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Abstract— We present a novel paradigm for dispersion 

engineering in coupled transmission lines (CTLs) based on 

exceptional points of degeneracy (EPDs). We develop a theory for 

fourth-order EPDs consisting of four Floquet-Bloch eigenmodes 

coalescing into one degenerate eigenmode. We present unique 

wave propagation properties associated to the EPD and develop a 

figure of merit to assess the practical occurrence of fourth-order 

EPDs in CTLs with tolerances and losses. We experimentally 

verify for the first time the existence of a fourth EPD (the 

degenerate band edge), through dispersion and transmission 

measurements in microstrip-based CTLs at microwave 

frequencies. In addition, we report that based on experimental 

observation and the developed figure of merit, the EPD features 

are still observable in structures that radiate (leak energy away), 

even in the presence of fabrication tolerances and dissipative 

losses. We investigate the “gain and loss balance” regime in CTLs 

as a mean of recovering an EPD in the presence of radiation and/or 

dissipative losses, without necessarily resorting to Parity-Time 

(PT)-symmetry regimes. The versatile EPD concept is promising 

in applications such as high intensity and power-efficiency 

oscillators, spatial power combiners, or low-threshold oscillators 

and opens new frontiers for boosting the performance of large 

coherent sources. 

 
Index Terms—Degeneracies, Electromagnetic Bandgap, 

Periodic Structures, Multi-transmission lines. 

I. INTRODUCTION 

LECTROMAGNETIC guiding structures or resonators are 

characterized by their evolution equations in terms of the 

eigenmodes (eigenvalues and eigenvectors). Among many 

features of the evolution of these eigenmodes, we explore the 

points in the parameter space of such system at which two or 

more eigenmodes coalesce into a single degenerate eigenmode 

[1]–[5]. We denote these points as exceptional points of 

degeneracy (EPD), and the degeneracy order represents the 

number of coalescing eigenmodes. Periodic guiding structures 

enable the occurrence of a fundamental class of EPDs at the  

so-called “regular” band edge (RBE) at which standing waves 

with zero group velocity are manifested at the band edge (i.e., 

the separation between pass and stop bands). EPDs also occur 

in Parity-Time  (PT)-symmetric structures such as coupled 

waveguides and resonators when the system’s refractive index 

obeys n(x) = n*(−x) where x is a coordinate in the system [3], 

[6]–[8] and * denotes complex conjugation.  EPDs in PT-

symmetric structures occur in coupled waveguides [1]–[4]. We 
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Fig. 1.  Example geometries of waveguide microstrip lines on a grounded 

dielectric slab that support a fourth order EPD, visible in the (k-) dispersion 

diagram at microwave frequencies. Examples in (a) and (b) represent two 
cases of coupling, with proximity fields and with a physical connection, 

respectively.  Results in Sections III and VI are based on a CTL that models 

the geometry in (a), whereas results in Sections IV and V are based on the 
microstrip CTL geometry in (b). In the lossless case, the fourth order EPD 

is called DBE, however such structures exhibit both second and fourth order 

EPDs in the case of gain and loss balance. 

 

Fig. 2. Representation of the eigenvectors of the coupled waveguides near 

an EPD, schematically showing that the four-independent vectors coalesce 

into a degenerate eigenvector at the EPD when one system parameter is 
varied. 
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point out that EPDs cannot occur in systems whose evolution is 

described by a Hermitian matrix (see Section II). Thus, an EPD 

occurs in systems where the evolution of the system vector, in 

space or time, is described by a non-Hermitian matrix which 

can be imposed by periodicity or by having losses and gain in 

the system [3], [4]. Moreover, in [9] EPDs have been found in 

nonreciprocal waveguides, between coupled topological 

modes, with a balanced distribution of loss and gain. Recently, 

some of the authors have shown that EPDs of second order can 

occur with asymmetric distributions of gain and loss in uniform 

CTLs [2]. Furthermore, in [10] second order EPDs in uniform 

CTLs with loss and gain have been investigated from the 

bifurcation theory point of view. It is worth noting that an EPD 

affects the flatness of a −k dispersion diagram and in general 

the higher the EPD order the flatter the dispersion. This concept 

shall not be confused with the flattening of the group velocity 

versus frequency dispersion diagram, for instance discussed in 

[11] and references therein.       

In this paper, we investigate second and fourth order EPDs 

occurring in periodic guiding structures whose wave dynamics 

are represented by two periodic coupled TLs. In particular we 

are interested in the fourth order EPDs that occur when all four 

independent Floquet-Bloch eigenmodes coalesce in their 

eigenvalues and eigenvectors and form one single degenerate 

eigenvector [1], [12], [13] at the band edge as it will be clear 

later on in the paper, in absence of losses and gain. It is worth 

noting that   

A fourth order EPD occurring at the band edge of a lossless 

structure is called degenerate band edge (DBE). This DBE 

condition is the basis for a possible enhancement of gain in 

active devices comprising DBE structures [14], [15]. Although 

the DBE concept was first shown in periodic layers of 

anisotropic materials where two independent polarizations are 

coupled throughout the structure [1], [13], other investigations 

were also carried out using microstrip lines for filtering and 

antenna applications [16]–[18]. Moreover, coupled silicon 

waveguides were also designed [19], [20], with potential 

application in low threshold and high efficiency lasers [14]. 

However, in connection with experimental studies, the 

existence of EPD features was shown experimentally in 

periodic anisotropic layered media consisting of dielectric 

layers fabricated of low-loss microwave ceramic disks [21];  

such geometry exhibits the split band edge [1], [22]. Also, in 

optical waveguides the giant resonance and giant Q factor 

scaling associated with DBE were observed [20], [23]. 

Moreover, in printed CTLs frozen guided modes associated to 

stationary inflection point were observed [24]. More recently, 

the authors proposed that the DBE can also be manifested in all-

metallic periodically-loaded waveguides [25] and 

experimentally detected even in the presence of losses and 

tolerances [26]. The application of such waveguide in high 

power microwave oscillators based on electron beams 

demonstrates low starting (threshold) current and better 

threshold scaling with length compared to conventional 

backward wave oscillators [15], [27], [28]. The same concept 

has been adopted for investigating ladder circuit oscillators 

[29], [30] with low threshold and potential power efficiency. 

Note that the DBE (i.e. fourth order EPD) occurs rigorously 

only in lossless structures as shown in [1], [14], [16], [25], [26] 

but fourth order EPDs can also be achieved in gain and loss 

balanced CTLs as will be shown in this paper. This is different 

from the CTL regime discussed in [2] since there second order 

EPDs have been considered in uniform CTLs, while here we 

deal with periodic CTLs and the investigated EPD regimes are 

of the fourth order. It is also worth noting that the gain 

compensation condition, the so-called “gain and loss balanced 

condition” in CTLs investigated in this paper to obtain fourth 

order EPDs does not necessarily mean PT-symmetric systems. 

Moreover, in the realization of EPDs with the gain and loss 

balanced condition, it is important to observe that losses can 

actually represent distributed radiation in a periodically opened 

waveguide structure. This concept paves the way for a new 

class of radiating array oscillators based on EPDs. 

Besides the presented general formulation that is applicable 

to any CTL, we discuss in detail the two microstrip coupled 

transmission lines shown in Fig. 1. However, the conclusions 

drawn can be extended to many other geometries or structures 

since our formalism is general; operating from RF to optical 

frequencies. The rest of the paper is organized as follows. In 

Section II we develop the theory of periodic CTLs and discuss 

the characteristics of EPDs in periodic coupled waveguides. In 

Section III we introduce the concept of hyperdistance and 

investigate the effect of losses and coupling on the dispersion 

diagram as well as the effect of perturbations. In Section IV and 

V we show the experimental demonstration of EPDs in periodic 

structures with both infinite- and finite-length structures at 

microwaves based on coupled microstrip lines. In Section VI 

we describe EPDs in CTL, based on gain and loss balance.  

II. SYSTEM DESCRIPTION OF CTLS 

We consider a pair of CTLs such that two independent modal 

fields are able to propagate along each z-direction (so a total of 

four independent modes are present when we consider 

propagation in both positive and negative z directions). At an 

EPD some of these modes (two or four, depending on the case, 

in a system satisfying reciprocity) will no longer be independent 

and thus will coalesce. We refer entirely to the formulation in 

[2] for homogeneous (i.e., uniform) TLs that describe the field 

evolution using a CTL approach, assuming a time harmonic 

evolution as j te  . In this section we consider the general case 

of a periodic CTL that may or may not possess dissipative as 

well as radiation losses and/or gain. 

