integer less than or equal to n. Now, the

metric (3.66) is very complicated and calculating the action is messy. It turns out that

in this case (and in d = 6), it is easier to work in terms of thermodynamic charges and

potentials to find the Gibbs free energy. First, the Killing vector k = ∂
∂t

+Ωa
∂
∂φ1

+Ωb
∂
∂φ2

vanishes at the outer horizon R(r+) = 0. This defines

Ωa =
a[(1 + r2

+)(r2
+ + b2) + qr+]

(r2
+ + a2)(r2

+ + b2) + qr+

, Ωb =
b[(1 + r2

+)(r2
+ + a2) + qr+]

(r2
+ + a2)(r2

+ + b2) + 2r+

. (3.72)

The conjugate charges can be defined through the Komar integral

Ji =
1

16πG

∫
S4
∞

?dKi =
2πmai(1 + (Ξa + Ξb − Ξi)s

2
δ)

3ΞiΞaΞb

(3.73)

with Ki the dual one-form for ∂/∂φi. Next, the potential at the horizon Φ defined as

Φ = k · A(1)

∣∣∣∣
r=r+

− k · A(1)

∣∣∣∣
r→∞

is

Φ =
2msδcδr+

(r2
+ + a2)(r2

+ + b2) + qr+

(3.74)

and the dual conserved electric charge is

Q =
1

8πG

∫
S4
∞

(X−2 ? F(2) + F(2) ∧ A(2)) =
2msδcδ
ΞaΞb

. (3.75)
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Finally, the energy (obtained most efficiently via integration of the first law of black

hole mechanics dE = TdS + ΦdQ + ΩidJi [138]), Bekenstein-Hawking entropy, and

temperature are

E =
π

3ΞaΞb

[
2m

(
1

Ξa

+
1

Ξb

)
+ q

(
1 +

Ξa

Ξb

+
Ξb

Ξa

)]
,

S =
2π2

[
(r2

+ + a2)(r2
+ + b2) + qr+

]
3ΞaΞb

T =
2(1 + r2

+)r2
+(2r2

+ + a2 + b2)− (1− r2
+)(r2

+ + a2)(r2
+ + b2) + 4qr3

+ − q2

4πr+[(r2
+ + a2)(r2

+ + b2) + qr+]
. (3.76)

The Gibbs free energy, defined by

G = E − TS − ΦQ− JaΩa − JbΩb (3.77)

is equivalent to the background subtracted on-shell Euclidean action divided by −β,

IRE = −βG.3 Plugging everything in, we get

IRE =
πβ

(6Gr+ΞaΞb (r2
+ (a2 + b2) + a2b2 + qr+ + r4

+))

×
[
q2
(
−r2

+

(
a2 + b2

)
+ a2b2 − 3r4

+

)
− qr+

(
3r2

+ − 1
) (
a2 + r2

+

) (
b2 + r2

+

)
−
(
r2

+ − 1
) (
a2 + r2

+

)
2
(
b2 + r2

+

)
2 − q3r+

]
(3.78)

3We also checked that this result agrees with the usual integral method, but this ended up being
more straightforward.
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This is a complicated result, but in the limit of zero charge, agrees with the generically

spinning black holes in six dimensions with no charge [111],

IRE (q = 0) = − 2πβ

3GΞaΞbr+

(a2 + r2
+)(b2 + r2

+)(r2
+ − 1). (3.79)

However, it turns out the a = b = 0 solution is not the Reissner-Nordström black

hole, but rather the black hole in [136]. This gives us

IRE (a = b = 0) =
βπ

6G

[
r3

+ − r5
+ − 2qr2

+ −
q2

r+

]
. (3.80)

or in terms of Φ,

IRE (a = b = 0) = −
πR3

(
−Φ2 + 2Φ coth(δ) +

(
r2

+ − 1
)

coth2(δ)
)

6(Φ− coth(δ))2
. (3.81)

The Hawking-Page transition occurs at r+ = 1 − Φ tanh δ. In table 3.1, for the

charged static case, we instead present the result from [109], where the action is the

one calculated in section 3.3.2.

3.8.3 AdS7

The d = 6 case follows [117]. These solutions come from reducing eleven-dimensional

supergravity on S4 leading to seven dimensional N = 4, SO(5) gauged supergravity.

Note that this can be thought of as coming from the near horizon limit of a stack of

M5 branes and is dual to the six-dimensional, N = (2, 0) SCFT. For singly charged

black holes, we choose to truncate to the U(1)3 Cartan subgroup. The bosonic fields

are a graviton, a self dual 3-form potential, two U(1) gauge fields and two scalars.
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Turning off one of the scalars in the gauged theory sets the two U(1) fields equal and

the Lagrangian is

L =R ? 1− 1

2
? dφ1 ∧ dφ1 −X−2 ? F(2) ∧ F(2) −

1

2
X4 ? F(4) ∧ F(4)

+ 2(8X2 + 8X−3 −X−8) ? 1 + F(2) ∧ F(2) ∧ A(3) + F(4) ∧ A(3), (3.82)

where X = e−φ1/
√

10. The self-duality condition reads

X4 ? F(4) = 2A(3) − dA(2) + F(2) ∧ A(1). (3.83)

The solutions to the field equations are, again written in terms of Jacobi-Carter

coordinates and sevenbeins,

ds2 = H2/5

[
(r2 + y2)(r2 + z2)

R
dr2 +

(r2 + y2)(y2 − z2)

Y
dy2 +

(r2 + z2)(z2 − y2)

Z
dz2

− R

H2(r2 + y2)(r2 + z2)
A2

+
Y

(r2 + y2)(y2 − z2)

(
dt′ + (z2 − r2)dψ1 − r2z2dψ2 −

q

H(r2 + y2)(r2 + z2)
A
)

+
Z

(r2 + z2)(z2 − y2)

(
dt′ + (y2 − r2)dψ1 − r2y2dψ2 −

q

H(r2 + y2)(r2 + z2)
A
)

+
a2b2c2

r2y2z2

(
dt′ + (y2 + z2 − r2)dψ1 + (y2z2 − r2y2 − r2z2)dψ2 − r2y2z2dψ3

− q

H(r2 + y2)(r2 + z2)

(
1 +

y2z2

abc

)
A
)2
]
.

(3.84)
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The fields are

X = H−1/5, A(1) =
2msδcδ

H(r2 + y2)(r2 + z2)
A,

A(3) = qabc[dψ1 + (y2 + z2)dψ2 + y2z2dψ3]

∧
(

1

z(r2 + y2)
dz ∧ (dψ1 + y2dψ2) +

1

y(r2 + z2)
dy ∧ (dψ1 + z2dψ2)

)
− qA ∧

(
z

r2 + y2
dz ∧ (dψ1 + y2dψ2) +

y

r2 + z2
dy ∧ (dψ1 + z2dψ2)

)
. (3.85)

The metric functions are

R =
1 + r2

r2
(r2 + a2)(r2 + b2)(r2 + c2) + q(2r2 + a2 + b2 + c2)− 2qabc

r2
+
q2

r2
− 2m

Y =
1− y2

y2
(a2 − y2)(b2 − y2)(c2 − y2), Z =

1− z2

z2
(a2 − z2)(b2 − z2)(c2 − z2)

A = dt′ + (y2 + z2)dψ1 + y2z2dψ2, H = 1 +
q

(r2 + y2)(r2 + z2)
, q = 2ms2

δ .

(3.86)

One can derive the two-form potential from the self-duality expression, or look in [117].

Now, thermodynamics is best performed in Boyer-Lindquist coordinates, where

t = t′ + (a2 + b2 + c2)ψ1 + (a2b2 + b2c2 + c2a2)ψ2 + a2b2c2ψ3,

φ1 = a(t′ + ψ1 + (b2 + c2)(ψ1 + ψ2) + b2c2(ψ2 + ψ3),

φ2 = b(t′ + ψ2 + (a2 + c2)(ψ1 + ψ2) + a2c2(ψ2 + ψ3),

φ3 = c(t′ + ψ3 + (a2 + b2)(ψ1 + ψ2) + a2b2(ψ2 + ψ3). (3.87)
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The y, z coordinates again efficiently parametrize the direction cosines,

µ2
1 =

(a2 − y2)(a2 − z2)

(a2 − b2)(a2 − c2)
, µ2

2 =
(b2 − y2)(b2 − z2)

(b2 − c2)(b2 − a2)
, µ2

3 =
(c2 − y2)(c2 − z2)

(c2 − a2)(c2 − b2)
.

(3.88)

As in six dimensions, it is more straightforward to calculate the Gibbs free energy.

The relevant thermodynamic quantities are

T =
(1 + r2

+)r2
+

∑
i

∏
j 6=i(r

2
+ + a2

i )−
∏

i(r
2
+ + a2

i ) + 2q(r3
+ + abc)− q2

2πr+[
∏

i(r
2
+ + a2

i ) + q(r2
+ − abc)]

,

Ωi =
ai[(1 + r2

+)
∏

j 6=i(r
2
+ + a2

j) + qr2
+]− q

∏
j 6=i aj∏

i(r
2
+ + a2

i ) + q(r2
+ − abc)

,

Ji =
π2m[aic

2
δ − s2

δ(Πj 6=iaj + ai
∑

j 6=i a
2
j + abcai)]

4ΞaΞbΞcΞi

,

Φ =
2msδcδr

2
+∏

i(r
2
+ + a2

i ) + q(r2
+ − abc)

, Q =
π2msδcδ
ΞaΞbΞc

,

E =
π2

8ΞaΞbΞc

[∑
i

2m

Ξi

−m+
5q

2
+
q

2

∑
i

(∑
j 6=i

2Ξj

Ξi

− Ξi −
2(1 + 2abc)

Ξi

)]
. (3.89)

where sδ = sinh δ, cδ = cosh δ, q = 2m sinh2 δ. For brevity, we used a1 = a, a2 =

b, a3 = c. Other thermodynamic quantities can be found in [117]. Now the regularized

Euclidean action is

IRE =
βπ2

16GΞaΞbΞc

[
(1− r2

+)
∏
i

(r2
+ + a2

i )− 2qr4
+ − 2qabc

− q2

(∑
i

a2
i r

4
+ −

∑
i<j

a2
i a

2
jr

2
+ −

∏
i

a2
i + abc(2r4

+ − 2r2
+ + q) + r2

+(r4
+ + q)

)

(
∏
i

(r2
+ + a2

i ) + q(r2
+ − abc))−1

]
. (3.90)
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The limit q → 0 agrees with the Myers-Perry-AdS7 solutions, which were calculated

using the background subtraction method

IRE (q = 0) =
π2

16GΞaΞbΞcr2
+

(r2
+ + a2)(r2

+ + b2)(r2
+ + c2)(1− r2

+). (3.91)

As in all other dimensions, uncharged black holes dominate the grand canonical en-

semble for r+ > 1. Furthermore, like d = 5, the non-spinning limit does not match

the Reissner-Nordström result of Chamblin et al.
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Chapter 4

Entanglement entropy in jammed

CFTs

4.1 Introduction

The study of quantum field theories on curved spacetimes has historically been a

source of both deep and enigmatic discoveries in theoretical physics. For instance, the

analysis of an accelerated observer in Minkowski space showed that the field theory

in the observer’s frame and the field theory in Minkowski spacetime do not share a

common vacuum [139, 140, 141]. Furthermore, theories invariant under metric rescal-

ing (Weyl transformations) have classically traceless stress tensors. However, when

these theories are quantized on a curved manifold in even spacetime dimensions, it

is found that at one-loop order, the trace picks up contributions proportional to geo-

metric invariants of the spacetime [142]. Possibly the most interesting and perplexing

discovery, however, is that black holes, when analyzed quantum mechanically, are not
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ever-growing cosmic sinks but rather radiate away their energy with a nearly thermal

spectrum [143]. This discovery has led to new insights into thermodynamics [144] as

well as illuminated fundamental issues in quantum mechanics and the conservation

of information [47]. It may not be too surprising to learn that these discoveries are

related—for instance, in the context of two dimensional CFTs, Hawking radiation

is completely determined by the conformal anomaly [145]. On the other hand, it

should be noted that the majority of analysis has been in the context of free fields.

Recently, the impact of interactions on these phenomena have begun to be explored

[146, 147, 148, 149].

One particularly fruitful avenue for addressing these questions is the AdS/CFT

correspondence [5, 8, 26]. Here, one is able to study a strongly interacting d-dimensional

U(N) conformal field theory on a fixed spacetime background Bd by considering a d+1

dimensional solution to Einstein’s equations with negative cosmological constant. The

d+1 gravitational solution,M, is frequently referred to as “the bulk.” The boundary

of M is conformal to the background spacetime on which the conformal field theory

lives. In the infinite N limit, the planar graph contributions to expectation values of

field theory operators on Bd may be obtained by solving classical equations of motion

for corresponding matter fields in M [8]. It should be noted that gravity is not dy-

namical on the boundary. In particular, Bd serves as a classical background for the

field theory, with no backreaction taking place.1 This limits some of the questions

that may be addressed as Gd is now effectively zero. For instance, questions like the

black hole information paradox [34, 47] for which the black hole not only radiates but

1One may extend the AdS/CFT correspondence to address dynamical gravity by imposing
Neumann-like boundary conditions for the CFT metric [150].
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also evaporates cannot be addressed by considering a boundary black hole.2 Never-

theless, we may still think of the black hole as a heat source for the field theory to

explore heat transport and use this to characterize unique phases of the interacting

field theory.

To analyze properties of Hawking radiation on the CFT, we construct new five, six,

and seven dimensional solutions to the Einstein equations for asymptotically locally

Anti-de Sitter spacetimes that have Reissner-Nordström metrics on the boundary.

These new solutions build upon [146, 147, 148, 149] in which the authors considered

spacetimes with boundaries Bd which contained a hyperbolic black hole of size RBH at

temperature TBH . The hyperbolic black hole spacetimes also contained a black hole

in the bulk at temperature T∞. Generally, the bulk horizon is thought to represent

the dual of a thermal state in the field theory at the same temperature. However,

because of the presence of the boundary black hole, the authors of [151] consider

the bulk black hole as governing a thermal plasma at spatial infinity which serves as

a heat sink for the CFT. The boundary horizon then serves as a heat source. Our

solutions have a Poincaré horizon in the bulk so that T∞ = 0.

There have even been spacetimes, as constructed by [152, 153], with only one

Killing vector allowing the CFT to be at a third temperature T0 in a “detuned”

phase. In these so called “flowing funnels”, if T0 6= TBH , the authors of [152, 153]

state the stress tensor will be singular at the horizon. In our solutions below, the stress

tensor is finite, and so we consider our solution “tuned” with only two temperatures,

TBH and T∞. Even in this case, the authors of [16] suggest that if TBH 6= T∞,

O(1/N2) effects in the CFT may introduce singularities at the horizon. In this paper,

2At finite N, however, it is expected that AdS/CFT will give valuable insight into this questions
when one considers a bulk black hole dual to a thermal field theory.
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as we are operating in the planar limit of the field theory, we will not be able to

definitively distinguish between these two scenarios. However, we will see that field

theory observables are markedly different near the horizon than they are far away,

and that the near horizon observables have a strong dependence on TBH .

The presence of two temperatures on the boundary allows one to explore different

potential phases of Hawking radiation that the authors of [149] suggest correspond

to different vacuum states of the CFT. Varying the dimensionless parameter RBHT∞

corresponds to adjusting the relative distance between the bulk and boundary hori-

zons. Heuristically, we can see this as follows. Because the spacetimes we construct

will correspond to asymptotically flat, spherically symmetric boundary spacetimes,

we can consider the bulk horizons to be asymptotically planar. In terms of the so-

called “Fefferman-Graham” coordinate [154], z, for which the boundary of our bulk

spacetime is at z = 0, very far from the rotation axis, the bulk horizon location

will roughly be at a location zh = 1/T∞. Furthermore, the maximum z location to

which the boundary horizon extends into the bulk is roughly zb = RBH . With this in

mind, when RBHT∞ � 1, we are in a so-called “droplet phase” in which the bulk and

boundary horizons are disconnected and very far separated. As this corresponds to a

large TBH/T∞, it is seen that there is very little heat transport in the CFT, a scenario

the authors of [151] refer to as “jammed.” As we take RBHT∞ → 1, the separation

between the boundary and bulk black holes goes to zero. This may lead to a phase

transition to a so-called “funnel phase” in which the bulk and boundary black holes

are connected. In this phase, there is only one Killing horizon, and so TBH = T∞. For

the droplets we construct below, we have T∞ = 0 and can use conformal symmetry
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to fix RBH = 1 so that we always have RBHT∞ = 0, indicative of a droplet phase3.

These droplet and funnel configurations are conjectured to correspond, respec-

tively, to the Unruh and Hartle-Hawking vacuum states in the CFT. Typically, these

states are characterized by regularity conditions of the stress tensor. The Unruh state

is empty at past null infinity and regular on the future horizon whereas the Hartle-

Hawking state is regular on both the past and future horizons. There is a third state,

the Boulware vacuum, which has an empty stress tensor at both past and future null

infinity, and is thus singular at both past and future horizons. The “detuned” phase

of the CFT discussed earlier is thought to correspond to this vacuum. One can also

define these vacua by the matter at null infinity. The Hartle-Hawking state has at

null infinity a thermal gas in equilibrium with the black hole—hence TBH = T∞ and

this corresponds to the funnel phase. The Unruh state has a flux of outgoing Hawking

radiation at the horizon but is empty at null infinity. This suggests T∞ = 0 and the

black hole acts as a heat source. One would expect in this state that the stress tensor

vanishes smoothly as one moves away from the horizon. In our solutions, the stress

tensor does in fact vanish as one goes to spatial infinity, but is not monotonic and in

d > 4 even changes sign. As mentioned earlier, the authors of [16] remain ambivalent

over whether the TBH 6= T∞ droplet is in the Unruh or Boulware state, but suggest

O(1/N2) effects may point toward to the Boulware vacuum.

The boundary stress tensor is just one avenue for analyzing the state of the bound-

ary field theory. Recently, there has been much excitement over the use of another

observable, the entanglement entropy, as a means to characterize quantum field the-

3The limit TBH → 0 in our solution does not lead to a funnel as RBH is fixed. Nevertheless, we
can see some features of how the Unruh state may settle down to the Hartle-Hawking state at zero
temperature.
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ories. In the context of AdS/CFT, this has been especially exciting because the

entanglement entropy of the boundary field theory corresponds to a well-defined ge-

ometric quantity in the bulk. On a given time-slice of the field theory background,

one may divide the surface into two or more spatial subregions {A,B, ...}. The en-

tanglement entropy of a subregion A quantifies the entanglement between degrees of

freedom in A and degrees of freedom in its complement Ā. We should emphasize that

there is a distinction between the entanglement entropy and von Neumann entropy.

In particular, for mixed states such as thermal states of a field theory, the former will

vanish when calculated on the whole space while the latter does not. This is because

the von Neumann entropy calculates, in addition to the internal correlations of the

field theory, correlations between the field theory and the purifying state. For the

rest of this paper, we will not distinguish between von Neumann and entanglement

entropies. In many cases, especially when the field theory is strongly interacting,

the entanglement entropy is difficult to calculate, often requiring the analytic con-

tinuation of a path integral on a Riemann surface [155]. Fortunately, for strongly

coupled CFTs, we can perform a dual calculation on the gravity side. For static

spacetimes, Ryu and Takayanagi [42] have conjectured, and Lewkowycz and Malda-

cena have proven [84], that the bulk object dual to the entanglement entropy (actually

von Neumann entropy) of A is a co-dimension two minimal surface in the bulk, Σ,

anchored to the conformal boundary at ∂A.4 The entanglement entropy in the field

theory is then given by the area of this minimal surface in a formula analogous to the

4The extension to stationary spacetimes is given in [43]. First order quantum corrections to this
formula were calculated in [156] and extended to all orders in [157].
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Bekenstein-Hawking entropy,

S(A) =
Area(Σ)

4Gd+1

(4.1)

where Gd+1 is Newton’s constant in d+ 1 dimensions.5

The fact that the entanglement entropy is a geometric object in the bulk has

inspired many authors to use AdS/CFT to construct bulk spacetimes from knowl-

edge of entanglement in the field theory [61, 159, 160, 161]. Furthermore, it gives

an intuitive and visual understanding of entanglement inequalities, renormalization

group flow, and confinement-deconfinement phase transitions [56, 162, 163, 83, 164].

While it has been used to understand the properties of thermal field theories on flat

backgrounds, studies of entanglement entropy of thermal field theories in black hole

backgrounds have been lacking (see [165] for early work) and to our knowledge, this

is the first work to report the finite, universal terms in this entropy. We hope that

these finite terms, as they have in the work on confinement, may bring some new

understanding to the problems discussed above and hopefully provided a nice picture

of the “jamming” of the CFT.

Over the last few years, there has been a program of constructing both analytic

and numerical funnels and droplets in a journey to understand interacting thermal

field theories[146, 147, 148, 149, 16, 166, 151, 152, 153, 167, 168]. Analytic droplets

and funnels were constructed in d = 3 from the AdS C-metric which include an

asymptotically flat boundary black hole which will be reproduced below. An analytic

funnel dual to the Unruh state was constructed in d=2. Numerical constructions

5It is important to note the RT formula comes with a homology constraint which instructs us to
include surfaces that may be disconnected [158].
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include a d=4 Schwarzschild droplet, TBH = T∞ funnels, d = 5 rotating droplets,

and d = 2 “flowing funnels” in which a detuned CFT phase is seen. One challenge to

distinguishing vacuum states is the fact that we have a conformal field theory on the

boundary. For a d=4 boundary Schwarzschild black hole, we note that we can always

rescale the metric such that different Schwarzschild radii, Rs, are conformally equal

to the Rs = 1 spacetime. In this case, then, there is no way to vary TBH in a way

visible to the CFT. For this reason, we need another parameter on the boundary. The

authors of [151] chose to introduce angular momentum to adjust TBH . To use the Ryu-

Takayanagi method for calculating entanglement entropies, we want our spacetime to

be static and so instead, we introduce a “charge” by imposing Reissner-Nordström

(from here on RN) boundary conditions instead of Schwarzschild. To our knowledge,

these droplets have yet to appear in the literature and are therefore new vacuum

solutions to the Einstein equations with a negative cosmological constant.

It should be noted that while RN typically corresponds to a black hole with electric

charge, the CFT does not couple to this charge. This is because charged operators on

the boundary are dual to charged fields in the bulk. However, we have no matter fields

in the bulk and so the CFT has vanishing expectation value for the charge. Thus, the

only effect of the charge is to vary the temperature for a fixed value of outer horizon

while keeping T∞ = 0. Interestingly, variation of TBH does affect both the stress

tensor expectation value and the entanglement entropy despite RBHT∞ = 0. For

numerically constructed solutions with d = 4, 5, 6 RN boundary conditions, as well

as in the d = 3 analytic C-metric, the stress tensor and entanglement entropy have

universal behavior near spatial infinity that matches the boundary Schwarzschild (or

in d > 4, Tangherlini [169]) black hole. Near the horizon, however, these observables

141



Entanglement entropy in jammed CFTs Chapter 4

behave very differently, often including a negative energy density peak that indicates

a higher concentration of the jammed plasma. The near horizon behavior is reinforced

in the final section where we calculate the entanglement entropy of ball shaped regions

on the boundary as a function of both radius and TBH and see interesting behavior

at similar locations.

4.2 Quantum Stress Tensors in Spherically Sym-

metric Static Spacetimes

To understand the numerical results for the boundary stress tensors, we follow

the example of [151] and discuss the expectation value of the quantum stress tensor

in a static spherically symmetric background. This work extends the analysis of

Christensen and Fulling [145] to the case of RN in general spacetime dimension d.

To keep the field theory arbitrary, we only require the stress tensor be covariantly

conserved,

∇µ〈T µν〉 = 0. (4.2)

To begin, we work with the following metric

ds2
RN = −∆d(R)dt2 +

dr2

∆d(R)
+R2dΩ2

d−2,

∆d(R) =

(
1−

(
R+

R

)d−3
)(

1−
(
R−
R

)d−3
)
. (4.3)
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The most general static spherically symmetric, stress tensor is given by

〈T µν〉 =


T tt T tR 0

TRt TRR 0

0 0 TΩ
Ωδ

i
j

 (4.4)

where all components are functions of only R and spherical symmetry tells us that all

angular components are equal. Inserting this into (4.2), we get the following system

of equations:

0 = ∂RT
R
t +

d− 2

R
TRt

0 = ∂RT
R
R +

(
d− 2

R
− ∆′d(R)

2∆d(R)

)
TRR +

∆′d(R)

2∆d(R)
T tt −

d− 2

R
TΩ

Ω

(4.5)

The first equation can be integrated to give

TRt = K(
R+

R
)d−2. (4.6)

where K is an integration constant whose physical importance will be discussed below.

Next, we use the trace of the stress tensor to write TRR in terms of TΩ
Ω and T µµ.

TRR =
(R+/R)d−2

∆d(R)

×

[
Q−K +

1

2

∫ R

R+

(R̃/R+)d−3
(
R̃∆′dT

µ
µ + (d− 2)(2− R̃∆′d)T

Ω
Ω

) dR̃
R+

]
(4.7)

143



Entanglement entropy in jammed CFTs Chapter 4

where Q is another integration constant to be discussed below. It will be helpful to

split the stress tensor into four terms

T µν = (T1)µν + (T2)µν + (T3)µν + (T4)µν (4.8)

The first term contains only information about the trace,

(T1)µν = diag

{
−(R+/R)d−2

∆d(R)
H(R) +

1

2
T µµ(R),

(R+/R)d−2

∆d(R)
H(R),

1

2(d− 2)
T µµ(R)δij

}
(4.9)

where

H(R) ≡ 1

2

∫ R

R+

(
R̃

R+

)d−3(R̃∆′d −∆d)T
µ
µ(R̃)

dR̃

R+

. (4.10)

Note that we only construct exteriors of black holes and so the integration is only for

R ≥ R+. In odd boundary dimensions or Ricci flat spacetimes, there is no conformal

anomaly and so the trace of the stress tensor vanishes. However, we construct solu-

tions in both even and odd boundary dimensions which are not Ricci flat and (T 1)µν

can contribute.

The next term in the stress tensor tells us that the flux of Hawking radiation at null

infinity is proportional to K. In terms of the tortoise coordinate dR∗ = dR/∆d(R),

(T2)µν = K
(R+/R)d−2

∆d(R)


1 1 0

−1 −1 0

0 0 0

 (4.11)

Since we construct solutions with no heat transfer at infinity, we expect that K = 0

for our solutions. In particular, our stress tensor should fall off faster than R2−d.
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Below, we will see that our stress tensors fall off as R−(d+1) satisfying this criteria.

The third term is proportional to Q and tells us about regularity at the future horizon,

(T3)µν = Q
(R+/R)d−2

∆d(R)
diag{−1, 1, 0} (4.12)

In particular, the diverging denominator tells us regularity on this horizon requires

that Q = 0. Finally, we have a term that determines the pressures. Defining the

functions

Θ(R) ≡ TΩ
Ω(R)− 1

2(d− 2)
T µµ(r)

G(R) ≡ d− 2

2

∫ R

R+

(
(
R̃

R+

)d−3(2− R̃∆′d)

)
Θ(R̃)

dR̃

R+

,

(4.13)

we may write

(T4)µν = diag

{
−(R+/R)d−2

∆d(R)
G(R)− (d− 2)Θ(R),

(R+/R)d−2

∆d(R)
G(R),Θ(R)δij

}
(4.14)

For Ricci flat spacetimes regular on both horizons, this is the only part of the stress

tensor that is non-vanishing. Because our approach was completely general, any

spherically symmetric static quantum stress tensor will have this form, including the

strongly interacting one that we consider below. By matching onto this solution, we

can draw conclusions about the nature of our jammed CFT. In particular, Christensen

and Fulling suggest that states with Q = K = 0 which have regular horizons and no

flux at null infinity are dual to the Unruh state.

As pointed out by Fischetti and Santos, the notion of single particle states in field

theories become ambiguous when put on curved backgrounds. However, currents
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such as the stress tensor remain well defined even in the presence of background

curvature. External fields like the curvature may couple to these currents and can

lead to interesting new behavior like the conformal anomaly. One peculiar feature of

the stress tensor in black hole backgrounds that our results exhibit is a negative energy

density. From free field theory in Minkowski spacetime, this may seem paradoxical,

but as Fischetti and Santos point out, even there, a negative local energy density

appears in the Casimir effect. Furthermore, they emphasize that this negative energy

density seems to be typical of free field theories near black hole horizons in both

the Unruh and Hartle-Hawking states [170, 171]. This, they say, is consistent with

the picture of Hawking radiation as pair-production with negative energy particles

falling into the black hole and positive energy particles escaping. While the particle-

antiparticle picture may not apply to our strongly interacting field theory, we still

expect that this negative energy density should be ubiquitous as our results below

confirm. Contrary to their results however, this energy density becomes positive away

from the black hole horizon for R−/R+ sufficiently large. Interestingly, in d = 6, we

see that the region of negative energy density becomes disconnected from the horizon

as the black hole nears extremality.
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4.3 Numerical Construction of RN Boundary Black

Holes

In order to construct the background spacetimes for our field theory, we solve the

DeTurck equations with a negative cosmological constant in d+1 dimensions,

RAB −
2Λ

d− 1
gAB −∇(AξB) = 0, ξA = gBC(ΓABC − Γ̄ABC) (4.15)

with 2Λ = −(d− 1)(d)/L2
AdSd+1

. In this expression, we have introduced Latin letters

to denote bulk spacetime indices. The DeTurck vector, ξA, is defined in terms of a

Levi-Civita connection, Γ̄ABC , derived from a reference metric of our choice ḡ. Equa-

tion (4.15) is a deformation of the Einstein field equations which, when evaluated on a

solution with ξA = 0, is analogous to a choice of gauge. As was shown by the authors

of [16], this deformation gives an elliptic differential equation which is better suited

to numerical evaluation. Furthermore, these authors showed that given a stationary

spacetime with Killing horizons, the maximum of ξ2 = ξAξA must occur at the bound-

aries (or “fictitious boundaries” like symmetry axes and black hole horizons). With

a suitable choice of reference metric, ḡ, that has ξA = 0 on the boundaries, solutions

to the DeTurck equations should also be solutions to the Einstein equations. To con-

firm this, we monitored the magnitude of ξ2 and we check that once obtained, our

solutions satisfy the Einstein equations to the same precision. Our construction of

boundary AdS/RN black holes will closely follow [16] who constructed a five dimen-

sional droplet solution corresponding to a four dimensional boundary Schwarzschild

black hole with an extremal bulk horizon at T∞ = 0.
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We would like to construct static, asymptotically Anti-de Sitter, spherically sym-

metric solutions corresponding to an asymptotic field theory plasma at T∞ = 0. From

the AdS/CFT correspondence, this tells us that we need a bulk black hole which has

an asymptotic planar black hole at T∞ = 0. This is an extremal horizon and we

know that this must correspond to the IR horizon of Poincaré-AdS. This horizon is

at z → ∞ and so to construct it numerically, we must choose a new AdS radial

coordinate. We start with pure Poincaré AdS in d+1 dimensions,6

ds2 =
l2

z2
(dz2 + dτ 2 + dR2 +R2dΩ2

d−2). (4.16)

Next, we make the coordinate change,

R =
x
√

2− x2

1− r2
, z =

1− x2

1− r2
, 0 ≤ x ≤ 1, 0 ≤ r < 1 (4.17)

so that the metric becomes

ds2 =
l2

(1− x2)2

(
f(r)2dτ 2 +

4r2

f(r)2
dr2 +

4

g(x)
dx2 + x2g(x)dΩ2

d−2

)
(4.18)

where

f(r) = 1− r2, g(x) = 2− x2. (4.19)

In these coordinates, the conformal boundary is located at x = 1, while the

Poincaré horizon is located at r = 1. The axis of rotational symmetry is at x = 0.

We would like to deform this solution in such a way that the conformal boundary

6Note that we have chosen to use Euclidean time, although because our solution is static, we
could just as easily construct Lorentzian solutions. Because we will evaluate the stress tensor with
one index up and one index down, i.e. 〈Tµν〉, this choice of time coordinate will give the same results
as for the Lorentzian analysis above.
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has the form of a d-dimensional Reissner-Nordström black hole. Since we want this to

be a droplet, this horizon extends into the bulk and smoothly ends at the symmetry

axis. If we define r = 0 as the horizon location, then the following metric ansatz will

have such a horizon,

ds2 =
(1− r2)2

(1− x2)2

(
r2Tdτ 2 +

4A

f(r)4
dr2 +

4B

f(r)2g(x)
dx2 +

2rxF

f(r)3
drdx+

x2g(x)S

f(r)2
dΩ2

d−2

)
(4.20)

where X ≡ {T, S,A,B, F} are all functions of x and r. Note that smoothness of the

metric functions X tells us that pure AdSd is not within our ansatz as this would

require T = 1/r2.

We require that our spacetime, as x → 1, is asymptotically locally AdS with a

metric conformal to d-dimensional Reissner-Nordström. In the limit x → 1, (4.17)

becomes R = 1/1− r2. We want this to have dimensions of length, and so we define

for our boundary metric,

R =
R+

1− r2
. (4.21)

As before, the d-dimensional Reissner-Nordström metric is,

ds2 = ∆d(R)dτ 2 +
dR2

∆d(R)
+R2dΩ2

d−2

∆d = 1− 2Md

Rd−3
+

Q2
d

R2(d−3)
=

(
1− (

R+

R
)d−3

)(
1− (

R−
R

)d−3

)
(4.22)

where Rd−3
± = Md ±

√
M2

d −Q2
d and Md, Qd are related to the energy, µ and charge,
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q of the d-dimensional black hole in the following way [172],7

Md =
16πGd

(d− 2)Ωd−2

µ Q2
d =

8πGd

(d− 3)(d− 2)

q2

Ω2
d−2

. (4.23)

These black holes have temperatures (in natural units)

Td =
κd
2π

where κd =

(d− 3)

(
1−

(
R−
R+

)d−3
)

2R+

(4.24)

After the change of variables the boundary metric becomes

ds2 = gµνdx
µdxν = r2δd(r)dt

2 +
4R2

+dr
2

(1− r2)4δd(r)
+

R2
+

(1− r2)2
dΩ2

d−2 (4.25)

where

δd(r) =
1

r2

(
1− (1− r2)d−3

)(
1− (1− r2)d−3

(
R−
R+

)d−3
)

(4.26)

Near the boundary, we want

ds2 → (1− r2)2

(1− x2)2

(
1

f(r)2
dx2 + gµνdx

µdxν
)

(4.27)

Now, we set l = 1 and use conformal symmetry to fix R+ = 1. In particular, note

that in the limit R− → 0, we can take τ → R+τ and the parameter R+ completely

scales out of the metric (4.25). This means that, to the conformally invariant theory,

all boundary Schwarzschild black holes are equivalent—hence our need for another

parameter, R−. When we set R+ = 1, we choose a particular branch of RN solutions

7The charge comes from considering an electric field E = q/Ωd−2r
d−2.
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such that

κd = (d− 3)(1−Md) =
(d− 3)(1−Q2

d)

2
(4.28)

Following the above discussion, we impose the following boundary conditions on X.

As x→ 1,

T → δd(R), S → 1, A→ 1

δd(r)
, B → 1, F → 0. (4.29)

As r → 1,

T → 1 + T1(1− r), S → 1 + S1(1− r), A→ 1 + A1(1− r), B → 1 +B1(1− r),

F → (1− r)F1, (T1 − A1)r=1 = constant.

(4.30)

The last boundary condition is required to ensure this boundary is an extremal hori-

zon.

The rotation axis and droplet horizon serve as fictitious boundaries. Figueras et

al. show that the DeTurck problem is still well defined on these fictitious boundaries.

For these boundaries, we require that our solutions be smooth—as we approach the

horizon r → 0, X must be functions of r2, and as x→ 0, X must depend only on x2

so that

∂rX|r=0 = 0, ∂xX|x=0 = 0. (4.31)

Furthermore regularity of the Euclidean solution at the horizon requires

T

A
|r=0 = 4κ2

d (4.32)
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and regularity at the rotation axis requires

S

A
|x=0 = 1. (4.33)

Finally, our choice of reference metric, ḡAB is (4.20) with

T =
1

δd(r)
, A = δd(r), S = B = 1, F = 0. (4.34)

To find solutions, we use a Newton-Raphson relaxation algorithm using pseu-

dospectral collocation on a Chebyshev grid. In d = 5, we found ξ2 ∼ 10−13 for all

solutions below. In d = 4 and 6, the numerics are slightly more unstable, and more

grid points were necessary. For the largest grids we used, 81× 81 in d = 6 we found

ξ2 ∼ 10−10 in d = 4 and ξ2 ∼ 10−6 in d = 6. Plots of convergence for two character-

istic choices of R− are shown in figure 4.2. In fig. 4.1, we plot the droplet horizons

of our solutions by embedding them in the metric ds2 = l2

z2 (dz2 + dR2 + R2dΩ2
d−2).

In four dimensions, for R− = R+, the geometry on the horizon exactly matches the

surface R2 + z2 = R2
+. Importantly, this is a minimal surface in pure AdS, as we will

discuss below. In higher dimensions, the horizon approaches this surface, but suf-

ficiently close to extremality, the horizon can no longer be isometrically embedded.

The largest R− we plot is approximately this critical value.
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Figure 4.1: In (a)-(c), we embed the horizons into the metric

ds2 = l2

z2 (dz2 + dR2 + R2dΩ2
d−2). In (a), d = 4 and we choose (from right

to left) R−/R+ = 0, .2, .5, .8, .96, 1.0. The extremal black hole is the
dotted black line. In (b) (d = 5) and (c) (d = 6), we choose (R to L)
R−/R+ = 0, .5, .7, .8. Notably, the extremal horizon in d = 4 is a minimal
surface in the pure AdS where it is embedded.
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Figure 4.2: The maximum value of ξ2 for two choices of R−/R+ in d = 4 (circles),
d = 5 (squares), and d = 6 (triangles). Our numerical method leads to exponential
convergence in the number of grid points, N , until saturation. Even boundary
dimensions (d = 4 and 6) show more numerical error because of the presence of
logarithmic terms in the asymptotic expansion (see equation (4.35).) The first
figure has R−/R+ = .2 and the second has R−/R+ = .5.
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4.4 Boundary Stress Tensor

As discussed above, our spacetime is asymptotically locally Anti-de Sitter. This

means the metric can be expanded in a neighborhood of the boundary in terms of the

Fefferman-Graham coordinate, z [173]. The boundary stress tensor can be determined

from the coefficients of zi for i ≤ d. The expansion and expressions for the boundary

stress tensor in terms of these coefficients is discussed in the appendix. For the

boundary stress tensor of our numerical solutions, we need to find an expression for

the coordinate z and boundary radial coordinate R in terms of x and r as well as

boundary expansions for the functions X. To do so, we write

z = (1− x2)

(
1

1− r2
+
∞∑
n=1

zn(r)(1− x2)n

)

R =
R+

1− r2
+
∞∑
n=1

Rn(r)(1− x2)n

X = X0(r) +
∞∑
n=1

Xn(r)(1− x2)n + log(1− x2)
∞∑
n=1

X̃n(r)(1− x2)n

(4.35)

where X0(r) are our Dirichlet boundary conditions (4.29). By inserting the ex-

pansion for X into the DeTurck equations and matching with the Fefferman-Graham

expansion, we can find the functions zn, Rn and Xn in terms of x, r for all n < d

including potential log(1 − x2)d terms in even d. In the appendix, we present the

functions Xn relevant to calculating the boundary stress tensor. Importantly, these

terms are also sufficient to determine the UV divergences in the entanglement entropy.
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Figure 4.3: In (a)-(c), we plot the error in extracting Ad(r). Regions with large
errors (especially in (c)) correspond to places where our calculated Ad(r) vanishes
while our theoretical Ad(r), while small, does not vanish exactly. Away from these
points, the errors are a few percent or less. Furthermore, in d = 6 as seen in (c),
because of large coefficients, errors accumulate quickly. In each plot, the different
values of R−/R+ match the values used for the energy densities in figs. 4.4, 4.5,
and 4.6. In order of increasing R−/R+, the symbols are •,�,4,�,©. (For d = 6,
we don’t use �.) Note (a) corresponds to d = 4, (b) corresponds to d = 5, (c)
corresponds to d = 6.
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The Xd(r) terms are relevant to the boundary stress tensor and must be found

numerically. Unfortunately, high order derivatives are numerically unstable, and so

to find the coefficients Xd(r), we subtract the known expressions for Xn with n < d

above from our numerical solution and fit this to the Xd(r) term in the expansion

near the boundary,

Xnum(x, r)−
∑
n<d

Xn(1− x2)n = (1− x2)dXd(r). (4.36)

To monitor the numerical accuracy of this method, we note that, because the trace of

the stress tensor is known, one of our coefficients can be calculated from knowledge

of the other coefficients. We chose to specifically monitor the function Ad(r). The

analytic expression for this function, which we call Ad(r), in terms of the other Xd(r)

can be found in the appendix. In fig. 4.3, we plot

∆ad(r) ≡
∣∣∣∣Ad(r)− Ad(r)Ad(r)

∣∣∣∣ (4.37)

for the values of R−/R+ that we display in the stress tensors below. In d = 4, the

errors stay below a few percent for all R and most are less than a percent. In higher

dimensions the errors increase, especially close to the horizon. These errors are due,

in most cases, to the stress tensor changing sign. If Ad and Ad cross the axis at

different values of R, the denominator of (4.37) blows up. Away from these locations,

the errors again become on the order of a few percent or less. For R−/R+ = 0 in

d = 6, there is an error close to the horizon where the stress tensor does not vanish.

Instead, this can be traced to the large coefficients in A6(r) (4.94) which cause errors

to accumulate quickly. For this case, we checked that the stress tensor does not
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Figure 4.4: (a)-(c) are plots of the four dimensional 4πG5
l3
〈Tµν〉 as a function of

R for R−/R+ = 0, .5, 1.0 respectively. In the plots, the thick line is the energy
density T tt, the dotted line is T rr, and the dashed line is TΩ

Ω. In (d), we plot the
energy densities for R−/R+ = 0, .2, .5, .9, and 1.0 (black dotted line).

change appreciably as we varied the grid size.