A. State vector and wave propagation in CTLs 

We start by representing the field amplitudes in the two CTLs 

by equivalent voltage and current vectors 

 1 2( ) ( ) ( )
T

z V z V z=V  and  1 2( ) ( ) ( )
T

z I z I z=I . It is 

convenient to define the four-dimensional state vector 

 
( )

( )
( )

z
z

z

 
  
 

V
Ψ

I
  (1) 

that comprises voltages and currents at any coordinate z in the 

CTL. This technique has been employed in [1], [15], [31], [32] 

to investigate the modal properties of photonic crystals and 

periodic waveguides. The system evolution along z is described 

by the first order differential equations  [2] 
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 ( ) ( ) ( )z j z z
z


= −


Ψ M Ψ   (2) 

where M is a 4×4 CTL system matrix, where M is given by 

 
( )

( )
( )

j z
z

j z

− 
=  

−  

0 Z
M

Y 0
  (3) 

where  0  is the 2×2  zero matrix, and  Z  and Y  are the series 

impedance and shunt admittance matrices describing the per 

unit parameters of the CTL [2], [32], [33].  Note that in [2] we 

have investigated the uniform CTL case, i.e., the case when M  

is invariant along z. The properties described in this paper are 

related to a periodic piece-wise variation of the system matrix 

( )zM . 

The series impedance and shunt admittance matrices 

describing the per unit parameters of the CTL are defined as

, andj j = + = +Z L R Y C G . The CTL per unit length 

inductance L  and capacitance C  matrices are 2×2 symmetric 

and positive definite matrices [31], [34], whereas the per unit 

length series resistance R  and shunt conductance G  matrices 

are 2×2 symmetric matrices [31], [34] accounting for losses and  

for small-signal linear gain introduced by negative resistance or 

conductance. Note that R and G  are positive-definite matrices 

if and only if they only represent the losses [31], [34]. 

Moreover, we recall that the capacitance and conductance 

matrices have negative off-diagonal entries (see Ch. 4 in  [31]). 

Cutoff conditions could be modeled by resonant series and 

shunt reactive elements as was done in  [15], [32]. For instance, 

cut-off series capacitances (inductances) per unit length can 

model cutoff conditions for TM (TE) waves in the waveguide 

and could be included in the impedance (admittance) matrix 

(see Ch. 8 in [35]). However, for the sake of simplicity here we 

ignore cutoff conditions since we analyze microstrip lines in 

terms of their fundamental quasi-TEM modes that ideally do 

not have a cutoff frequency.  

 

The homogenous solution of (2), assuming a certain 

boundary condition at z = z0, namely 0 0( )z =Ψ Ψ   inside a 

uniform (i.e., z-invariant) CTL segment, is found by 

representing the state vector solution at any arbitrary coordinate 

1z  via 

 1 1 0 0( ) ( , ) ( )z z z z=Ψ T Ψ  (4) 

where we define 1 0(z , z )T  as the transfer matrix which 

translates the state vector ( )zΨ  between the two points 0z  and 

1z . Within a uniform segment the transfer matrix is easily 

calculated as 

 ( )1 0 1 0( , ) exp ( )z z j z z= − −T M  (5) 

and the transfer matrix satisfies the group property 

2 0 2 1 1 0( , ) ( , ) ( , )z z z z z z=T T T  and the symmetry property  

 1 0 0 1( , ) ( , )z z z z =T T 1  (6) 

where 1  is the 4×4 identity matrix.  

The previous discussion identifies the transfer matrix of a 

uniform segment of a CTL, and it is used to describe periodic 

waveguides made of a cascade of uniform CTL segments.  

B. Evolution of waves in periodic coupled CTLs 

Let us assume a periodic CTL composed of two uniform 

segments A and B cascaded as shown in Figs. 1(a) and 1(b). 

The transfer matrix of each individual CTL segment is given by 

 
0 0

0 0

( , ) ,

( , )

AA

BB

j d
A A

j d
B B

z d z e

z d z e

−

−

 + =

 + =

M

M

T T

T T
  (7) 

where, AM  and BM  are defined in terms of the per-unit-length  

impedance and inductances of the segments A and B, 

respectively using (3), while Ad  and Bd  are the lengths of 

segments A and B respectively. The transfer matrix UT  of the 

unit cell of the CTL shown in Fig. 1(a), is expressed as the 

product of the two transfer matrices of the individual segments 

of the unit cell calculated in (7) as U B A=T T T . On the other 

hand, the transfer matrix of a unit cell of the periodic CTL in 

Fig. 1(b) incorporates an additional coupling matrix due to the 

coupling microstrip. Particularly in Fig. 1(b), segments A and 

B are uncoupled while the coupling between TL1 and TL2 is 

introduced using a physical connection which is mediated 

through another transfer matrix denoted by the coupling 

transfer matrix CT  (whose expression is omitted here for the 

sake of brevity). Hence, the unit cell transfer matrix is  

U B C A=T T T T .  

The transfer matrix UT  translates the state vector across a 

unit cell as 

 U( ) ( )z d z+ =Ψ T Ψ   (8) 

where d is the period in Figs. 1(a) and 1(b). For an infinitely 

long stack of CTL unit cells, a periodic homogenous solution 

for the state vector exists in the form ( ) jkzz e−Ψ . This form 

denotes a Floquet-Bloch type solution where k is the complex 

Floquet-Bloch wavenumber and jkze−  is referred to as the 

Floquet-Bloch multiplier. To find such Floquet-Bloch 

wavenumbers and the eigenvectors, we write the following 

eigenvalue equation 

 ( )U ( ) 0n n z− =T 1 Ψ   (9) 

where nΨ  are the regular eigenvectors, corresponding to four 

eigenvalues (or Floquet-Bloch multipliers) given by

njk d
n e −
= , with 1,2,3,4n = . The eigenvalues can be readily 

obtained as solutions of the characteristic equation 

( )Udet 0− =T 1 . We introduce the matrix k  as a 2×2 

diagonal matrix, whose diagonal elements are the Floquet-

Bloch wavenumbers with positive real values, i.e. 

1 2diag( , )k k=k . We define the Brillouin zone in our periodic 

structure from 0k =  to /k d=  . Therefore 
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1 2 1, , 2 / ,k k k d− +  and 2 2 /k d− +  are the four modal 

wavenumbers of the four independent Floquet-Bloch modes in 

the periodic structure, inside the Brillouin zone. In fact, all the 

Floquet-harmonics whose wavenumbers are 

, 2 /n p nk k p d=    with  1,2,3,p =  obey symmetry   

because we consider reciprocal systems (k and −k are both 

solutions). We will also define Λ  as a diagonal matrix whose 

diagonal elements are the eigenvalues njk d
e
−  via 

 

j d

j d

e

e

− 
 =
 
 

k

k

0
Λ

0
  (10) 

(Note that 
j d

e
− k

 is a diagonal matrix with elements 1jk d
e
− and 

2jk d
e
− .) Therefore, it follows that the transfer matrix UT  is 

written as 

 
1

U
−

=T U Λ U   (11) 

where U  is 4×4 matrix that serves as a non-singular similarity 

transformation that diagonalizes UT , and is computed using the 

four regular, normalized eigenvectors of UT  as 

 1 2 3 4| | |=U Ψ Ψ Ψ Ψ  meaning that the column vectors of 

U  are the regular eigenvectors of UT  that are linearly 

independent. If (11) is satisfied with a non-singular U we say 

that UT  is similar to a diagonal matrix. 

In principle, the matrix UT  is non-Hermitian, but it satisfies 

some other important properties in the absence of gain and loss, 

where each constitutive CTL segment has a z-evolution matrix 

M that is J-Hermitian and a Hermitian characteristic matrix 

ZY , mainly the J- unitarity property, 

 U
1†

1 0 1 0U ( , ) ( , )z z z z
−

=T JT J   (12) 

where J is defined in eq. (9) in [2], and the dagger symbol † 

denotes the complex conjugate transpose operation. 