Finally, we write the expressions for the boundary stress tensors. In d=4,

〈T µν〉 =
l3

4πG5

diag

{
T tt, T

R
R, T

Ω
Ω, T

Ω
Ω

}
(4.38)
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where

T tt =
1

R4

(
T4(R)

(1− R−
R

)
+

3R+

4R
(1− R+

R
)

+R−

(
((78R+ − 12R)R− 73R2

+)R− +R(R(12R− 82R+) + 78R2
+)R+

)
16R4

) (4.39)

TRR =
1

R4

(
3R2

+

4R2
− (

T4(R)

1− R−
R

+ 2S4(R))

+R−
((2R(6R− 17R+) + 35R+)R− + 2R(5R− 17R+)R+)

16R4

) (4.40)

and

TΩ
Ω =

1

R4

(
−3R+

8R
+ S4(R)

+R−

(
(21R+ − 22R)R+R− − 2R(3(R− 6R+)R + 11R2

+)
)

16R4

) (4.41)

Notably, as R− → 0, this agrees with Figueras et al. Furthermore the trace is

〈T µµ 〉 =
l3

4πG5

R2
+R

2
−

4R8
(4.42)

agreeing with the conformal anomaly in 4 dimensions.
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Figure 4.5: (a)-(c) (R = 0, .5, 1.0 respectively) are plots of the five dimensional
16πG5

5l4
〈Tµν〉 as a function of R for different values of R−/R+. In the plots, the

thick line is the energy density T tt, the dotted line is T rr, and the dashed line is
TΩ

Ω. In (d), we plot the energy densities for R−/R+ =0, .5, .7, .9, and 1.0 (black,
dotted line).

In fig. 4.4, we plot this stress tensor for different values of R−. This stress tensor

agrees with results of [16] in the limit R− → 0. In this limit, it is clear that the trace of

the stress tensor vanishes. Furthermore, in the language of section 2, Q = K = H = 0
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indicative of the Unruh vacuum. Interestingly, we see new behavior in the CFT as

R−/R+ increases. As mentioned earlier, for all R−, the stress tensor displays negative

energy densities near the horizon8. This is typical of the non-classical state we expect

from a strongly interacting field theory. On the other hand, we see that as we approach

extremality, there is a turning point in the energy density. Furthermore, as this ratio

becomes sufficiently large, there is a finite size region near the horizon with positive

energy density. In droplets with T∞ > 0, the authors of [168] saw positive energy

densities in this same limit. In this limit, the pressure also becomes positive near

the horizon but becomes negative far away, matching the R− = 0 behavior. Finally,

as seen in fig. ??, the magnitude of the energy density near the horizon actually

decreases as the boundary black hole approached extremality. This is different than

what was observed in [151] where the magnitude of the energy density increased

monotonically as the black hole approached extremality. We believe this behavior

may indicate that the plasma is becoming localized away from the horizon as the

Unruh and Hartle-Hawking states degenerate at zero temperature. We propose that

the peak in the energy density corresponds roughly to the location of the jammed

CFT. This is reinforced by the entanglement entropy calculations.

8Recall that in both Euclidean and Lorentzian signature 〈T tt〉 < 0 would indicate positive energy.
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Figure 4.6: (a)-(c) (R = 0, .5, 1.0, respectively) are plots of the six dimensional
8πG6
3l5
〈Tµν〉 as a function of R for different values of R−/R+. In the plots, the thick

line is the energy density T tt, the dotted line is T rr, and the dashed line is TΩ
Ω.

In (d), we plot the energy densities for R−/R+ =0, .5, .9, and 1.0 (black, dotted
line).

Next, the five dimensional stress tensor is given by

〈T µν〉 =
5l4

16πG6

1

R5

× diag

{
T5(R)

(1 + R+

R
)(1− R2

−
R2 )

,− T5(R)

(1 + R+

R
)(1− R2

−
R2 )
− 3S5(R), S5(R), S5(R), S5(R)

}
(4.43)
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This is traceless, as it should be, because there is no conformal anomaly in odd dimen-

sions. In fig. 4.5 we plot this for some choices of R−. Here we note some differences

from the four dimensional result. The first is that the energy density starts negative

near the horizon but becomes positive away from the horizon for smaller ratios of

R−/R+. In higher dimensions, it seems as though the “jammed” plasma is more

easily localized away from the black hole. This is confirmed by the pressure becoming

positive in this same region. As in the four dimensional case, the energy density first

increases then decreases as R−/R+ → 1.

The six dimensional stress tensor is very messy, and so we will leave the full

expression to the appendix. Here, we just note that the trace,

〈T µµ 〉 =
3l5

8πG6

9R6
−R

6
+

(
280R6 − 320R3

(
R3
− +R3

+

)
+ 271R3

−R
3
+

)
200R24

(4.44)

exactly matches the conformal anomaly, a(6), in 6 dimensions. In fig. 4.6, we plot this

stress tensor for different values of R−/R+ as before. Here, we see a new phenomenon.

Near the black hole, the energy density is positive, but becomes negative away from

the black hole, and then becomes positive again. This reinforces the idea that in

higher dimensions there is a stronger tendency for the CFT to localize away from the

black hole as TBH → T∞.

It is worth pointing out that in all dimensions, the behavior far from the black hole

matches the corresponding Tangerlinhi behavior with a R−(d+1) fall-off. This rapid

fall off gives a strong indication that the CFT corresponds to an Unruh or Boulware

state. Furthermore, the dimension dependence of this fall-off suggests that the black
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hole affects the CFT closer to the horizon in higher dimensions. As we will show

below, from work done on Wilson loops in holography [163], there is a “confinement”

scale for the T∞ plasma that tends to decrease in size in higher dimensions. These

may conspire to explain the dimension dependence of localization seen in the energy

densities and in the entanglement entropies below.

4.5 Entanglement Entropies of Droplets

In this section we seek to clarify some of the results of the previous section. In

particular, we learned from the boundary stress tensor that there is a region near

to the black hole horizon where the CFT energy density becomes negative. This

state prevents heat flow between the black hole at temperature TBH and asymptotic

plasma at temperature T∞. In the “jammed” phase, then, there should be very little

correlation between degrees of freedom near the horizon and degrees of freedom in

the asymptotic plasma.

One measure of these correlations is the entanglement entropy of a spatial subre-

gion in the CFT. To define the entanglement entropy of a spatial subregion, one first

takes a time slice of the field theory manifold on which to define a Hilbert space. On

this time slice, one then chooses a spatial subregion which we will call A and divides

the Hilbert space into two subspaces, one that contains degrees of freedom purely

within A another that contains only degrees of freedom in Ā, H = HA⊗HĀ. Given a

state on the full Hilbert space defined by a density matrix ρ, one can define a reduced

density matrix, ρA, describing only HA by tracing out the degrees of freedom in Ā.

The entanglement entropy is then given by the von Neumann entropy of this density
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matrix,9

SA = −TrρA log ρA. (4.45)

One may check that if our Hilbert space defines a single entangled pair, the entan-

glement entropy of a region containing just one member of the pair is 2 but a region

containing both pairs is 0. Thus, at least to first order, the entanglement entropy

quantifies how correlations are shared across the boundary of the spatial region ∂A.

For free field theories, one can occasionally calculate the entanglement entropy.

These calculations often require the computation of so-called Renyi entropies which

come from the analytic continuation of path integrals on Riemann surfaces [155, 174].

However, for interacting field theories, such calculations become more burdensome,

especially for theories without large numbers of symmetries. In the AdS/CFT corre-

spondence, degrees of freedom on the boundary are often ambiguous and such calcu-

lations on the field theory side are prohibitive. Fortunately, for field theories on static

spacetimes, Ryu and Takayanagi gave a procedure to calculate these entanglement

entropies by solving for surfaces in the bulk [42, 83]. Given a spatial region of the

field theory A with boundary ∂A, one solves for a codimension-two minimal surface

which starts on ∂A and extends into the bulk.10 The surface which corresponds to

the entanglement entropy of A is that surface which minimizes the area. Occasion-

ally, there may be a “phase transition” between two different types of surfaces which

minimize the area at different values of some parameter, for instance the width of the

chosen spatial region [163].

Note that due to the short range correlations of quantum field theories, entangle-

9As mentioned earlier, this includes entanglement with a purifying system if ρ is not pure.
10For our droplet solutions, the horizon stretching into the bulk acts as a barrier that minimal

surfaces may not cross [59].
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ment entropies are strictly divergent. Defining a UV cutoff in the field theory, ε, the

leading order divergence is proportional to Area(A)/εd−2 [37]. For the holographic

entanglement entropy, the field theory cutoff corresponds, on the bulk side, to eval-

uating the area of the minimal surface up to a fixed z = ε slice. In the following,

we wish to analyze correlations between the jammed and asymptotic plasma and so

we calculate the entanglement entropy of ball shaped regions on the boundary as

a function of the radius of the ball.11 We present both the UV divergences of this

quantity as well as the regularized entanglement entropies where these divergences

are subtracted.

4.5.1 AdS C-metric

The AdS C-metric is an analytic solution to the Einstein equations in four bulk

dimensions with negative cosmological constant [147]. For different regions of pa-

rameter space, this metric has both droplets and funnel solutions with hyperbolic

black holes on the boundary. For one particular choice of parameters, however, the

C-metric gives a droplet with an asymptotically flat black hole on the boundary. The

metric for this droplet is

ds2 =
l2

(x− y)2

(
−F (y)dt2 +

dy2

F (y)
+

dx2

G(x)
+G(x)dφ2

)
with F (y) = y2 + 2µy3, G(x) = 1− x2 − 2µx3 = 1− F (x)

(4.46)

This spacetime is asymptotically locally AdS with conformal boundary at x = y. For

x − y ≥ 0 and − 1
2µ
≤ y ≤ 0, the spacetime has black hole on the boundary that

11There are different invariant measures of radii on the boundary including the distance from the
horizon and the coefficient of dΩ2

d−2 in g̃µν . We choose the latter as it is finite, even as R− → R+
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extends into the bulk and touches the axis of rotation symmetry (G(x0) = 0). This

black hole has a temperature T = 1/4πµ. For 0 ≤ y ≤ x0, we have a similar spacetime

with no black hole on the boundary. For a given µ, both spacetimes have an equal

conical deficit ∆φ = 4π
|G′(x0)| . They both also have a zero temperature horizon in the

bulk at y = 0. This spacetime is only well defined for µ ≥ 1
3
√

3
, below which G(x) is

not positive semi-definite.

Conformally rescaling by 1/x2 and defining ξ = −1/x, we find a boundary metric

ds2
∂ = −(1− 2µ

χ
)dt2 +

dχ2

(1− 2µ
χ

)G(−1/χ)
+ χ2G(−1/χ)dφ2. (4.47)

As χ → ∞, G(−1/χ) → 1 and we see this metric describes flat 3 dimensional

Minkowski space. Note that in this conformal frame, the horizon has area Ah =

8πµ
|G′(x0)| . For completeness, we also note that for µ = 0, the C-metric gives Poincaré-

AdS4. Defining

r =

√
G(x)

y
, z = (

x

y
− 1) (4.48)

the metric (4.46) becomes

ds2 =
l2

z2
(−dt2 + dz2 + dr2 + r2dφ2). (4.49)

To find minimal surfaces, we first need to define a disc shaped region on the boundary.

There are a couple choices of invariant radii, but the one that seems to make the most

sense is the circumference radii R =

√
G(x)

x
.12 Thus a choice of R defines a choice

12This radius only monotonically increases for µ ≥ 1
2
√
2

which will be the range we will investigate.

167



Entanglement entropy in jammed CFTs Chapter 4

xb = yb on the boundary. Then we minimize the area functional

A

∆φ
=

∫ x0

xb+εx

dx
1

(x− y(x))2

√
G(x)

F (y)
y′(x)2 + 1 (4.50)

where εx is proportional to the UV cut-off in the field theory. Now, a defining feature

of minimal surfaces is that they are normal to the conformal boundary. This tells us

that

y′(x)|x=xb = −F (xb)

G(xb)
and ε =

εx
xbG(xb)

(4.51)

where z = ε is the fixed field theory cutoff. We Taylor expand our curve y(x) near

y = xb and plug this into the area functional to see

A

∆φ
=

∫
xb+εx

dx

(x− xb)2
(1 +

F (xb)

G(xb)
)−3/2 → Rb

ε
+ finite (4.52)

The divergence is the same for both the spacetime with a boundary black hole and

without a boundary black hole, but the finite piece is different.

168



Entanglement entropy in jammed CFTs Chapter 4

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RBH

ρΔσ3

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2.×10-3 5.×10-31.×10-2 0.02 0.05

0.1

0.2

0.5

TBH

Δ
σ
3

Figure 4.7: In (a), we plot ρ∆σ3 for ρ = 1 (black, dotted line) , 2, 3, 10, 20, 100 as
a function of RBH . In scaling by ρ, the area curves nearly perfectly overlap and
the entanglement entropy has a universal behavior. Near the horizon (inset plot),
there is some deviation, especially for ρ = 1 (black dotted line) but the discrepancy
disappears for ρ larger than ∼ 2 (ρ increases from bottom to top). In (b), we show
a log-log plot of the horizon entanglement as a function of TBH = (4πµ)−1. The

line that we plotted shows this grows as T
2/3
BH .
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To understand how the black hole affects correlations in the field theory, we want

to compare entanglement entropies for equivalent size regions in both spacetimes. A

convenient way to do so is to fix the radius of the disc Rb and subtract the entan-

glement entropy for the field theory with no boundary black hole, SNBH , from the

entanglement entropy for the field theory with a boundary black hole.13 This gives a

finite value for the entanglement entropy

∆σ3 ≡
ABH(Rb)− ANBH(Rb)

2π
. (4.53)

This subtraction is standard in the literature, for instance in understanding thermal

correlations in a strongly coupled field theory, one subtracts the entropy of pure AdS

from the entropy of AdS-Schwarzschild for identical boundary regions. Conveniently,

this method of comparison also gets rid of the divergence in the entanglement en-

tropies. Notably, the cancellation of all divergences is particular to d = 3. We will

show below that in higher dimensions, it is only the leading order divergence which

is cancelled.

In fig. 4.7, we plot the entanglement entropy for a fixed ratio ρ = Rb/RBH and

vary the black hole radius RBH = 2µ. For µ >∼ 1.5, or for ρ >∼ 1.5, the different

entanglement entropies as a function of µ vary only by the ratio of their radii ρ,

A(ρ1, µ) =
ρ2

ρ1

A(ρ2, µ) (4.54)

In particular, one can find the entanglement entropy as a function of R if one knows

13In this paper, we will write everything in terms of the areas, leaving out the factor of 1/4Gd+1

which would give the entropy. The no black hole spacetime is the x > 0 region for a given µ, not
three dimensional Minkowski space.
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how the entropy of the horizon scales as a function of µ. The dependence on ρ agrees

with the picture of a jammed phase where at larger Rb, there are fewer correlations

between degrees of freedom at large radius and degrees of freedom near the black hole.

Interestingly, as TBH → T∞, the difference in entanglement entropy at the horizon

also goes to zero. We show a log-log plot of this quantity in fig. 4.7 as a function of

the black hole temperature. In this plot, we see that as we approach extremality, the

correlations between degrees of freedom inside the horizon and those outside go to

zero. Because of the ρ dependence of the entanglement entropy, the vanishing of the

horizon entanglement entropy tells us that ∆σ3 vanishes everywhere in the extremal

limit. One might expect this if the extremal limit corresponds to the field theory

approaching a zero-temperature Hartle-Hawking.

4.5.2 Numerical Solutions

We now seek to answer whether the same behavior occurs in higher dimensions.

Like the “charge” µ in the C-metric, we will vary R− in (4.22) to change TBH . To

find the minimal surfaces, we minimize the area functional

Ad
Ωd−2

=

∫ xmax

0

dx

1− x2

(
x2g(x)S

(1− x2)2

)d/2−1
√

4A

(1− r(x)2)2
r′(x)2 +

4B

g(x)
+

2xr(x)F

1− r(x)2
r′(x)

(4.55)

where f(r) and g(x) were defined in (4.19). Given a UV cutoff z = ε, the cutoff

in the coordinate x is xmax =
√

1− ε/Rb where Rb is the radius of the ball whose

entanglement we are investigating. The integration limits are consistent with the

change of variables for pure AdS. Note that Rb is related to r through the same

coordinate definition (4.21). Using the expansions (4.76), (4.79), (4.82) and the fact

171



Entanglement entropy in jammed CFTs Chapter 4

1.× 10-32.× 10-3 5.× 10-31.× 10-2 0.02 0.05

5.× 10-6

1.× 10-5

5.× 10-5

1.× 10-4

ϵ

Δ
σ
4
-
Δ
σ
4
(ϵ

*)

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲

▲
▲

◆◆◆◆◆◆◆
◆

◆

10-3 10-2 10-1
10-7

10-6

10-5

10-4

10-3

ϵ

Δ
σ
d
-
Δ
σ
d
(ϵ

*)

Figure 4.8: Above we show in a log-log plot the error in extracting ∆σd as a
function of the cutoff, ε. In (a), we do this for d=3 for µ = 3 and R = R+. In (b),
we do this for R/R+ = 3 in d = 4 (�), d = 5 (N), and d = 6 (•). In all cases, we
see a power-law convergence.

that the surfaces are normal to the boundary (r′(x)→ 0) the divergent terms in the

entanglement are,
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A4/Ω2 →
1

2

R2
b

ε2
− 1

2
(α(rb)− 1)log(ε) + ...

A5/Ω3 →
1

3

R3
b

ε3
− (8 + 3β(rb))

8

Rb

ε
+ ...

A6/Ω4 →
1

4

R4
b

ε4
− (2ψ(rb) + 15)

20

R2
b

ε2
− (15 + 20χr(rb)− 12ψ(rb) + 80χs(rb))

40
log(ε) + ...

(4.56)

where ... are finite terms. At the black hole horizon, r=0, so that the above expansions

are

A4/Ω2 →
1

2

R2
BH

ε2
+

1

2
(
R−
R+

)log(ε) + finite

A5/Ω3 →
1

3

R3
BH

ε3
−

(2 + 9
R2
−

R2
+

)

8

RBH

ε
+ finite

A6/Ω4 →
1

4

R4
BH

ε4
−

(5 + 18
R3
−

R3
+

)

20

R2
BH

ε2
+

50− 9
R3
−

R3
+

(40 + 29
R3
−

R3
+

)

200
log(ε) + finite

(4.57)

In particular, the leading order divergence is proportional to the area of the black

hole horizon on the boundary, a similarity to the Bekenstein-Hawking entropy first

noted in [165, 175].

One may also ask about the divergences as Rb →∞. We note that in this limit,

α(r), β(r), ψ(r), χr(r), χs(r) all vanish and so

A4/Ω2 →
1

2

R2
b

ε2
+

1

2
log(ε) + finite

A5/Ω3 →
1

3

R3
b

ε3
− Rb

ε
+ finite

A6/Ω4 →
1

4

R4
b

ε4
− 3

4

R2
b

ε2
− 3

8
log(ε) + finite

(4.58)
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Figure 4.9: In (a)-(c) (d = 4, 5, 6, respectively), we plot the finite piece of the
entanglement entropies, defined in (4.61), divided by the mass parameter Mκ for
a given R−. As can be seen, far from the black hole, all entanglement entropies
agree. In (a), the curves correspond to R−/R+ = 0, .2, .4, .5, .8, 1.0 (top to
bottom). In (b), R−/R+ = 0, .3, .5, .7, .8, 1.0 (bottom to top). Finally, (c) is the
six dimensional case with R−/R+ =0, .4, .5, .6, .7, .8, .9, 1.0 (bottom to top). In
all cases, the result for the extremal boundary black hole is in black and dashed.
In (d), we show a log-log plot of the asymptotic part of the entanglement entropies
as a function of R+/R. These are linear (©), quadratic (�), and cubic (4)for
d = 4, 5, 6 respectively.
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Figure 4.10: In (a)-(c) (d = 4, 5, 6, respectively)m we plot the finite piece of the
entanglement entropies for the horizon as a function of TBH .

We want to subtract the entanglement entropies for balls of radiusRb in pure AdSd+1.14

Here, we minimize

Ad = Ωd−2

∫ Rb

ε

dz
R(z)d−2

zd−1

√
R′(z)2 + 1. (4.59)

14In four dimensions, this was calculated for instance in [163] but the higher dimensional results
are new
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In all dimensions, the minimal surface is R(z) =
√
R2
b − z2. Plugging this into the

above expression gives

A4/Ω2 =
1

2

R2
b

ε2
+

1

2
log(ε)− 1

4
(1 + 2log(2))

A5/Ω3 =
1

3

R3
b

ε3
− Rb

ε
+

2

3

A6/Ω4 =
1

4

R4
b

ε4
− 3

4

R2
b

ε2
− 3

8
log(ε) +

3

32
(3 + 4log(2))

(4.60)

As can be seen, the pure AdS divergences match the asymptotic limit of the droplet

divergences (4.58), as would be expected since the boundary spacetime is asymptot-

ically flat.

Now, as we did for the C-metric, we subtract the area of the surface in the no

black hole background from the area of the surface in the black hole background.

This gives

∆A4/Ω2 = −1

2
α(rb)log(ε) + ∆σ4

∆A5/Ω3 = −3β(rb)

8

Rb

ε
+ ∆σ5

∆A6/Ω4 = −ψ(rb)

10

R2
b

ε2
− (2χs(rb) +

1

2
χr(rb)−

3

10
ψ(rb)) log(ε) + ∆σ6

(4.61)

where σd is the finite part of the d-dimensional area divided by Ωd−2. As can be

seen, the leading divergence is gone but we still have to contend with subleading

divergences. Our regularization procedure will be to fix a value of ε and then subtract

these divergences from the area integral of our solutions. As we show in fig. 4.8, we

find that ∆σd has power law convergence up to some minimum ε∗. Below this value,

the numerics become unstable. The plots of ∆σd come from ε slightly above this

minimum.
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In fig. 4.9, we plot our results for σd/Mκ as a function of R/R+ for various values

of R− in d = 4, 5, 6 (Mκ is the mass appearing in ∆d (4.22)). While the three plots

look very similar, there are actually some important differences, especially between

the d = 4 and d > 4 cases. We first note the similarities. In each case, the finite

piece of the entanglement entropy is negative far from the black hole. Furthermore,

once scaled by the mass, Mκ, the entanglement entropies agree for Rb � R+. Note

that we have already used conformal symmetry to set R+ = 1 and so this procedure

is analogous to the scaling by ρ in the C-metric example. As we saw there, the

entanglement entropy becomes universal (i.e. independent of R−) in this limit. This

shows that far from the horizon, the leading order fall-off in the metric determines the

entanglement entropy. This is demonstrated in fig. 4.9 where we show that in this

region, the entanglement entropies fall off as (R+/R)d−3, exactly following ∆d(R) at

large R. Importantly, this is not the case near the horizon, where interactions between

the CFT and Hawking radiation have a strong influence on the entanglement entropy

and as we show below, prevent heat flow from the black hole to spatial infinity.

In particular, near the horizon, we see a minimum (also a maximum in six dimen-

sions) that becomes more exaggerated as TBH → T∞. This dip defines a radius, Rmin,

where entanglement between degrees of freedom at R < Rmin and R > Rmin is mini-

mized. One explanation for these dips is that the jammed plasma is becoming more

localized near these critical radii, Rmin, more effectively blocking the flux of Hawk-

ing radiation to infinity. As discussed above, if a Bell pair is separated across the

boundary of our entangling region, the entanglement entropy is two, whereas if both

members of the pair are within the entangling region, the entropy is zero. If there

is localization in the plasma, then there should be a region where correlations are

177



Entanglement entropy in jammed CFTs Chapter 4

dense. At R = Rmin, the internal correlations of the localized plasma are all within

our entangling region and so the entanglement entropy is at a local minimum.

4.5.3 Localization in pure AdS

To better understand this picture of localization in the TBH plasma state, we seek

to quantify a length scale for confinement in the CFT vacuum (corresponding to the

T∞ = 0 state). We extend the work of [163] to find a confining phase transition

in d ≥ 4 Poincaré-AdS. It is worth noting that this spacetime is not compact, so

this is not the usual holographic picture of confinement in a CFT [12]. However,

it was shown in [176] that using holography one can relate a glueball mass in four-

dimensional QCD to a phase transition in the two-point correlator of Wilson loops

in R4 at finite temperature. The correlator can be obtained from finding the mini-

mal surface connecting two loops separated by a distance L. For L larger than some

critical Lc, the minimal surface becomes disconnected and the correlator vanishes, an

indication of confinement.15 This transition can also be related to monopole conden-

sation in four dimensions. For monopoles separated by a distance L > Lc, the phase

transition in the minimal surface shows that the potential between the monopoles

goes to a constant, effectively screening the monopoles from each other so that the

force between them vanishes. It seems possible, then, that a similar phase transition

in the CFT on a black hole background may act to prevent heat exchange between

the black hole and an asymptotic plasma.

15Nominally, this implies the glueball mass is infinite. In fact, one expects that when the cross
section of the minimal surface in this geometry is on the order of the string-scale, the supergravity
approximation breaks down and instead the correlator is dominated by supergraviton exchange
between the Wilson loops. The extension of this Gross-Ooguri phase transition to holographic
geometries dual to confining CFTs was performed in [162]
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Figure 4.11: We plot the area of the minimal surfaces for boundary annuli as a
function of the ratio of outer and inner radii ρ = R2

R1
for d = 4, 5, 6. The dotted

line is the area for the “connected” surface while the filled line is the area for
two “disconnected” balls. At some critical ρ

(d)
∗ the minimal area surface changes,

representing a confining phase transition.

179



Entanglement entropy in jammed CFTs Chapter 4

1.0 1.5 2.0 2.5 3.0

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

R/R+

Δσ4

M

1.0 1.5 2.0 2.5 3.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

R/R+

Δσ5

M

1.0 1.5 2.0 2.5 3.0

-0.4

-0.3

-0.2

-0.1

0.0

0.1

R/R+

Δσ6

M

Figure 4.12: We show the entanglement entropy of balls in the extremal black hole

background ∆σd and mark ρ
(d)
∗ . In d = 6, the first line marks radius where ∆σ6

is maximized and the second line is ρ
(6)
∗ times this radius.

To find the critical length scale for our droplets, we start with Poincaré-AdSd+1

and study the entanglement entropy of annuli on the boundary with inner radius R1

and outer radius R2. As we vary the ratio ρ = (R1

R2
), there is again phase transition

between “connected” and “disconnected” surfaces. For small ρ, the surfaces which
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minimize the area are “connected”. Using a conformal transformation to take the

plane to a cylinder, this surface can be understood as the string world sheet connecting

two Wilson loops analogous to the construction in [176].16 At some critical ρ
(d)
∗ , the

minimal area surface for the annuli is instead two disconnected surfaces, each of which

corresponds to the ball surfaces discussed above. In the frame of the cylinder, this

tells us that the string worldsheet no longer stretches between the two Wilson loops.

As before, the area and therefore the two point correlator does not scale with ρ and

so this is understood to represent a type of confinement. The critical ratio ρ∗ is then

understood to correspond to a size for the “glueballs” of the CFT above which heat

transport is screened.17

As seen in fig. 4.12, in pure AdS, the phase transition for the d = 4 plasma occurs

at ρ
(4)
∗ ≡ (R2/R1)∗ ∼ 1.844. As the boundary black hole nears extremality, we also

see that a minimum in the entanglement entropy appears at R/R+ ∼ ρ∗. In d = 5,

we find that ρ
(5)
∗ ∼ 1.53. Again, as TBH → 0, the minimum in the entanglement

entropy occurs at R/R+ ∼ ρ
(5)
∗ . We conjecture that this coincidence occurs because

the boundary black hole breaks conformal symmetry and in our conformal frame,

the event horizon sets a fundamental size for the jammed plasma. This lends some

credence to the idea that the jamming occurs because the plasma cannot fit inside

the black hole. In the confined phase, where the minimum radius is given by R+,

the jammed plasma can extend only to ρ
(d)
∗ . The “glueball” of the plasma is highly

entangled with the degrees of freedom behind the horizon. Once the radius that

16One important feature of the construction in [176] was that the Euclidean supergravity solution
had an S1 from the Euclidean time circle. In our conformal map, the S1 of the cylinder is analogous
to the thermal circle.

17As discussed above, the real length scale actually depends on the map from the plane to the
cylinder.
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defines the boundary region is larger than ρ
(d)
∗ , there are no longer correlations beween

the degrees of freedom behind the horizon and the glueball, hence the minimum in the

entanglement. The entanglement then grows again because of correlations between

degrees of freedom away from the black hole matching onto the Tangerlinhi behavior.

In the d = 6 entanglement entropy, the behavior is slightly different and we

now see a maximum and a minimum. From the stress tensor (fig. 4.6), we saw

that the region of negative energy density has moved away from the horizon, unlike

the lower dimensional cases. This suggests that it in this dimension, it may not

be accurate to draw conclusions about localization scales in terms of R+ for the

entanglement entropy.18 In fact, the maximum entanglement occurs at Rmax/R+ ∼

1.25. Multiplying this radius by ρ
(6)
∗ ∼ 1.346 gives us approximately the position of

the dip in entanglement. In this dimension, it is clear that there is a complicated

relationship between the entanglement outside of the horizon and the jammed plasma.

The positive energy density near the horizon suggests possible new degrees of freedom

which are not highly entangled with the black hole causing the global minimum of

entanglement to occur at the horizon in this dimension.19 As we increase the radius

of our entangling surface, the entanglement increases as the surface divides these

near horizon degrees of freedom into two regions. This increase continues until Rmax

where the glueball is located. The entanglement then behaves as the d = 4, 5 cases,

decreasing until eventually reaching a local minimum where the glueball is entirely

within the entangling surface and then increasing.

18In even dimensions, there is some ambiguity in the regularized entanglement entropy because of
the log divergence. While we use the same regularization scheme for each value of R−, this ambiguity
may still play a role. We thank Don Marolf for emphasizing this point to us.

19As the energy density is also positive far from the black hole, these degrees of freedom my behave
very similarly to the plasma far from the black hole. Note that by dividing the Hilbert space into
two spatial regions, we can’t distinguish which degrees of freedom are correlated.
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Interestingly, in d > 4, there are no local minima in the entanglement entropy for

sufficiently large temperatures. Here it seems that the Hawking radiation prevents

the plasma from confining.20 In fact, the equality between the location of this dip

measured in terms of R+ and ρ
(d)
∗ is particular to the extremal black hole where the

Hawking radiation is at zero temperature and no longer excites the plasma. Here,

the jammed CFT should behave similarly to the vacuum state and share the same

confining scale. For higher temperature black holes, the plasma should be excited

and its pressure should increase. At the same time, there is a stronger gravitational

attraction which makes the plasma want to decrease in size. It appears that in four

dimensions, the Hawking radiation wins out and the dip in the entanglement entropy

moves to larger radii. In d > 4, the gravitational attraction wins and the dips move

toward the horizon. It is worth noting that the stress tensors (figs. ??, ??, 4.6)

confirm this behavior as all energy densities have peaks that mirror the temperature

dependence of the entanglement entropy.

Now we note some important differences. In d = 3, we find ∆σ3 > 0 for all R.

However, for d > 3, ∆σd is negative except near the horizon. This negative ∆σd can

be explained because the vacuum dual to Poincaré AdS is in a pure state and very

highly entangled [178, 179].21 It is reasonable that far from the black hole, the jammed

CFT has less correlations than the vacuum. The new behavior near the horizon can

be explained by the breaking of conformal invariance. The vacuum dual to Poincareé-

AdS is scale invariant and on a fixed time slice, any division of the boundary into

two pieces will give the same value for the finite piece of the entanglement entropy

20In [177], it was shown that the critical ρ
(d)
∗ increases with temperature.

21It was shown in [178] that the density matrix for ball shaped regions in Poincaré-AdS can be
conformally mapped to a thermal density matrix which is known to have maximal entanglement.
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(4.60). The droplet spacetime, however, is in general not Ricci flat and breaks this

scale invariance. It is worth noting that, in d = 5, 6, when the boundary is Ricci flat

(R− = 0), the entanglement entropy is monotonic, similar to the three dimensional

case, although this is not the case in d = 4. Near the black hole, the entanglement

becomes positive because the CFT is very localized and has denser correlations than

the vacuum. As we increase R away from the horizon, the entanglement decreases

until R/R+ = ρ
(d)
∗ where the glueball of the jammed CFT is completely within our

boundary region. From here, the entanglement entropy matches the behavior of the

Ricci flat case.

The three dimensional case is unique because neither the black hole nor the no

black hole spacetime is scale invariant despite being Ricci flat.22 While the µ = 0

limit of the C-metric gives Poincaré-AdS4, it is more appropriate to subtract the no

boundary black hole state because it has the same leading order divergence and the

same conical deficit as the black hole spacetime for a given µ. Furthermore, for large

radii, ∆σ3 → 0. Here it is not clear whether one should expect the no black hole

background, which corresponds to an excited state of the CFT, to have more or less

entanglement than the black hole background.

The next difference is the behavior of the entanglement on the horizon (fig. 4.10).

It is intriguing that the entanglement is not monotonic in TBH . In three and four

dimensions, this quantity starts positive and goes to zero as we go to extremality. In

four dimensions, the entanglement entropy actually becomes negative at some critical

TBH ∼ .02 but then increases towards zero again. In five and six dimensions, the

entanglement starts negative and increases. In five dimensions this continues all the

22A scale invariant, spherically symmetric spacetime would have the same value for the entangle-
ment entropy for any choice of R.
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way to TBH = 0 while the six dimensional case starts decreasing around TBH ∼ .12.

In d = 5, the entanglement entropy on the horizon is linear while in d = 4 and d = 6

it is roughly quadratic. In d = 3, as seen in fig. 4.7, the entanglement entropy at the

horizon increases as T
2/3
BH . We don’t have a good understanding of this behavior. In

particular, we note that for d ≥ 4, M,Q→ 1 as TBH → 0, but the three dimensional

case has µ → ∞ as TBH → 0 more similar to a Schwarzschild black hole where the

extremal limit is M → ∞. In fig. 4.1, we showed that in d = 4, as TBH → 0, the

horizon approaches the surface R2 + z2 = 1. In Poincaré-AdS, this is the minimal

surface for a ball with radius R = 1. Thus we expect that in the extremal limit, the

difference in entanglement entropy should vanish as it does. This is not the case in

higher dimensions where the surface cannot be isometrically embedded in this limit.

It seems that the extremal limit of the horizon entanglement entropy is dimension

dependent. One may hope to gain insight by doing similar calculations in other

droplet spacetimes by fixing the boundary black hole temperature and varying T∞

where we can use a Schwarzschild black hole on the boundary and vary the bulk

horizon temperature.23

4.6 Discussion

In this paper we sought to clarify some features of jammed CFTs by investigating

their holographic duals. To this end, we constructed three new classes of solutions to

the Einstein equations with a negative cosmological constant that have boundaries

conformal to the d-dimensional Reissner-Nordström metric.

23This is a conformal field theory, so that only the ratio TBH/T∞ should matter. However, the
black holes that we constructed have a maximum temperature because we set R+ = 1.
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For these solutions, we calculated the boundary stress tensor and compared this

to both a theoretical form as well as to existing literature. The calculation of the

boundary stress tensor introduced some new features that had not been seen before

in the literature, including peaks in the energy densities, positive asymptotic energy

densities, and magnitudes near the horizon that were not monotonic as a function of

TBH . This new behavior seems to indicate the presence of a CFT phase that becomes

localized away from the horizon as TBH → T∞.

We also calculated entanglement entropies of balls in these geometries as well as

in the analytic example of the AdS C-metric. For these examples, many features of

the boundary stress tensor were confirmed, including near horizon behavior indica-

tive of a localized CFT. Furthermore, for d ≥ 4, the entanglement entropies were

smaller in the black hole background than the corresponding entropies in pure AdS

far from the black hole showing very little correlation between a near horizon CFT

and an asymptotic CFT.24 Furthermore, by comparing to confining phase transitions

in Poincaré-AdSd+1, we find critical values in the entanglement entropy which match

the proposed “size” of glueballs in units of the horizon radius R+. At the same time,

many features of the entanglement entropy remain enigmatic. One particular exam-

ple is the behavior of the horizon’s entanglement entropy as a function of R−. The

different behavior between the d = 3 case and d ≥ 4 cases suggest that one direction

worth pursuing is to choose a Schwarzschild boundary black hole and vary T∞ instead.

Using the construction in [168], one could better compare to the three dimensional

case. In particular, one may understand why, in d = 5, d = 6, ∆σd does not go to

24Note that in work done on thermal states dual to the AdS-Schwarzschild black hole, differences
are positive. This is because the thermal state, in addition to the vacuum entanglement, has new
degrees of freedom from thermally excited entangled pairs.
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zero as the boundary black hole approaches extremality.
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4.8 Appendix: Stress Tensor Expansion

In this appendix, we present the expansions used to calculate the boundary stress

tensor. As discussed above, our spacetime is asymptotically locally AdS [173]. This

suggests that in a finite neighborhood U of the boundary ∂M, we can define a

“Fefferman-Graham” coordinate, z, such that

z|x=1 = 0, ĝMN∂Mz∂Nz = 1/l2, where ĝ = z2g (4.62)

This coordinate allows us to construct Gaussian normal coordinates near the bound-

ary such that the metric is given by

ds2 =
l2

z2
(dz2 + γµν(x, z)dx

µdxν). (4.63)
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From the Einstein equations, one may show that the metric γµν can be expanded near

the boundary in even powers of z up to order zd,

γµν(x, z) = γ(0)
µν + z2γ(2)

µν + ...+ zdγ(d)
µν + zdγ̄dµν log z2 + ... (4.64)

where the γ̄
(d)
µν term only appears for even d. Each term in the expansion up to γ(d) can

be expressed in terms of geometric quantities determined from the boundary metric

γ
(0)
µν . For example,

γ(2)
µν = − 1

(d− 2)

(
Rµν −

1

2(d− 1)
Rγ(0)

µν

)
(4.65)

where Rµνρσ,Rµν ,R are the Riemann tensor, Ricci tensor, and Ricci scalar of the

boundary metric respectively. Other expressions can be found in [180].25 Further-

more, one can express γ̄
(d)
µν in terms of these geometric quantities and the covariant

derivatives associated with the boundary metric,

γ̄(2)
µν = 0

γ̄(4)
µν =

1

8
RµνρσR

ρσ − 1

48
∇µ∇νR+

1

16
∇2Rµν −

1

24
RRµν

+

(
− 1

96
∇2R+

1

96
R2 − 1

32
RρσRρσ

)
γ(0)
µν

(4.66)

Note that the authors of [180, 114] show that in d = 6, γ̄(d) is regularization scheme

dependent and can be cancelled by a local counterterm.26 Furthermore, this term

25These authors use a different convention for the Riemann tensor and some care must be taken
to compare to our expressions.

26The ambiguity comes from a potential R2 term in the counter term action leading to a contri-
bution to the trace of the form �R. The expression above is for a specific choice of regularization
scheme.
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obeys

γ(0)µν γ̄(d)
µν = 0 (4.67)

and does not contribute to the conformal anomaly. For the d=6 stress tensor, we will

not include this term in our expression.

The Einstein equations determine the γ(i) up to order zd where new data first

appears, including odd d. The new data appears in the function γ
(d)
µν which must be

determined from our numerical solution. From the Fefferman-Graham expansion, we

can find the boundary stress tensor from the coefficients γ
(i)
µν . For odd d, this is simple

to evaluate

〈T (d)
µν 〉 =

dld−1

16πGd+1

γ(d)
µν . (4.68)

For even dimensions, however, the expression is more complicated. The important

expressions for this work are the d=4 expression,

〈T (4)
µν 〉 =

l3

4πG5

[
γ(4)
µν−

1

8

(
(Trγ(2))2 − Tr(γ(2))2

)
γ(0)
µν

− 1

2
γ(2)ρ
µ γ(2)

νρ +
1

4
Tr(γ(2))γ(2)

µν +
3

2
γ̄(4)
µν

]
. (4.69)

Finally, the six dimensional stress tensor is given by (up to a term proportional to

γ̄
(6)
µν .

〈T (6)
µν 〉 =

3l5

8πG7

(γ(6)
µν − A(6)

µν +
1

24
Sµν) (4.70)
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where

A(6)
µν =

1

3

(
(γ(4)γ(2))µν − (γ(2)3

µν +
1

8

[
Tr(γ(2)2

)− (Tr(γ(2)))2
]
γ(2)
µν

−
[

1

8
Tr(γ(2)2

)Tr(γ(2))− 1

24
(Tr(γ(2)))3 − 1

6
Tr(γ(2)3

) +
1

2
Tr(γ(2)γ(4))

]
γ(0)
µν

+ 2(γ(2)γ(4))µν − Tr(γ(2))[γ(4)
µν −

1

2
(γ(2)2

)µν ]

)
(4.71)

and

Sµν = ∇2Cµν + 2RνρµσC
σρ + 4(γ(2)γ(4) − γ(4)γ(2))µν +

1

10
(∇µ∇νB − γ(0)

µν∇2B)

+
2

4
γ(2)
µν B + γ(0)

µν (−2

3
Tr(γ(2)3

)− 4

15
(Trγ(2))3 +

3

5
Trγ(2)Tr(γ(2)2

)

(4.72)

where

Cµν =

(
γ(4) − 1

2
γ(2)2

+
1

4
γ(2)Tr(γ(2))

)
µν

+
1

8
γ(0)
µν

(
Tr(γ(2)2 − (Trγ(2))2

)
. (4.73)

In the above expressions, indices are raised with γ(0)µν and lowered with γ
(0)
µν . Ex-

pressions like γ
(2)2

µν mean γ(0)ρσγ
(2)
µρ γ

(2)
νσ .