Importantly, the constitutive matrices AT  and BT  for instance, 

are diagonalizable in the absence of gain and loss in each 

segment, and therefore both AT  and BT  have a complete set of 

eigenvectors. In addition, in the lossless case their eigenvalues 

lie on the unit circle of the complex eigenvalue plane. The 

product B AT T , on the other hand, is not necessarily 

diagonalizable and indeed EPDs can manifest in the parameter 

space of the periodic structure described by UT , and the 

complex Floquet multiplier, which are the eigenvalues of UT , 

may not lie on a circle in the complex eigenvalue plane even in 

lossless structures as we will show in Section III. We recall that 

UT  is a non-Hermitian matrix which is a necessary condition 

to realize EPDs, though it is not sufficient by itself since there 

are non-Hermitian matrices that can be diagonalized. Whereas, 

the sufficient condition occurs when the matrix UT  becomes 

defective, i.e., similar to a matrix that contains a non-trivial 

Jordan block, as it will be shown in the next subsection.    

C. Fourth-order exceptional points of degeneracy 

We define the fourth-order EPD as a point in the parameter 

space of the periodic CTL at which the four eigenvectors 

coalesce into a single degenerate eigenvector. At an EPD the 

matrix UT   becomes defective, i.e., it cannot be diagonalized.   

At a fourth order EPD, the eigenvalue problem (9) does not 

provide a complete basis of independent eigenvectors: they 

coalesce into a single one, hence U  in (11) becomes singular. 

Strictly speaking, it means that it is not possible to find a non-

singular similarity transformation as in (11) that diagonalizes 

UT . It is well-known from linear algebra that an m×m Jordan 

block has a single eigenvector. Accordingly, UT  must be 

similar to a matrix that contains a non-trivial Jordan block of 

order four to have a fourth order EPD. Such a Jordan block will 

have a single degenerate eigenvector, and three other 

generalized eigenvectors. The four linearly independent 

generalized eigenvectors in such defective system are found by 

solving the generalized Floquet-Bloch form  

  U ( ) 0, 1,2,3,4
q g

d q z q− = =T 1 Ψ   (13) 

where  11 ( ) ( )
g

z zΨ Ψ  is a regular or ordinary eigenvector 

while 2 ( )
g

zΨ ,  3 ( )
g

zΨ  and 4 ( )
g

zΨ  are the generalized 

eigenvectors of ranks 2, 3, and 4, respectively (see details of 

generalized eigenvectors in Ch. 7 in [36]). A fourth order EPD 

in our CTL system occurs if and only if the transfer matrix UT  

is similar to a Jordan canonical matrix [12], [13] given by 

 1
U

1 0 0

0 1 0
,

0 0 1

0 0 0

d

d

d

d









−

 
 
 = =
 
 
 

T S ΛS Λ  (14) 

with 
1 2 3 4| | |
g g g g =

 
S Ψ Ψ Ψ Ψ  being composed of one regular 

eigenvector and three generalized eigenvectors corresponding 

to a coincident eigenvalue d  with the multiplicity of four, 

with exp( )d djk d = −  and Λ  in (14) is a 4×4 Jordan matrix. 

This is the highest order degeneracy that may be obtained in 

reciprocal and linear structures with only two coupled TLs, 

since it combines all supported waves (forward and backward, 

and/or propagating and evanescent).  As the system is 

reciprocal the dk  symmetry must hold. Therefore if we 

require to have only one degenerate eigenvalue 

exp( )d djk d =    with  multiplicity of four, this implies that 

dk  must be either /dk d=  or 0dk = . Therefore, the fourth 

order EPD can occur either at the Brillouin zone edge (kd = 0) 

or at the center (kd = π /d). Here we have defined the 

fundamental Brillouin zone (BZ) within the range from kd = 0 

to 2π. The evolution of the four eigenvectors near the fourth 

order EPD, varying either frequency or any other parameter in 

the CTL, is schematically depicted in Fig. 2. We also stress that 
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such an EPD (i.e. 4th order EPD) occurs in an entirely passive 

structure without gain or loss. Later in Section VI, we show that 

it may also occur in the presence of gain and loss when a 

particular balance condition is reached. In the following 

section, we explore examples where three kinds of exceptional 

points manifest themselves in CTL structures.  

III. FOURTH ORDER EPD IN PERIODIC CTLS 

The examples in Fig. 1(a) and (b) illustrate two coupled 

waveguide geometries that can potentially support a DBE. We 

recall that the DBE occurs in lossless and gainless structures. 

Therefore, under this assumption, when the CTL is arranged 

into a periodic structure like the ones shown in Fig. 1, both AM  

and BM  are J-Hermitian, and the characteristic matrices ZY  

and YZ   in (3) are Hermitian. The microstrip geometries in 

Fig. 1 constitute periodically cascaded segments of 

coupled/uncoupled microstrip lines that support four Bloch 

modes (two in each direction). In this section we elaborate on 

the periodic microstrip TL in Fig. 1(a). The other example in 

Fig. 1(b) will be utilized in Sections IV and V. In the following, 

we derive the dispersion relation for the fourth order EPD as 

well as introduce a figure of merit which we call hyperdistance 

to assess the quality of such EPD subject to any kind of 

perturbation, e.g., losses, frequency or structural perturbations 

like a coupling capacitance. We first consider lossless CTLs 

while at the end of this section losses in the CTL are also 

considered when discussing the hyperdistance concept. 

A.  Fourth order degeneracy  

We first assume the periodic CTL to be lossless (no gain is 

introduced yet; we will investigate the case with gain and loss 

in Section VI), hence the matrix M  for each segment satisfies 

the J-Hermiticity property [1] (see also [31, Ch. 6]) 

 
† 1 1,  − −= = −M JMJ M NMN   (15) 

where J and N are defined in eq. (9) in [2];  and as such each 

individual CTL segment has four modal solutions that have 

purely real propagation wavenumbers. Indeed, we recall that 

each of the constitutive CTL segments has the characteristic 

matrices ZY  and YZ  that are Hermitian and has real 

eigenvalues as proven in the Appendix of [2].  

The periodic CTL has eigenvalues exp( )n njk d = − , with 

1,2,3,4n = , where nk  is the Bloch wavenumber, that is 

obtained from the solution of (9). In order to realize the fourth 

order EPD at a certain frequency, we impose the Jordan block 

similarity (14) on the transfer matrix of the periodic unit cell. 

There are several possible unit cell TL parameters (L, C) 

combinations that make UT  satisfies (14). A set that models the 

geometry in Fig. 1(a) is provided as an example with parameters 

as in Appendix A, leading to a DBE at 4.03 GHz, which is the 

case shown in Fig. 3.  

B. Dispersion perturbation analysis and Puiseux series 

 When a system parameter of the CTL (a geometry or 

electrical parameter like mC , or frequency, or because of the 

introduction of losses) is perturbed by a small parameter    , 

the perturbed eigenvalue is written as a perturbation of the 

degenerate eigenvalue in the neighborhood of an EPD 

eigenvalue exp( )ee jk d = −  in terms of a fractional power 

expansion (also called Puiseux series [38]–[40]) in the 

perturbation parameter  . Since in this section we focus on the 

fourth order EPD in the absence of losses and gain (i.e., on the 

DBE), the eigenvalue is exp( )dd jk d = −   which can be 

related to CTL wavenumber dk  as  

 

2 2
( 1) ( 1)

1/4 1/24 2
1 2( )

j n j n

n dk k a e a e

 

  
− −

= + + +  (16)  

(the proof is provided in Appendix B). Here 'na s  are the 

fractional series expansion coefficients for the nth eigenmodes, 

and n = 1,2,3,4 provide the four possible quartic roots near the 

EPD. The perturbation factor   could be, for example, defined 

as the normalized detuning of angular frequency from the exact 

DBE frequency, i.e. ( ) /d d   = − , where d  is the DBE 

angular frequency. Note that in (16), we denote 1/4  as the 

quartic root in the first quarter of the complex plane since we 

take the four different quartic roots into account using the 

exponential terms exp( ( 1) / 2)j n − . Keeping only the lowest 

order terms in the fractional power expansion in (16) leads to 

the approximate form of the dispersion near the DBE 

 
4( ) ( )d dh k k −  − ,  (17) 

where h is a parameter that defines flatness of the dispersion 

near d . Indeed, from (16) and (17), by substituting 

( ) /d d   = − , it is clear that the flatness parameter is 

4
1/dh a= , and it depends on the system parameters. The 

smaller the value of h the flatter the dispersion curve, indicating 

higher Q factor [41].  