To find the coefficients γ
(i)
µν , we need to find an expression for the coordinate z in

terms of x and r as well as boundary expansions for X and boundary radial coordinate
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R. To do so, we write

z = (1− x2)

(
1

1− r2
+
∞∑
n=1

zn(r)(1− x2)n

)
,

R =
R+

1− r2
+
∞∑
n=1

Rn(r)(1− x2)n,

X = X0(r) +
∞∑
n=1

Xn(r)(1− x2)n + log(1− x2)
∞∑
n=1

X̃n(r)(1− x2)n,

(4.74)

where X0(r) are our Dirichlet boundary conditions (4.29). The expansion coefficients

X̃n(r) are non-zero for n ≤ d in d = 4, 6.27 We insert the expansion for X into

the DeTurck equations and match to the known Fefferman-Graham coefficients γ
(i)
µν .

From this, we can find the functions zn, Rn and Xn. Characteristic of asymptotically

locally Anti-de Sitter spacetimes, the resulting polynomial contains only even powers

of (1 − x2) up to (1 − x2)d. We will omit presenting zn, Rn, Bn and Fn because we

don’t use them explicitly to calculate the stress tensor.

Because they will be useful for the following, we recall that

δd(r) =
1

r2
(1− (1− r2)d−3)

(
1− (1− r2)d−3

(
R−
R+

)d−3
)
,

δ4(r) = (1− (1− r2)R−/R+),

δ5(r) = (2− r2)(1− (1− r2)2(R−/R+)2),

δ6(r) = (3 + 3r2 − r4)(1− (1− r2)3(R−/R+)3).

(4.75)

27There are other logarithmic terms that appear at higher order, for instance in F (x, r), where
such terms appear at (1− x2)5 in d = 4.
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In d = 4, the relevant boundary expansion is

T → δ4(r)
(
1− (1− x2)2α(r)

)
+ (1− x2)4

(
T4(r) + log(1− x2) + T̃4(r)

)
+ ...,

S → 1 +
1

2
(1− x2)2α(r) + (1− x2)4

(
S4(r) + log(1− x2)S̃4(r)

)
+ ...,

A→ 1

δ4(r)

(
1− (1− x2)2α(r)

)
+ (1− x2)4

(
A4(r) + log(1− x2)Ã4(r)

)
+ ...,

(4.76)

where

α(r) = (δ4(r) + r2R−/R+)(1− r2) (4.77)

and the ”...” indicates terms of O((1 − x2)5) and higher. For completeness, though

they don’t appear in the stress tensor, the X̃4 coefficients can be found analytically

to be

T̃4(r) = −3

2
r2
(
r2 − 1

)2 ((
r2 − 1

)
R−/R+ + 1

)2
R−/R+,

S̃4(r) = r2
(
r2 − 1

)2 ((
r2 − 1

)
R−/R+ + 1

)
R−/R+,

Ã4(r) = −1

2
r2
(
r2 − 1

)2
R−/R+.

(4.78)

One can check that as R− → 0, the above expansion matches Figueras et al.

In d = 5,

T → δ5(r)

(
1 +

3

4
(1− x2)2β(r)

)
+ (1− x2)4ηt(r) + (1− x2)5T5(r) + ...,

S → 1− 1

4
(1− x2)2β(r) + (1− x2)4ηs(r) + (1− x2)5S5(r) + ...,

A→ 1

δ5(r)

(
1 +

3

4
(1− x2)2β(r)

)
+ (1− x2)4ηr(r) + (1− x2)5A5(r) + ...,

(4.79)
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where the ”...” indicates terms that are O((1−x2)6) and higher. For ease of reading,

we have introduced the functions

β(r) = (1− r2)2(−2 + (3 + 5r2(−2 + r2))
R2
−

R2
+

) (4.80)

and

ηt(r) =
δ5(r)

112
(−1 + r2)2

×

[
44 + 204r2(−2 + r2)− 4(76 + r2(−2 + r2)(589 + 553r2(−2 + r2)))

R2
−

R2
+

+ (−1 + r2)2(227 + r2(−2 + r2)(2258 + 2235r2(−2 + r2)))R4
−R

4
+

]
,

ηs(r) =
1

112
(−1 + r2)2

×

[
44 + 40r2 − 20r4 + 4(−13 + r2(−2 + r2)(132 + 161r2(−2 + r2)))

R2
−

R2
+

− (−1 + r2)2(−59 + r2(−2 + r2)(486 + 565r2(−2 + r2)))
R4
−

R4
+

]
,

ηr(r) =
1

112δ5(r)
(−1 + r2)2

×

[
4(11 + 37r2(−2 + r2))− 4(76 + r2(−2 + r2)(379 + 329r2(−2 + r2)))

R2
−

R2
+

+ (−1 + r2)2(227 + r2(−2 + r2)(1474 + 1395r2(−2 + r2)))
R4
−

R4
+

]
.

(4.81)

There are no logarithmic terms in d = 5.
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In d=6, the expansion of X terms are

T → δ6(r)

(
1 +

2

5
(1− x2)2ψ(r)

)
+ (1− x2)4χt(r)

+ (1− x2)6
(
T6(r) + log(1− x2)T̃6(r)

)
+ ...,

S → 1− 1

10
(1− x2)2ψ(r) + (1− x2)4χs(r)

+ (1− x2)6
(
S6(r) + log(1− x2)S̃6(r)

)
+ ...,

A→ 1

δ6(r)

(
1 +

2

5
(1− x2)2ψ(r)

)
+ (1− x2)4χr(r) + (1− x2)6

(
A6(r) + log(1− x2)Ã6(r)

)
+ ...

(4.82)

where the ”...” indicates terms that are O((1−x2)7) and higher. For ease of reading,

we have defined

ψ(r) =
(
r2 − 1

)3
((

14r2
(
r4 − 3r2 + 3

)
− 9
) R3

−

R3
+

+ 5

)
(4.83)

and

χt(r) =
δ6(r)

1000

(
r2 − 1

)3

×
[(
r2 − 1

)3 ((
r4 − 3r2 + 3

) (
38374r2

(
r4 − 3r2 + 3

)
− 40113

)
r2 + 5139

) R6
−

R6
+

+ 5
((
r4 − 3r2 + 3

) (
7327r2

(
r4 − 3r2 + 3

)
− 8184

)
r2 + 1332

) R3
−

R3
+

+ 25
(
136r2

(
r4 − 3r2 + 3

)
− 41

)]
,

(4.84)
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χs(r) =
1

500

(
r2 − 1

)3

×
[
−
(
r2 − 1

)3 (
r2
(
r4 − 3r2 + 3

) (
3388r2

(
r4 − 3r2 + 3

)
− 2781

)
− 432

) R6
−

R6
+

− 5
(
r2
(
r4 − 3r2 + 3

) (
799r2

(
r4 − 3r2 + 3

)
− 688

)
− 36

) R3
−

R3
+

− 25
(
7
(
r4 − 3r2 + 3

)
r2 + 8

)]
,

(4.85)

χr(r) =
1

1000δ6(r)

(
r2 − 1

)3

×
[(
r2 − 1

)3 ((
r4 − 3r2 + 3

) (
27874r2

(
r4 − 3r2 + 3

)
− 30363

)
r2 + 5139

) R6
−

R6
+

+ 5
((
r4 − 3r2 + 3

) (
5077r2

(
r4 − 3r2 + 3

)
− 6084

)
r2 + 1332

) R3
−

R3
+

+ 25
(
106r2

(
r4 − 3r2 + 3

)
− 41

)]
.

(4.86)
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The logarithmic terms are

T̃6(r) =

1

50
f(r)6p(r)(R−/R+)3

(
2f(r)9p(r)

(
9394r2p(r)− 1917

)
r2 + 63

)
(R−/R+)9

+ 15f(r)6
(
p(r)

(
3502r2p(r)− 1167

)
r2 + 42

)
(R−/R+)6

+ 6f(r)3
(
p(r)

(
8137r2p(r)− 3876

)
r2 + 189

)
(R−/R+)3

− 5
(
p(r)

(
3016r2p(r)− 1917

)
r2 + 126

)
,

S̃6(r) =
1

50

[(
p(r)

(
5551r2p(r)− 1194

)
r2 + 63

)
f(r)12(R−/R+)9

+
(
p(r)

(
9908r2p(r)− 4305

)
r2 + 252

)
f(r)9(R−/R+)6

+ 5
(
p(r)

(
884r2p(r)− 597

)
r2 + 63

)
f(r)6(R−/R+)3

]
,

(4.87)

and

Ã6(r) =
1

50p(r)(f(r)3(R−/R+)3 + 1)

×
(

2
(
p(r)

(
1708r2p(r)− 471

)
r2 + 63

)
f(r)12(R−/R+)9

−
(
p(r)

(
5890r2p(r)− 3549

)
r2 + 504

)
f(r)9(R−/R+)6

+ 5
((
r4 − 3r2 + 3

)
p(r)

(
520r2p(r)− 471

)
r2 + 126

)
f(r)6(R−/R+)3

)
.

(4.88)

The d=6 stress tensor is

〈T µν 〉 =
3

8πG7

diag

{
T tt, TRR, TΩ

Ω, TΩ
Ω, TΩ

Ω, TΩ
Ω

}
(4.89)
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where

(T tt)R
6 =

T6(R)(
1 + R+

R
+

R2
+

R2

)(
1− R3

−
R3

)
+

1

60000R18

[
166250R15

(
R3
− +R3

+

)
− 625R12

(
827R6

− + 6638R3
−R

3
+ + 827R6

+

)
+ 25R9

(
13335R9

− + 366271R6
−R

3
+ + 366271R3

−R
6
+ + 13335R9

+

)
− 8666482R9

−R
9
+ − 5R6R3

−R
3
+

(
1011065R6

− + 4403462R3
−R

3
+ + 1011065R6

+

)
+ 13441280R3R6

−R
6
+

(
R3
− +R3

+

)]
,

(4.90)

(TRR)R6 = −4S6(R)− T6(R)(
1 + R+

R
+

R2
+

R2

)(
1− R3

−
R3

)
+

1

12000R24

[
1750R15

(
R3
− +R3

+

)
+ 125R12

(
979R6

− − 1682R3
−R

3
+ + 979R6

+

)
+ 2863126R9

−R
9
+ − 5R9

(
22575R9

− + 91367R6
−R

3
+ + 91367R6

+R
3
− + 22575R9

+

)
+R6R3

−R
3
+

(
724225R6

− + 3479278R3
−R

3
+ + 724225R6

+

)
− 3373640R3R6

−R
6
+

(
R6
− +R6

+

)]
,

(4.91)
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and

(TΩ
Ω)R6 = S6(R)− 1

30000R18

[
21875R15

(
R3
− +R3

+

)
− 614681R9

−R
9
+

− 625R12
(
19R6

− − 1040R3
−R

3
+ + 19R6

+

)
+ 175R9

(
165R9

− − 4909R6
−R

3
+ − 4909R3

−R
6
+ + 165R9

+

)
+ 5R6R3

−R
3
+

(
35855R6

− + 134423R3
−R

3
+ + 35855R6

+

)
+ 320365R3R6

−R
6
+

(
R3
− +R3

+

)]
.

(4.92)

Finally, the expressions for Ad(r) are (with R+ = 1)

A4(r) =
1

4
(δ4(r)(−(1− r2)(R−r

2 + δ4(r))(−3 + 5R− + 5r2(1 + (2r2 − 3)R−))

− 8S4(r))− 4T4(r))/δ4(r)2,

A5(r) =
1

δ5(r)

(
−3S5(r) +

T5(r)

δ5(r)

)
,

(4.93)
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and

A6(r) =
1

δ6(r)

[
−4S6(r)− T6(r)

δ6(r)

−f(r)3p(r)

10000

(
−12250R3

+ − 17000R3
− + 230580f(r)3R6

−

− 276552f(r)6R9
− − 75222f(r)9R12

−

+p(r)r2
(
−82375 + 1137150R3

− − 4635720f(r)3R6
−

+ 5992746f(r)6R9
− − 2424051f(r)9R12

−
)

+p(r)2r4
(
107125− 2392050R3

− + 9669600f(r)3R6
−

− 12945386f(r)6R9
− + 5478336f(r)9R12

−
)

+p(r)3r6
(
1284400R3

− − 5408835f(r)3R6
− + 7468192f(r)6R9

− − 3236632f(r)9R12
−
))]

,

(4.94)

where f(r) = 1− r2 and p(r) = 3− 3r2 + r4.

For the sake of completeness, we will also show how to extract the divergences in

the entanglement entropies in d = 4, as an example. The higher dimensional cases

are similar. Near the boundary, z ≈ (1−x2)Rb. Next, note that x2g(x) = 2x2−x4 =

1− z2/R2
b . Finally, r′(x) = 0 and B(x) = 1 +O(z4) near the boundary. Then we can

express the area functional near the boundary as

A4

4π
= R2

b

∫
ε

dz

z

(
1 + 1

2
z2

R2
b
α(rb)

)√
1− z2/R2

b

z2
=
R2
b

ε2
−1

2
(α(rb)−1)log(ε)+finite. (4.95)
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It is then just a matter of subtracting the divergent pieces to find the finite entan-

glement entropy. One must of course check that the finite piece does not vary as a

function of the cutoff (for sufficiently small ε) which we demonstrate in figure 4.8.
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Chapter 5

Holographic stress-energy tensor

near the Cauchy horizon inside a

rotating black hole

-

5.1 Introduction

One of the outstanding issues in gravity is understanding quantum effects in re-

gions of large spacetime curvature. Although energy densities in typical classical fields

such as electromagnetic fields are always non-negative, there have been a number of

studies that show the appearance of negative energy density when quantum field ef-

fects are taken into account. For instance, it was shown (see, e.g. [181]) that the

energy density for an observer falling into a singularity negatively diverges for some

physical vacuum state. On the Cauchy horizon deep inside a charged black hole, the
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stress-energy tensor was calculated for a two-dimensional massless scalar field model

and the energy density diverges at the horizon [182]. Calculations of a conformal

scalar field in Taub-NUT-type cosmologies show that the stress-energy tensor nega-

tively diverges on the Cauchy horizon even though the curvature remains small [183].

However, most studies have been made for free massless scalar field models and little

attention has been given to strongly interacting field models such as CFTs at strong

coupling.

The AdS/CFT duality [7, 5] provides a powerful tool to investigate CFTs at

strong coupling on a fixed curved background spacetime. According to the dic-

tionary of the duality, a CFT at strong coupling on a fixed d-dimensional space-

time is dual to a gravitational theory in d + 1-dimensional AdS spacetime with

a timelike boundary conformal to the d-dimensional spacetime. Motivated by the

investigation of Hawking radiation in a model of a CFT at strong coupling, two

types of black hole solutions were constructed in asymptotically locally AdS space-

times [184, 146, 148, 147, 185, 153, 152, 167, 151, 166, 2]. One solution is called a

“black funnel” in which there is a single connected horizon extending from the con-

formal boundary to an asymptotically planar horizon in the bulk, and it is dual to the

thermal equilibrium Hartle-Hawking vacuum state of the boundary theory. The other

is called a “black droplet” solution in which the horizon is disconnected from the pla-

nar horizon in the bulk, and it is dual to the Unruh vacuum state. In these models,

negative energy density is observed outside the event horizon due to the Hawking

effect. However, these solutions are quite complicated and their construction has re-

quired numerical methods; hence, it is difficult to analyze general properties of the

stress-energy tensor inside the boundary black hole. It is then desirable to have some
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analytically constructed solutions for a black funnel/droplet. Recently some attempts

along this direction have been made by Haddad [186] 1, who, using a derivative ex-

pansion method, has constructed a five-dimensional static black droplet solution and

computed the holographic stress-energy tensor for the corresponding dual quantum

field in the background of a four-dimensional static black hole background [184] (See

also for the lower dimensional case (d ≤ 3) [146, 147, 152]). It is clearly interesting to

generalize the line of research [186, 184] performed for the static vacuum case to more

general cases. In particular, including rotations would drastically change the causal

structure inside the resultant black funnel/droplet motivating a study of the holo-

graphic consequences of strong coupling in quantum fields near the inner (Cauchy)

horizon.

In this paper, we construct a rotating black droplet solution by generalizing the

work [184]. In general, including rotation makes the relevant analysis significantly

more complicated compared to the static case. For example, if one attempts to add

a rotation to the model of [184] so that the corresponding boundary field lives in a

four-dimensional Kerr black hole–which is already cohomogeneity-two, then one would

have to construct a five-dimensional bulk black droplet by solving a cohomogeneity-

three system. In order to avoid this technical difficulty, instead of trying to add a ro-

tation to a five-dimensional black droplet, we attempt to construct a six-dimensional

rotating black droplet solution dual to a five-dimensional field theory in the back-

ground of the rotating Myers-Perry black hole [189] with equal angular momenta,

which is known to be cohomogeneity-one. In this case, the derivative expansion

method enables us to reduce the bulk field equations to a set of ordinary differential

1Note that this expansion method is essentially the same as the one developed for the ”blackfold
approach” in [187]. See also e.g. [188], for further applications of this method.
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equations, thereby making it possible to compute–analytically and explicitly within

our expansion framework–the holographic stress-energy tensor for a CFT at strong

coupling and largeN inside the five-dimensional rotating black hole. In addition, since

quantum field theories in odd-dimensions are not well understood, it is of considerable

interest to study the behavior of quantum fields in a five-dimensional spacetime. In

fact, motivated from recent interests in five-dimensional conformal field theory (see

e. g., [166] for references), the six-dimensional rotating black droplet solutions dual

to the rotating Myers-Perry black hole spacetime with equal angular momenta on the

boundary were numerically constructed and the holographic stress-energy tensor was

derived in region outside the event horizon [151, 166].

Having two rotations, the rotating droplet solution admits not only an outer event

horizon but also an inner (Cauchy) horizon. In this paper, we are primarily concerned

with the properties of the holographic stress-energy tensor inside the outer horizon and

in particular, investigating the quantum instability of the Cauchy horizon. We find

that the null-null component of the stress-energy tensor diverges negatively near the

Cauchy horizon, in agreement with the study of free massless scalar fields [182, 183].

Our results suggest that the Cauchy horizon suffers from a quantum instability in

favor of the strong cosmic censorship. As far as we know, this is the first example

of applying the holographic method to study the Cauchy horizon instability due to

quantum effects. We also find that negative energy appears just outside the outer

horizon, describing particle creation by the Hawking effect. Nevertheless, there is no

flux at infinity. This suggests that the dual phase corresponds to a transition from

black funnels to black droplets, and that it is reminiscent of soft condensed matter

systems representing a transition from a fluid-like behavior to rigid behavior, just like
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a “jammed” state [151] (see also [2]).

The paper is organized as follows. In next section, we describe our metric ansatz,

derive the equations of motion, and construct a rotating black droplet solution in

six-dimensions by using the derivative expansion method. In section 5.3, we perform

an analytic computation of the holographic stress-energy tensor for a CFT at strong

coupling and large N inside the five-dimensional rotating black hole on the boundary.

In section 5.4, we numerically check our results analytically obtained in the previous

sections. Section 5.5 is devoted to summary and discussion.

5.2 Derivative expansion method

In this section, we derive the field equations following the derivative expansion

method [186] and investigate general properties of the solution. Our bulk field equa-

tions are the 6-dimensional vacuum Einstein equations with negative cosmological

constant,

Rµν = − 5

L2
gµν , (5.1)
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where L is the AdS radius. We start with the following metric ansatz:

ds̄2 =

 L2

z2F (z)
− z2

L2

(
rF ′(z)

2F (z)

)2
 dz2 +

z2rα(r, z)F ′(z)

L2F (z)
{
√
F (z) dvdz − drdz}

+
z2

L2

[
−F (z)

f(r, z)

h(r, z)
dv2 + 2

√
F (z)

h(r, z)
dvdr +

r2

4
(dθ2 + sin2 θdφ2)

+ r2h(r, z)
(
dψ +

cos θ

2
dφ−

√
F (z)Ω(r, z)dv

)2
]
,

f(r, z) =

(
1−

r2
+(z)

r2

)(
1−

κ2r2
+(z)

r2

)
, h(r, z) = 1 +

κ2r4
+(z)

r4
,

Ω(r, z) =
κ
√

1 + κ2 r3
+(z)

h(r, z)r4
, F (z) = 1− µ5

z5
, (5.2)

where α is an unknown function of r and z determined later. In the limit r+ → 0

and α → −1, this metric reduces to the familiar planar Schwarzschild-AdS space-

time with horizon radius µ after performing the coordinate transformation, v =

t + r/
√
F (z). Furthermore, the metric at each z = const. hypersurface repre-

sents the cohomogeneity-one Myers-Perry black hole solution with equal angular mo-

menta [189], where the outer and inner (Cauchy) horizons are located at r = r+ and

r = κr+ (0 ≤ κ < 1), respectively. So, the metric (5.2) represents a rotating black

string embedded in the background planar Schwarzschild-AdS spacetime in which

the horizon is extended along z-direction. The metric (5.2) itself does not satisfy the

Eqs. (5.1), and must be corrected order by order in derivatives. To this end, we write
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the metric as

ds2 = ds̄2 + ds2
(ε),

ds2
(ε) =

∞∑
n=1

εnh(n)
µν (r)dxµdxν , (5.3)

where ε is the formal derivative expansion parameter defined below and h
(n)
µν (r) is

the nth correction of the metric determined by the Einstein equations (5.1). The

derivative expansions are valid only when the horizon radius of the string is much

smaller than the other scales,

r+ � µ ∼ L. (5.4)

This implies that the background metric (5.2) changes very slowly along the z-

direction compared with the radial scale r+. Thus, the contributions of the first

and second derivatives with respect to z-direction to the Einstein Eqs. (5.1) are sup-

pressed by a factor of r+/L and (r+/L)2 (or similarly, r+/µ and (r+/µ)2).