 

C. Dispersion relation for fourth order degeneracy  

In Fig. 3 we show the -k  dispersion diagram for a lossless 

CTL with circuit parameters in Appendix A, that model the 

geometry in Fig. 1(a), with three different values of the 

coupling capacitance per-unit-length mC (note that the co-

diagonal elements of C  are mC− ). In Figs. 3(d, e, f) we only 

plot the modal curves that are related to modes with purely real 

wavenumber for the lossless CTL. Figs. 3(a, b, c) show the 

complex wavenumber evolutions varying frequency.  In the 

following we discuss the occurrence of three possible EPDs in 

lossless CTL: the RBE, the DBE and split band edge (SBE) by 

varying mC . We define ,m dC  as the mC  value at which the 

DBE occurs. Losses are considered at the end of the section and 

in the last two columns of Fig. 3 (curves with dashed lines).  

In Fig. 3(e) we plot the -k  dispersion relation of the two 

modes with purely real wavenumber. Since there are four 

solutions, for d   there are two other modes that are 

evanescent (not shown in Fig. 3(e) but shown in Fig. 3(b)) and 
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all four modes coalesce at d . For d   all four modes are 

evanescent. Note that the periodic structure’s dispersion 

diagram is periodic in ( )Re k  with period / d , hence we 

plot the dispersion in the first Brillouin zone defined as 

 0 Re ( ) /k d    , and because of reciprocity 

wavenumbers are symmetric about the Brillouin zone center 

/dk k d=  . The so-called frozen mode regime associated 

with the DBE is related to the vanishing group velocity and has 

been discussed in previous publications (see [1], [13]–[15], 

[24], [25], [27], [32], [42], [43] and references therein). In this 

section we focus on the characteristic of the fourth order EPD, 

the DBE, and what happens near it, and in Section VI the effect 

of gain and loss on the DBE is analyzed.  

The determinant of the similarity transformation U of the 

transfer matrix in (11) is depicted in Figs. 3(g, h, i) varying 

frequency, for three choices of mC : we observe that U is 

singular ( det( )U  = 0) only at the exceptional points. Note that 

there exist two different kinds of EPDs: the DBE (fourth order 

degeneracy, associated to four coalescing eigenvectors) that is 

the most interesting case and the main subject of the study in 

this paper, and various RBEs (second order degeneracies 

associated to two coalescing eigenvectors). In Figs. 3 (a, b, c) 

we show the evolution of complex wavenumbers in the 

complex Re(k)-Im(k) plane for increasing frequency (the 

direction of the arrows), for three values of the capacitance per-

unit-length Cm. By varying Cm, three different situations are 

observed in the dispersion diagrams and they are discussed in 

the following. The proper coupling capacitance that allows the 

DBE is denoted as Cm,d. For small coupling distributed 

capacitance (Cm< Cm,d), the CTL exhibits only one lower and 

one upper RBE at dk k= , as typical in periodic single TL at 

the band edge. In Fig. 3(a) trajectories of eigenmode coalesce 

twice at dk k=  at two different frequencies (the upper and 

lower band edges) designating two distinct second order EPDs. 

At this second order EPD, two eigenmodes coalesce and this is 

in principle analogous to the second order EPD that occurs in 

the uniform CTL investigated in [2] where a balanced gain and 

loss condition was necessary to develop an EPD. Therefore, a 

second order EPD can be realized either with a uniform CTL 

with balanced gain and loss as in [2] or simply by using a 

periodic TL. In the latter case the EPD occurs at the center of 

the Brillouin zone, i.e. at /dk d= . 

Increasing Cm, such that Cm = Cm,d, we find the proper 

conditions for the fourth order EPD (the DBE) to be manifested. 

At the DBE, four Floquet-Bloch eigenmodes coalesce to a 

single degenerate eigenmode; as explained in Fig. 3(b) where 

four modal trajectories of complex k varying as a function of 

frequency intersect at a single point dk k= . At the DBE 

frequency d  the dispersion diagram in Fig. 3(e) is very flat 

 
Fig. 3. First two columns: Complex k plane showing the trajectory of the wavenumber k for increasing frequency near the fourth order EPD condition for different 

values of the coupling capacitances in (a), (b), and (c), for a lossless CTL, and the corresponding dispersion diagram showing the evolution from RBE to DBE and 

to SBE in (d), (e), and (f), respectively, when varying the coupling capacitance. Dots in the left panel plots indicate the starting point 0.95 d =  of the frequency 

sweep. In (g)-(l) we show the  “measures” of the closeness to the EPD calculated based on the four eigenvectors nΨ  of the lossless and lossy periodic structure: 

(g), (h), (i) depicts | det( ) | 0=U  while (j), (k), (l) depicts HD  for different values of Cm. Any EPD necessarily has | det( ) | 0=U and a fourth order degeneracy has 

( ) 0HD  = . Mathematically speaking, only the lossless case with Cm = Cm,d shows a fourth order EPD (i.e., the DBE). Other values of Cm lead to second order EPDs 

(i.e., the RBEs). Losses perturb the RBE and the DBE. Solid lines represent results for a lossless CTL, whereas dashed lines represent results for a CTL including 

radiation “loss” in which EPD is no longer strictly manifested, but it can still occur in practice, depending on how small  HD  is. Results are based on the microstrip 

geometry in Fig. 1(a) whose parameters are given in the Appendix A. Here  2 (4.03GHz)e d     and /e dk k d = .  
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and thereby approximated by the quartic law (17). Note that this 

condition cannot occur in uniform CTL made of only two TLs 

with L and C distributed parameters, as in this paper, since it 

requires the presence of a bandgap that is endowed by 

periodicity. (Other important cases with two uniform CTLs 

with different distributed parameters for backward waves and 

evanescent waves will be discussed in the future.)  

Increasing the coupling such that Cm > Cm,d will lead to 

altering the DBE to a split band edge (SBE) [44]–[46] that has 

been sometimes referred to as double band edge (DbBE) [18], 

[42] where three distinct EPDs are found in the dispersion 

diagram in Fig. 3(f), in the shown frequency range. Each EPD 

is associated with a second order degeneracy in the eigenmodes 

as seen in Fig. 3(c). At each EPD the dispersion diagram is flat 

and it exhibits a vanishing group velocity. It can be observed 

that when Cm< Cm,d  or  Cm> Cm,d , two EPDs are manifested, all 

of the second order, and either all of them on the same side of 

the stop band (Fig. 3(f)) or on both sides of the stop band (Fig. 

3(d)). These EPDs are separated, yet for Cm=Cm,d  these second 

order EPDs coalesce and form a fourth order EPD (DBE) (Fig. 

3(e)). 

D. Hyperdistance in four-dimensional complex vector space 

for identifying “vicinity” to a fourth order EPD 

In order to distinguish a fourth order EPD among others, 

and in order to understand how “far” from the EPD a system is, 

one ought to define a figure of merit (or hyperdistance) to assess 

the quality of such EPD subject to any kind of perturbation, like 

losses, frequency detuning, or tolerances of CTL parameters. 