Following Ref. [186], we shall expand the metric functions, F , r+, and α in a series

of z − zc around an arbitrary value zc as

g(r, z) = gc + εg1(z − zc) + ε2g2(z − zc)2 + · · · , (5.5)

where g(r, z) collectively denotes the metric functions such as F , r+, and α, and the

expansion coefficients are gn := ∂nz g(zc)/n!. Note that the expansion coefficients are

functions of only r, but Fn and rn, are independent of r.
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So, the Einstein Eqs. (5.1) are formally modified to

r2
c Rµν = −5ε2

r2
c

L2
gµν , (5.6)

where rc = r+(zc). This implies that the effect of the cosmological constant appears

at second order in the derivative expansion (5.5). Note that the derivative expansion

parameter ε will be set to unity at the end of our calculations.

5.2.1 First order in derivatives

Substituting Eqs. (5.2) and (5.3) into Eqs. (5.6) one finds that the field Eqs. (5.6)

are satisfied at first order by

h(1)
µν (r) = 0, (5.7)

provided that the following two equations with respect to α(r; zc)

α′ +
α

r
+

(6Fcr1 + F1rc)r
8 + 24κ2r1Fc r

4
c r

4 + κ4r8
c (2Fcr1 − F1rc)

4F1rc r3(r4 + κ2r4
c )

3/2
= 0,

α′′ +

(
1

r
+

4r3

r4 + κ2r4
c

)
α′ −

(
1

r2
− 4r2

r4 + κ2r4
c

)
α

+
3F1r

8 + 4κ2r3
c (F1 rc − r1Fc) r

4 + κ4r7
c (4Fcr1 + F1rc)

F1(r4 + κ2r4
c )

5/2
= 0 (5.8)

are satisfied. When

r1 =
rcF1

2Fc
(5.9)
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is satisfied, the solution α satisfying both two equations (5.8) is given by

α(r; zc) = − r2√
r4 + κ2r4

c

+
C

r
, (5.10)

where C is an integration constant. We discard the integration constant C because

it can be eliminated by gauge transformation of v → v + C/
√
F . In this case, κ→ 0

limit agrees with the non-rotating four-dimensional black string case [186].

5.2.2 Second order in derivatives

At second order, O(ε2), we make an ansatz for the non-zero perturbed metric h
(2)
µν

as

h(2)
µν dx

µdxν = 2γ(r)

(
dψ +

cos θ

2
dφ

)
dv + hvv(r)dv

2 + 2hvr(r)dvdr

+ hzz(r)dz
2 + β(r)

(
dψ +

cos θ

2
dφ

)2

. (5.11)

We derive equations of motion for the metric functions above by substituting

Eqs. (5.2), (5.3), and (5.11) into (5.6) and also using α given by (5.10) with rc replaced

by r+. The equation of motion for hzz is decoupled from the other variables as

− L2F 2
c (r2 − r2

c )(r
2 − κ2r2

c )(r
4 + κ2r4

c )
3z10
c

5r2
h′′zz

− L2F 2
c z

10
c {3r4 − r2

c (1 + κ2)r2 − κ2r4
c}(r4 + κ2r4

c )
3

5r3
h′zz + P(r) = 0, (5.12)

where the source term P is explicitly given by Eq. (5.49). The general solution
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includes two integral constants, one of which is determined by imposing the regularity

on the horizon r = rc. Then, we obtain the following analytic solution,

hzz = − 5r2

4L2
+

25µ10

4L2F 2
c z

10
c

(
r2 +

κ2r4
c − r4√

r4 + κ2r4
c

)

+
5

4L2Fc z5
c

{
(z5
c + 5µ5)r2 − 6µ5

√
r4 + κ2r4

c

}
+

15(1 + κ2) r2
c µ

5

2L2Fc z5
c

ln(r2 − κ2r2
c ) + C, (5.13)

where C is the remaining integral constant. Hereafter, we discard this constant

becuase it can be eliminated by making a gauge transformation [186]. We find that

we can solve for hvr in terms of the other variables, so we need only solve three coupled

second order differential equations for γ(r), β(r), and hvv.

hvr =

√
Fc (2r2 − r2

c (1 + κ2))r3

4(3r4 − κ2 r4
c )
√
r4 + κ2r4

c

β′ − κ
√

1 + κ2 r3
c r

3

(6r4 − 2κ2 r4
c )
√
r4 + κ2r4

c

γ′ − r2hvv

2
√
Fc
√
r4 + κ2r4

c

− (3r4 + κ2 r4
c )r

3

4
√
Fc (3r4 − κ2 r4

c )
√
r4 + κ2r4

c

h′vv

+

√
Fc r

2{r6
c κ

2(1 + κ2) + 3r4
c κ

2r2 + r2
c (1 + κ2)r4 − r6}

2(3r4 − r4
c κ

2)(r4 + r4
c κ

2)3/2
β

+
κ
√

1 + κ2 r3
c r

2

(3r4 − κ2 r4
c )
√
r4 + κ2r4

c

γ +
F

3/2
c z4

c{κ2r4
c − 2r2

c (1 + κ2)r2 + 3r4}r3

4L4(3r4 − κ2r4
c )
√
r4 + κ2r4

c

h′zz

+
5r4

8
√
FcL6z6

c (3r
4 − κ2 r4

c )(r
4 + κ2r4

c )
5/2
×[

8F 2
c z

10
c (r4 + κ2r4

c )
2r4 + 5{6r12 + 2κ4r8

c r
4 − 2κ6r12

c + 3κ4(1 + κ2)r10
c r

2

+ 2κ2r4
c ((1 + κ2)r2

c −
√
r4 + κ2r4

c )r
6 − ((1 + κ2)r2

c + 6
√
r4 + κ2r4

c )r
10

+ 2r2
c (5κ

2r2
c + 2(1 + κ2)

√
r4 + κ2r4

c )r
8}µ10 − 8F 2

c z
10
c (r4 + κ2r4

c )
2r4

]
, (5.14)
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√
FcL

6r2(r2 − r2
c )(r

2 − κ2r2
c )(3r

4 − κ2r4
c )(r

4 + κ2r4
c )

2γ′′

+
√
FcL

6r(r4 + κ2r4
c )

2{3r8 − 3(1 + κ2)r2
c r

6 + 2κ2r4
c r

4 − 7κ2(1 + κ2)r6
c r

2 − r8
cκ

4}γ′

− 4
√
FcL

6(r4 + κ2r4
c )

3{3r4 − 3(1 + κ2)r2
c r

2 − κ2r4
c}γ

+ 2FcL
6κ
√

1 + κ2 r3
c r(r

4 + κ2r4
c )

2{r4 − 2(1 + κ2)r2
c r

2 + κ2r4
c}β′

− 8L6κ3
√

1 + κ2 r7
c r

3(r4 + κ2r4
c )

2h′vv

+ 4FcL
6κ
√

1 + κ2 r3
c (r

4 + κ2r4
c )

2{r4 + 2(1 + κ2)r2
c r

2 + κ2r4
c}β

+ 4F 2
c L

2z4
cκ
√

1 + κ2 r3
c r

3(r4 + κ2r4
c )

2{3r4 − 2(1 + κ2)r2
c r

2 + κ2r4
c}h′zz + S(r) = 0,

(5.15)

− FcL6r(r2 − r2
c )(r

2 − κ2r2
c )(3r

4 − κ2r4
c )(r

4 + κ2r4
c )

2β′′

+ FcL
6(r4 + κ2r4

c )
2{3r8 − 9(1 + κ2)r2

c r
6 + 6κ2r4

c r
4 − 5κ2(1 + κ2)r6

c r
2 + 3r8

cκ
4}β′

+ 12FcL
6r(r4 + κ2r4

c )
3{2r2 + (1 + κ2)r2

c}β

− 8
√
FcL

6κ
√

1 + κ2 r3
c r

2(3r4 + κ2r4
c )(r

4 + κ2r4
c )

2γ′

− 8L6κ2r4
c r

2(3r4 + κ2r4
c )(r

4 + κ2r4
c )

2h′vv

+ 16
√
FcL

6κ
√

1 + κ2 r3
c r(3r

4 + κ2r4
c )(r

4 + κ2r4
c )

2γ

+ 8F 2
c L

2κ2z4
c r

4
c r

2(r4 + κ2r4
c )

2{3r4 − 2(1 + κ2)r2
c r

2 + κ2r4
c}h′zz +R(r) = 0, (5.16)
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− L6r2(r2 − r2
c )(r

2 − κ2r2
c )(3r

4 − κ2r4
c )(r

4 + κ2r4
c )

2h′′vv

− L6r(r4 + κ2r4
c )

2{9r8 − 9(1 + κ2)r2
c r

6 − 6κ2r4
c r

4 + 7κ2(1 + κ2)r6
c r

2 + κ4r8
c}h′vv

− 2FcL
6(1 + κ2)r2

c r
3(r4 + κ2r4

c )
2{(1 + κ2)r2

c − 2r2}β′

+ 4
√
FcL

6κ
√

1 + κ2r3
c r(r

4 + κ2r4
c )

2{3r4 − (1 + κ2)r2
c r

2 − κ2r4
c}(rγ′ − 2γ)

− 4FcL
6(1 + κ2)r2

c (r
4 + κ2r4

c )
2{4r4 − (1 + κ2)r2

c r
2 − 2κ2r4

c}β

+ 2F 2
c L

2(1 + κ2)r2
cz

4
c r

3(r4 + κ2r4
c )

2{3r4 − 2(1 + κ2)r2
c r

2 + κ2r4
c}h′zz +Q(r) = 0,

(5.17)

where S(r), R(r), and Q(r) are functions of r given by Eqs. (5.50), (5.51), and (5.52)

in the Appendix. From the other constraint equations, we obtain the coefficient r2 as

r2 =
rc(4F2Fc − F 2

1 )

8F 2
c

. (5.18)

Combining Eqs. (5.9) and (5.18), we obtain

r+(z) = r0

√
F (z), (5.19)

up to second order in the derivative expansion, where r0 is the radius of r+ at the AdS

boundary, z →∞. Just as in the non-rotating five-dimensional black string case [186],

the droplet horizon shrinks to zero at the horizon of the planar Schwarzschild-AdS

spacetime, ending on the horizon.

These three equations (5.15), (5.16), and (5.17) have a singular source term ∼

(r−rcκ)−1 arising from hzz in (5.13). This implies that γ, β, and hvv can be expanded
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near the inner (Cauchy) horizon as

γ(r) ' ln(r − κ rc){a0 + a1(r − κ rc) + a2(r − κ rc)2 + · · · }+ d0 + d1(r − κ rc) + · · · ,

β(r) ' ln(r − κ rc){b0 + b1(r − κ rc) + b2(r − κ rc)2 + · · · }+ e0 + e1(r − κ rc) + · · · ,

hvv(r) ' ln(r − κ rc){c0 + c1(r − κ rc) + c2(r − κ rc)2 + · · · }+ f0 + f1(r − κ rc) + · · · .

(5.20)

Note that we have assumed that the black droplet solution is non-extremal, i. e. ,

κ < 1, in the expansion. Substituting these into Eqs. (5.15), (5.16), and (5.17),

we obtain all the coefficients provided that the coefficients c0, d0, e0, f0, e1, and f1

are given. This implies that six independent mode solutions exist for the second

order differential equations (5.15), (5.16), and (5.17). For the discussions in the next

section, it suffices to obtain the relation between the leading order coefficients a0, b0,

and c0. The remaining subleading coefficients are determined by numerics in Sec. 5.4.

The leading coefficients a0 and b0 are determined by c0 as

a0 = −rc κ
√

1 + κ2{2L6zc c0 + 15r2
c (1 + κ2)µ5Fc}

2L6zc(1− κ2)
√
Fc

,

b0 =
r2
c κ

2{2L6zc (1 + 3κ2)c0 + 15r2
c (3 + 4κ2 + κ4)µ5Fc}

2L6(1− κ2)zc Fc
. (5.21)

By Eq. (5.14), we also find the asymptotic behavior of hvr near the Cauchy horizon:

hvr '
rc κ

2{2L6zc κ
2c0 + 15(1 + κ2)r2

c µ
5Fc}

4L6zc(1− κ2)
√

1 + κ2
√
Fc(r − κrc)

. (5.22)
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5.2.3 The non-rotating case

In the non-rotating case (κ = 0), Eqs. (5.15) and (5.16) respectively for γ and β

are decoupled from the other variables and we can set γ = β = 0. Furthermore, we

obtain analytic expressions for hvv and hvr from Eqs. (5.13), (5.17), and (5.14):

hzz =
15r2

c µ
5 ln r

L2Fc z5
c

,

hvv = C2 −
C1

2r2
− 5µ5Fc r

2
c

L6zc r2
{r2

c − (r2 − 2r2
c ) ln r},

hvr =
−4C2L

6z6
c + 5r2

c µ
5(4z5

c + µ5)− 20r2
c µ

5z5
c Fc ln r

8L6z6
c

√
Fc

, (5.23)

where C1 and C2 are constants that correspond to a global shift in the temperature

as explained in [186], so we must set it to zero.

5.3 The holographic stress-energy tensor

In this section, we calculate the holographic stress-energy tensor using the pre-

scription of [190], up to the second order in ε. In the six-dimensional bulk theory, the

regularized action becomes

S =
1

16πG6

∫
M
dx6
√
−g
(
R +

30

L2

)
+

1

8πG6

∫
∂M

dx5
√
−qK

+
1

8πG6

∫
∂M

dx5
√
−q
[

4

L
+
L

6
R+

L3

18

(
RabRab − 5

16
R2

)
+ · · ·

]
, (5.24)

where R is the Ricci scalar of the induced metric qab = gab−nanb at z = zc associated

with the unit normal outward pointing vector na, and K is the trace of the extrinsic

curvature defined below. Note that the first three terms in the second line are sufficient
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to cancel the divergences. Furthermore, the last two terms are at O(ε4), since the

induced metric is the vacuum Myers-Perry black hole [189] at zeroth order, i. e. ,

Rab = R = O(ε2). Thus, the holographic stress-energy tensor Tab, given by Tab =

(2/
√
−q) δS/δqab, becomes

Tab =
L

8πG6

[
1

3
Eab −

ε

L

(
Kab − qabK

)
− 4ε2

L2
qab

]
+O(ε4), (5.25)

where Eab is the Einstein tensor of the induced metric qab, and Kab is the extrinsic

curvature defined by

Kab = qa
c∇cnb. (5.26)

If the metric (5.3) is decomposed into

ds2 = (N2 +NaN
a)dz2 + 2Nadx

adz + qabdx
adxb, (5.27)

Kab is rewritten by

Kab =
1

2N
(∂zqab −DaNb −DbNa), (5.28)

where Da is the covariant derivative with respect to the induced metric qab, and the

lapse function N and the shift vector Na are given by

Nv =
5αrµ5

2L2z4
c

+O(z−9
c ), Nr = −5αrµ5

2L2z4
c

+O(z−9
c ), the other components = 0,

N =
L

zc
√
Fc

+O(ε2). (5.29)
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Note that Na = O(ε), as it includes the derivative with respect to z from Eq. (5.2).

Thus, if we expand qab, Kab, and Eab as

qab = q(0)
ab + ε2q(2)

ab + · · · ,

Kab = εK
(1)
ab + ε3K

(3)
ab + · · · ,

Eab = ε2E
(2)
ab + · · · , (5.30)

K
(1)
ab is determined by q(0)

ab as

K
(1)
ab =

zc
√
Fc

2L
(∂zq

(0)
ab − D̄aNb − D̄bNa), (5.31)

where D̄a denotes the covariant derivative with respect to q(0)
ab. Then, Eq. (5.25)

reduces to

Tab =
ε2L

8πG6

[
1

3
E

(2)
ab −

1

L

(
K

(1)
ab − q

(0)
ab K

(1)
)
− 4

L2
q

(0)
ab

]
+O(ε4). (5.32)

This implies that the second order perturbation h
(2)
µν contributes to the stress-energy

tensor only through the Einstein tensor, up to O(ε2).

First, we investigate the stress-energy tensor in the static case (κ = 0). Substitu-
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tion of Eqs. (5.23) into Eq. (5.32) yields

Tvv = ε2 · C · 4r6 − 9r2
c r

4 + 5r6
c

r6
,

Tvr = ε2 · C · −4r4 + 5r2
c r

2 + 5r4
c

r4
,

Trr = ε2 · C · 5(r2 − r2
c )

r2
,

Tψψ =
2

cos θ
Tψφ = ε2 · C · r

4 − 5r4
c

r2
,

Tθθ = Tφφ = ε2 · C · r
4 − 5r4

c

4r2
,

(5.33)

where C = µ5/16πG6L
3z3
c . It is easily checked that the conservation law D̄aT

ab = 0 is

satisfied. Near the outer horizon r = rc, negative energy density appears, i.e., Tvv <

0 (r > rc). This implies that due to the Hawking effect, pair creation of particles

occurs near the horizon, and the negative energy particles are absorbed into the

horizon. Nevertheless, there is no flux at null infinity. This is verified by checking that

the (t, r)-component of the stress-energy tensor in the original coordinate system (t, r)

becomes zero at null infinity. This is due to strong coupling effects of the dual CFT in

the boundary theory, just as in the five-dimensional case [184]. It is also immediately

checked that the trace of our stress-energy tensor vanishes, in agreement with the

general argument that odd dimensional CFTs have a vanishing trace anomaly.

Next, we investigate the stress-energy tensor near the inner (Cauchy) horizon in

the rotating case. Note that Kab is regular near the Cauchy horizon r = κrc at O(ε)

because q(0)
ab and the shift vector Na are regular there. Thus, the dominant term of

Tab in Eq. (5.25) near the Cauchy horizon comes from the Einstein tensor Eab. As

217



Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole
Chapter 5

shown in Eqs. (5.20), (5.21) and (5.22), the second order metric hab diverges near the

Cauchy horizon. So, the relevant (i.e., (r, r)-) component of the Einstein tensor Eab

can be expanded as

Err =
ε2

z3
c

[
−15r2

c (1 + κ2)µ5

4L4(r − rcκ)2
+

C ′

r − κrc
+ · · ·

]
+O(ε4), (5.34)

where C ′ is a constant. As for the other components, the leading term in order O(ε2)

behave as 1/(r − κrc), and therefore are irrelevant to the rest of our arguments.

The most striking feature is that Err in Eq. (5.34) negatively diverges at the

Cauchy horizon. This implies that the null energy condition is strongly violated

along the null direction, ∂r near the Cauchy horizon:

Trr ' −
5ε2r2

c (1 + κ2)µ5

32πG6L3z3
c (r − rcκ)2

→ −∞. (5.35)

Interestingly, this behavior is very similar to the case of massless scalar field in two-

dimensions [182, 183]; in both cases, the stress-energy tensor negatively diverges as

(r − κrc)−2.

5.4 Numerical results

When we add rotation to our droplets, we must solve the second order equations

numerically. To account for the logarithmic divergences in β, γ and hvv, as well as
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-1.2
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0.0

r
κ rc

h-μν

Figure 5.1: Here we plot the finite pieces of hµν(r) at O(ε2). The curves corre-
spond to β−(r) (dotted), γ−(r) (dashed, black), h−vv(r) (dot-dashed), and h−vr(r)
(thick) for rc = .1, µ = 1, κ = .2, zc = (4µ)1/5. Note that γ− and h−vr nearly
overlap, and β− is much smaller than the other functions.

the pole in hvr, we make the following ansatz,

β(r) = βL(r) ln(r − κrc) + β1(r)

γ(r) = γL(r) ln(r − κrc) + γ1(r)

hvv(r) = hvvL(r) ln(r − κrc) + hvv1(r)

hvr(r) = hvrL(r) ln(r − κrc) +
r

r − κrc
hvr1(r). (5.36)

In the last equation, the coefficient of hvr1(r) is required to have hvv1(r) vanish as

r goes to infinity, matching the non-rotating case.
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We insert these ansatz into (5.14) and find eight equations to solve numerically–

four from the coefficients of ln(r − κrc) involving only βL, γL, hvvL and hvrL and

four remaining equations involving these variables as well as β1, γ1, hvv1, hvr1. It is

numerically convenient to also set L = 1 and work in terms of a variable R ≡ 1/r in

order to impose boundary conditions at spatial infinity.