Here we focus on losses and coupling as the cause of EPD 

perturbation. Structures, such as that in Fig. 1 are naturally lossy 

due to dissipative losses (dielectric and ohmic losses) as well as 

radiation losses that limit the intrinsic quality factors of the 

constitutive components. Therefore, a perfect degeneracy 

condition like the DBE corresponding to a lossless structure 

does not exist in practice when losses are present but can be met 

in an approximate way and still retain the main features of the 

four coalescing eigenvectors. In case the periodic CTL is a 

radiating array, then radiation “losses” (i.e., distributed power 

extraction) are considered necessary. However, as we will 

clarify in Section VI, CTLs with (radiation) losses may 

rigorously exhibit EPDs when a gain is introduced in a 

balanced fashion. Just a few studies have shown the sensitivity 

of field enhancement in DBE structure to losses [33], [45], [47], 

and in general any imperfection can be thought as perturbations 

that affect the eigenvalues (wavenumber) in the way described 

by (16). Moreover, in designing realistic waveguides, 

numerical or experimental methods are used and numerical or 

systematic errors would require a quantitative measure for 

observing an “exact” EPD.   Since our state vector in the CTL 

is four dimensional, we develop the concept of hyperdistance, 

denoted as ( )HD  , between the four eigenvectors of the 

transfer matrix of one-unit cell UT  to determine the closeness 

to an EPD. Various choices could be made for its definition, and 

here the hyperdistance that represents a figure of merit (FOM) 

is defined as   

( ) ( )
( )4

1, 1

Re ,1
sin , cos

6

m
H mn mn

m n

n

m n
m n

D  
= =


= =
Ψ Ψ

Ψ Ψ
 (18) 

with mn  representing the angle between two vectors mΨ  and 

nΨ   in a four-dimensional complex vector space with norms 

mΨ  and nΨ . Angles are defined via the inner product 

( ) †, nm n m=Ψ Ψ Ψ Ψ , where the dagger symbol † denotes the 

complex conjugate transpose operation, and DH is defined to be 

always positive. This FOM yields a hyperdistance ideally equal 

to zero when all four eigenvectors in the CTL system coalesce, 

i.e., when the CTL system experiences a fourth order EPD. 

Mathematically this is described by the transfer matrix of the 

unit cell UT  becoming similar to a 4×4 Jordan Block as in (14). 

Therefore, when losses (or any disorder of the structural 

parameters seen as perturbation) occur, the proposed FOM is 

not zero. When using numerical methods or measurements (see 

Sec. IV) we can assume that the EPD is met in practical terms 

when the FOM measure is less than a very small threshold 

value, i.e., HD  , where   is a small number. It is natural to 

question when such an EPD occurs in practical terms, i.e., how 

small   shall be to claim an EPD is verified. Furthermore, it is 

also important to quantify how much losses or perturbations 

deteriorate the EPD.  

To better illustrate this concept, we plot in Figs. 3(j), (k) and 

(l) the hyperdistance DH varying as a function of frequency, for 

a lossless CTL (denoted by solid lines), i.e., for the three values 

of coupling capacitance Cm considered in Figs. 3(a, b, c). We 

can now compare the two FOMs introduced: the one associated 

to vanishing ( )det U  in Fig. 3(g, h, i) and the one associated 

to vanishing HD  in Fig. 3(j, k, l). The first one vanishes when 

at least two eigenvectors coalesce, the second one is the proper 

one to describe a fourth order EPD because it vanishes only if 

all four eigenvectors coalesce. Indeed, we see that 

( )det 0→U  at any EPD, whereas 0HD →  only at the DBE 

frequency ( d = ) and only when ,m m dC C= , i.e., only in 

Fig. 3(k) . 

The two FOMs are also observed when losses are 

introduced in the CLT as distributed series resistance (dashed 

line in Figs. 3(g)-(l)). Losses are assumed to be in both TLs with 

a quality factor QTL of 1000, defined as TL /Q L R= . We also 

see that the perturbation due to losses can deteriorate the DBE, 

i.e. HD  is now non-vanishing at d = , when ,m m dC C= , in 

Fig. 3(k). This is in agreement with perturbation theory of 

eigenmodes leading to (16), implying that a small   parameter 

leads to a significant change in the eigenvalues since 
1/4

   when 1  ; which takes place in the close 

“vicinity” of the fourth order EPD. We again stress that the 

FOM HD  provides a more quantitative identification of the 

fourth order degeneracy compared to the simpler measure 

( )det U . The deviation in the ideal EPD conditions due to 

losses can be seen in Fig. 3(j, k, l) by comparing dashed lines to 

solid lines for the different kinds of EPDs in Figs. 3(d), (e) and 

(f) respectively. In a radiating array the limitation in the 

occurrence of such degeneracies is due radiation “loss” (it is 
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natural to introduce gain in the structure to balance the losses 

and potentially recover the exceptional point as we will show in 

Section VI). However, the question remains whether we can 

observe the EPD in experiments even in the presence of losses 

or not. The concept of hyperdistance developed previously is 

very useful to decide how “near” a system is to an EPD and 

therefore if an EPD occurs in practice. Furthermore, the concept 

of hyperdistance is helpful in determining if introducing gain in 

some parts of the system is useful in compensating for losses, 

i.e., in defining the concept of “gain and loss balance” as it will 

be shown in Section VI.  

IV. EXPERIMENTAL VERIFICATION OF EPD FEATURES IN 

PERIODIC CTLS 

In this section we experimentally verify the existence of the 

EPD in the microstrip example in Fig. 1(b). First, instead of 

fabricating a long (multi-unit cell) coupled microstrip, we 

experimentally demonstrate the occurrence of EPDs by 

performing a measurement on a single unit cell fabricated as 

shown in Fig. 4(a). The unit cell is fabricated on a grounded 

substrate (Rogers substrate RO4360G2) with a dielectric 

constant of 6.15, height of 1.52 mm, and with a loss tangent of 

0.0038. The TL appearing on the top of the figure was designed 

to have a characteristic impedance of 50 Ohms and all the unit 

cell dimensions are reported in Fig. 4(a). To confirm the 

existence of EPDs in the unit cell, we perform scattering (S)-

parameter measurements at the four ports of the unit cell using 

a four-port Rohde & Schwarz Vector Network Analyzer (VNA)  

ZVA 67 as shown in Fig. 4(b). From the S-parameters 

measurements, we then retrieve the transfer matrix UT  as 

shown from well-known conversion tables [48], [49], for the 

range of frequencies shown in Fig. 5. The four wavenumbers 

are derived and plotted in Fig. 5 by solving (9) for complex k , 

at any frequency shown in the plot. The dispersion based on 

measurements shown in Fig. 5(a) is in a good agreement to the 

results from full-wave simulations of the S-parameters 

performed using Keysight Technologies ADS based on the 

Method of Moments (MoM). The full-wave simulation 

included the effects of the SMA connectors. The dispersion 

shows several frequencies at which the four wavenumbers have 

values very close to each other denoting the occurrence of the 

4th order EPD, with some perturbation due to ohmic, dielectric 

and radiation losses. Indeed losses, fabrication tolerances, 

effect of connectors and other realistic factors affect ideal EPD 

conditions.  Even though mathematically speaking the EPD is 

not verified exactly, in practical terms, the EPD’s prominent 

features can be well-preserved as we discuss in the following. 

In order to assess the existence of the EPD in practical terms, 

we utilize the hyperdistance concept developed in Section III 

for the first time. We use the transfer matrix UT  of the unit cell 

in Fig. 4(a), based on measurements, to calculate the four 

eigenvectors nΨ , with n = 1,2,3,4, of the eigenvalue problem 

in (9). First, the eigenvectors are used to calculate the 

hyperdistance HD  in (18) that is supposed to vanish when 

approaching a 4th order EPD. Then, they are used to build the 

similarity transformation matrix U in (10) and hence |det(U)| 

that will tend to zero when at least two eigenvectors become 

dependent. We plot both HD  and |det(U)| FOMs in Fig. 5(b) 

based on measurements and compare them to the same FOMs 

obtained from full-wave MoM simulations. We can see that at 

different frequencies, 2.81 GHz, and 3.1 GHz occurring at kd = 

π the simulated and measured HD  show a minimum denoting 

vicinity of a 4th order EPD despite the presence of radiative and 

 
Fig. 4. (a) A microstrip unit cell of a periodic structure that exhibits a fourth order EPD. The substrate is Rogers RO4360G2 with a dielectric constant of 6.15 

and height of 1.52 mm. (b) The fabricated unit cell under test with the 4 ports is attached to a VNA to extract the 4-port S parameters versus frequency used to 
calculate the eigenvalues.  

 

 
Fig. 5. (a) Dispersion relation and (b) hyperdistance measurement versus full-wave simulation of the unit cell of a periodic CTL exhibiting a 4th EPD. The 
results show that the 4th order EPD occurs at 2 different frequencies in the range shown in this plot. Full-wave simulations are performed with Keysight ADS 

using the method of moments (MoM). 
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dissipative losses. This demonstrates the EPD properties of 

eigenvector coalescence is observed at microwaves. 

V. FINITE LENGTH CTLS WITH EPDS: GIANT RESONANCE AND 

RADIATION 

We investigate the properties of a finite length periodic CTL 

as in Fig. 6, with a fourth order EPD. In principle, the 

coalescence of four eigenmodes into one degenerate eigenmode 

at the DBE causes a quartic dispersion relation (17) and leads 

to a vanishing group velocity in the infinitely-long periodic 

structure in the absence of losses. The presence of losses and 

structural variations/perturbations leads to a non-zero group 

velocity and renders the hyperdistance (18) non-vanishing as 

seen from the experiment in Fig. 5. In addition, even in a 

lossless structure, waves in a finite-length CTL with EPD do 

not have zero-group velocity since the peak of transmission in 

Fig. 7(c) occurs at a frequency close to the DBE one. 

Nonetheless, the finite-length CTL develops very interesting 

resonance features related to the EPDs as we discuss in the 

following. 

Consider the finite length microstrip CTL made of a finite 

number N of unit cells as shown in Fig. 6. The microstrip and 

substrate’s parameters are the same as those used in relation to 

Figs. 4 and 5. We perform full-wave simulations using Ansys 

HFSS utilizing the finite element method (FEM) solver to 

retrieve the scattering parameters. The dispersion diagram of 

such structure is shown in Fig. 7(a), obtained by simulating a 

single unit cell. The 4th order EPD is evident at 2.81 GHz. The   

4-port, N-cell, finite-length CTL is terminated with coaxial 

connectors at both extended sides of TL1, the length of the 

extended part on each side equals 50 mm. Whereas TL2 is 

terminated in short circuits at the beginning of the 1st unit cell 

and at the end of the 8th unit cell, as seen in Fig. 6. We are 

interested in the case where the excited fields inside the CTL 

create a standing wave because of the Fabry-Pérot cavity (FPC) 

resonance near the EPD frequency (see details in [1], [14]). At 

such  condition constructive interference of the four 

synchronous eigenmodes leads to a sharp transmission 

resonance [1], [14]. Such Fabry-Pérot resonance closest to the 

DBE frequency occurs at the angular frequency denoted by 

,r d , referred hereafter as DBE resonance, characterized by a 

peak in the transmission coefficient |S21| and a dip in |S11|. The 

DBE resonance frequency is  approximately given by [3],[7]  

 

4

,r d d h
Nd


 

 
 −  

 
.  (19) 

Therefore ,r d  approaches d   for large number N of unit 

cells. Thanks to the DBE degeneracy condition, a large  

enhancement  in the energy stored is expected because we 

approach the zero- group velocity conditions when ,r d d 

and causing a giant enhancement in the Q-factor [14], [50].  

 

We show in Fig. 7(b) and (c) FEM full-wave simulations as 

well as measurement of the magnitude of the scattering 

parameters S21 and S11. The full-wave simulation included the 

effects of the SMA connectors. Results show good agreement 

between simulation and measurement. Results also demonstrate 

the occurrence   of the DBE resonance at 2.775 GHz, that is 

close to the DBE frequency of 2.81 GHz. The transmission 

resonance at the DBE has a transmission coefficient |S21| of −3.6 

dB.  

 
 

Fig. 6.  A fabricated microstrip 8 cell array with an EPD. The CTL is based 

on the unit cell described in Fig. 4. 
 

  

Fig. 7.  (a) Dispersion relation for the unit cell of the periodic structure in 
Fig. 6 obtained using full-wave finite element method (Ansys HFSS) 

accounting also for radiation, ohmic and dielectric losses. (b-c) Simulations 

and measurements of the scattering parameters S11 (b) and S21 (c) for an 8-
unit-cell array in Fig. 6; where a good agreement between full-wave 

simulations and measurements is shown at the resonance frequency 

associated with the EPD. The frequency of the resonance peak is estimated 
by (19).  

 

 
Fig. 8. Measurements versus simulations of the power loss parameter 

defined as 1−|S11|
2−|S21|

2 varying as a function of frequency near the EPD 

resonance.  
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It is important to point out that such transmission resonance 

is affected by losses; both dissipative and radiative. Indeed, the 

exact mathematical DBE condition is not met as seen in Fig.  5 

and as discussed in Section IV. Nonetheless, the DBE 

resonance is still observed in Fig. 7. We emphasize that most of 

the losses incurred by this CTL are in fact radiation losses. The 

power loss factor, shown in Fig. 8, is defined as 1−|S11|2−|S21|2 

combining both effects of dissipative Ohmic loss as well as 

radiation. Results show good agreement between FEM full-

wave simulations and measurements.  

 

VI. EPDS WITH “BALANCED” GAIN AND LOSS 

The RBE and DBE (EPDs of order 2 and 4, respectively) 

exist in structures that are lossless, indeed the presence of losses 

would inhibit the existence of the DBE, i.e., it would degrade 

the degree of coalescence of the four eigenmodes. This 

phenomenon is monitored by the hyperdistance parameter HD  

that increases with increasing losses. And this is the reason why 

we have observed a non-ideal DBE dispersion relation in Fig 5. 

Increasing radiation losses (e.g., for antenna applications) will 

further degrade the DBE. Here our aim is to provide a mean to 

recover EPDs deteriorated by losses by strategically 

incorporating a proper distribution of gain in each unit cell. The 

perfect condition that allows the existence of an EPD is named 

perfect “loss and gain balance.” (For perfect EPD condition we 

mean the exact mathematical condition described in Section II 

that leads to 0HD → ). The balancing between gain and loss 

implies that both the z-evolution matrices  AM  and BM  are 

not J-Hermitian, and that the characteristic matrices ZY  and 

YZ   in (3)  are non-Hermitian. This does not happen for the 

DBE case, therefore we will not refer to this condition as DBE. 

This “loss and gain balance” condition is different from the 

situation previously studied in PT-symmetric literature [2]–[4], 

[7], [51] in two aspects: (i) The EPD studied here is of fourth 

order; (ii) the gain compensation condition for a fourth order 

EPD in periodic CTLs does not necessarily mean that the 

system is PT-symmetric [2], [3], [51], [52], i.e., it does not mean 

that one TL has gain and the other has loss of exact symmetry 

and magnitude. Note that gain compensation of losses may, in 

various circumstances, not lead to a perfect EPD as will be 

shown in the study case B.  However, in many practical cases 

the exact (i.e., perfect) condition may not even be necessary. 

Indeed, when DH is sufficiently small we can observe 

qualitative features related to the EPD even though the structure 

does not possess the precise mathematical EPD condition. 

Furthermore, we point out that gain/loss compensation in a unit 

cell does not necessarily imply absolute instability or self-

oscillation in a finite length structure; indeed loading effect 

must be taken into account in the stability criterion especially 

near these EPDs as done in [27].  

The following discussion is based on the periodic coupled 

transmission line as in Fig. 1(a), where all parameters are given 

in Appendix A, investigated with the theoretical tools in Section 

III. We will study different configuration for losses and 

incorporating gain.  

Case A: Series loss and shunt gain 

Losses in the CTL are assumed to be in the form of a per 

unit length series resistance in both TLs, representing radiation 

and/or dissipation losses.  Here, gain is introduced in the 

periodic CTL using a negative per-unit-length conductance G 

in both TLs (therefore –G is positive with units of Siemens/m). 

Note that here, we assume that such gain is introduced in both 

TLs, i.e., each TL has a self-negative conductance G in addition  

to a series resistance Rn associated to radiation and metal losses   

for the nth TL, with n = 1,2. Losses are described using the 

quality factor TL, /n n nQ L R=  associated to the per-unit-

length TL parameters, and here we assume that all TLs have the 

same quality TL, TLnQ Q=  for simplicity. Accordingly, here 

each constitutive CTL segment has a z-evolution matrix M that 

doesn’t satisfy the J-Hermiticity and a characteristic matrix 

 

 

Fig. 9. (a) Plot of the hyperdistance (18) to assess the occurrence of a fourth 
order EPD in a CTL with losses, as a function of gain –G to compensate for 

losses. The EPD is achieved in practical terms with G =  

Ge = – 11.75 mS/m at which hyperdistance has the minimum value 

( )dHD  = 0.091 (keeping the angular frequency fixed at d, at which the 

lossless CTLs develops a DBE). (b) The corresponding dispersion diagram 

for the lossy CTL (i.e. before introducing gain) where losses are modeled as 

series resistance Rn such that all TLs have TL 100Q = . (c) The dispersion 

diagram after introducing the appropriate gain G =  

Ge to achieve the “balanced gain and loss condition”, showing the typical 

flatness of a DBE is recovered.  
 