As we did in the analytic case, we can perform a series expansion in powers of

R− (κrc)
−1 near the Cauchy horizon to find appropriate boundary conditions on our

new metric functions,

X(R) =
∞∑
i=0

xi(R−
1

κrc
)i (5.37)

where X refers collectively to {βL, γL, hvvL, hvrL, β1, γ1, hvv1, hvr1}. This expansion

reflects the fact that the divergences in β, γ, hvv come only from a log term sourced

by hzz and there is an extra divergence of (r−κrc)−1 in hvr. Inserting this expansion

into our eight differential equations and solving order by order in (R − 1
κrc

) leads to

the following boundary conditions,

hvrL

(
R =

1

κrc

)
= − 1

4 (κ2 − 1)2 (κ2 + 1)3/2√Fczc

× κ

(
15
(
κ2 + 1

) (
2κ6 + 7κ4 + 12κ2 + 3

)
µ5Fcr

2
c

+ 2κ2
(
5κ4 + 14κ2 + 5

)
zchvvL

(
1

κrc

))

h′vvL

(
1

κrc

)
= −

κ (κ2 + 1) rc

(
15 (κ2 + 1)µ5Fcr

2
c + 2zchvvL

(
1
κrc

))
(κ2 − 1) zc

(5.38)

as well as the previously derived conditions, Eq. (5.21). Furthermore, the expansion
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leads to the following constraint at the horizon,

0 =

16κ
(
κ2 − 1

)
r2
czc

(
2
(
κ2 + 1

)√
Fcγ1

(
1

κrc

)
+
√
κ2 + 1h′vv1

(
1

κrc

))
+ 5κ2µ5r5

c

(
−20κ

(
κ2 − 1

) (
κ2 − 2

√
κ2 + 1κ− 1

)
+ 3

(
4κ5 − 8κ3 + 93

√
κ2 + 1κ2 + 33

√
κ2 + 1 + 19

√
κ2 + 1κ6 + 63

√
κ2 + 1κ4 + 4κ

)
Fc

)
− 4

(√
1

κ2
+ 1− κ3

√
κ2 + 1

)

− 8
√
Fcrczc

(
3κ

(√
1

κ2
+ 1− κ3

√
κ2 + 1

)√
Fcβ1

(
1

κrc

)
− 2

(
κ4 − 1

)
γ′1

(
1

κrc

))

Fczcβ
′
1

(
1

κrc

)
+ 2κ2

√
κ2 + 1

(
57κ4 + 48κ2 − 1

)
r3
czchvvL

(
1

κrc

)
. (5.39)

We can likewise perform a series expansion at spatial infinity in powers of R (recall

R = 0 corresponds to spatial infinity) to find appropriate boundary conditions. This

leads to

βL (0) = γL(0) = 0, hvr1(0) =
−5 (κ2 + 1)µ5 (Fc − 5) r2

c − 4zchvv1(0)

8
√
Fczc

,

hvvL(0) =
5 (κ2 + 1)µ5Fcr

2
c

zc
, hvrL(0) = −5 (κ2 + 1)µ5

√
Fcr

2
c

2zc
,

β1(0) =
25κ2µ10r4

c

2Fcz6
c

, γ1(0) = −25κ
√
κ2 + 1µ10r3

c

2
√
Fcz6

c

.

(5.40)

Note that these boundary conditions correspond to imposing a single constraint on

the free parameters c0, d0, f0, e1 and f1 in Eq. (5.20).

Finally, there are a few boundary conditions which me must impose by hand.
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Figure 5.2: Here we plot the components of the holographic stress-energy tensor
for the same parameters as figure 5.1 with θ = π/2 and zc = (108µ)1/5. In the top
plot, we show Tvr (dashed), Trr (dot-dashed), and Tvv (thick). In the bottom, we
show Tψr (dotted), Tψv (dashed), Tψψ (dot-dashed), and Tθθ (thick). For each of
these, we have scaled our solution by C−1 defined below Eq. (5.33). Notably, each
of these components is regular at the outer horizon (labelled by the vertical line
at r/rc = 1).

222



Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole
Chapter 5

These are analogous to the constants C1 and C2 in Eq. (5.23). To smoothly match

onto the non-rotating case, we choose β1( 1
κrc

) = γ1( 1
κrc

) = 0 and hvv1(0) = 0. This

choice is equivalent to imposing d0 = e0 = f0 = 0.

These boundary conditions are not sufficient to ensure smooth solutions because

the point R = 31/4/(rc
√
κ) is a (regular) singular point of our differential equations.

To accommodate this singularity, we used two numerical regions, 0 ≤ R ≤ 31/4

rc
√
κ

and

31/4

rc
√
κ
< R < 1

κrc
(this is only necessary for κ <

√
3). We impose continuity of our

functions and match the first derivatives of our functions at this point. Regularity

of the differential equation, or similarly smoothness of hvrL and hvr1 at our singu-

lar point, amounts to two constraints. In total, we start with four free constants,

β1( 1
κrc

), γ1( 1
κrc

), hvvL( 1
κrc

), and hvv1(0) and fix three by hand to smoothly match onto

the non-rotating solution. The final constant is fixed by consistency of the two con-

straints coming from the smoothness of hvr1, hvrL.

To find these numerical solutions, we use the Newton-Raphson method with pseu-

dospectral collocation over a Chebyshev grid in the two numerical domains. In figure

5.1, we have plotted our solutions for rc = .1, µ = 1, κ = .2, zc = (4µ)1/5 (reexpressed

in terms of the original radial coordinate r). Importantly, we have included only the

finite pieces of the solutions, subtracting off the divergent pieces. For example, using

the notation of (5.20),

β−(r) ≡ β(r)− b0 ln(r − κrc), γ− ≡ γ−(r)− a0 ln(r − κrc),

h−vv(r) ≡ hvv(r)− c0 ln(r − κrc) (5.41)

and similarly for h−vr(r).
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We have also plotted the non-vanishing components of the stress-energy tensor

for this solution in figure 5.2. We have only included the part of the stress-energy

tensor near r = rc because the behavior of the stress-energy tensor near the Cauchy

horizon can be derived from (5.21) as was done for Trr in (5.35). To verify that we

obtained the correct holographic stress-energy tensor, we varied zc between (104µ)1/5

and (108µ)1/5 and checked that C−1(Tab) did not change.

As pointed out for the non-rotating case, an interesting quantity is the energy

density near the outer horizon. The local energy density may be found by diagonal-

izing the stress-energy tensor (T ab), as done in [166]. The stress-energy tensor in our

spacetime is diagonalizable near the horizon and far from the horizon, but there is an

intermediate region

rc

√
1− κ+ κ2 + (1− κ)

√
1 + κ2 < r < rc

√
1 + κ+ κ2 + (1 + κ)

√
1 + κ2 (5.42)

where the stress-energy tensor diagonalization breaks down. This is likely a result of

our expansion, as in a fully non-perturbative solution like [166], no such region was

seen, though it is notable that our solution contains a finite temperature, rather than

extremal, bulk horizon. Following [166], In the region where this decomposition is

well-defined, we may write

T abt
b = −E(r)ta (5.43)

where ta is the (unique) normalized timelike eigenvector and E(r) can be interpreted

as the energy density observed by the timelike observer with velocity ta. At leading
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Figure 5.3: (Left) Here we plot E(r) near the outer horizon for
κ = .1, .2, .3, .4, .5, .6, .7, .8, .9 with rc = .1, µ = 1, zc = (108µ)1/5. The
color of the curves gets lighter as κ increases. As before, we have scaled the energy
density by C−1 and set θ = π/2. The upper left of the figure corresponds to the
near horizon region. The curves are discontinuous because there is a region set
by κ outside the event horizon (Eq. 5.42), where the stress-energy tensor is not
diagonalizable. (Right) Here we plot the rotation Ω̃(r) for the same values of κ.
At the outer horizon, the rotation matches the value Ω(rc, zc) showing that t is
the generator for the outer horizon. As before, discontinuities arise because the
stress-energy tensor is not diagonalizable.
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order in r and zc,

t =
1

zc

[(
1− 2

(1 + κ2)r2
c

r2
± κ2r4

c

r4

)
∂

∂v
− κ
√

1 + κ2r3
c

r4

∂

∂ψ

]
+O

(
1

r5
,
µ5

z5
c

)
. (5.44)

The plus sign in this equation corresponds to the near horizon region, while the minus

sign corresponds to the region far from the horizon.

The energy density obtained from the decomposition is plotted in figure 5.3 for

different values of κ. Just as in the non-rotating case, the region of negative energy

density extends all the way from the horizon to spatial infinity. Interestingly, at

spatial infinity, the energy density approaches a constant,

E∞ ≡ lim
r→∞
E(r) = ε2 · 4C

z2
c

+O(r−2). (5.45)

This should not be surprising because far from the boundary black hole, the CFT

should be in a thermal state, with an energy density corresponding to the temperature

of the bulk black hole. In fact, this value matches the energy density for a CFT dual

to a 6 dimensional planar-AdS Schwarzschild black brane. Furthermore, this value is

independent of κ as it should be, since our boundary black holes are asymptotically

flat and a similar result was seen for κ = 0 in [184]. In figure 5.3, we have subtracted

this asymptotic value from the energy density to emphasize that a local observer

near the black hole measures an energy density less than the thermal energy density

because of quantum effects in the curved background spacetime.

Interestingly, our energy density approaches E∞ as r−2, rather than the r−7 decay

observed in [166]. This less steep fall-off could be a consequence of our derivative

expansion method. However, it is also notable that our droplet solution ends on
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a finite temperature black brane horizon, whereas in [166], the bulk horizon was

extremal (the Poincaré horizon) and the black droplet was disconnected. Similar

fall-off discrepancies were seen in numerical constructions of five dimensional static

droplets, where the energy density decayed as r−5 with an extremal bulk horizon [70],

but as r−1 for a finite temperature bulk horizon [168]. Importantly, as in the analytic

case, for an observer with tangent vector ta, for all choices of κ, the energy density

diverges negatively as (r − κrc)−2 near the Cauchy horizon.

We also can use the stress-energy tensor eigenvalue decomposition to define rota-

tion of the dual plasma. Again, following [166]), we write the timelike eigenvector of

the stress-energy tensor as

T =
∂

∂v
+ Ω̃(r, z)

∂

∂ψ
(5.46)

and define Ω̃ to be the rotation. At the outer horizon, this becomes (at zeroth order

in ε)

T+ =
∂

∂v
+
√
F (zc)Ω(rc, zc)

∂

∂ψ
(5.47)

which, on the conformal boundary, matches the future generator of the horizon at

r = rc. Note that the rotation decays as r−4, rather than the r−2 fall-off seen in [166].

The faster fall-off could again be a consequence of our perturbative expansion, though

more likely a result of the droplet ending on a finite temperature bulk horizon.

To better understand the energy density in regions of the spacetime where T ab is

not diagonalizable, we instead define a new vector, timelike everywhere outside the
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Figure 5.4: The energy density seen by an observer with the tangent vector in
Eq. (5.48). Here, we choose κ = .02, .05, .1, .15, .2, .25, .3, .35, .4, .45, .5, .55
and rc = .1, µ = 1, zc = 10µ1/5. The color of the curves gets lighter as κ increases.
For all κ, the energy density is negative near the outer horizon.
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outer horizon,

K =
∂

∂v
+
√
F (z)Ω(r, z)

∂

∂ψ
(5.48)

which also approaches T+ at the outer horizon and goes to (∂/∂v) near spatial infinity.

An observer with this tangent vector would see the energy density plotted in figure

5.4, which is regular everywhere and still has the important feature of being negative

near the event horizon. Furthermore, the localization of negative energy density near

the event horizon is reminiscent of [2] and illuminates the “jammed” nature of the

dual CFT. Here too, because K → ∂/∂v near spatial infinity, the energy density

also approaches E∞, indicative of the CFT in a thermal phase. This tangent vector,

however, becomes spacelike inside the outer event horizon, and so is not useful to

illustrate strong cosmic censorship. In this region, ta is well-defined and diverges on

the Cauchy horizon.

We emphasize that while the stress-energy tensor diverges on the Cauchy horizon,

it is finite at r = rc so that it is regular on the past and future event horizons (shown

in figure 5.2). Finally, one can check that the trace of stress-energy tensor vanishes

at leading order, as expected for a CFT in odd spacetime dimensions, just as in the

non-rotating case. In figure 5.5, we have plotted the diagonal components of the

holographic stress-energy tensor, C−1(T aa) (no sum) as well as the trace. From this

figure, it is clear that the sum vanishes as we approach the conformal boundary, (i.e.

zc →∞). One can also check explicitly from the definition of the stress-energy tensor

(5.32) and the equations of motion for hµν (5.14–5.17), that the trace vanishes as

O ((µ/zc)
10), exactly following the non-rotating case.
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Figure 5.5: The left plot displays the diagonal components of the holographic
stress-energy tensor, T aa, for rc = .1, k = .2, µ = 1, zc = (108µ)1/5. The curves

correspond to T θθ = T φφ (dotted), T vv (dashed), T rr (dot-dashed), Tψψ (thick).
Again, the vertical grey line indicates the outer event horizon. The right plot
displays the sum of these components. Notably, the trace of the stress-energy
tensor vanishes as O

(
(µ/zc)

10
)
.
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To summarize our numerical results, for generic rotation parameter, κ, of our

boundary black hole, the CFT plasma exhibits the following features. The stress-

energy tensor is traceless to leading order in µ/zc and regular on the outer event

horizon. For a timelike observer, there is a region near the event horizon which

has negative energy density. As a timelike observer approaches spatial infinity, the

energy density seen by such an observer approaches that of the thermal CFT dual to a

six dimensional planar AdS-Schwarzschild black brane. Depending on the observer’s

velocity, the energy density may remain less than this asymptotic value for all of

space, as for the observer with tangent vector ta, or there may be a region with

positive energy density, as in the observer with tangent vector K. In all cases, this

negative energy density diverges on the Cauchy horizon, as shown in Eq. (5.35), in

favor of strong cosmic censorship.

5.5 Conclusion and discussions

In this paper we have analytically constructed a rotating black droplet solution

embedded in the planar Schwarzschild-AdS black brane spacetime by applying the

generalized derivative expansion method, which was originally developed for the static

case [186]. Our method is valid when the horizon size of the black droplet is much

smaller than the horizon size of the planar Schwarzschild-AdS black brane (and the

curvature radius of the background AdS space). In this case, the derivative of the

metric along the bulk radial direction, z, is much smaller than the one along the

droplet radial direction, r (parallel to the planar horizon). Then, order by order in

the derivative expansion, we have been able to solve the Einstein equations. The
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horizon radius of the thin black droplet solution gradually shrinks toward the planar

horizon and caps off smoothly just at the horizon. Since the temperature of the

black droplet solution is much higher than the temperature of the background planar

horizon, the dual boundary state can be interpreted as the Unruh state [184]. For

our black droplet solution, we have–analytically and holographically–computed the

null-null components of the stress-energy tensor for a strongly coupled CFT in the

boundary five-dimensional rotating Myers-Perry black hole spacetime. First, we have

found that the negative energy appears just outside the event horizon, which can

be interpreted as a consequence of the particle production by the Hawking effect.

We show, however, there is no energy flux at infinity, as in the static case studied

in [184], and therefore our boundary CFT can be viewed as a jammed state. We

have also studied the behavior of the holographic stress-energy tensor near the inner

Cauchy horizon. The null-null component of the stress-energy tensor corresponds to

the energy density seen by an observer whose world line is transverse to the Cauchy

horizon. We have found that the null-null component negatively diverges at the

Cauchy horizon, suggesting that due to quantum effects, the Cauchy horizon would

become singular, in favor of strong cosmic censorship.

Although we have not analyzed the classical instability of our droplet solution in

the present paper, we expect our solution to show a classical instability or divergence

of curvature scalars inside the event horizon. In fact, it was shown in [191] that in

general, adding stationary but spatially inhomogeneous linear perturbations makes

inhomogeneous black branes unstable, rendering the Kretschmann scalar with respect

to the perturbed geometry divergent on the Cauchy horizon. Viewing our black

droplet solution as a type of an inhomogeneous black string in the bulk and applying
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the general argument of [191], our droplet solution should also exhibit the divergence

of curvature scalars at the Cauchy horizon even inside the bulk z < zc. In the spirit

of the bulk-boundary duality, our result of the quantum divergence of the stress-

energy tensor at the Cauchy horizon in the boundary geometry may be viewed as a

holographic realization of the classical divergence of curvatures at the Cauchy horizon

in the bulk geometry.
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5.7 Appendix: P(r), S(r), R(r), and Q(r)

P(r), S(r), R(r), and Q(r) appearing in (5.14), (5.15), (5.16), and (5.17) are

below.

P(r) = −2F 2
c z
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c (r4 + κ2r4
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, (5.49)
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}
r8

]
.

(5.52)
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Chapter 6

Simple holographic insulator

6.1 Introduction

Gauge/gravity duality provides a new tool to study strongly correlated systems

[192, 193, 194]. In particular, it provides a novel way to study states of matter at

zero temperature. Indeed holographic models of superconductors [195], as well as

conductors and insulators [196, 197, 198, 199, 200, 201] have all been found, and

some have properties similar to what is seen in exotic materials [202, 203].

Previous discussions of holographic insulators fall into three classes. One is based

on an asymptotically anti-de Sitter (AdS) solution called the AdS soliton. This solu-

tion has a gap for all excitations in the bulk and hence is dual to a gapped system

[204, 205]. The second class starts with a system with finite charge density. In this

case, translation invariance leads to momentum conservation which implies an infinite

DC conductivity, σDC . (Charge carriers have no way to dissipate their momentum.)

If one breaks translation invariance, either explicitly or spontaneously, the DC con-
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ductivity is finite. To obtain an insulator, one usually adds a perturbation which

becomes large in the IR, leading to a bulk geometry which is singular in the interior.

Since T = 0, this is not a black hole singularity, but rather a timelike or null naked

singularity. Finally, the third class of holographic insulators based on probe D-branes

which produce gapped and gapless insulators, see e.g. [206, 207]. These probe models

also typically require singular bulk solutions to obtain vanishing conductivity, as in

[207].

In this note we show how to obtain a holographic description of an insulator

using a nonsingular bulk geometry. Like the AdS soliton, we work at zero net charge

density, so we can keep translation invariance and have finite σDC
1. However, unlike

the approach based on the AdS soliton, at low temperature, the entropy scales like

a power of T showing the system is not gapped. The IR geometry is simply another

AdS spacetime, so our solution describes a renormalization group flow from one CFT

to another. We induce this flow by adding a relevant deformation to the original

CFT. We will see that by tuning the interaction between a scalar field and gauge

field, we can ensure that σDC = 0.

In a little more detail, we construct our holographic insulator by starting with

gravity coupled to a scalar field ψ with a “Mexican hat” type potential V (ψ). By

modifying the boundary conditions on the scalar in a way corresponding to a relevant

double trace deformation, we induce the scalar to turn on at low temperature. The

zero temperature solution is then a standard domain wall interpolating between the

AdS corresponding to ψ = 0 at infinity and the AdS corresponding to the minimum

1With an equal number of positive and negative charge carriers, the charge current and mo-
mentum decouple since an applied electric field induces a current, but the net momentum stays
zero.
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of the potential at ψ = ψc in the interior (see, e.g., [208]). Finally, we add a Maxwell

term to the action with a coefficient G(ψ). This function is chosen to vanish when

ψ = ψc. Since it has been shown that the DC conductivity is simply given by the

value of G(ψ) on the horizon [209], it follows immediately that σDC vanishes at zero

temperature and we have an insulator.

We will show that both the DC conductivity at low temperature and the optical

conductivity at zero temperature satisfy power laws:

Re σDC ∼ T 2∆ψ lim
T→0

Re σ ∼ ω2∆ψ (6.1)

where the exponent ∆ψ is simply related to the dimension of the operator dual to

our scalar in the IR CFT. These results are similar to the behavior found in more

complicated constructions of holographic insulators starting with a nonzero charge

density [197, 198]. However in those cases the power law is somewhat surprising

given the singular nature of the IR geometry, and is the result of an approximate

scaling symmetry in an intermediate regime. In contrast, the power law in our case

is simply the result of the fact that our low energy theory has no scale.

The organization of this paper is as follows. We will start by introducing our

model and discussing how imposing a modified boundary condition for our scalar

field can induce an instability which turns on the scalar field. (This corresponds to

adding a relevant double-trace deformation of the CFT.) We will then discuss how

to compute the conductivity and present both numerical and analytic arguments for

the power laws. Finally we show that this same model with a slightly different G(ψ)

can also describe a conductor with a standard Drude peak.
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6.2 The Model

We will study a 3 + 1 dimensional gravitational theory in anti-de Sitter spacetime

with a real scalar field ψ and a U(1) gauge field, Aµ. These are dual to a 2 + 1

dimensional CFT with a scalar operator O and a conserved current Jµ, respectively.