 

Fig. 10. (a) Dispersion diagram for a lossy CTL structure (i.e. before 

introducing gain) as in Fig. 9(a) but with one order of magnitude larger 

losses than in Fig. 9(a), i.e., now all TLs have TL 10Q = . (b) The 

corresponding dispersion diagram after introducing the gain Ge = – 116.3 

mS/m associated to minimum ( )dHD   = 0.2.  
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ZY  that is non-Hermitian. A simple procedure is developed to 

estimate the value of the needed G in the CTL to “recover” the 

fourth order EPD occurring at more or less the same angular 

frequency as that would occur in the lossless structure d = . 

Note that here for “recovering” an EPD we mean that the 

required hyperdistance HD  shall be smaller than a specific low 

threshold  , that is arbitrarily predetermined (at a lossless 4th 

order EPD, i.e. at a DBE, this HD   vanishes). Therefore, we 

find the value of the optimum distributed gain parameter, 

namely Ge  such that the HD   at d = , where here we 

assume   = 0.1 as an example. In Fig. 9 we show the dispersion 

diagram of a CLT with losses and with compensating gain, as 

well as the hyperdistance HD  plotted in Fig. 9(a) versus gain 

parameter −G at d = . We observe that for all TLs with 

TL 100Q = , a chosen values  G = Ge = −11.75 mS/m , leads to 

a minimum  0.1HD   which indicates that the fourth order 

degeneracy has been achieved in practical terms, i.e., the four 

eigenvectors nΨ  are almost parallel. Indeed, we plot the 

dispersion relation of the lossy structure (i.e. before introducing 

gain) in Fig. 9(b). Then we chose the best G, i.e. G = Ge, and in 

Fig. 9(c) we plot the dispersion with such gain and loss balance 

condition. It is clear that the dispersion in Fig. 9(c) is very 

similar to the ideal case with no loss and no gain plotted in Fig. 

3(e).  

Additionally, in Fig. 10 we show that this procedure is also 

useful to recover EPDs when the CTL is strongly perturbed by 

losses. Indeed in Fig. 10 the CTL and discussion is the same as 

for the case in Fig. 9, except that now the TLs have losses that 

are an order of magnitude larger than in Fig. 9, i.e. all TLs 

considered for the result in Fig. 10 have  TL 10Q = . It is obvious 

from Fig. 10(a) that the dispersion of the modes in the lossy 

CTL (i.e. before introducing gain) is strongly perturbed from 

the ideal case, indeed the DBE is not visible at all. Then, using 

the same procedure previously discussed, one can recover the 

4th order EPD in practical terms as shown in Fig. 10(b). We 

recall one more time that these guiding structures are not PT-

symmetric since gain and loss are not displaced in a symmetric 

fashion.  

Case B: shunt loss in both TLs, shunt gain in only one TL  

We analyze another CTL configuration that has losses and 

gain not satisfying PT-symmetry. Losses in the CTL are 

assumed to be in the form of a per unit length shunt conductance 

GL,n in both TLs, representing radiation and/or dissipation 

losses. Shunt per-unit-length losses are analogously described 

by a quality factor ,TL /,n n L nQ C G= , and in the following we 

assume that all TLs have shunt conductances GL,n such that 

TL,nQ = TL 100Q = . Gain is introduced in the periodic CTL 

using a negative per-unit-length conductance G in only TL1 

(therefore –G is positive with units of Siemens/m). Note that 

this CTL configuration differs from the one in Case A in: (i) 

gain is introduced to only one TL, not in both TLs as in the 

previous case, and (ii) losses are introduced using a shunt 

conductance per unit length rather than a series resistance per 

unit length. Therefore, TL1 has a self-negative conductance G 

in addition to a GL,1 associated to losses, whereas TL2 has only 

 
GL,2 associated to losses. Similar to Case A, each constitutive 

CTL segment has a characteristic matrix ZY  in (3) that is non-

Hermitian, and the value of the needed gain G in TL1 to 

“recover” the fourth order EPD is determined with same 

procedure used in Case A. In Fig. 11(a) we plot HD versus the 

gain parameter −G at d =  (that is the angular frequency at 

which the DBE for the ideal lossless structure is obtained) and 

we observe that for  G = Ge = −20.73  mS/m we have minimum 

HD  and that such minimum has 0.1HD   which indicates that 

the fourth order has been achieved in practical terms. The 

dispersion relation of the lossy CTL, i.e., before introducing 

gain, is plotted in Fig. 11(b), and in Fig. 11(c) we show the 

dispersion after introducing the gain associated to minimum 

HD . It is worth noting that, the gain compensation leads to a 

non-ideal EPD. However, in many practical cases the exact 

EPD may not even be necessary. Indeed in Fig. 11(c), one can 

see that the dispersion diagram is very similar to the one of the 

ideal DBE, therefore we can still observe qualitative features 

related to the DBE.  

Note that, increasing the gain beyond the value of eG G=  

may lead to self-oscillations in the unit cell and would render 

the structure absolutely unstable. Such technique however can 

be very useful in realizing novel schemes for low threshold 

oscillators which we will investigate in the near future, and have 

been already explored in the areas of electron-beam devices 

[27] and lasers [53]. 

 

 

Fig. 11. (a) Plot of the hyperdistance (18) to assess the presence of a fourth 

order EPD in a CTL with losses, as a function of gain –G to compensate for 

losses. The EPD is achieved in practical terms with value of gain parameter  
–Ge = 20.73 mS/m (attached to TL1) at which hyperdistance has the 

minimum value ( )dHD  = 0.088 (i.e., less than the predetermined threshold 

 ). Angular frequency is fixed at d at which the lossless CTLs develops a 

DBE. (b) The corresponding dispersion diagram for lossy structure (i.e. 
before introducing gain) where losses are modeled as shunt GL,n such that all 

TLs have same TL 100Q = . (c) The corresponding dispersion diagram after 

introducing the gain associated to minimum DH, showing non-ideal EPD.  
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VII. CONCLUSION 

We have experimentally demonstrated for the first time the 

occurrence of a fourth order EPD (the DBE) in microstrip CTLs 

at microwave frequencies, first through four-port measurements 

of a unit cell leading to the DBE dispersion relation and then 

through the transmission characteristics of a finite-length CTL. 

We have also introduced the novel concept of a hyperdistance 

figure of merit to estimate the effect of perturbations like 

imperfect coupling, presence of losses and any other 

perturbation that may arise from fabrications or numerical 

simulation on the EPD. The hyperdistance concept is a way to 

measure the eigenvectors mutual “distance” in a 

multidimensional vector space, that should ideally vanish at the 

exact EPD condition. The smaller the hyperdistance the closer 

a system is to the EPD occurrence. Based on the defined figure 

of merit, our experimental verification has confirmed for the 

first time that the main EPD features of almost parallel 

eigenvectors can still exist in realistic periodic arrays that 

include radiation and dissipative losses. Furthermore, in CTLs 

that experience significant radiation and dissipative losses, we 

have shown that the so-called “gain and loss balance” condition 

leads to recovering an EPD, up to a level that can be quantified 

via the hyperdistance concept, even in schemes that do not 

necessarily imply PT-symmetry. The gain and loss balance 

condition scheme can be applied in principle for any amount of 

loss in a CTL, paving the way to use it in the design of active 

grid array antennas. 

The capability of obtaining EPDs in CTLs with large 

radiation losses when adding gain in a proper manner in each 

unit cell also paves the way to use this multi-eigenmode 

degenerate scheme in the design of array oscillators and high-

intensity spatial power combiners. Potential benefits may 

include low oscillation threshold, or even high-intensity 

radiation with high power efficiency, and spectral purity. 
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APPENDIX A: NUMERICAL PARAMETERS USED IN SECTIONS 

III & VI 

Periodic CTL parameters used in Section III and VI. The 

periodic CTL used has the following parameters pertaining to 

the microstrip lines shown in Fig. A1(a) over a grounded 

dielectric slab with a dielectric constant of 2.2 and height of 1.5 

mm, which provides a DBE at 4.03 GHz. All microstrips have 

a width of 1 mm. The coupled line segment has length  Ad = 10 

mm and separation gap 0.2 mm, while the uncoupled segment 

is made of an uncoupled TL1 with length 1Bd = 14 mm and 

uncoupled TL2 length 2Bd =10 mm as shown in Fig. A1(b). 

Note that the use of the bended junction impacts the assumption 

of having a uniform segment of a TL1 by slightly increasing the 

self-inductance and capacitance due to bending [54]. Therefore, 

the corresponding equivalent CTL parameters of the microstrip 

line unit cells are as follows. For the coupled section: C11=C22=   

55.15 pF/m, L11=L22=0.467 μH/m, C12 = C21= −Cm = −27.2 

pF/m,  L12= L21=Lm=0.25 μH/m, are the matrix entries of the C  

and L  matrices. For the uncoupled section: TL1 has L = 0.54 

μH/m, and C = 42.86 pF/m whereas TL2 has L = 0.5 μH/m, and 

C = 35 pF/m.  Most of the results in Section III are for lossless 

CTLs, losses are considered at the end of Sec. III and in the   

examples in Section VI and in the full-wave simulation results 

shown in Fig. A3 for the structure in Fig. A1(a). 

In Fig. A2, we show the dispersion diagram (for both real and 

imaginary parts of k-𝜔) using circuit simulator, which is based 

on predefined models for each piece of the circuit and using 

those models the system response is described by a system of 

equations solved using implicit integration methods, adopted in 

Keysight Technologies ADS (denoted by blue curves). Also, 

we plot the dispersion obtained using eq. (9) for the passive 

equivalent circuit whose circuit parameters mentioned before 

(denoted by red curves). Both show a good agreement around   

the DBE point which is clearly observed at 𝑓𝑑=4.03 GHz.  

Additionally, in Fig. A3 we plot the real and imaginary parts 

of the dispersion using MoM full-wave solver adopted in 

 
 

 
Fig. A1. Geometries of the microstrip configurations adopted in Section III, 
that develops an EPD. (a), (b) the equivalent passive CTL system of the 
geometries in Fig. 1(a). 

 
 

Fig. A2.  (a) Real and (b) imaginary parts of the k-𝜔 dispersion diagram 

obtained for microstrip CTL in Fig. A1(a) using two different methods. First, 
a circuit simulator (blue curves) adopted in Keysight Technologies ADS. 

Secondly, by solving eq. (9) for the equivalent passive CTL system shown 

in Fig. A1(b) (red curves), whose circuit parameters (L, C) are stated in this 
Appendix. In both simulations, losses have been neglected.   
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Keysight Technologies ADS. Losses considered in this full-

wave simulation includes radiation, ohmic (i.e. copper has 

conductivity 𝜎 = 5.8 ∗ 107 Siemens/m), and dielectric (i.e. 

substrate used with dielectric constant of 2.2, height of 1.5 mm, 

and with a loss tangent of 0.002) losses. The dispersion shows 

a deformed flat dispersion at frequency 4.3 GHz which is 

slightly upshifted from the DBE frequency 𝑓𝑑 obtained for the 

lossless case using circuit simulator and equivalent passive 

model in Fig. A2. 

APPENDIX B: WAVENUMBER PERTURBATION IN THE 

VICINITY OF THE DBE 

We show here the relation between the expansion of 

perturbed eigenvalues of periodic CTL exp( )nn jk d = −  and 

the perturbed wavenumbers nk , when a system parameter of 

the CTL is perturbed by a small perturbation parameter  . In 

general, the perturbed eigenvalues n  are written as a 

perturbation of the degenerate eigenvalue in the neighborhood 

of the DBE eigenvalue exp( )d djk d = −  in terms of a 

fractional power expansion (also called Puiseux series [38]–

[40]) in the perturbation parameter    as 

 

2 2
( 1) ( 1)

1/4 2/44 2
1 2( )

j n j n

n d e e

 

     
− −

= + + +  (B1)  

where 'n s  are the coefficients of the fractional series 

expansion of the nth eigenmodes, and n = 1,2,3,4 provide the 

four possible quartic roots near the DBE. The perturbed 

wavenumber 
1 ln( )n nk jd −=  can be obtained as well, by 

expanding ln( )n  around dn =  using the Taylor series 

expansion which is given by 
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2
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2
d
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d

nn

d
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 
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Accordingly, the perturbed wavenumber nk  is written as a 

perturbation of the degenerate wavenumber in the vicinity of 

the DBE eigenvalue dk k=  as follows 
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APPENDIX C: PROPERTIES OF SYSTEM AND TRANSFER 

MATRICES OF PERIODIC COUPLED TRANSMISSION LINES 

We summarize here some important properties associated 

with matrices related to the system description for the coupled 

transmission lines.  

 

First, a system description is done by defining a state 

vector ( )zΨ  as in (1) that varies in a uniform segment 

as shown in (2) where M  is the constant system matrix. 

This system matrix entries in (3) are the impedance 

j= +Z L R  and admittance matrices j= +Y C G . 

It is clear from this representation that  and Z Y  are 

skew-Hermitian matrices, i.e., † = −A A , if and only if 

they are lossless/gainless (i.e. j=Z L  and j=Y C , 

where L and C  are 2×2 symmetric and positive definite 

matrices [31], [34]). However, introducing gain and/or 

loss to the system makes  and Z Y  non-Hermitian. 

Therefore, if we consider only lossless/gainless systems, 

both ZY  and YZ  matrices are Hermitian (i.e. † =A A

) as they are real symmetric matrices, which implies that 

they are diagonalizable and they have real eigenvalues 

and real determinant [36]. 

 

Second, the system matrix M  in a lossless/gainless 

system described by (2), which has the skew-Hermitian 

matrices  and Z Y  as its entries (3), is a non-Hermitian 

matrix as 

 
† T
= M M M  (C1) 

but it satisfies the J-Hermiticity property (i.e., 
† =A JAJ , where J  is any matrix satisfying 

1 †−= =J J J  [34]). This property is easily proved by 

applying the Hermitian operator to the JM  matrix, i.e., 

by evaluating the complex conjugate transpose 
†† †( ( )) ( )z z=JM M J ; then using (C1) it follows that  

 
†† †( ( )) ( ) ( ) ( ).

T
z z z= = =JM M J JJM J JM  (C2) 

 

Accordingly, JM  is a Hermitian matrix, hence M

satisfies the J-Hermiticity property 
†
=M JMJ .  

 

Third, the periodic structure consists of at least two 

uniform segments A and B, and the state vector z-

variation is described using the transfer matrix concept 

for each unit cell UT  as in (8), that is the product of the 

 
 

Fig. A3.  (a) Real and (b) imaginary parts of dispersion diagram obtained for 
microstrip CTL in Fig. A1(a) using MoM full-wave simulation (Keysight 

Technologies ADS) accounting for radiation, ohmic and dielectric losses. 
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transfer matrices of the two segments U B A=T T T , each 

one given in (7). Within a uniform segment (either A or 

B), the system vector varies as in (4) and the transfer 

matrix is given by ( ) exp( )z j z= −T M  as shown in in 

(5), where the constant M  matrix at the exponent 

satisfies the J-Hermiticity properties as shown in (C2). 

Using the following expansion that defines the transfer 

matrix  

 
2( )

( ) exp( ) ( ) ,
2!

j z
z j z j z

−
= − = + − + +

M
T M 1 M  (C3) 

the spatial variation is written as  
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 (C4) 

 

Accordingly, the transfer matrix is proven to satisfy the 

J-unitarity (i.e., 
† 1−=A JA J ) following the proof in 

Appendix A of [12], based on the fact that 

( ) ( )1 1 1
[ ( ) ( )] 0z z zz z

− − −
 =  +  =T T T T T T  and the 

properties shown in (C2) and (C4).  

 

Finally, we prove that the unit-cell transfer matrix 

U A B=T T T , which translates the state vector across a 

periodic unit-cell is J-unitarity. Indeed, as just proved, 

both  and A BT T  are J-unitarity. Hence, UT  also 

satisfies the J-unitarity property as it can be easily 

proven as follows: 

 

† † † †

1 1 1

( )

.

U A B B A

B A U
− − −

= =

= =

T T T T T

JT T J JT J
 (C5) 
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