(The model is easily extended to other dimensions.) The action for these fields is

S =

∫
d4x
√
−g
[
R− 1

4
G(ψ)F 2 − (∇ψ)2 − V (ψ)

]
, (6.2)

where

G(ψ) = (1 + gψ2)2,

V (ψ) = − 6

L2
+

1

L2
sinh2(ψ/

√
2)
[
cosh(

√
2ψ)− 5

]
. (6.3)

The particular form of V (ψ) is not important. All we need is that it has a local

maximum at ψ = 0 (with m2 within a suitable range discussed below), and a global

minimum at some nonzero value ψc
2. The particular choice we have made comes from

a consistent supergravity truncation [210] and is shown in Fig. 6.1. The particular

form of G(ψ) is also not crucial. What we need to model an insulator is a positive

function that vanishes at ψc. This will hold with the form of G that we have chosen if

we set g = −1/ψ2
c . We will see later that this same theory will describe a conductor

with standard Drude peak, if we take g > 0.

To obtain the background solution, we set Fµν = 0 and make an ansatz for an

2For stability of the gravity solution, we also require that V can be derived from a certain
superpotential, as we will discuss shortly.
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Figure 6.1: A plot of our potential. The minimum is at ψc =
√

2 ln(1 +
√

2) with
minimum value V (ψc) = −8.

asymptotically Poincaré AdS4 metric,

ds2 = −f(r)dt2 +
dr2

f(r)
+ h(r)2d~x 2, (6.4)

such that as r → ∞, f(r) → r2/L2 and h(r) → r/L. The equations of motion then

take the form:
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ψ′′(r) +

(
f ′(r)

f(r)
+ 2

h′(r)

h(r)

)
ψ′(r)− V ′(ψ)

2f(r)
= 0, (6.5a)

h′′(r) +
ψ′(r)2

2
h(r) = 0, (6.5b)

f ′′(r) + 2
f ′(r)h′(r)

h(r)
+ V (ψ(r)) = 0, (6.5c)

h′(r)2

h(r)
+
f ′(r)h′(r)

f(r)
− h(r)(ψ′(r))2

2
+
h(r)V (ψ)

2f(r)
= 0. (6.5d)

Since we want to consider the low temperature behavior of the conductivity, we are

interested in solutions with a small black hole. We will find such solutions numerically

by imposing boundary conditions of regularity on the horizon, the above asymptotic

conditions on the metric, and a boundary condition for the scalar field which we

discuss next.

6.2.1 Double-trace boundary conditions

We can deform our boundary CFT by adding the following double-trace operator

to the boundary action,

S → S − κ
∫
d3x O2, (6.6)

where O is the operator dual to ψ. This deformation is relevant if the dimension of

O is less than 3/2. If κ > 0, then this term increases the energy and makes it harder

for O to condense. However, if κ < 0, we have the opposite behavior and there is

some critical temperature Tc below which 〈O〉 6= 0 [211]. One might have thought

that taking κ < 0 would destabilize the theory and cause it not to have a stable

ground state. However this is not the case. It has been shown that the energy of the
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dual gravity solution is still bounded from below, provided V can be derived from a

suitable superpotential [212] (which is true for a large class of potentials including

the one we have chosen).

Recall that the dimension of the operator O is related to the mass of the scalar

field in the bulk:

∆± = 3/2±
√

9/4 +m2L2 (6.7)

and

lim
r→∞

ψ(r) =
α

r∆−
+

β

r∆+
+ ... (6.8)

As long as

− 9

4L2
< m2 < − 5

4L2
, (6.9)

both of these modes are normalizable. In order for the operator in (6.6) to be a

relevant deformation, we must take O to have dimension ∆−.

Our double trace deformation induces the following boundary condition on ψ

[213, 214]:

β = κα. (6.10)

Note that expanding our potential in (6.3) to second order in ψ gives a mass m2 =

−2/L2, within the range required by these boundary conditions. Note that this also

tells us ∆− = 1,∆+ = 2, and

〈O〉 = α. (6.11)

To understand precisely how introducing a double trace deformation with κ < 0

can cause the Schwarzschild-AdS solution to become unstable at low temperature, we

refer the reader to [211]. We will just summarize an important point from that work
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motivating the existence of black hole solutions with nonzero scalar field below some

critical temperature Tc.

At finite temperature with no scalar field, the spacetime is described by planar

AdS-Schwarzschild in 3 + 1 dimensions,3

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2d~x2,

where f(r) = r2

(
1− r3

0

r3

)
. (6.12)

with a temperature, T = 3r0/4π. We would like to find a condition for when

the scalar field can be non-zero. At small values of ψ our potential is approximately

V (ψ) ≈ −6− 2ψ2 +O(ψ4). Neglecting the higher order terms, we can exactly solve

the scalar wave equation in the AdS-Schwarzschild background:

ψ(r) = c1

(r0

r

)
2F1

[
1

3
,
1

3
,
2

3
,
(r0

r

)3
]

+ c2

(r0

r

)2

2F1

[
2

3
,
2

3
,
4

3
,
(r0

r

)3
]
. (6.13)

For this solution to be well behaved on the horizon, we need

c2

c1

= − Γ(2/3)3

Γ(4/3)Γ(1/3)2
(6.14)

to cancel the diverging logarithmic pieces from the hypergeometric functions. The

large r expansion of ψ gives

lim
r→∞

ψ(r) = c1r0/r + c2(r0/r)
2 + ... (6.15)

3From here on, we set L = 1.
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which, written in terms of the multitrace boundary condition gives,

β

α
= κ =

c2

c1

(4πT/3). (6.16)

Since κ is negative and has the same dimensions as temperature, it is convenient to

work with the (positive) dimensionless quantity T/(−κ). Using (6.14) and (6.17) one

finds the critical value at which the static scalar field with double-trace boundary

conditions is regular on the horizon:

Tc
(−κ)

=
3

4π

(
Γ(4/3)Γ(1/3)2

Γ(2/3)3

)
. (6.17)

This corresponds to a critical temperature of Tc/(−κ) ≈ .616. So for any κ < 0,

when T = Tc there is a static linearized mode of the scalar field. This signals the

onset of an instability to forming scalar hair. At lower temperature, the scalar field

is nonzero outside the black hole. From its asymptotic value, one finds that 〈O〉

increases as we lower T and approaches a constant as T → 0 (see Fig. 6.2).

6.2.2 Solutions

Lowering the temperature (or equivalently, decreasing κ) below its critical value

causes the scalar field to roll down the potential V (ψ). Since we have chosen V (ψ)

(6.3) to have a global minimum at ψc, as T → 0 the value of the the scalar on the

horizon approaches ψc. The zero temperature solution is thus a renormalization group

flow from an asymptotic AdS4 as r → ∞ to a new AdS4 in the IR as r → 0 whose

length scale is determined by the minimum value of the potential. Furthermore, the

scalar field will have a new mass given by oscillations about this global minimum
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Figure 6.2: The value of 〈O〉 vs. T/(−κ) with critical value Tc/(−κ) ≈ .616.

which governs its scaling dimension in the deep IR. Expanding about the global

minimum of (6.3), we see

V (ψc + δψ) = −8 + 8δψ2 + ... (6.18)

Setting V (ψc) = −6/L2
IR, so LIR is the AdS radius in the IR, we have L2

IR = 3/4.

Using this, we find from (6.7) that

∆IR
± =

3

2
±
√

9/4 +m2
IRL

2
IR =

3±
√

33

2
. (6.19)

At zero temperature, the only normalizable solution in the IR scales like

δψ(r) ≡ ψc − ψ(r) ∼ r∆ψ , with ∆ψ ≡ −∆IR
− ≈ 1.37228. (6.20)
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At very low temperature, the black hole horizon is at small r0 where the scalar

field is essentially constant ψ ≈ ψc. One thus expects that the spacetime should look

like planar AdS-Schwarzschild with the replacement L2 → L2
IR. One also expects

that the scalar field will not be modified much by the horizon, so that the value of

the scalar field on the horizon will scale like δψ(r) ∼ r
∆ψ

0 .

To check these expectations we solve the equations numerically. (See the end of

the next section for a brief discussion of our numerical methods.) As shown in Fig.

6.3 our results confirm these expections. In the top figure, we show a plot of the

metric function f(r), and on the bottom is a plot of the scalar field evaluated on the

horizon. The black hole has a temperature T = 3r0/4πL
2
IR = r0/π, and an entropy

scaling like S ∼ T 2.

6.3 Conductivity

Since our dual theory is conformally invariant in the IR, we would expect the

conductivity to be characterized by power laws. We now demonstrate this is the case.

As usual, to calculate the conductivity, we perturb our spacetime with a harmonically

time varying electric field. To do so, we introduce δAx = ax(r)e
−iωt. This perturba-

tion back reacts to give at first order a metric perturbation δgtx with no other metric

components being affected. Einstein’s equation for this component of the metric and

the equation of motion for ax give two coupled second order ODE’s which can be

combined to give the following equation for ax,

a′′x(r) +

(
f ′(r)

f(r)
+
G′(ψ)ψ′(r)

G(ψ)

)
a′x(r) +

ω2

f(r)2
ax(r) = 0. (6.21)
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Figure 6.3: (Top figure) Log-log plot of our numerical solution for f(r) in the
IR (blue dots). The red line (which goes through all the points) is the analytic
planar AdS-Schwarzschild solution. The two curves correspond to T/(−κ) = .037
(top) and T/(−κ) = 7.06 × 10−3 (bottom). One can see the transition from the
linear Schwarzschild behavior to the quadratic AdS4 behavior. (Bottom figure)
The scalar field on the horizon as a function of temperature. At low T , it scales
like T∆ψ .
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We can solve this equation numerically using our background solution subject to

the boundary condition that the gauge field is ingoing at the horizon [215]. The

asymptotic behavior of ax is given by

lim
r→∞

ax(r) = a(0)
x +

a
(1)
x

r
+ ... (6.22)

When our perturbation corresponds to an applied electric field E with harmonic time

dependence, then a
(0)
x = −iE/ω and gauge/gravity duality implies [192] a

(1)
x = 〈J〉 so

that our conductivity is given by

σ(ω) =
a

(1)
x

iωa
(0)
x

. (6.23)

6.3.1 DC conductivity

As first realized by Iqbal and Liu [209], low frequency limits of transport coeffi-

cients in the dual field theory are determined by the horizon geometry of the gravity

dual. This is a holographic application of the “membrane paradigm” of classical black

holes. Applied to a U(1) gauge field, this implies that the DC conductivity is given

by the coefficient of the gauge field kinetic term evaluated on the horizon. To see

this, assume T > 0 and consider the ω � T limit of eq. (6.21). In this limit, the last

term can be neglected4 so that the equation can be rewritten

1

f(r)G(ψ)
[f(r)G(ψ)a′x(r)]

′ = 0. (6.24)

4Even though this term diverges at the horizon, at nonzero temperature f(r) vanishes linearly,
so the horizon is a regular singular point of (6.21). This is no longer true when T = 0.
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Now, on the boundary, the conserved quantity in this equation becomes

lim
r→∞

f(r)G(ψ)a′x(r) = r2

(
−〈J〉
r2

)
= −〈J〉. (6.25)

Normally, we would have to solve eq. (6.21) numerically to find 〈J〉. However, because

this is conserved in the DC limit, we can evaluate it on the horizon,

lim
r→r0

f(r)G(ψ)a′x(r) = (1 + gψ2)2f(r)a′x(r)|r=r0 . (6.26)

Now, our ingoing boundary conditions tell us that on the horizon, ax must be a

function of the tortoise coordinate, dr∗ = dr/f(r) in the combination v = t + r∗
5.

This allows us to relate time derivatives to radial derivatives,

∂tax(u)|r=r0 = ∂vax|r=r0 = f(r)∂rax|r=r0 , (6.27)

so that eq. (6.26) becomes

〈J〉 = −(1 + gψ(r0)2)2∂tax(r)|r=r0 . (6.28)

In the low frequency limit, dF = 0 implies that the electric field is essentially constant.

We can thus evaluate it near the horizon and see that

σDC = lim
ω→0

σ(ω) =
iωax(r0)(1 + gψ(r0))2

iωax(r0)

= [1 + gψ(r0)2]2. (6.29)

5This is of course only valid at nonzero ω where we have harmonic time dependence. We compute
the low frequency conductivity and then take ω → 0.
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If we choose g = −1/ψ2
c , then at very low temperatures, with our AdS-Schwarzschild

domain wall solution (6.20), we have

σDC ∼ (δψ(r0)/ψc)
2 ∼ r

2∆ψ

0 ∼ T 2∆ψ . (6.30)

6.3.2 Optical conductivity

We now investigate how the choice of g = −1/ψ2
c affects the zero temperature

optical conductivity. At zero temperature, we have purely AdS4 in the IR part of the

domain wall. In this background, equation (6.21) can be solved exactly to give,

ax(r) ∼ i(ωL2
IRr)

−(1+2∆ψ)/2H
(1)
1+2∆ψ

2

(
ωL2

IR

r

)
, (6.31)

where we have written the solution in terms of a Hankel function, such that as we

approach the Poincaré horizon in the IR,

H
(1)
1+2∆ψ

2

(
ωL2

IR

r

)
∼
√

πr

ωL2
IR

eiωL
2
IR/r = i

√
π

r∗
e−iωr∗ . (6.32)

as required. Now, it is worth pointing out two important features of this solution.

The first is that, because we have a domain wall, this solution only holds for r < rD,

where rD is the location of the domain wall, which must be found numerically. The

second point is that the solution above is the zero temperature solution. But we have

seen that at low temperature, in the region r0 � r � rD the spacetime is essentially

AdS4, and we have checked numerically that the above solution is still valid.

To calculate the optical conductivity, we will use the matched asymptotic expan-

sion of Gubser and Rocha [216]. The basis of this analysis rests on the presence of a
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conserved flux,

F = −fG(ψ)a∗x
←→
∂r ax. (6.33)

One can check that ∂rF does indeed vanish by using the equation of motion (6.21).

In the UV, this conserved flux gives

lim
r→∞
F = −a(0)

x a(1)∗
x + a(0)∗

x a(1)
x . (6.34)

From this we see that we can calculate the real part of the conductivity

Re[σ(ω)] = lim
r→∞

F
2iω|a(0)

x |2
. (6.35)

To determine this analytically, we need to find a
(0)
x . This is possible because we note

that in the DC limit (at low temperature), (6.24) allows for ax(r) to have a constant

piece which is undetermined by the equation of motion. However, the low frequency

limit of (6.31) should smoothly match onto the DC solution and horizon boundary

conditions allow us to fix this constant. A general solution of the DC equation (6.24)

in the region r0 � r � rD has the form

ax(r) = Cr−(1+2∆ψ) +D. (6.36)

Expanding (6.31) for small ωL2
IR/r, we see

ax(r) ∼ (ωL2
IR)−(1+2∆ψ)

[
(i+ tan(∆ψπ))

Γ(
3+2∆ψ

2
)2(1+2∆ψ)/2

(
ωL2

IR

r
)1+2∆ψ +

2(1+2∆ψ)/2

π
Γ(

1 + 2∆ψ

2
)

]
,

(6.37)
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where we have pulled out an ω dependence as an overall normalization. The

expression inside the brackets is matched to the DC solution at low temperature.

The second piece corresponds to the D term. Because it has no r dependence, its

value in the IR part of the domain wall must match the value in the UV which is

a
(0)
x . We can then use (6.37) to evaluate the conserved flux in a region r0 � r �

rD. Finally, because the real part of the conductivity is the ratio of two conserved

quantities, evaluating these quantites in this region is equivalent to computing the

conductivity on the boundary. Doing so gives a power law in the low temperature

optical conductivity,

lim
T→0

Re[σ] ∼ iω−(1+2∆ψ)

iω(ω−2(1+2∆ψ))
= ω2∆ψ . (6.38)

This behavior is confirmed by our numerical solutions as shown in Fig. 6.4.

6.3.3 Comment on numerical methods

The equations of motion (6.5) and (6.21) are second order differential equations.

At non-zero temperatures, these lend themselves well to pseudospectral methods

[217, 218]. It is well-known that low temperature black holes are difficult to study

numerically because as T → 0, the metric function f(r) vanishes quadratically. For

this reason, we found that for low temperatures, we needed a 400 point Chebyshev

grid to minimize numerical noise and optimize precision in computing the conductiv-

ity. For our pseudospectral methods to cover the full spacetime, we used a variable

z ≡ 1/r and rescaled the horizon to r0 = 1. After solving the equations of motion,

we rescaled the horizon back to the proper r0 = πT . Furthermore, because we fixed
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Figure 6.4: (Top figure) A plot of the optical conductivity at T/(−κ) = 7.06×10−3

and g = gc. The imaginary component vanishes as ω → 0 rather than diverging
as ω−1 showing that there is no δ(ω) in Re[σ(ω)]. (Bottom figure) Log-log plot
of the real component of the optical conductivity above. The line of best fit gives
σ ∼ ω2.75. Our analytic solution says that it should be a power law with an
exponent 2∆ψ ≈ 2.744.
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r0, our temperature was varied by adjusting the parameter κ in the boundary con-

ditions for our scalar field. All data showing the temperature dependence is plotted

in terms of the dimensionless quantity T/(−κ). Finally, we rescaled our functions

f(z) → F (z)/z2 and h(z) → H(z)/z to be well behaved at the conformal boundary

z → 0. We also rescaled the gauge field ax(z) → e−iωz∗Ax(z) to be better behaved

on the horizon. The appropriate boundary condition for the redefined functions are

F ′(0) = H ′(0) = 0 on the boundary and F (1)A′x(1) = 0 corresponding to ingoing

boundary conditions at the horizon.

6.4 Discussion

We have presented a nonsingular holographic model of an insulator. A key pa-

rameter in the model, g, controls the coupling between the kinetic term for the gauge

field and a neutral scalar field. A scalar potential with a global minimum at ψ = ψc

allows us to define a critical gc = −1/ψ2
c such that the dual theory has a DC con-

ductivity that goes to zero as a power of the temperature T . This same critical gc

produces a zero temperature optical conductivity that also vanishes as a power of ω.

Both exponents agree and are given by the scaling dimension of the scalar field in

the IR. This behavior has also been seen in models with nonzero charge density and

broken translation invariance [202, 196, 198, 199].

A class of holographic insulators based on probe branes shares similar features

with our model–in particular, gapless power law conductivities [207]. One embeds a

Dp-brane with non-zero electric flux in a four-dimensional asymptotically AdS space-

time. A radially varying dilaton couples to the Maxwell term in the linearized DBI
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action mimicing the G(ψ) term in our action above. The authors of [207] then choose

a dilaton profile (eq. (3.44) in their paper) which results in a power law AC conduc-

tivity they characterize as a pseudogap insulator. By choosing other dilaton profiles,

they can also produce a soft-gap and hard-gap insulators. However, the vanishing

conductivity requires a diverging dilaton, whereas our choice of potential keeps the

scalar field finite. One useful feature of this comparison is that the authors of [207]

point out that the Dp-brane construction does not have a delta function in the real

part of the conductivity because the scalar field couples to the A′x term, just as ours

does in (6.21) and not to the Ax term as in AdS-RN constructions. This is easily seen

in Fig. 6.4 where the imaginary component vanishes linearly as ω → 0.

We now ask what happens for other values of g. We know that g → gc effectively

increases the interactions between the charge carriers causing σDC → 0. As we

increase g, σDC also increases. It reaches one when g = 0, which is expected since

this is the standard value for the conductivity in AdS-Schwarzschild, and g = 0 turns

off the coupling between the scalar and gauge field. For g > 0, σDC > 1. For large

g there is a pronounced Drude peak showing that we have a standard metal. This is

illustrated in Fig. 6.5.

In Fig. 6.6 on the left, we have plotted our numerical results for the DC resistivity,

Ω ≡ 1/σDC , as a function of temperature for different values of g ≥ gc. Just for fun,

on the right is experimental data from a Bose metal [220]. Bose metallicity is a unique

phase exhibited by certain thin film materials which also exhibit high temperature

superconductivity. These materials are characterized by strong interactions among

their charge carrying quasiparticles and conductivity along two-dimensional planes.

By applying a magnetic field transverse to these planes or by adjusting the thickness
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Figure 6.5: Fit of optical conductivity to a Drude type curve, σ(ω) = Kτ
1−iωτ . For

this plot, we chose g = 10 at a temperature T/(−κ) = .037, and found K = 540,
τ = .485.

of the thin films, one can create a phase where Cooper pairs (bosons) have condensed

but the global U(1) symmetry has not been broken 6. The lack of phase coherence

gives a finite DC conductivity, hence the name Bose metal.

The two sets of curves in Fig. 6.6 show an interesting similarity. However, the

experimental curves on the right are obtained by increasing the thickness of a thin film

while on the left we are changing a parameter in the bulk Lagrangian and therefore

modifying the 2 + 1 boundary theory. To better describe a Bose metal, we would

need to tune a parameter in the boundary theory instead of the bulk. This could

be done by introducing a new bulk field which couples to ψ and effectively modifies

6This effect is unique to two (spatial) dimensions where phase coherence fall-offs are algebraic,
G(r) ∼ r−η with 0 < η < 1 [220]
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Figure 6.6: (Left) Plot of DC resistivity vs. temperature for different values of our
tuning parameter −1/ψ2

c < g < 200. (Right) Numerical data from [219] showing
the DC resistivity of a Ga thin film. The resistivity increases as the thickness of
the thin film is decreased (bottom to top).

its potential to have a new minimum at ψ′c < ψc. Certain holographic lattice models

[198, 199] seem capable of such a deformation.
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